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Abstract

Contrary to data, knowledge is often abstract. Concrete knowledge can be achieved
through the inclusion of semantics in the data models, highlighting the role of data
integration. The massive growing number of data, in recent years, has promoted the
demand for scaling up data management techniques; materializing data integration,
a.k.a., knowledge graph creation falls in that category.

In this thesis, we investigate efficient methods and techniques for materializing
data integration. We formalize the process of materializing data integration. We
formally define the characteristics of a materialized data integration system that
merge the data operators and sources. Owing to this formalism, both layers of data
integration, including data and schema-level integration, are formalized in the con-
text of mapping assertions. We explore optimization opportunities for improving
the materialization of data integration systems. We recognize three angles includ-
ing intra/inter-mapping assertions from which the materialization can be improved.
Accordingly, we propose source-based, mapping-based, and inter-mapping assertion
groups of optimization techniques. We utilize our proposed techniques in three real-
world projects. We illustrate how applying these optimization techniques contribute
to meeting the objectives of the mentioned projects.

Furthermore, we study the parameters impacting the performance of material-
ization of data integration. Relying on reported parameters and the presumably
impacting parameters, we build four groups of testbeds. We empirically study the
performances of these different testbeds in the presence and absence of our proposed
techniques, in terms of execution time. We observe that the savings can be up to
75%.

Lastly, we contribute to facilitating the process of declarative data integration
system definition. We propose two data operation function signatures in Function
Ontology (FnO). The first set of functions is designed to perform the task of entity
alignment by resorting to an entity and relation linking tool. The second library
consists of domain-specific functions to align genomic entities by harmonizing their
representations. Finally, we introduce a tool equipped with a user interface to facil-
itate the process of defining declarative mapping rules by allowing users to explore
the data sources and unified schema while defining their correspondences.
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Zusammenfassung

Im Gegensatz zu den Daten ist das Wissen oft abstrakt. Konkretes Wissen kann
durch die Einbeziehung von Semantik in die Datenmodelle erreicht werden, was die
Rolle der Datenintegration unterstreicht. Die massiv wachsende Zahl von Daten hat
in den letzten Jahren die Nachfrage nach einer Ausweitung der Datenverwaltung-
stechniken gefördert; die materialisierende Datenintegration, auch bekannt als die
Erstellung von Wissensgraphen, fällt in diese Kategorie.

In dieser Arbeit untersuchen wir effiziente Methoden und Techniken zur Ma-
terialisierung der Datenintegration. Wir formalisieren den Prozess der Material-
isierung der Datenintegration. Wir definieren formal die Eigenschaften eines ma-
terialisierten Datenintegrationssystems, so dass die Datenoperatoren und -quellen
zusammengeführt werden. Dank dieses Formalismus werden beide Ebenen der Daten-
integration, einschließlich der Integration auf Daten- und Schemaebene, im Kontext
von Mapping-Assertions formalisiert. Wir untersuchen die Optimierungsmöglichkeit-
en zur Verbesserung der Materialisierung von Datenintegrationssystemen. Wir erken-
nen drei Gesichtspunkte, einschließlich Intra-/Inter-Mapping-Assertions, unter de-
nen die Materialisierung verbessert werden kann. Dementsprechend schlagen wir
quellenbasierte, mappingbasierte und inter-mapping Assertionsgruppen von Opti-
mierungstechniken vor. Wir setzen die von uns vorgeschlagenen Techniken in drei
Forschungsprojekte ein. Wir veranschaulichen, wie die Anwendung dieser Opti-
mierungstechniken dazu beiträgt, die Ziele der genannten Projekte zu erreichen.

Wir untersuchen die Parameter, die sich auf die Leistung der Materialisierung der
Datenintegration auswirken. Auf der Grundlage der gemeldeten Parameter und der
vermutlich ausschlaggebenden Parameter erstellen wir vier Gruppen von Testumge-
bungen. Wir untersuchen empirisch die Leistung dieser verschiedenen Testbeds mit
und ohne die von uns vorgeschlagenen Techniken in Bezug auf die Ausführungszeit.
Wir stellen fest, dass die Einsparungen bis zu 75% betragen können.

Schließlich tragen wir zur Erleichterung des Prozesses der deklarativen Definition
von Datenintegrationssystemen bei, indem wir zwei Funktionssignaturen für Daten-
operationen in der Function Ontology (FnO) vorschlagen. Die erste Gruppe von
Funktionen ist für die Aufgabe des Entitätsabgleichs konzipiert, während die zweite
Bibliothek aus domänenspezifischen Funktionen zum Abgleich genomischer Entitäten
durch Harmonisierung ihrer Darstellungen besteht. Schließlich stellen wir ein Tool
vor, das mit einer Benutzeroberfläche ausgestattet ist, um den Prozess der Definition
deklarativer Mapping-Regeln zu erleichtern, indem es den Benutzern ermöglicht, die
Datenquellen und das einheitliche Schema zu erkunden.
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Chapter 1

Introduction

Today, many publicly available data and knowledge bases provide the results of
decades of research on different knowledge domains, targeting different use cases
with different levels of reliability. Gaining a broad insight into each domain to derive
accurate discovery and decision-making leans on transferring all these data into ac-
tionable knowledge through data integration. Integrating data residing in different
sources demand the resolution of heterogeneity that may appear in the data. These
heterogeneity conflicts can emerge in the schema of data or the data values that con-
vey different representations of the same real world entities. Hence, data integration
involves resolving the heterogeneity in data at the schema and data level.

There are two approaches in data integration including materialization and virtu-
alization [8]. In the first approach, i.e., materialized data integration, data are
transformed from different data sources into a centralized source. However, in the
second approach, a virtual view of data residing in different sources is provided with-
out moving and physically transforming data [78]. The updating process also differs
between the two mentioned approaches. In the case of the first approach, once the
data sources are updated, the process of materializing the data integration recurs.
Considering the possible frequency of the demanded updates, the materialization
process requires being equipped with scaled-up techniques.

The outcome of data integration can be encapsulated in graph-based structures
named knowledge graphs (KG) [33]. Beyond the popularity that knowledge graphs
have gained in research fields, they are critical in many enterprises [53]. Furthermore,
knowledge graphs have promising potential in fields such as biomedicine. Consider-
ing the momentum that the idea of using semantics for data integration has gained,
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1.1. Motivation and Challenges

semantic data integration has imparted substantially to the knowledge graph cre-
ation infrastructures. This perspective is manifested by providing a unified view of
data residing in different sources with heterogeneous structures. Consequently, the
process of creating a knowledge graph can be defined based on materializing semantic
data integration. In this thesis, we focus on materialized data integration and use
this term and knowledge graph creation interchangeably.

1.1 Motivation and Challenges

The main motivation of this thesis originated in a real-world scenario where a mate-
rialized integration of massive heterogeneous biomedical data is required in order to
improve the understanding of cancer diagnosis, prognosis, and treatment. Figure 1.1
motivates for heterogeneous data in different sources to be integrated and material-
ized. Ergo, this thesis focuses on the problem of integrating heterogeneous data at
both schema and data levels and efficiently creating a knowledge graph. Despite the
valuable scientific contributions, different challenges still exist on this topic. In the
followings, the challenges tackled in this thesis are enumerated.

1.1.1 Challenge 1: A Transparent integration of data and
metadata

A data integration system as a generic framework to define a knowledge graph is
composed of a unified schema, a set of data sources, and mapping rules between
concepts in the unified schema and the sources. By following the global as view
(GAV) paradigm [47] where concepts in the unified schema are defined in terms of
the sources, mapping rules enable the resolution of interoperability conflicts among
data sources defined using different schemas. We call the resolution of this conflict,
the schema-level integration. The mapping rules required to determine the corre-
spondences between the data and the concepts of the unified schema can be defined
utilizing declarative mapping languages such as R2RML [18] and RML [24]; it is a
possible course of action to force traceability, which implies transparency.

In addition to the schema-level conflicts, data sources may have various levels of
structuredness, suffer from various data quality issues, or expose different representa-
tions of the same real-world entities. Resolving the latest conflicts, a.k.a. data-level
integration, is mostly performed by ad-hoc programs, preventing traceability and
reproducibility. Nevertheless, the data-level integration can be defined transparently
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Chapter 1. Introduction

Figure 1.1: Motivating Example..

by data operators [abs-2105-0931]. Data operators can be defined as functions that
process and manipulate data which we call data operation functions. Owing to the
existing formalism, data operation functions can be defined declaratively as part of
the mapping rules [21, 44, 75, 19, 20]. The potential opportunities and challenges of
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applying data operation functions as part of the mapping rules to perform data-level
integration tasks such as entity alignment are not well explored. Integrating and
facilitating the transparent representation of specific data operation functions, such
as entity alignment functions, is the first challenge that motivates this thesis and
leads to the first two research questions.

1.1.2 Challenge 2: Efficiently Materializing data integration

RDF1 or Resource Description Framework, as a standard model on the web for de-
scribing the metadata of resources, is a powerful data structure to represent factual
statements created from heterogeneous data sources. In many domains, such as
biomedicine and biology, a massive amount of generated data is unavailable in this
format. Hence, knowledge graph creation demands being empowered by efficient
data management techniques to be scaled up.

Additionally, albeit the advantages of integrating data operation functions in map-
pings, it introduces a new source of execution complexity that can negatively affect
the efficiency of the translation and interpretation of the data integration system into
RDF. Hence, data operation functions as a component of data integration systems
need to be considered while optimizing and improving the efficiency of knowledge
graph creation pipelines. Scaling up the process of knowledge graphs from given data
integration systems considering all the components in an integrated fashion is the
next challenge that we address in the context of the third research question.

1.1.3 Challenge 3: Identifying the Parameters negating the
impact of the enhancement/optimization techniques

Enhancement techniques to speed up the knowledge graph creation need to be pro-
posed in the context of parameters that impact the performance of knowledge graph
creation pipelines. On the other hand, the influence of different parameters on the
performance of knowledge graph creation pipelines is also subject to the applied
components in the pipeline, e.g., data operation functions. A few studies evaluate
the impact of different parameters considering different enhancement techniques [12,
3]. Nonetheless, there are important parameters that are yet to be studied or to be
included in the existing benchmarks. Tackling this challenge brings us to another

1https://www.w3.org/RDF/
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Chapter 1. Introduction

Figure 1.2: The illustration of research questions.

1.1.4 Challenge 4: Applying the materialized data integra-
tion in real-world scenarios

One of the questions arises after proposing a methodology or an approach is that
how practical they are. Utilizing the proposed solutions in real-world scenarios and
projects can illustrate their applicability and show their limitations in practice. This
challenge motivates us to address our last research question.

1.2 Research Questions

Based on the challenges, we present the following research questions to be answered
in this thesis.

RQ1: What are the characteristics of a materialized data integration sys-
tem?

We study the KG creation process in terms of data integration systems. We
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define the components of the data integration system in such a way that it
involves data-level integration in addition to schema-level integration.

RQ2: How to merge data operators and sources in a materialized data
integration system?

With this question, we investigate the possibility of integrating data-level in-
tegration as part of the main framework of the knowledge graph. We aim to
generate an integrated framework for knowledge graph creation.

RQ3: How can efficiency be ensured in a materialized data integration sys-
tem?

Considering the components of a data integration system, we study the opti-
mizations of knowledge graph creation from different perspectives. The data
sources and the mapping assertions of a given data integration system can be
transformed such that the transformed data integration system be more effi-
cient in terms of knowledge graph creation. We propose different optimization
techniques for improving the materialization of data integration systems.

RQ4: Which are the impacting parameters that testbeds need to include to
evaluate the advantages of applying enhancement techniques in materialized
data integration?

In addition to the known parameters impacting the performance of KG creation
frameworks, we also consider parameters that we assume may impact the process
of Kg creation. For this purpose, we provide different groups of testbeds that
are configured to observe the impact of different parameters in the performance
of knowledge graph creation frameworks that are applying different optimization
techniques proposed in this thesis.

RQ5: How to overcome the challenges in applying materialized data inte-
gration systems in real-world scenarios?

Addressing this question, we propose a user interface platform to facilitate the
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creation of mapping rules, defining the correspondence between data sources
and the concepts in the unified schema. Furthermore, we show the application
of our proposed optimization techniques in different real-world projects building
their knowledge graphs. First, we illustrate the importance of having scaled-up
materialization of data integration systems in meeting the requirements of the
exemplary projects. We show how different use cases with separate goals can
benefit from our proposed optimization techniques.

1.3 Contributions

Tackling the problems represented by our research questions, we propose a set of op-
timization techniques Figure 1.3 for improving the performance of knowledge graph
creation frameworks in terms of execution time. These optimization techniques im-
prove the performance of the framework for a specific task while ensuring traceability.
In the following, the main scientific contributions of this thesis addressing the five
research questions are enumerated.

Contribution 1: Formalizing Materialized Data Integration Sys-
tems

The first contribution of this thesis includes the formalization of materialized
data integration systems which also refers to knowledge graph creation. Relying
on the existing formal definitions of data integration, we define the character-
istics of materialized data integration systems,i.e., schema-level and data-level
integrations. We investigate what components are required to be involved in data
integration systems in order to carry on the defined characteristics. The compo-
nents are recognized in terms of a unified schema, data sources, mapping rules,
and functions. Moreover, we formally define two underrepresented components
of the materialized data integration system, i.e., mapping rules and functions.
This contribution addresses RQ1.

Contribution 2: Data-level Integration Solution

We explore the potential infrastructures for merging two important defined com-
ponents of materialized data integration systems, i.e., mapping rules and func-
tions. Owing to the formalisms provided by declarative mapping languages, we
suggest applying these languages in defining data operation functions in the con-
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1.3. Contributions

Figure 1.3: Our Proposed Pipeline of Knowledge Graph Creation..

text of data-level integration. We show how applying mapping rules and their
extensions enable traceability. This contribution addresses RQ1 and RQ2.

Contribution 3: Data Operation Function Libraries

Persuing the declarative data operation function definition, we provide two li-
braries of functions named EABlock and GenoConductor. EABlock is proposed
to perform entity alignment tasks relying on the available state-of-the-art for
solving the Named Entity Recognition (NER) and Entity Linking (EL) tasks.
Relying on a tool performing entity alignment, EABlock links entities encoded
in labels and short text to controlled vocabularies, i.e., UMLS and resources
in encyclopedic, i.e., DBpedia and Wikidata, and other domain- specific knowl-
edge graphs. EABlock functions are defined in a human and machine-readable
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medium, meeting meta-data requirements regarding transparency and reusabil-
ity. GenoConductor, on the other hand, GenoConductor, provides a group of
domain-specific functions linking genomic variation entities to a set of proposed
harmonized representations; it solves genomic variant data heterogeneity. The
functions in these libraries are defined using Function Ontology (FnO) [19], en-
abling them to be integrated as part of declarative mapping assertions defined
by [R2]RML. This contribution target RQ2.

Contribution 4: Efficient Materialization of Data Integration Sys-
tem - Source-based Optimization

We address the efficient materialization of data integration systems considering
different components of the system. We start with the data sources and im-
provements that can be performed from that angle. We introduce a framework,
named MapSDI, consisting of a set of transformation rules at the level of data
sources. The data integration system derived by applying the proposed trans-
formation rules possesses two characteristics; 1. the knowledge graph generated
by this data integration system is equivalent to the knowledge graph obtained
from the original data integration system and 2. the execution time required to
create the same knowledge graph from the transformed data integration system
is minimal. This framework is one of the two main contributions of this author
in tackling RQ3.

Contribution 5: Efficient Materialization of Data Integration Sys-
tem - Intra-mapping based Optimization

The second component to be considered is improving the mapping mapping rules.
We propose a heuristic-based framework, Dragoman, specialized for optimizing
the materialization of data integration systems in the presence of data operation
functions. Dragoman is composed of a set of transformation rules to convert a
given data integration system involving data operation functions into a function-
free one. Relying on an eager evaluation strategy, first, Dragoman recognizes all
the data operation functions in mapping rules and evaluates them. After the
materialization of the functions, considering the mappings, Dragoman decides
on the transformations required to transform an input data integration system
into a function-free one. These transformations allow to transform the given

10



1.3. Contributions

data integration systems in such a way that the materialization is efficient and
system-agnostic. Additionally, the transformation rules ensure the correctness
and completeness of the transformed data integration system.

Contribution 6: Efficient Materialization of Data Integration Sys-
tem - Inter-mapping based Optimization

Another opportunity in improving the efficiency of data integration system ma-
terialization is planning the optimized execution of the mapping rules. To this
end, we introduce planner, a heuristic-based approach. Planner provides an
optimized execution plan by partitioning and scheduling the execution of the
given mapping rules in the data integration system. This contribution serves to
address RQ3.

Contribution 7: A Benchmark to Evaluate Materialized Data In-
tegration Systems Incorporating the Significant Parameters

Considering the parameters that are reported [12] or questioned [43, 41, 36, 37]
to impact the performance of materialized data integration systems, we produce
a set of testbeds, named SDM-Genomic-TestBeds. These testbeds have been
gradually created and extended along with the rest of the contributions of this
thesis to assess the performance of each proposed framework or tool. The main
focus of SDM-Genomic-TestBeds is targeting the parameters that are not gained
attention in the existing benchmarks, such as GTFS-Madrid-Bench [13]. This
contribution aims to address RQ4.

Contribution 8: Facilitating Mapping Assertion Creation

Committing to the application of [R2]RML and their extensions we provide a
user interface named easyRML to facilitate the creation of mapping rules utilizing
RML. Applying easyRML, users have the opportunity to traverse the unified
schema and data sources while defining the mapping rules. This contribution
serves to address RQ5.
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Contribution9: Applying Efficient Materialization of Data Integra-
tion System in Real-world Projects

We show the requirements of knowledge graph creation frameworks of four real-
world projects and how utilizing our proposed optimization techniques, these re-
quirements can be met. These knowledge graphs are generated in the contexts of
various EU projects including iASiSa, BigMedyliticsb, CLARIFYc, K4COVIDd.
This contribution addresses RQ5.

ahttps://project-iasis.eu/
bhttps://www.bigmedilytics.eu/
chttp://www.clarify-project.eu/
dhttps://github.com/SDM-TIB/Knowledge4COVID-19

1.3.1 Publications

The majority of the contributions of this thesis are either already published or under
review to be published in the contexts of the following peer-reviewed papers.

List of Published Peer-reviewed Papers

1. Samaneh Jozashoori, Maria-Esther Vidal. MapSDI: A scaled-up semantic
data integration framework for knowledge graph creation. In Proceedings of the
27th International Conference on Cooperative Information Systems (CooPIS),
2019 Oct 21 (pp. 58-75). Springer, Cham. This paper is a joint work with
my supervisor, Maria-Esther Vidal. My contributions are the definition of the
approach, implementation, and evaluation of the proposed approach. I also
set up the testbeds and configurations for the empirical study and performed
them, explaining the results and visualizing them. Full research paper

2. Samaneh Jozashoori, David Chaves-Fraga, Enrique Iglesias, Maria-Esther
Vidal, and Oscar Corcho. Funmap: Efficient execution of functional mappings
for knowledge graph creation. In International Semantic Web Conference, pp.
276-293. Springer, Cham, 2020. This paper is a collaboration with David
Chaves-Fraga, a Ph.D. student at the Polytechnical University of Madrid, and
our supervisors. My contribution is the motivation and definition of the ap-
proach. Furthermore, I defined the motivating examples, the testbeds for em-
pirical studies, and the execution and analysis of the experimental studies. Full
research paper
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3. Samaneh Jozashoori, Ahmad Sakor, Enrique Iglesias, and Maria-Esther Vi-
dal. EABlock: a declarative entity alignment block for knowledge graph creation
pipelines. In Proceedings of the 37th ACM/SIGAPP Symposium On Applied
Computing, pp. 1908-1916. 2022. This paper is a joint work with Ahmad
Sakor, a Ph.D. student at the Leibniz University of Hannover, and my super-
visor, Maria-Esther Vidal. My contribution to this paper includes the creation
of the motivating example, the definition of the approach, i.e., EABlock, the
definition of functions, the implementation of the functions, defining the ar-
chitecture of the proposed approach, the generation of the testbeds for the
experimental studies, performing the experiments, and the visualization of the
results. Full research paper

4. Samaneh Jozashoori, Maria-Esther Vidal. Data Integration for Supporting
Biomedical Knowledge Graph Creation at Large-Scale. In Proceedings of 13th
International Conference, DILS 2018, Hannover, Germany, November 20-21,
(2018). Short paper

5. Enrique Iglesias*, Samaneh Jozashoori*, David Chaves-Fraga*, Diego Col-
larana, and Maria-Esther Vidal. SDM-RDFizer: An RML interpreter for effi-
ciently creating RDF knowledge graphs. In Proceedings of the 29th ACM Inter-
national Conference on Information and Knowledge Management, pp. 3039-
3046. 2020. This article is a joint work with Enrique Iglesias, a research
software developer, David Chaves-Fraga, a Ph.D. student at the Polytechnic
University of Madrid, and my supervisor, Maria-Esther Vidal. The first three
authors (shown by *) contributed equally to this publication. In this paper, my
contributions include preparing motivating example, testbeds for experimental
studies, and visualizing the results of the experiments. Full resource paper

6. Enrique Iglesias, Samaneh Jozashoori, Maria-Esther Vidal. Scaling Up
Knowledge Graph Creation to Large and Heterogeneous Data Sources. Journal
of Web Semantics, (2022). This paper is a joint work with Enrique Iglesias, a
research software developer, and my supervisor, Maria-Esther Vidal. In this
paper, I contributed to the motivating example, formalizing mapping asser-
tions, and testbeds for experimental studies. Full research paper

7. Ahmad Sakor, Samaneh Jozashoori, Emetis Niazmand, Ariam Rivas, Kostanti-
nos Bougiatiotis, Fotis Aisopos, Enrique Iglesias et al. Knowledge4COVID-
19: A Semantic-based Approach for Constructing a COVID-19 related Knowl-
edge Graph from Various Sources and Analysing Treatments’ Toxicities. arXiv
preprint arXiv:2206.07375 (2022). This article is a collaboration with a group of
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Ph.D. students at the Leibniz University of Hannover, a group of researchers at
Demokritos Institute of Greece, and my supervisor, Maria-Esther Vidal. In this
paper, I contributed to creating the knowledge graph, including data cleaning,
a unified schema creation, defining the required mapping rules using RML, and
finally transferring the DIS into the knowledge graph. Full research paper

8. Maria-Esther Vidal, Samaneh Jozashoori, and Ahmad Sakor. Semantic
data integration techniques for transforming big biomedical data into actionable
knowledge. In 2019 IEEE 32nd International Symposium on Computer-Based
Medical Systems (CBMS), pp. 563-566. IEEE, 2019. Short paper

9. Maria-Esther Vidal, Kemele M. Endris, Samaneh Jazashoori, Ahmad Sakor,
and Ariam Rivas. Transforming heterogeneous data into knowledge for person-
alized treatments—A use case. Datenbank-Spektrum 19, no. 2 (2019): 95-106.
In this paper, I contributed to creating the knowledge graph including cleaning
the data, creating a unified schema, understanding, cleaning, and semantifying
data, and defining the required mapping rules using RML to integrate the data.
Book Chapter

10. Maria-Esther Vidal, Kemele M. Endris, Samaneh Jozashoori, Farah Karim,
and Guillermo Palma. Semantic data integration of big biomedical data for
supporting personalized medicine.. Current Trends in Semantic Web Technolo-
gies: Theory and Practice. Studies in Computational Intelligence, vol 815,
pp. 25-56. Springer, Cham. (2019).In this paper, I contributed to the data
integration and knowledge graph creation. Book Chapter

11. Maria-Esther Vidal, Kemele M. Endris, Samaneh Jozashoori, and Guillermo
Palma. A Knowledge-Driven Pipeline for Transforming Big Data into Action-
able Knowledge. In International Conference on Data Integration in the Life
Sciences, pp. 44-49. Springer, Cham, 2018. In this paper, I contributed to
creating the knowledge graph pipeline, including cleaning the data, creating
a unified schema, understanding, and semantifying data, defining the required
mapping rules using RML to integrate the data, and finally transferring the
data integration system into the knowledge graph efficiently. Short paper

12. Calvo, V., E. Niazmand, E. Carcereny, Samaneh Jozashoori, D. Rodriguez,
R. Lopez Castro, M. Guirado et al. 1730P Cancer long survivor artificial
intelligence follow-up (CLARIFY): Family history of cancer and lung cancer.
Annals of Oncology 32 (2021): S1198-S1199. This article is a collaboration
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with another Ph.D. student at the Leibniz University of Hannover, Emetis Ni-
azmand, my supervisor Maria-Esther Vidal, and a group of clinicians in the EU
project in that I am involved, CLARIFY. In this paper, I contributed to creat-
ing the knowledge graph, including cleaning the data, creating a unified schema
for cancer patients, understanding the data and semantifying it, defining the
required mapping rules using RML to integrate the data, defining and imple-
menting the required FnO functions to integrate the data at the data-level,
and finally transferring the DIS into the knowledge graph. Poster paper

List of the Under-review Publications

1. Samaneh Jozashoori, Enrique Iglesias, and Maria-Esther Vidal. Drago-
man: Efficiently Evaluating Declarative Mapping Languages over Frameworks
for Knowledge Graph Creation. Semantic Web Journal (SWJ) (2022)2. This
paper is a collaboration with Enrique Iglesias, a software researcher, and my su-
pervisor, Maria-Esther Vidal. My contribution to this paper involves, defining
the problem, providing the motivating example, formalizing the data operation
functions in mapping assertions, defining the transformation rules, formalizing
the transformed mapping assertions, defining the algorithm of the framework
including the transformation rules, defining the architecture of the framework,
defining the parameters and creating the testbeds required to evaluate the
framework, performing the empirical studies, explaining the results of the ex-
periments and visualizing them. Full research paper

2. Fotis Aisopos, Samaneh Jozashoori, Emetis Niazmand, Disha Purohit, Ariam
Rivas, Ahmad Sakor, Enrique Iglesias, Dimitrios Vogiatzis, Ernestina Menasal-
vas, Alejandro Rodriguez Gonzalez, Guillermo Vigueras, Daniel Gomez-Bravo,
Maria Torrente, Roberto Hernández López, Mariano Provencio Pulla, Athana-
sios Dalianis, Anna Triantafillou, Georgios Paliouras, and Maria-Esther Vidal
Knowledge Graphs for Enhancing Transparency in Health Data Ecosystems.
Semantic Web Journal (SWJ) (2022)3. This article is a collaboration with a
group of Ph.D. students at the Leibniz University of Hannover, my supervi-
sor, Maria-Esther Vidal, and the partners of the EU project that I have been
involved, named BigMedylitics. In this paper, I contributed to creating the
knowledge graph including data cleaning, a unified schema creation, defining
the required mapping rules using RML, and finally transferring the data inte-
gration system into the knowledge graph. Full research paper

2https://www.semantic-web-journal.net/content/dragoman-efficiently-evaluating-declarative-mapping-languages-over-frameworks-knowledge
3https://www.semantic-web-journal.net/content/knowledge-graphs-enhancing-transparency-health-data-ecosystems-0
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3. Enrique Iglesias, Maria-Esther Vidal, Samaneh Jozashoori, Diego Collarana,
and David Chaves-Fraga. Empowering the SDM-RDFizer Tool for Scaling
Up to Complex Knowledge Graph Creation Pipelines., Semantic Web Journal
(SWJ), (2022)4. This paper is a joint work with Enrique Iglesias, a research
software developer, and my supervisor, Maria-Esther Vidal. In this paper, I
contributed to the testbeds and configurations for the experimental study. Full
research paper

1.4 Thesis Structure

The thesis is composed of four parts divided into 16 chapters, overall. Part I or
preliminary part, provides an overview of the background knowledge in Chapter 2
and related works that are required to understand this thesis in Chapter 3. Part II
involves six chapters, representing the proposed solutions to the problems tackled in
the thesis. First, the components of a DIS are formally defined in Chapter 4. Then
in the following two chapters, including Chapter 5 and Chapter 6 the contributions
for the RQ1 are represented. Continuing with the Chapter 7 and Chapter 8, the data
operation functions libraries and the user interfaces for creating mapping assertions
as the solutions to RQ3 are explained. Last but not least, in this part, Chapter 9
explains the major contribution of this thesis, i.e., the Dragoman framework, in de-
tail. Part III composed of five chapters, provides an overview of all empirical studies
conducted in this thesis context. This part starts with Chapter 10 describing SDM-
Genomic-testbeds, one of the main contributions of this thesis focusing on providing
required benchmark evaluating knowledge graph creation pipelines. The evaluation
part continues with four chapters consisting of Chapter 11, Chapter 12, Chapter 13,
and Chapter 14 describing the details of the experimental setups and the results of
the experiments on MapSDI, Planner, EABlock, and Dragoman, respectively. The
last part, i.e., Part IV provides an insight into the applications of the main contri-
butions of this dissertation, including different frameworks in Chapter 15. The last
chapter of this part and the thesis, Chapter 16, summarizes all the chapters and
concludes.

4https://www.semantic-web-journal.net/content/empowering-sdm-rdfizer-tool-scaling-complex-knowledge-graph-creation-pipelines
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Chapter 2

Background

In this chapter, we explain the terminology and concepts that serve as the back-
ground knowledge of the the research presented in this thesis. In Section 2.1, we
provide the definition of data integration system and the corresponding concepts. In
Section 2.2, we explain the basic concepts in Semantic Web Technologies that serve
as the foundation of our research. We follow this chapter with the description of
knowledge graph creation in Section 2.3; it also includes the description of FAIR
principles in Section 2.4.

2.1 Data Integration System

Data integration is the problem of providing a unified view of the heterogeneous data
residing at separated sources [47]. Accordingly, a data integration system can be de-
fined in terms of three components, i.e., O a unified schema or ontology, S a set of
data sources, and M a set of assertions. In designing a data integration system, the
main task is the definition of mappings representing the correspondence between the
data at the sources and the unified schema. Two basic approaches for specifying the
mapping in data integration systems are proposed including global-as-view (GAV)
and local-as-view (LAV). The GAV approach follows the idea that the instances of
each element of the unified schema need to be defined based on a view of given data
sources. In contrast, the LAV approach relies on the idea that the values in each
data source should be described in terms of a view of the unified schema.

Data integration involves two levels of integration. The first is the schema-level inte-
gration involves homogenizing different nomenclatures of the semantically same real-
world concepts between schemas. The second is the data-level integration including
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harmonizing and aligning the identical data values representing the same real-world
entity, represented differently in data sources [45]. Designing the unified schema and
defining the correspondence between data and the concepts in the unified schema
contribute to overcoming schema-level integration. Data-level integration requires
identifying interoperability conflicts between data sources and providing solutions to
them. Interoperability issues are explained as the following. Structuredness: this
conflict occurs whenever data sources are described at different levels of structured-
ness, e.g., structured, semi-structured, and unstructured. Schematic: this interop-
erability conflict exists among data sources that are modeled using different schemas,
e.g., different attributes representing the same concept. Domain : this conflict oc-
curs among various representations of the same entity. They involve: i) homonym:
the same name is used to exhibit concepts with different meanings, and ii) synonym:
distinct names are used to model the same concept. Geisler et al. [31] introduce data
operators for accessing, processing, or managing data in the data sources; we refer to
them as data operation functions in this thesis. A data integration system, duly, can
be defined as DIS = ⟨O, S,M⟩ without considering the data operation functions.
Nevertheless, including data-level integration, we can define a data integration sys-
tem in terms of four elements i.e., DIS = ⟨O, S,M, F ⟩ where F represents a set of
data operation functions to solve the data-level integration. The elements of DIS are
described as follows:

• The global/unified schema O is defined as a triple, O = (C,P,Axioms) where C
and P correspond to the signature of O and represent the classes and properties
of O. The set Axioms denotes a collection of axioms staying the main charac-
teristics of the properties of O; these asserted statements implicitly comprise
knowledge describing the modeled universe of discourse.

• The data sources of DISG are represented by means of the set of signatures
S = ⟨SAtt1

1 , . . . , SAttn
n ⟩ where each symbol Sj stands for a data source, e.g., a

file or relational table, and Attj corresponds to the attributes of Sj.

• M is a set of mapping assertions defining the classes and properties in the
unified schema O in terms of the sources in S. Mapping assertions enable the
resolution of interoperability conflicts among data sources at the schema level.

• F is a set of functional symbols representing built-in and user-defined data oper-
ation functions. User-defined functions comprise any data operation functions
such as entity alignment, data cleaning, and curation resolving the interoper-
ability conflicts between data values in different sources.
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2.2 Semantic Web

In 2001 Berners-Lee et al. stated that “The Semantic Web is an extension of the
current web in which information is given well-defined meaning, better-enabling com-
puters and people to work in cooperation.” The two main ideas of the Semantic Web
and its technologies include, first, integrating and combining data residing in differ-
ent sources according to a common format. The second idea is about a language
to show the relation between the data and the real-world concepts and objects 5 in
such a way that is understandable by a machine, in addition to a human. One of
the most important contributions of the Semantic Web is the applicability of the
Semantic Technology Stack on the data integration problem. Hence, Semantic Data
Integration is applying semantic web technologies, i.e., the standards proposed by
the World Wide Web Consortium (W3C), to solve data integration problems.

The Semantic Web provides formalisms for representing and accessing data that
are translated to a set of standards and technologies used to create data stores,
vocabularies, and write rules for handling data. At the core of these standards is the
Resource Description Framework (RDF) and its associated schema languages, RDF
Schema (RDFS), and the Web Ontology Language (OWL).

2.2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [77] is a graph-based data model to
represent data and metadata on the Web. The RDF data model allows expressing
information in the form of three-element tuples, called RDF triples. An RDF triple
consists of a subject, a predicate, and an object. A subject of an RDF triple denotes
a resource or entity that is being described, a predicate specifies a property or binary
relation that associates the subject with the object of the triple and an object of a
triple denotes a value of the predicate. A set of such RDF triples is called an RDF
graph, defined as a directed graph. Nodes in the RDF graph are resources or literals.
RDF resources are identified by IRIs (Internationalized Resource Identifier) or blank
nodes (anonymous resources or existential variables), while literals correspond to
instances of a data type (e.g., numbers, strings, or dates). Semantically, an RDF
triple states that a relationship, indicated by a predicate, holds between the resource
denoted by the subject and the object. An IRI also identifies a predicate; it represents
a binary property or relationship.

5https://www.w3.org/2001/sw/
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2.2.2 RDF Schema (RDFS)

RDF Schema (RDFS) [9] is a semantic extension of RDF to describe the relationship
between related resources. The RDF Schema (RDFS) [14] extends the RDF model
with new predicates such as rdfs:Class, rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, and rdfs:range. The rdfs:Class allows for the specifications of a
particular resource as a Class. Establishing a hierarchical structure between classes
is realized using the rdfs:subClassOf. Relationships between classes are defined
by properties, i.e., rdf:Property. Additionally, properties use rdfs:domain and
rdfs:range to allow a more detailed specification of the relationships. The domain
of a property specifies its subject type within a triple while, the range defines the
type of an object. Applying rdfs:subPropertyOf, properties can be organized in
a hierarchical fashion. RDFS enables the hierarchies according to the relationships
defined by rdfs:subClassOf and rdfs:subPropertyOf.

2.2.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [49] is a Description Logics (DLs) based lan-
guage introduced to assist in defining ontologies, i.e., a conceptualization of a domain
knowledge [32] with explicit representation of the meaning of the terms and the rela-
tions between terms. OWL introduces new logical constructs and formal semantics
at each level of the RDF model. To achieve the main objectives of the Semantic
Web, introducing and applying an expressive language enabling the formal represen-
tation of terminologies and their relations is essential. In comparison to XML, RDF,
and RDFS, OWL is considered to be a more expressive and powerful language which
makes it the better choice for representing machine-interpretable content on the web.

2.2.4 Declarative Mapping Languages

Declarative mapping languages defined by the Semantic Web community can be
used to define the correspondences between the data at the sources and the con-
cepts in the unified schema. R2RML [18] is a language recommended by W3C to
define mappings from relational databases (RDB)s to RDF datasets. RDF Map-
ping Language (RML) [23] is a declarative mapping language extending the W3C
standard mapping language R2RML, used to transform heterogeneous data, in-
cluding JSON, CSV, and XML, into the RDF data model. Each mapping as-
sertion can be expressed as an RML mapping rule using its vocabulary6. Sim-

6https://rml.io/specs/rml/
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Figure 2.1: RML Example.

ilar to R2RML, a rule in RML is presented as a triples map ( rr:triplesMap)
defining the mapping between each entry in the data source to zero or more RDF
triples, considering the provided ontology. Figure 2.1 illustrates an exemplary set of
RML mapping rules. As it can be seen in Figure 2.1, rules are expressed by three
rr:triplesMaps. A rr:triplesMap is defined according to the following characteris-
tics. A rr:triplesMap must have exactly one logical source ( rml:logicalSource)
property, exactly one subject map (rr:subjectMap), and may have zero or more
predicate-object maps (rr:predicateObjectMap) properties.
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1. A rml:logicalSource is defined in terms of a rml:source, rml:referenceForm-
ulation, and a rml:iterator. It should be noted that in the case of having
a database or CSV as the rml:logicalSource, defining the rml:iterator

is optional. In addition, the definition of rml:referenceFormulation is not
required in the case of CSV, while, in the case of JSON or XML, all three
properties are required to be defined.

2. RDF triples generated by each Triples Map share the same SubjectMap;
shown in violet in Figure 2.1. A SubjectMap defines the resources of an RDF
class in the unified schema.

3. A set of rr:predicateObjectMaps defines the properties and relations of a
class specifying pairs of rr:predicateMaps and objectMaps which form RDF
triples along with rr:subjectMap. The values of a predicateObjectMap can
be defined in terms of a data source attribute, or as a reference or a join
with the rr:subjectMap of another triplesMap. As shown in the example
of Figure 2.1, a simple rr:objectMap can be created from the data attribute
value as an IRI using rr:template (shown in purple) or as a literal using
rml:reference (shown in green). A reference to another triplesMap is de-
noted as rr:RefObjectMap; it can be stated between rr:triplesMaps defined
over the same data source (shown in light purple) or between rr:triplesMaps
with join dependency. The join dependency between two rr:triplesMaps ex-
ist when the rr:subjectMap of one rr:triplesMap is the object of another
rr:triplesMap. In this case, a join operator is required to be performed which
is show applying a rr:JoinCondition (illustrated in dark green).

The Function Ontology (FnO) [19, 20] introduces a specification and ontology to
semantically declare data operation functions. It allows for definitions of certain
problems, executions, and implementations of the function into the bargain. Ac-
cordingly, RML is extended to integrate the declarative representation of data op-
erations functions using FnO in the mapping rules, i.e., RML+FnO. Functions are
defined by functionMaps in RML+FnO (appeared in yellow). A functionMap can
be referenced by a rr:subjectMap or a rr:predicateObjectMap.

2.3 Knowledge Graph

Knowledge graphs are data structures that represent factual statements as entities
and their relationships using a graph data model [33]. A KG is a directed graph
G=(O,V ,E), where: O is the unified schema, V is a set of nodes in the KG; nodes
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in V correspond to classes or instances of classes in O. E is a set of directed labeled
edges in the KG that relate nodes in V . Edges are labeled with properties and
relations in O. The foundation of any knowledge graph is built on the principles of
modeling data as a graph [34]. We follow with the definition of the most common
graph data models based on [34]:

• Directed Edge-labelled (del) Graphs are defined as a set of nodes, representing
entities and a set of directed labeled edges between those nodes, representing
binary relations between the entities. Adding new data to such a data model
includes adding new nodes and edges. Accordingly, this data model offers more
flexibility for integrating new data, compared to the standard relational model
such as XML or JSON, where a schema must be defined upfront. An RDF
graph is a W3C standard data model based on del graphs.

• In heterogeneous Graphs, each node and edge is assigned one type. Similar
to del graphs, edge labels in heterogeneous graphs correspond to edge types.
However, the types of nodes are part of the graph model, rather than repre-
senting a special relation. If the edge connects two nodes with the same type,
the edge is called homogeneous; otherwise, it is called heterogeneous. Hetero-
geneous graphs allow for partitioning nodes based on their type, which makes
them good candidates for tasks such as machine learning ones [35].

• Property Graphs allow a set of property–value pairs and a label to be associated
with nodes and edges. In a del graph, an edge cannot be directly annotated,
while, a property graph provides such a feature offering a more flexible data
model. Property graphs are used in popular graph databases, such as Neo4j [2].

In this manuscript, we focus on RDF graph data model, a standard data model based
on del graphs. In knowledge graphs expressed in the RDF, nodes can be resources or
literals, and edges correspond to predicates. We refer to the RDF knowledge graph
as the knowledge graph or KG.

2.3.1 Knowledge Graph Creation

The creation of a KG G is defined in terms of evaluating a data integration system
DISG = ⟨O, S,M, F ⟩. Accordingly, the process or pipeline of KG creation involves
the techniques and approaches for evaluating the provided data integration system.
Considering RDF knowledge graphs, the pipeline of KG creation results in RDF
triples created by evaluating the data integration system.
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2.3.2 Evaluation of Functions

The evaluation of data operation functions can be derived using a lazy or eager eval-
uation approach. The evaluation of a function is called eager when the parameters of
the function are evaluated before the function is executed [66]. Moreover, employing
an eager evaluation strategy means that functions are executed “as soon as possi-
ble”. In contrast, a lazy evaluation approach leads to the evaluation of functions “as
required”.

2.4 The FAIR Principles

The digital objects are referred as any published records including data sources, tools,
and vocabularies. The Findable, Accessible, Interoperable, and Reusable (FAIR)
principles are introduced to provide a guideline for characteristics that any digital
object is required to hold in order to ensure their reusability [76]. The elements of
the FAIR principles include as explained in [76] are as follow:

• Being Findable: F1) A globally unique and persistent identifier is designated
to [meta]data. F2) Metadata is provided for data. F3) The identifier of data
is involved in the metadata. Meta data are indexed in a searchable resource.

• Being Accessible: A1) [Meta]data can be retrieved by their unique identifier
applying a standardized protocol; the protocol needs to meet the following
requirements. the protocol is open, free, and universally implementable. The
protocol enables necessary authentication and authorization procedures. A2)
metadata are required to be accessible even though the data are no longer
available.

• Being Interoperable:I1) A formal, accessible, shared, and broadly applicable
language is utilized to represent [meta]data. I2) [meta]data are represented
using vocabularies that follow the FAIR principles. I3) [Meta]data include
valid references to other [meta]data.

• Being Reusable: R1) The accurate and relevant attributes of meta[data] are
described. [Meta] data are: R1.1) released only with a clear and accessible
data usage license, R1.2) associated with provenance, and R1.3) aligned with
the domain-relevant community standards.

It should be noted that the FAIR principles highlight the concept of being “machine-
actionable”. A digital object is considered to be “machine-actionable” when it
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provides increasingly more detailed information to an autonomously acting, com-
putational data explorer. In addition to the digital object itself, being “machine-
actionable” can also refer to the content of the contextual metadata surrounding the
digital object.
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Related Work

This chapter reviews the state of the art, upon which, the works presented in this
thesis are built. The works presented in Section 3.1 consist of the formalizations
provided in data integration, techniques in integrating data, and approaches for cre-
ating knowledge graphs. In Section 3.1, we specifically focus on data-level integration
techniques adopted in different approaches. Section 3.2 provides an overview of the
contributions in developing declarative mapping languages for data integration. We
follow this chapter with the approaches and engines introduced for materializing
data integration systems and knowledge graph creation in Section 3.3. Lastly, in
Section 3.4, we present the contributions to the evaluation of knowledge graph cre-
ation approaches.

3.1 Data Integration

Data integration is the problem of providing a unified view of the data residing
in separated sources and the fundamental challenge in knowledge graph creation.
Lenzerini [47] is one of the first, formalizing components of data integration sys-
tems. Lenzerini sets up a logical framework for data integration whose objective is
to combine the data from different sources based on a global schema. He formalizes
the concept of mapping ; it is required to overcome the heterogeneity between the
schemas of different data sources.

Years later, Doan et al. define the different types of heterogeneity that occur while
integrating data [25]. They explain that heterogeneity can also appear at the data
level and can be classified into two types. a. The first type occurs when the values in
one source can be derived by a transformation function from the other sources. For
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instance, the values separated as two columns in one dataset may be concatenated
and represented as one column in the other sources. Resolving such heterogeneity
may require a deeper knowledge of the semantics of the data. Reconciling this
kind of heterogeneity is possible by adding data operation functions to transform
the data values. b. The second type of data-level heterogeneity is considered in
cases where multiple representations of the same real-world entity are possible. The
latest heterogeneity can be addressed and resolved by performing Entity Alignment
(EA) techniques. The literature review in the following provides an overview of the
contributions focusing on data-level integration in KG creation. Hence, integrating
semi/unstructured data, e.g., texts, requires a semantic layer to resolve data-level
heterogeneity; we call it data-level integration. Capiello et al. [10] include the data-
level integration in a Data Ecosystem (DE) as a set of data operators including
steps such as data cleaning, Named-Entity Recognition (NER), and Entity Linking
(EL). Chessa et al. introduce [14] a methodology to add a semantic layer to a data
lake and create a KG. Barroca et al. [5] extract metadata from textual descriptions
and link them to entities in KGs utilizing NER and EL techniques, while Chu et
al. propose a method to address the challenge of entity relations extraction [15].
Alternatively, mapping languages have been extended to embrace data operators as
functions that can be included as programming scripts directly in the mapping rules
which is explained in detail in Section 3.2.

3.1.1 Data-Level Integration

The methods and approaches proposed for data integration in the process of KG cre-
ation can be divided into two categories based. Both categories suggest ad-hoc pro-
grams for data-level integration, however, the first category emphasizes on resolving
the data-level integration while generating the RDF entities as pre-processing. While,
the second category of the approaches addresses the data-level integration after ma-
terializing the DIS and modeling the data into RDF triples, i.e., post-processing. We
explain the state of the art in each category in the following.

Starting with the first category, Szekely, et al. [65] propose an approach for build-
ing knowledge graphs and devising the DIG system. This approach resorts to
KARMA [45], a semantic DIS proposed by Gupta et al., for data integration at
the level of schema. DIG system tackles a number of challenges including scalability.
LIMES [52] proposed by Ngomo et al. is an efficient approach for link discovery in
metric spaces. Relying on the mathematical characteristics of metric spaces, LIMES,
can filter out a large number of instances that cannot meet the matching condition set
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by the user sufficiently. The common feature of all presented approaches in this cat-
egory is that they consider any data operation, e.g., entity linking, as separate steps
before materializing data integration systems. In other words, the data-level integra-
tion performed by these approaches is exhibited as pre-processing steps. Nonetheless,
a drawback of developing pre-processing steps as ad-hoc programs for each specific
knowledge graph pipeline is that they reduce traceability and maintainability at scale.

The second category consists of approaches focusing on automatic linked data inte-
gration and fusion. Collarana et al. [16] introduce MINTE, an integration framework
that relies on the concept of RDF molecules to represent RDF entities semantically
and be able to create, identify, and merge semantically equivalent RDF entities.
LDIF introduced by Schultz et al. [58] is the framework that provides a set of inde-
pendent tools supporting the process of interlinking RDF datasets. These tools can
be divided into two groups. The first group includes data integration approaches fo-
cusing on linking tasks, e.g., Silk [39]. Silk can discover links between RDF resources
based on the similarity between datatype properties considering link specifications
provided by users. The second group performs the data fusion task. For instance,
Sieve [50] proposed by Mendes et al. is a framework for quality assessment and
fusion methods. Benbernou et al. [6] propose a semantic-based RDF data fusion re-
lying on an inference mechanism using rules. Nevertheless, as mentioned earlier, the
approaches explained in this category consider the data operations, such as entity
alignment, as a differentiated step after the main integration process, a.k.a. post-
processing. Hence, these approaches ignore the cost forced on the knowledge graph
creation process due to generating the same nodes multiple times.

The explained limitations in both categories shed light on the necessity of integrat-
ing the data operation in the main process of materializing data integration and
knowledge graph creation. Consequently, it is essential to introduce scaled-up ap-
proaches to build knowledge graphs from the data integration systems that involve
data operation functions. Accordingly, we define the data operation functions as a
component in data integration systems. This component serves as the foundation
for data-level integration. Moreover, we propose optimization techniques to scale up
the materialization of data integration systems involving data operation functions.

3.2 Declarative Definition of Data Integration

To specify the correspondences between the unified schema and the data sources
transparently, a declarative mapping language can be applied. In 2012, the World
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Wide Web Consortium (W3C) recommended R2RML [18], a language to declare
mappings from relational databases (RDB)s to RDF datasets. In 2014, Dimou et
al. introduce RDF Mapping Languages (RML) [24], the extension of R2RML. RML
is a source-agnostic and extendable language supporting different source formats
including XML and JSON, in addition to tabular data. These two exemplar map-
ping languages represent an infrastructure to resolve schema-level heterogeneity in a
declarative and transparent manner. Accordingly, valuable efforts toward extending
mentioned mapping languages have been made to merge the data operation function
definitions in the mapping languages. Debruyne et al. introduce R2RML-F [21], an
extension to R2RML to overcome interoperability issues while mapping the data in
RDBs. De Meester et al. introduce Function Ontology (FnO) [19] to semantically
declare data operation functions. Additionally, an extension of RML, FNML a.k.a
RML+FnO, is provided to integrate the functions defined in FnO to the mappings
declared in RML. Junior et al. propose another approach, FunUL [44], to merge the
data operation functions in the mappings of CSV/Tabular data. In another attempt,
Vu et al. introduce D-REPR [75], a new mapping language also involving data opera-
tions. Defining the data operation functions declaratively as part of the materialized
data integration ensures the transparency of a knowledge graph creation framework.
Furthermore, it enhances the data integration and transformation pipeline’s main-
tainability, reusability, and reproducibility. Mentioned features lead to a materialized
data integration accommodating FAIR guiding principles [76], which makes them a
good replacement for data pre-processing steps.

3.3 Materializing Data Integration System and Knowl-

edge Graph Creation

The semantic web community has contributed to proposing several methods and
frameworks to materialize DISs with the mapping rules defined in R2RML and RML.
In addition to the approaches explained in Section 3.1, engines are required to evalu-
ate provided declarative DIS, materialize, and provide the materialized DIS in RDF
data. These engines which are often referred to as KG creation engines can be
compliant with different declarative mapping languages such as R2RML and RML.
KG creation engines also demand to address the problem of scaled-up materializa-
tion [17]. Gawriljuk et al. [30] present a scalable framework for incremental KG
creation which utilizes KARMA [45] for mapping the correspondence between data
sources and the unified schema. On the other hand, Arenas-Guerrero et al. propose
Morph-KGC [3], an RML-compliant engine that relies on an approach to partition
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RML rules and execute them in parallel. Morph-KGC proposes an approach to
partition R2RML and RML mapping assertions so that generated partitions can be
executed in parallel. Morph-KGC relies on partitioning the mapping assertions into
groups that generate disjoint sets of RDF triples. Nevertheless, based on this parti-
tioning strategy, RDF triples with a join dependency, i.e., the subject of one RDF
triple is the object of another, are partitioned into independent groups. Therefore,
the same join RDF resource is generated redundantly by each disjoint partition to
ensure the completeness and correctness of the result RDF triples. Nevertheless, an
efficient partitioning strategy requires considering all mapping assertions including
those that generate RDF triple sets with join dependency as a whole, to ensure that
the result partitions are optimized. Therefore, despite the significance of all men-
tioned contributions and improvements, none of the mentioned approaches addresses
the problem of scheduling the optimized execution of mapping assertion partitions,
specifically considering different impacting factors, e.g., mapping assertions types,
the connection between mapping assertions, and common properties among them.
Additionally, the mentioned approaches are specific for an engine, i.e., they are not
necessarily adaptable to generic KG creation pipelines.

Contrary to the engine translating data integration systems including RML mapping
rules, engines able to translate RML+FnO have gained less attention and contribu-
tion. SDM-RDFizer [36], RMLMapper [22], RocketRML [63], and CARML7 are
the only accepted examples of the engines able to translate RML+FnO. Although
valuable, these engines introduce no particular optimization for function execution;
they follow a lazy evaluation strategy executing FnO functions. Additionally, an
unpromising requirement for users to extend the available engines with their data
operation functions is to get familiar with the already existing implementation of
the engines. Users need to understand the implementation code of the engine to
recognize where and how the implementation of new functions needs to be added.

All the mentioned drawbacks of available tools lead us to consider possible optimiza-
tions in both interpreting and evaluating complex mappings and functions while en-
suring facilitated application and adaptation. We introduce engine-agnostic efficient
execution techniques for different tasks of materialization. Our proposed frameworks
optimize the evaluation of data operation functions and the transformation of data
integration systems into function-free ones. Finally, they provide an optimized solu-
tion for materializing the transformed data integration systems relying on efficient
partitioning and scheduling strategies. Any [R2]RML-compliant engine can adopt

7https://github.com/carml/carml
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our proposed frameworks.

3.4 Benchmarking and Studies Reporting Param-

eters impacting Knowledge Graph Creation

Performance

Namici et al. [51] compare two DIS materialization engines by formalizing the two
systems considering W3C-compliant settings. In addition to the theoretical efforts,
empirical evaluations such as the study by Chaves et al. [12] are conducted to define
the parameters affecting DIS materialization and KG creation. Accordingly, bench-
marks that consider the impacting parameters [12] are required to assess and compare
the performance of different KG pipelines. One of the proposed benchmarks to eval-
uate different KG creation frameworks is GTFS-Madrid-Bench [13]; this benchmark
provides a set of heterogeneous data and mappings. Despite the importance of con-
sidering reported variables, GTFS-Madrid-Bench lacks the requirements for studying
all the impacting parameters reported in [12]. For instance, to evaluate the impact
of data volume on different KG creation approaches, it is essential to have an equal
growth of the volume in all the datasets involved in the KG; however, this requirement
is not met by GTFS-Madrid-Bench. Furthermore, the deficiency of required testbeds
to study parameters such as join selectivity, star-join, data duplicates, and duplicated
predicates in mappings is another limitation of GTFS-Madrid-Bench. Therefore, to
ensure the comprehensiveness of our experimental study, we create SDM-Genomic-
TestBeds, a group of testbeds that consider all the reported parameters including
those missing in the other benchmark, e.g., complex multi-sources role mapping as-
sertions and percentage of duplicates.

There are no empirical studies reporting the parameters impacting the materializa-
tion of DIS in the presence of data operation functions. Accordingly, with a number
of potential parameters being significant, we conduct a set of testbeds and experimen-
tal configurations to evaluate the materialization process including data operators.
The results of these preliminary experimental studies, reported in Chapter 14, shed
light on a number of influential parameters regarding the functions. According to
these results, we extend SDM-Genomic Testbeds with specific testbeds considering
the parameters that impact the materialization of DIS including functions in combi-
nation with the previously reported parameters that only target DIS materialization
with no functions.
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3.5 Summary

In this chapter we explain the state of the art in formalizing data integration, ma-
terializing data integration and knowledge graph creation, mapping languages, and
corresponding benchmarks. We summarize the existing limitations of available ap-
proaches and potential opportunities for improvements in each area that we seek in
this thesis.
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Part II

Materialized Data Integration
Systems
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In this part, we present our proposed framework for knowledge graph creation. This
framework mainly aims to improve the efficiency of materializing data integration
systems.
Figure 3.1a shows an overview of the aspects that are targeted by this work at a
glance. The main problem tackled in this part of the thesis can be summarized as
follows. Given a set of mapping assertions as an element of the data integration sys-
tem, the problem of creating a knowledge graph efficiently is defined as the problem
of optimizing the evaluation of the mapping assertions. This optimization can be
considered at two levels involving intra- and inter-mapping assertions; shown in Fig-
ure 3.1a. As the names suggest, intra-mapping assertion optimizations refer to the
techniques that can be performed at the level of each individual mapping assertion,
while, inter-mapping assertion optimizations concern the enhancement of a group of
mapping assertions. Furthermore, the intra-mapping assertion optimization can be
tackled at two levels; source- or mapping-based. Figure 3.1b shows the contribution
of this thesis in different levels. The first contribution is an approach named MapSDI
improving knowledge graph creation by proposing source-based enhancements. The
second contribution, named Dragoman, focuses on the improvement of knowledge
graph creation based on data integration systems including user-defined functions.
Dragoman provides a set of mapping-based optimization techniques. MapSDI and
Dragoman are the main contributions of this thesis which are extensively explained in
Chapter 5 and Chapter 9 and evaluated in Chapter 11 and Chapter 14. Nevertheless,
I also contributed to the motivation and evaluation of the Planner, a set of intra-
mapping assertions optimizations to plan an efficient order of executing the mapping
assertions which is briefly described in Chapter 6 and evaluated in Chapter 12.
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(a) The enhancement techniques for improving
knowledge graph creation pipelines

(b) Contributions

Figure 3.1: The overview of the tackled problems and the solutions proposed in
different layers.
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Chapter 4

Formalizing Mapping Assertions

In this Chapter, we focus on the first challenge explained in Subsection 1.1.1 by
providing the formalization of materialized data integration. We answer the following
research questions in this chapter:

RQ1: What are the characteristics of a materialized data integration system?

RQ2: How to merge data operators and sources in a materialized data integra-
tion system?

Answering the mentioned research questions, we formalize the definition, semantics,
and the interpretations of mapping assertions, an important component in data in-
tegration systems. In addition to answering RQ1, these formalization also target
the RQ2 by including the formalization of the concept data operation functions to
address data-level integration. Lastly, this chapter enlightens different strategies in
evaluating the mapping assertions and data operation functions. The content of this
chapter is partially published in [37] and partially under the review8.

4.1 Mapping Assertions Formalization

A logic program describes the world with a finite set of facts, a set of assertions
about pieces in the world, and a set of rules allowing one to deduce facts from
the known facts [11]. Facts and rules can be represented as Horn clauses. Horn
clauses with exactly one positive literal are definite clauses and can be of general

8https://www.semantic-web-journal.net/content/dragoman-efficiently-evaluating-declarative-mapping-languages-over-frameworks-knowledge
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4.1. Mapping Assertions Formalization

shape, G0 : −G1, ..., Gn where the left-hand side of the clause is called its body and
the right-hand side is the head; if the body holds, then the head holds: body(X) :
−head(Y ). body(X) is a conjunction of predicates defined over terms, and head(Y )
is one predicate also defined over a set of terms. We define the term inductively as
follows. Base Case. i) Let c be a constant. c is a term. ii) let X be a variable and
X be a term. Inductive Case. Let h be a functional symbol of arity n and t1, ..., tn
be terms, then h(t1, ..., tn) is a term.

4.1.1 Data Integration System and Knowledge Graph Cre-
ation

As explained in the Chapter 2, a data integration system can be defined as DIS =
⟨O, S,M, F ⟩ where O represents the ontology that comprises classes, properties, and
relations, S is a set of data sources, M represents a set of mapping assertions, and
finally, F is a set of functional symbols representing built-in and user-defined func-
tions. A knowledge graph is a directed graph generated from a data integration DIS
defined as KG = (O, V,E) where O represents the ontology, and V is a set of nodes
in the KG; nodes in V correspond to classes or instances of classes in O. L is a set
of directed labeled edges in the KG that relate nodes in V . Edges are labeled with
properties and relations in O.

Considering the terminologies in R2RML [18] and RML [23] and its extension cover-
ing the application of FnO [19], a.k.a. FNML, user-defined functions in F represent
the fnml:FunctionTermMaps which can express any data operation functions. How-
ever, built-in functions correspond to all predefined functions in [R2]RML such as
rr:template. The function f in F can be considered “simple” or “composite”. A
simple function is a term f(t1, ..., tn) where t1, ..., tn are constant or variables. Con-
trary, function f(t1, ..., tn) is composite, if any ti is also a function.

Mapping rules or assertions in M are formalized as definite clauses, where body(X)
is a conjunction of predicates over the sources in S. The head(Y ) is defined as an
n-ary predicate representing classes and properties in O, over a set of terms. In the
following, we first provide the formal definition of different mapping assertions fol-
lowed by examples illustrated in Figure 4.1. Lastly, the syntax of the RML mapping
language representing different mapping assertions is explained with examples shown
in Figure 4.1. The concept of mapping assertion extends the formalization presented
in [37].
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Figure 4.1: Mapping Assertion Examples.

Concept Mapping Assertions: define instances of classes C in an ontology O
using the class predicate C(.) over the results of the f(.) receiving a term t as input
arguments. The predicate S(X) represents the conjunction of source signatures
S1(X1), ..., Sk(Xk), and X corresponds to the set of all the variables in the mapping
assertion m, i.e., X is the union of X1, ..., Xk.

S(X) : −C(f(t))

According to the [R2]RML terminologies, the concept mapping assertion corresponds
to the rr:subjectMap where the attributes of the rml:logicalSource which repre-
sents data sources, define the instances of the classes in O. As illustrated with the ex-
ample in Figure 4.1, f(.) corresponds to a built-in function, represented by RDF pred-
icate rr:template to enable the concatenation of strings, or user-defined functions,
defined by fnml:FunctionTermMap. As shown in Figure 4.1, fnml:FunctionTermMap
declares the definition of data operation functions (function1) over attributes of the
rml:logicalSource (Att6).

Role Mapping Assertions: defines an instance of the properties in O between
instances of two classes in O with the role predicate P (.) over the data sources at-
tributes. This mapping assertion is expressed by predicateobjectMap in [R2]RML.
Role mapping assertion can be divided into three categories as follow.
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Single-Role Mapping Assertions define P (., .) over the attributes of a single
data source using f1(t1), f2(t2) where f1 and f2 are in F and t1 and t2 are terms.
An example of this mapping assertion is shown in Figure 4.1 in purple, where it
defines the role predicate P1(., .) over the instances of the class C1 using Att1 in S1

processed by the built-in functions f1, and the object values based on Att2 in the
same data source S1 processed by the f2. Using the syntaxes of [R2]RML, single-role
mapping assertion is expressed by rr:objectMap.

S(X) : −P (f1(t1)︸ ︷︷ ︸
Cma

, f2(t2)) → Cma : S1(X1,1) : −Ck(f1(t1)))

Referenced-Source Role Mapping Assertions, similar to the previous assertion,
a referenced-source role mapping assertion defines the instances of the properties in
O between instances of two classes in O with values over the same conjunction of
source signatures S(X). However, this assertion allows defining the object over a
term t2, and a function, f2(.), which are utilized in another mapping assertion, M ,
to specify the instance of a class in O:

Si(X i,1), S
MR
i (X i,2) : −P (f1(t1), f2(t2)) , MR : Si(X i,2) : −Cj(f2(t2))

An example of referenced-source role mapping assertion is provided in violet where
the predicate P2 is defined over the instances of the class C1 using Att1 and the in-
stances of the class C2 based on Att3 which are characterized as another concept map-
ping assertion. In [R2]RML reference-source role mapping assertions are expressed
by using rr:parentTriplesMap to reference the objectMap of one triplesMap

(TriplesMap1 in the Figure 4.1) to the subjectMap of another triplesMap (Triple-
sMap2 in the Figure 4.1).

Multi-Sources Role Mapping Assertions: Contrary to the previous assertion, a
multi-source role mapping assertion allows for expressing the instances of the proper-
ties in O between instances of two classes in O with values over two different sources.
Since the sources Si and Sj are different, a join condition.

Si(X i,1), S
MJ
j (X i,2), θ(X i,1, X i,2) : −P (f1(t1), f2(t2)) , MJ : Sj(X i,2) : −Cz(f2(t2))

In Figure 4.1, an example of multi-sources role mapping assertion is shown in dark
green. This mapping assertion defines the predicate P3 over the instances of the
class C1 using Att3 in data source S1 and the instances of the class C3 based on the
values in Att6 in the data source S2. The entries of two data sources S1 and S2

are connected by the join θ between the common fields in both data sources, i.e.,
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Att4 and Att5. Considering the [R2]RML language, similar to the referenced-source
role mapping assertion, this assertion is expressed applying rr:parentTriplesMap

connecting two triplesMaps (TripelsMap1 and TripelsMap2). Additionally, the
join condition between two logicalSources is defined by rr:joinCondition where
rr:child represents the attribute in the logicalSource of the (triplesMap) refer-
encing to another (triplesMap) as the object (TriplesMap1 in this example). Also,
rr:parent refers to the attribute in the logicalSource of the (triplesMap) that
is referred to by rr:parentTriplesMap (TriplesMap3 in Figure 4.1).

Attribute Mapping Assertions: defines the properties of a class in O using a
predicate A(.) over the values of attributes in terms of the conjunction of source
signatures in S(X).

S(X) : −A(f(t1), t2)

In Figure 4.1 an example of attribute mapping assertion is presented (in green)
which defines the predicate A1 over the instances of the class C3 using Att6 in S1

and the literal data values in Att8 in the same source. R2RML provides rr:column
to represent attribute mapping assertions, while, RML introduces rml:reference.

(a) Star Join (1) (b) Star Join (2) (c) Chain Join

Figure 4.2: Examples of Different Combinations of Mapping Assertions.

4.1.2 Combinations of Mapping Assertions

Given a group of mapping assertions. specifically the one including more than one
multi-sources role mapping assertions, they can shape expensive forms in terms of ex-
ecution. Here we define two of such forms called the “star join” and the “chain join”.
A group of multi-sources role mapping assertions form star joins if: 1. more than
one multi-sources mapping assertions include the same MJ : Sj(X i,2) : −Cz(f2(t2)),
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or 2. more than one multi-sources role mapping assertions include the same concept
mapping assertion Si(X i,1) : −Ck(f1(t1)). To clarify, Figure 4.2a and Figure 4.2b
each demonstrates one example of star joins corresponding to one of the mentioned
conditions. As shown in Figure 4.2a, in this example the star join is created due
to the fact that four separated multi-sources role mapping assertions have the same
definition of MJ : S5(Att8) : −Cz(f2(Att8)), i.e., refer to the same object. However,
the four different multi-sources role mapping assertions in Figure 4.2b generate a
start join due to the fact that they all share the same concept mapping assertion,
i.e., S5(Att8) : −Ck(f1(Att8)). Additionally, given a group of mapping assertions
that is comprised of more than one multi-sources role mapping assertion, they gen-
erate a chain join if the definition of MJ in at least one of the multi-sources role
mapping assertions is the same as the definition of another multi-sources mapping
assertions. To better understand, Figure 4.2c depicts an example in which four differ-
ent multi-sources role mapping assertions create a chain join. As it can be observed
in Figure 4.2c, the definition of MJ in the first multi-sources role mapping assertion
(the top one) is the same as the definition of concept mapping assertion in the second
multi-sources role mapping assertion, i.e., S2(Att2) : −Cz(f2(Att2)). Furthermore,
the definition of MJ ′ in the second multi-sources role mapping assertion is the same
as the concept mapping assertion in the last multi-sources role mapping assertion,
i.e., S3(Att3) : −Ck(F3(Att3)).

4.2 Semantics of Mapping Assertions

This section presents the formal semantics of the mapping assertion based on model
theory. First, we define an interpretation structure of a data integration system
DIS = ⟨O, S,M, F ⟩, and the interpretation of the data sources in S in I, as well as
the meaning of interpreting each of the mapping assertions of M in I.

Interpretation structure for a Data Integration System DIS = ⟨O, S,M, F ⟩
Let DIS = ⟨O, S,M, F ⟩ be a data integration system, an interpretation structure I
for DIS is defined as follows: I = ⟨D, σc, σS, σF ⟩, where

1. D is a non-empty set called domain of discourse

2. σc: for each constant c in O, S, M , and F , σc(c) assigns a value in D for c

3. σS: for each source signature s in S, σS(s) provides an interpretation of s in
D. If s is an n-arity predicate, σS(s) is a subset of Dn
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Figure 4.3: Mapping Assertion Interpretations.

4. σF : for each functional symbol f in F , σF (f) provides the interpretation of f
in D. If f is an n-arity function, σF (f) : D

n− > D

Interpretation of Sources in a Data Integration System DIS = ⟨O, S,M, F ⟩
Let S be a set of sources S = {S1, S2, ..., Sn} in a data integration system DIS =
⟨O, S,M, F ⟩. Let I = ⟨D, σc, σS, σF ⟩ be an interpretation structure for DIS. The
extension of the sources in S according to I, a.k.a. E(S, I), is defined as follows:

1. E : P S × I− > P S, where I is a set of interpretation structures of DIS; and
S represents an infinite set of interpretations of source signatures from S according
to interpretation structures in I.

2. E(S, I) = {σS(S1), σS(S2), ..., σS(Sn)}, i.e., E(S, I) returns for each of the
source signature Si in S, a set that corresponds to the interpretation of Si in I.

Evaluation of Mapping Assertions: Interpretation of terms in mapping
assertions. Let I = ⟨D, σc, σS, σF ⟩ be an interpretation structure for DIS. Let t be
a term in mapping assertionm inM . Let µ(X) be an assignment of the variables in t.
The evaluation of the term t in µ(X) according to I, a.k.a. eval(t, µ(X)), is defined
inductively as follows: Base case: a. The term t is a constant, eval(t, µ(X) = σc(t)
b. The term t is a variable and µ(X)|t is the value of t in µ(X), eval(t, µ(X) =
σc(µ(X)|t). Inductive case: c. If h is an n-ary function and t1, t2, ..., tn are terms,
and t = h(t1, t2, ..., tn). Then, eval(h(t1, t2, ..., tn), µ(X) = σF (eval(t1, µ(X), eval(t2,
µ(X), ..., eval(tn, µ(X))
Interpretation of a Concept Mapping Assertion. Let S(X) : −C(f(t)) be a
concept mapping assertion in M , where S(X) represents the conjunction of source
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signatures S1(X1), ..., Sk(Xk), and X corresponds to the set of all the variables in the
mapping assertion m, i.e., X is the union of X1, ..., Xk. Let I = ⟨D, σc, σS, σF ⟩ be an
interpretation structure for DIS. Let µ(X) be an assignment of the variables in X
to values in D, such that, each Si(µ(Xi)) belongs to σS(Si) and the interpretation
of f(t) in µ(X), a.k.a. eval(f(t), µ(X)) belongs to σF (f). Then, eval(m,µ(X)) =
C(eval(f(t), µ(X))). To simplify the perception, we illustrate the interpretation of a
concept mapping assertion with an example shown in Figure 4.3 in yellow. As it is
shown in Figure 4.3, given a concept mapping assertion as them, the interpretation of
m given Att1, i.e., eval(m,µ(Att1)), provides an RDF triple representing an instance
of the class C1 in O with the value f(Att1).
Interpretation of a Single-Role Mapping Assertion.

Let S(X) : −P (f1(t1), f2(t2)) be a single-role mapping assertion in M , where S(X)
represents the conjunction of source signatures S1(X1), . . . , Sk(Xk), and X corre-
sponds to the set of all the variables in the mapping assertion m, i.e., X is the
union of X1, ..., Xk. Let I = ⟨D, σc, σS, σF ⟩ be an interpretation structure for DIS.
Let µ(X) be an assignment of the variables in X the values in D, such that, each
Si(µ(X i)) belongs to σS(S) (for all i in {1,...,k}) and the interpretation of f1(t1)
and f2(t2) in µ(X), a.k.a. eval(f1(t1), µ(X)) and eval(f2(t2), µ(X)) belong to σF (f).
Then, eval(m,µ(X)) = P (eval(f1(t1), µ(X)), eval(f2(t2), µ(X))). In Figure 4.3, we
demonstrate an example of the interpretation of a single-role mapping assertion given
as m in purple. As it can be observed, the interpretation of m given Att1 and Att2

of the same data source S1, i.e., eval(m,µ(Att1, Att2)), generates RDF triples rep-
resenting the relation between the values of f1(Att1) and f2(Att2) defined by the
predicate P1 of O.
Interpretation of a Referenced-Source Mapping Assertion.

Let S(X1), S
MR(X2) : −P (f1(t1), f2(t2)) be a reference-role mapping assertion in M

and MR is the referenced concept mapping assertion S(X2) : −C(f(t)). The predi-
cates S(X1) and SMR(X2) represent the conjunction of source signatures S1(X1,1), ...,
Sk(X1,k) and SMR

1 (X2,1), ..., Sk(Xk,2), respectively. Let X be the union of the vari-
ables in X1 and X2. Let I = ⟨D, σc, σS, σF ⟩ be an interpretation structure for
DIS. Let µ(X) be an assignment of the variables in X in D, such that, each
Si(µ(X)) belongs to σS(Si), and the interpretation of f1(t1) and f2(t2) in µ(X), a.k.a.
eval(fj(tj), µ(X) belongs to σF (f). Then, eval(m,µ(X)) = P (eval(f1(t1), µ(X)),
eval(f2(t2), µ(X))). To clarify, an example of the interpretation of m as a referenced-
source mapping assertion is provided in Figure 4.3 in violet. The interpretation of
m given Attr1 and Attr3 of the same source S1, generates RDF triples representing
the relation between instances of two classes in O, i.e., C1 and C2 with the values in
Attr1 and Attr3 respectively, considering the predicate P2 in O.
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Interpretation of a Multi-Sources Role Mapping Assertion.

Let S(X1), S
MJ(X2) : −P (f1(t1), f2(t2)) be a reference-role mapping assertion in

M and MJ is the referenced concept mapping assertion SMJ(X2) : −Cz(f(t)).
The predicates S(X1) and SMJ(X2) represent the conjunction of source signatures
S1(X1,1), ..., Sk(X1,k) and SMJ

1 (X2,1), ..., St(X t,2), respectively. Let X be the union
of the variables in X1 and X2. Let I = ⟨D, σc, σS, σF ⟩ be an interpretation struc-
ture for DIS. Let µ(X) be an assignment of the variables in X in D, such that,
each Si(µ(X)) belongs to σS(Si), each a SMJ

j (µ(X)) belongs to σS(S
MJ
j ), and the

interpretation of f1(t1) and f2(t2) in µ(X), a.k.a. eval(fj(tj), µ(X) belongs to σF (f).
Then, eval(m,µ(X)) = P (eval(f1(t1), µ(X), eval(f2(t2), µ(X))). An example of the
interpretation of m as a multi-sources role mapping assertion can be observed in
Figure 4.3 in dark green. Similar to the interpretation of referenced-role mapping
assertion, the interpretation of multi-sources role mapping assertion produce RDF
triples representing the relation between instances of two classes in the O, i.e., C1and
C3, using a predicate in the O, i.e., P3 in this example. What differentiate the two
interpretations are the data sources which contribute in the creation of the instances
of C1 and C3. As it can be seen in Figure 4.3, Attr1 in the data source S1 provides
the instantiation of the class C1. However, the instances of the class C3 are provided
by the values of Attr6 in the other data source, i.e., S2.
Interpretation of an Attribute Mapping Assertion.

Let S(X) : −A(f1(t1), f2(t2)) be an attribute mapping assertion in M , where S(X)
represents the conjunction of source signatures S1(X1), . . . , Sk(Xk), and X cor-
responds to the set of all the variables in the mapping assertion m, i.e., X is
the union of X1, ..., Xk. Let I = ⟨D, σc, σS, σF ⟩ be an interpretation structure
for DIS. Let µ(X) be an assignment of the variables in X the values in D,
such that, each Si(µ(X i)) belongs to σS(S) (for all i in {1,...,k }) and the inter-
pretation of f(t1), a.k.a. eval(f1(t1), µ(X)), belongs to σF (f) and the interpreta-
tion of t2 in µ(X), a.k.a. eval(t2, µ(X)), is true in I. Then, eval(m,µ(X)) =
P (eval(f1(t1), µ(X)), eval(t2, µ(X))). The RDF triples generated by the interpreta-
tion of attribute mapping assertions represent the relation between instances of a
class in O and a literal value extracted from an attribute in the same data source
using a predicate in the O. In Figure 4.3 an example of the interpretation of an
attribute mapping assertion is provided in green. It shows the relation between the
instances of the class C3 and literal values extracted from the Att8 in S2 using the
predicate P4.
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Figure 4.4: Evaluation Strategies Example. The two evaluation approaches in-
cluding eager and lazy evaluations are shown for the same set of functions. Following
an eager evaluation strategy, the function that is repeated in two mapping assertions,
i.e., function1 is evaluated only once. Also, function3 which is an argument to func-
tion2 is evaluated prior to function2. In contrast, following a lazy evaluation strategy,
the evaluation of function1 is repeated as many times as it is referred to in mapping
assertions. As function2 appears in mapping assertions prior to function3, a lazy
evaluation strategy tries to evaluate function2 prior to function3 which cannot be
completed and is revisited after the evaluation of function3.

4.3 Evaluation of User-defined Functions

The interpretation of f(t) in µ(X), i.e., eval(f(t), µ(X)) can be derived using a lazy
or an eager evaluation approach. The evaluation of a function is called eager when
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the parameters of the function are evaluated before the function is executed [66].
Moreover, employing an eager evaluation strategy means that functions, f(t) ∈ F ,
are executed “as soon as possible”. In contrast, a lazy evaluation approach leads to
the evaluation of functions “as required” [66]. In other words, following an eager eval-
uation strategy leads to evaluating all the defined functions in advance. Nevertheless,
following a lazy evaluation means evaluating the functions once they are applied in
mapping assertions and those mapping assertions are evaluated. For the sake of un-
derstandability, we explain the two strategies of the eager and lazy evaluation with
the exemplar mapping assertions shown in Figure 4.4. The intuitive first step of
an eager-evaluation-based approach is to traverse all the mapping assertions, find
the ones including user-defined functions, and evaluate the functions. Accordingly,
having the mapping assertions shown in Figure 4.4, such an eager-evaluation-based
approach, first, detects four mapping assertions including user-defined functions.
Then it starts evaluating them. However, since two of the functions are the same,
the eager evaluation enables the approach to evaluate the duplicated function exactly
once. Moreover, considering the fact that one of the arguments of the function2

is the output of the function3, the eager evaluation forces the evaluation of the
function3 prior to the evaluation of the function2. Contrary, a lazy-evaluation-
based approach starts executing the functions as soon as it reads the corresponding
mapping assertions. A drawback of such an approach is that the duplicated functions
are evaluated multiple times.

4.4 Summary

In this chapter, we formalize the definition and semantics of mapping assertions, an
important component in data integration systems. These formalization serve as the
foundations of the research we present in the following chapters.
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Chapter 5

MapSDI: Inter-Mapping Assertion
Optimizations

With the rapid growth of available big data in different domains, semantic data in-
tegration systems are required to be scaled up in order to transfer heterogeneous
data into actionable knowledge represented in knowledge graphs. In many domains
such as biomedicine and biology, a massive amount of generated heterogeneous data
is required to be integrated to derive actionable knowledge. Therefor, materializing
data integration and knowledge graph creation needs to be empowered with efficient
processes for removing duplicates, projecting, and selecting relevant data attributes,
and planning the mapping rules. In this chapter, Chapter 12, Chapter 7, and Chap-
ter 9 we study the following research question and propose different solutions which
can be, in fact, apply together.

RQ3: How can efficiency be ensured in a materialized data integration system?

We answer the mentioned research question, in this chapter, from the data source
angle. As shown in the beginning of the Part II, addressing RQ3, we consider three
possible aspects. The techniques proposed in this chapter ensures that the data
sources in data integration systems are transformed in such a way that the required
time for materialization is minimal. The contents of this chapter are based on three
publications [43, 36, 37].

5.1 Motivating Examples

The motivation for the problem that we tackle in this chapter is illustrated in
the Figure 5.1. This figure shows a traditional pipeline for transforming three
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Figure 5.1: Motivating Example.

datasets into instances of a knowledge graph. The datasets contain information
about mutations of genes, downstream genes, and drug resistance caused by muta-
tions. These files are composed of up to 39 attributes (the mutation dataset), and
their sizes are 186.4 MB, 71.9 GB, and 559 KB, respectively. The semantification
of these datasets just for the concept “transcript” is performed using three RML
triples maps, i.e., triplesMaps. These triples maps only consider the attribute in
each dataset that represents the values corresponding to the concept “transcript”. As
we can see in Figure 5.1, the name of the attributes representing the concept “tran-
script” differ among the datasets; enst, downstream gene, and transcript id. This
process ends up producing 2,049,442,714 RDF triples. However, because of over-
laps across the three files, a large number of duplicates are generated, being reduced
the output to only 102,549 duplicate-free RDF triples when cleaning and duplicate
elimination are performed. Figure 5.1 illustrates this pipeline; it receives the three
datasets and outputs the RDF triples to be included in the knowledge graph. As
observed, in this real-world example, the pipeline for this semantic integration task
is performed via two separated steps including: (I) Schema-level integration:
Ontology-based data semantification and mapping rule-based data transformations.
(II) Data-level integration: Redundancy elimination and cleaning. To explain
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the situation reported in this example, let us consider the meaning of these three
datasets. A transcript refers to a ribonucleic acid via which a gene is expressed; it
is used to synthesize a protein [48]. As it can be seen in Figure 5.1, transcript as a
concept, can be represented with different labels in various databases which means
that it cannot be distinguished and treated as the same concept unless being seman-
tified according to the unified schema. Therefore, the first step of integration in the
framework is to unify all the concept representations residing in different datasets by
defining RML triple maps while transforming the data into RDF. The data seman-
tification allows for also detecting duplicated data that were not recognizable before.
Consequently, in the second step, the redundant data that are now represented as
RDF triples are eliminated. It should be noted that the overall number of generated
triples from different sources is 16,445 times the number of non-redundant triples
which means that there is a considerable amount of duplicated data that could not
be detected in the raw files. Considering the fact that similarity-based comparisons
between RDF triples are more expensive than between the relational data model,
specifically in the case of having a huge amount of data, leaves room to think about
providing a more efficient and low-cost approach to create knowledge graphs. In
this paper, we address the problem of semantic data integration motivated in this
example, and present jozashoori2019mapsdi,I, a framework able to pre-process input
datasets and avoid the generation of duplicated RDF triples. MapSDI is able to
extract from the RML triple maps the knowledge required to pre-process the input
datasets by means of the execution of basis relational algebra operations like the pro-
jection of attributes. Albeit simple, the transformations executed by MapSDI enable
to project out only attributes that are utilized in the three triple maps, allowing the
RDFizer to produce 102,549 duplicate-free RDF triples.

5.2 MapSDI Framework

Given a data integration system DISG = ⟨O, S,M⟩, the problem of knowledge graph
creation is defined as the problem of identifying a data integration system DIS ′

G =
⟨O, S ′,M ′⟩ such that:

• The results of evaluating the two data integration systems is the same, i.e.,
RDFize(DISG = ⟨O, S,M⟩)=RDFize(DIS ′

G = ⟨O, S ′,M ′⟩).

• The execution time of the evaluation of RDFize(DIS ′
G = ⟨O, S ′,M ′⟩) is mini-

mal, i.e., there is no other DIS ′′
G different from DIS ′

G that generates the same
RDF knowledge graph G but in a lower execution time.
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Figure 5.2: MapSDI Framework.

Proposed Solution: We propose MapSDI, an optimized alternative to traditional
semantic data integration pipelines to create knowledge graphs. As it is shown in
Figure 5.2, MapSDI receives a data integration system DISG = ⟨O, S,M⟩ as input
and generates an RDF knowledge graph that corresponds to the result of evaluating
Eval(DISG = ⟨O, S,M⟩). Without lost of generality, MapSDI assumes that the
mapping assertions in M are represented in a mapping language, e.g., the RDF
mapping language RML. Before evaluating the function Eval(.), MapSDI applies
transformations to the sources in S and the mapping assertions in M in order to
generate a data integration systemDIS ′

G = ⟨O, S ′,M ′⟩ that corresponds to a solution
of the problem of knowledge graph creation. MapSDI resorts to transformation rules
applied to mapping assertions and sources depending on the attributes, variables, and
sources that compose the mapping assertions in M . In other words, in a mapping
assertion mai, the attributes from the data sources in the Body of mai are detected,
and the corresponding sources in S are transformed to S ′ such that the data sources
in the S ′ include only the attributes utilized in the mapping assertions. Accordingly,
mapping assertions are also rewritten with the aim of reusing the attributes of the
sources in S ′. By projecting out only the attributes required in the head of mapping
assertions, duplicates from the extensions of the sources are removed, avoiding thus,
the generation of the same RDF triple multiple times during the evaluation of the
function Eval(.). Since only duplicates in the data sources are removed from the
input, the resulting knowledge graph remains the same, while the time of producing
duplicated RDF triples is reduced.

5.2.1 Transformation Rules

We present the transformation rules applied by the MapSDI framework in order to
reduce duplicated data and speed up the execution time of the evaluation of a data
integration system. The transformation rules are based on the axioms of the rela-
tional algebra [69] and in particular, the ones that stay when the project operator
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can be pushed down into the relations in a relational algebra expression. Further-
more, MapSDI extracts information from the mapping rules to decide when two or
more datasets have equivalent attributes while represented with different attribute
labels and must be merged into one file; and in case the merging is conducted, the
corresponding rules are also merged.

Transformation Rule 1: Projection of Attributes: A triple map may only use
a subset of the attributes of a data source, generating thus high overhead whenever
the number of attributes used in the triple map and the number of attributes in the
data source differs considerably. To illustrate this situation consider the RML triple
map in Figure 5.3a whose evaluation produces many duplicates. Additionally, the
data source in Figure Figure 5.3c comprises eight attributes but only four attributes
are used in the rules. The values of the attributes ENSG, SYMBOL, SPECIES, and ACC

are repeated, e.g., the rows 1,2, and 3 have the same values in these attributes, and
similarly rows 4 and 5, and 6, 7, 8, and 9, respectively. Coincidentally, the evaluation
of the triple map in Figure 5.3a creates RDF triples from these four attributes and
because during the execution of this triple map the data source is blindly traversed,
several duplicated RDF triples are generated. Transformation rule 1 reduces the
overhead caused whenever a triple map utilizes only a subset of the attributes of a
data source; it pushes down the projection of the triple map object attributes before
the triple map is executed. Thus, during the execution of the triple map only three
rows are processed and no duplicated RDF triples are generated. In the case reported
in Figure 5.3, processing the original file in Figure Figure 5.3c and the RML triple
map (Figure 5.3a) generate five duplicated RDF triples. Contrary, when the file in
Figure Figure 5.3b is utilized, no duplicates are produced, thus the overhead during
knowledge graph creation is considerably reduced. The time savings are reported in
the Chapter 11.

Transformation Rule 2: Pushing Down Projection into Joins: This rule
is applied whenever a join exists between two triple maps ma1 and ma2 defined
over data sources with a large number of attributes that are not utilized in ma1
and ma2. To illustrate this case, consider Figure 5.4; the triple maps TripleMap1

and TripleMap2 are joined by the join condition highlighted in bold in TripleMap1.
When this join is executed on datasets in Figures Figure 5.5a and Figure 5.5b, 22
duplicated RDF triples are generated. Duplicate generation considerably impacts
the performance of a knowledge graph creation, particularly, whenever duplicates are
blindly generated and then, eliminated. To reduce the effect of duplicates during the
evaluation of join conditions between two triple maps, MapSDI pushes the projections
of the relevant attributes down before the triple maps are executed. As observed in
Figure 5.6, this transformation considerably reduces the number of matches of the

51



Chapter 5. MapSDI: Inter-Mapping Assertion Optimizations

(a) Transformation Rule 1 (b) Portion of a Source File about Genes

(c) Source File After the Transformation Rule 1

Figure 5.3: Example of Transformation Rule 1. Projection of Attributes: (a)
RML Triple Map; only four attributes of the file are utilized in the rule; processing
the values of these four attributes conduce to the generation of many duplicated
RDF triples. (b) A file with information about genes; several values are duplicated
across the file. (c) The file resulting from the projection of the attributes utilized in
the triple map; the file does not have repeated attributes and the execution of the
triple map does not produce duplicated RDF triples.

join condition and the resulting RDF triples.

Once the attributes mentioned in the triple maps in Figure 5.4 are projected out

52



5.2. MapSDI Framework

Figure 5.4: Transformation Rule 2.

(files in Figures Figure 5.6a and Figure 5.6b), the execution of these triples maps
still produces RDF triples that are duplicated. However, the number of duplicates is
reduced from 22 to four. Considerably reducing thus, the workload required to gen-
erate, check, and eliminate duplicated RDF triples. The results of the experimental
study will show the improvements of the MapSDI framework.

Transformation Rule 3: Merging data sources with equivalent attributes:
This rule is applied whenever there exist two or more triple mapping rules that
generate the same type of subjects associated with the same predicates, but the data
is collected from different data sources with attributes that may have different names.
This rule allows the MapSDI framework to first, project the relevant attributes, and
then merge the data sources; duplicates are eliminated from the merged data source.
Additionally, the triple maps are merged in one triple map that will access the merged
data source and duplicated RDF triples are not generated (See Figure 5.1).

MapSDI applies the transformation rules 1-3 over the input data integration system
DISG = ⟨O, S,M⟩ in order to generate DIS ′

G = ⟨O, S ′,M ′⟩; these rules are applied
until a fixed point over S ′ and M ′ is reached.

5.2.2 Correctness of Transformation Rules

We demonstrate the correctness of the transformation rules 1-3 by proving that the
application of each of these rules preserves the set of RDF triples produced during
the evaluation of the original data integration system; these proofs are grounded on
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(a) Portion of a Source File about Genes (Outer Source File)

(b) Portion of the Source File about Chromosomes (Inner Source File)

Figure 5.5: Example of Transformation Rule 2. Pushing down Projections into a
Join: (a) and (b) Files containing data to be considered as the outer and inner data
sources of TripleMap1 (Figure 5.4), respectively. Duplicates in the join attribute
conduce the generation of 22 duplicated RDF triples.
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(a) Projection on Genes (b) Projection on Chromosomes

(c) RDF triples with reduced duplicates

Figure 5.6: Example of Transformation Rule 2. Pushing down Projections into
a Join: (a) and (b) Projecting out from files in Figures Figure 5.5a and Figure 5.5a
the attributes mentioned in triple maps in Figure Figure 5.4. (c) RDF triples are
produced by the triple maps over the projected attributes; duplicates are reduced
from 22 to four.
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the axiomatic system of the Relational Algebra [62].
Transformation Rule 1: Projection of Attributes.

For each mapping assertion mai in M with sources Sz(Xz) in the body of mai,
the transformation rule 1, adds new sources S ′

z to S ′, in the way, that S ′
z is equal to∏

Att Sz and Att is the set of attributes utilized in Xz. The mapping assertion mai
is removed from M ′ and a new mapping assertion ma′i where all the sources Sz(Xz)
are replaced by S ′

z(Xz) is added to M ′. Since the attributes from the sources Sz used
in Xz are maintained in the new data sources S ′

z and in the mapping assertion ma′i,
the results of RDFize(DISG = ⟨O, S,M⟩) and RDFize(DIS ′

G = ⟨O, S ′,M ′⟩) are the
same.
Transformation Rule 2: Pushing Down Projection into Joins. Transforma-
tion rule 2 is applied over a mapping assertion mai whenever there exist attributes
and variables in the sources of the body of mai that are neither applied by the terms
in the head of mai nor to join the data sources in the body of mai, i.e., θ(X i,1, X i,2).
If so, transformation rule 2 projects out from the sources Sz(Xz) in the body of mai,
all the attributes and variables that are required. Formally, the rewriting of mai is
defined as follows: Let Z be the set of variables in the head of mai or in the join of
at least two sources in the body i.e., θ(X i,1, X i,2).

Si(Xi,1), S
MAj(Xi,2), θ(X i,1, X i,2) : −P (f1(t1), f2(t2))

The application of the transformation rule 2, replaces mai by the rule ma′i:

Si(X ′
i,1), S

MA
j (X ′

i,2), θ(X
′
i,1, X ′

i,2) : −P (f1(t1), f2(t2))

Where each X ′
i,j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2, is defined as follows:

X ′
i,j = Xi,j − {(atti,j, Xi,j) | (atti,j, Xi,j) ∈ Xi,j and Xi,j /∈ Z}

The transformation 2 is grounded on the axiomatic system of the Relational Algebra,
specifically, on the rule axiom that states the properties of distributing the Project
operator over a Join (rule number 8 in [62]). Thus, after applying this transformation
rule and replacing mai by ma′i in M ′, the results of RDFize(DISG = ⟨O, S,M⟩) and
RDFize(DIS ′

G = ⟨O, S ′,M ′⟩) are the same.
Transformation Rule 3: Merging data sources with equivalent attributes.
This rule is applied over two mapping assertions, mai and maj, whenever both
mapping assertions share the same head but the bodies are composed of different
data sources, i.e., Si(Xi) : −head and Sj(Xj) : −head. The result of applying the
transformation rule 3 is a new data source Si,j that is populated with values of the
attributes from Si and Sj that are required for the head. Moreover, mai and maj
are replaced by the mapping assertion mai,j in M ′, Si,j(X i,j) : −head
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• Si,j is the union of
∏

Atti
Si and

∏
Attj

Sj such that Atti and Attj, respectively,

are the attributes in Xi and Xj related with variables in the head.

• The projected attributes in Si,j are renamed and these new attributes are used
in Xi,j associated with the corresponding variables in the head.

The transformation 3 is also supported on the axiomatic system of the Relational
Algebra, specifically, on the rule axiom that states the properties of distributing the
Project operator over a Union (rule number 12 in [62]). Thus, after applying this
transformation rule and replacing mai and maj by mai,j in M ′, and adding the data
source Si,j to S ′, the results of RDFize(DISG = ⟨O, S,M⟩) and RDFize(DIS ′

G =
⟨O, S ′,M ′⟩) are the same.

5.3 Summary

In this chapter, we address the problem of optimizing semantically integrating data
into a knowledge graph. We present MapSDI, a framework devised for enabling the
semantic enrichment of data characterized by the dominant dimensions of big data,
i.e., volume, variety, and veracity. MapSDI resorts to the properties of the relational
algebra operators and to the knowledge encoded in the mapping rules to identify
the transformations that need to be performed to the input data to empower the
performance of existing knowledge graph creation frameworks. Thus, our resource
broadens the repertoire of techniques available to integrate heterogeneous datasets
into a knowledge graph, and we hope that these techniques help the community in
the development of more scalable knowledge graph-based applications.
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Chapter 6

Planner: Sourse-based
Optimizations

Similar to the previous chapter, this chapter also tackles the problem of efficient
data integration materialization while transforming heterogeneous data into RDF
triples. Accordingly, this chapter provide another solution to the following research
question:

RQ3: How can efficiency be ensured in a materialized data integration system?

We target the mentioned research question from inter-mapping assertions perspec-
tive. In other words, we propose the techniques for planning a given set of mapping
assertions to provide an optimized execution plan by partitioning and scheduling
the execution of the assertions. The contents of this chapter are the results of my
collaboration with my supervisor and another colleague. The contents of this paper
are published in [37].

6.1 Motivating Example

We motivate our work, illustrating the challenges that the execution of mapping as-
sertions brings to the process of KG creation from multiple data sources. Continuous
creation and maintenance of KGs demand scalability in terms of required execution
time. Figure 6.1 presents three configurations of a set of mapping assertions that
define a KG G1. The set comprises mapping assertions specifying the properties and
attributes of five classes (C1,C2,C3,C4, and C5) over four data sources (S1, S3, S4, and
S5). These data sources correspond to the SDM-Genomic-Datasets, each containing
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6.1. Motivating Example

Figure 6.1: Motivating Example.

one Million records and up to 15 attributes.

The configuration No Partitioning depicts all the mapping assertions; they are
executed together on four state-of-the-art [R2]RML-compliant engines, RMLMap-
per [22], RocketRML [63], SDM-RDFizer [36], and Morph-KGC [3]. Executing all
the assertions together demands from each engine, data management techniques
like the ones implemented by Morph-KGC. These techniques must allow planning
both the execution of the mapping assertions and the period to maintain in memory
each source. Unfortunately, RMLMapper and RocketRML are not as scalable as
Morph-KGC and cannot produce any results. RocketRML ran out of memory, while
RMLMapper timed out after five hours. On the contrary, all the engines exhibit
better performance when the assertions are divided into intra- and inter-source par-
titions and executed in plans generated based on these partitions; the improvement,
albeit not so significant as in the other engines, can also be observed in Morph-KGC.
First, when four groups of partitions are created (i.e., Optimized Partition), the
performance of the four engines is empowered, and three of them can generate 100%
of the results. Each group comprises one intra-source partition of a source Sj and
at most one inter-source partition of another source Si to Sj. Moreover, the groups
are executed in parallel. Lastly, the execution of the configuration named, Random
Partition, indicates that no combination of the intra- and inter-source partitions
leads to efficient mapping assertions plans. In this case, Group1 includes two inter-
and four intra-source partitions, while Group2 comprises only one intra-source parti-
tion. Although Group2 is executed by all the engines, RMLMapper and RocketRML
could not produce any result during the execution of Group1, and they could only
produce 5.41% of the total number of RDF triples. This paper addresses the chal-
lenges of generating plans of mapping assertions that empower [R2]RML engines and
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Figure 6.2: Partitioning of Mapping Assertions.

enhance their scalability during KG creation.

6.2 The Planner

planner assesses an optimized number of partitions considering the number of data
sources, type of mapping assertions, and the associations between different assertions.
After providing a list of partitions and assertions that belong to each partition, the
planner determines their execution order.

As observed in Figure 6.1, the order and grouping of the mapping assertions impact
the execution time of the engines, which is crucial to enable the generation of results
in real-world scenarios.

6.2.1 Partition of Mapping Assertions

In a data integration system DISG = ⟨O, S,M⟩, the mapping assertions in M can
be grouped to create a partition of M . We define two types of partitions: Intra-
source and Inter-source mapping assertion partitions. Given a source Sk in S,
an Intra-source partition for Sk corresponds to a set of all the mapping assertions
that have only the source Sk in the body clause, i.e., it comprises concept, attribute,
single-source role, and referenced-source role mapping assertions over Sk. An Inter-
source groups mapping assertions of two sources Si and Sj which are related via
multi-source role mapping assertions. Figure 6.2 presents three partitions for map-
ping assertions in the running example. To increase readability, mapping assertions
are depicted in a directed graph where directed edges represent predicates defined
by mapping assertions (i.e., p4, p6, p1, p3, and p5). A node denotes a logical source
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Figure 6.3: Architecture of the Planner .

and the type of the mapped entity. All the assertions defined over S1 (resp. S3)
are grouped together into Partition1 (resp. Partition3). Moreover, there is only
one assertion between S1 and S3, thus, Partition2 is an inter-source partition
and comprises the multi-source mapping assertion for p4 and the concept mapping
assertion that defines the class C3.

6.2.2 Problem Statement

The aim is to generate GPM , a set of sets of mapping assertions in M (inter- and
intra-source), such as the union of all the sets in GPM is equal to M , and the pair-
wise intersection of the sets in GPM is empty. That is, GPM is a partition of M .
Moreover, since the order in which the groups in GPM may also impact, we define
a plan GPM over the groups in GPM , as a bushy tree plan of the groups in GPM ,
where each internal node represents the union operator that merges the RDF triples
produced during the execution of each group in GPM . Lastly, since results produced
during the execution of the GPM groups may overlap, duplicate removal may be
required at different steps of the execution of GPM . Thus, each node is annotated
with the union operator, which merges the inputs and produces the results.
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6.2.3 Proposed Solution: the Planner

We propose a heuristic-based approach to generate a bushy tree GPM that corre-
sponds to a solution to the problem of planning KG creation. The execution of intra-
and inter-source groups of mapping assertions independently induces source-based
scheduling of the execution of the mapping assertions. Moreover, the duplicate re-
moval operators are pushed down into the bushy tree following an eager execution of
duplicate removal. As a result, the union operators are scheduled over small sets of
RDF triples, and the effect of merging multisets of RDF triples is mitigated. Then,
GPM is translated into a physical plan defined in terms of operating system com-
mands. It schedules the execution of each group of mapping assertions and union
operators according to GPM . In the following, we explain the pipeline of the planner.
The pipeline comprises, first, the phase of planning where the bushy tree is created,
and then, the execution phase, where GPM is translated into a physical plan and
executed over a particular RML-compliant engine.

Planning Mapping Assertions

This step comprises the components of mapping assertion partitioning and bushy
plan generation. The algorithm receives a data integration systemDISG = ⟨O, S,M⟩
and partitions M into groups of intra- and inter-source mapping assertions. Then,
they are heuristically combined into a bushy tree plan.

Mapping Assertion Partitioning. This component describes the algorithm that
receives as input the set of mapping assertions M and initializes GPM with the
intra- and inter-source mapping assertion partitions of M . Then, it greedily decides
to combine two groups gi and gj in GPM into a group gi,j whenever any of the
following conditions are satisfied:

• Merging Intra-Source Partitions. Suppose gi and gj only comprise intra-source
mapping assertion partitions of sources S ′ (i.e., S ′ ⊆ S). Additionally, there
are no sources Si and Sj in S ′ such that there exists in GPM an inter-source as-
sertion mapping partition for Si and Sj. Then, groups gi and gj can be merged
into the group gi,j in GPM ; gi,j comprises intra-source assertion mapping par-
titions in gi and gj.

• Merging Inter- and Intra-Source Partitions. Suppose the group gi comprises
an inter-source mapping partition for Si and Sj, where Sj is the referenced
source (i.e., logical source of the parent triples map). Additionally, the group
gj only includes the intra-source mapping assertion of Sj. Thus, gi and gj
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can be merged into the group gi,j in GPM . The group gi,j only includes intra-
source assertion mapping partitions of Sj and the inter-source partition for Si

and Sj. In case Sj is the referenced source of various inter-source mapping
partitions, the intra-source mapping assertion partition of Sj is only combined
with one inter-source partition. The selection is done randomly. The selected
combination of the intra- and inter-source mapping partitions may be more
expensive than other options. As a result, this decision may negatively impact
the performance of a bushy tree plan.

The algorithm iterates until a fixed-point is reached over GPM , i.e., an iteration of the
algorithm where all the pairs of groups gi and gj are revised, and no new group gi,j can
replace them in GPM . Finally, a bushy tree GPM for the groups GPM of mapping
assertion partitions is generated following a greedy heuristic-based algorithm and
assumes that sub-plans produced so far, are optimal. Also, the algorithm combines
the first groups of partitions whose union requires duplicate removal.

Executing Mapping Assertions

This step receives a bushy tree GPM , and generates a physical plan that can execute
the mapping assertions in M following the order stated in GPM . Figure 6.3 depicts
the main two components of this step of the pipeline including physical plan cre-
ation and physical plan execution. First, nodes in GPM are visited following a
breadth-first traversal to generate a physical plan. A physical plan is defined in terms
of operating system commands that enable the execution of a [R2]RML-compliant
engine calls to evaluate a group of mapping assertions and generate RDF triples that
will be part of a KG.

6.3 Summary

In this chapter, we tackle the problem of efficient KG creation. We present heuristic-
based solutions that can identify execution plans that can efficiently generate KGs.
The execution planning techniques partition mapping assertions and schedule them
into execution plans that reduce execution time. Thus, the proposed planning meth-
ods evidence the crucial role that optimization techniques, defined in the context of
query processing, also have in the KG creation process.
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Chapter 7

EABlock and GenoConductor :
Declarative Data Operation
Function Libraries

Despite encoding the enormous amount of rich and valuable data, existing data
sources are mostly created independently, being a significant challenge to their inte-
gration specifically at the data-level. For instance in the biomedical domain, there
exist many publicly available data and knowledge bases providing the results of
decades of research on clinical and biological aspects of genetic variants and their
association with different diseases. Accordingly, gaining broad insight into the role of
different variant in diagnosis, prognosis, and treatment of diseases is only achievable
by analyzing existing data and knowledge bases integrated; rather than linked.

Mapping languages, such as RML and R2RML, facilitate declarative specification of
the process of applying meta-data and integrating data into a knowledge graph. Map-
ping assertions can also include knowledge extraction and data operation functions
in addition to expressing correspondences among data sources and a unified schema.
Including user-defined functions in mapping assertions represents a powerful formal-
ism to specify pipelines for integrating data into a knowledge graph transparently.
Surprisingly, these formalisms are not fully adapted, and many knowledge graphs
rely on executing ad-hoc programs as pre/post-processing to integrate data.

In this chapter we contribute to the following research question:
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RQ2: How to merge data operators and sources in a materialized data integra-
tion system?

The two main contributions of this chapter and the challenges we tackle are ex-
plained in the following. I. we introduce EABlock, a library of user-defined functions
to perform Entity Alignment (EA) as part of RML mapping assertions; performing
entity recognition from textual attributes and linking the recognized entities to the
corresponding resources in Wikidata, DBpedia, and domain specific thesaurus, e.g.,
UMLS. II. we tackle a domain-specific challenge, the problem of reconciling hetero-
geneous representations of the genomic variants across different sources. There are
several parallel efforts from different organizations to manually curate the available
evidence of associations between genomic variations and different cancers. However,
the only option to detect the overlaps between different provided data/knowledge
bases is to harmonize and integrate variations in order to be able to study all the as-
sociations as a whole. Hence, we introduce GenboConductor, a user-defined functions
library specialized to align genomic variations across different sources. The functions
of EABlock and GenboConductor are publicly available through Dragoman GitHub
repository as they can be executed by Dragoman efficiently. Moreover, the content
of this chapter is partially published in [42].

7.1 Motivating Example

We illustrate the motivation behind developing EABlock and GenoConductor with a
mock example from a real-world scenario in Figure 7.1. In this scenario, the aim is to
integrate eight datasets obtained from different sources into a knowledge graph. The
datasets consist of a) Patient data extracted from two different clinical notes provided
by a general practitioner (GP) and an oncologist including the comorbidities from
which the patient is suffering, b) The drug related data extracted from DrugBank9

including drug-drug-interaction providing information on the possible interactions
between different drugs and the impact on effectiveness of each, and drug-disorder
data revealing information on list of drugs that can be prescribed for each disor-
der. c) Four datasets related to the genomic variation data received from different
publicly available data/knowledge bases including COSMIC10, CIViC11, CGI12, and

9https://go.drugbank.com/
10https://cancer.sanger.ac.uk/cosmicGRCh37,version90,releasedAugust2019
11https://civicdb.org/
12https://www.cgi.com/en
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Figure 7.1: Motivating Examples of Entity Alignment Function Libraries.
Data integration from eight datasets. Starting from the above, different interoper-
ability issues observed in the first four datasets: concept disorder is modeled dif-
ferently in the dataset one and two. The entity hypertension is represented with
various entities, and its name is misspelled in the dataset one. The main and impor-
tant interoperability issue in the other four datasets that correspond to the genomic
data is the lack of a unified identifier. In both cases, entity alignment is required
to be performed enabling conflict resolution and integration into a knowledge graph.
problems. In the first case, entity alignment is performed with UMLS, DBpedia, or
Wikidata, while, in the case of variants resolution, synthesized identifiers extracted
from available data are applied.

OncoKB13. A portion of the KG created by a naive approach can be observed in
Figure 7.1. A closer look reveals that the same disorder instance exists as three
separated nodes in the graph (shown with different green colors), i.e., there is an in-
teroperability conflict among them. The existing interoperability issue can be traced
back to the raw data where I. the same disorder is represented with different names
by clinical physiologists, and II. the name of the disorder is misspelled in one of the
records. An important point is regarding the connection between the instances of

13https://www.oncokb.org/
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the generated KG and instances in available domain-specific sources (e.g., UMLS)
or encyclopedic KGs (e.g., DBpedia and Wikidata) which represent the same real-
world entities. More specifically, annotating the instances of the generated knowledge
graph with the instances in UMLS, DBpedia, and Wikidata is a solution to align the
differently represented instances in a knowledge graph.

Another unintegrated portion of the generated knowledge graph corresponds to the
instances of the class Variation. As it can be shown in the Figure 7.1 in different
shades of yellow, there appear four various instances of the same variant related to
the gene “BRAF” in the knowledge graph. The reason can be explained based on
the fact that variants are represented in different formats across different sources.
There has been different attempts in providing guidelines [26] and standards for vari-
ant nomenclature and descriptions [27]. However with the rapid generation of data,
there are always large groups of conceptualization of variants across different consor-
tiums, tools, and data/knowledge bases in which standard formats are not feasible
[79]. Additionally, albeit following the standard guidelines, a comprehensive study
of the genetic variants requires a joint analysis of different “omics” layers (genomics,
transcriptomics, proteomics, etc). There are ontologies such as SNP Ontology14

confirming this important fact about variations by creating one specific class i.e.,
“reference variant” to only represent the variation in genomic level on the complete
chromosome sequence. These confound the identification of variants across different
sources. Moreover, the lack of a unified identifier causes entity matching methods
and several attempts of data integration systems to fail. For instance the approach
proposed by Jha et al. [40] is only able to interlink variants represented with the
same identifier. Nevertheless, as it can be observed in Figure 7.1, considering three
unified synthesized representations i.e., each for one of the omics layer descriptions,
and annotating the instances with at least one of them, the instances can be aligned.
Both observations emphasize the importance of including entity alignment as a mod-
ule in the pipeline of KG creation. It should be noted that following FAIR princi-
ples [76], transparency and reproducibility are essential requirements in pipelines of
KG creation. All blocks applied as part of the main process or pre- or post-processing
of KG creation should be transparent and traceable. By virtue of having the possibil-
ity of integrating entity alignment functions in mapping rules, we focus on developing
function libraries compliant with RML+FnO.

14https://bioportal.bioontology.org/ontologies/SNPO
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7.2 EABlock : An Entity Alignment Function Li-

brary Applying UMLS, DBpedia, and Wiki-

data

Problem Statement: As shown in Figure 7.1, a knowledge graph can comprise en-
tities that correspond to the same real-world entity (e.g., various entities representing
hypertension). We address the problem of aligning entities in a KG G1=(O1,V1,E1)
with entities in an existing KGG2=(O2,V2,E2) efficiently. Encyclopedic KGs like DB-
pedia [4] or Wikidata [74], or domain-specific (e.g., UMLS [7]) correspond to KGs G2

against where the alignment is performed. Proposed Solution: Entity alignment
from G1 to G2, γ(G1 | G2), is defined in terms of an ideal KG, G∗ = (O∗, V ∗, E∗),
that includes the nodes and edges in G1 and G2 plus all the edges that relate nodes in
G1 with nodes in G2. A solution to γ(G1 | G2) corresponds to a maximal partial func-
tion ζ:V1 → V2 such that γ(G1 | G2, ζ)={(s1, sameAs, ζ(s1)) | (s1, sameAs, ζ(s1)) ∈
E∗}15. DEG1,2 = ⟨DataSets1, DataOperators,Meta-Data1,Mappings1,2⟩ defines
the KG, G1,2=(O1 ∪ {sameAs}, V1 ∪ V2, E1 ∪ γ(G1 | G2, ζ)). The set Mappings1,2
is a superset of Mappings1 including all triples maps that define ζ and enable the
computation of γ(G1 | G2, ζ).
EABlock proposes a computational block to solve entity alignment over textual
attributes providing a set of data operation functions relying on an entity and relation
linking tool. a) EABlock links entities encoded in labels and short text to controlled
vocabularies described by meta-data and resources in encyclopedic and other domain-
specific knowledge graphs. For this purpose, EABlock introduces a set of operating
functions resorting to an entity and relation linking tool. b) EABlock functions
are defined in a human and machine-readable medium, meeting the requirements
of meta-data in terms of transparency and reusability. Although the outcome of
EABlock representing the aligned entities and annotations provides meta-data for
the knowledge graph, the addition of EABlock functions to the meta-data of the DE
equips this layer for further reproduction or maintenance of the knowledge graph with
newly added data. c) EABlock functions can be easily integrated into the mappings
expressing the relations among the data and the ontology using RML language,
applying available extensions of the language. d) EABlock also provides an efficient
evaluation strategy to materialize the calls of the functions in the mappings extending
data sources and transforming mappings to function-free RML mappings that are
adaptable by any RML-compliant knowledge graph creation pipeline.

15A partial function ζ:V1 → V2 is a function from a subset of the V1. ζ is maximal in the partial
ordered set of all the functions from V1 → V2.
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Figure 7.2: The architecture and the application of EABlock.EABlock is
comprised of a set of FnO functions that resorts to an Entity Alignment engine.
Relying on Dragoman, an RML+FnO interpreter, the EABlock functions included
in RML+FnO mapping rules are executed and transformed into function-free rules.
Then the transformed data integration system can be translated into an RDF knowl-
edge graph utilizing any RML-compliant engine such as SDM-RDFizer.

As shown in Figure 7.2, EABlock composes a set of functions signatures in FnO.
The functions can be divided into two categories based on their domains and ranges.
Keyword-based functions receive case-insensitive keywords as input and generate
one entity as the output, and Short text-based functions accept a case-insensitive
short text as input and output a list of entities. To perform the task of entity align-
ment including the Named Entity Recognition (NER) and Entity Linking (EL) tasks,
EABlock functions rely on Falcon2.0 [57] through an API. The EABlock functions
resorts Dragoman to execute the functions and retrieve the results of the entity align-
ment generated by the entity alignment tool following an eager evaluation strategy.
The eager evaluation strategy gives the basis for an efficient and RML engine-agnostic
execution of the EABlock functions. Depending on the category of the function, the
output of the EABlock functions is one of the followings. a. If the function is a
Keyword-based function, for each input value, one record is added to the out-
put dataset. b. However, if the function is Short text-based, after evaluation of
the function and receiving the list of linked entities, EABlock generates the output
dataset including one record for each entity in the list of linked entities, i.e., for each
entity in the list of the retrieved linked entities, one record is added to the output
dataset which includes input value and the linked entity. In this way, it is ensured
that the generated datasets can be translated by any RML-compliant engine and re-
sult in exactly the same RDF triples; since different RML engines may have different
interpretations of an RDF list.
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Implementation and Application EABlock approach is implemented in Python
3.6, publicly available via 16, and compatible with being executed by Dragoman. As
a proof of concept, EABlock integrates Falcon2.0 API 17 to perform the NER and
EL tasks.

7.3 GenoConductor : A Function Library to Align

Genomic Variations

As we observed in the example Figure 7.1, genomic variants can be presented in var-
ious formats in different databases. We introduce three harmonized representations
of genomic variants to provide identical annotations of the same variants at different
sequencing levels according to the data mutually provided by different sources. These
harmonized representations including “DNA Annotation”, “CDS Annotation”, and
“AA Annotation” are defined to be compatible with Human Genome Variation So-
ciety guideline[26] for describing variants and the Uniform Resource Identifier (URI)
syntax standard provided by Berners-Lee et al. 18. Each harmonized representation
provides information regarding one of the following concepts. a. Nucleotide variation
on DNA (both coding and non-coding) comprises chromosome number, alteration po-
sition on DNA, reference nucleotide, and altered nucleotide. b. Nucleotide variation
on coding DNA including gene name, alteration position on coding DNA, reference
nucleotide, and altered nucleotide. c. Amino acid variation on peptide sequence
consists of gene name, reference amino acid, alteration position on peptide sequence,
and altered amino acid. To generate mentioned harmonized representations, depend-
ing on the schema of each dataset, a set of data operation functions is required. The
functions of GenoConductor are designed to extract specific data values required to
assemble the harmonized representations from data sources. Figure 7.3 illustrates
with an example the data that is extracted and assembled from the attributes of a
data source to build the harmonized representations.

GenoConductor is a library of data operation functions defined with FnO signatures.
Functions of GenoConductor can be applied in the RML mapping rules as part of
the curation and semantification process in order to facilitate the traceability and
reproducibility. An important feature of GenoConductor is that the provided

16https://github.com/SDM-TIB/Dragoman/blob/master/Sources/FunctionLibraries/functions_

GenoConductor.py
17https://labs.tib.eu/sdm/falconmedical/falcon2/
18https://tools.ietf.org/html/rfc3986
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7.4. Summary

Figure 7.3: GenoConductor .

functions are generic and reusable. Albeit the high trustability and popularity of
specific genomic data/knowledge bases, rather than focusing on defining one data
operation function for each data/knowledge base, GenoConductor supplies a set of
generic functions which can be applied as composite functions based on the require-
ments of different data/knowledge bases. GenoConductor is implemented in Python
3.6, publicly available via 19, and compatible to be executed by Dragoman.

7.4 Summary

In this chapter, we show how the diverse interoperability issues existing in textual
data and the demand of having a transparent, traceable, and efficient pipeline of
KG creation led us to introduce EABlock. EABlock is an approach to solve en-
tity alignment problems by capturing knowledge from existing KGs while keeping
the procedure transparent and traceable. Following the same vision regarding the
development of FnO functions which can be made available following the FAIR prin-
ciples, we introduce GenoConductor, a genomic domain-specific library of functions.
GenoConductor facilitates the alignment and linking between the genomic variation
entities by introducing a set of harmonized representations that can be derived from
various data sources.

19https://github.com/SDM-TIB/Dragoman/blob/master/Sources/FunctionLibraries/functions_

GenoConductor.py
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Chapter 8

EasyRML

Applying declarative mapping languages such as R2RML and RML provide a trans-
parent data integration system. Materializing such a data integration system ensures
the traceability and reproducibility of the process. However, the process of creat-
ing mapping rules, the correspondences between the data sources and the concepts
in the unified schema can be frustrating, considering the syntaxes of mapping lan-
guages. Due to the fact that knowledge engineers who define the mapping rules are
experts in the data domain and not necessarily in the semantic web, this process
needs to be facilitated. Accordingly, facilitating the process of mapping rules cre-
ation, we contribute to the following research question by introducing a tool named
EasyRML.

RQ5: What are the challenges to applying materialized data integration systems
in real-world scenarios?

8.1 EasyRML: Creating RML Mapping Rules

To eliminate the complexities caused by syntaxes of mapping languages, we develop
and propose easyRML which facilitates the creation of declarative mapping rules.
Relying on the syntaxes of RML, easyRML supports knowledge engineers by allowing
them to explore their ontology and data sources while creating the mapping rules
to integrate the data sources based on the ontology. EasyRML is publicly available:
https://labs.tib.eu/sdm/easyrml/.
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Figure 8.1: The architecture of easyRML. The two steps include the exploration
of data integration system and the generation of mapping rules.

8.2 Architecture and Development

EasyRML aims to facilitate the creation of declarative mapping rules. EasyRML
provides a platform where users upload the two components of their data integration
systems, i.e., data sources [schema] and an ontology, and define the mapping rules
to integrate data sources considering the ontology. EasyRML is publicly available
20 and maintained by the Scientific Data Management (SDM) group at the TIB –
Leibniz Information Center for Science and Technology in Hannover21. In addition,
easyRML is available via GitHub22 and Docker hub 23.

8.2.1 Exploring Data Integration System

As shown in the Figure 8.1, easyRML receives the ontology and the header of the
tabular data sources from users. Facilitating the exploration of the ontology and data
sources for users, easyRML provide classes, properties, and the data attributes to be
explored in separated steps where they are required. Correspondingly, classes of the

20https://labs.tib.eu/sdm/easyrml/
21https://www.tib.eu/en/research-development/scientific-data-management/
22https://github.com/SDM-TIB/easyRML
23https://hub.docker.com/r/sdmtib/easyrml
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Figure 8.2: Providing the ontology and data sources to allow for the exploration.
Further information about data sources are provided. The subject of the triple is
defined.

ontology and data attributes can be explored while defining subjects and objects of
triples while the properties are explored during the definition of predicates.

8.2.2 Mapping Rules Generation

Once users finish defining the mappings between their data sources and their ontol-
ogy, easyRML create the triplesMaps following the correct structure and syntaxes of
the [R2]RML. It should be noted that easyRML prevent users to define semantically
incorrect rules. For instance, defining the object of a triple based on the subject of
another triple that is not previously defined, is not allowed. Therefore, easyRML en-
sures that the generated mapping rules are syntactically and semantically validated.
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Figure 8.3: Defining the predicate and the object of the triple exploring the classes
and the properties of the ontology, respectively. The options for defining the object
can be also explored. Also, predicate and object can be added or removed.

8.3 Demonstration and Application

Figure 8.2 captures a view of easyRML where providing samples of ontology and data
sources, one can explore them using easyRML. The data source can be provided
in two different formats, i.e., Comma-Seperated Values (CSV) or Relational Data
Bases (RDB). According to the type of data source, easyRML guides them through
providing further information about the data source that is required to be added.
As it is shown in Figure 8.2 each mapping rule is considered as one block named
triplesMap, following the RML syntaxes. Having the RDF model in mind, the user
one can start defining the first part of a triple, i.e., the subject a.k.a. subjectMap.
This is the first experience that the user will have exploring the data source schema
and the classes of the ontology to define the subject.

The following step is demonstrated in Figure 8.3. In this step, the user further ex-
plores the data source schema and the properties and classes of the ontology, as they
define the predicates a.k.a. predicateObjectMap and the object a.k.a subjectMap of
the triple. Additionally, they can also explore and notice different options for defining
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Figure 8.4: demo3...

the object following the RML mapping language. Furthermore, the plus and minus
buttons shown in Figure 8.3 allow the user to add or remove predicateObjectMap

for a specific triplesMap.
Lastly, as Figure 8.4 illustrates, the process can be finalized by submitting the data
and creating the mapping file using the button named “Create Mapping File”. Then,
following the arrows in Figure 8.4, the mapping rules file can downloaded and stored
applying the button “Download Mapping File”.

8.4 Summary

In this chapter, we present easyRML, a tool to support users creating declarative
mapping rules following [R2]RML language. We emphasize that providing a plat-
form to explore the data integration system components in addition to eliminating
the syntax complexity layer, can facilitate the process of declarative mapping rules
creation for knowledge engineers and different domain experts.
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Chapter 9

Dragoman: Mapping-based
Optimizations

A challenging step in materializing data integration, is the traceability of procedures
that aim to overcome interoperability issues, a.k.a. data-level integration. In most
pipelines, data integration is performed by ad-hoc programs, preventing traceability
and reusability. Whether data processing or entity alignment, data-level integra-
tion can be defined as functions and integrated as part of the mappings performing
schema-level integration. However, combining functions with the mappings intro-
duces a new source of complexity that can considerably impact the required number
of resources and execution time. In this chapter, we tackle the problem of efficiently
executing mappings with functions and formalize the transformation of them into
function-free mappings, based on the formalization provided in Chapter 4. Similar
to Chapter 5 and Chapter 6, the contributions described in this chapter targets the
following research question.

RQ3: How can efficiency be ensured in a materialized data integration system?

The transformations we explain are the basis of an optimization process that aims
to perform an eager evaluation of function-based mapping rules. As a result, each
function is executed once and efficiently reused. These techniques are implemented in
a framework named Dragoman, providing, thus, the possibility to plan the optimized
execution of functions and the materialization of reusable functions. The preliminary
insight on the contents of this chapter is published in [41] as a collaboration with a
Ph.D. student of Polytechnical University of Madrid. The extended and complete
contributions of this chapter are under review24.

24https://www.semantic-web-journal.net/content/dragoman-efficiently-evaluating-declarative-mapping-languages-over-frameworks-knowledge
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Figure 9.1: Motivating Example.

9.1 Motivating Example

To better understand the requirement of having a transparent representation of data
operations, we explore a real-world example from the biomedical domain that has
inspired this work. CDKN2A is one of the critical loci of inactivation at both the
germline and somatic mutations in patients with melanoma [68]. Many ongoing stud-
ies are established to investigate the mutations related to CDKN2A and its correla-
tion to the diagnosis or prognosis of melanoma, prescribed treatments, interactions
between different drugs, and the effectiveness of different treatments in presence of
specific mutations. Therefore, a comprehensive insight of actionable knowledge can
only be achieved by integrating and semantifying data derived from different studies
and residing in various sources. Nevertheless, it is essential to integrate mentioned
data in a traceable and transparent manner; traceable, so that the observed results
can be explained, and transparent, so as to verify the observed correlations or cau-
sation.

Figure 9.1 shows an example of integrating data derived from four different sources
i.e., CIViC25, DrugBank26, UMLS27, and clinical notes from hospitals into a knowl-
edge graph. It can be observed that, in addition to the various attribute names that
are used to represent gene data in different data sources, the representative values
of the same gene i.e., CDKN2A also differ among the sources. Hence, mapping the

25https://civicdb.org/home
26https://go.drugbank.com/
27UMLS
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9.2. Problem Statement and Proposed Solution

gene values to the “Gene” concept in the ontology only provides the solution to the
schema-level integration. The instances of the Gene class need to be aligned perform-
ing entity alignment. For this purpose, one solution is to annotate the instances using
standard vocabularies or metathesaurus concepts such as Concept Unique Identifier
(CUI) from UMLS database [7]; shown in purple in Figure 9.1. The entity alignment
task can be defined as a data operation function that accesses an engine performing
Named Entity Recognition (NER) and Entity Linking and retrieves the annotation
according. Owing to the existing declarative formalism of functions, entity alignment
can be part of the main pipeline of the knowledge graph using functions in mappings.
Nonetheless, DIS translation as part of the knowledge graph creation - shown in Fig-
ure 9.1 - can be a very expensive process in the presence of large heterogeneous
data. Therefore, adding another layer i.e., executing data operation functions may
increase the complexity. As shown in Figure 9.1, following a naive approach, i.e., no
specific optimization for function execution translating a sample DIS including entity
alignment functions [42] and 10k of data records, can be 10 times more expensive
(in terms of execution time) than an optimized approach. This brings new optimiza-
tion challenges and the opportunity to overcome them by proposing an approach to
scale up the materialized knowledge graph creation in the presence of data operation
functions.

9.2 Problem Statement and Proposed Solution

As formally shown in Chapter 4, a knowledge graph corresponds to the evaluation
of a data integration system, DISG = ⟨O, S,M, F ⟩ in an interpretation structure I.
The mapping assertions in M state the definition of the concepts in the ontology
O in terms of the data source signatures in S. Following existing W3C standards,
these mapping assertions can be specified in R2RML and RML. F is a set of built-in
and user-defined functions for data operations, presented declaratively applying lan-
guages such as FnO+RML. The work represented in this chapter tackles the problem
of evaluating the user-defined functions efficiently and optimizing the evaluation of
the given DIS. Dragoman, the proposed solution in this paper, interprets and trans-
forms the mapping assertions in M and evaluates the functions in F based on the
data in S efficiently. Dragoman focuses on scaling up the function evaluation process
and transformation of a provided DIS into an optimized, function-free one, as part
of the knowledge graph creation process. The outcome of Dragoman is a transformed
data integration system as DISG = ⟨O, S ′,M ′⟩.
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Figure 9.2: Approach: Dragoman.

9.2.1 Problem Statement

Given a data integration systemDISG = ⟨O, S,M, F ⟩ which generates the knowledge
graph G, the problem of scaling up the process of knowledge graph creation is defined
as the problem of identifying a data integration system DIS ′

G = ⟨O, S ′,M ′, F ⟩ such
that: i) The execution time of eval(m′, µ(X ′)) is minimized for all m′ ∈ M ′ and
X ′ ∈ S ′. ii) The RDF knowledge graphs resulting from evaluating the two data
integration systems are equivalent, i.e., Σn

i=1eval(mi, µ(Xi)) ≡ Σn′
j=1eval(m

′
j, µ(X ′

j)).

9.2.2 Proposed Solution

We propose Dragoman, to efficiently evaluating declarative mapping languages over
frameworks for knowledge graph creation. Dragoman framework introduces a set of
transformation rules to transform a given DISG to the DIS ′

G such that the execution
time required to create the same knowledge graph G from DIS ′

G is less than the
required time by DIS to produce the same knowledge graph G. As shown in the
Figure 9.2, the transformation rules proposed by Dragoman are grouped into source-
based and mapping-based categories. Dragoman plans the required transformations
based on the mapping assertions inM given byDISG. We explain the transformation
rules in detail in section 9.3.
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Algorithm 9.2 Function Evaluation Algorithm

Require: Sma(Xma), gma(Tma), OLD DIS.F
Ensure: Execute(Sma(Xma), gma(Tma))
1: Sg(Xg, T )← {}
2: if Tma ∈ OLD DIS.F : gma(Tma) =

ama(bma(T
′
ma)) then

3: Execute(Sma(Xma), gma(Tma),
4: OLD DIS.F )

5: else
6: Sg(Xg, T ) is generated as a new data
7: source, such that µ(t,Xma) ∈ Xg

8: holds for each t in Tma and Sg(Xg, T )
9: belongs to σS(Sg)

10: end if
11: return Sg(Xg, T )

Algorithm 9.1 Evaluation, Transformation, and re-writing Algorithm

Require: OLD DIS = ⟨O,S,M,F ⟩ and TRs
Ensure: NEW DIS = ⟨O,S′,M ′, F ⟩
1: Suppose OLD DIS.MF is a set of map-

ping assertions including terms gi(.) that
are user-defined functions: OLD DIS.F :
{g1(.), ..., gn(.)} and receive a set of terms
T i as the arguments.

2: repeat
3: Select from OLD DIS.M a mapping
4: assertion ma
5: if ma in OLD DIS.MF then
6: Sg(Xg, T ) =

7: Execute(Sma(Xma), gma(Tma),
8: OLD DIS.F )
9: end if

10: (Tma, TS)← Transformation(ma, TRs)
11: M ′ = (OLD DIS.M − {ma})∪
12: Tma
13: S′ = (OLD DIS.S ∪ TS)
14: NEW DIS.M = M ′

15: NEWDIS.S = S′

16: until OLD DIS == NEW DIS
17: return NEW DIS

Algorithm 9.1 represents the evaluation, transformation, and re-writing component in
Dragoman, also shown in Figure 9.2. As it can be perceived from the Algorithm 9.1,
Dragoman relies on an eager evaluation strategy in evaluating user-defined functions
in F . Intuitively, the eager evaluation of user-defined functions is the first step in
the execution algorithm of Dragoman (lines 1-8). Algorithm 9.2 expresses a sketch
of the steps that Dragoman follows in evaluating user-defined functions. To meet
the requirements of an eager evaluation, in the case of having composite functions,
a(b(.)), the priority of the execution is with the evaluation of functions which are the
arguments to the other functions i.e., b(.); Algorithm 9.2 lines 2 and 3. The Eager
evaluation strategy enables Dragoman to avoid evaluating the same functions in F
with the same arguments more than once, as illustrated in the example in Figure 4.4.
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9.3 Transformation Rules

As explained in Algorithm 9.1, lines 9-14, and Algorithm 9.3, after evaluating all the
functions in F , Dragoman transforms the mapping assertions in M and data sources
in S to the function-free mapping assertions in M ′ and sources in S ′. The key point
in optimizing the process of knowledge graph creation is to consider the data sources
and mapping assertions coherently [43, 41]. The semantics encoded in the mapping
assertions provide insight into the portions of each data source that contribute to
the creation of the knowledge graph and the intersections between the data sources.
Considering the different types of mapping assertions and user-defined functions,
Dragoman introduces five transformation rules as described in the following.

Algorithm 9.3 Transformation Algorithm

Require: ma, TRs
Ensure: Transformation(ma, TRs)
1: OLD Tma← {}
2: NEW Tma← {}
3: TS ← {}
4: for each Si in Sources(ma) do
5: S′

i ← ΠAtt(ma)
Si

6: ma← replace(Si, S
′
i,ma)

7: TS ← TS ∪ {S′
i}

8: end for
9: NEW Tma← {ma}
10: repeat
11: OLD DIS ← NEW DIS

12: switch TR do
13: case Concept−based Transformation
14: (NEW Tma, TS)←
15: Concept Transformation(ma, TS)

16: case Role− based Transformation
17: (NEW Tma, TS)←
18: Role Transformation(ma, TS)

19: caseAttribute−based Transformation
20: (NEW Tma, TS)←
21: Attribute Transformation(ma, TS)

22: until OLD Tma = NEW Tma
23: return OLD Tma, TS

(a) Source-based Projection (b) Concept-based Transformation

Figure 9.3: Dragoman Source-based Projection and Concept-based Trans-
formation
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Source-based Projection. The most generic transformation that Dragoman per-
forms before executing the functions on any mapping assertion provided in M is
the projection of the attributes in sources of S referred to by the mapping asser-
tion in M . For each mapping assertion in M , independent of the type, Dragoman
projects all the attributes needed by that mapping assertion into a new data source
and removes the duplicated values. A sketch of this transformation rule is provided
in Algorithm 9.3 lines 4-8. It should be noted that if a function in F is referred to
by a mapping assertion, then the attributes required are also projected into the new
data source. In other words, this transformation pushes down the projection of re-
quired attributes and the duplicated values removal [43]. Accordingly, the mapping
assertion is transformed to use the new projected data source instead of the original
one. To better understand, Figure 9.3a shows an example of this transformation.
As it can be seen in Figure 9.3a, from the source S1 only two attributes Att2 and
Att5 are utilized in the mapping assertions; Att2 as the value for rr:subjectMap or
the concept mapping assertion, and Att5 as the value of the rr:objectMap or the
single-role mapping assertion. Therefore, the transformed DIS (shown at the bottom
of Figure 9.3a) is comprised of the newly generated data source, including only Att2
and Att5, and the transformed mapping assertion which applies the later data source
as the rr:logicalSource.
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Algorithm 9.4 Concept-based Transformation Algorithm

Require: ma, TS
Ensure: Concept Transformation(ma, TS)
1: NEW Tma← {ma}
2: OLD Tma← NEW Tma
3: suppose ma : S(X) : −C(f(g(T )))
4: where g is a term that is a user-

defined
5: function and receives T , a set of

terms,
6: as arguments: T : {t1, ..., tm}, Rma
7: is a set of Rmai defined as:
8: Si(X i,1) : −P (ma, f2(t2)), Ama
9: is a set of Amai defined as:

10: Si(X i,1) : −P (ma, t2)
11: if g(.) = a(b(.)) then
12: Sg(Xg, b(T )) is defined for all
13: the values of b(T ) such that
14: eval(Sg(Xg, b(T ))) = True
15: ma′ :
16: S(X), Sg(Xg, b(T )) : −C(f(t′))
17: where t′ is a term: t′ ∈ Sg

18: for each Rma : in Rma do
19: Rma′ : Si(X i,1),
20: Sg(Xg, b(T ) : −P (ma′, f2(t2))
21: Rma′ ← Rma′ ∪Rma′

22: end for
23: for each Ama : in Ama do

24: Ama′ : Si(X i,1),
25: Sg(Xg, b(T ) : −P (ma′, t2)
26: Ama′ ← Ama′ ∪ Ama′

27: end for
28: else
29: Sg(Xg, T ) is defined for all the
30: values of ti ∈ T , 0 < ti < m+ 1
31: such that eval(Sg(Xg, T )) =

True
32: ma′ :
33: S(X), Sg(Xg, T ) : −C(f(t′))
34: where t′ is a term: t′ ∈ Sg

35: for each Rma : in Rma do
36: Rma′ : Si(X i,1),
37: Sg(Xg, T ) : −P (ma′, f2(t2))
38: Rma′ ← Rma′ ∪Rma′

39: end for
40: for each Ama : in Ama do
41: Ama′ : Si(X i,1),
42: Sg(Xg, T ) : −P (ma′, t2)
43: Ama′ ← Ama′ ∪ Ama′

44: end for
45: end if
46: NEW Tma← {ma′} ∪Rma ∪ Ama
47: TS ← TS ∪ Sg

48: return NEW Tma, TS

Concept-based Transformation. When the output of user-defined functions
(fnml:FunctionTermMap) is applied as the value of a concept mapping assertion or
rr:subjectMap, the concept-based transformation is performed on the given map-
ping assertions in M and sources in S. Figure 9.3b shows an example where the
transformation of sources in S is performed by joining the data sources consisting of
the function’s output, i.e., “intermediate result”, and the outcome of the source-based
projection on S. After the generation of the new data source, Dragoman, transforms
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the mapping assertion so that the old data source is replaced with the newly gener-
ated one, as shown at the bottom of Figure 9.3b. Algorithm 9.4 provides a sketch
of the concept-based Transformation rule and how to implement it. Algorithm 9.4
receives a set of mapping assertions as input. These mapping assertions fulfilling
the definitions in lines 3-10. Following an eager evaluation, the Algorithm 9.4 first
evaluates the most inner functions in case of having composite functions, i.e., b(.) in
the case of a(b(.)), shown in lines 11-28. At the same time, the algorithm performs
the concept-based transformation and creates the transformed mapping assertions
as shown in lines 12-15. When the Algorithm 9.4 reaches a simple function or the
most outer function in a composite function, i.e., a(.), it evaluates it as shown in
16-18 and executes the concept-based transformations, lines 19-22. Finally, the new
set of mapping assertions including the transformed mapping assertions is returned.

(a) Role-based Transformation (b) Attribute-based Transformation

Figure 9.4: Dragoman Role-based and Attribute-based Transformations

Role-based Transformation. Contrary to the previous transformation, role-based
transformation is performed once the output of functions (fnml:FunctionTermMap)
are utilized to build the value of a role mapping assertion (rr:objectMap). In con-
trast to concept-based transformation, role-based transformation forces the join be-
tween the data sources consisting of the output of the function and the outcome of
the source-based projection, to the mapping assertions. In other words, the output
of the function evaluation is stored in a separate new data source and the newly gen-
erated data source by the source-based projection. Consequently, the role mapping
assertion is transformed to multi-sources role mapping assertions to replace the old
data source with two data sources, i.e., the data source, including the output of the
functions and the data source generated as the result of the source-based projection.
Figure Figure 9.4a illustrates an example of role-based transformation. As shown in
the right-hand side of the figure Figure 9.4a, the transformed data sources include
two newly generated data sources, and the role mapping assertion is transformed
to a multi-sources mapping assertion, applying joinCondition. An outline of the
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implementation of the role-based transformation rule is provided in Algorithm 9.5.
The Algorithm 9.5 receives a set of mapping assertions following the assumptions of
lines 3-7. Similar to the algorithm of concept-based transformation, Algorithm 9.5
also prioritizes the evaluation of the most inner functions to the outer functions,
in the case of composite functions. As expected from the name of the algorithm,
Algorithm 9.5 differs from the previous algorithm in the transformation rule. After
evaluating the functions, Algorithm 9.5 performs role-based transformation, shown in
lines 12-15 and 19-22. The outcome of this algorithm is the updated set of mapping
assertions including previously added mapping assertions and the ones transformed
according to this algorithm.

Algorithm 9.5 Role-based Transformation Algorithm

Require: ma, TS
Ensure: Role Transformation(ma, TS)
1: NEW Tma← {ma}
2: OLD Tma← NEW Tma
3: Suppose ma :
4: Si(X i,1) : −P (f1(t1), f2(g(T 2)))
5: where g is a term that is a user-

defined
6: function and receives T 2, a set of

terms
7: as arguments: T 2 : {t2,1, ..., t2,m}
8: if g(.) = a(b(.)) then
9: Sg(Xg, b(T 2)) is defined for all the

values of
10: b(T 2) such that eval(Sg(Xg, b(T 2)))
11: = True
12: ma′ : Si(X i,1), S

Cma′
g (Xg, b(T 2)),

13: θg(X i, 1, Xg) : −P (f1(t1), f2(t
′
2))

14: where t′2 is a term: t′ ∈ Sg

15: Cma′ : Sg(Xg, b(T 2)) :
−C ′(f2(t

′
2))

16: else
17: Sg(Xg, T 2) is defined for all the

values of T 2

18: such that eval(Sg(Xg, T 2)) =
True

19: ma′ : Si(X i,1), S
Cma′
g (Xg, T 2),

20: θg(X i, 1, Xg) : −P (f1(t1), f2(t
′
2))

21: where t′2 is a term: t′ ∈ Sg

22: Cma′ : Sg(Xg, T 2) : −C ′(f2(t
′
2))

23: end if
24: NEW Tma← {ma′, Cma′}
25: TS ← TS ∪ {Sg}
26: return NEW Tma, TS

Attribute-based Transformation. This transformation is required when the out-
put of the user-defined function is used as the term value of an Attribute mapping
assertion. Similar to the concept-based transformation, data sources are transformed
by joining the data sources consisting of the output of the function and the result
of the source-based projection on S. Consequently, the mapping assertion is trans-
formed to include the newly generated joined data source as the replacement for the

86



9.3. Transformation Rules

original data source. As it can be observed in the example shown in figure Figure 9.4b
using the output of user-defined functions - fnml:FunctionTermMap- as the term
value of both role and attribute mapping assertions are very similar in [R2]RML.;
they are differentiated by the values rr:IRI and rr:Literal for termType in case
of role and attribute mapping assertions, respectively. The attribute-based transfor-
mation rule can be implemented following Algorithm 9.6. The Algorithm 9.6 follows
the same structure as Algorithm 9.4 and Algorithm 9.5. However, Algorithm 9.6
performs attribute-based transformation which is provided in lines 7-9 and 13-15.

Algorithm 9.6 Attribute-based Transformation Algorithm

Require: ma, TS
Ensure: Attribute Transformation(ma, TS)
1: NEW Tma← {ma}
2: OLD Tma← NEW Tma
3: Suppose ma : S1(X i,1) :
−A(f(t1), g(T 2)) and Cma :
S1(X1,1) : −C(F1(t1)) where g(.) is
a term that is a user-defined function
and receives T 2, a set of terms as ar-
guments: T 2 : {t2,1, ..., t2,m}

4: if g(.) = a(b(.)) then
5: Sg(Xg, T 2) is defined for all the

values of b(T 2)
6: such that eval(Sg(Xg, b(T 2))) =

True
7: ma′ : S1(X i,1), Sg(Xg, T 2) :
−A(f(t1), t′2)

8: where t′2 is a term: t′2 ∈ Sg

9: Cma′ : S1(X1,1), Sg(Xg, b(T 2)) :
−C(f(t1))

10: else
11: Sg(Xg, T 2) is defined for all the

values of T 2

12: such that eval(Sg(Xg, b(T 2))) =
True

13: ma′ : S1(X i,1), Sg(Xg, b(T 2)) :
−A(f(t1), t′2)

14: where t′2 is a term: t′2 ∈ Sg

15: Cma′ : S1(X1,1), Sg(Xg, T 2) :
−C(f(t1))

16: end if
17: NEW Tma← {ma′, Cma′}
18: TS ← TS ∪ {Sg}
19: return NEW Tma, TS

Composite-Function-based Transformation. When the user-defined function
is a composite function, i.e, the output of a fnml:FunctionTermMap is an argument
to another fnml:FunctionTermMap, the same transformation is performed indepen-
dent of the type of the mapping assertion that refers to the output of the function.
composite-function-based transformation is similar to the concept-based transfor-
mation; data sources are transformed by joining the data source generated by the
output of all functions involved in the composite function, and the data source re-
sult from the source-based projection. Accordingly, Dragoman starts executing the
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composite function from the inner function, i.e., the simple function. As illustrated
in the example shown at the bottom of the Figure9.5, after evaluating the inner
function FunctionMap2, the materialized join between the output and the input at-
tributes of the inner function is provided. This join data source is given to the
outer function FunctionMap1 as the input. After evaluating the outer function, the
composite-function-based transformation is performed along with the source-based
projection.

Figure 9.5: Composite-function-based Transformation.

9.4 Summary

In this chapter, the problem of efficiently creating a knowledge graph from a function-
included data integration system is tackled. Dragoman, a system-agnostic engine,
is proposed as a solution for optimization and function execution; Dragoman intro-
duces a set of transformations. Relying on an eager evaluation, Dragoman materi-
alizes functions in mappings before deciding on the set of required transformations
based on provided mapping assertions. Dragoman determines which transformations
are needed to be performed on a given data integration system such that the knowl-
edge graph generated by the transferred data integration system is the same as the
knowledge graph generated by the original one, nonetheless, in less execution time.
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Chapter 10

SDM-Genomic Testbeds

In recent years materialized creation of knowledge graphs from enormous heteroge-
neous available data sources on the Web has gained attention. Accordingly, different
techniques, frameworks, and engines are introduced to perform different tasks of
materialized knowledge graph creation pipelines. Considering the complexity di-
mensions brought by big data, these techniques, frameworks, and engines may fail to
scale up in many cases. Nevertheless, the rapid evolution of data demands scaled-up
approaches for frequent materialization and updating of knowledge graphs. For this
purpose, different parameters impacting knowledge graph creation need to be studied
and corresponding testbeds evaluating the performance of existing approaches are to
be provided. In this chapter, we focus on the following research question:

RQ4: Which are the impacting parameters that testbeds need to include to
evaluate the advantages of applying enhancement techniques in materialized data
integration?

To answer the mentioned research question, first, the parameters that impact the
performance of different tasks in a knowledge graph creation pipeline reported by
the community [12, 3] or derived by our experimental studies [43, 36, 41] are ex-
plained. Then, the testbeds that we have provided to assess each parameter are
described. The testbeds discussed in this chapter, SDM-Genomic Testbeds, are one
of the main contributions of this thesis; they are generated applying biomedical data
and real-world scenarios in this domain. The contributions of this chapter are par-
tially published in the empirical study sections of our papers [43, 41, 36, 37] and
partially under the review in our latest paper28.

28https://www.semantic-web-journal.net/content/dragoman-efficiently-evaluating-declarative-mapping-languages-over-frameworks-knowledge
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10.1. Data Source Parameters

10.1 Data Source Parameters

Knowledge graph creation pipelines from Big Data are required to scale up in terms
of different dimensions of Big Data e.g., volume and veracity. For this purpose, eval-
uating such pipelines demand considering different parameters of the data impacting
the process. Hence, we study the following three parameters regarding the data.
Par1: data volume. The first parameter whose impact needs to be studied is the
data source size in terms of the number of records that are integrated into the course
of the knowledge graph creation pipeline. Par2: data veracity (duplicates rate).
The quality of the data sources plays an important role in the data integration pro-
cess. Accordingly, data veracity is a parameter that is required to be studied while
evaluating the performances of knowledge graph creation frameworks. The redun-
dancy rate in data is a characteristic of data that impacts the quality of the data
sources; the higher the duplicated data rate, the lower the quality of the data source.
Par3: join selectivity. The level of the selectivity of the join in multi-sources
role mapping assertions is an influential parameter that is essential to be studied. It
has been observed in different studies that the behavior of knowledge graph creation
pipelines fluctuates when the join selectivity of the data is changed [12].

10.2 Mapping Assertion Parameters

There are several parameters regarding the mapping assertions that impact the per-
formance of any knowledge graph creation pipeline that we explain in the following.
Par4: type of role mapping assertions. As explained in Chapter 4, role mapping
assertions can be divided into three types. Considering the definitions of the three
types, they differ in their body or head. The characteristics that separate these three
types of role mapping assertions can also impact on the performance of knowledge
graph creation frameworks. Par5: Number of appearances of the same user-
defined function. The number of mapping assertions with the same user-defined
functions that receive the same arguments can affect the performance of an engine
considering the strategy that the engine follows. In other words, engines behave dif-
ferently facing the repetition of the same user-defined functions depending on whether
they are relying on an eager or a lazy evaluation. Par6: number of role mapping
assertions. Whether user-defined functions exist in a set of mapping assertions or
not, the total number of function-free role mapping assertions can impact the over-
all performance of a pipeline. Par7: complex combinations of multi-sources
role mapping assertions. The existence of complex combinations of multi-sources
role mapping assertions, i.e., star join or chain join can negatively impact the per-
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formance of the tools involved in knowledge graph creation pipelines significantly.
Despite the importance of this parameter to be considered while evaluating any
pipeline, the available testbeds and benchmarks such as GTFS-Bench-Madrid [13]
have not included them.

10.3 Functions Parameters

As mentioned earlier, the parameters concerning data operation functions have not
been studied. Hence, we consider the parameters regarding functions that we assume
to be important or we have already observed them being impacting in our prelim-
inary studies explained in Chapter 14. Par8: types of user-defined functions.
As mentioned earlier the impact of the type of user-defined functions has not been
fully studied. To this end, we study the impact of the type of user-defined functions,
i.e., whether they are bijective or not. Par9: the complexity of user-defined
functions. Another unclear characteristic of user-defined functions that may im-
pact the performance of tools is the complexity of the functions. We describe the
complexity level of the functions based on the number of required input attributes
and operations to be performed. Par10: composite user-defined functions.
The last parameter that requires to be evaluated is the impact of the complexity of
the functions in terms of being “simple” or “composite”. The formal definitions of
simple and composite functions that are provided in Chapter 4, can be simplified in
the following. A user-defined function is a composite function when there exists an
argument of it that is the output of another function.

10.4 Testbeds

In order to evaluate the performance of knowledge graph creation pipelines while
utilizing different frameworks or engines, different testbeds are required to study the
relevant parameters. For this purpose, we classify the testbeds into four groups which
are explained in detail in the following. An overview of the parameters that can be
studied using each testbed is illustrated in Table 10.2.

10.4.1 TestBed 1: intra-source-based

This testbed provides the setups required to evaluate the performance of different
values of Par1, Par3, and Par4 in the presence and absence of intra-mapping asser-
tion source-based optimizations. For the sake of simplicity, we explain this testbed
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as consisting of two groups; the first group aims to enhance the impact of Par1 and
Par3 while the second group targets the combinations of Par3 and Par4..

i) The baseline data set for the first group of testbeds in intra-source-based testbed
is produced by randomly selecting 19,503,200 records, equal to 312,1MB overall size,
from the combination of three different datasets. The three datasets include muta-
tions, drug-resistant mutations, and protein-RNA interaction predictions data; they
are collected from the following data providers: (i) The datasets related to mutations
and drug-resistant mutations are collected from COSMIC29, an open source database
of somatic mutations in human cancer diseases. (ii) A dataset defined by Lang et
al. [46] at CRG30, this dataset includes protein-RNA interaction predictions.
In this testbed, we consider four different data volumes generated by randomly select-
ing 25%, 50%, 75%, and 100% of the records of the baseline dataset. It also involves
three different duplicate - veracity- rates including 25%, 50%, and 75% duplicated-
free datasets. It should be noted that all selections of data have been performed
randomly to avoid any sampling bias.
ii) The baseline dataset of the second group in intra-source-based testbed is generated
by collecting different attributes from various publicly available datasets including
the GENCODE reference annotation for the human and mouse genomes [28]. In this
dataset, a large amount of selected data relates to exon, the sequence represented
in the mature RNA whose mutations can directly affect the sequence of a protein
[48]. Since there are overlaps between the data in these datasets, there exists a large
number of duplicated values, which makes it a good candidate to study Par3. We
generate four datasets from the baseline, each two with the same data attributes
and volumes but different qualities, i.e., two are duplicate-free while the other one
consists of duplicated values. To study both parameters Par3 and Par4 we create
multi-sources role mapping assertions including different combinations of the two
datasets. In other words, three multi-sources role mapping assertions each include,
two duplicated data sources, two duplicate-free sources, and one duplicated and one
duplicate-free data source in their body, respectively. The empirical study reported
in [43], is set up by applying intra-source-based testbed.

10.4.2 TestBed 2: intra-mapping-based

In general, the intra-mapping-based testbeds are generated to evaluate the perfor-
mance of knowledge graph creation pipelines and frameworks including user-defined

29https://cancer.sanger.ac.uk/cosmic
30https://www.crg.eu/
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functions. These testbeds are designed such that different parameters from all three
categories, i.e., data source, mapping assertion, and functions to evaluated in the
presence or the absence of intra-mapping assertion optimizations.

intra-mapping-based testbeds can be described through two categories. The first
category focused only on a few parameters including Par3, Par5, and Par10. Never-
theless, the second category covers 9 parameters out of the 11 parameters explained.
i) The baseline of this testbed is generated by randomly selecting 20,000 records
from the coding point mutation dataset in COSMIC31 database. We keep all 39
attributes of the original dataset in the baseline dataset, while only five to seven of
them are utilized in the mapping assertions of TestBed 2. In total, four different
RML mapping files are generated consisting of one user-defined function and four,
six, eight, or ten mapping assertions including the user-defined function. Two user-
defined functions are involved in these testbeds which differ in terms of complexity;
“simple” and “complex” functions. The “simple” function is defined to receive one
input attribute and perform one operation, while the “complex” function receives
two input attributes and completes five operations. The empirical study performed
in [41] utilizes this category of testbeds.
ii) The baseline of the second category of intra-mapping-based testbeds is created
by combining data from two different publicly available data sources to avoid any
possible bias that may have been generated by a particular source in the data values.
First, a new subset of the COSMIC mutation dataset32 is generated. This dataset is
created by including 38 attributes of the original COSMIC mutation dataset. Second,
another dataset is created by randomly selecting records from the UMLS database33.
The latest dataset is composed of two attributes; label and CUI identifiers. Combin-
ing the explained two datasets creates the baseline of the TestBed 4. We create three
datasets by randomly selecting 10k, 100k, and 1 million records from the baseline
dataset. In this testbed, 17 sets of mapping assertions combining different types and
numbers of mapping assertions and user-defined functions considering explained pa-
rameters are provided, overall. We explain the details of each setup in this testbed
targeting different parameters in the following. Par1. We consider data sources
of 10,000, 100,000, and 1,000,000 records in CSV format. It should be noted that
only a number of attributes in each data source may participate in the pipeline of
the knowledge graph creation, i.e., being applied in mapping assertions. The total
number of attributes of data sources are 3-20 times the number of attributes that are

31https://cancer.sanger.ac.uk/cosmic GRCh37, version90, released August 2019
32https://cancer.sanger.ac.uk/cosmicGRCh37,version90,releasedAugust2019
33https://www.nlm.nih.gov/research/umls/implementation_resources/applications.html
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Table 10.1: Examples of bijective and non-injective surjective user-defined functions.

Function Type Function Name Pre-Condition Post-Condition
Bijective reverseString() A case-insensitive string A case-insensitive string that is the exact reverse of the input string

Non-Injective Surjective toLower() A case-sensitive string The exact string as the input string in in lower cases

utilized in mapping assertions. Par2. Regarding different percentages of join selec-
tivity, for each data size, we prepare data sources with three levels of join selectivity:
low or 80% selectivity rate, medium or 50%, and finally, high or 20% selectivity rate.
Par5. The mapping assertions in these testbeds are composed of two, four, and six
repetitions of the same user-defined function with the same input values. Par6. We
set up two groups of experiments; the first group includes star joins in their original
mapping assertions consisting of four multi-sources role mapping assertions with the
same MJ . The second group is composed of multi-sources role mapping assertions
forming a chain join. Par7. Regarding the type of user-defined functions parameter,
two types of functions including non-injective surjective (NonInjSurj) and bijective
are considered. The descriptions of the examples of each type are provided in Ta-
ble 10.1. Par8. Last but not least, both “simple” and “composite” functions are
considered in these testbeds; the “composite” function is of type A(B(C(.)).

Table 10.2: The parameters included in each testbed.

testbeds
Studied Parameters TestBed 1 TestBed 2 TestBed 3

Par1: Data Volume ✗ ✗ ✗

Data Par2: Selectivity ✗

Source Par3: Data Veracity ✗ ✗ ✗

Par4: Type of role mapping assertion ✗

Par5: # of appearances of the same ✗

Mapping user-defined functions
Assertion Par6: # of role mapping assertions ✗

Par7: Multiple multi-sources ✗

role mapping assertions ✗

Par8: Types of user-defined functions ✗

Function Par9: Complexity of user-defined functions ✗

Par10: Composite user-defined functions ✗

10.4.3 TestBed 3: inter-mapping-based

As shown in Table 10.2, the inter-mapping-based testbeds focus on the evaluation of
translating different data integration systems with different data volume, veracity,
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and complex multi-sources mapping assertions to the knowledge graphs. The base-
line dataset of TestBed 3 is generated by randomly selecting records from the coding
point mutation dataset in COSMIC34. Overall, six datasets of three different sizes,
i.e., 10K, 100K, and 1M number of records and two different duplicate rates, i.e., 25%
and 75% of duplicates are produced. It should be noted that for each duplicate rate,
two datasets are generated; one dataset with each duplicated value being repeated
10 times and another dataset with 20 times of appearance of every duplicated value.

The inter-mapping-based testbeds offer nine mapping assertion configurations. For
the sake of clarity, we explain the configurations in two categories. The first category
includes six configurations.
Conf1: Set of two mapping assertions with one concept and one attribute map-
ping assertions. Conf2: Set of five mapping assertions, including one concept and
four attribute mapping assertions. Conf3: Set of four mapping assertions consisting
of two concepts, one referenced-source role, and one attribute mapping assertions.
Conf4: Set of nine mapping assertions with five concepts and four referenced-source
role mapping assertions. Conf5: Set of three mapping assertions comprised of two
concepts and one multi-source role mapping assertions. Conf6: Set of nine mapping
assertions, including five concepts and four multi-source role mapping assertions. We
group the aforementioned mapping assertions into a set named AllTogether.

The second category of this group of testbeds includes three extra configurations
to enable the evaluation of the impact of two other influential parameters on the
performance of KG creation frameworks [59]. Conf7 aims at evaluating the impact
of defining the same predicates using different mapping assertions. Conf8 provides
a mapping rule which is connected to five other mapping rules with different logical
sources through join, i.e., this mapping assertion is connected via a five-star join
with the other five mapping assertions. The last configuration or Conf9 combines
the first two configurations in one testbed. Accordingly, the three configurations
can be summarized as the follows. Conf7: Set of four mapping assertions with four
concepts and two multi-source role mapping assertions. For each pair of mapping
assertions, there is a multi-source role mapping assertion. The data sources of one
pair of the mapping assertions are a subset of the other pair. Both pairs of mapping
assertions share the same predicate. Conf8: Set of six mapping assertions with
six concepts and five multi-source role mapping assertions. In this set, five child
mapping assertions are referring to the same parent mapping assertion. Conf9: Set
of eight mapping assertions with eight concepts and seven multi-source role mapping

34https://cancer.sanger.ac.uk/cosmic GRCh37, version90, released August 2019
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assertions.
TestBed 3 enables the experimental study that we perform in [36, 37, 38].

10.4.4 TestBed 4: EA-function-based

In contrast to the previous three testbeds, EA-function-based focus on evaluating the
effectiveness of knowledge graph creation pipelines that apply entity linking func-
tions. To create these testbeds, we extract data related to drugs (11,293 records),
the disorders for which the drugs are prescribed (416 records), and the interactions
between the drugs (1,646,836 records) from DrugBank35 (version 5.1.8). We produce
three mock datasets resembling normal clinical notes for cancer patients, including
the data related to comorbidities (1,322 records) and prescribed oncological (1,764
records) and non-oncological drugs (1,325 records). To integrate these data at the
schema level, we create a unified schema and a set of mapping assertions. We dupli-
cate the set of mapping assertions to create another set, equivalent to the first one,
however, including entity alignment functions as the user-defined functions. This
way, generating knowledge graphs from two different testbeds can illustrate the ef-
fectiveness of any entity alignment function that is studied. TestBed 4 enables one
of the experimental studies that we report in [42].

10.5 Summary

This chapter provides an overview of the parameters impacting the materialization of
data integration systems and knowledge graph creation. Relying on the parameters
reported by the community and our observations while studying empirically we come
up with 10 different parameters that can affect the performance of a materialized
knowledge graph creation. Following these parameters, we introduce SDM-Genomic
Testbeds, a set of various testbeds to evaluate different frameworks materializing data
integration systems. SDM-Genomic is composed of four group of testbeds; each of
them aim focusing on a specific task, e.g., data operation function execution.

35https://go.drugbank.com/
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Chapter 11

Evaluating MapSDI

In this chapter, we describe the empirical study conducted to evaluate the perfor-
mance of MapSDI, introduced in Chapter 5. These results reported in this chapter
are evidences that the techniques we propose in Chapter 5 are solution to the RQ3.
We compare the performance of MapSDI to the traditional framework for knowledge
graph creation which we refer to as ”T-framework” from now on in this paper. We
aim to answer the following questions:

RQ1) Does MapSDI reduce the required time for knowledge graph creation
compared to T-framework?
RQ2) How influential is the performance of MapSDI framework, when data
volume increases or data quality decreases?
RQ3) Does MapSDI perform efficiently in case of having more complication in
mapping rules e.g., join condition?

The experimental studies described in this chapter are published in [43].

11.1 Experiments

Addressing the research questions presented earlier, we set up 51 experiments overall
which are explained as two groups of studies in the followings. In these experiments
we rely on TestBed 1 which is described in Subsection 10.4.1. Metrics Performance is
measured in terms of execution time; it is computed as the elapsed time in seconds be-
tween the submission of execution of the framework and the generation of all the RDF
triples. The time command of the Linux operating system is utilized to measure time.
The timeout is set to 500 seconds; the results are visualized based on milliseconds.
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Table 11.1: Four instance datasets size. The size of four datasets applied in
experiments group A with the results being shown in Figure 11.1. The values show
how the size of datasets are reduced after the two steps of attribute projection and
duplicate removal have been applied, as part of the MapSDI framework.

Data Volume Original Size (KB) Pre-processed Size (KB)
25% 59,200 895
50% 117,900 955
75% 176,400 982
100% 235,000 997

Implementations MapSDI and T-framework are compared on SDM-RDFizer36

and the rmlmapper-java37. The MapSDI framework is implemented in Python 3.6.3
and GNU bash 4.4.12(1) jointly. The experiments are executed on an Ubuntu 17.10
(64 bits) machine with Intel Xeon W-2133, CPU 3.6GHz, 1 physical processor; 6
cores, 12 threads and 64 GB RAM.
Experimental Scenarios We perform in overall 51 experiments; divided into two
categories as the follow. Group A ) The first group of experiments are designed to
study the impact of the size of input datasets and their quality in terms of redun-
dancy, on required time for semantic enrichment and integration. In order to avoid
the experiments being influenced by other variables such as the number of included
attributes and mapping rules, in all experiments of this group, the same one concept
is utilized; this concept is represented as a different attribute in each dataset. Ad-
ditionally, to highlight the difference between the performance of two frameworks,
a minimal setup consisting of one attribute in each dataset and consequently one
RML triple map, are evaluated. Each 12 experiments that are performed based on a
separated framework using a different RDFizer, can be divided into four categories
based on the data volume: the 25%, 50%, 75%, and 100% volume; they are
produced by randomly selecting 25%, 50%, 75% and 100% of the records in created
dataset, respectively. Subsequently, each mentioned category is divided into three
subcategories based on data redundancy; from each generated dataset in the volume
category, three datasets are produced by cleaning 25%, 50% and 75% of the data
from duplicates. It should be noted that all selections of data have been performed
randomly to avoid any sampling bias. Group B ) The second experiment setup is
conducted to study the impact of data redundancy on performance of each framework
in case of join condition rules inclusion. Following the same objective, the minimum

36https://github.com/SDM-TIB/TIB-RDFizer
37https://github.com/RMLio/rmlmapper-java
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Chapter 11. Evaluating MapSDI

amount of required attributes are considered. Accordingly, three experiments are
performed on joining two datasets: a) No dataset with duplicates removal; b) One
dataset being duplicates-free; and c) Both datasets being duplicates-free.

11.1.1 Experimental Results

Answer to RQ1 and RQ2: The results of the experiment group A are shown in
Figures 11.1. As it can be observed, MapSDI outperforms T-framework in terms of
execution time in all the experiments independently of the RDFizers and percentage
of duplicates. This instance of the MapSDI framework performs the Transformation
Rule 3, i.e., the datasets are merged; while the Transformation Rule 1 is performed
in the two frameworks during the creation of the datasets. According to the results
depicted in Figures 11.1, regardless of the RDFizer, the more duplicated data in the
datasets, the higher the execution time of the T-framework. It is also important to
highlight, the diverse performance ratios of MapSDI and T-framework in terms of
the growth of dataset size and data duplicates. MapSDI performs more stable than
T-framework. These observations can be explained according to the two steps of pre-
processing including attributes projection and duplicate removal that are executed
former to the transformation step in the MapSDI framework. The mentioned steps
decrease the size of the original datasets considerably. Table 11.1 reports on the
reduced size of the input datasets after the pre-processing steps in the experiments
conducted over the dataset with 25% data duplicates (Figure 11.1).

Answer to RQ3: Figure 11.2 illustrates the results of experiments in group B.
The rmlmapper timed out in all experiments of group B, the results only refer to
the performance of MapSDI and T-framework applying SDB-RDFizer. As it can be
observed, the execution time of MapSDI is considerably lower than T-framework in
case of having join condition in mapping rules independent of having data duplicates.
This instance of MapSDI framework performs the Transformation Rule 3 as well as
Transformation Rule 2. The application of these two transformations considerably
reduces the number of duplicates and enhances the performance of the SDM-RDFizer
during the execution of the join condition between triple maps.

11.2 Summary

In this chapter, we empirically evaluated the scaled-up framework of semantic en-
richment presented in Chapter 5. It was observed from the experiments that the
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11.2. Summary

proposed data operation steps in the framework, i.e., attributes projection and du-
plicate removal, prevent significant fluctuations in the performance of the pipeline
while the data is growing. Additionally, the results suggest that the proposed frame-
work leads to execution time savings in the case of joining different data sources.
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Chapter 11. Evaluating MapSDI

(a) rmlmapper - 75% veracity (b) SDM-RDFizer - 75% veracity

(c) rmlmapper - 50% veracity (d) SDM-RDFizer - 50% veracity

(e) rmlmapper - 25% veracity (f) SDM-RDFizer - 25% veracity

Figure 11.1: Results of experiment group A with different percentage of
veracity. The performance of MapSDI and T-framework on four different sized
datasets with 75% redundancy: (a) applying rmlmapper (b) using SDM-RDFizer.
MapSDI is able to reduce duplicated and exhibits better performance independently
of the data volume and RDFizer. But, the difference between the execution time of
two frameworks is much higher when rmlmapper is evaluated.102



11.2. Summary

Figure 11.2: Results of Experiment Group B. MapSDI and T-framework on two
datasets joined by two triple maps. MapSDI performs Transformation Rule 2 and
Rule 3 and it is able to push down projection into the join. With the transformations
conducted by MapSDI, the rmlmapper timed out at 500 seconds.
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Chapter 12

Evaluating Planner

In this chapter the empirical study performed on the planner is reported. The
proposed optimization approach is evaluated over state-of-the-art RML-compliant
engines, and existing benchmarks of data sources and RML triples maps. Our ex-
perimental results suggest that the performance of the studied engines can be consid-
erably improved, particularly in a complex setting with numerous triples maps and
large data sources. As a result, engines that time out in complex cases are enabled
to produce at least a portion of the knowledge graph by applying the planner. These
results experimentally prove that the techniques we propose in Chapter 6 answer the
RQ3. In this study we rely on the Testbed 4 explained in Subsection 10.4.3. The
performance of the solution proposed to the problem of planning KG creation is stud-
ied in four RML-compliant engines: RMLMapper, RocketRML, SDM-RDFizer, and
Morph-KGC. The empirical evaluation aims at answering the following questions:

RQ1) How does planning the execution of mapping assertions affect the per-
formance of the state-of-the-art RML-compliant engines during KG creation?
RQ2) What is the impact of the type of mapping assertions and volume of the
data sources on execution time required by engines?

RML Engines. RMLMapper v4.12 [55], RocketRML v1.11.3 [64], Morph-KGC
v1.4.1 [3], and SDM-RDFizer v3.6 [60]. Recently, SDM-RDFizer v4.0 [61] has been
published. According to the tool description, SDM-RDFizer v4.0 implements plan-
ning techniques, physical operators for the execution of mapping assertions, and data
compression techniques for reducing the size of the main memory structures required
to store intermediate results. In order to create a fair evaluation of the performance
of the techniques developed in SDM-RDFizer v4.0, we implement an upgraded ver-
sion of SDM-RDFizer v3.6 which includes the data compression technique developed
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in SDM-RDFizer v4.0; we call this engine SDM-RDFizer v4.0−−.

Implementations. The planning and execution pipeline is implemented in Python
3. The compression techniques implemented in SDM-RDFizer v4.0−− encode RDF
resources generated during the KG creation process. For each RDF resource R, an
identification number i is assigned to it. Thus, RDF triples are built not from RDF
resources but the identification number. Moreover, each identification number i is
encoded in Base36 to reduce the memory usage further. Base36 is an encoding scheme
that transforms a string into a 36 characters representation. The characters used are
the letters from A to Z and the numbers from 0 to 9. For example, the number
”95634785” is encoded as ”1KXS9T”. The SDM-RDFizer operators are adapted to
consider this compression method, consuming less main memory.

Metrics We consider two metrics to evaluate the efficiency of our proposed ap-
proach. Execution time is defined as the elapsed time required to generate the bushy
tree and execute the corresponding physical plan used to create the KG. It is mea-
sured as the absolute wall-clock system time, as reported by the time command of
the Linux operating system. The leaves of a bushy tree are executed in parallel,
and execution of the leaves corresponds to the greatest execution time; execution
time also includes the time of merging the results generated during the execution
of the tree leaves. Memory consumption is determined as the amount of memory
that is consumed during the generation of a KG. The memory usage is measured
by using the tracemalloc library from Python [67]. The get traced memory()

method from tracemalloc returns the amount of memory currently being used.
This method presents the memory usage in Kilobytes, for ease of use, it is con-
verted into Megabytes. The timeout is five hours. The experiments are executed in
an Intel(R) Xeon(R) equipped with a CPU E5-2603 v3 @ 1.60GHz 20 cores, 64GB
memory and with the O.S. Ubuntu 16.04LTS.

12.0.1 Experiments - Efficiency

This experiment aims to assess the impact of planning on a real-world dataset pro-
vided as the TestBed 4 in Chapter 10. Following the two categories of tesbeds in
TestBed 4 described in Chapter 10, we also divide the experiments into two cate-
gories; simple and complex mapping assertions.
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Chapter 12. Evaluating Planner

(a) 10k records with 25% dupli-
cate rate.

(b) 100k records with 25% du-
plicate rate.

(c) 1M records with 25% dupli-
cate rate.

(d) 10k records with 75% dupli-
cate rate.

(e) 100k records with 75% dupli-
cate rate.

(f) 1M records with 75% dupli-
cate rate.

Figure 12.1: Results of the Execution of the GENOMIC benchmark. Ex-
ecution time of Conf1, Conf2, Conf3, Conf4, Conf5, Conf6, and AllTogether for
SDM-RDFizer v3.6, RMLMapper, and RocketRML.

Simple Mapping Assertions

We study the performance of each engine, i.e., RocketRML, RMLMapper, and SDM-
RDFizer in presence and absence of planning using SDM-Genomic-Datasets. In ad-
dition to the six configurations of mapping assertions, i.e., Conf1, Conf2, Conf3,
Conf4, Conf5, and Conf6, we consider an additional configuration consisting of the
union of all them. We refer to it as AllTogether. As illustrated in Figure 12.1, in the
case of having referenced-source role mapping assertions (i.e., Conf3 and Conf4),
neither of the two engines, RMLMapper and RocketRML, is able to complete the ex-
ecution before the timeout. As observed in Figure 12.1, applying planning in simple
cases like Conf1, Conf2, and Conf3 with low data duplicate rates does not show a
considerable impact on the performance.

Conversely, in complex cases such as Conf6 which include several multi-source role
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mapping assertions, execution time is reduced significantly exploiting planning. Un-
fortunately, both RMLMapper and RocketRML lack efficient implementations of
the operators that are required to execute referenced-source role mapping assertions.
Therefore, the two mentioned engines are unable to finish the execution of Conf3
and Conf4 before the timeout (i.e., 5 hours). The results in Figure 12.1 also sug-
gest that with the growth of duplicate data rate, the benefits of using the proposed
planning techniques also increased.

Percentage of Duplicates: 25%
Size Engine Conf7 Conf8 Conf9

Original Optimized % Savings Original Optimized % Savings Original Optimized % Savings

10k
SDM-RDFizer 3.91 sec 5.04 sec -28.90 % 5.59 sec 6.54 sec -16.99 % 10.7 sec 6.47 sec 39.53%
RMLMapper 47.43 sec 36.69 sec 22.64 % 140.27 sec 43.93 sec 68.68 % 180.85 sec 43.25 sec 76.09 %
Morph-KGC 1.81 sec 3.55 sec -96.13% 1.79 sec 4.22 sec -135.75 % 2.28 sec 5.2 sec -128.07 %

100k
SDM-RDFizer 21.14 sec 16.88 sec 20.15 % 99.88 sec 51.11 sec 48.82 % 105.72 sec 44.97 sec 57.46 %
RMLMapper 3205.37 sec 2628.13 sec 18.01 % 11961.81 sec 3901.14 sec 67.38 % 12593.16 sec 3401.17 sec 72.99 %
Morph-KGC 20.4 sec 19.35 sec 5.14 % 43.87 sec 29.38 sec 33.02 % 42.43 sec 30.84 sec 27.31 %

1M
SDM-RDFizer 177.35 sec 124.08 sec 30.03 % 1656.29 sec 607.06 sec 63.34 % 1769.29 sec 685.22 sec 61.27 %
RMLMapper TimeOut TimeOut - TimeOut TimeOut - TimeOut TimeOut -
Morph-KGC 1532.94 sec 1224.37 sec 20.13 % 3369.11 sec 2154.92 sec 36.03 % 3329.16 sec 2071.63 sec 37.77 %

Percentage of Duplicates: 75%
Size Engine Conf7 Conf8 Conf9

Original Optimized %Savings Original Optimized %Savings Original Optimized %Savings

10k
SDM-RDFizer 3.6 sec 4.89 sec -35.83 % 4.44 sec 5.44 sec -22.52 % 8.35 sec 5.85 sec 29.94 %
RMLMapper 38.82 sec 35.41 sec 8.78 % 133.96 sec 47.01 sec 64.90 % 173.08 sec 47.64 sec 72.47 %
Morph-KGC 2.15 sec 4.01 sec -86.51% 2.11 sec 4.59 sec -117.53% 2.93 sec 5.33 sec -81.91%

100k
SDM-RDFizer 19.72 sec 16.16 sec 18.05% 70.5 sec 31.06 sec 55.94% 66.15 sec 29.97 sec 54.69%
RMLMapper 3203.19 sec 2672.59 sec 16.56% 12669.84 sec 3861.29 sec 69.52% 16541.84 sec 3985.06 sec 75.90%
Morph-KGC 23.53 sec 22.21 sec 5.60% 46.35 sec 35.7 sec 22.97% 48.13 sec 35.68 sec 25.86%

1M
SDM-RDFizer 174.11 sec 123.77 sec 28.91% 983.53 sec 402.59 sec 59.06% 1252.27 sec 516.99 sec 58.71%
RMLMapper TimeOut TimeOut - TimeOut TimeOut - TimeOut TimeOut -
Morph-KGC 1628.69 sec 1330.01 sec 18.33% 3338.93 sec 2229.78 sec 33.21% 3641.57 sec 2200.08 sec 39.58%

Table 12.1: SDM-Genomic-Datasets Complex Test Cases. Duplicate rates are
25% and 75%; Highest Percentage of Savings are highlighted in bold. Lowest Per-
centage of Savings are underlined. The proposed planning and execution techniques
are able to enhance the performance of RMLMapper and speed up execution time by
up to 76.08%; even in the cases, where RMLMapper timed out, the proposed tech-
niques empower RMLMapper to produce intermediate results. In case of small data
sets (e.g., 10K), the proposed techniques may produce overhead in SDM-RDFizer
and Morph-KGC (e.g., Conf7 and Conf8).

Complex Mapping Assertions

This experiment aims at assessing the effect of the complex mapping assertions on the
execution time during the KG creation process. In these experiments, RocketRML
is replaced by Morph-KGC since RocketRML is unable to execute the multi-source
mapping assertions that composed the Conf7, Conf8, and Conf9.
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Chapter 12. Evaluating Planner

Figure 12.2: Efficiency Planning For Complex Cases with 25% dupli-
cate rate. The effects of proposed planning techniques over the SDM-Genomic-
Datasets with 25% duplicate rate over Conf7, Conf8, and Conf9. SDM-RDFizer
v3.6+Planning, RMLMapper+Planning, Morph-KGC+Planning

Figures 12.2 and 12.3 report on execution time (log scale) and Table 12.1 presents
the specific values of each execution. As observed, the RMLMapper performance
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Figure 12.3: Efficiency Planning For Complex Cases with 75% dupli-
cate rate. The effects of proposed planning techniques over the SDM-Genomic-
Datasets with 75% duplicate rate over Conf7, Conf8, and Conf9. SDM-RDFizer
v3.6+Planning, RMLMapper+Planning, Morph-KGC+Planning

is improved in Conf7, Conf8, and Conf9 even in data sources of small size, i.e.,
10k. In the data source of the size 10k, there is 22.64% reduction of execution time
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for Conf7 with 25% duplicate rate and 8.78% reduction with 75% duplicate rate,
68.68% reduction for Conf8 with 25% duplicate rate and 64.9% reduction with 75%
duplicate rate, and 76.09% reduction for Conf9 with 25% duplicate rate and 72.47%
reduction with 75% duplicate rate. For 100k, there is a 18.01% reduction of execution
time for Conf7 with 25% duplicate rate and 16.56% reduction with 75% duplicate
rate, a 67.38% reduction for Conf8 with 25% duplicate rate and 69.52% reduction
with 75% duplicate rate, and a 72.99% reduction for Conf9 with 25% duplicate rate
and 75.90% reduction with 75% duplicate rate.
The RMLMapper timed out after 5 hours with both methods when executing the 1M
data sources with all three mappings with duplicate rates. This can be attributed to
how the execution of the join is implemented in the RMLMapper and the size of the
data. But with the planned execution, it could generate at least a portion of the KG
for each mapping. For Conf7, Conf8, and Conf9, respectively, 32.65%, 24.82%,
and 28.69% of the KG are generated.
For the SDM-RDFizer and Morph-KGC, there was overhead when generating the KG
for Conf7 and Conf8 with 10k. This can be attributed to the fact that both the
SDM-RDFizer and Morph-KGC already have optimization techniques implemented.
Combining the optimization techniques and the physical plan causes the overhead in
cases with small data sources, i.e., 10k. While for Conf9, there is a 39.53% reduction
with 25% duplicate rate and a 29.94% reduction with 75% duplicate rate for the
SDM-RDFizer when using the planned execution. There are savings of 100k and 1M
when using the planned execution for both engines. In particular, Conf9 presents
the highest savings. For 100k, there is a 57.46% reduction with 25% duplicate rate
and a 54.69% reduction with 75% duplicate rate for the SDM-RDFizer and a 27.31%
reduction with 25% duplicate rate and a 25.86% reduction with 75% duplicate rate
for Morph-KGC.
For 1M, there is a 61.27% reduction with 25% duplicate rate and a 58.71% reduction
with 75% duplicate rate for the SDM-RDFizer and a 37.77% reduction with 25%
duplicate rate and a 39.58% reduction with 75% duplicate rate for Morph-KGC. This
increase in savings is related to the complexity of the mapping; higher complexity
causes higher savings.
In conclusion, applying the proposed planning techniques reduces the execution time,
independent of the engine by which they are adopted. However, applying these
techniques in engines such as SDM-RDFizer and Morph-KGC, which already perform
optimization techniques, may cause an overhead. Specifically, in the case of having
small size data sources or less complex mapping assertions, the cost of planning
in addition to the other optimization techniques implemented in the engine can be
higher than the savings. Like any optimization technique, there is a trade-off that
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can be estimated based on the provided data integration system. The higher the
complexity of the mapping assertions and dataset size, the higher the execution time
improvement.

Results Summary

Answer to RQ1. There exist configurations of data integration systems where
the proposed planning techniques improve the performance of any state-of-the-art
engines. The experimental results provide insights on the cases where planning im-
proves the KG creation frameworks in contrast to the ones that it may cause negative
impact. E.g., in case of having small data sources or simple mapping assertions, the
execution times of SDM-RDFizer and Morph-KGC are lower ignoring the planning
of the mapping assertions. However, it is important to note that execution planning
empowers state-of-the-art engines without continuous behavior to generate a partial
KG output. In other words, the generated plans enable some engines to produce
outputs instead of timing out or running out of memory.

Answer to RQ2. Attribute mapping assertion presents the shortest execution time
of all the types of mapping assertion since they represent a simple projection of the
raw data. The execution time of a multi-source role mapping assertion depends on
the size of the data sources and the number of values associated with them. The
execution time of referenced-source role mapping assertions depends on the size of
the data source and the data management techniques implemented for each engine.
RMLMapper and RocketRML execute the mentioned operation as a Cartesian prod-
uct, causing the execution time to grow exponentially.

12.1 Summary

In this chapter, we empirically evaluate the execution planning techniques proposed
in Chapter 6. The empirical evaluation of the proposed methods empowers existing
RML-compliant engines and enables them to scale to complex situations. The results
we reported here put into perspective the need for specialized data management
methods for scaling up KG creation to complex data integration systems present in
real-world applications. Albeit efficiently defined, execution planning may be costly
and generate overhead, which negatively impacts engine behavior in simple cases.
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Chapter 13

Evaluating EABlock

In this chapter we aim to empirically assess the performance of the EABlock which
contributed to RQ2. Considering the research question answered in Chapter 7 by
proposing EABlock, in this chapter we evaluate the performance of our proposed
solution. The empirical studies conducted in this chapter are reported in our publi-
cation [42]. This experimental study is guided by the following research questions:

RQ1) What is the impact of applying EABlock in KG creation in terms of
execution time?
RQ2) How does applying EABlock in the process of KG creation impact the
quality of the result KG?

Setups. In these experiments, we rely on an API of Falcon38 for that provides a
filtered subset of the background knowledge [57] omitting the resources that are not
related to the biomedical domain. A list of related resource types is utilized for
filtering the background knowledge. The list contains the following resource types:
Chemicals & Drugs, Anatomy, Disorders, Living Beings, Organizations, Physiology,
and Genes & Molecular Sequences. Applying this filtering to the background knowl-
edge of Falcon reduces the ambiguity among the resources in the EL task and clears
the noise that can be generated by irrelevant resources.

13.1 EABlock Efficiency- RQ1

To evaluate how the performance of a KG creation pipeline may be impacted ap-
plying EABlock, we set up 24 KG creation pipelines in overall. Experiments are

38https://labs.tib.eu/sdm/biofalcon/
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13.1. EABlock Efficiency- RQ1

(a) The performance of a KG creation pipeline
applying RocketRML.

(b) The performance of a KG creation pipeline
applying SDM-RDFizer.

Figure 13.1: Efficiency. The impact of using EABlock in KG creation pipelines ap-
plying two different RML-compliant engines. Baseline corresponds to the execution
of entity alignment in a pre-processing stage, while EABlock enables the specification
of this process in the RML mapping rules. As observed, EABlock reduces the execu-
tion time of KG creation pipelines that involve entity alignment tasks in comparison
to the application of the same functions but during a pre-processing stage.
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grouped as Baseline or EABlock ; Baseline corresponds to the pipelines where exe-
cution of EA is in a pre-processing stage, while EABlock represent the KG creation
pipelines in which EABlock enables the specification of EA in the RML mapping
rules. Experiments are grouped into six categories, each category utilizing a dif-
ferent DE, i.e., all the experiments in one category have the same DE. To avoid
any bias caused by the techniques applied in the development of the state-of-the-art
engines, we repeat the same experiments by two different available engines including
RocketRML 39 and SDM-RDFizer 40. Accordingly, the experiments in one category
differs in a. the applied RML-compliant engine and b. whether EABlock is used as
part of the pipeline or not. Testbeds. Considering the parameters that affect the
performance of KG creation pipelines [12], we define three different sets of mapping
rules, which are distinguished based on the complexity of the rr:TriplesMaps that
refers to the EABlock transformation functions. We manipulate the complexity of
the mentioned rules by having different number of rr:RefObjectMaps, i.e., zero, one,
or two rr:RefObjectMap (referred to as noROM, 1ROM, and 2ROM respectively, in
Figure 13.1). In an attempt to prevent possible effects of data volume on the results
of the experiments, we generate two relatively small datasets including 1,000 and
2,000 randomly selected records. Each dataset comprises 22 attributes, two of which
are referenced in the mapping rules.

Setups. We define two KG creation pipelines, Baseline and EABlock, which ex-
ecute the same entity alignment tasks and produce the same KG. The Baseline
pipeline evaluates RML mapping rules while the entity alignment is performed in a
pre-processing step. Contrary, the EABlock pipeline encapsulates these tasks in the
EABlock functions that are called in the RML mapping rules. Metrics. Execution
time: Elapsed time spent by the whole pipeline to complete the creation of a KG; it
is measured as the absolute wall-clock system time as reported by the time command
of the Linux operating system. The experiments were run in an Intel(R) Xeon(R)
equipped with a CPU E5-2603 v3 @ 1.60GHz 20 cores, 64GB memory and with the
O.S. Ubuntu 16.04LTS.

Results. Figure 13.1 illustrates the performance of two approaches of KG creations
i.e., Baseline which perform the EA as pre-processing, and EABlock which enables
the specification of EA as part of the RML mapping rules. As it can be observed in
Figure 13.1, independent of the applied RML-compliant engine utilizing EABlock in
all KG pipelines reduces the overall execution time of the KG creation. Figure 13.1

39https://github.com/semantifyit/RocketRML
40https://github.com/SDM-TIB/SDM-RDFizer
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demonstrates that performing EA as pre-processing is more expensive than using
EABlock as part of the main pipeline of KG creations. It can also be observed that
in case of having more complex mapping rules, the impact of EABlock in decreasing
the execution time is even more considerable and significant.

(a) Directed Labelled Graph
Gb

(b) Directed Labelled Graph
Geablock

Analysis EABlock (Geablock) Baseline (Gb)
Number of nodes 11 11
Number of edges 39 10
Avg. number of neighbors 3.091 1.273
Network diameter 2 1
Clustering coefficient 0.184 0.098
Network density 0.155 0.064
Connected components 1 6

(c) Graph metrics for Gb

and Geablock

Figure 13.2: Connectivity Analysis. Baseline and EABlock pipelines generate
KGb and KGeablock, respectively. KGb and KGeablock have the same classes and
entities. However, KGb does not include the entity alignments to UMLS, Wikidata,
and DBpedia added to KGeablock. Gb and Geablock are directed labelled graphs that
provide an aggregated representation of KGb and KGeablock. The values of the graph
metrics corroborate that connectivity is increased by entity alignment performed by
the EABlock pipeline.

13.2 EABlock Effectiveness - RQ2

We define two pipelines: Baseline and EABlock ; the Baseline pipeline includes no
entity alignment task. The aim is to evaluate the connectivity in a KG created using
the EABlock pipeline and assess RQ2. Testbeds. For this group of experiments we
utilize the TestBed 4, described in Chapter 10. Analysis. Let KGb and KGeablock

be the KGs created by the Baseline and EABlock pipelines, respectively. KGeablock

comprises 10,339,870 RDF triples, whileKGb has 10,200,209. KGb andKGeablock are
used to create two labelled directed graphs Gb = (V,Eb) and Geablock = (V,Eeablock)
and traditional network analysis methods are applied to determine connectivity. Ver-
tices in V keeps the classes inKGb andKGeablock with at least one resource; KGb and
KGeablock have the same resources and literals. A labelled directed edge e = (q, p, k)
belongs to Eb (resp. to Eeablock) if there are classes Q and K in V , and q and k are
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instances of Q and K in KGb (resp., KGeablock) and the RDF triple (qpk) belongs
to KGb (resp., KGeablock). Gb and Geablock provide an aggregated representation of
KGb and KGeablock. Figure 13.2 depicts Gb and Geablock; Geablock is composed of 11
vertices and 39 directed edges. While, Gb comprises 11 vertices connected by only
10 edges. Table 13.2c compares Gb and Geablock in terms of graph metrics generated
by Cytoscape41. Metrics. a. Average number of neighbors indicates the average
connectivity of a vertex or node in a graph. b. Network diameter measures the
shortest path that connects the two most distant nodes in a graph. c. Clustering co-
efficient measures the tendency of nodes who share the same connections in a graph
to become connected. If a neighborhood is fully connected, the clustering coefficient
is 1.0 while a value close to 0.0 means that there is no connection in the neighbor-
hood. d. Network density measures the portion of potential edges in a graph that
are actually edges; a value close to 1.0 indicates that the graph is fully connected. e.
The number of connected components indicates the number of subgraphs composed
of vertices connected by at least one path. Results. The results reported in Fig-
ure 13.2c indicate the average number of neighbors in KGeablock comprises entities
that are more connected. Moreover, the clustering coefficient is relatively low, but the
CUIs annotations and links to DBpedia and Wikidata included in KGeablock, increase
the connectivity in the neighborhoods of Geablock. In particular, eablock:Patient,
eablock:DrugDisorder, eablock:Annotation, eablock:Disea- se, wiki:Q12136,
wiki:Q11173, and dbo:Drug have a neighborhood connectivity of 8 in Geablock.
On the other hand, in Gb, the neighborhood connectivity of eablock:Annotation,
eablock:Di- sease, wiki:Q12136, wiki:Q11173, and dbo:Drug is 0, and eabloc-
k:Patient and eablock:DrugDisorderInteraction is 3. These results corroborate
that connectivity is enhanced as a result of the entity alignment implemented by the
EABlock functions.

13.3 Summary

In this chapter, we empirically evaluated EABlock, an approach to solve entity align-
ment problems presented in Chapter 7. We observed that with an eager evaluation
strategy and efficient translation of mapping rules into function-free rules, applying
EABlock ensures not to sacrifice efficiency at the cost of reproducibility. The ob-
served experimental results show the benefits of grounding solutions for KG creation
in well-established problems like NER, NL, and data integration systems.

41https://cytoscape.org/
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Chapter 14

Evaluating Dragoman

In Chapter 9, we propose a solution to the RQ3. In this chapter, we evaluate the
performance of our proposed solution. We empirically prove that the proposed tech-
niques ensure the efficiency of materialized data integration systems. We report two
groups of experiments including preliminary and the extended empirical studies. To
the best of our knowledge, there is no experimental study focusing on the perfor-
mance of declarative knowledge graph creation frameworks that include user-defined
functions. That leads us to perform the preliminary experimental study in order
to gain some insight into the specific parameters that may impact such pipelines.
Considering the observations made during the preliminary experiments, we set up
the extended empirical study as the extended version involving more influential pa-
rameters or suspected influential ones. The experiments described in this chapter
are partially reported in [41] and under review in our very latest paper 42.

14.1 Preliminary Experimental Study

The aim of this preliminary experimental study is to answer the following questions
considering the first in-progress version of Dragoman, named FunMap43.

RQ1) What is the impact of data duplication rate on the execution time of a
knowledge graph creation approach?
RQ2) What is the impact of different types of complexity over transformation
functions during a knowledge graph creation process?

42https://www.semantic-web-journal.net/content/dragoman-efficiently-evaluating-declarative-mapping-languages-over-frameworks-knowledge
43https://doi.org/10.5281/zenodo.3993657
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RQ3) How does the repetition of the same user-defined function in different
mapping assertions affect the existing RML engines?
RQ4) What is the impact of relational data sources in the knowledge graph
creation process?

All the resources used to perform this evaluation are available in our GitHub repos-
itory44. The testbeds that we apply in the preliminary study are TestBed 2, Group
i which are explained in detail in Subsection 10.4.2. In addition to these testbeds,
we also validate FunMap in the case of large-sized data, with a dataset following of
random collection of 4,000,000 records and a size of about 1.3GB.

Engines. The baselines of our study are three different open source RML-compliant
engines that are able to execute RML+FnO mappings and have been extensively uti-
lized in multiple applications and tested by the community: SDM-RDFizer v3.0 [36],
RMLMapper45 v4.7, and RocketRML46 v1.1. 47. In order to evaluate the impact
of transformation rules, we implement the first version of FunMap on top of the
aforementioned engines with source-based projection as an optional parameter. We
refer to the approach which applies FunMap excluding source-based projection as
FunMap−48. We created a docker image per tested engine for reproducibility49.

Metrics. Execution time: Elapsed time spent by an engine to complete the creation
of a knowledge graph and also counts FunMap pre-processing; it is measured as the
absolute wall-clock system time as reported by the time command of the Linux op-
erating system. Each experiment was executed five times and average is reported.
The experiments were executed on an Ubuntu 16.04 machine with Intel(R) Xeon(R)
Platinum 8160, CPU 2.10GHz and 700Gb RAM.

44https://github.com/SDM-TIB/FunMap
45https://github.com/RMLio/rmlmapper-java
46https://github.com/semantifyit/RocketRML/
47We name them SDM-RDFizer**(RML+FnO), RMLMapper**(RML+FnO), and Rock-

etRML**(RML+FnO).
48We name these combined engines as follows: a) FunMap: FunMap+SDM-RDFizer,

FunMap+RMLMapper, and FunMap+RocketRML; b) FunMap−: FunMap−+SDM-RDFizer,
FunMap−+RMLMapper, and FunMap−+RocketRML.

49Our paper has been accepted as the “fully-reproduced paper” in ISWC 2020 conference.
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14.1.1 Experimental setups.

Based on our research questions, we set up overall 198 experiments as the combina-
tions of the following scenarios. We create two datasets from our baseline with 25%
and 75% duplicates which means in the 25% duplicate dataset, 25% and in the 75%
duplicate dataset, 75% of the records are duplicated. Additionally, two functions
with different levels of complexity are created. We describe the complexity level of
the functions based on the number of required input attributes and operations to be
performed. Accordingly, “simple” function is defined to receive one input attribute
and perform one operation, while a “complex” function receives two input attributes
and completes five operations. In total, we create eight mapping files including four,
six, eight, and ten TriplesMap and one FunctionMap to be either “simple” or “com-
plex”. Additionally, six experiments using 75% duplicate datasets of 20,000 and
4,000,000 records and a mapping file including ten complex functions are set up in
order to be run over a relational database (RDB) implemented in MySQL 8.0 50.

14.1.2 Observations and Results

In this section, we describe the outcomes of the preliminary experimental evalua-
tions. Figure 14.1 reports on the execution time of the different testbeds in which
the functions are considered to be “simple” whereas Figure 14.2 shows the experi-
ments involving “complex” functions. Both figures represent the total execution time
for constructing the knowledge graph applying selected engines (i.e., SDM-RDFizer,
RMLMapper, and RocketRML) in three different configurations: a) the current ver-
sion of the engine that is able to directly interpret RML+FnO mappings in the
engine (e.g., RMLMapper**(RML+FnO)); b) FunMap− in conjunction with the en-
gine (e.g., FunMap−+RMLMapper); and c) FunMap together with the engine (e.g.,
FunMap+RMLMapper). In the case of all the configurations of RocketRML, we only
provide the results for the execution of simple functions because the engine does not
execute joins with multiple conditions51 correctly, hence, the proposed optimizations
cannot be applied. For the rest of the experiments, we have verified that the results
are the same for all the approaches in terms of cardinality and correctness.
The results obtained by the application of SDM-RDFizer with the repetition of sim-
ple functions (Figures 14.1a and 14.1b) reflect an improvement of the execution
time when FunMap is applied in the process. With the growth of the number of
duplicates and repeated functions, the difference between the performance of SDM-

50https://www.mysql.com/
51Check an example in the zip file of the supplementary material.

119



Chapter 14. Evaluating Dragoman

(a) SDM-RDFizer - 25% of duplicates (b) SDM-RDFizer - 75% of duplicates

(c) RMLMapper - 25% of duplicates (d) RMLMapper - 75% of duplicates

(e) RocketRML - 25% of duplicates (f) RocketRML - 75% of duplicates

Figure 14.1: Total execution time of experiments with simple functions
25-75% of duplicates. SDM-RDFizer, RMLMapper and RocketRML executing
simple functions in RML+FnO mappings and with FunMap and FunMap−.

RDFizer**(RML+FnO) and FunMap+SDM-RDFizer increases. Using this engine,
FunMap− shows the same behavior as FunMap, however, in the case of having a
large number of duplicates and a few repeated functions FunMap− does not improve
the performance of SDM-RDFizer**(RML+FnO). In the case of using RMLMap-
per (Figures 14.1c and 14.1d), we observe that the results obtained together with
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(a) SDM-RDFizer - 25% of duplicates (b) SDM-RDFizer - 75% of duplicates

(c) RMLMapper - 25% of duplicates (d) RMLMapper - 75% of duplicates

Figure 14.2: Total execution time for complex functions 25-75% of dupli-
cates. SDM-RDFizer and RMLMapper executing complex functions in RML+FnO
mappings and with FunMap and FunMap−.

FunMap− (i.e., DTR1 optimization) do not show better performance than RMLMap-
per**(RML+FnO). DTR1 which only focuses on transforming functions, delegates
the removal of the duplicates to the engine which is not accomplished efficiently
by RMLMapper. However, in FunMap+RMLMapper, which includes DTR1 and
DTR2 optimizations, duplicates are removed before the execution of the RML map-
pings and leading to obtaining results that clearly show improvements with respect
to the baseline. In the same manner, as the SDM-RDFizer, the number of repetitions
of the functions affects the execution time of the RMLMapper**(RML+FnO), while
FunMap maintains similar execution times. Finally, RocketRML (Figures 14.1e and
14.1f) seems not to be affected by the number of duplicates over the input data, ob-
taining similar execution times for 25% and 75% rate for RocketRML**(RML+FnO).
However, the number of repetitions over functions impacts the performance of Rock-
etRML**(RML+FnO), increasing the total execution time. The incorporation of
DTR1 (i.e., FunMap−+RocketRML) and DTR2 (i.e., FunMap + RocketRML) en-
hances the performance and scalability during the construction of the knowledge
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graph, obtaining a similar behavior as the other two tested engines.

The effect of function complexity over SDM-RDFizer can be observed in Figures 14.2a
and 14.2b. Whenever the number of repetitions is low (4-6), the join with multiple
conditions affects FunMap− + SDM-RDFizer, obtaining worse results than SDM-
RDFizer**(RML+FnO). However, if repetitions increase (8-10), DTR1 empowers
SDM-RDFizer**(RML+FnO) due the reduction of repeated operations during the
evaluation of the mappings. Conversely, FunMap+SDM-RDFizer exhibits better re-
sults than SDM-RDFizer**(RML+FnO) in all the testbeds. Finally, the behavior
of RMLMapper – when it has to execute complex transformation functions (Fig-
ures 14.2c and 14.2d)– is affected in terms of execution time for the configuration
FunMap−+RMLMapper in comparison to the case of simple functions. As similar
as SDM-RDFizer, the join with several conditions is impacting the performance.
However, together with data transformation optimizations, FunMap+RMLMapper
outperforms the baseline.

The experimental results on RDBs show even more significant improvement in the
performance of both RMLMapper and SDM-RDFizer in the presence of FunMap. In
FunMap+RMLMapper, applying joins in the SQL queries that define the logicalSources
instead of using joinConditions reduces execution time by up to a factor of 18.
These results evidence that joinConditions are not efficiently implemented by
RMLMapper, and explain why FunMap+RMLMapper is showing less improvement
compared to FunMap+SDM-RDFizer in Figure 14.2. Moreover, FunMap+SDM-
RDFizer successfully performs on the large-sized relational dataset of 1.3GB in
5,670.67 seconds, while SDM-RDFizer**(RML+FnO) cannot create the KG and
times out after 10,000 seconds.

In overall, we observe that the configurations that interpret RML+FnO mappings di-
rectly are affected by the repetition of the functions and the degree of data duplicates,
i.e., execution time monotonically increases with the number of functions and data
duplication degree. In contrast, the incorporation of FunMap into the engines shows
less fluctuated behavior when the data duplication rate increases. Additionally, the
studied engines handle the repetition of the functions during the construction of
the knowledge graph thanks to the pushing down of the execution of the functions
directly over the dataset. In summary, the observed results indicate that the Fun-
Map heuristics improve the performance of data integration systems and generate
solutions to the problem of scaled-up knowledge graph construction. The effective-
ness of the proposed transformations has been empirically demonstrated on various
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RML+FnO and RML-compliant engines. However, we observe that there are cases
where the application of DTR1 alone is not enough (i.e., FunMap−), being required
the applications of all the transformations (i.e., DTRs and MTRs) to provide an
effective solution.

14.2 Extended Experimental Study

Observing the results of the preliminary experiments, we set up the extended ex-
perimental study, i.e., the extended study to evaluate Dragoman. To assess the
performance of Dragoman we aim to answer the following questions:

RQ1) What is the impact of applying Dragoman in a knowledge graph creation
pipeline in terms of execution time?
RQ2) What parameters illustrate the advantages of applying Dragoman in
knowledge graph creation pipelines?

To answer the research questions, we set up 220 different pipelines of knowledge
graph creation, half of which deploy Dragoman to perform the tasks of user-defined
functions evaluation and data integration system transformation, following an eager
evaluation. While the rest of the pipelines rely on the same engines which generate
the RDF triples to also perform the task of function evaluations, based on a lazy
evaluation strategy. With the mentioned comparison, we aim to observe whether
the execution time required to generate the same knowledge graph reduces once
Dragoman is applied in the pipeline.

14.2.1 Implementation

Dragoman is implemented in Python3. As a proof of concept, the implementation
includes the transformation of two data source formats: CSV files and relational
databases (RDB). It should be noted that there are small differences in implement-
ing the transformation rules between CSV and RDB. As explained previously, the
data source resulting from the concept-based transformation is the join between two
data sources. In the case of having data sources as CSV files, Dragoman stores the
materialization of the joins between the sources in CSV files. However, in the case
of having the data sources as relational tables, instead of materializing the joins, we
add the SQL join queries in the mapping assertions enabling real-time materializa-
tion. Dragoman is open-source and licensed under Apache License 2.0. It is publicly
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(a) 10k records - NonInjSurj (b) 100k records - NonInjSurj (c) 1M records - NonInjSurj

(d) 10k records - NonInjSurj (e) 100k records - NonInjSurj (f) 1M records - NonInjSurj

Figure 14.3:

accessible through a GitHub repository52 and Zenodo53.

Functions. As we explained earlier, the same experiments are repeated twice to
compare the execution time of different knowledge graph creation pipelines in the
presence and absence of Dragoman. In other words, we create the same knowledge
graph, once using Dragoman to perform the evaluation of the functions and then
another engine to generate the RDF triples, and the second time, only using an
engine to perform both tasks of the function evaluation and RDF triples generation.
In that regard, we can only use RML-compliant engines that are capable of executing
user-defined functions. We also consider the empirical study conducted in [36]
and [41] to only select the engines that are efficient in executing multi-sources role
mapping assertions, i.e., SDM-RDFizer54 and RocketRML55 56. Furthermore, the

52https://github.com/SDM-TIB/Dragoman
53https://doi.org/10.5281/zenodo.6418124
54https://github.com/SDM-TIB/SDM-RDFizer
55https://github.com/semantifyit/RocketRML
56RMLMapper is another engine capable of executing functions, while, it is inefficient executing

multi-sources role mapping assertions according to the experimental results reported in [36, 41]
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implementation of test functions is required to be added to the chosen engines in
order to equip them with the evaluation of these functions. Following the languages
in which these engines are developed, we implement our test functions in SDM-
RDFizer using Python and in RocketRML using Javascript.

Table 14.1

Experiments Groups
Studied Parameters Efficiency Complex Composite

Joins Functions
10K ✗ ✗ ✗

Par1: Data Size 100K ✗ ✗ ✗

Data 1M ✗ ✗ ✗

Source Low ✗ ✗

Par2: Selectivity Medium ✗ ✗

High ✗ ✗

2 ✗

Par3: # of appearances of the same 3 ✗

user-defined functions 4 ✗

5 ✗

Par4: Type of mapping assertions that Concept Mapping Assertion ✗ ✗

Mapping include user-defined functions Role Mapping Assertion ✗ ✗

Assertion 1 ✗

Par5: The overall # of role mapping assertions 3 ✗

5 ✗

Par6: Star Joins Star joins shaped as the result of Dragoman (DIS’) ✗ ✗

Star joins exist in the original DIS ✗

Par7: Chain Joins 1 ✗

Par8: Types of user-defined functions Non-Injective Surjective ✗

Function Bijective ✗

Par9: Composite user-defined functions a(b(c(.))) ✗

14.2.2 Experimental Setups

Considering the number of parameters required to be studied, the number of control
variables for each experiment is also significant. To better observe and understand,
we categorize the experiments into three groups according to the three most challeng-
ing parameters that have not been considered in the similar studies [41] i.e., function
type, composite function, and complex multi-sources role mapping assertions.

Setups. To answer RQ1, we define the process of knowledge graph creation as the
combination of two tasks, including the execution of the functions and the translation
of the mapping rules into RDF triples. Therefore, we execute the knowledge graph
creation pipeline twice for each experiment setup. The first execution considers the
same RML-compliant engine to perform both the tasks of the function execution and
RDF triples generation. However, in the second attempt, the tasks of executing the
functions and providing function-free mapping assertions are assigned to Dragoman,
while the generation of the RDF triples is performed by an RML-compliant engine
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(a) 10k records - Bijective (b) 100k records - Bijective (c) 1M records - Bijective

(d) 10k records - Bijective (e) 100k records - Bijective (f) 1M records - Bijective

Figure 14.4:

according to the transferred DIS provided by Dragoman.

Metrics. Execution time: Elapsed time spent by the whole pipeline, including func-
tion execution to complete the creation of a Knowledge graph; it is measured as
the absolute wall-clock system time as reported by the time command of the Linux
operating system. The timeout is set to be five hours. The experiments were run in
an Intel(R) Xeon(R) equipped with a CPU E5-2603 v3 @ 1.60GHz 20 cores, 64 G.B.
memory, and the O.S. Ubuntu 16.04LTS.

Datasets and Mapping Assertions. For these experiments, we rely on Testbed
2, Group ii.

14.2.3 Efficiency

We set up 144 experiments in this category to study four different parameters, in-
cluding Par1, Par3, Par5, and Par8. To avoid any possible bias generated by the
engines translating mapping assertion engines, we evaluate the same experiments in
this category with two recognized RML-compliant engines that support functions
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execution, i.e., RocketRML v1.12.057 and SDM-RDFizer v4.058. In other words, we
set up 72 different DIS and observed the creation of knowledge graphs from each DIS
twice, using one of the two engines. It should be noted that in choosing the RML-
compliant engines that support function execution, our criteria is the performance of
the engines translating multi-sources role mapping assertions [36]; the two selected
engines have competitive performance translating multi-sources role mapping asser-
tions.

Observations and Results. The results of this group of experiments using the
non-injective surjective function are visualized in Figure 14.3 while the results of the
same experiments using the bijective function type are summarized in Figure 14.4.
Figure 14.3a, Figure 14.3b, Figure 14.3c, Figure 14.4a, Figure 14.4b, and Figure 14.4c
illustrate - in purple - the results of executing the set-up knowledge graph pipelines
using SDM-RDFizer as the RML-compliant, while, the other six subfigures including
Figure 14.3d, Figure 14.3e, Figure 14.3f, Figure 14.4d, Figure 14.4e, and Figure 14.4f
present - in green - the results of executing the same pipelines applying RocketRML
as the RML-compliant engine. The lighter colored bars in all the sub-figures Fig-
ure 14.3 and Figure 14.4 show the results utilizing Dragoman for executing the func-
tions and transformation of the pipelines and applying the RML-compliant engine
for translating the output of Dragoman into the RDF knowledge graph. In contrast,
the darker colored bars in Figure 14.3 and Figure 14.4 represent the results of ex-
ecuting the whole knowledge graph creation pipeline, i.e., including the functions
evaluations, using the RML-compliant engines. The textured bars present the re-
sults of the experiments in which the engine is unable to generate the complete result.

Observations on Par1: Comparing the execution time required by the pipelines,
including Dragoman, with the same ones without applying Dragoman clearly shows
the advantages of utilizing Dragoman in the case of large-size data sources. In the
case of having small data sources, i.e., 10k, we observe no cost savings. This means
that the transformations performed by Dragoman add more overheads rather than
reducing the cost. However, in the case of 100k and 1M, we can observe significant
benefits in applying Dragoman. It should be noted that the results of the same ex-
periments differ when different RML-compliant engines are applied. This can be due
to the different algorithms and performances that engines have, which is out of the
scope of this empirical study.

57https://github.com/semantifyit/RocketRML
58https://github.com/SDM-TIB/SDM-RDFizer
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Observations on Par3 and Par5: Comparing the performances of the pipelines
with increasing numbers of the appearances of the same functions or numbers of role
mapping assertions suggests that applying Dragoman can improve the performance
significantly while the numbers increase. Nevertheless, applying Dragoman in the
pipelines with small numbers of Par3 or Par5 can increase the required execution
time.

Observations of Par8: In overall, we can observe in Figure 14.3 and Figure 14.4
that the results of the same experiments, i.e., the pipelines with the same values for
the Par1, Par3, and Par5, show the same patterns using different values for Par8.
In other words, these results do not support our hypothesis about the impact of the
type of functions on knowledge graph creation.

Complex Joins

The main focus of this category of experiments is to study the impact of Par6 and
Par7 in different experimental scenarios. Accordingly, these experiments can be di-
vided into two sub-categories; Chain Join studies the impact of Par7, and Star Join
focuses on Par6. Both categories study the impact of Par1 considering three differ-
ent data sizes, i.e., 10k, 100k, and 1 million records. However, they both consider
only one value for Par3, which is four appearances of the same user-defined function.
Chain Join. This group of experiments involves one chain join as the value of par7,
however, they adopt different values of Par2, i.e., low or 80%, medium or 50%, and
finally, high or 20% join selectivity. This setup aims to study the impact of chain
join in the presence of different selectivity rates. Star Join. In these experiments, we
focus on the Par6 parameter, a.k.a star join. Since star join is an expensive logical
operation for an engine, it is very important to be studied in the empirical evalua-
tion of any knowledge graph creation engine. According to the experimental study
by Iglesias et al. [37], SDM-RDFizer can perform star joins, which RocketRML fails
to do. Therefore, we utilize SDM-RDFizer in this group of experiments.

In overall, we set up nine knowledge graph creation pipelines composed of join stars;
we aim to observe the cost of executing functions using Dragoman in such expensive
pipelines. In these testbeds, three different values of Par2, i.e., low, medium, and
high join selectivity are considered. Note that in these nine testbeds, functions are
not repeated. Furthermore, in this group of experiments, we also study Par4 by
including the user-defined functions in the concept mapping assertion of the first
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(a) Join Chain (b) Star Join in Dragoman result

(c) Star Join in Original DIS - Simple Function(d) Star Join in Original DIS - Composite Func-
tion

Figure 14.5:

nine experiments, contrary to the previous experiments in which the same functions
appear as role mapping assertions.

Observations and Result. Figure 14.5a summarizes the results of the experiments
in the chain join category, while, Figure 14.5c illustrates the results of the experi-
ments in the star join category. Considering the wide range of execution time values
of these experiments, we visualize the results’ logarithm value for clarity.

Observations on Chain Join; Par1, Par2, and Par7: As it can be observed in
Figure 14.5a, applying Dragoman significantly improves all knowledge graph creation
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pipelines’ performance. Contrary to the previous group of experiments, i.e., Subsec-
tion 14.2.3, these experiments, including chain join, show improvement independent
of the size of the data sources. Another important observation to note is the impact
of join selectivity. Although the quantity of savings in experiments with different
join selectivity differs, the reduced time is considered in all the cases.

Observations on Star Join, Par1, Par2, Par4 and Par6: Similar to the results
obtained from chain join experiments, as it can be observed in Figure 14.5c, utilizing
Dragoman improves the performance of knowledge graph creation pipelines in all
the nine cases which include star joins in their original mapping assertions. In other
words, the only difference in the observed results of the setups with various values
for Par1 or Par2 is the quantity of the savings; the higher the data size or selectivity,
the greater the savings.

Composite Functions

Testbeds. In this group of experiments, we aim to study the impact of composite
user-defined functions in mapping assertions, i.e., Par9. To this end, we repeat the
same nine experiments of the first category of star join explained earlier. We repeat
these nine experiments explained in Section 14.2.3 with composite functions in the
form of A(B(C(.))).

Observation and Results. In addition to the results of the experiments with
simple functions illustrated in Figure 14.5c, the results of the same experiments with
composite functions can be observed in Figure 14.5d. Comparing Figure 14.5c and
Figure 14.5d, we can conclude that the complexity of a function in terms of being
composite has no significant impact on the overall execution time of the knowledge
graph creation pipeline.

14.2.4 Summarizing the Results

RQ1. The answer to this research question is studied in all three categories of the
experiments by dividing the knowledge graph creation process into two tasks. The
impact of performing the task of functions evaluation and transforming the DIS into
a function-free one by Dragoman is compared with the performance of two other
RML-compliant engines for the same tasks. The common observation among most
of the experiments shows that in the case of having a small data source, i.e., 10k, the
optimization performed by Dragoman costs more than the amount of saving that it
presents to the process of knowledge graph creation. In contrast, applying Dragoman
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in creating knowledge graphs from larger data sources, i.e., 100k and 1M, optimizes
the overall cost. The “complex multi-sources role mapping assertions” category of
the experiments is exempted from explained conclusions; they show savings even
with small datasets.
RQ2. Data size. As expected, based on similar studies, the data source size is an
important factor in deciding the application of Dragoman. It should not be inter-
preted that the size of the data source impacts the performance of the Dragoman, but
rather it impacts the number of optimization benefits that are brought by Drago-
man. Join selectivity. As expected, the results of the “complex multi-sources
role mapping assertions” illustrate that join selectivity is an effective parameter in
knowledge graph creation pipelines. In contrast, the results of the same experiments
which utilize Dragoman show no significant difference in the execution time between
data sources with various join selectivity. Mapping Assertions. As expected,
due to eager evaluation, Dragoman improves the execution time of knowledge graph
creation processes that involve repeating the same user-defined function in different
mapping assertions. In contrast, no specific impact on the overall performance of
Dragoman can be observed considering the parameter Par4, i.e., the type mapping
assertion that involves user-defined functions. The effect of the parameters Par6 and
Par7 are studied by the “complex multi-sources role mapping assertions” group of
experiments. The significant improvements observed in using Dragoman in these re-
sults position Dragoman as a requirement in any knowledge graph creation pipeline,
including functions and complex joins. Because even simple joins can be expensive,
providing optimization for executing complex joins and transforming the DIS, which
times out into an efficient one, show obvious use cases of Dragoman. Function
Parameters. It can be observed from the results of the first category of the experi-
ments, i.e., “function type”, that the type of the function has no obvious impact on
the overall execution time of knowledge graph creation pipelines. The result of the
“star join” experiments reveal the same conclusion for the “function composition”
parameter. Nonetheless, it should be noted that it also implies that the “function
composition” parameter has no impact on the performance of Dragoman.

14.3 Summary

In this chapter, we conduct experimental studies to investigate if utilizing Dragoman
to execute the user-defined functions and transforming the DIS into a function-free
one reduces the required execution time. As observed in the results, the application
of Dragoman in knowledge graph creation pipelines from large data sources can
reduce overall costs significantly; up to 75% savings. It is also discovered that with
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complex mapping assertions such as “star join”, utilizing Dragoman always decreases
knowledge graph creation costs, albeit with small data sources.
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Chapter 15

Applications

In this chapter we focus on answering the following question:

RQ5: How to overcome the challenges in applying materialized data integration
systems in real-world scenarios?

To contribute to the mentioned research question, we explain how we apply our pro-
posed techniques in four different real-world projects overcoming the existing chal-
lenges. We show why and how the optimization techniques proposed in this thesis
were required for succeeding in these projects with respect to the objectives and the
KPIs. As a proof of concept, we provide one generic use case in the context of lung
cancer pilots in EU H2020 funded personalized medicine project iASiS59, BigMedi-
lytics60, and CLARIFY 61. The content of this chapter is based on our collaborative
research that is published in [70, 73, 71, 56, 72, 73].

15.1 Motivating Example

Personalized medicine including personalized diagnosis, prognosis, and treatment de-
mands gaining broad insight into patients’ characteristics. For this purpose, patients’
data which can be scattered over a wide variety of sources is required to be integrated
and analyzed. More specifically, the analysis of the services visited the most by a
patient before a new diagnosis and the type of requested tests may uncover patterns

59https://project-iasis.eu/
60https://www.bigmedilytics.eu/
61https://www.clarify2020.eu/
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15.1. Motivating Example

A 53-year old  male patient with Non 
Squamous carcinoma of stage III. He 
is a non-smoker and non-positive for 
EGFR, ROS1, and ALK. He suffers 
from high cholesterol and takes 
Simvastatin. No relatives with 
cancer. His father, mother, and older 
brother died from heart attacks. He 
is prescribed with Paclitaxel

Medical images Liquid Biopsies Solid Biopsies
Clinical tests

(a) Electronic Health
Records

Drug Interactions Gene Mutations

Drug Side Effects

Nausea Bleeding

HeadacheHair Loss

Drug Resistance

(b) Impacts in Treatment Effec-
tiveness

Mutations 
Drug Resistance

Drugs
Drug Interactions
Drugs and 
Targets

Drug Side Effects

Scientific 
Publications

Drug-Protein 
Networks

Reactions, Proteins, 
Pathways

Drugs, Targets,
Pathways

Serum concentration of 
Simvastatin can be 
increased when 
combined with Paclitaxel.

(c) Biomedical Data Sources

Figure 15.1: Motivating Example. Heterogeneous sources of knowledge. (a) Un-
structured data sources, e.g., clinical notes, medical images, and clinical tests, encode
invaluable knowledge about a patient medical condition. (b) Factors impact on the
effectiveness of a treatment; they need to be identified to increase a patient survival
time. (c) Various biomedical repositories maintain knowledge collected by the sci-
entific community about facts that can contribute to the prescription of effective
treatments. Data sources range from structured (e.g, COSMIC), to unstructured
(e.g., PubMed); and short texts in structured data sources may encode also relevant
knowledge (e.g., drug interactions). Heterogeneity problems across sources need to
be solved for extracting the required knowledge.

that contribute to earlier disease detection and treatment effectiveness.

Figure 1.1 shows an exemplary set of data sources that are received from different
partners of the projects and are required to be integrated with a knowledge-driven
ecosystem. Electronic health records (EHRs) Figure 1.1 preserve the knowledge
about the conditions of a patient that need to be considered in order for effective
diagnosis and treatment prescriptions. Albeit informative, EHRs usually preserve
patient information in an unstructured way, e.g., textual notes, images, or genome
sequencing. Furthermore, EHRs may include incomplete and ambiguous statements
about the whole medical history of a patient. In consequence, knowledge extraction
techniques are required to mine and curate relevant information for an integral anal-
ysis of a patient, e.g., age, gender, life habits, mutations, diagnostics, treatments,
and familial antecedents.

In addition to evaluating information in EHRs, physicians depend on their experi-
ence or available sources of knowledge to predict potential adverse outcomes, e.g.,
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drug interactions, side-effect or resistance (Figure 15.1b). Diverse repositories and
databases make available crucial knowledge for the complete description of a pa-
tient’s condition and the potential outcome (Figure 15.1c). Nevertheless, sources
are autonomous and utilized diverse formats that range from unstructured scientific
publications in PubMed62 to dumps of structured data about cancer-related muta-
tions in COSMIC 63. To illustrate, the effect of the interactions between two drugs is
reported in DrugBank like short text, e.g., the effect of the interactions between Sim-
vastatin and Paclitaxel. In order to detect the facts that can impact the effectiveness
of a particular treatment, e.g., Paclitaxel, the physician will have to search through
these diverse data sources and identify the potential adverse events and interactions.
Data complexity issues like data volume and diversity impede an efficient integration
of the knowledge required to predict the outcomes of a specific treatment. All the
mentioned complexities and opportunities integrating patients’ data lead us to devise
a data ecosystem for lung cancer patients and materialize it using the optimization
techniques proposed in this thesis.

15.2 Knowledge-driven Data Ecosystems

One of the main goals in personalized medicine projects is to develop analytical
tools that provide oncologists insight to improve the management of lung cancer
patients during their treatment and post-treatment. Data ecosystems (DE) [54] are
knowledge-driven infrastructures that allow the development of such analytical tools.
DEs are furnished with various computational methods to solve interoperability and
integrate data, while preserving data privacy, security, and sovereignty. The design of
DEs is considered a crucial technological building block for digitalization and the dig-
ital economy of the future. DEs aim at being aligned with European Strategy Data
and facilitate the creation of data markets for ensuring Europe’s competitiveness and
data sovereignty. Several research initiatives and industry consortia have followed
DEs; they contribute with reference architectures to tackle: (i) data governance ac-
cording to regulations imposed by data providers; (ii) policies and computational
frameworks to ensure a trusted and secure data exchange; (iii) semantic data models
for representing main data concepts and relationships, as well as exchange formats
and protocols, and (iv) software design principles for guiding the implementation of
the components of the reference architectures.

62https://www.ncbi.nlm.nih.gov/pubmed/
63https://cancer.sanger.ac.uk/cosmic
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Figure 15.2: The LungCancerDE Data Ecosystem

DEs are flexible infrastructures able to fulfill requirements imposed by DE stake-
holders. DEs can be centralized, and one single node maintains all the data sources
shared by the providers. The node also hosts all the services implemented on top of
the DE data sources. Contrary, whenever data cannot be moved to a single node and
data privacy regulations hinter the materialized and complete data integration of the
DE data sources, DEs will be decentralized, i.e., they will be composed of several
nodes. Each DE node will be able to perform services and share data management
and analytical results.

Data interoperability is a barrier in DEs; thus, semantic data models or ontologies
describing the meaning of the data sources are also part of a DE. Moreover, mapping
rules relating to how data sources are defined in terms of the semantic data models
are included. Lastly, a DE can also be enhanced with a meta-layer that describes
business models, data access regulations, and data exchange contracts.
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15.3 LungCancerDE

We propose LungCancerDE, the lung cancer data ecosystem, a network of data
ecosystems (DEs)[31] that aligns data and metadata to describe the network and
its components. Heterogeneity issues in different levels, i.e., schema and data levels,
across the datasets are overcome by various data curation and integration meth-
ods. Each DE comprises datasets and programs for accessing, managing, and an-
alyzing their data. Figure 15.2 illustrates the components of the LungCancerDE
Data Ecosystem. The metadata layer specifies biomedical vocabularies (e.g., Uni-
fied Medical Language System-UMLS64 or Human Phenotype Ontology-HPO 65).
The LungCancerDE DE is a nested framework that is also composed of three basic
DEs: Clinical, Scholarly, and Scientific Open. These basic DEs are described in
terms of datasets, metadata, and methods; they enable each basic DEs to conduct
individual analysis based on locally collected data. The nested LungCancerDE DE
comprises the basic DEs and integrates the data processed by each of them. As a
result, the nested LungCancerDE DE provides a holistic profile of a lung cancer pa-
tient composed of the data process by Clinical, Scholarly, and Scientific Open DEs;
these profiles are represented in the LungCancerDE knowledge graph (KG). In the
following, we describe the nested LungCancerDE DE in terms of the datasets of the
basic DEs, and the operators, metadata, mappings, integrity constraints, and service
executed on top of them.

15.3.1 Datasets

The LungCancerDE Data Ecosystem integrates three categories of data sources col-
lected from the basic data ecosystems:

Processed Clinical Data Database produced by the Clinical Data DE as the result
of the performing Natural Language Processing (NLP) on Electronic Health Records
(EHR) data. EHR data correspond to 1,242 lung cancer patients registered in the
Electronic Health Record (EHR) system at the Puerta del Hierro University Hospi-
tal in Madrid from 2008 to January 2020 and 15,373 lung cancer patients registered
in the Electronic Health Record (EHR) system at the Spanish Lung Cancer Group
(SLCG). The data is structured and presented in a relational database. Addition-
ally, the information about the hospital services visited by the patients is shared in
a relational database. The values of the attributes are in English and Spanish, and

64https://www.nlm.nih.gov/research/umls/index.html
65https://hpo.jax.org/app/
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attributes like treatments are diagnostics annotated with terms from UMLS.

Scholarly Data A data graph– in Neo4J 66– representing 162,394 scientific pub-
lications in a graph with 402,020 nodes and 12,256,983 edges. Each publication is
described with a PubMed identifier, title, year, journal, authors, SCImago Journal
rank indicator (sjr), Hindex, number of citations, and the link to SCOPUS with all
the information of the article. Moreover, publications are annotated with 4,821,501
associations describing the relationship has topic, 7,368,157 associations for the re-
lationship mention in, and 166,219 associations between UMLS terms.

Scientific Open Data 11,292 drugs described in terms of the conditions for which
the drug can be prescribed and its interactions with targets and enzymes. There are
also 60,177 relations between drugs and side effects, 1,550,586 drug-drug interactions
extracted from the Literature and DrugBank, and 502,839 predicted drug-drug in-
teractions discovered by various predictive methods. Furthermore, COSMIC coding
point mutations67 including 36.847.386 records and 38 attributes, are included. In
addition, structured data related to the clinical significance of cancer genome alter-
ations residing in Clinical Interpretation of Variants in Cancer (CIViC)68 are also
involved. This data includes diagnostic datasets, evidence of variant’s impact on
patient diagnosis, predictive, evidence of variant’s impact on therapeutic response,
predisposing, evidence of variant’s role in conferring susceptibility to disease, and
prognostic dataset, evidence of variant’s impact on disease progression, severity, and
patient survival.

15.3.2 Metadata

Biomedical ontologies and controlled vocabularies describe the data and provide a
unified description and annotation. These annotations represent the basis of the data
integration methods to merge the data into a KG. The values in the datasets are
annotated with terms from the Unified Medical Language System using EABlock.
These annotations enable entity alignment and provide the basis for integrating the
datasets into the KG. A unified schema provides an integrated view of the data
sources. The LungCancerDE unified schema is expressed in the W3C standard data
model RDF. This increases interoperability and facilitates reusability of existing

66https://neo4j.com/
67https://cancer.sanger.ac.uk/cosmicGRCh37,version90,releasedAugust2019
68https://civicdb.org/welcome
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vocabularies and ontologies, e.g., the RDF Schema69 (RDFS), the Web Ontology
Language70 (OWL), PROV-O71 (Provenance Ontology), Semanticscience Integrated
Ontology 72 (SIO), and National Cancer Institute Thesaurus 73 (NCIT). The unified
schema comprises 188 classes, 155 object properties, and 77 datatypes.

Figure 15.3: An exemplary RML Mapping Rule calling one FnO function named
FalconDBpedia-Function. This function performs NER and NEL to link drug
names to resources in DBpedia.

15.3.3 Mappings

The correspondences between the data sources and the unified schema are defined
using RML mapping languages. Data operation functions are defined using FnO. We
apply the functions defined in EABlock to solve entity alignment over the textual
attributes in data by aligning the recognized biomedical entities to terms in UMLS,
Wikipedia [74], and DBpedia [4]. While the functions in GenoConductor are utilized
to reconcile the genomic variant data. Figure 15.3 presents an RML where the
FnO FalconDBpedia-Function enables the linking of drug names into resources of
DBpedia. Partially, the mapping rules are defined utilizing easyRML. Note that
the specification in RDF and the semantic description using FnO provide standard
documentation of entity alignment and establish the basis for tracking down the data

69https://www.w3.org/TR/rdf-schema/
70https://www.w3.org/TR/owl-features/
71https://www.w3.org/TR/prov-o/
72https://raw.githubusercontent.com/micheldumontier/semanticscience/master/ontology/sio/release/

sio-release.owl
73https://ncit.nci.nih.gov/ncitbrowser/
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integration process. In the LungCancerDE, the combination of R2RML, RML, and
FnO represents a powerful formalism to specify the pipeline for integrating data into
the KG declaratively.

Figure 15.4: An example of materializing a portion of LungCancerDE

15.3.4 Materializing LungCancerDE

In general, in projects such as the ones that we mention in this chapter, i.e., iASiS,
CLARIFY, and BigMedilytics, the task of data management is performed in parallel
with data providing and extraction. This means that data integration manifested in
LungCancerDE requires to be materialized regularly, based on the frequency of the
data flow. Therefore, the materialization demands to be equipped with optimization
techniques in order to be able to perform in a reasonable time.

Figure 15.4 illustrates an example of materializing a portion of LungCancerDE. The
portion that is shown in Figure 15.4 includes only one dataset in the Scientific Open
DE with a size of around 15 GB and the corresponding mapping rules defined in
RML. Note that in this example we have included no user-defined functions. We
materialized this portion of DE with different state-of-the-art frameworks including
RocketRML [64], RMLMapper [22], and SDM-RDFizer [36]. We observe that Rock-
etRML cannot create the KG because the KG creation process surpasses the memory
limit of RocketRML. RMLMapper cannot generate the KG because the process took
over 48 hours and timed out. SDM-RDFizer can accomplish the materialization,
however, it takes about 48 hours. Considering the required time for materializing
one portion of DE highlights the importance of efficiency in materializing DEs such
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as LungCancerDE. The demand for the practical efficient materialization of DEs
in these projects makes our proposed optimization techniques desirable. Therefore,
as it is shown in Figure 15.2, we utilize MapSDI and Planner techniques in order
to optimize the performance of the materialization process. Furthermore, we ap-
ply Dragoman in materializing the correspondences between data sources and the
concepts in the unified schema.

15.4 Evaluation and Results

In this section, we report some results of the contribution of our proposed techniques
in four projects. Three EU-funded projects involving lung cancer pilots, i.e., iASiS,
CLARIFY, and BigMedilytics, rely on the LungCancerDE explained earlier. As we
interchangeably used the terms knowledge graph creation and materializing data in-
tegration in this thesis, here we explain the results of knowledge graphs that are
created by applying our proposed methods.

BigMedilytics Knowledge Graph. BigMedilytics KG is evolved over the period
of the project. One of the important observations during the evolution of this KG
corresponds to the impact of entity alignment in data integration and improving the
connectivity between the nodes in the KG. To assess the impact of entity alignment
techniques that are included in LungCancerDE, we perform an empirical study to
answer the following question. Research Question. How does applying EABlock
in the process of KG creation impact the quality of the result KG? To answer the
mentioned research question, we build two versions of BigMedilytics KG: KGNoLinks

and KGLinks, the latter includes the links discovered by NER and NEL tasks ap-
plying EABlock data operation functions, while in the former these links have not
been generated. Figure 15.5 demonstrate the network analysis results performed on
the two created versions of BigMedilytics KG. These KGs are aggregated into two
directed graphs GNoLinks=(V,ENoLinks) and GLinks=(V,ELinks). Vertices in V keep the
classes in KGNoLinks and KGLinks with at least one entity. Labeled edges in ENoLinks

(resp. ELinks) represent the properties that relate the entities of the classes Q and K
in V , in KGNoLinks (resp. KGLinks). Thus, a labelled directed edge e=(q,p,k) belongs
to ENoLinks (resp., to ELinks) if there are classes Q and K in V and a property p,
such as q and k are instances of Q and K in V , and the RDF triple (q, p, k) belongs
to ENoLinks (resp., ELinks). Traditional network analysis methods are conducted on
top of GNoLinks and GLinks to determine connectivity. The metrics are (a) The Aver-
age number of neighbors indicates the average connectivity of a vertex or node in a
graph. (b) Clustering coefficient measures the tendency of nodes who share the same
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(a) GNoLinks without Entity
Alignment

(b) GLinks with Entity
Alignment

Analysis GLinks GNoLinks

Number of nodes 82 82
Number of edges 216 180
Avg. number of neighbors 4.9 4.0
Clustering coefficient 0.13 0.09
Network density 0.03 0.02
Connected components 1 6

(c) Network Analysis

Figure 15.5: Network analysis to assess connectivity of KGNoLinks and KGLinks. Ag-
gregated graphs GNoLinks and GLinks represent provide a summarized view of the
number of connections in KGNoLinks and KGLinks.

connections in a graph to become connected. If a neighborhood is fully connected,
the clustering coefficient is 1.0 while a value close to 0.0 means that there is no con-
nection in the neighborhood. (c) Network density measures the portion of potential
edges in a graph that are actually edges; a value close to 1.0 indicates that the graph
is fully connected. (d) The number of connected components indicates the num-
ber of subgraphs composed of vertices connected by at least one path. Figure 15.5
depicts the aggregated graphs GNoLinks and GLinks, and Figure 15.5c reports on the
results of the graph metrics. The outcomes indicate that KGLinks comprises more
connected entities. Albeit low, the clustering coefficient and density values indicate
that the UMLS annotations and links to DBpedia and Wikidata included in KGLinks,
increase the connectivity. As a result, these connections allow for the integration into
the BigMedilytics KG of the biomedical entities annotated individually in each of the
data ecosystems that composed the LungCancerDE framework. Moreover, based on
the results reported by Waagmeester et al. [1], which put Wikidata into perspective
as a knowledge graph for the life sciences, the recognized links enrich the BigMedi-
lytics KG with the richness of knowledge collected and maintained by the scientific
communities in DBpedia and Wikidata.

iASiS Knowledge Graph. Following the LungCancerDE and optimized materi-
alization techniques, we created 11 versions of the iASiS knowledge graph over two
years. Figure 15.6 illustrate the evolution of iASiS knowledge graph in September
2018, December 2019, and September 2020. As can be observed in Figure 15.6 the
knowledge graph has grown considerably during the project.
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(a) Portion of a Source File about Genes (Outer
Source File)

(b) Portion of the Source File about Chromo-
somes (Inner Source File)

(c) September 2020

Figure 15.6: The evolution of iASiS knowledge graph over two years.
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Table 15.1: An overview of the CLARIFY KG and DIS

CLARIFY Number of Records
Data sources 13,603,943
Declared mapping assertions 19,926
Data operation functions 243
OWL classes in the unified schema 188
OWL object properties in the unified schema 155
OWL data properties in the unified schema 77
Generated RDF triples 78,194,129
KG Resources 11,424,457

CLARIFY Knowledge Graph. Since 2020, the start of project CLARIFY so
far, we have created more than 10 versions of CLARIFY knowledge graph following
LungCancerDE. To better understand the importance of applying our proposed op-
timization techniques in this project, we provide 15.1. As the number of concepts
in the unified schema, mapping assertions, and data operation functions that are
required in order to integrate data of this project show in 15.1, the materialization
of such data integration system can be very expensive. Table 15.1 demonstrates the
statistics of the current version of the CLARIFY KG (version 8.0, November 2022).
As the numbers show, 11,424,457 are resources described in terms of 78,194,129 RDF
triples. The resources are part of 188 classes connected by 155 directed edges. Con-
sidering, the size of data, the number of correspondence between data and classes and
properties of unified schema, the considerable number of data operation functions,
and finally generated RDF triples, having an efficient materialization is essential.

15.5 Summary

In this chapter, we DE4LungCancer as the computational framework to address the
data management requirements of the lung cancer pilot of the H2020 EU projects
iASiS, BigMedilytics, and CLARIFY. DE4LungCancer is a nested framework that
comprises three DEs that process and analyzes the pilot datasets. DE4LungCancer
offers a semantic layer composed of a unified schema, biomedical ontologies, and
mapping languages; they provide the basis for transparent data integration into a
KG. We show the necessity of optimization techniques while materializing the data
integration considering the scale of data. We also illustrate exemplary results.
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Conclusion

In this thesis, we study the problem of efficient materialization of data integration
from heterogeneous data. After defining the research questions, we follow Part I
providing an overview of the essential background knowledge and the related works
in Chapter 2 and Chapter 3, respectively. In Part II we explain extensively how we
tackle the research problem and what we propose as solutions. This part includes
six separate chapters which are followed by Part III composed of five chapters. In
Part III, we introduce our testbeds and empirical studies that we perform to evaluate
the solutions proposed in Part II. Lastly, Part IV starts with Chapter 15 representing
the application of our proposed solutions in real-world use cases. In this final chapter,
we conclude the thesis by revisiting, once again, our research questions and explaining
how these questions are answered in different chapters. In closing, we review the
limitations of the proposed solutions and explore future work.

16.1 Revisiting the Research Questions

Reviewing the research questions presented in Chapter 1 we explain our contributions
in answering each question. Note that one research question can lead to more than
one contribution and vice versa.

RQ1: What are the characteristics of a materialized data integration sys-
tem?

We consider the definition of data integration systems in terms of four compo-
nents including unified schema, data sources, mapping assertions, and functions.
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Mapping assertions are equivalent to what is called “mapping rules” in most
definitions; they represent the correspondence between the data sources and the
classes and properties in the unified schema. Functions, on the other hand,
represent the data operation functions, the functions for processing and manip-
ulating data. Accordingly, in Chapter 4, we formalize the definition of mapping
assertions and functions. In addition to formally defining the characteristics of
materialized data integration systems involving both data operators and sources,
these formalizations serve as the foundation of the following contributions.

RQ2: How to merge data operators and sources in a materialized data
integration system?

The formal definitions provided in Chapter 4 pave the way to merge data op-
erators and sources in materialized data integration systems. Relying on these
formalism and available declarative mapping languages, i.e., RML+FnO, we in-
troduce two libraries of data operation functions. The first library, EABlock
performs entity alignment; it performs entity recognition from textual attributes
and linking the recognized entities to the corresponding resources in Wikidata,
DBpedia, and domain specific thesaurus, e.g., UMLS. We evaluate the impact of
applying EABlock in data integration in improving the connections between the
integrated entities in Chapter 13. The second library, GenoConductor, provide
domain-specific data operators targeting the genomic variant harmonization. Re-
lying on three

RQ3: How can efficiency be ensured in a materialized data integration sys-
tem?

Considering the components of materialized data integration systems, we tackle
the problem of efficient materialization of data integration systems from three
perspectives. It should be noted that by efficiency, we aim for optimization in
terms of execution time. In Chapter 11 we propose an optimization technique
at the level of data sources. The optimization technique, named MapSDI, is
composed of a set of transformation rules. MapSDI resorts to the properties of
the relational algebra operators and to the knowledge encoded in the mapping
rules to identify the transformation rules that are needed to be performed on
data sources. Materializing the outcome of these transformation rules, i.e., the
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transformed data integration system, requires minimal execution time as empir-
ically shown in Chapter 11, however, provides the same knowledge graphs. In
Chapter 12, we study the RQ3 from inter-mapping assertion perspective. We
introduce another optimization method, named Planner, relying on planning a
given set of mapping assertions. Planner provides an optimized execution plan
by partitioning and scheduling the execution of the mapping assertions. Exper-
imental studies evaluating Planner explained in Chapter 12 illustrate the same
results. Finally, in Chapter 9, we propose an optimization technique, named
Dragoman, exploring the optimization opportunities at intra-mapping assertion
level. Dragoman, introduces a set of mapping-based transformation rules in addi-
tion to an efficient approach for evaluating functions in mapping assertions. The
materialization of the outcome of this optimization technique requires minimal
time while preserving the same result as the one that can be derived from mate-
rializing the original data integration system. The results of extensive empirical
evaluation of Dragoman is reported in Chapter 14.

RQ4: Which are the impacting parameters that testbeds need to include to
evaluate the advantages of applying enhancement techniques in materialized
data integration?

In Chapter 10, we start with the parameters that are reported to impact the
materialization of data integration in [12]. After enumerating the parameters
reported to impact the materialization of data integration, we introduce param-
eters that are not studied, however, they are assumed to be effective. We generate
four groups of testbeds including configurations that are required to study the
reported parameters. Additionally, the potential influential parameters, specif-
ically corresponding data operation functions, are added. The results of newly
studied parameters are reported in Chapter 14.

RQ5: How to overcome the challenges in applying materialized data inte-
gration systems in real-world scenarios?

In Chapter 8 we introduce easyRML, a tool to facilitate the process of RML map-
ping rules creation. easyRML allows users to define the rules declaring the corre-
spondences between data sources and concepts of unified schema while exploring
the data and the unified schema in real time. Furthermore, in Chapter 15 we
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show the practical applications of our proposed optimization techniques in three
real-world projects. We introduce a data ecosystem for lung cancer as the solu-
tion of data integration in the mentioned projects. Considering the importance
of efficiency in materializing data integration, we illustrate the contributions of
our proposed techniques in meeting the requirements of the projects.

16.2 Limitations and Future Work

In this thesis, we focus on materialized data integration. Nevertheless, as described
in Chapter 1, data can be integrated virtually. The optimization techniques proposed
in this thesis are applicable to materialized data integration. For instance, the tech-
niques proposed in Chapter 5 and Chapter 9 including transformation rules, or eager
evaluation of functions are only relevant in the case of materialization. Another lim-
itation of our proposed optimization techniques concerns the conditions according to
which applying these techniques optimizes the materialization of data integrations.
For instance, as explained in Subsection 14.2.4, applying our techniques proposed in
Dragoman is more expensive materializing data integration systems which meet cer-
tain conditions. Therefore, in our future works, we investigate which of our proposed
techniques are applicable to virtual data integration.

Keeping human in the loop in the process of integrating data in domains such as
biomedicine is essential. Manual curation of data by domain experts and the level
of expertise of them are the factors determining the credibility of data in domains
like biomedicine. Additionally, following FAIR principles in research demands the
application of approaches that require humans in the loop to increase precision. For
instance, utilizing declarative mapping rules for defining the correspondences between
data sources and concepts in the unified schema demands considerable manual effort.
Our vision for future work is centered around encouraging the community to keep
the human in the loop, yet, to decrease the required manual attempt. We aim to
increase the reusability of existing mapping rules in defining new correspondences
between the data and the unified schema. Additionally, our goal is to provide rec-
ommendations for knowledge engineers while defining mapping rules. To this end,
we aim the work on the following contributions. 1. Proposing different design
patterns [29]. It has been observed during different projects that similar concep-
tual patterns have appeared while integrating heterogeneous data. Utilizing these
design patterns in designing the unified schema of data integration systems plays an
important role in reusability of the generated correspondences between data sources
and unified schema. 2. Define DISs in terms of a DIS. The associations of the
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components of DISs can also be defined and formalized in terms of a DIS. Defining
such DIS allow to track the associations between the components of DISs includ-
ing the correlation between classes and properties of the unified schema and defined
mapping rules. Possessing such correlation and reusing the design patterns allow to
provide a prediction system. The prediction system enable recommendations of new
mapping rules to knowledge engineers while they are defining new mapping rules.
3. Generic data operation functions Supplying more data operation function
libraries increases the motivation in reusing the design patterns and mapping rules.
Providing a spectrum of functions from being generic to specific, able to overcome
heterogeneity issues due to multilinguality, and the possibility of applying them as
composite functions, increase their reusability.
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