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Abstract

Today’s scholarly communication is a document-centred process and as such, rather ineffi-
cient. Fundamental contents of research papers are not accessible by computers since they
are only present in unstructured PDF files. Therefore, current research infrastructures are
not able to assist scientists appropriately in their core research tasks. This thesis addresses
this issue and proposes methods to automatically extract relevant information from scien-
tific articles for Research Knowledge Graphs (RKGs) that represent scholarly knowledge
structured and interlinked.

First, this thesis conducts a requirements analysis for an Open Research Knowledge Graph
(ORKG). We present literature-related use cases of researchers that should be supported
by an ORKG-based system and their specific requirements for the underlying ontology and
instance data. Based on this analysis, the identified use cases are categorised into two groups:
The first group of use cases needs manual or semi-automatic approaches for knowledge graph
(KG) construction since they require high correctness of the instance data. The second
group requires high completeness and can tolerate noisy instance data. Thus, this group
needs automatic approaches for KG population. This thesis focuses on the second group of
use cases and provides contributions for machine learning tasks that aim to support them.

To assess the relevance of a research paper, scientists usually skim through titles, ab-
stracts, introductions, and conclusions. An organised presentation of the articles’ essential
information would make this process more time-efficient. The task of sequential sentence
classification addresses this issue by classifying sentences in an article in categories like
research problem, used methods, or obtained results. To address this problem, we propose
a novel unified cross-domain multi-task deep learning approach that makes use of datasets
from different scientific domains (e.g. biomedicine and computer graphics) and varying struc-
tures (e.g. datasets covering either only abstracts or full papers). Our approach outperforms
the state of the art on full paper datasets significantly while being competitive for datasets
consisting of abstracts. Moreover, our approach enables the categorisation of sentences in a
domain-independent manner.

Furthermore, we present the novel task of domain-independent information extraction to
extract scientific concepts from research papers in a domain-independent manner. This
task aims to support the use cases find related work and get recommended articles. For this
purpose, we introduce a set of generic scientific concepts that are relevant over ten domains in

V



Science, Technology, and Medicine (STM) and release an annotated dataset of 110 abstracts
from these domains. Since the annotation of scientific text is costly, we suggest an active
learning strategy based on a state-of-the-art deep learning approach. The proposed method
enables us to nearly halve the amount of required training data.

Then, we extend this domain-independent information extraction approach with the task
of coreference resolution. Coreference resolution aims to identify mentions that refer to
the same concept or entity. Baseline results on our corpus with current state-of-the-art
approaches for coreference resolution showed that current approaches perform poorly on
scientific text. Therefore, we propose a sequential transfer learning approach that exploits
annotated datasets from non-academic domains. Our experimental results demonstrate that
our approach noticeably outperforms the state-of-the-art baselines.

Additionally, we investigate the impact of coreference resolution on KG population. We
demonstrate that coreference resolution has a small impact on the number of resulting
concepts in the KG, but improved its quality significantly. Consequently, using our domain-
independent information extraction approach, we populate an RKG from 55,485 abstracts
of the ten investigated STM domains. We show that every domain mainly uses its own
terminology and that the populated RKG contains useful concepts.

Moreover, we propose a novel approach for the task of citation recommendation. This
task can help researchers improve the quality of their work by finding or recommending
relevant related work. Our approach exploits RKGs that interlink research papers based
on mentioned scientific concepts. Using our automatically populated RKG, we demonstrate
that the combination of information from RKGs with existing state-of-the-art approaches is
beneficial. Finally, we conclude the thesis and sketch possible directions of future work.

Keywords: scholarly communication, research knowledge graph, information extraction,
deep learning, natural language processing, requirements analysis, sequential sentence clas-
sification, scientific concept extraction, coreference resolution, citation recommendation
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Zusammenfassung

Die Kommunikation von Forschungsergebnissen erfolgt heutzutage in Form von Dokumen-
ten und ist aus verschiedenen Gründen ineffizient. Wesentliche Inhalte von Forschungsarbei-
ten sind für Computer nicht zugänglich, da sie in unstrukturierten PDF-Dateien verborgen
sind. Daher können derzeitige Forschungsinfrastrukturen Forschende bei ihren Kernaufga-
ben nicht angemessen unterstützen. Diese Arbeit befasst sich mit dieser Problemstellung
und untersucht Methoden zur automatischen Extraktion von relevanten Informationen aus
Forschungspapieren für Forschungswissensgraphen (Research Knowledge Graphs). Solche
Graphen sollen wissenschaftliches Wissen maschinenlesbar strukturieren und verknüpfen.

Zunächst wird eine Anforderungsanalyse für einen Open Research Knowledge Graph
(ORKG) durchgeführt. Wir stellen literaturbezogene Anwendungsfälle von Forschenden vor,
die durch ein ORKG-basiertes System unterstützt werden sollten, und deren spezifische An-
forderungen an die zugrundeliegende Ontologie und die Instanzdaten. Darauf aufbauend
werden die identifizierten Anwendungsfälle in zwei Gruppen eingeteilt: Die erste Gruppe von
Anwendungsfällen benötigt manuelle oder halbautomatische Ansätze für die Konstruktion
eines ORKG, da sie eine hohe Korrektheit der Instanzdaten erfordern. Die zweite Gruppe
benötigt eine hohe Vollständigkeit der Instanzdaten und kann fehlerhafte Daten tolerieren.
Daher erfordert diese Gruppe automatische Ansätze für die Konstruktion des ORKG. Diese
Arbeit fokussiert sich auf die zweite Gruppe von Anwendungsfällen und schlägt Methoden
für maschinelle Aufgabenstellungen vor, die diese Anwendungsfälle unterstützen können.

Um die Relevanz eines Forschungsartikels effizient beurteilen zu können, schauen sich For-
schende in der Regel die Titel, Zusammenfassungen, Einleitungen und Schlussfolgerungen
an. Durch eine strukturierte Darstellung von wesentlichen Informationen des Artikels könnte
dieser Prozess zeitsparender gestaltet werden. Die Aufgabenstellung der sequenziellen Satz-
klassifikation befasst sich mit diesem Problem, indem Sätze eines Artikels in Kategorien
wie Forschungsproblem, verwendete Methoden oder erzielte Ergebnisse automatisch klassi-
fiziert werden. In dieser Arbeit wird für diese Aufgabenstellung ein neuer vereinheitlichter
Multi-Task Deep-Learning-Ansatz vorgeschlagen, der Datensätze aus verschiedenen wissen-
schaftlichen Bereichen (z. B. Biomedizin und Computergrafik) mit unterschiedlichen Struk-
turen (z. B. Datensätze bestehend aus Zusammenfassungen oder vollständigen Artikeln)
nutzt. Unser Ansatz übertrifft State-of-the-Art-Verfahren der Literatur auf Benchmark-
Datensätzen bestehend aus vollständigen Forschungsartikeln. Außerdem ermöglicht unser
Ansatz die Klassifizierung von Sätzen auf eine domänenunabhängige Weise.
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Darüber hinaus stellen wir die neue Aufgabenstellung domänenübergreifende Informati-
onsextraktion vor. Hierbei werden, unabhängig vom behandelten wissenschaftlichen Fach-
gebiet, inhaltliche Konzepte aus Forschungspapieren extrahiert. Damit sollen die Anwen-
dungsfälle Finden von verwandten Arbeiten und Empfehlung von Artikeln unterstützt wer-
den. Zu diesem Zweck führen wir eine Reihe von generischen wissenschaftlichen Konzepten
ein, die in zehn Bereichen der Wissenschaft, Technologie und Medizin (STM) relevant sind,
und veröffentlichen einen annotierten Datensatz von 110 Zusammenfassungen aus diesen
Bereichen. Da die Annotation wissenschaftlicher Texte aufwändig ist, kombinieren wir ein
Active-Learning-Verfahren mit einem aktuellen Deep-Learning-Ansatz, um die notwendigen
Trainingsdaten zu reduzieren. Die vorgeschlagene Methode ermöglicht es uns, die Menge der
erforderlichen Trainingsdaten nahezu zu halbieren.

Anschließend erweitern wir unseren domänenunabhängigen Ansatz zur Informationsex-
traktion um die Aufgabe der Koreferenzauflösung. Die Auflösung von Koreferenzen zielt
darauf ab, Erwähnungen zu identifizieren, die sich auf dasselbe Konzept oder dieselbe En-
tität beziehen. Experimentelle Ergebnisse auf unserem Korpus mit aktuellen Ansätzen zur
Koreferenzauflösung haben gezeigt, dass diese bei wissenschaftlichen Texten unzureichend
abschneiden. Daher schlagen wir eine Transfer-Learning-Methode vor, die annotierte Daten-
sätze aus nicht-akademischen Bereichen nutzt. Die experimentellen Ergebnisse zeigen, dass
unser Ansatz deutlich besser abschneidet als die bisherigen Ansätze.

Darüber hinaus untersuchen wir den Einfluss der Koreferenzauflösung auf die Erstellung
von Wissensgraphen. Wir zeigen, dass diese einen geringen Einfluss auf die Anzahl der re-
sultierenden Konzepte in dem Wissensgraphen hat, aber die Qualität des Wissensgraphen
deutlich verbessert. Mithilfe unseres domänenunabhängigen Ansatzes zur Informationsex-
traktion haben wir aus 55.485 Zusammenfassungen der zehn untersuchten STM-Domänen
einen Forschungswissensgraphen erstellt. Unsere Analyse zeigt, dass jede Domäne haupt-
sächlich ihre eigene Terminologie verwendet und dass der erstellte Wissensgraph nützliche
Konzepte enthält.

Schließlich schlagen wir einen Ansatz für die Empfehlung von passenden Referenzen vor.
Damit können Forschende einfacher relevante verwandte Arbeiten finden oder passende
Empfehlungen erhalten. Unser Ansatz nutzt Forschungswissensgraphen, die Forschungsar-
beiten mit in ihnen erwähnten wissenschaftlichen Konzepten verknüpfen. Wir zeigen, dass
aktuelle Verfahren zur Empfehlung von Referenzen von zusätzlichen Informationen aus ei-
nem automatisch erstellten Wissensgraphen profitieren. Zum Schluss wird ein Fazit gezogen
und ein Ausblick für mögliche zukünftige Arbeiten gegeben.

Stichworte: Forschungswissensgraph, Informationsextraktion, Deep Learning, Computer-
linguistik, Anforderungsanalyse, Sequenzielle Satzklassifikation, Extraktion wissenschaft-
licher Konzepte, Auflösung von Koreferenzen, Empfehlung von Referenzen
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Notations

This chapter describes the notation used in this thesis that is based on the notation of
Goodfellow et al. [101].

Scalars, Arrays, and Sets
a A scalar (integer or real)
a A vector
A A matrix or tensor
A A set
|A| The number of items in set A
R The set of real numbers
G A graph

Indexing and Operations
aᵀ or Aᵀ Transpose of vector a or matrix A

ai Element with index i of vector a
Ai,j Element in row i and column j of matrix A

[a1, ...,an] Vertical concatenation of the vectors a1, ...,an
1(p) Indicator function returning 1 if the predicate p is true and 0 otherwise

arg minx f(x) Yields the vector x for which f(x) attains a minimum
∂f(x)
∂xi

Partial derivative of f with respect to xi

exp(x) returns ex where e is the Euler’s number

Datasets
X A set of training examples
x(i) Input vector x(i) of the i-th example

y(i) or y(i) Expected vector y(i) or scalar y(i) of the i-th example
ŷ(i) or ŷ(i) Predicted vector ŷ(i) or scalar ŷ(i) of the i-th example
(x1, ...,xτx) Sequence with length τx of input vectors of an example
(y1, ...,yτy) Sequence with length τy of expected vectors of an example
(ŷ1, ..., ŷτy) Sequence with length τy of predicted vectors of an example
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1 Introduction

Research is an essential part of our society and is contributing significantly to innovation,
progress, and new knowledge. Accordingly, in 2018, countries and companies invested over
2.23 trillion U.S. dollars globally into research and development. This compares to around
one trillion U.S. dollars in 2005 and about 555 billion U.S. dollars in 1996 [269]. Conse-
quently, the number of scientific publications has increased by 4% annually over the last
decade leading to over 2.5 million papers published alone in 2018 [27, 188].

As stated by Auer et al. [8], in recent decades, modern information technologies have
digitalised various industries. For instance, product catalogues were replaced by online
shops and road maps by navigation systems. However, the way how research results are
communicated in the research community has hardly changed over the past centuries [8]: In
the 17th century, first research papers were published in paper form [208]; today, researchers
communicate research results still through papers, but now electronically as files in Portable
Document Format (PDF). As a result, the essential contents of research papers, such as
research problems, applied or proposed methods, results, and contributions, are not directly
accessible, i.e. machine-readable, by computers since they are “hidden” in unstructured
text, tables, and figures. Therefore, the degree of digitalisation in scholarly communication
corresponds to road maps as PDF files, and we are still on the lookout for an equivalent of
nowadays navigation systems for research literature [8]. As a consequence, current research
infrastructures such as academic search engines cannot assist researchers adequately, leading
to rather inefficient scholarly communication. The explosion in the number of published
articles [27, 188] aggravates this situation further: It becomes harder and harder to stay on
top of current research, that is, to find relevant works, read, compare, and reproduce them
and, later on, to make one’s own contribution known for its quality.

This thesis addresses the problem of scholarly communication by exploring automatic
methods for information extraction from scientific texts. As depicted in Figure 1.1, the
main objective of this thesis is to extract relevant information from research papers with
machine learning approaches for Research Knowledge Graphs (RKGs).

The idea of RKGs is to represent scholarly knowledge in a structured and interlinked
way. Therefore, they have the potential to reduce some of the current issues in scholarly
communication so that relevant research could be easier to find, research field overviews au-
tomatically compiled, and own insights could be placed rapidly in the current ecosystem (see
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Information Extraction 

Unstructured research papers 
as plain PDF-files 

Scholarly knowledge structured and interlinked  
in a Research Knowledge Graph 

Figure 1.1: The goal of this thesis is to extract information from unstructured research
papers for Research Knowledge Graphs (RKGs) that represent and interlink
scholarly knowledge in a structured manner. Image source: iStock.com

Chapter 3 for further details). The TIB – Leibniz Information Centre for Science and Tech-
nology in Hannover is currently developing an Open Research Knowledge Graph (ORKG)
(www.orkg.org) and aims to publish the content online for the public good [130]. More-
over, the ORKG is not just an example of an RKG but is also a system that aims to offer
applications for various use cases (e.g. comparative research field overviews). This thesis is
also a part of this research and development project. However, this thesis refers mainly to
the general idea of an ORKG [7] and not its concrete implementation at TIB.

In the following, Section 1.1 provides an overview of related work and research gaps
that are the basis to formulate the addressed challenges and research questions which are
described in the subsequent Section 1.2. Then, Section 1.3 summarises the contributions for
the aforementioned research questions. Finally, Section 1.4 describes the overall structure of
this thesis and Section 1.5 enumerates the papers that have been published in the context
of this thesis.

1.1 Background

This section provides selected related work that serves as the basis for the research challenges
and questions in the subsequent Section 1.2. In particular, we describe the applications of
Knowledge Graphs (KGs) in general and in the research ecosystem, ontologies that con-
ceptualise scholarly knowledge, and the construction of KGs in the scientific domain with
machine learning approaches. The subsequent chapters, especially the requirements analy-
sis in Chapter 3, provide a more comprehensive overview of related work for the respective
topics.

Applications of Knowledge Graphs: A Knowledge Graph (KG) represents entities of
interest and their relationships as a labelled graph of nodes and edges [117]. The instance
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data usually conform to a data model (e.g. ontology, schema, vocabulary), enabling ma-
chines to understand and reason over the represented knowledge (see Section 2.4 for more
details). As stated by Hogan et al. [117], various knowledge-based applications use KGs
as their backbone, for instance, in Web search (e.g. Google [261]), E-commerce (e.g. Ama-
zon [158]), or social networks (e.g. LinkedIn [114]). The initiative www.schema.org creates
and maintains schemas for unstructured data on the Internet to help search engines inter-
pret the published content on websites. Moreover, KGs are used to structure encyclopedic
knowledge (e.g. DBpedia [172], YAGO [275], Wikidata [285]), which are utilised in various
applications such as semantic search engines [14], IBM Watson for answering questions in
natural language [83], Babelfy [195] for natural language understanding, or academic search
engines [294].

Knowledge Graphs in the Research Ecosystem: Some of the available infrastruc-
tures in the research ecosystem also use KGs to enhance their services. Academic search
engines (e.g. www.semanticscholar.org), utilise metadata-based graph structures, such
as the Literature Graph [3] or the Microsoft Academic Knowledge Graph [78], which link
research articles based on citations, shared authors, venues, and keywords.

Recently, initiatives have promoted the usage of KGs in science communication, but on
a deeper, semantic level [7, 110, 130, 184, 203, 215, 301]. They envision the transformation
of the dominant document-centred knowledge exchange to knowledge-based information
flows by representing and expressing knowledge through semantically rich, interlinked KGs.
Indeed, they argue that a shared structured representation of scientific knowledge has the
potential to alleviate some of science communication’s current issues, such that related work
could be easier to find and own contributions rapidly placed in the research ecosystem.
Furthermore, such a powerful data structure could also encourage the interconnection of
research artefacts such as datasets and source code much more than current approaches
(e.g. Document Object Identifier (DOI)), allowing easier reproducibility and comparison.

Current approaches towards knowledge-based information flows enrich and interconnect
research papers through machine-interpretable semantic content. For instance, initiatives
such as Research Graph [5], Research Objects [17], and OpenAIRE [184] interlink research
articles with artefacts such as datasets, source code, software, and video presentations. On
a more semantic level, Papers With Code [206] is a community-driven effort to supplement
machine learning papers with tasks, source code, and evaluation results to enable auto-
matic construction of leaderboards for various benchmarks. Wikidata [285] complements
articles in Wikipedia [176] with structured and interlinked content. The Gene Ontology
Consortium [59] is a collaborative effort to develop a comprehensive, computational model
of biological systems (e.g. genes, cells, molecules, biological processes), and the Chemical
Entities of Biological Interest (CheBi) [65] initiative describes molecular entities of chemical
compounds semantically. Although enrichment of research papers with semantic content
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is associated with additional efforts, Jaradeh et al.’s study [130] and the usage of Papers
With Code [206] in the machine learning community indicate that authors are willing to
contribute structured descriptions of their research articles.

Scientific Ontologies: However, it is far from being apparent how and what to pro-
vide in structured descriptions of research papers. Various ontologies have been developed
to conceptualise scholarly knowledge. Some ontologies are more domain-independent, de-
scribing scholarly knowledge with terms like problem, method, activity, etc. [36, 110, 215],
or focus on the primary research findings of papers [81, 281]. Other ontologies are more
domain-specific, for instance, for mathematics [165] (e.g. definitions, assertions, proofs),
machine learning [152, 191] (e.g. dataset, metric, model, experiment), physics [247] (e.g.
formation, model, observation), or scientific experiments [264] (e.g. experiments, methods,
results). This diversity in ontologies indicates that it is difficult to conceptualise scholarly
knowledge comprehensively.

Construction of Knowledge Graphs: The construction of a KG involves the design of
an ontology and the population with instance data using manual or automatic approaches
(see Section 2.4.2 for further details). Several KGs were populated manually, e.g. Wiki-
data [285], YAGO [275], Papers With Code [206], Gene Ontology [97], and Chemical Enti-
ties of Biological Interest [65]. Manually populated KGs usually have high correctness (i.e.
the degree to which the encoded information is correct), e.g. YAGO was found to be 95%
correct [275]. However, the completeness (i.e. the degree to which all required information is
present) is quite low. For instance, 69%-99% of entities in popular KGs such as YAGO [275]
or DBpedia [172] do not have at least one property that other entities of the same class
have [94, 274].

For automatic information extraction from scientific text with machine learning approach-
es, various datasets were annotated at the sentence or phrase level. Sentence level anno-
tations [54, 68, 85, 147], enable the classificaton of sentences in categories like objective,
methods, or results. Phrase level annotations [9, 90, 178, 229], enable (a) the recognition
of scientific entities or concepts like task, material, or method, (b) their binary relations [9,
92, 178] such as used-for, part-of, or evaluate-for, or (c) n-ary relations [129, 131, 142] such
as drug-gene-mutation interactions or task-dataset-metric-score tuples. Datasets for coref-
erence resolution [58, 178] are used to identify mentions in text referring to the same entity
or object. These datasets were usually annotated by domain experts and target specific
domains, e.g. material sciences [90], computational linguistics [92, 229], computer science,
material sciences, and physics [9], machine learning [178], or biomedicine [58, 131, 156].

Depending on the task’s difficulty, machine learning approaches achieve different results.
For instance, for sentence classification in abstracts from the biomedical domain, machine
learning approaches achieve a high F1 score of over 93.0% [54]. However, for the extraction of
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task-dataset-metric-score tuples from machine learning papers, the best approach performs
poorly with an F1 of only 28.7% [142]. The inter-coder agreement scores for these datasets
range from 0.6 to 0.9 [9, 92, 178, 229] (in terms of Cohen’s Kappa (κ) [57] or F1), indicating
that these tasks are not only difficult for machines but also for humans. On the other
hand, the automatically populated AI-KG from the artificial intelligence (AI) domain has
comparatively a high estimated recall of 81.2% [70]. Thus, automatic approaches can help
to achieve high completeness of KGs.

1.2 Challenges and Research Questions

As outlined in the previous section, representing scholarly knowledge via KGs is an active
area of research. This section outlines several challenges and research questions with regard
to RKG construction that are addressed in this thesis.

1.2.1 Diversity and Heterogeneity of Scholarly Knowledge

To represent scholarly knowledge structured and interlinked, we desire an RKG with a
(a) domain-specific and (b) fine-grained ontology, as well as with instance data of (c) high
completeness and (d) correctness. However, these data quality requirements are challenging
and also conflicting. Scholarly knowledge is very heterogeneous and diverse, so it is quite
impossible to conceptualise it comprehensively within an ontology. This claim is supported
by the existence of numerous different scientific ontologies [36, 81, 110, 152, 191, 215, 247,
264]. Besides, the population of scientific ontologies is difficult and time-consuming [9, 92].
This is also indicated by the wide range of inter-coder agreement scores (0.6 to 0.9 in terms
of Cohen’s Kappa or F1) for scientific datasets [9, 92, 178, 229]. Thus, the population
of complex ontologies with instance data requires domain and ontology experts. However,
this is rather time-consuming and, therefore, not feasible to achieve high completeness,
especially with the flood of new publications [27, 188]. Moreover, various studies have
also shown that manually curated KGs have a low completeness [25, 75, 94, 274]. Current
automatic approaches that could achieve high completeness can only populate relatively
simple ontologies with rather low correctness (see Section 3.2.3.2). Thus, we are faced with
the following problem statement:

On the one hand, we desire an ontology that can comprehensively capture scholarly knowl-
edge and instance data with high correctness and completeness. On the other hand, we are
faced with a “knowledge acquisition bottleneck”.

Data quality is defined as “fitness for use” by a data consumer [289]. Therefore, to resolve
the problem statement, the above requirements should be illuminated in the context of
specific use cases that an RKG aims to support. This raises our first research question (RQ):
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RQ1: What are the main requirements for scholarly knowledge representation to
support various use cases in an RKG?

This research question also implies that we need to (a) identify use cases of researchers that
should be supported by an RKG, (b) define data quality requirements for the underlying
ontologies and instance data of the individual use cases, and (c) propose strategies (e.g.
manual, automatic, semi-automatic) and approaches on how to construct such an RKG.

1.2.2 Lack of Labelled Data and Domain Experts

KGs such as DBpedia [172], YAGO [275], or Wikidata [285] were usually populated by hu-
man curators or from structured resources. Thus, these KGs have quite high correctness
but rather low completeness [25, 75, 94, 274]. Furthermore, the introduction of new sci-
entific concepts occurs at a faster pace than KG curation, resulting in a large gap in KG
completeness of scientific concepts [3]. For instance, at the time of this writing, the task of
visual event recognition in videos [48] from the computer vision field is neither present in
Wikidata [285] nor in more specialised platforms like Papers With Code [206].

On the other hand, deep learning approaches have achieved astonishing results in com-
puter vision [111] and Natural Language Processing (NLP) [113] benchmarks and could
even surpass human-level performance on some tasks. Thus, deep learning approaches have
the potential to populate an RKG automatically with high completeness and correctness.
However, these powerful models were trained on large datasets from general (non-academic)
domains (e.g. news, Wikipedia, magazines, etc.) and are not directly applicable to scientific
text. Furthermore, the annotation process of scientific datasets is much more challenging
and expensive than for the general domain counterpart [9, 92]: Understanding a research
paper and determining its most essential statements demands certain expertise in the ar-
ticle’s domain. Moreover, every domain is characterised by its specific terminology and
phrasing, which is hard to grasp for a non-expert reader. Thus, the manual annotation of
comprehensive and large datasets for different scientific domains is practically not feasible.
This raises the RQ:

RQ2: How can we modify machine learning methods for information extraction
from scientific texts to be adaptable to new domains with few labelled data?

This research question thus aims to reduce the efforts involved in annotating datasets to
enable still automatic information extraction from scientific text with high correctness.

Furthermore, the population of an RKG from scientific text usually entails the involvement
of domain experts to develop and design a specific extraction methodology and the anno-
tation of datasets – and this for each scientific discipline. These are rather time-consuming
and costly requirements. Existing datasets for information extraction from scientific text
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cover only a few scientific disciplines (see Tables 3.1, 3.2, and 3.3). This raises our next
RQ:

RQ3: How can we automatically extract information from research papers from
multiple scientific domains in a domain-independent manner?

This research question involves the investigation of a generic domain-independent extraction
approach since, by intuition, most research papers share certain core concepts, such as
research tasks or methods.

As a consequence, an RKG that spans multiple scientific domains has not been popu-
lated yet. Current automatically populated RKGs cover only a single domain, for instance,
artificial intelligence [70] or biomedicine [47]. However, during KG population, extracted
mentions of scientific concepts in the text need to be collapsed to concept entities in the
KG. Thus, it is not clear whether it is feasible to collapse mentions of scientific concepts
across domains. Usually, terms within a scientific domain are unambiguous, but some terms
can have different meanings across scientific disciplines (e.g. “neural network" has different
meanings in computer science and medicine). Therefore, we investigate the following RQ:

RQ4: How can we automatically populate an RKG that covers multiple scientific
domains?

1.2.3 Automatically Populated Research Knowledge Graphs

Knowledge Graphs such as DBpedia [172], YAGO [275], or Wikidata [285] are well estab-
lished. Since these KGs have been curated manually, they have rather high correctness but
relatively low completeness [25, 75, 94, 274]. The usefulness of these KGs has been demon-
strated in various applications [14, 83, 195, 261], especially in academic search engines [294].
However, the usefulness of automatically populated RKGs with high completeness but noisy
data has not yet been demonstrated in downstream information retrieval tasks for research
papers. In particular, current approaches for the task of citation recommendation to suggest
relevant related work for a research paper do not exploit automatically populated RKGs [21,
40, 56, 132, 302]. Thus, we investigate the RQ:

RQ5: How can we exploit an automatically populated RKG to enhance the task
of citation recommendation?

1.3 Contributions

The previous section has revealed several challenges and research questions that need to be
faced when constructing an RKG. In this section, we present our contributions that address
these research questions. Our five main contributions can be summarised as follows:
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1. Requirements Analysis for an ORKG: To address RQ1, we present literature-
related use cases of researchers that should be supported by an ORKG [7] (e.g. as-
sess the relevance of research papers, find related work, get recommended articles)
and their specific requirements for the underlying ontology (granularity and domain-
specialisation) and instance data (completeness and correctness). The requirements
analysis builds the foundation for this thesis and shall guide further research.

2. Multi-Task Learning for Sequential Sentence Classification: We present a
novel unified cross-domain multi-task learning approach for the task of sequential sen-
tence classification. Our approach addressesRQ2 by exploiting datasets from multiple
scientific domains with different structures and text types (e.g. cover only abstracts or
full papers, different sentence classes). Furthermore, to address RQ3, we present an
approach to classify sentences in research papers in a domain-independent manner.

3. Domain-Independent Information Extraction: To address RQ3, we propose a
domain-independent approach for scientific concept extraction and coreference resolu-
tion in ten different scientific domains from Science, Technology, and Medicine (STM).
Our information extraction approach utilises active learning and transfer learning
methods to reduce annotation costs (RQ2).

4. Cross-Domain Research Knowledge Graph: Using the above mentioned domain-
independent information extraction approach, we automatically populate an RKG
covering ten different scientific domains from over 55,000 abstracts of research papers
(RQ4). The resulting RKG interconnects research papers through scientific concepts.

5. Citation Recommendation via Knowledge Graphs: To demonstrate the use-
fulness of our automatically populated RKG (RQ5), for the task of citation recom-
mendation, we present a novel approach that can exploit such RKGs.

In the following, these contributions are described in more detail.

1.3.1 Requirements Analysis for an Open Research Knowledge Graph

As outlined in Section 1.2.1, the construction of an RKG is challenging and has several
conflicting requirements. To illuminate these challenges, we perform a requirements anal-
ysis. We present a set of seven main use cases focusing on the literature-related tasks of
scientists, namely get research field overview (#1), find related work (#2), assess relevance
of research papers (#3), extract relevant information from research papers (#4), get recom-
mended articles (#5), obtain deep understanding of a research paper (#6), and reproduce
results (#7).

For each use case, we elaborate requirements for the underlying ontology (i.e. granularity
and domain-specificness) and instance data (i.e. completeness and correctness). The iden-
tified use cases can be categorised into two groups: (1) The first group requires instance
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data with high correctness and rather fine-grained, domain-specific ontologies, and moder-
ate completeness is acceptable. This group of use cases requires manual or semi-automatic
approaches for KG construction. (2) The second group requires high completeness, but the
ontologies can be kept rather simple and domain-independent, and moderate correctness of
the instance data is sufficient. Thus, the construction of a KG for this group of use cases
should be accomplished with automatic approaches.

This thesis focuses on the second set of use cases, i.e. to assist researchers in assessing the
relevance of research papers (#3), finding related work (#2), and recommending appropriate
research papers (#5). In the following, we present contributions for machine learning tasks
that aim to assist these use cases.

1.3.2 Multi-Task Learning for Sequential Sentence Classification

To assess the relevance of a research paper, scientists usually skim through titles, abstracts,
introductions, and conclusions [2, 133, 278]. An organised presentation of the articles’ essen-
tial information would make this process more time-efficient. The task of sequential sentence
classification addresses this problem by classifying sentences in an article in categories like
research problem, used methods, or obtained results [68]. To target this problem, we present
the following contributions:

Unified Deep Learning Approach: Current approaches for sequential sentence classi-
fication are designed either for abstracts or full papers only. Typically, deep learning is used
for abstracts [54, 69, 100, 133, 295] whereas for full papers hand-crafted features and linear
models have been suggested [6, 11, 85, 174]. We propose a unified deep learning approach
that can be applied to various types of text with a different structure, e.g. abstracts as well
as full papers.

Cross-Domain Multi-Task Learning: Transfer learning enables the combination of
knowledge from multiple datasets to improve the classification performance and thus to
reduce annotation costs. However, the field lacks studies on transfer learning for sequential
sentence classification across domains [15, 46, 106, 168, 169, 178, 207]. For this purpose, we
introduce a novel multi-task learning framework for sequential sentence classification that
makes use of datasets from different scientific domains, with different annotation schemes,
that contain abstracts or full papers. For datasets of full papers, our approach significantly
outperforms the state of the art without any feature engineering, while being competitive
for datasets consisting of abstracts only.

Semi-Automatic Analysis of Semantic Relatedness of Classes: Multiple annota-
tion schemes have been developed for datasets from different scientific domains (e.g. [54, 68,
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85, 147, 175]) that consist of varying associated sentence classes. An analysis of semantic
relatedness of classes can help consolidate annotation schemes across domains. We pro-
pose a multi-task learning model to identify semantically related classes across annotation
schemes semi-automatically. In contrast to prior work [175], our approach does not require
the re-annotation of datasets with different annotation schemes. From the analysis of four
datasets, we derived a domain-independent consolidated annotation scheme and compiled
a domain-independent dataset. This allows for the classification of sentences in research
papers with generic classes across disciplines.

1.3.3 Domain-Independent Information Extraction

We introduce the novel task of domain-independent information extraction from research pa-
pers, which aims to extract scientific concepts from research papers in a domain-independent
manner. For this task, we present the following contributions:

Domain-Independent Extraction of Scientific Concepts: The extraction of sci-
entific concepts from research papers is a first vital step towards a fine-grained RKG (see
Section 2.4.2.2). However, most datasets focus on at most three scientific disciplines and
rather domain-specific concept types (e.g. [9, 53, 139, 178, 229]). We introduce a set of
generic scientific concepts that are relevant over ten domains in Science, Technology, and
Medicine (STM), and release an annotated dataset of papers from these domains. Our
experimental results with a state-of-the-art deep learning approach demonstrate that the
domain-independent model noticeably outperforms the domain-specific ones, which indi-
cates that the domain-independent model can generalise well across domains.

Active Learning for Scientific Concept Extraction: Active learning is an important
technique to determine the optimal set of sufficiently distinct instances during the annotation
of a training dataset [255]. Various studies [258, 259, 300] demonstrated that active learning
can help reducing annotation costs for various NLP tasks. The annotation of scientific text
is particularly costly since it demands expertise in the article’s domain [9, 92]. However, to
the best of our knowledge, active learning has not been applied to scientific text yet. We
demonstrate that active learning enables us to nearly halve the amount of required training
data on concept extraction from scientific text so that about five annotated abstracts per
domain serving as training data are sufficient to build a performant model.

Coreference Resolution in Multiple Domains: Coreference resolution is the task
of identifying mentions in a text which refer to the same entity or concept [117]. Most
corpora for coreference resolution in research papers are limited to only a single domain (e.g.
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biomedicine [58], artificial intelligence [178]). We extend our corpus for domain-independent
scientific concept extraction with coreference annotations that covers ten STM domains.

Transfer Learning for Coreference Resolution: Datasets for coreference resolution
in the general domain (e.g. news, magazines, etc.) are usually much larger than for the
scientific domain and therefore machine learning approaches trained on these large datasets
obtain impressive results (e.g. an F1 score of 79.6% for the OntoNotes 5.0 dataset [136]).
However, current approaches for coreference resolution in scientific texts have not exploited
these datasets yet [137, 170, 171, 178, 182]. We propose a sequential transfer learning
approach for coreference resolution that takes advantage of such datasets by first pre-training
a model with a large dataset from the general domain and fine-tuning the pre-trained model
on a (smaller) dataset from the scientific domain. Our experimental results demonstrate
that our approach noticeably outperforms the state-of-the-art baselines.

1.3.4 Cross-Domain Research Knowledge Graph

Using the above domain-independent information extraction approach, we automatically
populate a fine-grained RKG covering ten STM domains. The RKG interconnects research
papers through scientific concepts like materials, methods, and processes, and aims to sup-
port the find related work and get recommended articles use cases. We present the following
contributions:

Impact of Coreference Resolution on KG Population: Coreference resolution is
one of the main steps in the KG population pipeline [179, 226]. However, to date, it is not
clear to what extent coreference resolution influences the quality of the populated KG [291].
We present an evaluation procedure for the clustering aspect (i.e. clustering mentions across
documents to concept nodes) in the KG population pipeline and demonstrate that corefer-
ence resolution improves the quality of a populated KG significantly.

Automatically Populated KG from Multiple Domains: So far, automatically pop-
ulated RKGs that interconnect scientific concepts with research papers comprise only a
single domain (e.g. artificial intelligence [70], biomedicine [47]) so that an RKG covering
multiple scientific domains does not exist yet. Based on our annotated corpora for domain-
independent scientific concept extraction and coreference resolution, we have populated an
RKG from 55,485 abstracts of the ten investigated STM domains. We have shown that
the populated KG contains useful concepts and that every domain mostly uses its own
terminology.
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Chapter 3: Requirements Analysis for an Open Research Knowledge Graph (ORKG) 

Find related work Get recommended articles 

Chapter 5: Domain-Independent Extraction of 
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Knowledge Graphs 

Chapter 4: Sentence Classification using 
Cross-Domain Multi-Task Learning 

Assess relevance … 

Chapter 2: Foundations 

Chapter 1: Introduction 

Chapter 8: Conclusions and Future Work 

Figure 1.2: Structure of this thesis.

1.3.5 Citation Recommendation via Knowledge Graphs

Citation recommendation for research papers can help researchers improve the quality of
their work by finding or recommending relevant related work. Current approaches for the
task of citation recommendation primarily rely on the text of the papers and the citation
network [21, 40, 56, 132, 302]. We propose to exploit an additional source of information,
namely RKGs that interlink research papers based on mentioned scientific concepts. Based
on our automatically populated RKG, we show that the combination of information from
RKGs with existing state-of-the-art approaches for citation recommendation is beneficial.

1.4 Thesis Structure

Figure 1.2 shows the overall structure of this thesis and the dependencies between the
chapters. First, Chapter 2 introduces the fundamental technology used in this thesis and
gives an overview on Natural Language Processing (NLP) with deep learning approaches and
KGs. Then, Chapter 3 presents a comprehensive related work overview and analyses the
requirements for an ORKG. The outcome of this chapter is a set of use cases, data quality
requirements, and construction strategies for an ORKG. This thesis focuses on use cases that
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require automatic KG population approaches to achieve high completeness of the instance
data, namely assess relevance of research papers, find related work, and get recommended
articles. The subsequent chapters provide contributions for machine learning tasks that aim
to support these use cases. Chapter 4 addresses the task of sequential sentence classification
that can contribute to the use case assess relevance of research papers since it enables to
identify relevant sentences in research papers. Here, we propose a unified multi-task learning
approach that makes use of datasets from different scientific domains and varying structures.
The remaining chapters 5, 6, and 7 aim to support the use cases find related work and get
recommended articles. For this purpose, Chapter 5 presents an annotated corpus for the
novel task of domain-independent scientific concept extraction, which aims at automatically
extracting scientific concepts in a domain-independent manner. Furthermore, the chapter
proposes an active learning approach for this task. Based on this work, Chapter 6 extends
the annotated corpus with coreference annotations. This corpus is then used to populate
an RKG from multiple domains and evaluate the impact of coreference resolution on the
quality of the populated RKG. Finally, Chapter 7 proposes a novel approach for the task
of citation recommendation that exploits automatically populated RKGs. The approach is
evaluated with the RKG populated in the previous chapter. The last Chapter 8 concludes
this thesis, outlines limitations of our methods, and provides an outlook for potential areas
of future work.

1.5 List of Publications

This section provides an overview of the publications that have been published in the con-
text of this thesis. While I have been the main author of the papers that are the basis of
this thesis, these publications were joint work with other co-authors. Therefore, through-
out this thesis, the academic “we” is used. The keywords under My Contributions serve
to identify my contributions to the respective papers using the Contributor Roles Taxon-
omy (CRediT) [34].

Five of the publications (underlying this thesis) were published at conferences ranked
A* [29], A [28, 33], or B [30, 31] according to the Australian Computing Research & Educa-
tion (CORE)1 Conference Portal (source: CORE2021). Moreover, one paper [31] has been
selected as one of the best papers at the Theory and Practice of Digital Libraries (TPDL)
conferences in 2019 and 2020, and published as an extended article [32] in the International
Journal on Digital Libraries (IJDL). In the following, we outline the publications that are
part of this thesis.

The requirements analysis in Chapter 3 is based on the following two papers [31, 32]. The
journal paper [32] is an extended version of the conference paper [31].

1http://portal.core.edu.au/conf-ranks/
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• Arthur Brack, Anett Hoppe, Markus Stocker, Sören Auer, and Ralph Ewerth. “Re-
quirements Analysis for an Open Research Knowledge Graph”. In: Digital Libraries
for Open Knowledge - 24th International Conference on Theory and Practice of Digital
Libraries, TPDL 2020, Lyon, France, August 25-27, 2020, Proceedings. Ed. by Mark
M. Hall, Tanja Mercun, Thomas Risse, and Fabien Duchateau. Vol. 12246. Lecture
Notes in Computer Science. Springer, 2020, pp. 3–18. doi: 10.1007/978-3-030-549
56-5_1. url: https://doi.org/10.1007/978-3-030-54956-5_1 [31]

• Arthur Brack, Anett Hoppe, Markus Stocker, Sören Auer, and Ralph Ewerth. “Analysing
the requirements for an Open Research Knowledge Graph: use cases, quality require-
ments, and construction strategies”. In: Int. J. Digit. Libr. 23.1 (2022), pp. 33–55.
doi: 10.1007/s00799-021-00306-x. url: https://doi.org/10.1007/s00799-021
-00306-x [32]

Abstract: Current science communication has a number of drawbacks and bottle-
necks which have been subject of discussion lately: Among others, the rising number
of published articles makes it nearly impossible to get a full overview of the state of the
art in a certain field, or reproducibility is hampered by fixed-length, document-based
publications which normally cannot cover all details of a research work. Recently,
several initiatives have proposed knowledge graphs (KG) for organising scientific in-
formation as a solution to many of the current issues. The focus of these proposals is,
however, usually restricted to very specific use cases. In this paper, we aim to tran-
scend this limited perspective and present a comprehensive analysis of requirements
for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily
core tasks of a scientist, (b) establishing their consequential requirements for a KG-
based system, (c) identifying overlaps and specificities, and their coverage in current
solutions. As a result, we map necessary and desirable requirements for successful
KG-based science communication, derive implications, and outline possible solutions.

My Contributions: Conceptualisation, Methodology, Investigation, Resources,
Writing – original draft, Writing – review & editing, Visualisation, Project adminis-
tration

Chapter 4 presents a multi-task learning approach for sequential sentence classification and
is based on the following conference paper:

• Arthur Brack, Anett Hoppe, Pascal Buschermöhle, and Ralph Ewerth. “Cross-Domain
Multi-Task Learning for Sequential Sentence Classification in Research Papers”. In:
JCDL ’22: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in
2022, Cologne, Germany, June 20-24, 2022 (accepted for publication). ACM, 2022.
doi: 10.1145/3529372.3530922. url: https://doi.org/10.1145/3529372.353092
2 [29]
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Abstract: Sequential sentence classification deals with the categorisation of sentences
based on their content and context. Applied to scientific texts, it enables the auto-
matic structuring of research papers and the improvement of academic search engines.
However, previous work has not investigated the potential of transfer learning for sen-
tence classification across different scientific domains and the issue of different text
structure of full papers and abstracts. In this paper, we derive seven related research
questions and present several contributions to address them: First, we suggest a novel
uniform deep learning architecture and multi-task learning for cross-domain sequen-
tial sentence classification in scientific texts. Second, we tailor two common transfer
learning methods, sequential transfer learning and multi-task learning, to deal with
the challenges of the given task. Semantic relatedness of tasks is a prerequisite for
successful transfer learning of neural models. Consequently, our third contribution is
an approach to semi-automatically identify semantically related classes from different
annotation schemes and we present an analysis of four annotation schemes. Compre-
hensive experimental results indicate that models, which are trained on datasets from
different scientific domains, benefit from one another when using the proposed multi-
task learning architecture. We also report comparisons with several state-of-the-art
approaches. Our approach outperforms the state of the art on full paper datasets
significantly while being on par for datasets consisting of abstracts.

Source Code: https://github.com/arthurbra/sequential-sentence-classific
ation

My Contributions: Conceptualisation, Methodology, Software, Validation, Investi-
gation, Resources, Data Curation, Writing – original draft, Writing – review & editing,
Visualisation, Supervision, Project administration

Chapter 5 introduces the novel task of domain-independent scientific concept extraction and
is based on the following conference paper:

• Arthur Brack, Jennifer D’Souza, Anett Hoppe, Sören Auer, and Ralph Ewerth. “Do-
main-Independent Extraction of Scientific Concepts from Research Articles”. In: Ad-
vances in Information Retrieval - 42nd European Conference on IR Research, ECIR
2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part I. ed. by Joemon M.
Jose, Emine Yilmaz, João Magalhães, Pablo Castells, Nicola Ferro, Mário J. Silva,
and Flávio Martins. Vol. 12035. Lecture Notes in Computer Science. Springer, 2020,
pp. 251–266. doi: 10.1007/978-3-030-45439-5_17. url: https://doi.org/10.10
07/978-3-030-45439-5_17 [28]

Abstract: We examine the novel task of domain-independent scientific concept ex-
traction from abstracts of scholarly articles and present two contributions. First, we
suggest a set of generic scientific concepts that have been identified in a systematic
annotation process. This set of concepts is utilised to annotate a corpus of scien-

15

https://github.com/arthurbra/sequential-sentence-classification
https://github.com/arthurbra/sequential-sentence-classification
https://doi.org/10.1007/978-3-030-45439-5_17
https://doi.org/10.1007/978-3-030-45439-5_17
https://doi.org/10.1007/978-3-030-45439-5_17


1 Introduction

tific abstracts from 10 domains of Science, Technology and Medicine at the phrasal
level in a joint effort with domain experts. The resulting dataset is used in a set of
benchmark experiments to (a) provide baseline performance for this task, (b) examine
the transferability of concepts between domains. Second, we present a state-of-the-art
deep learning baseline. Further, we propose the active learning strategy for an optimal
selection of instances from among the various domains in our data. The experimental
results show that (1) a substantial agreement is achievable by non-experts after con-
sultation with domain experts, (2) the baseline system achieves a fairly high F1 score,
(3) active learning enables us to nearly halve the amount of required training data.

Source Code: https://gitlab.com/TIBHannover/orkg/orkg-nlp/tree/master/S
TM-corpus

My Contributions: Conceptualisation, Methodology, Software, Validation, Inves-
tigation, Resources, Writing – original draft, Writing – review & editing, Visualisation

Chapter 6 extends the task of domain-independent scientific concept extraction with the
task of coreference resolution, proposes and evaluates approaches for RKG population, and
populates an RKG from multiple domains. This chapter is based on the following conference
paper:

• Arthur Brack, Daniel Uwe Müller, Anett Hoppe, and Ralph Ewerth. “Coreference
Resolution in Research Papers from Multiple Domains”. In: Advances in Information
Retrieval - 43rd European Conference on IR Research, ECIR 2021, Virtual Event,
March 28 - April 1, 2021, Proceedings, Part I. ed. by Djoerd Hiemstra, Marie-Francine
Moens, Josiane Mothe, Raffaele Perego, Martin Potthast, and Fabrizio Sebastiani.
Vol. 12656. Lecture Notes in Computer Science. Springer, 2021, pp. 79–97. doi:
10.1007/978-3-030-72113-8_6. url: https://doi.org/10.1007/978-3-030-7211
3-8_6 [33]

Abstract: Coreference resolution is essential for automatic text understanding to
facilitate high-level information retrieval tasks such as text summarisation or ques-
tion answering. Previous work indicates that the performance of state-of-the-art ap-
proaches (e.g. based on BERT) noticeably declines when applied to scientific papers.
In this paper, we investigate the task of coreference resolution in research papers
and subsequent knowledge graph population. We present the following contributions:
(1) We annotate a corpus for coreference resolution that comprises 10 different sci-
entific disciplines from Science, Technology, and Medicine (STM); (2) We propose
transfer learning for automatic coreference resolution in research papers; (3) We anal-
yse the impact of coreference resolution on knowledge graph (KG) population; (4) We
release a research KG that is automatically populated from 55,485 papers in 10 STM
domains. Comprehensive experiments show the usefulness of the proposed approach.
Our transfer learning approach considerably outperforms state-of-the-art baselines on
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our corpus with an F1 score of 61.4 (+11.0), while the evaluation against a gold stan-
dard KG shows that coreference resolution improves the quality of the populated KG
significantly with an F1 score of 63.5 (+21.8).

Source Code: https://github.com/arthurbra/stm-coref

My Contributions: Conceptualisation, Methodology, Software, Validation, Investi-
gation, Resources, Data Curation, Writing – original draft, Writing – review & editing,
Visualisation, Supervision, Project administration

The following paper was published during my PhD study and extends our annotated corpus
of paper [28] with the task of entity linking. This paper is not part of this thesis. How-
ever, the extended corpus is used to evaluate the impact of coreference resolution on KG
population in Chapter 6.

• Jennifer D’Souza, Anett Hoppe, Arthur Brack, Mohamad Yaser Jaradeh, Sören Auer,
and Ralph Ewerth. “The STEM-ECR Dataset: Grounding Scientific Entity References
in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources”.
In: Proceedings of The 12th Language Resources and Evaluation Conference, LREC
2020, Marseille, France, May 11-16, 2020. Ed. by Nicoletta Calzolari, Frédéric Béchet,
Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi,
Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asunción Moreno,
Jan Odijk, and Stelios Piperidis. European Language Resources Association, 2020,
pp. 2192–2203. url: https://www.aclweb.org/anthology/2020.lrec-1.268/ [61]

Abstract: We introduce the STEM (Science, Technology, Engineering, and Medicine)
Dataset for Scientific Entity Extraction, Classification, and Resolution, version 1.0
(STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a
benchmark for the evaluation of scientific entity extraction, classification, and reso-
lution tasks in a domain-independent fashion. It comprises abstracts in 10 STEM
disciplines that were found to be the most prolific ones on a major publishing plat-
form. We describe the creation of such a multidisciplinary corpus and highlight the
obtained findings in terms of the following features: 1) a generic conceptual formal-
ism for scientific entities in a multidisciplinary scientific context; 2) the feasibility of
the domain-independent human annotation of scientific entities under such a generic
formalism; 3) a performance benchmark obtainable for automatic extraction of multi-
disciplinary scientific entities using BERT-based neural models; 4) a delineated 3-step
entity resolution procedure for human annotation of the scientific entities via ency-
clopedic entity linking and lexicographic word sense disambiguation; and 5) human
evaluations of Babelfy returned encyclopedic links and lexicographic senses for our
entities. Our findings cumulatively indicate that human annotation and automatic
learning of multidisciplinary scientific concepts as well as their semantic disambigua-
tion in a wide-ranging setting as STEM is reasonable.
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Source Code: https://gitlab.com/TIBHannover/orkg/orkg-nlp/-/tree/master
/STEM-ECR-v1.0

My Contributions: Software, Investigation

The approach for citation recommendation via KGs presented in Chapter 7 is based on the
following conference paper:

• Arthur Brack, Anett Hoppe, and Ralph Ewerth. “Citation Recommendation for Re-
search Papers via Knowledge Graphs”. In: Linking Theory and Practice of Digital
Libraries - 25th International Conference on Theory and Practice of Digital Libraries,
TPDL 2021, Virtual Event, September 13-17, 2021, Proceedings. Ed. by Gerd Berget,
Mark Michael Hall, Daniel Brenn, and Sanna Kumpulainen. Vol. 12866. Lecture
Notes in Computer Science. Springer, 2021, pp. 165–174. doi: 10.1007/978-3-030-
86324-1_20. url: https://doi.org/10.1007/978-3-030-86324-1_20 [30]

Abstract: Citation recommendation for research papers is a valuable task that can
help researchers improve the quality of their work by suggesting relevant related work.
Current approaches for this task rely primarily on the text of the papers and the
citation network. In this paper, we propose to exploit an additional source of informa-
tion, namely research knowledge graphs (KGs) that interlink research papers based on
mentioned scientific concepts. Our experimental results demonstrate that the combi-
nation of information from research KGs with existing state-of-the-art approaches is
beneficial. Experimental results are presented for the STM-KG (STM: Science, Tech-
nology, Medicine), which is an automatically populated knowledge graph based on
the scientific concepts extracted from papers of ten domains. The proposed approach
outperforms the state of the art with a mean average precision of 20.6% (+0.8) for the
top-50 retrieved results.

Source Code: https://github.com/arthurbra/citation-recommendation-kg

My Contributions: Conceptualisation, Methodology, Software, Validation, Investi-
gation, Resources, Data Curation, Writing – original draft, Writing – review & editing,
Visualisation, Supervision, Project administration

♦♦♦

This chapter has motivated the topic of this thesis, outlined the addressed research challenges
and research questions, and summarised its contributions. The next chapter introduces the
foundations of this thesis, namely Natural Language Processing (NLP) and KGs.

18

https://gitlab.com/TIBHannover/orkg/orkg-nlp/-/tree/master/STEM-ECR-v1.0
https://gitlab.com/TIBHannover/orkg/orkg-nlp/-/tree/master/STEM-ECR-v1.0
https://doi.org/10.1007/978-3-030-86324-1_20
https://doi.org/10.1007/978-3-030-86324-1_20
https://doi.org/10.1007/978-3-030-86324-1_20
https://github.com/arthurbra/citation-recommendation-kg


2 Foundations

This thesis deals with information extraction from scientific papers for Research Knowledge
Graph (RKG) population. In this chapter, we introduce the foundations for this thesis,
namely selected state-of-the-art approaches for information extraction from text and the
construction of a KG. Since current approaches for Natural Language Processing (NLP) are
based on artificial neural networks, Section 2.1 first introduces the basics of them. Then,
Section 2.2 describes neural network architectures for sequence processing that are used for
various NLP tasks, namely Recurrent Neural Networks (RNNs) and the transformer archi-
tecture. The building blocks of these architectures form the foundation for the approaches
proposed in this thesis. Subsequently, Section 2.3 presents text representation approaches
using word embeddings that employ neural networks and architectures for sequence pro-
cessing. Word embeddings are utilised in all proposed approaches of this thesis. Knowledge
Graphs and the tasks involved to construct them automatically are introduced in Section 2.4.
Finally, Section 2.5 describes evaluation methods and metrics that are used to evaluate the
approaches presented in this thesis. We refer to the notation chapter at the beginning of
this thesis that describes the mathematical formulas used in this thesis.

2.1 Basics of Artificial Neural Networks

The following description of neural networks is mainly based on the book of Jurafsky and
Martin [138] unless otherwise stated. Artificial neural networks (abbreviated as neural net-
works) are a set of machine learning algorithms that are inspired by the brain’s structure.
The origin of them lies in the McCulloch-Pitts neuron [190], which was proposed in 1943 as
a simplified model for the human neuron. Many current state-of-the-art approaches in NLP
and other domains such as computer vision are based on neural networks [101].

A neural network is a function ŷ = f(x) that takes as input a vector x and outputs
(or predicts) a scalar ŷ or an output vector ŷ [138]. The neural network consists of small
computation units (called neurons) whereas each neuron takes a vector as input and produces
a single output value. The output values of the neurons can serve as inputs to further neurons
that enable the neural network to approximate complex non-linear functions. Each neuron
has a set of parameters (also called weights) used to compute the output value based on
the input values. The values of these parameters are determined during the neural network
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Figure 2.1: Illustration of a neural unit. It takes as input the values x1, ...,xn and calculates
a weighted sum z using the weights w1, ...,wn and the bias value b. The sum z
is passed to an activation function g that forms the final output a of the neuron.
Illustration is based on [138].

training on a given set of training examples. Each training example consists of the input
vector and an expected output vector (also called ground truth and referred to as y or
y). In the following, we describe neural units (Section 2.1.1), feed-forward neural networks
(Section 2.1.2), and the training procedure (Section 2.1.3) of neural networks in more detail.

2.1.1 Neural Units

Neural units (also called neurons) are the building blocks of neural networks and illus-
trated in Figure 2.1 [138]. It takes a vector of n values x = (x1, ...,xn)ᵀ as input, performs
computations on them, and produces a single output value a ∈ R. First, the neuron cal-
culates a weighted sum z over the input values using a linear function with the weights
w = (w1, ...,wn)ᵀ and the bias value b:

z =
n∑
i=1

wixi + b = wᵀx + b (2.1)

Then, the weighted sum z is passed to a non-linear activation function g(.) to produce the
final output a of the neuron.

a = g(z) (2.2)

Since neural units are composed to form a neural network such that the outputs of the
units are used as input to further units, activation functions enable the network to learn
complex non-linear functions [138]. Without activation functions, neural networks would
be the composition of multiple linear functions, forming a linear function again. Figure 2.2
illustrates the most common activation functions used in neural units: sigmoid, hyperbolic
tangent (tanh), and Rectified Linear Unit (ReLU). These activation functions have different
useful properties [138]: For instance, the sigmoid function maps the input into the range [0, 1]

that is useful in binary classification tasks. Furthermore, outliers are squashed towards 0 or 1.
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Figure 2.2: Common activation functions (blue lines) and their derivatives (red lines),
namely sigmoid (σ), hyperbolic tangent (tanh), and Rectified Linear Unit
(ReLU).

The tanh function maps the input values into the range [−1, 1] so that the mean of the output
values are more centred around zero, which helps the network to learn easier. However, for
very large and very low input values, the results of sigmoid and tanh are saturated so
that the gradients become very small, resulting in the vanishing gradient problem. In the
vanishing gradient problem, the gradients become smaller and smaller so that the neural
network cannot learn (see Section 2.1.3.3 for further details). The ReLU activation function
mitigates this problem since for high input values, the gradient is always 1.

2.1.2 Feed-Forward Neural Networks

A feed-forward neural network consists of an input layer, multiple hidden layers, and an
output layer [138]. The input layer represents the input values x = (x1, ...,xnx)ᵀ and the
output layer represents the last layer that computes the final output value ŷ = (ŷ1, ..., ŷny)ᵀ

that may be a single scalar (e.g. in regression tasks), or a vector representing a probabil-
ity distribution such as in classification tasks. Figure 2.3 illustrates a feed-forward neural
network. In the following, we describe the hidden and output layers in more detail.
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Figure 2.3: Illustration of a fully-connected feed-forward neural network consisting of the
input layer (yellow), the hidden layers (blue), and the output layer (red). A
circle represents a neural unit, and the matrix W [l] and vector b[l] with 1 ≤ l ≤ 6
represent the parameters of the corresponding layers. Illustration based on [138].

Hidden Layer: Hidden layers are the core of a neural network that consist of multiple
neural units (also called hidden units) [138]. The hidden layers can be composed to form
a fully-connected feed-forward neural network such that each unit in a layer takes as input
the outputs from all the units in the previous layer. A weight matrix and a bias vector can
represent the parameters of all units in a hidden layer, which enables calculating all output
values of a layer using efficient matrix multiplication. More formally, when a[0] = x, the
output vector a[l] of a hidden layer l is computed recursively as follows:

z[l] = W[l]a[l−1] + b[l] (2.3)

a[l] = g[l](z[l]) (2.4)

Here, the weight matrix W[l] ∈ Rnl×nl−1 and the bias vector b[l] ∈ Rnl represent the
parameters of the l-th layer, nl denotes the number of neural units in layer l, and g[l](.) is
the activation function in layer l.

Output Layer: The output layer is the last layer that produces the final output value
ŷ or vector ŷ of the neural network [138]. Depending on the task, various output layer
types exist. For instance, in a binary classification task, the output layer consists of a single
neuron that outputs a probability distribution in the range 0 ≤ ŷ ≤ 1 (e.g. how likely is
a given email a spam email). Since the output layers and the associated loss functions are
coupled, they are described in Section 2.1.3.1 in more detail.
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2.1.3 Training Neural Networks

To determine the values of the parameters of the neural network, we first need a training
set X = ((x(1),y(1)), ..., (x(m),y(m))) of m training examples each consisting of the input
x(i) and the expected output y(i) (also called ground truth) [138]. Now, a neural network is
defined as a function ŷ = f(x,Θ) that takes as input a training sample x and the parameters
of the network Θ = {W[i],b[i]|1 ≤ i ≤ L} with L layers, and outputs a vector ŷ.

2.1.3.1 Loss Functions

Given the training set X and the neural network f(x,Θ), the goal of the training procedure
is to learn the parameters Θ such that for each training sample x(i) the predicted output
ŷ(i) is as close as possible to the expected output y(i) [138]. The difference between the
predicted and the expected output is denoted as the loss L(ŷ(i),y(i)). The loss function
should return a value close to zero when the predicted and expected output values are close
to each other, and a higher value otherwise. More formally, let J(Θ) be the function of the
network parameters Θ that is the loss averaged over all training examples:

J(Θ) =
1

m

m∑
i=1

L(f(x(i),Θ),y(i)) (2.5)

Now, the objective is to find the parameter values Θ̂ at which J(Θ̂) attains a minimum:

Θ̂ = arg min
Θ

J(Θ) (2.6)

Depending on the task, different output layers and loss functions are required. Since this
thesis deals with classification tasks, in the following, we describe the corresponding output
layers and loss functions in more detail.

Binary Classification: The output layer in a binary classification task consists of a single
neuron with the sigmoid activation function that outputs a value 0 ≤ ŷ ≤ 1 [101]. The
expected output y ∈ {0, 1} is encoded as a binary value, e.g. in a spam-email classification
task, value 1 indicates a spam email and 0 a non-spam email. As a loss function, Binary
Cross-Entropy (BCE) can be used:

LBCE(ŷ, y) = −y log(ŷ) + (1− y) log(1− ŷ) (2.7)

Thus, when the predicted and the expected output are close to each other, the binary cross-
entropy loss function returns a value close to zero. Otherwise, when the predicted and
expected output differ, the loss increases rapidly.
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Multiclass Classification: In a multiclass classification task with more than two classes
(e.g. categorise news by genre such as entertainment, sports, politics, etc.), the output
layer produces a probability distribution over the set of classes C where k = |C| is the
number of classes [101]. For this purpose, the output layer consists of k neurons without an
activation function that produces a vector of values (z1, ..., zk)

ᵀ. Each value zi represents
an unnormalised score for a class (the higher the score, the more probable the class). Then,
the softmax function is used to obtain a probability distribution:

ŷi = softmax(zi) =
exp(zi)∑k
j=1 exp(zj)

(2.8)

Here, each value ŷi is in the range of [0, 1] and all the values sum up to 1. Consequently, ŷi
represents the probability of the input vector belonging to class i. Thus, the class with the
highest probability is the predicted output of the neural network.

The expected output is encoded as a one-hot vector onehot(ci) ∈ Rk for a class ci ∈ C
that is defined as a vector of dimension k (i.e. the number of classes) in which the i-th
component equals 1 and all remaining components are 0 [138]. So, the one-hot vector for
class ci indicates that the expected probability for class ci is 1 and all other classes 0.
As loss function, the Cross-Entropy (CE) loss is used as the generalisation of the Binary
Cross-Entropy (BCE) loss function where yi ∈ {0, 1} and 0 ≤ ŷi ≤ 1:

Lce(ŷ,y) =

k∑
i=1

−yi log(ŷi) (2.9)

Hence, the output of the cross-entropy loss is the logarithm of the predicted probability
corresponding to the expected class. When the predicted probability for the expected class
is high, then the loss is close to zero, otherwise, when the predicted probability for the
expected class is low, then the loss becomes a large value.

2.1.3.2 Gradient Descent

The function J(Θ) in Equation 2.6 is a function of the network parameters Θ and the
objective is to minimise this function. Gradient descent is a popular method that finds
a minimum of a differentiable function by taking repeated steps in the opposite direction
of the function’s gradient at the current point [138]. The parameters of the network are
first initialised with random values or with values of a pre-trained model (e.g. in a transfer
learning scenario, see Section 4.2.2 for further details). Then, the parameters wi ∈ Θ are
updated iteratively with a specified learning rate η ∈ R according to the following equation:

wi ← wi + η
∂J(Θ)

∂wi
(2.10)
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Since a neural network is a composition of basic differentiable functions, the partial deriva-
tives ∂J(Θ)

∂wi
can be computed efficiently with the backpropagation algorithm [240], that ex-

ploits the chain rule in calculus.

To train a neural network with many parameters and layers is a non-convex optimisation
problem [138]. Therefore, the gradient descent algorithm can, for instance, be stuck in local
minima or fail to converge. Adaptive learning rate algorithms such as Adaptive Moment
Estimation (ADAM) [148] try to mitigate such problems. Furthermore, the computation of
the loss requires a lot of memory and computation resources when the training set has many
examples. To solve this, the loss can also be calculated on mini-batches with a few (e.g. 32)
random training examples, which is also called mini-batch training [138].

2.1.3.3 Further Techniques for Training

In this section, we introduce further important techniques for training neural networks.

Regularisation: Neural networks are prone to overfitting since they usually have many
parameters [138]. In overfitting, the neural network “memorises” the training data (i.e.
leading to a very low loss during training) and thus cannot generalise sufficiently to unseen
data. To avoid overfitting, various regularisation techniques have been proposed that can be
applied during training. The most popular regularisation techniques are the following [101]:
(1) L2 regularisation that encourages the network to keep the learned parameter values small,
and (2) dropout in which some units and their connections are dropped during training.

Vanishing and Exploding Gradients: Additionally, deep neural networks consisting
of many hidden layers can suffer from exploding gradients or vanishing gradients, i.e. the
gradients can become very large or very small [138]. The reason for this is that the derivative
of a composed function is a product of derivatives. For instance, if the neural network consists
of many layers, the product may consist of many factors. Small factors multiplied with each
other become even smaller, large factors multiplied with each other become even larger.
Small gradients slow down the training and large gradients can lead to numerical overflows.
Exploding gradients can be solved via gradient clipping [209], i.e. the length of the gradients
is truncated. To address the vanishing gradients problem, residual connections [112] between
layers can be introduced to enable the gradients to flow through layers directly without
passing non-linear activation functions. A further technique is batch normalisation [128]
where the input vectors to a layer are standardised for each mini-batch so that values have
the mean zero and a standard deviation of one, whereas in layer normalisation [10] the input
vectors to a layer are normalised for each training sample.

25



2 Foundations

Hyperparameter Tuning: Furthermore, there are various hyperparameters that cannot
be learned with gradient descent. Hyperparameters are chosen by the algorithm designer,
such as the number of hidden layers, number of neurons in each layer, activation functions,
learning rate, or regularisation techniques [138]. To enable hyperparameter tuning, we need
a further set of annotated examples, called validation set. First, the training set is used to
train neural network models with different hyperparameters, and for each trained model,
the loss on the validation set is computed. Finally, the model with the lowest loss on the
validation set is chosen for prediction.

2.2 Neural Network Architectures for Sequence Processing

In many NLP tasks, we require to process sequential data where the input and output
length can vary. For instance, in the English-to-German machine translation task [283], the
input is a sequence of words in English, and the output is a sequence of words in German.
Another example is part-of-speech tagging [213], where the input is a sequence of words,
and the output is a sequence of classes where each class denotes the part-of-speech of the
word (e.g. noun, verb). However, classic feed-forward neural networks, as introduced in
Section 2.1 expect input and output vectors of a fixed size. In the following, we introduce
Recurrent Neural Networks (RNNs) and the transformer architecture. Both approaches
can process a sequence of input vectors (x1, ...,xτx) (e.g. sequence of words) and produce
an output sequence (ŷ1, ..., ŷτy) (e.g. sequence of words or classes). Here, τx denotes the
length of the input sequence and τy the length of the output sequence. For approaches
to represent words as vectors, we refer to Section 2.3. The presented architectures in this
section form the basis for the proposed approaches of this thesis, namely for the tasks of
sequential sentence classification (Chapter 4), scientific concept extraction (Chapter 5), and
coreference resolution (Chapter 6). The following descriptions of RNNs and the transformer
architecture are mainly based on Jurafsky and Martin [138] unless otherwise stated.

2.2.1 Recurrent Neural Networks (RNNs)

As depicted in Figure 2.4, an RNN processes the input data sequentially, i.e. at each time
step t ranging from 1 to τx an RNN takes as input the value xt and the previous hidden
state ht−1 of the RNN, and produces a new hidden state ht [138]. The previous hidden state
ht−1 encodes information about the input data until time step t−1 and thus represents the
“memory” of the RNN. More formally, an RNN is defined recursively as follows while the
initial hidden state h0 is a zero vector:

ht = rnn(ht−1,xt) (2.11)
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Figure 2.4: Illustration of an RNN that takes as input the sequence (x1, ...,xτx) and pro-
duces the output sequence (ŷ1, ..., ŷτx) based on the hidden states (h1, ...,hτx).
Illustration is based on [138].

The function rnn corresponds to a neural unit and can use any non-linear activation function,
for instance:

rnn(ht−1,xt) = tanh(Wht−1 + Uxt + b) (2.12)

Here, W and U are the weight matrices and b is the bias vector.

2.2.1.1 Common RNN Architectures

Figure 2.5 shows four popular RNN architectures and their typical use cases in NLP tasks
[138, 143]. The architectures depend mainly on the expected input τx and output length
τy. Depending on the architectures, different approaches are used to calculate the output
sequence (ŷ1, ..., ŷτy). Please note, that in the following, we describe the forward pass of
RNNs during the training phase. The generation of the output sequence in the prediction
phase is described in Section 2.2.1.4. Furthermore, we consider only classification tasks where
the elements of the output sequence represent categorical data such as words or classes. We
refer to Section 2.3 on how to represent words as vectors. Next, we describe approaches to
compute the output sequence [138]:

1. Many-to-one: Here, we have only one output vector. This architecture is used in text
classification tasks such as spam email classification. The output is computed using
the last hidden state hτx using softmax (see Equation 2.8):

ŷ = softmax(Vhτx + c) (2.13)

Here, V is the weight matrix and c is a bias vector.

2. Many-to-many with τx = τy: In this architecture, we have an output value for each
input value, such as in part-of-speech tagging or named entity recognition. The out-
put value can be computed at each time step t ranging from 1 to τx based on the
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Figure 2.5: RNN architectures (from left to right): (a) many to one with τy = 1 (e.g. doc-
ument classification [298]), (b) many to many with τx = τy (e.g. part-of-speech
tagging [213]), (c) one to many with τx = 1, τy ≥ 1 (e.g. text generation [37]),
and (d) many to many with τx 6= τy (e.g. machine translation [283]). Each
rectangle is a vector and arrows represent functions (e.g. matrix multiplication).
Input vectors are in red, output vectors are in blue, and green vectors hold the
RNN’s hidden state. Illustration is based on [143].

corresponding hidden state ht using softmax (see Equation 2.8):

ŷt = softmax(Vht + c) (2.14)

3. One-to-many : Here, we have only one input value and multiple output values. This
architecture is used to generate output sequences, for example, in text or music gen-
eration. To compute the hidden states, the input values xt with t > 1 correspond to
the previously expected outputs yt−1 and the output ŷt is computed using softmax:

y0 = x1 (2.15)

ht = rnnone−to−many(ht−1,yt−1) (2.16)

ŷt = softmax(Vht + c) (2.17)

4. Many-to-many with τx 6= τy: This architecture is also called sequence-to-sequence
architecture. The input and output length can differ as it is the case in machine
translation. Although a single RNN can be used to accomplish this, Cho et al. [49]
proposed an improved architecture that consists of two separate RNNs, namely an
encoder and a decoder. An encoder first encodes the entire input sequence into a
summary vector c = hτx that is the last hidden state of the encoder, and a decoder
generates the output sequence using that summary vector. At each time step t ranging
from 1 to τy, the decoder produces a new decoder hidden state st based on the previous
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hidden state st−1, the previous expected output yt−1, and the summary vector c. The
output ŷt is also computed using softmax:

st = rnndecoder(st−1,yt−1, c) (2.18)

ŷt = softmax(Vht + c) (2.19)

2.2.1.2 Composing RNNs

Recurrent Neural Networks can be further composed in different ways to enable solving
complex tasks [138].

Left-to-Right and Right-to-Left RNNs: As introduced above, an RNN processes the
input data from left to right. However, for some tasks, it is better to process the data from
right to left (e.g. for the Arabic language). Such RNNs are called left-to-right respective
right-to-left RNNs [138].

Bidirectional RNNs: In tasks such as Named Entity Recognition (NER) [183] it is
important to consider the whole context within a sentence to predict the class for a single
word [138]. For instance, a left-to-right RNN might not recognise the person name “Mercedes
Benz” in the sentence “Mercedes Benz is a nice woman” since “Mercedes Benz” mainly refers
to an automotive brand. To address this issue, a Bidirectional Recurrent Neural Network (Bi-
RNN) can be used that consists of a left-to-right and a right-to-left RNN. The output ŷt of
a Bi-RNN is the concatenation of both hidden states at time step t as in Equation 2.14.

Stacked RNNs: Stacked RNNs consist of multiple RNNs where the output hidden states
of an RNN serve as the input for a subsequent RNN [138]. Bi-RNNs can also be stacked in
the same way. Stacking enables the model to learn representations at initial layers that can
serve as useful abstractions for subsequent layers.

2.2.1.3 Training RNNs

In the following, we describe the loss function for RNNs and introduce gated RNNs.

Loss Function: Given the ground truth output sequence (y1, ...,yτy) and the predicted
sequence (ŷ1, ..., ŷτy) for a single training example, the loss function L(.) of all time steps
is defined based on the loss (e.g. cross-entropy) at every time step as follows [138]:

L((y1, ...,yτy), (ŷ1, ..., ŷτy)) =
1

τy

τy∑
t=1

L(yt, ŷt) (2.20)
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Thus, RNNs can be trained in the same way as neural networks (see Section 2.1.3).

Gated RNNs: An RNN, as introduced in Equation 2.12, is not used in this form in
practice since during training, it suffers from exploding gradients and vanishing gradients
(see Section 2.1.3.3), especially for long input or output sequences [138]. To resolve these
problems, techniques presented in Section 2.1.3 can also be applied to RNNs. Additionally,
the RNN types Gated Recurrent Unit (GRU) [50] and Long Short-Term Memory (LSTM)
[116] address the vanishing gradient problem using “gates” that allow gradients to be back-
propagated unchanged.

2.2.1.4 Prediction of the Output Sequence

For the prediction of the output sequence in a classification task, we are usually interested in
the output sequence that has the highest conditional joint probability P (y1, ...,yτy |x1, ...,xτx).
Depending on the output length τy, various approaches exist [138]:

• Case τy = 1: When we have a single output vector, the class in yτx with the highest
probability can be used as prediction.

• Case τy ≥ 1: When we have a sequence of output vectors, various strategies exist to
generate the output sequence:

1. Greedy approach: For each output step t, take in yt the class with the highest
probability. However, this strategy may not yield the “best” output sequence
since the decision for the actual class at each output step is independent of the
previous decisions.

2. Viterbi algorithm: For the case τx = τy and when the number of classes is quite
low (e.g. in named entity recognition), a Conditional Random Field (CRF) [163]
can be used to generate the optimal output sequence using the Vitebi algorithm
[88]. A CRF is introduced in Section 4.3.1 in more detail.

3. Beam search: For the case τx 6= τy or when the number of output classes is
high, the beam search strategy can be used to estimate the optimal output se-
quence [89]. It generates the output for each time step from left to right while
keeping a fixed number (beam size) of active candidates at each time step. This
enables the identification of the most promising output paths by their cumulative
likelihood.

2.2.2 Transformer Architecture

RNNs can be used to realise many different NLP tasks and are widely used. However, due to
their recurrent nature, RNNs process the input sequence sequentially so that the processing
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Figure 2.6: Illustration of a transformer block and its layers (based on [138]).

cannot be parallelised [138]. Furthermore, RNNs suffer from vanishing gradients due to
recurrent connections, which makes them difficult to train [116].

To mitigate the problems of RNNs, Vaswani et al. [283] introduced the transformer archi-
tecture. As described in Jurafsky and Martin [138], a transformer encodes an input sequence
(x1, ...,xτx) to a sequence of representations (h1, ...,hτx) of the same length. A transformer
is a stack of N transformer blocks consisting of linear layers, feed-forward neural networks,
residual connections [112], and layer normalisation layers [10]. Figure 2.6 illustrates a trans-
former block. However, the key innovation of transformers is the use of self-attention layers
that allow the model to focus on important parts of the input sequence depending on the
context without the need to process the input sequence sequentially [138]. This enables
training parallelisation and allows the model to learn long-range dependencies within the
input sequence. Therefore, using the transformer, models can be trained on larger datasets
with less training time than with RNNs.

It should be mentioned, that the transformer architecture introduced by Vaswani et
al. [283] has been proposed for sequence-to-sequence tasks (i.e. machine translation) and
consists of two components, an encoder and a decoder. Similarly to RNNs, an encoder en-
codes the input sequence, and a decoder generates the output sequence (see Section 2.2.1.1).
Both components are similar. However, since this thesis only relies on the encoder (see
Section 2.3.4.2), we focus here on the description of the transformer encoder and refer to
Vaswani et al. [283], who also describe the specifics of the decoder. In the following, we in-
troduce the self-attention mechanism and positional encodings. The training and prediction
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Figure 2.7: Illustration of the self-attention distributions of the weights for the word “it” in
two different sentences. Illustration is from [280].

of transformer-based models can be performed similarly to RNNs (see Sections 2.2.1.3 and
2.2.1.4, respectively).

2.2.2.1 Self-Attention

Conceptually, self-attention computes a weighted sum over all input elements (x1, ...,xτx)

to obtain a hidden representation hi for the i-th input element [138]:

hi =

τx∑
j=1

αi,jxj (2.21)

The weight αi,j ∈ R represents a comparison score between the i-th and the j-th input
element, i.e. how relevant is the j-th element for the current element i [138]. The weights are
computed using a score function (see below) whose parameters are learned during training.
Figure 2.7 shows the weight distributions for the word “it” of a self-attention layer in two
example sentences: In the first sentence, the word “animal” has a high weight for the pronoun
“it” and in the second sentence, the word “street”.

Various approaches were proposed to calculate the weights αi,j [283]. The transformer
uses the scaled dot-product attention mechanism that is described below. A self-attention
layer uses three weight matrices WQ,WK, and WV whose parameters are learned during
training. These weight matrices are used to compute linear transformations of the input
values [138]:

qi = WQxi; ki = WKxi; vi = WVxi (2.22)

32



2.2 Neural Network Architectures for Sequence Processing

The projections qi,ki, and vi stand for query, key, and value. A query represents the current
focus of attention i.e. the current element. The key projections are compared against the
query using the dot-product to calculate unnormalised comparison scores between the query
and the keys [138]:

score(xi,xj) =
qi · kj√

d
(2.23)

Here, d is the dimension of keys, values, and queries and the score is divided by the scaling
factor

√
d to avoid small gradients [283]. These scores are then normalised using softmax to

obtain the final weights αi,j [138]:

αi,j =
exp(score(xi,xj))∑τx
k=1 exp(score(xi,xk))

(2.24)

Instead of using the input representations directly as in Equation 2.21, the transformer uses
the value projections to compute the weighted sum over the input sequence [138]:

hi =

τx∑
j=1

αi,jvj (2.25)

In a self-attention layer, in contrast to RNNs, each hidden representation hi can be com-
puted independently of all other hidden representations allowing to parallelise the computa-
tions via matrix multiplications [138]. Besides, the path length from the current element to
all other elements - independent of its position - is always constant. Thus, the transformer
can learn long-range dependencies between the input elements better than RNNs [138].

A transformer block employs multiple self-attention layers (called multi-head attention
layer) that enable the model to learn different kinds of relationships between the words
in a sentence (e.g. syntactic or semantic relationships) [138]. A self-attention layer in a
multi-head attention layer is also called a head. The outputs of the heads are concatenated
and projected with a linear layer to the dimension of the inputs. Such a projection to the
original dimension of the input elements enables to utilise residual connections [112].

2.2.2.2 Positional Embedding

A self-attention layer cannot make use of the order of the input elements since it just
computes a weighted sum over the input elements irrespective of their order. Therefore, the
transformer adds positional embeddings to the input vectors that can capture the absolute
and relative position of an input element [283]. A positional embedding can be computed
with a static function that maps an integer to a vector. For this purpose, the transformer
uses a combination of sine and cosine functions [283].
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2.3 Text Representation using Word Embeddings

In the previous Section 2.2, we have introduced neural network architectures for sequence
processing that can be applied to NLP tasks. However, neural networks can only process
data encoded as vectors. Since this thesis deals with information extraction from scientific
text, we need to encode text into vectors. This section first outlines the preprocessing
of text (Section 2.3.1) and one-hot encoding for text representation (Section 2.3.2). The
subsequent Section 2.3.3 and Section 2.3.4 present approaches for word embeddings. The
basic idea of word embeddings is to represent words as low-dimensional dense vectors such
that the similarity between vectors of words with similar meaning should be high, and
low otherwise [138]. This allows machine learning models, for instance, to generalise well
with less training data since points close to each other are more likely to share the same
label. Word embeddings can be learned automatically from a large text corpus [138]. The
assumption is that words occurring in similar contexts tend to have similar meanings, also
known as the distributional hypothesis [109]. Word embeddings are a fundamental part of
all proposed approaches in this thesis. The following descriptions of text representation
approaches are based on the book of Jurafsky and Martin [138] unless otherwise stated.

2.3.1 Text Preprocessing

In the following, we introduce the tasks involved in text preprocessing.

Tokenisation: Tokenisation is the task of segmenting a text into a sequence of to-
kens [138]. A token usually represents a word or punctuation. The set of all unique tokens
in a (large) text corpus is also called the vocabulary that is the basis for representing tokens
as vectors. However, a fixed vocabulary of words has the drawback that out-of-vocabulary
words may exist. These are words in a new text that were not present in the original text
corpus used to build the vocabulary. To resolve this issue, the vocabulary can also be built
upon single characters or subwords. Current state-of-the-art approaches for word representa-
tions utilise subwords as the basic unit of the vocabulary [37, 71], which can be determined
automatically with algorithms such as byte-pair encoding [254], unigram language mod-
elling [160], and word piece tokenisation [251]. Thus, subword-tokenisation enables a good
balance between the flexibility of a character-based and a word-based vocabulary [138].

Text Normalisation: Text normalisation is the task of putting tokens into a standard
format to help to reduce the vocabulary size [138]. This can include lemmatising words
to determine the root of words (e.g. “ran” and “running” have the same root “run”) using
dictionaries or stemming algorithms such as the Porter stemmer [220]. Another technique is
the removal of stop words that represent unimportant words. However, text normalisation
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has the drawback of losing some information (e.g. verb tense in lemmatisation), which might
be important in downstream tasks.

Sentence Segmentation: In sentence segmentation, the text is segmented into sentences
by punctuation marks like periods, question marks, and exclamation points [138]. Since
punctuation marks might be ambiguous (e.g. an abbreviation can also end with a period),
rule-based or machine-learning approaches are used for this task [150].

2.3.2 One-hot Encoding of Text

One-hot encoding is a simple and effective approach to encode tokens as vectors. The
assumption is that tokens of a fixed vocabulary represent categorical data in which each
token has no ordinal relationship to other tokens [138]. Let V be the vocabulary, i.e. the set
of tokens. The one-hot vector onehot(wi) ∈ R|V| for a token wi ∈ V is defined as a vector of
dimension |V| (i.e. the number of words in the corpus) in which the i-th component equals
1 and all remaining components are 0. Thus, each one-hot vector is unique for each token.
To encode a sequence of tokens (e.g. the text in an email) into a vector, the one-hot encoded
token vectors of the sequence can be summed. Such a vector is also called the bag of words.

One-hot encoding is used to encode the output text in NLP tasks, such as in machine
translation or text generation. However, using one-hot encoding to represent the input text
has several drawbacks [138]. For instance, the vectors are sparse and high-dimensional,
so that models with many parameters are required. Furthermore, all one-hot vectors are
orthogonal to each other so that the vectors of semantically similar words (e.g. “bed” and
“couch”) are always dissimilar. Therefore, training models using one-hot encoding for input
text requires a large amount of variant training data to enable the models to generalise
sufficiently. In the subsequent sections, we introduce word embeddings that can capture the
semantics of similar words better than one-hot encoded vectors and are therefore better
suited to represent words as input values.

2.3.3 Static Word Embeddings

Static word embeddings are pre-trained models that can assign a vector (also known as
word embedding) e to a single word x [138]. Mikolov et al. [193] propose a popular approach
named word2vec that uses a neural network to learn static word embeddings from a large
text corpus that acts as supervised training data. Two variants of word2vec exist [193]: (1)
continuous bag of words and (2) the continuous skip-gram model. Both variants are similar
and have various advantages and disadvantages, e.g. skip-gram can better represent rare
words but is slower to train [193]. In the following, we present the continuous skip-gram
model in more detail.
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Figure 2.8: Illustration of the process of generating training samples from a source text with
radius r = 2 for the skip-gram model of word2vec. A blue box represents the
centre word and a white box the output word. Illustration is from [189].

Let (w1, ..., wT ) be the sequence of words of a large text corpus (e.g. all Wikipedia articles)
and V the vocabulary. Given a centre word wt, the objective of word2vec is to estimate the
probability P (wt+j |wt) of an output word wt+j with −r ≤ j ≤ r, j 6= 0 occurring in the
context of the centre word wt with radius r. Thus, the objective is to maximise the following
loss function [193]:

L =
1

T

T∑
t=1

∑
−r≤j≤r,j 6=0

logP (wt+j |wt) (2.26)

The model that estimates the probability distribution P (wt+j |wt) can be learned with
a neural network using a softmax classification layer. Figure 2.8 illustrates the process of
generating training data consisting of (x, y) pairs from a source text where x denotes the
centre word and y the expected output word.

Let x be the one-hot vector for the centre word x and y the one-hot vector for the expected
output word y. Now, we define the following neural network [138]:

e = Ex (2.27)

z = Oe (2.28)

ŷ = softmax(z) (2.29)

The matrices E ∈ Rd×|V|,O ∈ R|V|×d represent the weights of the model that can be learned
with the gradient descent algorithm using the cross-entropy loss while d is the dimension of

36



2.3 Text Representation using Word Embeddings

the word embeddings (e.g. d = 300). The matrix E contains the learned word embeddings
and a word embedding e for a word x can be obtained via e = Ex.

The word embeddings of word2vec have some interesting properties [193]: For instance,
the cosine similarity of similar words is usually high, e.g. word2vec(Man) ≈ word2vec(Boy).
Furthermore, word2vec enables the calculation of analogies with simple vector operations,
e.g. ”Man is to Woman what King is to __” can be solved using the approximation
word2vec(Queen) ≈ word2vec(King)− word2vec(Man) + word2vec(Woman).

However, word2vec is not able to handle words that were not present in the vocabulary
during training (out-of-vocabulary words). Bojanowski et al. [24] proposed fastText as an
extension of word2vec, where each word is represented by the sum of the vector represen-
tations of its character n-grams. Character n-grams are all subwords of size n for a given
word. They enable fastText to better handle rare and out-of-vocabulary words.

2.3.4 Contextual Word Embeddings

Static word embeddings such as word2vec and fastText assign a pre-trained vector e =

f(x) to a word x regardless of the word’s context. Therefore, static word embeddings
cannot capture word semantics in different contexts [138]. For instance, the word “bank” is
polysemous such as in “I lend money from a bank ” and “I am sitting on a bank ”, but the word
“bank” is always represented with the same vector – regardless of its context. On the other
hand, contextual word embeddings can consider the context of the words so that the word
“bank” has different representations in both sentences. Thus, contextual word embeddings
are functions of the form (e1, ..., eτ ) = f(x1, ...,xτ ) [138].

In the following, we introduce contextual word embedding approaches that are based on
language models and the popular state-of-the-art approach Bidirectional Encoder Represen-
tations from Transformers (BERT) [71].

2.3.4.1 Word Embeddings from Language Models

Many state-of-the-art approaches for contextual word embeddings are based on a language
model [138]. A language model enables an estimation of the probability of a token sequence.
This is relevant in many applications such as speech recognition or machine translation
[186]. To train a language model, the model learns to predict the next token xt for a given
input sequence (x1, ...,xt−1) using a large text corpus (e.g. all Wikipedia articles). The
transformer architecture and RNNs can be used to train such language models. For instance,
Embeddings from Language Models (ELMo) [217] and Universal Language Model Fine-
tuning (ULMFiT) [124] use Bi-RNNs to train a left-to-right (i.e. predict the next token) and
a right-to-left (i.e. predict the previous token) language model. The more recent approach
Generative Pre-training (GPT) [37] uses the transformer architecture to learn a left-to-right
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Masked Language Model 

I       <M>     going     <M>     work 

I        am        going      to       work 

Figure 2.9: Illustration of masked language modelling. The <M> represents masked tokens
that have to be predicted based on the context.

language model. To obtain contextual word embeddings from a trained language model,
a given sentence (x1, ...,xτx) is processed via the model and the hidden representations
(h1, ...,hτx) serve as the word representations. Since the meaning of a word depends on the
surrounding words, language models can capture word semantics in different contexts better
than static word embeddings [138].

2.3.4.2 Bidirectional Encoder Representations from Transformers

This section introduces Bidirectional Encoder Representations from Transformers (BERT)
[71], which is a popular state-of-the-art approach for contextual word embeddings. Some
variants of BERT are used in the proposed approaches of this thesis. First, we present
the pre-training objectives of BERT. Then, we describe how BERT can be utilised for
downstream tasks and some important variants of BERT.

Masked Language Modelling: The approach BERT is a language model trained us-
ing the transformer encoder (see Section 2.2.2). The key innovation in BERT is to use a
masked language modelling training objective instead of learning to predict the next, re-
spective, previous token as in standard language modelling [138]. Moreover, BERT uses
wordpiece-tokenisation [251] to better handle rare and out-of-vocabulary words (see also
Section 2.3.1). As illustrated in Figure 2.9, in masked language modelling, some tokens are
randomly masked from the input, and the objective is to predict the masked tokens based
only on their context. Unlike left-to-right or right-to-left language model training, where the
representations are conditioned either on the left or the right context, the masked language
modelling objective using the transformer architecture enables to learn representations that
are jointly conditioned on both the left and the right context [71]. For instance, in the
sentence “I went to the bank to sit down”, in a left-to-right or right-to-left language model,
the word “bank” is represented either with “I went to the ...” or with "... to sit down". In
BERT, the word “bank” is represented using both its previous and its next context: “I went
to the ... to sit down” [138].

38



2.4 Knowledge Graphs

Next Sentence Prediction: Furthermore, BERT also employs the next sentence predic-
tion task [71]. Given two sentences, the model has to predict whether both sentences are
consecutive or not. This enables the model to better learn relationships between sentences.
In the following, we show an example for two input sentences and the expected labels:

Sentence 1: The men went to the [MASK]1.
Sentence 2: He bought a [MASK]2 of milk.
Labels: [MASK]1=store; [MASK]2=gallon; is next sentence=yes

Applying BERT to Downstream Tasks: Two approaches exist for applying the BERT
model to downstream tasks, such as text classification or named entity recognition: feature-
based and fine-tuning [71]. The feature-based approach uses task-specific architectures that
include the word representations from BERT as additional features. In the fine-tuning
approach, only a minimal set of task-specific parameters are introduced, and all parameters
of the pre-trained BERT model are fine-tuned during the training of the downstream task.
Although fine-tuning is simple and widely used, the approach has the disadvantage that
all parameters of the BERT model have to be fine-tuned, which is resource-intensive since
BERT has several hundred million parameters. In the feature-based approach, only the task-
specific parameters have to be learned. However, the feature-based approach requires the
design of custom architectures. In this thesis, we employ both variants, i.e. the feature-based
approach for sequential sentence classification (Chapter 4) and scientific concept extraction
(Chapter 5), and the fine-tuning approach for coreference resolution (Chapter 6).

Variants of BERT: Based on the BERT approach, several different models have been
pre-trained for different domains and languages. For instance, the original BERT model
has been pre-trained on the BooksCorpus [303] and on English Wikipedia, thus covering
language of common discourse [71]. The model SciBERT [19], that is used in this thesis,
has been pre-trained on scientific text. For German text, GBERT [44] can be used while
M-BERT [71] has been pre-trained on monolingual corpora in 104 languages. Furthermore,
various transformer-based language models were proposed that use modified training objec-
tives. For instance, SpanBERT [136], which is used for coreference resolution in Chapter 6,
can better represent text spans such as proper nouns that may consist of multiple words.

2.4 Knowledge Graphs

One of the objectives of this thesis is the automatic population of an Research Knowledge
Graph (RKG). Thus, in this section, we introduce the foundations of KGs. First, we describe
how KGs can be modelled and represented (Section 2.4.1). This is relevant background
information for the requirements analysis in Chapter 3. Then, we outline the construction
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of KGs (Section 2.4.2), including ontology creation and KG population from unstructured
text. The KG population approaches relevant for this thesis are based on NLP methods
that were introduced in the previous sections. The following descriptions of KGs and their
construction are mainly based on Hogan et al. [117] and Kejriwal et al. [144].

2.4.1 Modelling and Representing Knowledge Graphs

The term Knowledge Graph (KG) has become popular in the industry and the research
community after the announcement of the Google Knowledge Graph in 2012 [261] that is
the backbone of the Google Search Engine [117]. The core idea is to represent knowledge as
a graph. However, the underlying concepts and technologies are based on the Semantic Web
movement that envisions data on the Internet to be machine-interpretable [20]. There are
multiple definitions of the term KG in the research community (see [117] for a discussion).
In this thesis, we refer to the definition of Hogan et al. [117], who state that a KG consists
of the following main components:

1. The instance data (also known as a graph of data) that is “intended to accumulate and
convey the knowledge of the real world, whose nodes represent entities of interest and
whose edges represent relations between these entities” [117].

2. An optional ontology (also known as schema) describing a conceptual model for a
certain domain to prescribe the high-level structure for the instance data.

3. An optional component to infer new knowledge with deductive or inductive methods.

Although the definition of a KG by Hogan et al. [117] does not pose any prerequisites
for the implementation of KGs, various technologies exist that support their operation.
The Resource Description Framework (RDF) [232] is a standardised data model proposed
by the World Wide Web Consortium (W3C) to represent information on the Web (see
Section 2.4.1.1 for more details) structured and interlinked. Modelling languages such as
RDF Schema (RDFS) [104] or Web Ontology Language (OWL) [159] enable the defini-
tion of ontologies (see Section 2.4.1.2). Multiple serialisation formats exist to represent an
RDF-KG in a file or for transmission over a network, such as RDF/XML [249] that uses
Extensible Markup Language (XML) [267], Turtle [224], a more compact serialisation for-
mat than RDF/XML, or JavaScript Object Notation for Linked Data (JSON-LD) [145].
Graph databases such as Neo4J [126] and GraphDB [127] enable to persist and query KGs
efficiently. They also support graph query languages such as SPARQL Protocol and RDF
Query Language (SPARQL) [108] to query a KG with graph patterns flexibly.

In the following, we describe the three components of KGs outlined above in more detail.
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Citation Recommendation for Research Papers 
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Figure 2.10: An example KG depicting two research papers [30, 33], the addressed tasks of
the research papers, the citations, and the authors. The blue nodes are literals
with their corresponding data type in RDF syntax. For better readability, the
text of the nodes denotes human-readable labels (property rdfs:label), and
not IRIs. For instance, the IRI of a research paper would be a DOI and the
IRI of an author an ORCID (which stands for Open Researcher Contributor
Identification Initiative).

2.4.1.1 Instance Data

A directed edge-labelled graph is the most popular formalism to describe the instance data of
a KG [117]. The Resource Description Framework (RDF) [232] is based on this formalism.
A directed edge-labelled graph is a tuple G = (V,E,L) where V is a set of nodes, L is a set of
edge labels (also known as predicates, properties, or relation types), and E ⊆ V×L×V is a
set of edges [117]. An edge (s, p, o) ∈ E is also called a (subject (s), predicate (p), object (o))
triplet. For instance, the statement “Bob is married with Alice” can be formally described
as (Bob,marriedWith,Alice) where Bob ∈ V is the subject and Alice ∈ V the object in
the statement, and marriedWith ∈ L is an edge label. Figure 2.10 depicts an example of a
KG describing the relationships between two research papers, authors, and tasks.

The RDF data model consists of the following components [232]:

1. Triples: A triple describes a statement about resources i.e. it consists of a subject,
predicate, and an object (see above). A resource can be anything including documents,
people, physical objects, and abstract concepts.
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2. IRIs: An International Resource Identifier (IRI) is a string that identifies a resource
globally on the Web. For instance, the DOI https://doi.org/10.1007/978-3-030-
54956-5_1 is a unique IRI for the research paper [31]. Also, predicates are identified
by an IRI.

3. Literals: Literals are basic values that are strings with an optional datatype (e.g.
number, date) or language tag. Literals are used to describe the attributes of a resource
(e.g. date of birth) or to provide human-readable labels in a specific language. Literals
can only appear in the object position of a triple.

4. Blank nodes: Blank nodes are anonymous resources without an IRI. They are used to
describe n-ary relationships between resources where a relationship is represented as
a node without a globally unique IRI. For instance, a blank node can be defined for
a “marriedWith” relation that can have further attributes such as the date or venue
of the marriage. Since blank nodes do not have an IRI, external data sources cannot
refer to them.

Identity links can be used to state that a resource has the same identity as another coreferent
entity in a different source [232]. For instance, the IRI https://api.semanticscholar.
org/v1/paper/CorpusID:218763261 refers to the same paper [31] in the Semantic Scholar
Open Research Corpus (S2ORC) [177]. The Web Ontology Language (OWL) [159] standard
defines the owl:sameAs property to enable the definition of identity links.

2.4.1.2 Ontologies

Ontologies (or schemata) prescribe the high-level structure and semantics that instance data
should or must follow. Two common schema types exist to describe an ontology [117]:

Semantic Schema: A semantic schema defines high-level terms (also known as vocab-
ulary or terminology) such as classes and properties [117]. With the type predicate it is
possible to define the semantics of nodes. For instance, the statement (Bob, type, Person)
denotes that “Bob” is an instance of the class “Person”. Furthermore, a semantic schema
enables to define a hierarchy on classes (also known as taxonomy) and properties. For in-
stance, the class “Student” can be defined as a subclass of “Person” so that all instances
of “Student” are also instances of “Person”. Besides, it is possible to define the domain
and the range of properties where the domain indicates the class of the subject (i.e. the
source node), and the domain the class of the object (i.e. the target node). Table 2.1 shows
the definitions of these basic modelling features in a semantic schema. Standards such as
RDF Schema (RDFS) [104] and Web Ontology Language (OWL) [159] are used to model a
semantic schema which provide also further powerful modelling features.
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Table 2.1: Definitions for subclass, subproperty, domain, and range features in a semantic
schema [117].

Feature Definition Condition

subclass (c, subclass, d) (x, type, c)⇒ (x, type, d)
subproperty (p, subproperty, q) (x, p, y)⇒ (x, q, y)
domain (p, domain, c) (x, p, y)⇒ (x, type, c)
range (p, range, d) (x, p, y)⇒ (y, type, d)

Validating Schema: A validating schema allows for the validation of the instance data in
a KG so that applications using the data can ensure that it contains the minimal information
required [117]. For instance, we can define that a research paper must have a title, at least
one author, and a publication date in a date format. Furthermore, we can state that the
author of a research paper must be a “Person” rather than inferring it. The Shapes Constraint
Language (SHACL) [153] can be used to model such constraints and class diagrams such as
in Unified Modelling Language (UML) [26] enable to visualise a validating schema [117].

2.4.1.3 Deductive and Inductive Knowledge

Knowledge Graphs enable to infer new knowledge that is not explicitly modelled in the
graph. Hogan et al. [117] distinguish between deductive and inductive knowledge. Although
inferring new knowledge in KGs is not covered by this thesis, we briefly describe their
approaches in the following.

Deductive Knowledge: Deductive knowledge “is characterised by precise, logical con-
sequences” [117]. Semantic schema modelling features like those depicted in Table 2.1 (e.g.
subclass, subproperty, domain, range) allow deducing new knowledge by following the rules.
Furthermore, schema languages such as OWL [87, 159] enable to define custom inferencing
rules that encode IF-THEN consequences as graph patterns. For instance, we can define
a rule that the location of an event can be inferred from the location of the respective
city [117].

Inductive Knowledge: While in deductive knowledge the conclusion from a given set
of observations is certain, the conclusion might be imprecise in inductive knowledge [117].
For instance, it is possible to classify nodes in a graph (e.g. to predict the gender of a person
in a social network), to predict new links between nodes (e.g. to suggest potential friends
in a social network), or to cluster nodes in a graph (e.g. identify communities in a social
network). Hogan et al. [117] and Kejriwal et al. [144] provide a comprehensive overview of
popular inductive techniques for KGs.
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2.4.2 Knowledge Graph Construction

The construction of a KG involves two phases: (1) ontology creation and (2) population
with instances [144]. Both phases are described in the following. Approaches for ontology
creation serve as background information for the requirements analysis in Chapter 3 while
the KG population part is the basis for various methods proposed in this thesis.

2.4.2.1 Ontology Creation

An ontology for a KG is usually designed manually by humans. Ontology engineering meth-
ods, including ontology requirements engineering and ontology design patterns [117], can
be used to develop meaningful ontologies that target specific domains and applications. An
ontology can be designed by a closed group of experts or collaboratively, such as in Wiki-
data [285]. However, approaches also exist for ontology learning that is (semi-)automatic
ontology creation from text [117, 216]. Ontology learning approaches can assist humans in
an ontology design process, such as detecting new relation types or classes. For taxonomy
population, i.e. populating a hierarchy of classes, Salatino et al. [244] provide an overview of
methods based on rule-based NLP, clustering, and statistical methods.

2.4.2.2 Knowledge Graph Population

Nickel et al. [202] classify KG population methods into four groups:

1. Curated approaches: Triples are created manually by a closed group of experts.

2. Collaborative approaches: Triples are created manually by an open group of volunteers.

3. Automated semi-structured approaches: Triples are extracted automatically from semi-
structured text via hand-crafted rules.

4. Automated unstructured approaches: Triples are extracted automatically from unstruc-
tured text.

In the following, we describe the fourth group, namely KG population from unstructured
text in more detail since it is most relevant for this thesis.

KG population from unstructured text can be subdivided into two phases [117, 144, 226]:
(a) information extraction to extract entities and their relations from text, and (b) graph
construction to clean and complete the extracted graph, as it is usually ambiguous, incom-
plete, and inconsistent. Both phases and their involved tasks are depicted in Figure 2.11.
In this thesis, we address the information extraction part. Therefore, in the following, the
tasks involved in information extraction from unstructured text are described in more detail
while we provide only a brief overview of the involved tasks in graph construction.
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Information Extraction 
- Named Entity Recognition 
- Entity Linking 
- Coreference Resolution 
- Relation Extraction 

 

Graph Construction 
- General Link Prediction 
- Type-link Prediction 
- Identity-link Prediction 
- Fact Validation 
- Inconsistency Repairs 

Unstructured text Knowledge Graph 

Figure 2.11: The KG population pipeline from unstructured text consisting of the two phases
(1) information extraction and (2) graph construction and their involved tasks.

Information Extraction: Information extraction from text involves various tasks which
are introduced in the following [117, 144]:

1. Named Entity Recognition (NER): In this task, the objective is to identify mentions
of named entities in text such as people, organisations, or locations [144]. Current
state-of-the-art approaches use pre-trained language models based on the transformer
architecture (see Section 2.2.2) for this task [19, 71]. For a given set of classes L
and a token sequence (x1, ...,xτ ), the objective is to predict the corresponding la-
bel sequence (ŷ1, ..., ŷτ ) with ŷi ∈ L with the highest conditional joint probability
P (ŷ1, ..., ŷτ |x1, ...,xτ ).

2. Entity Linking : Entities identified by the NER task can be used as new candidate
entities for a KG (also known as emerging entities) or linked to existing entities in a KG
via entity linking approaches [144]. However, the recognised mentions are ambiguous
(for instance, “apple” may refer to the fruit “apple” or to the company “Apple Inc.”)
and there are also various ways how an entity can be mentioned in a text. Therefore,
entity linking considers a disambiguation phase, where mentions are associated with
candidate nodes which are ranked using the context of the mentions in text and the
context of the nodes in the KG [117, 154].

3. Coreference Resolution: The objective of coreference resolution is to identify mentions
of an entity in a text which refer to the same entity. In particular, this task includes
the resolution of pronouns to the referred entity [144]. For instance, the text “Bob is...
He is married with Alice...”, has two coreferent mentions “Bob” and “He” that refer
to the same person “Bob”. Current approaches for coreference resolution are usually
ranking-based models [66, 170, 187] that simultaneously rank all candidate antecedents
(i.e. preceding mention candidates) to identify the most probable antecedent.

4. Relation Extraction: The objective of relation extraction is to extract relations between
entities from the text considering a fixed set of relation types [144]. For instance, we
can extract the statement (Bob,marriedWith,Alice) from the text “Bob is... He is
married with Alice...”. In binary relation extraction [9, 92, 178], the model predicts a
relation between two entities, such as between “Bob” and “Alice”. However, in n-ary
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relation extraction [129, 131, 142], the model extracts relationships between multiple
entities. For instance, the marriedWith relationship can be represented as a node
with further extracted information such as the date and the location of the marriage.

While the above tasks can be performed in sequence, various approaches exist that can
jointly perform multiple tasks to improve their performance [178, 246, 290].

Graph Construction: The extracted knowledge from text is usually ambiguous, in-
complete, and inconsistent. Graph completion and correction methods can complete and
clean the extracted graph from text [117, 144]. This includes the prediction of additional
links (i.e. edges or triples) between nodes, the identification of incorrect links, and repairing
inconsistencies. In the following, we introduce the involved tasks in KG completion and cor-
rection while we refer to Hogan et al. [117] and Kejriwal et al. [144] for a more comprehensive
overview about approaches for these tasks:

1. General Link Prediction: Predict missing general links between nodes.

2. Type-link prediction: Predict the type predicate between an entity and a class. This
task is also known as node classification [144].

3. Identity-link prediction: Identify nodes which refer to the same entity, i.e. predict the
owl:sameAs relation between nodes. This task is analogous to entity resolution [276]
and instance matching [144], and related to entity linking (see above).

4. Fact validation: Assign a plausibility or veracity score for a link.

5. Inconsistency repairs: Repair introduced inconsistencies that violate rules or axioms
defined in the ontology.

2.5 Evaluation Methods

This section describes the evaluation procedures and evaluation metrics that are used in
this thesis. First, Section 2.5.1 introduces the most common evaluation procedures. Then,
Section 2.5.2 presents basic evaluation metrics of machine learning models in classification
tasks and specific metrics for the task of named entity recognition, coreference resolution,
and information retrieval that are addressed in this thesis. Finally, Section 2.5.3 describes
metrics to measure the inter-rater agreement.

2.5.1 Evaluation Procedures

As described in Section 2.1.3, during the training of a neural network model, a training set
is is used to determine the optimal weights via gradient descent, whereas a validation set is
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required for hyperparameter tuning. In the following, we describe the evaluation procedure
of machine learning models using a test set and cross-validation.

Test Set: To evaluate the performance of the final model (i.e. the one that performs best
on the validation set), we need an additional set of annotated examples, namely the test set.
A test set is independent of the training and validation set to enable unbiased evaluation
but should follow the same distribution [138].

Cross-Validation: When the test set is small, it might not be representative enough
to obtain robust evaluation results. Therefore, k-fold cross-validation can be applied to
mitigate this issue [138]. In k-fold cross-validation, the annotated dataset is partitioned into
k disjoint subsets (e.g. k = 10). Then, for each subset i (1 ≤ i ≤ k) a model is trained using
the data of the other subsets and the model performance is tested on the subset i. The
test set performance for each subset are then summed up or averaged to obtain the final
evaluation result.

2.5.2 Evaluation Metrics

In this section, we first describe basic evaluation metrics such as accuracy, precision, recall,
and F1. In the subsequent subsections we introduce specific evaluation metrics for the task
of named entity recognition, coreference resolution, and information retrieval that are used
in the Chapter 5, Chapter 6, and Chapter 7, respectively.

2.5.2.1 Basic Evaluation Metrics

The metric accuracy measures the proportion of correctly predicted examples [138]:

accuracy =

∑m
i=1 1(ŷ(i) = y(i))

m
(2.30)

Here, m is number of examples, ŷ(i) is the predicted and y(i) the expected output for the
i-th example, and 1(p) is the indicator function that returns 1 if the predicate p is true and
0 otherwise.

However, the accuracy metric is not appropriate when the dataset is unbalanced. For
instance, in the spam email classification example, 95% of all examples may not be spam
and a classifier that always classifies emails as not being spam would already have a high
accuracy of 95%, but not for the intended purpose. Therefore, the metrics precision, recall,
and F1 are often used to evaluate the performance of classification tasks. To calculate
these metrics, we first need to define the terms true positives (tp), false positives (fp), false
negatives (fn), and true negatives (tn). In a binary classification task, these terms are defined
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as follows [138]:

tp =
m∑
i=1

1(y(i) = 1 ∧ ŷ(i) = 1); fp =
m∑
i=1

1(y(i) = 0 ∧ ŷ(i) = 1) (2.31)

fn =
m∑
i=1

1(y(i) = 1 ∧ ŷ(i) = 0); tn =
m∑
i=1

1(y(i) = 0 ∧ ŷ(i) = 0) (2.32)

For instance, true positives are those emails that are annotated as spam in the dataset and
also detected as spam by the model. Using these scores, we can now define precision and
recall. Precision measures the proportion of positive identifications that are actually correct,
and recall measures the proportion of actual positives that were identified correctly [138]:

precision =
tp

tp+ fp
; recall =

tp

tp+ fn
(2.33)

In our above example of spam email classification, a model that always returns “not spam”
would have a precision and recall of 0% (if spam is the “positive” class to be detected). To
incorporate precision and recall into a single metric, the F1 score represents the harmonic
mean of both measures [138]:

F1 = 2× precision× recall
precision+ recall

(2.34)

In a multiclass classification task with k > 2 classes, we first compute the scores for
tpi, fpi, fni, tni, precisioni, recalli, F1i for each class i as described above. Then, we
need to aggregate these scores into a single metric. Three common approaches exist to
calculate the F1 score in a multiclass classification setting [105]: (1) macro-averaged F1, (2)
micro-averaged F1, and (3) weighted F1.

The macro-averaged F1 is an arithmetic mean over the F1 scores of each class so that all
classes are weighted equally [105]:

macro-averaged F1 =

∑k
i=1 F1i
k

(2.35)

In the micro-averaged F1, there is no weighting of the classes so that larger classes domi-
nate. For this purpose, first, the scores tpi, fpi, and fni are summed [105]:

tp =

k∑
i=1

tpi; fp =

k∑
i=1

fpi; fn =

k∑
i=1

fni (2.36)

Then, using these scores, we calculate precision and recall as described above and can obtain
the micro-averaged F1 using the formula in Equation 2.34 [105].
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In the weighted F1 score, each class is weighted by the number of examples mi annotated
with the class i so that, comparable to the micro-averaged F1, larger classes dominate [105]:

weighted F1 =

∑k
i=1miF1i
m

(2.37)

2.5.2.2 Evaluation Metrics for Named Entity Recognition

The standard metrics precision, recall, and F1 are used for the evaluation of an NER
model [138]. To compute these metrics, we need the set of ground truth mentions and
the set of mentions found by the NER model. Since a mention usually represents a span
of multiple consecutive words (e.g. the location “New York”), it is represented uniquely as
a tuple (begin, end, class) consisting of the begin and end position of the mention in the
text and the corresponding class. Now, precision is the ratio of mentions found by the
NER model that are correct, and recall is the ratio of mentions present in the corpus that
are found by the NER model. The F1 is the harmonic mean of precision and recall as in
Equation 2.34. A found mention is correct only if it is an exact match of the ground truth
mention [245].

Architectures for sequence processing introduced in Section 2.2 can only classify single
tokens or words. Therefore, tagging schemes are used that encode the beginning and the
end of spans [183]. In the IOB tagging scheme (short for inside, outside, beginning), a token
is additionally classified as a “B” (begin) if it denotes the first token of a mention, as an “I”
(inside) if it is a token inside a mention, and as an “O” (outside or other) if the token is
not a mention. Thus, the location “New York” can be encoded with the tagging sequence
(B-Location, I-Location).

2.5.2.3 Evaluation Metrics for Coreference Resolution

The task of coreference resolution is to extract mentions of entities and cluster those mentions
that refer to the same entity. Thus, for evaluation, the ground truth clusters (also called key
clusters) have to be compared against the predicted clusters (also called response clusters)
[181]. Figure 2.12 shows an example of ground truth and predicted clusters.

A cluster (also called entity) is a coreference chain that is a sequence of mentions sorted
according to their occurrence in the text [181]. For instance, the text “Alice is a friend
of Bob. She knows him for a long time since he is her neighbour.” has two coreference
chains: (Alice ← she ← her) and (Bob ← him ← he). A path from a mention to a
preceding mention (called antecedent) within a coreference chain is called a coreference link.
For instance, the chain (Alice← she← her) has three links: (Alice← she), (she← her),
and (Alice← her).
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Figure 2.12: Example of two key clustersK1 andK2 (solid lines), and three response clusters
R1, R2, and R3 (dashed lines). The letters a to i represent mentions. The
illustration is from [221].

There are various methods for making the comparison between the ground truth and the
predicted clusters. The three popular metrics reported for coreference resolution models
are MUC [284] that was proposed for the Message Understanding Conference, B3 [12],
and CEAFeφ4 [180] that stands for Constrained Entity-Aligned F-Measure. Each of them
represents different evaluation aspects [67, 118, 181, 194] and reports a precision, recall, and
F1 score. To aggregate these metrics, the CoNLL precision, recall, and F1 scores are the
arithmetic means ofMUC’s, B3’s and CEAFeφ4’s respective precision, recall, and F1 scores.
The CoNLL metrics were proposed for the conference on Computational Natural Language
Learning (CoNLL) shared tasks on coreference resolution [221]. Pradhan et al. [221] provide
a reference implementation for them. In the following, we introduce the computation of
precision and recall of each metric. The F1 score is then the harmonic mean of precision
and recall as defined in Equation 2.34. For a more comprehensive discussion and description
of these metrics, we refer to Luo and Pradhan [181].

MUC: The MUC [284] score is based on coreference links and considers the minimum
set of links that are required to connect all mentions in a cluster [181]. Thus, a cluster C has
|C| − 1 coreference links. Precision is the number of correctly predicted links divided by the
number of predicted links, and recall is the number of correctly predicted links divided by
the number of ground truth links. However, the MUC metric favours models that produce
fewer clusters and cannot cope with singleton clusters since they do not have links [180].

B3: The B3 [12] metric is based on mentions rather than links and addresses the issues
of the MUC metric. To compute the recall, first, a score is calculated for each ground truth
mention. The score equals the number of correctly predicted mentions in the predicted
cluster containing the mention, divided by the number of mentions in the corresponding
ground truth cluster. The recall is then the sum over these scores normalised by the number
of ground truth clusters. The precision is computed in the same way, except switching the
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role of the ground truth and predicted mentions [221]. However, B3 also has some issues,
e.g. a cluster is used multiple times during the calculation of the scores for a mention [180].

CEAFeφ4: The CEAFeφ4 [180] metric is based on clusters rather than mentions or
links and tries to mitigate some issues of B3 and MUC metrics. First, we need to define a
similarity metric between a ground truth (key) and a predicted cluster (response). Luo [180]
proposes different metrics for that. The most popular similarity metric is φ4(K,R) that
measures how many common mentions a key (K) and a response (R) cluster share:

φ4(K,R) =
2× |K ∩R|
|K|+ |R|

(2.38)

Using this similarity metric, we can compute an optimal alignment mapping between the
response and the key clusters such that the sum of the similarity of all aligned pairs is
maximised. For instance, in the example of Figure 2.12, R1 aligns with K1, R3 with K2,
and R2 remains unaligned. The alignment problem under the constraint that a cluster can
be aligned at most once corresponds to a bipartite matching problem and can be solved
efficiently. We refer to Luo [180] for a description of the alignment algorithm. Given the
optimal alignment mapping, we can now compute precision and recall. The precision is
the fraction of the sum of the similarity scores between the aligned pairs and the number of
predicted clusters. Thus, the precision of a model is penalised if it returns too many clusters.
The recall is the fraction of the sum of the similarity scores between the aligned pairs and
the number of ground truth clusters. Thus, the recall of a model is penalised if it returns
too few clusters. However, CEAFeφ4 is not reliable for recall-precision analysis [194].

2.5.2.4 Evaluation Metrics for Information Retrieval

An information retrieval system such as a search engine yields a ranked list of items (e.g.
found websites) relevant to a query (e.g. the search query). The objective is that the top-
ranked items are most relevant for the user. Various metrics have been proposed to evaluate
the effectiveness of an information retrieval system, such as Mean Average Precision (MAP)
and Normalized Discounted Cumulative Gain (NDCG) [185]. The NDCG score is designed
for non-binary notions of relevance. In the following, we describe MAP [162] in more detail
since it is a widely used metric in information retrieval tasks and utilised in Chapter 7. The
metric assumes that a user is interested in finding many relevant items.

Let {(q1, {d1,1, ..., d1,m1}), ..., (qn, {dn,1, ..., dn,mn})} be a test set collection consisting of
queries qi and the set of relevant items {di,1, ..., di,mi} for the respective query. First, we
need to define the notion of Precision@k(qi) that is the fraction of relevant items among
the top k retrieved items for the query qi. Then, for each query qi, we calculate the Average
Precision@k (AP@k(qi)) as the average of Precision@k values ranging from 1 to k if the
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retrieved item is available at position k [162]:

AP@k(qi) =

∑k
k′=1 Precision@k′(qi)× rel(k′)

mi
(2.39)

Here, rel(k) equals 1 if the item at position k is relevant, 0 otherwise. Thus, AP@k penalises
systems that are not able to rank the retrieved items such that the top-ranked items are
relevant. The value AP@k is 1 if all relevant items are ranked first, and 0 if all top k

retrieved items are not relevant. Now, MAP@k is the arithmetic mean of the AP@k scores
over the queries {q1, ..., qn} [162]:

MAP@k =
1

n

n∑
i=1

AP@k(qi) (2.40)

2.5.3 Inter-Rater Agreement

The annotation of datasets for a specific task is an essential prerequisite to train and evaluate
machine learning models. However, the annotation of datasets by humans can be biased by
their interpretation [227]. To limit the scope for interpretation, annotation guidelines should
be developed and refined during the annotation process. They contain clear instructions for
the annotators, such as the description of the classes and annotation examples [227].

Inter-rater agreement (also known as inter-annotator agreement) metrics can be used to
evaluate the consistency of annotation results across multiple annotators and thus also the
adequacy and quality of the annotation guidelines. These metrics do not measure only
the actual agreement between the annotators but also consider the fact that agreement may
happen solely by chance. The most used metrics are Cohen’s Kappa [57], Fleiss’s Kappa [86],
and Krippendorff’s Alpha [157]. We refer to Artstein and Poesio [4] for a discussion of these
metrics in computational linguistics. In the following, we describe Cohen’s Kappa in more
detail since it applies to most annotation tasks in NLP [227]. Furthermore, we use this
metric in the Chapters 5 and 6.

Cohen’s Kappa (κ) [57] measures the inter-rater agreement between two annotators for
categorical items. It is calculated using the observed agreement po and the expected hypo-
thetical agreement by chance pe as follows [4]:

κ =
po − pe
1− pe

(2.41)

The value 1− pe measures how much agreement above chance is attainable while the value
po− pe tells us the agreement beyond chance actually found [4]. The observed agreement po
is the proportion of items on which two annotators agree:

po =
#agreements

n
(2.42)
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Table 2.2: The level of agreement for interpreting Cohen’s Kappa (κ) score [164].

κ Agreement level

≤ 0 poor
0.01-0.20 slight
0.21-0.40 fair
0.41-0.60 moderate
0.61-0.80 substantial
0.81-1.00 perfect

Here, n is the total number of items and #agreements is the number of items where the
annotators were consistent with their annotations. The expected agreement by chance pe is
calculated as follows [4]:

pe =
1

n2

∑
k∈C

nk1nk2 (2.43)

Here, C is the set of classes, and nk1 and nk2 denote the number of items annotator 1 respec-
tively annotator 2 selected class k. Thus, assuming that the annotations of the annotators
are independent, the term nk1

nk2
n2 estimates the joint probability that both annotators has

classified the same item with class k.

The κ score typically yields a result in the interval [0, 1]. If the result is negative, then
both annotators disagree, i.e. they are worse than randomly annotating the items. Landis
and Koch [164] provide an interpretation of the κ score that is shown in Table 2.2.

2.6 Summary

Since this thesis deals with information extraction from research papers to populate an
Research Knowledge Graph (RKG), this chapter presented an overview of the state of the
art for Natural Language Processing (NLP) and KGs, as well as related evaluation methods.

Current state-of-the-art approaches for information extraction are based on neural net-
works. Therefore, we first introduced the basics of artificial neural networks and architec-
tures for sequence processing such as RNNs and the transformer architecture that enable the
application of neural networks on text data. Furthermore, we described text representation
approaches using static and contextual word embeddings. In particular, contextual word
embeddings based on the transformer architecture such as BERT are fundamental for cur-
rent state-of-the-art approaches for various NLP tasks. Then, we introduced technologies for
modelling and representing KGs and provided an overview of the involved tasks and meth-
ods to construct a KG. State-of-the-art approaches for KG population from unstructured
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text are based on neural networks. Finally, we described evaluation methods and metrics
that are used to evaluate the proposed approaches of this thesis.

♦♦♦

This chapter presented the foundations for NLP, KGs, and evaluation methods. In the
following chapters, we present the contributions of this thesis. First, we begin with a re-
quirements analysis for an Open Research Knowledge Graph (ORKG).
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This chapter presents a requirements analysis that addresses the first research question
introduced in Section 1.2.1, namely:

RQ1: What are the main requirements for scholarly knowledge representation to
support various use cases in an RKG?

The requirements analysis is conducted for an ORKG [7] as an example for an RKG. An
ORKG aims to represent scholarly knowledge in a structured and interlinked manner and
offer applications to support various use cases.

In the following, Section 3.1 introduces the requirements analysis. Section 3.2 summarises
related work on RKGs, scientific ontologies, KG population, data quality requirements, and
systematic literature reviews. The requirements analysis is presented in Section 3.3. It
includes the identified use cases that should be supported by an ORKG and data qual-
ity requirements for the underlying ontologies and instance data. Based on the identified
use cases and requirements, Section 3.4 discusses implications and possible approaches for
ORKG construction. Finally, Section 3.5 summarises this chapter.

3.1 Introduction

As motivated in Chapter 1, fundamental contents of research papers such as addressed
research problems, applied or proposed methods, and obtained results are not machine-
interpretable. However, representing scholarly knowledge in an RKG structured and inter-
linked has the potential to enhance some of the researchers’ core tasks.

Section 1.1 outlined various available infrastructures in the research ecosystem that al-
ready use KGs to enhance their services, and some initiatives also promote the usage of
KGs in scholarly communication. However, current proposals usually focus on a specific use
case (e.g. enhancing academic search [78], reproducing research results [184]), although the
researcher’s work is manifold. This chapter presents a detailed analysis of common literature-
related tasks in a scientist’s daily life and investigates how an ORKG could support them.
Our requirements analysis aims to obtain a common understanding of the objectives of an
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ORKG to guide the research and development. For this purpose, our analysis concentrates
on the following aspects:

1. To elicit use cases that an ORKG should support.

2. To identify required user and machine interfaces, and the interdependence with exter-
nal systems.

3. To define data quality requirements for the underlying KG to support these use cases:

3.1. The required granularity of information representation and degree of domain-
specialisation for the ontologies.

3.2. The required degree of completeness and correctness of the instance data.

4. To elaborate construction strategies (human vs. machine) to populate an ORKG.

3.2 Related Work

This section gives a brief overview of (a) existing RKGs, (b) ontologies for scholarly knowl-
edge, (c) approaches for KG population in the research ecosystem, (d) quality dimensions
of KGs, and (e) processes in systematic literature reviews.

3.2.1 Research Knowledge Graphs

As stated in Section 2.4.1, the research community lacks a common definition of the term
Knowledge Graph (KG). In this thesis, we refer to the broad definition of Hogan et al. [117]
who state that a KG represents entities of interest and their relationships as a labelled graph
of nodes and edges. The data in the KG usually conform to a data model so that machines
can understand and reason over the represented knowledge. In the research ecosystem,
examples for entities of interest are nodes that represent research papers, artefacts (e.g.
source code, datasets), scientific concepts (e.g. tasks, methods, metrics), authors, or venues.
Examples for relationships of interest are structured machine-readable links such as citations
between the papers, associations between a paper and the corresponding source code or an
addressed task, or relationships between concepts. Thus, we refer to platforms that represent
such kind of knowledge with structured and interlinked content as RKGs.

Academic search engines (e.g. Google Scholar, Microsoft Academic, Semantic Scholar)
exploit graph structures such as the Microsoft Academic Knowledge Graph [78], SciGraph
[296], the Literature Graph [3], or the Semantic Scholar Open Research Corpus (S2ORC) [177].
These graphs interlink research articles through metadata, e.g. citations, authors, affiliations,
grants, journals, or keywords.

To help reproduce research results, initiatives such as Research Graph [5], Research Ob-
jects [17], and OpenAIRE [184] interlink research articles with research artefacts such as
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datasets, source code, software, and video presentations. Scholarly Link Exchange (Scholix)
[38] aims to create a standardised ecosystem to collect and exchange links between research
artefacts and literature.

Some approaches connect articles at a more semantic level: The ORKG [130] (this thesis
is part of this project) aims to organise the communicated content of research papers in a
structured and interlinked manner. Papers With Code [206] is a community-driven effort
to supplement machine learning articles with source code, tasks, datasets, metrics, and
evaluation results to construct leaderboards. The Gene Ontology [59] and Chemical Entities
of Biological Interest (CheBi) [65] are KGs for genes and molecular entities. Ammar et
al. [3] link entity mentions in abstracts with DBpedia [172] and Unified Medical Language
System (UMLS) [23]. Cohan et al. [53] and Jurgens et al. [139] extend the citation graph
with citation intents (e.g. citation as background or used method) from computer science,
medicine, and computational linguistics.

Various RKGs have also been populated automatically. The Computer Science Ontol-
ogy (CSO) is a taxonomy of computer science research fields [244]. The AI-KG was automat-
ically generated from 330,000 research papers in the artificial intelligence (AI) domain [70].
It contains five entity types (tasks, methods, metrics, materials, others) linked by 27 rela-
tion types. Kannan et al. [141] create a multimodal KG for deep learning papers from text
and images and the corresponding source code while Färber and Lamprecht [91] populate
a Data Set Knowledge Graph (DSKG) that links research papers with datasets. Zhang
et al. [301] employ a rule-based approach to mine research problems and proposed solutions
from research papers. The COVID-19 KG [47] has been populated from the Covid-19 Open
Research Dataset [288] and contains various biological concept entities.

Various scholarly applications benefit from semantic content representation, e.g. academic
search engines by exploiting general-purpose KGs [294], and graph-based research paper
recommendation systems [18] that utilise citation graphs and mentioned entities.

3.2.2 Scientific Ontologies

Various ontologies have been proposed to model metadata such as bibliographic resources
and citations [214]. Ruiz-Iniesta and Corcho [239] reviewed ontologies to describe scholarly
articles. In the following, we describe some ontologies that conceptualise the semantic
content in research articles.

Several ontologies focus on rhetorical [60, 103, 286] (e.g. background, methods, results,
conclusion), argumentative [175, 279] (e.g. claims, contrastive and comparative statements
about other work), or activity-based structure [215] (e.g. sequence of research activities) of
research articles. Others describe scholarly knowledge with linked entities such as problem,
method, theory, statement [36, 110], or focus on the main research findings and character-

57



3 Requirements Analysis for an Open Research Knowledge Graph

istics of research articles described in surveys with concepts such as problems, approaches,
implementations, and evaluations [81, 281].

Various domain-specific ontologies exist, for instance, for mathematics [165] (e.g. defini-
tions, assertions, proofs), machine learning [152, 191] (e.g. dataset, metric, model, exper-
iment), and physics [247] (e.g. formation, model, observation). The EXPeriments Ontol-
ogy (EXPO) is a core ontology for scientific experiments that conceptualises experimental
design, methodology, and results [264], while the Scientific Observation Model (CRMsci) is
an ontology of metadata about scientific observations, processed data, and measurements in
descriptive and empirical sciences (e.g. biodiversity, geology, geography, archaeology) [73].
Various repositories provide access to several ontologies such as Open Biological and Biomed-
ical Ontologies (OBO) Foundry [262] for the domain of life sciences or Linked Open Vocab-
ularies [282] for Web data.

Taxonomies for domain-specific research areas support the characterisation and explo-
ration of a research field. Salatino et al. [244] give an overview, e.g. Medical Subject Head-
ing (MeSH), Physics Subject Headings (PhySH), and Computer Science Ontology (CSO).

3.2.3 Knowledge Graph Population

Section 2.4.2 introduced the involved tasks in KG construction, i.e. ontology creation and KG
population. This section provides an overview of related work for manual and automatic KG
population approaches in the research ecosystem. For a more general overview of ontology
population systems, we refer to the review of Lubani et al. [179].

3.2.3.1 Manual Approaches

Wikidata [285] is one of the most popular KGs with semantically structured, encyclopaedic
knowledge curated manually by a community. As of December 2021, Wikidata comprises
over 96 million entities curated by almost 24.000 active contributors2. The community
also maintains a taxonomy of categories and “infoboxes” which define common properties
of certain entity types. Furthermore, Papers With Code [206] is a community-driven ef-
fort to interlink machine learning articles with tasks, source code, and evaluation results.
Knowledge Graphs such as Gene Ontology [59], CheBi [65], or Wordnet [82] are curated
by domain experts, and research article submission portals such as EasyChair (https:
//wwww.easychair.org/) enforce the authors to provide machine-readable metadata. More-
over, librarians and publishers tag new articles with keywords and subjects [296]. Further-
more, virtual research environments enable the execution of data analysis on interoperable
infrastructure and store the data and results in KGs [272].

2https://www.wikidata.org/wiki/Wikidata:Statistics
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3.2.3.2 Automatic Approaches

Nasar et al. [197] survey methods on information extraction from scientific text. Belt-
agy et al. [19] present benchmarks for several scientific datasets and Peng et al. [211] es-
pecially for the biomedical domain. Table 3.1, Table 3.3, and Table 3.2 show comparative
overviews for selected datasets from research papers of various disciplines for the tasks of
sentence classification, relation extraction, and concept extraction, respectively. These com-
parisons aim to provide an overview of the current state of the art on information extraction
methods in scientific texts to get a sense about which kind of information can be extracted
with which accuracy. In the following, we summarise these approaches.

As shown in Table 3.1, there are datasets that are annotated at sentence level for several
domains, e.g. biomedical [68, 147], computer graphics [85], computer science [54], chemistry
and computational linguistics [279], or algorithmic metadata [243]. They cover either only
abstracts [54, 62, 68, 100, 147, 270] or full articles [85, 175, 243]. The datasets differentiate
between five and eleven concept classes (e.g. Background, Objective, Results). Ma-
chine learning approaches for datasets consisting of abstracts achieve an F1 score ranging
from 66.0% to 92.9% and for datasets with full papers F1 scores range from 51.6% to 78.5%.

More recent corpora shown in Table 3.2 and Table 3.3, that are annotated at phrasal level
(e.g. noun phrases), aim at constructing a fine-grained KG from scholarly abstracts with the
tasks of concept extraction [9, 74, 90, 173, 178, 229, 230], binary relation extraction [9, 92,
156, 178, 230], n-ary relation extraction [129, 131, 142], and coreference resolution [42, 58,
178, 248]. They cover several domains, e.g. material sciences [90]; computational linguis-
tics [92, 229]; computer science, material sciences, and physics [9]; machine learning [178]; or
biomedicine [58, 131, 156]. The datasets differentiate between four to seven concept classes
(like Task, Method, Tool) and between two to seven binary relation types (like used-

for, part-of, evaluate-for). The extraction of n-ary relations involves extraction of
relations among multiple concepts such as drug-gene-mutation interactions in medicine
[131], experiments related to solid oxide fuel cells with involved material and measurement
conditions in material sciences [90], or task-dataset-metric-score tuples for leaderboard
construction for machine learning tasks [142].

Approaches for concept extraction achieve F1 scores ranging from 56.6% to 96.9% (see
Table 3.2), for coreference resolution F1 scores range from 46.0% to 61.4% [58, 178], and for
binary relation extraction from 28.0% to 83.6% (see Table 3.3). The task of n-ary relation
extraction with an F1 score from 28.7% to 56.4% [131, 142] is especially challenging, since
such relationships usually span beyond sentences or even sections and thus, machine learning
models require an understanding of the whole document. The inter-coder agreement in
terms of Cohen’s Kappa (κ) or F1 for the task of concept extraction ranges from 0.6 to 0.96
(Table 3.2), for relation extraction from 0.6 to 0.9 (see also Table 3.3), while for coreference
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resolution the value of 0.68 κ was reported in Luan et al. [178]. The results suggest that
these tasks are not only difficult for machines but also for humans in most cases.

3.2.4 Quality of Knowledge Graphs

Knowledge Graphs may contain billions of machine-readable facts about the world or a
certain domain. However, do the KGs also have an appropriate quality? Data Quality (DQ)
is defined as “fitness for use” by a data consumer [289]. Thus, to evaluate data quality,
it is important to know the needs of the data consumer since, in the end, the consumer
judges whether a product is fit for use. Wang et al. [289] propose a data quality evaluation
framework for information systems consisting of 15 dimensions grouped into four categories:

1. Intrinsic DQ : accuracy, objectivity, believability, and reputation.

2. Contextual DQ : value-added, relevancy, timeliness, completeness, and an appropriate
amount of data.

3. Representational DQ : interpretability, ease of understanding, representational consis-
tency, and concise representation.

4. Accessibility DQ : accessibility and access security.

Bizer [22] and Zaveri et al. [299] propose further dimensions for the Linked Data context
like consistency, offensiveness, licensing, and interlinking. Pipino et al. [219] subdivide
completeness into schema completeness, i.e. the extent to which classes and relations are
missing in the ontology to support a certain use case, column completeness (also known as
Partial Closed World Assumption [93]), i.e. the extent to which facts are not missing, and
population completeness, i.e. the extent to which instances for a certain class are missing.
Färber et al. [79] comprehensively evaluate and compare the data quality of popular KGs
(e.g. DBpedia [172], Freebase [25], Wikidata [285], YAGO [275]) using such dimensions.

To evaluate the correctness of instance data (also known as precision), the facts in the
KG have to be compared against a ground truth. For that, humans annotate a set of facts
as true or false. For instance, YAGO was found to be 95% correct [275]. The automatically
populated AI-KG has a precision of 79% [70]. The KG automatically populated by the
Never-Ending Language Learner (NELL) has a precision of 74% [41].

To evaluate the completeness of instance data (also known as coverage and recall), small
collections of ground-truth capturing all knowledge for a certain ontology is necessary, that
are usually difficult to obtain [291]. However, some studies estimate the completeness of
several KGs. Galarrage et al. [94] suggest a rule mining approach to predict missing facts.
In Freebase [25], 71% of people have an unknown place of birth, and 75% have an unknown
nationality [75]. Suchanek et al. [274] report that 69%-99% of instances in popular KGs
(e.g. YAGO [275], DBpedia [172]) do not have at least one property that other instances of
the same class have. The AI-KG has an estimated recall of 81.2% [70].
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Figure 3.1: Activities within a systematic literature review. Based on [151].

3.2.5 Systematic Literature Reviews

Literature reviews are one of the main tasks of researchers since a clear identification of
a contribution to the present scholarly knowledge is a crucial step in scientific work [115].
This requires a comprehensive elaboration of the present scholarly knowledge for a certain
research question. Furthermore, systematic literature reviews help to identify research gaps
and to position new research activities [151].

A literature review can be conducted systematically or in a non-systematic, narrative
way. Following Fink’s [84] definition, a systematic literature review is “a systematic, explicit,
comprehensive, and reproducible method identifying, evaluating, and synthesising the existing
body of completed and recorded work”. Guidelines for systematic literature reviews have been
suggested for several scientific disciplines, e.g. for software engineering [151], for information
systems [204], and for health sciences [84]. A systematic literature review consists typically
of the activities depicted in Figure 3.1 subdivided into the phases plan, conduct, and report.
The activities may differ in detail for the specific scientific domains [84, 151, 204]. In
particular, a data extraction form defines which data has to be extracted from the reviewed
papers. Data extraction requirements vary from review to review so that the form is tailored
to the specific research questions investigated in the review.

3.3 Requirements Analysis

As the discussion of related work reveals, existing knowledge graphs for research information
focus on specific use cases (e.g. improve search engines, help to reproduce research results)
and mainly manage metadata and research artefacts about articles. We envision a KG in
which research articles are linked through a deep semantic representation of their content to
enable further use cases. In the following, Section 3.3.1 first states the problem and describes
our research method. This motivates our use case analysis in Section 3.3.2, from which we
derive requirements for an ORKG described in Section 3.3.3.
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3.3.1 Problem Statement and Research Method

This section frames the problem statement and describes our research method.

Problem Statement: As described in Section 1.2.1, we are faced with several conflicting
requirements when constructing an ORKG. On the one hand, we desire an ontology that can
comprehensively capture scholarly knowledge, and instance data with high correctness and
completeness. On the other hand, we are faced with a “knowledge acquisition bottleneck”
because instance data of comprehensive ontologies and with high correctness can only be
populated manually by ontology and domain experts, which, however, prevents instance data
with high completeness. Current automatic approaches that could achieve high completeness
of the instance data can only populate rather simple ontologies with moderate accuracy.

Research Method: To illuminate the problem statement, we perform a requirements
analysis. The development of an ORKG should follow the Design Science Research (DSR)
methodology [35, 121]. The objective of DSR, in general, is the innovative, rigorous, and
relevant design of information systems for solving important practical problems or the im-
provement of existing solutions [35, 115]. The requirements analysis is a central phase in
DSR, as it is the basis for design decisions and selection of methods to construct effective
solutions systematically [35]. A requirements analysis (also known as requirements engi-
neering), is “the systematic and disciplined approach to the specification and management
of requirements with the goal of understanding the stakeholders’ desires and needs and min-
imizing the risk of delivering a system that does not meet these desires and needs” [99].
One fundamental aspect of requirements engineering is that all involved people obtain a
shared understanding of the problem and the corresponding requirements [241]. Moreover,
the major tasks in requirements engineering are elicitation, documentation, validation, and
management of requirements [99, 241].

To elicit requirements, we studied guidelines for (a) systematic literature reviews (see
Section 3.2.5), (b) data quality requirements for information systems (see Section 3.2.4),
and (c) interviewed and discussed with members of the ORKG and Visual Analytics team
at TIB3 (referred to as requirements analysis group). The members of the requirements
analysis group are experienced researchers in the fields of computer science and environ-
mental sciences (two professors, three postdoctoral researchers, and me as a PhD student).
In Section 3.3.2 and Section 3.3.3, we describe and discuss the elicited requirements. Based
on the requirements, we elaborate on possible approaches to construct an ORKG, which
were identified through a literature review (see Section 3.2.3). To verify our assumptions
on the presented requirements and approaches, members of the requirements analysis group

3https://projects.tib.eu/orkg/project/team/, https://www.tib.eu/en/research-development/vis
ual-analytics/staff
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Figure 3.2: UML use case diagram for the main use cases between a researcher, an Open
Research Knowledge Graph (ORKG), and external systems.

reviewed them in an iterative refinement process. Although the requirements analysis group
members may be biased towards the fields of computer science and environmental sciences,
we have encouraged them to define the requirements in a domain-independent manner as
possible.

3.3.2 Overview of the Use Cases

We define functional requirements with use cases which are a popular technique in software
requirements engineering [26, 52, 241]. A use case describes the interaction between a user
and the system from the user’s perspective to achieve a certain goal. Furthermore, a use
case provides a motivating scenario to guide the design of a supporting ontology and the
use case analysis helps to figure out which kind of information is necessary [64].

During our requirements analysis, we elicited many use cases (e.g. literature reviews,
reproducing research results, plagiarism detection, peer reviewer suggestion) and several
stakeholders (e.g. researchers, librarians, peer reviewers, practitioners) that may benefit
from an ORKG. The primary source for the elicitation were the guidelines for systematic
literature reviews (see Section 3.2.5) and discussions within the the requirements analysis
group. However, a complete analysis of all possible use cases of graph-based knowledge
management systems in the research environment is far beyond the scope of this requirements
analysis. Therefore, we focus in the requirements analysis only on use cases that support
the stakeholder researcher in the following tasks:

(a) Conducting literature reviews (see also Section 3.2.5).

(b) Obtaining a deep understanding of a research article.

(c) Reproducing research results.

We decided on this selection of tasks after discussions within the requirements analysis group
since, in our view, they represent the most important tasks of researchers that an ORKG
should support.
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Figure 3.2 depicts the main identified seven use cases. The first five use cases, namely
(1) get research field overview, (2) find related work, (3) assess relevance, (4) extract relevant
information, and (5) get recommended articles aim to support researchers in the task con-
ducting literature reviews (see also Figure 3.1). The last two use cases, namely (6) obtain
deep understanding and (7) reproduce results aim to support the researchers in the tasks
obtaining a deep understanding of a research article and reproducing research results, re-
spectively. In the following, the use cases are described briefly in the casual form at the
user goal level so that a variety of audiences can understand them [52]. Please note that we
focus on how semantic content can improve these use cases and not further metadata.

Get Research Field Overview: Survey articles provide an overview of a particular
research field, e.g. a certain research problem or a family of approaches. The results in
such surveys are sometimes summarised in structured and comparative tables (an approach
usually followed in domains such as computer science, but not as systematically practised
in other fields). However, once survey articles are published, they are no longer updated.
Moreover, they usually represent only the perspective of the authors, i.e. very few researchers
of the field. To support researchers to obtain an up-to-date overview of a research field,
the system should maintain such surveys in a structured way, and allow for dynamics and
evolution. A researcher interested in such an overview should be able to search or browse
the desired research field in a user interface for ORKG access. Then, the system should
retrieve related articles and available overviews, e.g. in a table or a leaderboard chart.

While an ORKG user interface should allow for showing tabular leaderboards or other
visual representations, the backend should semantically represent information to allow for
the exploitation of overlaps in conceptualisations between research problems or fields. Fur-
thermore, faceted drill-down methods based on the properties of semantic descriptions of
research approaches could empower researchers to quickly filter and zoom into the most
relevant literature.

Find Related Work: Finding relevant research articles is a core activity of researchers.
The primary goal of this use case is to find research articles which are relevant to a cer-
tain research question. A broad research question is often broken down into smaller, more
specific sub-questions which are then converted to search queries [84]. For instance, in this
requirements analysis, we explored the following questions during our literature review in
Section 3.2:

(a) Which ontologies do exist to represent scholarly knowledge?

(b) Which scientific knowledge graphs do exist, and which information do they contain?

(c) Which datasets do exist for scientific information extraction?

(d) What are current state-of-the-art methods for scientific information extraction?
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(e) Which approaches do exist to construct a KG?

An ORKG should support the answering of queries related to such kind of questions, which
can be fine-grained or broad search intents. Preferably, the system should support natural
language queries as approached by semantic search and question answering engines [14]. The
system has to return a set of relevant articles.

Assess Relevance: Given a set of relevant articles, the researcher has to assess whether
the articles match the criteria of interest. Usually, researchers skim through the title and
abstract [2, 133, 278]. Often, also the introduction and conclusions have to be considered,
which is cumbersome and time-consuming. If only the most important paragraphs in the
article are presented to the researcher in a structured way, this process can be boosted. Such
information snippets might include, for instance, text passages that describe the problem
tackled in the research work, the main contributions, the employed methods or materials,
or the yielded results.

Extract Relevant Information: To tackle a particular research question, the researcher
has to extract relevant information from research articles. In a systematic literature review,
the information to be extracted can be defined through a data extraction form (see Sec-
tion 3.2.5). Such extracted information is usually compiled in written text or comparison
tables in a related work section or survey articles. For instance, for the question "Which
datasets do exist for scientific sentence classification?" a researcher who focuses on a new
annotation study could be interested in (a) domains covered by the dataset and (b) the
inter-coder agreement (see Table 3.1 as an example). Another researcher might follow the
same question but focusing on machine learning, and thus could be more interested in (c)
evaluation results and (d) feature types used.

The system should support the researcher with tailored information extraction from a set
of research articles:

1. The researcher defines a data extraction form as proposed in systematic literature
reviews (e.g. the fields (a)-(d) above).

2. The system presents the extracted information as suggestions for the corresponding
data extraction form and articles in a comparative table.

Figure 3.3 illustrates a data extraction form with corresponding fields in form of questions,
and a possible approach to visualise the extracted text passages from the articles for the
respective fields in a tabular form.

Get Recommended Articles: When the researcher focuses on a particular article, fur-
ther related articles could be recommended by the system utilising an ORKG, for instance,
articles that address the same research problem or apply similar methods.

68



3.3 Requirements Analysis

Research question and data extraction form
Which datasets exist for scientific sentence classification?
* (1) Which domains are covered by the dataset?
* (2) Who were the annotators?
* (3) What is the inter-annotator agreement?







find







(2) Extract entities in search 
query (e.g. dataset, task), find 
relevant papers and rank them

(3) Present relevant papers 
with extracted text 

(1) Define research question and data extraction form

Figure 3.3: An example research question with a corresponding data extraction form, and
the extracted text passages from relevant research articles for the respective
(data extraction form) fields presented in a tabular form.

Obtain Deep Understanding: The system should help the researcher to obtain a deep
understanding of a research article (e.g. equations, algorithms, diagrams, datasets). For
this purpose, the system should connect the article with artefacts such as conference videos,
presentations, source code, datasets, etc., and visualise the artefacts appropriately. Also,
text passages can be linked, e.g. to explanations of methods in Wikipedia, source code
snippets of an algorithm implementation, or equations described in the article.

Reproduce Results: The system should offer researchers links to all necessary artefacts
to help to reproduce research results, e.g. datasets, source code, virtual research environ-
ments, materials describing the study, etc. Furthermore, the system should maintain seman-
tic descriptions of domain-specific and standardised evaluation protocols and guidelines such
as in machine learning reproducibility checklists [218] and bioassays in the medical domain.

3.3.3 Knowledge Graph Requirements

As outlined in Section 3.2.4, data quality requirements should be considered within the
context of a particular use case (“fitness for use”). In this section, we first describe dimen-
sions we used to define non-functional requirements for an ORKG. Then, we discuss these
requirements within the context of our identified use cases.
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3.3.3.1 Dimensions for Knowledge Graph Requirements

In the following, we describe the dimensions that we use to define the requirements for
ontology design and instance data. We selected these dimensions since we assume they are
most relevant and most challenging to construct an ORKG with appropriate data to support
the various use cases.

For ontology design, i.e. how comprehensively should an ontology conceptualise scholarly
knowledge to support a certain use case, we use the following dimensions:

A) Domain specialisation of the ontology: How domain-specific should the concepts and
relation types be in the ontology? An ontology with high domain specialisation targets
a specific (sub-)domain and uses domain-specific terms. An ontology with low domain
specialisation targets a broad range of domains and uses rather domain-independent
terms. For instance, Pertsas and Constantopoulos [215] propose domain-independent
concepts (e.g. activity, method, assertion). In contrast, Klampanos et al. [152] present
a very domain-specific ontology for artificial neural networks.

B) Granularity of the ontology: Which granularity of the ontology is required to conceptu-
alise scholarly knowledge? An ontology with high granularity conceptualises scholarly
knowledge with a lot of classes that have very detailed and many fine-grained prop-
erties and relations. An ontology with a low granularity has only a few classes and
relation types. For instance, the annotation schemes for scientific corpora (see Sec-
tion 3.2.3) have a rather low granularity, as they do not have more than 10 classes
and 10 relation types. In contrast, various ontologies (e.g. [110, 215]) with more than
20 to 35 classes and over 20 to 70 relations and properties are fine-grained and have a
relatively high granularity.

Although there is usually a correlation between domain specialisation and granularity of
the ontology (e.g. an ontology with high domain-specialisation has also a high granularity),
there exist also rather domain-independent ontologies with a high granularity, e.g. Scholarly
Ontology [215], and ontologies with high domain-specialisation and low granularity, e.g.
the PICO criterion in Evidence Based Medicine [147, 236]) which stands for population
(P), intervention (I), comparison (C), and outcome (O). Thus, we use both dimensions
independently. Furthermore, a high domain specialisation requirement for a use case implies
that each sub-domain requires a separate ontology for the specific use case. These domain-
specific ontologies can be organised in a taxonomy.

For the instance data, we use the following dimensions:

C) Completeness of the instance data: Given an ontology, to which extent do all possible
instances (i.e. instances for classes and links for relation types) in all research articles
have to be represented in the KG? Low completeness: it is tolerable for the use case
when a considerable amount of instance data is missing for the respective ontology.
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High completeness: it is mandatory for the use case that for the respective ontology, a
considerable amount of instances are present in the instance data. For instance, given
an ontology with a class “Task” and a relation type “subTaskOf” to describe a taxonomy
of tasks, the instance data for that ontology would be complete if all tasks mentioned
in all research articles are present (population completeness) and “subTaskOf” links
between the tasks are not missing (column completeness).

D) Correctness of the instance data: Given an ontology, which correctness is necessary
for the corresponding instances? Low correctness: it is tolerable for the use case that
some instances (e.g. 30%) are not correct. High correctness: it is mandatory for the
use case that instance data must not be wrong, i.e. all present instances in the KG
must conform to the ontology and reflect the content of the research articles properly.
For instance, an article is correctly assigned to the task addressed in the article, the
F1 score in the evaluation results are correctly extracted, etc.

It should be noted that the completeness and correctness of instance data can be evaluated
only for a given ontology. For instance, let A be an ontology having the class “Deep Learning
Model” without properties, and let B be an ontology that also has a class “Deep Learning
Model” and additionally further relation types describing the properties of the deep learning
model (e.g. drop-out, loss functions, etc.). In this example, the instance data of ontology
A would be considered to have high completeness, if it covers most of the important deep
learning models. However, for ontology B, the completeness of the same instance data would
be rather low since the properties of the deep learning models are missing. The same holds
for correctness: If ontology B has, for instance, a sub-type “Convolutional Neural Network”,
then the instance data would have rather low correctness for ontology B if all “Deep Learning
Model” instances are typed only with the generic class “Deep Learning Model”.

3.3.3.2 Discussion of the Knowledge Graph Requirements

Next, we discuss the seven main use cases regarding the required level of ontology domain
specialisation and granularity, as well as the completeness and correctness of instance data.
Table 3.4 summarises the requirements for the use cases along the four dimensions at an
ordinal scale. These requirements were discussed and consolidated within the requirements
analysis group. The aim of the chosen scale and the selected values is to indicate the direction
of future research and development efforts for the respective use cases. The use cases are
grouped if they have (1) similar justifications for the requirements and (2) a high overlap in
ontology concepts and instances.

Extract Relevant Information & Get Research Field Overview: The information
to be extracted from relevant research articles for a data extraction form within a literature
review is very heterogeneous and depends highly on the intent of the researcher and the
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Table 3.4: Requirements and approaches for the main use cases. The upper part describes
the minimum requirements for the ontology (domain specialisation and granu-
larity) and the instance data (completeness and correctness). The bottom part
lists possible approaches for manual, automatic and semi-automatic curation of
the KG for the respective use cases. “X” indicates that the approach is suitable
for the use case while “(x)” denotes that the approach is only appropriate with
human supervision. The left part (delimited by the vertical triple line) groups use
cases suitable for manual, and the right side for automatic approaches. Vertical
double lines group use cases with similar requirements.

Extract
rele-
vant
info

Research
field

overview

Deep
under-
stand-
ing

Repro-
duce
results

Find
related
work

Recom-
mend
arti-
cles

Assess
rele-
vance

Ontology Domain specialisation high high med med low low med
Granularity high high med med low low low

Instance
data

Completeness low med low med high high med
Correctness med high high high low low med

Manual
curation

Maintain terminologies - X - - X X -
Define templates X X - - - - -
Fill in templates X X X X - - -
Maintain overviews X X - - - - -

Automatic
curation

Entity/relation extr. (x) (x) (x) (x) X X X
Entity linking (x) (x) (x) (x) X X X
Sentence classification (x) - (x) - X - X
Template-based extr. (x) (x) (x) (x) - - -
Cross-modal linking - - (x) (x) - - -

research questions. Thus, the ontology has to be domain-specific and fine-grained to offer all
possible kinds of desirable information. However, missing information for certain questions
in the KG may be tolerable for a researcher. Furthermore, it might be acceptable if some
of the extracted suggestions for a data extraction form are wrong since the researcher can
correct them.

Research field overviews are usually the result of a literature review. The data in such
an overview has also to be very domain-specific and fine-grained. Also, this information
must have high correctness, e.g. an F1 score of an evaluation result must not be wrong.
Furthermore, an overview of a particular research field should have medium completeness
and must not miss any important research papers. However, it is acceptable when overviews
for some research fields are missing.

Obtain Deep Understanding & Reproduce Results: The information required for
these use cases has to achieve a high level of correctness (e.g. accurate links to dataset, source
code, videos, articles, research infrastructures). An ontology for the representation of default
artefacts can be rather domain-independent (e.g. Scholix [38]). However, semantic repre-
sentation of evaluation protocols requires domain-dependent ontologies (e.g. EXPO [264]).
Missing information is tolerable for these use cases.
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Find Related Work & Get Recommended Articles: When searching for related
work, it is essential not to miss relevant articles. Previous studies revealed that more than
half of the search queries in academic search engines refer to scientific entities [294]. However,
the coverage of scientific entities in general-purpose KGs (e.g. Wikidata) is rather low, since
the introduction of new concepts in research literature occurs at a faster pace than KG
curation [3]. Despite the low completeness, Xiong et al. [294] could improve the ranking of
search results in academic search engines by exploiting general-purpose KGs. Hence, the
instance data for the find related work use case should have high completeness with fine-
grained scientific entities. However, semantic search engines leverage latent representations
of KGs and text (e.g. graph and word embeddings) [14]. Since a non-perfect ranking of the
search results is tolerable for a researcher, lower correctness of the instance data could be
acceptable. Furthermore, due to latent feature representations, the ontology can be kept
rather simple and domain-independent.

Graph- and content-based research paper recommendation systems [18] have similar re-
quirements since they also leverage latent feature representations and require fine-grained
scientific entities. Also, non-perfect recommendations are tolerable for a researcher.

Assess Relevance: To help the researcher to assess the relevance of an article according
to her needs, the system should highlight the most essential zones in the article to get a
quick overview. The completeness and correctness of the presented information must not be
too low, as otherwise, the user acceptance may suffer. However, it can be suboptimal since
it is acceptable for a researcher when some of the highlighted information is not essential or
when some important information is missing. The ontology to represent essential information
should be rather domain-independent and quite simple (cf. ontologies for scientific sentence
classification in Section 3.2.3.2).

3.4 ORKG Construction Strategies

In this section, we discuss the implications for the design and construction of an ORKG and
outline possible approaches, which are mapped to the use cases in Table 3.4. The possible
approaches were identified through a literature review (see Section 3.2.3). Based on the
discussion in the previous section, we can subdivide the use cases into two groups:

1. Use cases requiring high correctness and high domain specialisation with rather low
requirements on the completeness (left side in Table 3.4).

2. Use cases requiring high completeness with rather low requirements on the correctness
and domain specialisation (right side in Table 3.4).

The first group requires manual approaches for KG construction, while the KG construc-
tion for the second group could be accomplished with fully-automatic approaches. To ensure
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Figure 3.4: The virtuous cycle of data network effects by combining manual and automatic
data curation approaches [39].

trustworthiness, data records should contain provenance information, i.e. who or what sys-
tem curated the data.

Manually curated data can also support use cases with automatic approaches, and vice
versa. Furthermore, automatic approaches can complement manual approaches by providing
suggestions in user interfaces. Such synergy between humans and algorithms may lead to
a “data flywheel” (also known as data network effects, see Figure 3.4): Users produce data
which enable to build a smarter product with better algorithms so that more users use the
product and thus produce more data, and so on.

3.4.1 Manual Approaches

This section describes possible manual approaches for ontology design and KG population.

Ontology Design: The first group of use cases requires rather domain-specific and fine-
grained ontologies. We suggest developing novel or reusing ontologies that fit the respective
use case and the specific domain (e.g. EXPO [264] for experiments). Moreover, appropriate
and simple user interfaces are necessary for an efficient and easy population.

However, such ontologies can also evolve with the help of the community, as demon-
strated by Wikidata and Wikipedia with “infoboxes” (see Section 3.2.3). Therefore, the
system should enable the maintenance of templates, which are pre-defined and very specific
forms consisting of fields with certain types (see Figure 3.5). For instance, to automatically
generate leaderboards for machine learning tasks, a template would have the fields task,
model, dataset, metric, and score, which can then be filled in by a curator for articles pro-
viding such kind of results in a user interface generated from the template. Such an approach
is based on meta-modelling [26], as the meta-model for templates enables the definition of
concrete templates, which are then instantiated for articles.
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<<Interface>>
TemplateInformationExtractor

+ getTemplate():Template
+ couldBeRelevant(a: Article): boolean
+ extractTemplateFields(p:Article):TemplateInstance

fields
Template

+ name
+ description

Field

+ name
+ description

type

values
TemplateInstance

type

FieldValue

+ value: Object
propertiesArticle

FieldType

Figure 3.5: Conceptual meta-model in UML for templates and interface design for an exter-
nal template-based information extractor.

Knowledge Graph Population: Several user interfaces are required to enable manual
population:

1. Populate semantic content for a research article by (1a) choosing relevant templates
or ontologies and (1b) fill in the values.

2. Terminology management (e.g. domain-specific research fields).

3. Maintain research field overviews by (3a) assigning relevant research articles to the
research field, (3b) define corresponding templates, and (3c) fill in the templates for
the relevant research articles.

Furthermore, the system should also offer Application Programming Interfaces (APIs) to
enable population by third-party applications, e.g.

• Submission portals such as https://www.easychair.org/ during submission of an
article.

• Authoring tools such as https://www.overleaf.com/ during writing.

• Virtual research environments [272] to store evaluation results and links to datasets
and source code during experimenting and data analysis.

To encourage stakeholders like researchers, librarians, and crowd workers to contribute con-
tent, we see the following options:

• Top-down enforcement via submission portals and publishers.

• Incentive models: Researchers want their articles to be cited; semantic content helps
other researchers to find, explore and understand an article. This is also related to the
concept of enlightened self-interest, i.e. act to further interests of others to serve the
own self-interest [125].

• Provide public acknowledgements for curators.

• Bring together experts (e.g. librarians, researchers from different institutions) who
curate and organise content for specific research problems or disciplines.
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3.4.2 (Semi-)automatic Approaches

This section describes possible ontology design methods for use cases requiring rather simple
ontologies, and semi-automatic approaches for KG population.

Ontology design: The second group of use cases requires high completeness, while a
relatively low correctness and domain specialisation are acceptable. For these use cases,
rather simple or domain-independent ontologies should be developed or reused. Although
approaches for automatic ontology learning exist (see Section 3.2.3), the quality of their
results is not sufficient to generate a meaningful ORKG with complex conceptual models
and relations. Therefore, meaningful ontologies should be designed by human experts.

Knowledge Graph Population: Various approaches can be used to (semi-)automatically
populate an ORKG. Methods for entity and relation extraction (see Section 3.2.3) can help
to populate fine-grained KGs with high completeness and entity linking approaches can link
mentions in text with entities in KGs. For cross-modal linking, Singh et al. [260] suggest an
approach to detect URLs to datasets in research articles automatically, while the Scientific
Software Explorer [120] connects text passages in research articles with code fragments. To
extract relevant information at the sentence level, approaches for sentence classification in
scientific text can be applied (see Section 3.2.3). To support the curator fill in templates semi-
automatically, template-based extraction can (1) suggest relevant templates for a research
article and (2) pre-fill fields of templates with appropriate values. For pre-filling, approaches
such as n-ary relation extraction [90, 122, 131, 142] or end-to-end question answering [71,
233] could be applied.

Furthermore, the system should allow to plugin external information extractors, devel-
oped for certain scientific domains to extract specific types of information. For instance,
as depicted in Figure 3.5, an external template information extractor has to implement
an interface with three methods. This enables the system to (1) filter relevant template
extractors for an article and (2) extract field values from an article.

3.5 Summary

In this chapter, we have presented a requirements analysis for an Open Research Knowledge
Graph (ORKG) that addresses the first research question RQ1 (requirements for scholarly
knowledge representation) of this thesis. An ORKG should represent the content of research
articles semantically to enhance or enable a wide range of use cases. Our requirements
analysis identified literature-related core tasks of a researcher that can be supported by an
ORKG and formulated them as use cases. For each use case, we discussed specificities and
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requirements for the underlying ontology and the instance data. In particular, we identified
two groups of use cases:

1. The first group requires instance data with high correctness and rather fine-grained,
domain-specific ontologies, but moderate completeness of the instance data might be
sufficient.

2. The second group requires high completeness of the instance data, but the ontologies
can be kept rather simple and domain-independent, and moderate correctness of the
instance data might be acceptable.

Based on the requirements, we have described possible manual and semi-automatic ap-
proaches (necessary for the first group), and automatic approaches (appropriate for the
second group) for KG construction. In particular, we have proposed a framework using
lightweight ontologies (called templates) that can evolve by community curation. Further-
more, we have described the interdependence with external systems, user interfaces, and
APIs for third-party applications to populate an ORKG.

♦♦♦

The requirements analysis of this chapter has built the foundation for this thesis and shall
guide further research. In this thesis, we focus on the second group of use cases, namely to
assist researchers in (1) assessing relevance of research papers, (2) finding related work, and
(3) recommending appropriate research papers. The following chapters present contributions
for machine learning tasks that can enhance these use cases. The next Chapter 4 proposes a
novel cross-domain multi-task learning approach for the task of sequential sentence classifi-
cation that aims to support the use case assess relevance of research papers. Chapters 5 and
6 present a domain-independent information extraction approach for the tasks of scientific
concept extraction and coreference resolution. Using this information extraction approach,
in Chapter 6, we populate an RKG that aims to support the use cases find related work and
recommend appropriate research papers. Finally, in Chapter 7, we present an approach for
citation recommendation that leverages our populated RKG.
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4 Sentence Classification using
Cross-Domain Multi-Task Learning

As described in the previous Chapter 3, a structured presentation of the most important
paragraphs or sentences of an article can assist researchers in the assessment of a research pa-
per’s relevance. The task of sequential sentence classification enables categorising sentences
into a predefined set of categories and thus to structure research papers. This chapter
explores RQ2 and RQ3 which are related to this task, namely:

RQ2: How can we modify machine learning methods for information extraction
from scientific texts to be adaptable to new domains with few labelled data?

RQ3: How can we automatically extract information from research papers from
multiple scientific domains in a domain-independent manner?

We propose a unified cross-domain multitask learning approach that can exploit datasets
from different scientific domains with different structures. Furthermore, we present an ap-
proach to classify sentences in research papers in a domain-independent manner. In the
following, Section 4.1 first motivates our approaches. Then, Section 4.2 summarises related
work on sentence classification in research papers and transfer learning in NLP. Our pro-
posed approaches are presented in Section 4.3. The setup and results of our experimental
evaluation are reported in Section 4.4 and 4.5, while Section 4.6 summarises this chapter.

4.1 Introduction

To search relevant research papers for a particular field is a core activity of researchers.
Scientists usually use academic search engines and skim through the text of the found
articles to assess their relevance. The task of sequential sentence classification targets the
categorisation of sentences by their semantic content or function. In research papers, this can
be used to classify sentences by their contribution to the article’s content, e.g. to determine
if a certain sentence contains information about the research work’s objective, methods, or
results [68]. Figure 4.1 shows an example of an abstract with classified sentences. Such a
semantification of sentences can help algorithms focus on relevant elements of text and thus
assist information retrieval systems [198, 242]. The task is called sequential to distinguish
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Gamification has the potential to improve the quality of learning by better engaging students with learn-
ing activities. Our objective in this study is to evaluate a gamified learning activity along the dimensions
of learning, engagement, and enjoyment. The activity made use of a gamified multiple choice quiz imple-
mented as a software tool and was trialled in three undergraduate IT-related courses. A questionnaire
survey was used to collect data to gauge levels of learning, engagement, and enjoyment. Results show
that there was some degree of engagement and enjoyment. The majority of participants (77.63 per cent)
reported that they were engaged enough to want to complete the quiz and 46.05 per cent stated they
were happy while playing the quiz...

Figure 4.1: An annotated abstract taken from the CSABSTRUCT dataset [54], where
the sentences are coloured according to their respective category: background
(green), objectives (yellow), methods (magenta), and results (cyan).

it from the general sentence classification task where a sentence is classified in isolation,
i.e. without using local context. However, in research papers, the meaning of a sentence is
often informed by the context from neighbouring sentences, e.g. sentences that describe the
methods usually precede sentences about results.

In previous work, several approaches have been proposed for sequential sentence classi-
fication (e.g. [6, 133, 257, 295]), and several datasets were annotated for various scientific
domains (e.g. [68, 85, 100, 270]). The datasets contain either abstracts or full papers and
were annotated with domain-specific sentence classes. However, research infrastructures
usually support multiple scientific domains. Therefore, stakeholders of digital libraries are
interested in a uniform solution that enables the combination of these datasets to improve
the overall prediction accuracy. For this purpose, this chapter explores the following research
questions.

First, although some approaches propose transfer learning for the scientific domain [15,
106, 207], the field lacks a comprehensive empirical study on transfer learning across dif-
ferent scientific domains for sequential sentence classification. Transfer learning enables the
combination of knowledge from multiple datasets to improve classification performance and
thus to reduce annotation costs. The annotation of scientific text is particularly costly
since it demands expertise in the article’s domain [9, 92]. However, studies revealed that
the success of transferring neural models largely depends on the relatedness of the tasks,
and transfer learning with unrelated tasks may even degrade performance [196, 205, 238,
253]. Two tasks are related if there exists some implicit or explicit relationship between
the feature spaces [205]. On the other hand, every scientific domain is characterised by
its specific terminology and phrasing, which yields different feature spaces. Thus, it is not
clear to what extent datasets from different scientific disciplines are related. This raises
the following sub-questions of RQ2 (few labelled data) for the task of sequential sentence
classification:

80



4.1 Introduction

#Q1: To which extent are datasets from different scientific domains semantically related?

#Q2: Which transfer learning approach works best?

#Q3: Which neural network layers are transferable under which constraints?

#Q4: Is it beneficial to train a multi-task model with multiple datasets?

Normally, every dataset has a domain-specific annotation scheme that consists of a set
of associated sentence classes. This raises the second set of research questions with regard
to the consolidation of these annotation schemes. Prior work [175] annotated a dataset
multiple times with different schemes, and analysed the multivariate frequency distributions
of the classes. They found that the investigated schemes are complementary and should be
combined. However, annotating datasets multiple times is costly and time-consuming. To
support the consolidation of different annotation schemes across domains, we examine the
following sub-questions of RQ3 (domain-independent extraction):

#Q5: Can a model trained with multiple datasets recognise the semantic relatedness of
classes from different annotation schemes?

#Q6: Can we derive a consolidated, domain-independent annotation scheme and use that
scheme to compile a new dataset to train a domain-independent model?

Finally, current approaches for sequential sentence classification are designed either for
abstracts or full papers. One reason is that these text types follow rather different structures:
In abstracts, different sentence classes directly follow one another normally. The general
paper text, however, exhibits longer passages without change of the semantic sentence class.
Typically, deep learning is used for abstracts [54, 69, 100, 133, 257, 295] since presumably
more training data are available, whereas for full papers, also called zone identification,
hand-crafted features and linear models have been suggested [6, 11, 85, 174]. However, deep
learning approaches have also been applied successfully to full papers in related tasks such
as argumentation mining [167], scientific document summarisation [1, 55, 63, 98], or n-ary
relation extraction [90, 131, 140]. Thus, the potential of deep learning has not been fully
exploited yet for sequential sentence classification on full papers, and no unified solution
for abstracts as well as full papers exists. This raises the following sub-question of RQ2
(adaptable to new domains):

#Q7: Can a unified deep learning approach be applied to text types with very different
structures like abstracts or full papers?

This chapter investigates these research questions and presents the following contributions:

1. We introduce a novel multi-task learning framework for sequential sentence classifica-
tion.

2. Furthermore, we propose and evaluate an approach to semi-automatically identify
semantically related classes from different annotation schemes and present an analysis
of four annotation schemes. Based on the analysis, we suggest a domain-independent
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annotation scheme and compile a new dataset that enables to classify sentences in a
domain-independent manner.

3. Our proposed unified deep learning approach can handle both text types, abstracts
and full papers despite their structural differences.

4. To facilitate further research, we make our source code publicly available: https:

//github.com/arthurbra/sequential-sentence-classification.

Comprehensive experimental results demonstrate that our multi-task learning approach suc-
cessfully makes use of datasets from different scientific domains, with different annotation
schemes, that contain abstracts or full papers. In particular, we outperform state-of-the-
art approaches for full paper datasets significantly, while obtaining competitive results for
datasets of abstracts.

4.2 Related Work

In Section 3.2.3.2 and Table 3.1 we outline datasets for sentence classification in scientific
texts. In this section, we describe machine learning methods for this task. Furthermore, we
briefly review transfer learning methods.

4.2.1 Sequential Sentence Classification in Scientific Text

In the following, we review machine learning approaches for sentence classification in ab-
stracts and full papers.

4.2.1.1 Approaches for Abstracts

Deep learning has been the preferred approach for sentence classification in abstracts in
recent years [54, 69, 100, 133, 257, 295]. These approaches follow a common hierarchical
sequence labelling architecture: (1) a word embedding layer encodes tokens of a sentence to
word embeddings, (2) a sentence encoder transforms the word embeddings of a sentence to a
sentence representation, (3) a context enrichment layer enriches all sentence representations
of the abstract with context from surrounding sentences, and (4) an output layer predicts
the label sequence.

As depicted in Table 4.1, the approaches vary in different implementations of the layers.
They use different kinds of word embeddings, e.g. Global Vectors for Word Representa-
tion (GloVe) [212], Word2Vec [193], or SciBERT [19] that is BERT [71] pre-trained on
scientific text. For sentence encoding, a Bi-LSTM [116] or a Convolutional Neural Net-
work (CNN) with various pooling strategies are utilised, while Yamada et al. [295] and
Shang et al. [257] use the classification token ([CLS]) of BERT or SciBERT. To enrich sen-
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Table 4.1: Comparison of deep learning approaches for sequential sentence classification in
abstracts.

Approach Word
embedding

Sentence
encoding

Context
enrichment

Output
layer

Dernoncourt
and Lee (2016) [69]

Character Emb.
+ GloVe

Bi-LSTM with
concatenation - CRF

Jin and
Szolovits (2018) [133] Bio word2vec Bi-LSTM with

attention pooling Bi-LSTM CRF

Cohan et al.
(2019) [54] SciBERT SciBERT-[SEP] SciBERT-[SEP] softmax

Gonçalves et al.
(2020) [100] GloVe CNN with

max pooling Bi-GRU softmax

Yamada et al.
(2020) [295]

BERT from
PubMed BERT-[CLS] Bi-LSTM Semi-Markov

CRF
Shang et al.
(2021) [257] SciBERT SciBERT-[CLS] Bi-LSTM/

attention CRF

tences with further context, an RNN such as a Bi-LSTM or Bi-GRU [50] is used. Shang
et al. [257] additionally exploit an attention-mechanism across sentences; however, it intro-
duces quadratic runtime complexity that depends on the number of sentences. A Conditional
Random Field (CRF) [163] is mostly used as an output layer to capture the interdependence
between classes (e.g. results usually follow methods). Yamada et al. [295] form spans of sen-
tence representations and Semi-Markov CRFs to predict the label sequence by considering
all possible span sequences of various lengths. Thus, their approach can better label longer
continuous sentences but is computationally more expensive than a CRF. Cohan et al. [54]
obtain contextual sentence representations directly by fine-tuning SciBERT and utilising the
separation token ([SEP]) of SciBERT. However, their approach can process only about 10
sentences at once since BERT supports sequences of up to 512 tokens only.

4.2.1.2 Approaches for Full Papers

For full papers, Logistic Regression, Support Vector Machines (SVMs), and Conditional
Random Fields (CRFs) with hand-crafted features have been proposed [6, 11, 85, 174, 277,
279]. They represent a sentence with various syntactic and linguistic features, such as n-
grams, part-of-speech tags, or citation markers, which were engineered for the respective
datasets. Asadi et al. [6] also exploit semantic features obtained from knowledge bases such
as Wordnet [82]. To incorporate contextual information, each sentence representation also
contains the label of the previous sentence (“history feature”) and the sentence position in
the document (“location feature”). To better consider the interdependence between labels,
some approaches apply CRFs [163], while Asadi et al. [6] suggest fusion techniques within
a dynamic window of sentences. However, some approaches [6, 11, 85] exploit the ground
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truth label instead of the predicted label of the preceding sentence (“history feature”) during
prediction, which has a significant impact on the performance.

Related tasks also classify sentences in full papers with deep learning methods, e.g. for
citation intent classification [53, 161] or algorithmic metadata extraction [243] but without
exploiting context from surrounding sentences. Comparable to us, Lauscher et al. [167]
utilise a hierarchical deep learning architecture for argumentation mining in full papers but
evaluate it only on one corpus.

To the best of our knowledge, a unified approach for the task of sequential sentence
classification for abstracts as well as full papers has not been proposed and evaluated yet.

4.2.2 Transfer Learning

The idea of transfer learning is to exploit knowledge from a source task to improve prediction
accuracy in a target task. The tasks can have training data from different domains and vary
in their objectives. According to Ruder’s taxonomy for transfer learning [238], we investigate
inductive transfer learning in this study since the target training datasets are labelled.
Inductive transfer learning can be further subdivided into multi-task learning, where tasks
are learned simultaneously, and sequential transfer learning (also referred to as parameter
initialisation), where tasks are learned sequentially. Since there are so many applications for
transfer learning, we focus on the most relevant cases for sentence classification in scientific
texts. For a more comprehensive overview, we refer to [205, 238, 292].

Fine-tuning a pre-trained language model is a popular approach for sequential transfer
learning in NLP [37, 71, 113, 124]. Here, the source task involves learning a language model
(or a variant of it) using a large unlabelled text corpus. Then, the model parameters are
fine-tuned with labelled data of the target task. Edwards et al. [76] evaluate the importance
of domain-specific unlabelled data on pre-training word embeddings for text classification
in the general domain (i.e. data such as news, phone conversations, magazines, etc.). Pruk-
sachatkun et al. [225] improve these language models by intermediate task transfer learning
where a language model is fine-tuned on a data-rich intermediate task before fine-tuning on
the final target task. Park and Caragea [207] provide an empirical study on intermediate
transfer learning from the non-academic domain to scientific keyphrase identification. They
show that SciBERT in combination with related tasks such as sequence tagging improves
performance, while BERT or unrelated tasks degrade the performance.

For sequence tagging, Yang et al. [297] investigate multi-task learning in the general domain
with cross-domain, cross-application, and cross-lingual transfer. In particular, target tasks
with few labelled data benefit from related tasks. Lee et al. [169] successfully transfer pre-
trained parameters from a big dataset to a small dataset in the biological domain. Schulz
et al. [250] evaluate multi-task learning for argumentation mining with multiple datasets in
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the general domain and could show that performance improves when training data for the
tasks is sparse.

For sentence classification, Mou et al. [196] compare (1) transferring parameters from a
source dataset to a target dataset against (2) training one model with two datasets in the
non-academic domain. They demonstrate that semantically related tasks improve while un-
related tasks degrade the performance of the target tasks. Semwal et al. [253] investigate the
extent of task relatedness for product reviews and sentiment classification with sequential
transfer learning. Su et al. [273] study multi-task learning for sentiment classification in
product reviews from multiple domains. Lauscher et al. [168] evaluate multi-task learning
on scientific texts, however, only on one dataset with different annotation layers. Banerjee
et al. [15] apply sequential transfer learning from the medical to the computer science do-
main for discourse classification, however, only for two domains and on abstracts, whereas
Spangher et al. [266] explore this task on news articles with multi-task learning using mul-
tiple datasets. Gupta et al. [106] utilise a multi-task learning with two scaffold tasks to
detect contribution sentences in full papers, however, only in one domain and with limited
sentence context.

Several approaches have been proposed to train multiple tasks jointly : Luan et al. [178]
train a model on three tasks (coreference resolution, entity and relation extraction) using
one dataset of research papers. Sanh et al. [246] introduce a multi-task model that is trained
on four tasks (mention detection, coreference resolution, entity and relation extraction) with
two different datasets. Wei et al. [290] utilise a multi-task model for entity recognition and
relation extraction on one dataset in the non-academic domain. Comparable to us, Chang-
pinyo et al. [46] analyse multi-task training with multiple datasets for sequence tagging. In
contrast, we investigate sequential sentence classification across multiple science domains.

4.3 Cross-Domain Multi-Task Learning for Sequential
Sentence Classification

On the one hand, the discussion of related work shows that several approaches and datasets
from various scientific domains have been introduced for sequential sentence classification.
On the other hand, while transfer learning has been applied to various NLP tasks, it is known
that the success depends largely on the relatedness of the tasks [196, 205, 238]. However, the
field lacks an empirical study on transfer learning between different scientific domains for
sequential sentence classification that cover either only abstracts or entire papers. Further-
more, previous approaches investigated transfer learning for one or two datasets only. To the
best of our knowledge, a unified approach for different types of texts that differ noticeably
by their structure and semantic context of sentences, as it is the case for abstracts and full
papers, has not been proposed yet.
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Figure 4.2: Proposed approaches for sequential sentence classification: (a) unified deep learn-
ing architecture SciBERT-HSLN for datasets of abstracts and full papers; (b)
sequential transfer learning approaches, i.e. INIT 1 transfers all possible layers,
INIT 2 only the sentence encoding layer; (c) and (d) are the multi-task learning
approaches, i.e. in MULT ALL all possible layers are shared between the tasks,
in MULT GRP the context enrichment is shared between tasks with the same
text type.

In this section, we suggest a unified cross-domain multi-task learning approach for sequen-
tial sentence classification. Our tailored transfer learning approaches, depicted in Figure 4.2,
exploit multiple datasets comprising different text types in form of abstracts and full pa-
pers. The unified approach without transfer learning is described in Section 4.3.1 while
Section 4.3.2 introduces the sequential transfer learning and multi-task learning approaches.
Finally, in Section 4.3.3, we present an approach to semi-automatically identify the semantic
relatedness of sentence classes between different annotation schemes.

4.3.1 Unified Deep Learning Approach

Given a paper with the sentences (s1, ..., sn) and the set of dataset specific classes L (e.g.
Background, Methods), the task of sequential sentence classification is to predict the
corresponding label sequence (y1, ...,yn) with yi ∈ L. For this task, we propose a unified
deep learning approach as depicted in Figure 4.2(a), which is applicable to both abstracts
and full papers. The core idea is to enrich sentence representations with context from
surrounding sentences.
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Our approach (denoted as SciBERT-HSLN ) is based on the Hierarchical Sequential La-
beling Network (HSLN) [133]. In contrast to Jin and Szolovits [133], we utilise SciBERT [19]
as word embeddings and evaluate the approach on abstracts as well as full papers. We have
chosen HSLN as the basis since it is better suited for full papers: It has no limitations
on text length (in contrast to the approach of Cohan et al. [54]), and is computationally
less expensive than the more recent approaches [257, 295]. Furthermore, their implementa-
tion is publicly available. The goal of this study is not to beat state-of-the-art results but
rather to provide an empirical study on transfer learning and offer a uniform solution. Our
SciBERT-HSLN architecture has the following layers:

Word Embedding: Input is a sequence of tokens (ti,1, ..., ti,m) of sentence si, while out-
put is a sequence of contextual word embeddings (wi,1, ...,wi,m).

Sentence Encoding: Input (wi,1, ...,wi,m) is transformed via a Bidirectional Long Short-
Term Memory (Bi-LSTM) [116] into the hidden token representations (hi,1, ...,hi,m) (hi,t ∈
Rdh) which are enriched with contextual information within the sentence. Then, attention
pooling [133, 298] with r heads produces a sentence vector ei ∈ Rrdu . An attention head
produces a weighted average over the token representations of a sentence. Multiple heads
enable to capture several semantics of a sentence. Formally, at first, a token representation
hi,t is transformed via a feed-forward network into a further hidden representation ai,t with
the learned weight matrix W[S] and bias vector b[S]:

ai,t = FFN(hi,t) = tanh(W[S]hi,t + b[S]) (4.1)

Then, for each attention head k with 1 ≤ k ≤ r the learned token level context vector
uk ∈ Rdu is used to compute importance scores for all token representations which are then
normalised by softmax:

αk,i,t =
exp(uᵀkai,t)∑
t′ exp(uᵀkai,t′)

(4.2)

An attention head ek,i ∈ Rdh is computed as a weighted average over the token representa-
tions and all heads are concatenated to form the final sentence representation ei ∈ Rrdh :

ek,i =
∑
t′

αk,i,t′hi,t′ (4.3)

ei = [e1,i, ..., er,i] (4.4)

Context Enrichment: This layer takes as input all sentence representations (e1, ..., en)

of the paper and outputs contextualised sentence representations (c1, ..., cn) (ci ∈ Rdh) via
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a Bi-LSTM. Thus, each sentence representation ci contains contextual information from
surrounding sentences.

Output Layer: This layer transforms sentence representations (c1, ..., cn) via a linear
transformation to the logits (l1, ..., ln) with li ∈ R|L|. Each component of vector li contains
a score for the corresponding label:

li = W[O]ci + b[O] (4.5)

Finally, the logits serve as input for a Conditional Random Field (CRF) [163] that predicts
the label sequence (ŷ1, ..., ŷn) (ŷi ∈ L) with the highest joint probability. A CRF captures
linear (one step) dependencies between the labels (e.g. Methods are usually followed by
Methods or Results). Therefore, a CRF learns a transition matrix T ∈ R|L|×|L|, where
Tl1,l2 represents the transition score from label l1 to label l2, and two vectors b, e ∈ R|L|,
where bl and el represent the score of beginning and ending with label l, respectively.
The objective is to find the label sequence with the highest conditional joint probability
P (ŷ1, ..., ŷn|l1, ..., ln). For this purpose, we define a score function for a label sequence
(ŷ1, ..., ŷn), that is a sum of the scores of the labels and the transition scores:

score((ŷ1, ..., ŷn), (l1, ..., ln)) = bŷ1 +

n∑
t=1

lt,ŷt +

n−1∑
t=1

Tŷt,ŷt+1 + eŷm (4.6)

Then, the score is transformed to a probability value with softmax:

Z(l1, ..., ln) =
∑

y′1,...,y
′
n

exp(score((y′1, ...,y
′
n), (l1, ..., ln))) (4.7)

P (ŷ1, ..., ŷn|l1, ..., ln) =
exp(score((ŷ1, ..., ŷn), (l1, ..., ln)))

Z(l1, ..., ln)
(4.8)

The denominator Z(.) represents a sum of the scores of all possible label sequences for the
given logits. The Viterbi algorithm [88] is used to efficiently calculate the sequence with the
highest score and the denominator (both with time complexity O(|L|2 · n)).

During training, the CRF maximises P (y1, ...,yn|l1, ..., ln) of the ground truth labels for
all m training samples ((x(1),y(1)), ..., (x(m),y(m))), where x(i) represents the sentences of
paper i and y(i) the corresponding ground truth label sequence. Thus, the objective is to
minimise the following loss function:

L = − 1

m

m∑
i=1

logP (y(i)|l(i)) (4.9)
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For regularisation, we use dropout after each layer. The SciBERT model is not fine-tuned
since it requires the training of 110 Mio. additional parameters.

4.3.2 Transfer Learning Methods

For sequential sentence classification, we tailor and evaluate the following transfer learning
methods.

Sequential Transfer Learning (INIT): The approach first trains the model for the
source task and uses its tuned parameters to initialise the parameters for the target task.
Then, the parameters are fine-tuned with the labelled data of the target task. As depicted in
Figure 4.2(b), we propose two types of layer transfers. INIT 1 : transfer parameters of context
enrichment and sentence encoding ; INIT 2 : transfer parameters of sentence encoding. Other
layers, except word embedding, of the target task are initialised with random values.

Multi-Task Learning (MULT): Multi-task learning (MULT) aims for a better gener-
alisation by simultaneously training samples in all tasks and sharing parameters of certain
layers between the tasks. As depicted in Figure 4.2(c,d), we propose two multi-task learn-
ing architectures. The MULT ALL model shares all layers between the tasks except the
output layers so that the model learns a common feature extractor for all tasks. However,
full papers are much longer and have a different rhetorical structure compared to abstracts.
Therefore, it is not beneficial to share the context enrichment layer between both dataset
types. Thus, in the MULT GRP model, the context enrichment layers are only shared be-
tween datasets with the same text type. Formally, the objective is to minimise the following
loss functions:

LMULT ALL =
∑

t∈TA∪TF

Lt(Θ
S ,ΘC ,ΘO

t ) (4.10)

LMULT GRP =
∑
t∈TA

Lt(Θ
S ,ΘCA

,ΘO
t ) +

∑
t∈TF

Lt(Θ
S ,ΘCF

,ΘO
t ) (4.11)

where TA and TF are the tasks for datasets containing abstracts and full papers, respectively;
Lt is the loss function for task t; the parameters ΘS are for sentence encoding, ΘC , ΘCA ,
ΘCF for context enrichment, and ΘO

t for the output layer of task t.

Furthermore, we propose the variants MULT ALL SHO and MULT GRP SHO that are
applicable if all tasks share the same (domain-independent) set of classes. MULT ALL SHO
shares all layers among all tasks. MULT GRP SHO shares the context enrichment and

89



4 Sentence Classification using Cross-Domain Multi-Task Learning

output layer only between tasks with the same text type. The loss functions are defined as:

LMULT ALL SHO =
∑

t∈TA∪TF

Lt(Θ
S ,ΘC ,ΘO) (4.12)

LMULT GRP SHO =
∑
t∈TA

Lt(Θ
S ,ΘCA

,ΘOA
) +

∑
t∈TF

Lt(Θ
S ,ΘCF

,ΘOF
) (4.13)

4.3.3 Semantic Relatedness of Classes

Datasets for sentence classification have different domain-specific annotation schemes, that
is different sets of pre-defined classes. Intuitively, some classes have a similar meaning
across domains, e.g. the classes Model and Experiment in the ART corpus are semanti-
cally related to Methods in PubMed-20k (PMD) (see Table 4.2). An analysis of semantic
relatedness can help consolidate different annotation schemes.

We propose machine learning models to support the identification of semantically related
classes according to the following idea: if a model trained for PMD recognises sentences
labelled with ART:Model as PMD:Method, and vice versa, then the classes ART:Model

and PMD:Method can be assumed to be semantically related.

Let T be the set of all tasks, L the set of all classes in all tasks, mt(s) the label of sentence
s predicted by the model for task t, and Sl the set of sentences with the ground truth label
l. For each class l ∈ L the corresponding semantic vector vl ∈ R|L| is defined as:

vl,l′ =

∑
t∈T,s∈Sl 1(mt(s) = l′)

|Sl|
(4.14)

where vl,l′ ∈ R is the component of the vector vl for class l′ ∈ L and 1(p) is the indica-
tor function that returns 1 if p is true and 0 otherwise. Intuitively, the semantic vectors
concatenated vertically to a matrix represent a “confusion matrix” (see Figure 4.4 as an
example).

Now, we define the semantic relatedness of two classes k, l ∈ L using cosine similarity:

semantic_relatedness(k, l) = cos(vk,vl) =
vᵀk · vl

||vk|| · ||vl||
(4.15)

4.4 Experimental Setup

This section describes the experimental evaluation of the proposed approaches, i.e. used
datasets, implementation details, and evaluation methods.
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Table 4.2: Characteristics of the benchmark datasets. The row "State of the art" depicts
the best results for approaches that do not exploit the ground truth label of the
preceding sentence during prediction: for PMD [295], for NIC [257], for DRI [11]
(cf. Table 7), and for ART [174].

PMD NIC DRI ART

Domains Biomedicine Biomedicine Computer Chemistry,
Graphics Computational

Linguistic
Text Type Abstract Abstract Full paper Full paper
# Papers 20.000 1.000 40 225
# Sentences 235.892 9.771 8.777 34.680
∅ # Sentences 12 10 219 154
# Classes 5 6 5 11
Classes Background Background Background Background

Objective Intervention Challenge Motivation
Methods Study Approach Hypothesis
Results Population Outcome Goal

Conclusion Outcome FutureWork Object
Other Experiment

Model
Method

Observation
Result

Conclusion
State of the art 93.1 86.8 72.5 51.6
Original metric weighted F1 weighted F1 weighted F1 accuracy

4.4.1 Investigated Datasets

Table 4.2 summarises the characteristics of the investigated datasets, namely PubMed-20k
(PMD) [68], NICTA-PIBOSO (NIC) [147], ART [175], and Dr. Inventor (DRI) [85]. The
four datasets are publicly available and provide a good mix to investigate the transferability:
They represent four different scientific domains; PMD and NIC cover abstracts and are from
the same domain but have different annotation schemes; DRI and ART cover full papers but
are from different domains and have different annotation schemes; NIC and DRI are rather
small datasets, while PMD and ART are about 20 and 3 times larger, respectively; ART
has a much finer annotation scheme compared to other datasets. As denoted in Table 4.2,
the state-of-the-art results for ART are the lowest ones since ART has more fine-grained
classes than the other datasets. In contrast, best results are obtained for PMD: It is a large
dataset sampled from PubMed, where authors are encouraged to structure their abstracts.
Therefore, abstracts in PMD are more uniformly structured than in other datasets, leading
to better classification results.
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4.4.2 Implementation

Our approaches are implemented in PyTorch [210]. The Adaptive Moment Estimation
(ADAM) optimiser [148] with 0.01 weight decay and an exponential learning rate decay of 0.9

after each epoch is used for training. To speed up training, sentences longer than 128 tokens
are truncated since the computational cost for the attention layers in BERT is quadratic in
sentence length [283]. To reproduce the results of the original HSLN architecture, we tuned
SciBERT-HSLN for PMD and NIC with hyperparameters as proposed in other studies [71,
133]. The following parameters performed best on the validation sets of PMD and NIC:
learning rate 3e-5, dropout rate 0.5, Bi-LSTM hidden size dh = 2 · 758, r = 15 attention
heads of size du = 200. We used these hyperparameters in all our experiments.

For each dataset, we grouped papers to mini-batches without splitting them, if the mini-
batch does not exceed 32 sentences. Thus, for full papers a mini-batch may consist of
sentences from only one paper. During multi-task training we switched between the mini-
batches of the tasks by proportional sampling [246]. After a mini-batch, only task-related
parameters are updated, i.e. the associated output layer and all the layers below.

4.4.3 Evaluation

To be consistent with previous results and due to non-determinism in deep neural net-
works [234], we repeated the experiments and averaged the results. According to [54] we
performed three random restarts for PMD and NIC and used the same train/validation/test
sets. For DRI and ART, we performed 10-fold and 9-fold cross-validation, respectively, as
in the original papers [85, 174]. Within each fold the data is split into train/validation/test
sets with the proportions k−2

k / 1
k/

1
k where k is the number of folds. For multi-task learn-

ing, the experiment was repeated with the maximum number of folds of the datasets used,
but at least three times. All models were trained for 20 epochs. The test set performance
within a fold and restart, respectively, was calculated for the epoch with the best validation
performance.

We compare our results only with approaches which do not exploit ground truth labels
of the preceding sentence as a feature during prediction (see Section 4.2.1). This has a
significant impact on the performance: Using the ground truth label of the previous sentences
as a sole input feature to a SVM classifier already yields an accuracy of 77.7 for DRI and 55.5
for ART (compare also results for the “history” feature in [11], cf. Table 5). Best reported
results using ground truth labels as input features have an accuracy of 84.15 for DRI and
65.75 for ART [6]. In contrast, we pursue a realistic setting by exploiting the predicted (not
ground truth) label of neighbouring sentences during prediction.

Moreover, we provide additional results for three strong deep learning baselines: (1)
fine-tuning SciBERT using the [CLS] token of individual sentences as in [71] (referred to
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Table 4.3: Experimental results for the proposed approaches (in perent): our SciBERT-
HSLN model without transfer learning, parameter initialisation (INIT), and
multi-task learning (MULT ALL and MULT GRP). Previous state of the art (see
Table 4.2), SciBERT-[CLS], original HSLN approach of Jin and Szolovits [133],
and the approach of Cohan et al. [54] are the baseline results. For PMD (P), NIC
(N), and DRI (D) we report weighted F1 score and for ART (A) accuracy. The
average of all scores is denoted by ∅. Italics depicts whether the result is better
than the baseline, bold whether the transfer method improves SciBERT-HSLN,
underline the best overall result.

PMD NIC DRI ART ∅

Previous state of the art [295] 93.1 [257] 86.8 [11] 72.5 [174] 51.6 76.0
SciBERT-[CLS] 89.6 78.4 69.5 51.5 72.3
Jin and Szolovits [133] (HSLN) 92.6 84.7 75.3 49.3 75.5
Cohan et al. [54] 92.9 84.8 74.3 54.3 76.6
SciBERT-HSLN 92.9 84.9 78.0 58.0 78.5
INIT 1 PMD to T - 84.8 81.2 57.7
INIT 2 PMD to T - 84.8 80.1 58.0
INIT 1 NIC to T 92.9 - 81.9 57.6
INIT 2 NIC to T 92.9 - 79.6 57.2
INIT 1 DRI to T 92.9 83.5 - 57.8
INIT 2 DRI to T 92.9 83.8 - 57.6
INIT 1 ART to T 93.0 84.7 82.2 -
INIT 2 ART to T 92.9 84.7 81.0 -
MULT ALL 93.0 86.0 81.8 57.7 79.6
PMD, NIC 93.0 86.1 - -
PMD, DRI 92.9 - 80.6 -
PMD, ART 93.0 - - 58.0
NIC, DRI - 84.2 80.7 -
NIC, ART - 84.4 - 57.9
DRI, ART - - 82.0 57.6
PMD, NIC, DRI 93.0 86.2 81.0 -
PMD, NIC, ART 93.0 86.3 - 58.0
PMD, DRI, ART 93.0 - 82.7 57.8
NIC, DRI, ART - 84.7 82.0 57.7
MULT GRP 93.0 86.1 83.4 58.8 80.3
P,N,D,A 92.9 85.4 84.4 58.0 80.2
(P,D),(N,A) 93.0 86.0 81.1 58.5 79.7
(P,A),(N,D) 92.9 85.8 83.6 58.0 80.1
(P,N,D),(A) 92.9 86.0 80.6 58.2 79.4
(P,N,A),(D) 93.0 86.0 84.1 58.1 80.3
(P,D,A),(N) 92.9 85.5 82.2 58.0 79.6
(N,D,A),(P) 92.9 85.9 83.3 58.5 80.1

as SciBERT-[CLS]), (2) original implementation of Jin and Szolovits [133], and (3) the
SciBERT-based approach of Cohan et al. [54]. We cannot provide baseline results for DRI
and ART of the approaches [257, 295] since their implementations are not publicly available.
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4.5 Results and Discussion

In this section, we present and discuss the experimental results for our proposed cross-domain
multi-task learning approach for sequential sentence classification. The results for different
variations of our approach, the respective baselines, and for several state-of-the-art methods
are depicted in Table 4.3. The results are discussed in the following three subsections regard-
ing the unified approach without transfer learning (Section 4.5.1), with sequential transfer
learning (Section 4.5.2), and multi-task learning (Section 4.5.3). Section 4.5.4 analyses the
semantic relatedness of classes for the four annotation schemes.

4.5.1 Unified Approach without Transfer Learning (SciBERT-HSLN)

For the full paper datasets DRI and ART, our SciBERT-HSLN model significantly outper-
forms the previously reported best results, and the deep learning baselines SciBERT-[CLS],
Jin and Szolovits [133], and Cohan et al. [54]. The previous state of the art approaches for
DRI and ART [11, 174] require feature engineering and a sentence is enriched only with
the context of the previous sentence. In SciBERT-[CLS], each sentence is classified in iso-
lation. The original HSLN architecture [133] uses shallow word embeddings pre-trained on
biomedical texts. Thus, the incorporation of SciBERT’s contextual word embeddings into
HSLN helps improve performance for the DRI and ART datasets. The approach of Cohan
et al. [54] can process only about 10 sentences at once since SciBERT supports sequences
of up to 512 tokens only. Thus, long text has to be split into multiple chunks. Our deep
learning approach can process all sentences of a paper at once so that all sentences are
enriched with context from surrounding sentences.

For the PMD dataset, our SciBERT-HSLN results are equivalent [295] to the current state
of the art, while for NIC, they are below [257]. Thus, our proposed approach is competitive
with the current approaches for sequential sentence classification in abstracts.

Our unified deep learning approach is applicable to datasets consisting of different text
types, i.e. abstracts and full papers, without any feature engineering (#Q7).

4.5.2 Sequential Transfer Learning (INIT)

Using the INIT approach, we can only improve the baseline results for the DRI dataset in all
settings. The approach INIT 1 performs better than INIT 2 in most cases which indicates
that transferring all parameters is more effective.

However, the results suggest that sequential transfer learning is not a very effective transfer
method for sequential sentence classification (#Q2).
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4.5.3 Multi-Task Learning (MULT)

Next, we discuss the results of our multi-task learning approach, and the effects of multi-task
learning on smaller datasets and individual sentence classes.

MULT ALL Model: In this setting, all tasks were trained jointly sharing all possible
layers. Except for the ART task, all results are improved using the SciBERT-HSLN model.
For the PMD task, the improvement is marginal since the baseline results (F1 score) were
already on a high level. Pairwise MULT ALL combinations show that the models for PMD
and NIC, respectively, benefit from the (respective) other dataset, and the DRI model
especially from the ART dataset. The PMD and NIC datasets are from the same domain,
and both contain abstracts, so the results are as expected. Furthermore, DRI and ART
datasets both contain full papers, and DRI has more coarse-grained classes. However, ART
is a larger dataset with fine-grained classes and presumably therefore the model for ART
does not benefit from other datasets. In triple-wise MULT ALL combinations the models
for PMD and DRI, respectively, benefit from all datasets, and the model for NIC only if the
PMD dataset is present.

The results suggest that sharing all possible layers between multiple tasks is effective except
for bigger datasets with more fine-grained classes (#Q3, #Q4).

MULT GRP Model: In this setting, the models for all tasks were trained jointly, but
only models for the same text type share the context enrichment layer, i.e. (PMD, NIC)
and (DRI, ART). Here, all models benefit from the other datasets. In our ablation study,
we also provide results for sharing only the sentence encoding layer, referred to as MULT
GRP P,N,D,A, and all pairwise and triple-wise combinations sharing the context enrichment
layer. Other combinations also yield good results. However, MULT GRP is effective for all
tasks.

Our results indicate that sharing the sentence encoding layer between multiple models is
beneficial. Furthermore, sharing the context enrichment layer only between models for the
same text type is an even more effective strategy (#Q3, #Q4).

Effect of Dataset Size: The NIC and DRI models benefit more from multi-task learning
than PMD and ART. However, PMD and ART are bigger datasets than NIC and DRI. The
ART dataset has also more fine-grained classes than the other datasets. This raises the
following question:

How would the models for PMD and ART benefit from multi-task learning if they were
trained on smaller datasets?
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Table 4.4: Experimental results (in percent) for µPMD, NIC, DRI, and µART with our
SciBERT-HSLN model and our proposed multi-task learning approaches.

µPMD NIC DRI µART ∅

SciBERT-HSLN 90.9 84.9 78.0 52.2 76.5
MULT ALL 91.1 85.7 81.0 53.8 77.9
MULT GRP 91.1 85.9 82.2 55.1 78.6

To answer this question, we created smaller variants of PMD and ART, referred to as
µPMD and µART, with a comparable size with NIC and DRI. Within each fold we truncated
the training data to 1

20 for µPMD and 1
3 for µART while keeping the original size of the

validation and test sets. As shown in Table 4.4, all models benefit from the other datasets,
whereas the MULT GRP model again performs best.

The results indicate that models for small datasets benefit from multi-task learning inde-
pendent of the difference in the granularity of the classes (#Q1).

Effect for each Class: Figure 4.3 shows the F1 scores per class for the investigated ap-
proaches. Classes, which are intuitively highly semantically related (*:Background, *:Re-

sults, *:Outcome), and classes with few examples (DRI:FutureWork, DRI:Chal-

lenge, ART:Hypothesis, NIC:Study Design) tend to benefit significantly from multi-
task learning. The classes ART:Model, ART:Observation, and ART:Result have worse
results than SciBERT-HSLN when using MULT ALL, but MULT GRP yields better results.
This can be attributed to sharing the context enrichment layers only between datasets with
the same text type.

The analysis suggests that especially semantically related classes and classes with few ex-
amples benefit from multi-task learning (#Q1).

4.5.4 Semantic Relatedness of Classes across Annotation Schemes

In this section, we first evaluate our proposed approach for the semi-automatical identifi-
cation of semantically related classes in the datasets PMD, NIC, DRI, and ART. Based on
the analysis, we identify six clusters of semantically related classes. Then, we present a new
dataset that is compiled from the investigated datasets and is based on the identified clus-
ters. As a possible down-stream application, this multi-domain dataset with a generic set of
classes could help to structure research papers in a domain-independent manner, supporting,
for instance, the development of academic search engines.

Analysis of Semantic Relatedness of Classes: Based on the annotation guidelines of
the investigated datasets PMD [68], NIC [147], DRI [85], and ART [175], we identified six
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Figure 4.3: F1 scores (in percent) per class for the datasets PMD, NIC, DRI, and ART
for the approaches SciBERT-HSLN, MULT ALL, MULT GRP, and the best
combination for the respective dataset. Numbers at the bars depict the F1 scores
of the best classifiers and in brackets the number of examples for the given class.
The classes are ordered by the number of examples.

clusters of semantically related classes, which are depicted in Figure 4.5. The identifica-
tion process of the clusters followed the intuition, that most research papers independent
of the scientific domain (1) investigate a research problem (Problem), (2) provide back-
ground information for the problem (Background), (3) apply or propose certain methods
(Methods), (4) yield results (Results), (5) conclude the work (Conclusions), and (6)
outline future work (Future Work).

Figure 4.4 shows the semantic vectors for all classes computed with the MULT ALL
model. It can be observed that some semantic vectors look similar, e.g. PMD:Background

and DRI:Background. We computed the semantic vectors also with SciBERT-HSLN
and MULT GRP and projected them onto a 2D space using Principal Component Analy-
sis (PCA) [135], as shown in Figure 4.5. It can be seen that already for the SciBERT-HSLN
classifiers our approach enables to identify semantically related classes (e.g. see Results

cluster). However, the MULT ALL model yields more meaningful clusters. Except Prob-

lem, all clusters for semantically related classes are well identifiable in Figure 4.5(c). Al-
though MULT GRP performs best, the clusters are not consistent in Figure 4.5(b). The
semantic vector for ART:Hypothesis is an outlier in the Problem cluster in Figure 4.5(c),
because ART:Hypothesis is confused mostly with ART:Conclusion and ART:Result

(see Figure 4.4) and has also a very low F1 score (see Figure 4.3).

Table 4.5 shows the Silhouette scores [237] for each cluster. A positive Silhouette score
indicates that objects lie well within the cluster, and a negative score that the objects are
merely somewhere in between clusters. As a distance metric, we use semantic_relatedness
as defined in Equation 4.15. The Silhouette scores also confirm that MULT ALL forms
better clusters than SciBERT-HSLN and MULT GRP. We hypothesise that MULT ALL
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Figure 4.4: Each row represents a semantic vector representation as described in Section 4.3.3
for a class computed with the MULT ALL classifier.

Table 4.5: Silhouette scores per cluster and overall computed for the semantic vectors with
the SciBERT-HSLN, MULT GRP, and MULT ALL classifiers.

SciBERT MULT MULT
HSLN GRP ALL

Background 0.45 0.18 0.48
Problem -0.27 -0.04 -0.29
Methods 0.19 -0.03 0.31
Results -0.38 0.01 0.32
Conclusions 0.92 -0.49 0.02
Future Work 0.00 0.00 0.00
Overall 0.10 -0.02 0.20

can better capture the semantic relatedness of classes than the other approaches since it is
enforced to learn a generic feature extractor across multiple datasets.

The multi-task learning approach sharing all possible layers can recognise semantically
related classes (#Q5).
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Figure 4.5: Semantic vectors of classes computed by (a) SciBERT-HSLN model without
transfer learning, (b) MULT GRP model, and (c) MULT ALL model, and pro-
jected to 2D space using PCA. The semantic vectors are assigned to generic
clusters of semantically related labels.

Domain-Independent Sentence Classification: Based on the identified clusters, we
compile a new dataset G-PNDA from the investigated datasets PMD, NIC, DRI, and ART.
The labels of the datasets are collapsed according to the clusters in Figure 4.5. Table 4.6
summarises the characteristics of the compiled dataset. To prevent a bias towards bigger
datasets, we truncate PMD to 1

20 and ART to 1
3 of their original size.

Table 4.7 depicts our experimental settings and results for the generic dataset G-PNDA.
We train a model for each dataset part, and the multi-task learning models MULT ALL and
MULT GRP. Since we have common sentence classes now, we train also models that share
the output layers between the dataset parts, referred to as MULT ALL SHO and MULT
GRP SHO (see Section 4.3.2). For training and evaluation, we split each dataset part into
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Table 4.6: Characteristics of the domain-independent dataset G-PNDA that was compiled
from the origin datasets PMD, NIC, DRI, and ART.

G-PMD G-NIC G-DRI G-ART

Text Type Abstract Abstract Full paper Full paper
# Papers 1.000 1.000 40 67
# Sentences 11.738 9.771 8.777 9.528
∅ # Sentences 11 10 219 142
Background 1.220 2.548 1.760 1.657
Problem 953 0 449 529
Methods 3.927 2.700 5.038 2.752
Results 3.760 4.523 1.394 3.672
Conclusions 1.878 0 0 918
Future Work 0 0 136 0

Table 4.7: Experimental results in terms of F1 scores (in percent) for our proposed ap-
proaches for the generic dataset G-PNDA: baseline model SciBERT-HSLN with
one separate model per dataset and the multi-task learning models MULT ALL
SHO, MULT ALL, MULT GRP SHO, and MULT GRP. Bold depicts whether
the approach improves the baseline, underline the best overall result.

G-PMD G-NIC G-DRI G-ART ∅

SciBERT-HSLN 90.1 89.3 81.7 70.8 83.0
(one model per dataset)
MULT ALL SHO 89.8 89.1 83.5 67.1 82.4
(shared output layer)
MULT ALL 90.5 89.8 84.9 70.5 83.9
(separate output layer)
MULT GRP SHO 90.0 89.9 86.1 70.4 84.1
(shared output layer)
MULT GRP 90.6 89.7 87.2 71.0 84.6
(separate output layer)

train/validation/test sets with the portions 70/10/20, average the results over three random
restarts and use the same hyperparameters as before (see Section 4.4.2).

Table 4.7 shows that the proposed MULT GRP model outperforms all other settings. Sur-
prisingly, sharing the output layer impairs the performance in all settings. We can attribute
this to the fact that the output layer learns different transition distributions between the
classes.

Thus, in a domain-independent setting a separate output layer per dataset part helps the
model to capture the individual rhetorical structure present in the domains (#Q3, #Q6).
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4.6 Summary

In this chapter, we explored RQ2 (adaptable to new domains with few labelled data) and
RQ3 (domain-independent extraction) for the task of sequential sentence classification,
which were divided into the sub-questions #Q1-#Q7. This is an important task that can
help researchers to assess the relevance of research papers more effectively (see also the use
case assess relevance of research articles in Chapter 3).

To investigate RQ2, we presented a unified deep learning architecture for the task of
sequential sentence classification. The unified approach can be applied to different types
of text with a differing structure, e.g. abstracts as well as full papers. For datasets of full
papers, our approach significantly outperforms the state of the art without any feature
engineering (#Q7).

Then, we have tailored two common transfer learning approaches to sequential sentence
classification and compared their performance. We found that training a multi-task model
with multiple datasets works better than sequential transfer learning (#Q2). Our com-
prehensive experimental evaluation with four different datasets offers useful insights under
which conditions transferring or sharing of specific layers is beneficial or not (#Q3). In
particular, it is always beneficial to share the sentence encoding layer between datasets from
different domains. However, it is most effective to share the context enrichment layer, which
encodes the context of neighbouring sentences, only between datasets with the same text
type. This can be attributed to different rhetorical structures in abstracts and full papers.

Our tailored multi-task learning approach makes use of multiple datasets and yields new
state-of-the-art results for two full paper datasets, i.e. DRI [85] with 84.4% F1 (+11.9%
absolute improvement) and ART [175] with 58.8% accuracy (+7.1% absolute improvement)
(#Q4). In particular, models for tasks with small datasets and classes with few labelled
examples benefit significantly from models of other tasks. Our study suggests that the
classes of the different dataset annotation schemes are semantically related, even though the
datasets come from different domains and have different text types (#Q1). This semantic
relatedness is an important prerequisite for transfer learning in NLP tasks [196, 205, 238].

Finally, to address RQ3, we have proposed an approach to semi-automatically identify
semantically related classes from different datasets to support manual comparison and in-
spection of different annotation schemes across domains. We demonstrated the usefulness
of the approach with an analysis of four annotation schemes. This approach can support
the investigation of annotation schemes across disciplines without re-annotating datasets
(#Q5). From the analysis, we have derived a domain-independent consolidated annotation
scheme and compiled a domain-independent dataset. This allows for the classification of
sentences in research papers with generic classes across disciplines, which can support, for
instance, academic search engines (#Q6).
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♦♦♦

While this chapter has proposed an approach to extract information from research papers
at the sentence level, we propose a domain-independent information extraction approach for
scientific concepts at the phrasal level in the subsequent Chapters 5 and 6. This approach
aims at constructing a fine-grained RKG that covers multiple scientific domains to support
the uses cases find related work and recommend articles (see Chapter 3).
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Scientific Concepts

The task of Named Entity Recognition (NER) is the first vital part in the KG population
pipeline (see Section 2.4.2.2). Since research papers usually mention scientific concepts
rather than named entities, in the following, we refer to this task as scientific concept
extraction. In this chapter, we address the research questions RQ2 and RQ3 introduced in
Section 1.2.2 for this task, namely:

RQ2: How can we modify machine learning methods for information extraction
from scientific texts to be adaptable to new domains with few labelled data?

RQ3: How can we automatically extract information from research papers from
multiple scientific domains in a domain-independent manner?

In the following, Section 5.1 first motivates our approach for domain-independent scientific
concept extraction. Section 5.2 provides related work on scientific concept extraction, active
learning, and applications for domain-independent information extraction from scientific
text. Then, Section 5.3 introduces a new corpus for domain-independent scientific concept
extraction. Section 5.4 proposes a deep learning approach and an active learning based
strategy for this task, while Section 5.5 presents the experimental results. Finally, Section 5.6
summarises this chapter.

5.1 Introduction

The task of scientific concept extraction enables the identification of scientific concepts in
research papers (see Figure 5.1 for an example). This task is analogous to Named Entity
Recognition (NER) introduced in Section 2.4.2.2 but focuses on scientific concepts rather
than real-world entities such as persons or locations. Thus, scientific concept extraction is
a first vital step towards a fine-grained RKG in which research papers are described and
interconnected through entity types like tasks, materials, and methods.

As stated in Section 1.2.2, information extraction from scientific texts, obviously, differs
from its general domain counterpart. In consequence, the extraction of scientific concepts
from scientific texts would entail the involvement of domain experts and a specific design
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Figure 5.1: Two example sentences taken from abstracts in Earth Science and Astronomy,
that are annotated with generic scientific concepts.

of an extraction methodology for each scientific discipline – both requirements are rather
time-consuming and costly.

At present, a systematic study of these assumptions is missing. We thus present the
task of domain-independent scientific concept extraction. We examine the intuition that
most research papers share certain core concepts such as the mentions of research tasks or
methods. If so, these would allow for a domain-independent information extraction method
to support RKG population, which does not reach all semantic depths of the analysed article,
but still provides some science-specific structure.

In this chapter, we introduce a set of common scientific concepts that we find are rele-
vant over a set of ten examined domains from Science, Technology, and Medicine (STM).
Figure 5.1 shows two annotated example sentences from abstracts in two scientific domains.
The generic concepts have been identified in a systematic, joint effort of domain experts and
non-domain experts. The inter-coder agreement is measured to ensure the adequacy and
quality of concepts. A set of research abstracts has been annotated using these concepts and
the results are discussed with experts from the corresponding fields. The resulting dataset
serves as a basis to train two baseline deep learning classifiers. In particular, we present an
active learning approach to reduce the amount of required training data. The systems are
evaluated in different experimental setups.

Our main contributions can be summarised as follows:

1. We introduce the novel task of domain-independent scientific concept extraction which
aims at automatically extracting scientific entities in a domain-independent manner.

2. We release a new corpus that comprises 110 abstracts of ten STM domains annotated
at the phrasal level.

3. We present and evaluate a state-of-the-art deep learning approach for this task. Addi-
tionally, we propose active learning for an optimal selection of instances, which to our
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knowledge, is demonstrated for the first time on scholarly text. We find that strategic
instance selection gives us the same performance with only about half of the training
data.

4. We have made our corpora and source code publicly available to facilitate further
research: https://gitlab.com/TIBHannover/orkg/orkg-nlp/tree/master/STM-c

orpus

5.2 Related Work

This section gives a brief overview of existing annotated datasets for scientific information
extraction, followed by related work on some exemplary applications for domain-independent
information extraction from scientific papers.

5.2.1 Scientific Corpora

Sentence-level Annotation: Early approaches for semantic structuring of research
papers focused on sentences as the basic unit of analysis. As depicted in Table 3.1, annotated
datasets exist for several domains. However, most datasets cover only a single domain, while
few other datasets cover three domains.

Phrase-level Annotation: As described in Section 3.2.3.1 and depicted in Table 3.2
and Table 3.3, more recent corpora have been annotated at phrasal level to enable the
construction of fine-grained KGs with scientific concepts with the tasks of concept extraction,
coreference resolution, and relation extraction. These datasets differentiate between four to
seven concept classes. However, each corpus covers at most three domains.

Experts vs. Non-Experts Annotation: The aforementioned datasets were usually
annotated by domain experts [9, 68, 147, 175, 178, 229]. In contrast, Teufel et al. [279]
explicitly use non-experts in their annotation tasks, arguing that text understanding systems
can use general, rhetorical, and logical aspects also when qualifying scientific text. According
to this line of thought, more researchers used (presumably cheaper) non-expert annotation
as an alternative [43, 85].

Snow et. al. [263] provide a study on expert versus non-expert performance for general,
non-scientific annotation tasks. They state that about four non-experts (Mechanical Turk
workers, in their case) were needed to rival the experts’ annotation quality. However, systems
trained on data generated by non-experts showed to benefit from annotation diversity and
to suffer less from annotator bias. Pustu-Iren et al. [228] examines the agreement between
experts and non-experts for visual concept classification and person recognition in historical
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Figure 5.2: The active learning cycle. Illustration from [255].

video data. For the task of face recognition, training with expert annotations lead to an
increase of only 1.5 % in classification accuracy.

Active Learning in Natural Language Processing: Active learning aims to minimise
annotation costs. As depicted in Figure 5.2, the idea is that an annotator shall annotate
those instances from which the model can learn most [255]. To the best of our knowl-
edge, active learning has not been utilised in classification approaches for scientific text yet.
Recent publications demonstrate the effectiveness of active learning for Natural Language
Processing (NLP) tasks such as Named Entity Recognition (NER) [258] and sentence clas-
sification [300]. Siddhant and Lipton [259] and Shen et. al. [258] compare several sampling
strategies on NLP tasks and show that Maximum Normalized Log-Probability (MNLP) based
on uncertainty sampling performs well in NER.

5.2.2 Applications for Domain-Independent Information Extraction

Academic Search Engines: Academic search engines such as Google Scholar [102],
Microsoft Academic [192], and Semantic Scholar [252] specialise in search of scholarly litera-
ture. They exploit graph structures such as the Microsoft Academic Knowledge Graph [78],
SciGraph [268], or the Semantic Scholar Open Research Corpus (S2ORC) [3, 177]. These
graphs interlink the papers through meta-data such as citations, authors, venues, and key-
words, but not through deep semantic representation of the articles’ content.

However, first attempts towards a more semantic representation of article content exist:
Ammar et al. [3] interlink the Semantic Scholar Corpus with DBpedia [172] and Unified
Medical Language System (UMLS) [23] using entity linking techniques. Yaman et al. [296]
connect SciGraph with DBpedia [172] person entities. Xiong et al. [294] demonstrate that
academic search engines can greatly benefit from exploiting general-purpose knowledge bases
such as Freebase [25]. However, the coverage of science-specific concepts is rather low [3].
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Research Paper Recommendation Systems: Beel et al. [18] provide a comprehensive
survey about research paper recommendation systems. Such systems usually employ differ-
ent strategies (e.g. content-based and collaborative filtering) and several data sources (e.g.
text in the documents, ratings, feedback, stereotyping). Graph-based systems, in particular,
exploit citation graphs and genes mentioned in the papers [13, 166]. Beel et al. [18] conclude
that it is not possible to determine the most effective recommendation approach at the mo-
ment. However, we believe that a fine-grained RKG can improve such systems. Although
Papers With Code [206] is not a typical recommendation system, it allows researchers to
browse easily for papers from the field of machine learning that address a certain task.

5.3 Corpus for Domain-Independent Scientific Concept
Extraction

In this section, we introduce the novel task of domain-independent extraction of scientific
concepts and present an annotated corpus. As the discussion of related work reveals, the
annotation of scientific resources is not a novel task. However, most researchers focus on at
most three scientific disciplines and on expert-level annotations. In this work, we explore the
domain-independent annotation of lexical phrasal units indicating scientific knowledge, i.e.
scientific concepts, in abstracts from ten different science domains. Since other studies have
also shown that non-expert annotations are feasible for the scientific domain, we go for a
cost-efficient middle course: annotations by non-experts with scientific proficiency, and con-
sultation with domain-experts. Finally, we explore how well a state-of-the-art deep learning
model performs on this novel information extraction task and whether active learning can
help to reduce the amount of required training data. Our novel corpus and the annotation
process are described below.

5.3.1 OA-STM Corpus

The OA-STM corpus [77] is a set of open access (OA) articles from various domains in
Science, Technology, and Medicine (STM). It was published in 2017 as a platform for bench-
marking methods in scholarly article processing, amongst other scientific information ex-
traction. The dataset contains a selection of 110 articles from ten domains, namely Agri-
culture (Agr), Astronomy (Ast), Biology (Bio), Chemistry (Che), Computer Science (CS ),
Earth Science (ES ), Engineering (Eng), Materials Science (MS ), Mathematics (Mat), and
Medicine (Med). This annotation study focuses on the articles’ abstracts as they contain a
condensed summary of the article.
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Table 5.1: The four generic scientific concepts that were derived in this study.

Process Natural phenomenon or activities, e.g. growing (Bio), reduction
(Mat), flooding (ES ).
Method A commonly used procedure that acts on entities, e.g. powder X-ray
(Che), the PRAM analysis (CS ), magnetoencephalography (Med).
Material A physical or abstract entity used in scientific experiments or
proofs, e.g. soil (Agr), the moon (Ast), the carbonator (Che).
Data The data themselves, measurements, or quantitative or qualitative char-
acteristics of entities, e.g. rotational energy (Eng), tensile strength (MS ), 3D
time-lapse seismic data (ES ).

5.3.2 Annotation Process

The OA-STM Corpus is used as a base for (a) the identification of potential domain-
independent concepts and (b) a first annotated corpus for baseline classification experi-
ments. The annotation task was mainly performed by two postdoctoral researchers with a
background in Computer Science (acting as non-expert annotators) using the BRAT anno-
tation tool [271]. Their basic annotation assumptions were checked by domain experts. The
annotation procedure consists of the following four phases:

1. Pre-annotation: A literature review of annotation schemes [9, 60, 174, 175] provided
a seed set of potential candidate concepts. Both non-experts independently annotated
a subset of the STM abstracts with these concepts (non-overlapping) and discussed the
outcome. In a three-step process, the concept set was pruned to only contain those
which seemed suitably transferable between domains. Our set of generic scientific
concepts consists of Process, Method, Material, and Data (see Table 5.1 for their
definitions). We also identified Task [9], Object [174], and Results [60], however,
in this study we do not consider nested span concepts, hence we leave them out since
they were almost always nested with the other scientific entities (e.g. a Result may
be nested with Data).

2. Phase I: Five abstracts per domain (i.e. 50 abstracts) were annotated by both an-
notators and the inter-annotator agreement was computed using Cohen’s κ [57] (see
Section 2.5.3). Results showed a moderate inter-annotator agreement of 0.52 κ.

3. Phase II: The annotations were then presented to subject specialists who each re-
viewed (a) the choice of concepts and (b) annotation decisions on the respective domain
corpus. The interviews mostly confirmed the concept candidates as generally applica-
ble. The experts’ feedback on the annotation was even more valuable: The comments
allowed for a more precise reformulation of the annotation guidelines, including illus-
trating examples from the corpus.

4. Consolidation: Finally, the 50 abstracts from phase I were re-annotated by the
non-experts. Based on the revised annotation guidelines, a substantial agreement
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Table 5.2: Per-domain and overall inter-annotator agreement (Cohen’s Kappa κ) for Pro-
cess, Method, Material, and Method scientific concept annotation.

Med MS CS ES Eng Che Bio Agr Mat Ast Overall

κ 0.94 0.90 0.85 0.81 0.79 0.77 0.75 0.60 0.58 0.57 0.76

Table 5.3: The annotated corpus characteristics containing 11 abstracts per domain in terms
of size and the number of scientific concept phrases.

Ast Agr Eng ES Bio Med MS CS Che Mat

∅ # Tokens/Abstract 382 333 303 321 273 274 282 253 217 140

# Process 241 252 248 243 281 244 178 220 149 56
# Method 19 28 27 9 15 33 27 66 27 7
# Material 296 292 208 249 291 191 231 102 188 51
# Data 235 169 258 197 62 132 138 165 119 183

# Concept phrases 791 741 741 698 649 600 574 553 483 297
# Unique concept phrases 663 631 618 633 511 518 493 482 444 287

of 0.76 κ could be reached (see Table 5.2). Similar annotation tasks for scientific
entities, e.g. SciERC [178] considering one domain and ScienceIE-17 [9] considering
three domains achieved agreements of 0.76 κ and 0.6 κ, respectively. Subsequently,
the remaining 60 abstracts (six per domain) were annotated by one annotator. This
phase also involved reconciliation of the previously annotated 50 abstracts to obtain
a gold standard corpus.

5.3.3 Corpus Characteristics

Table 5.3 shows some characteristics of the resulting corpus. The corpus has a total of 6,127
scientific entities, including 2,112 Process, 258 Method, 2,099 Material, and 1,658
Data concept entities. The number of entities per abstract in our corpus directly correlates
with the length of the abstracts (Pearson’s R 0.97). Among the concepts, Process and
Material directly correlate with abstract length (R 0.8 and 0.83, respectively), while Data

has only a slight correlation (R 0.35) and Method has no correlation (R 0.02). The domains
Bio, CS, Ast, and Eng contain the most of Process, Method, Material, and Data

concepts, respectively.
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Figure 5.3: Scientific concept extraction system of Beltagy et al. [19] consisting of (1) a token
embedding layer, (2) a token-level encoder with two stacked Bi-LSTMs, and (3) a
CRF based tag decoder with BILOU tagging scheme as an output layer.

5.4 Automatic Domain-Independent Scientific Concept
Extraction

The current state-of-the-art for scientific concept extraction is Beltagy et al.’s deep learning
system with SciBERT word embeddings [19], which were pre-trained on scientific texts using
the BERT [71] architecture. As depicted in Figure 5.3, it consists of three components:

1. A token embedding layer comprising a per-sentence sequence of tokens, where each
token is represented as a concatenation of SciBERT word embedding and character
embeddings based on Convolutional Neural Networks (CNNs) [183].

2. A token-level encoder with two stacked Bi-LSTMs [116].

3. A Conditional Random Field (CRF) based tag decoder [183] with BILOU (beginning,
inside, last, outside, unit) tagging scheme.

This deep learning architecture is implemented in AllenNLP [96]. We use spaCy [119] for
text preprocessing, i.e. for tokenisation and sentence-splitting.

5.4.1 Supervised Learning with Full Training Dataset

Using the above mentioned architecture, we train one model with data from all domains
combined. We refer to this model as the domain-independent classifier. Similarly, we train
ten models for each domain in our corpus – the domain-specific classifier.

To obtain a robust evaluation of models, we perform five-fold cross-validation experiments
(see also Section 2.5). In each fold experiment, we train a model on 8 abstracts per domain
(i.e. 80 abstracts), tune hyperparameters on 1 abstract per domain (i.e. 10 abstracts), and
test on the remaining 2 abstracts per domain (i.e. 20 abstracts) ensuring that the data splits
are not identical between the folds. All results reported in the paper are averaged over the
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five folds. We still obtain reliably trained domain-specific classifiers since on average they
are trained on 400 concepts.

5.4.2 Active Learning with Training Data Subset

In this setting, we employ an active learning strategy [259, 300] to train a new domain-
independent classifier. Active learning is usually applied to determine the optimal set of
sufficiently distinct instances to minimise annotation costs. With our application of ac-
tive learning, we find which proportion of our annotations suffice for training a robust
classifier. We decide to use the Maximum Normalized Log-Probability (MNLP) [258] sam-
pling strategy. We prefer it over its contemporary, Bayesian Active Learning by Disagree-
ment (BALD) [123] since it has less computational requirements. The MNLP objective
involves greedy sampling of sentences preferring those with the least logarithmic likelihood
of the predicted tag sequence output by the CRF tag decoder, normalised by the number of
tokens to avoid preferring longer sentences. Specifically, every sentence receives an MNLP
score as follows:

scoreMNLP (x1, ...,xτ ) =
1

τ
logP (ŷ1, ..., ŷτ |x1, ...,xτ ) (5.1)

Here, (ŷ1, ..., ŷτ ) is the CRF decoder output for the input tokens (x1, ...,xτ ) normalised by
the number of tokens τ .

In our experiments, we found that adding 4% of the data to be the most discriminative
selection of classifier performance. Therefore, we run 25 iterations of active learning in each
stage adding 4% training data. We perform five-fold cross validation as before and the per-
fold models are retrained after data resampling. The models use the same hyperparameters
as for the domain-independent classifier.

5.5 Experimental Results and Discussion

In this section, we discuss the results obtained with our trained classifiers and the correlation
analysis between inter-annotator agreement and performance of the classifiers.

5.5.1 Domain-Independent and Domain-Specific Classifiers with Full
Training Dataset

Table 5.4 shows an overview of the domain-independent classifier results. The system
achieves an overall F1 of 65.5% and has low standard deviation 1.26 across the five folds.
For this classifier, Material was the easiest concept with an F1 of 71% (± 1.88), whereas
Method was the hardest concept with an F1 of 43% (± 6.30). Method is also the most
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Table 5.4: The domain-independent classifier results in terms of Precision (P), Recall (R),
and F1-score on scientific concepts, respectively, and Overall.

Process Method Material Data Overall

P 65.5 (± 4.22) 45.8 (± 13.50) 69.2 (± 3.55) 60.3 (±4.14) 64.3 (± 1.73)
R 68.3 (± 1.93) 44.1 (± 8.73) 73.2 (± 4.27) 60.0 (± 4.84) 66.7 (± 0.92)
F1 66.8 (± 2.07) 43.0 (± 6.30) 71.0 (± 1.88) 59.8 (± 1.75) 65.5 (± 1.26)
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Figure 5.4: F1 per domain of the ten domain-specific classifiers (as bar plots) and of the
domain-independent classifier (as scatter plots) for scientific concept extraction;
the x-axis represents the ten test domains.

underrepresented in our corpus, which partly explains the poor extraction performance.
Best reported results for similar datasets, ScienceIE17 [9] and SciERC [178] (both have 500
abstracts), have an F1 score of 65.6% [19] and 44.7% [178], respectively, indicating that the
size of our dataset with only 110 abstracts is sufficient.

Next, we compare and contrast the ten domain-specific classifiers (see Figure 5.4) by their
capability to extract the concepts from their own domains and in other domains.

Most Robust Domain: Bio (third bar in each domain in Figure 5.4) extracts scientific
concepts from its own domain at the same performance as the domain-independent classifier
with an F1 score of 71% (± 9.0), thus demonstrating a robust domain. It comprises only
11% of the overall data, yet the domain-independent classifier trained on all data does not
outperform it.
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Figure 5.5: Confusion matrix for (a) the CS classifier and (b) domain-independent classifier
on CS domain predicting concept-type of tokens.

0.43 

0.6 

0.67 

0.71 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Method Data Process Material

Te
st

 F
1

 

Agr Ast Bio Che CS ES Eng MS Mat Med Overall

Figure 5.6: F1 scores of the ten domain-specific classifiers (bar plots) and the domain-
independent classifier (scatter plots) for extracting each scientific concept; the
x-axis represents the evaluated concepts.

Most Generic Domain: MS (the third last bar in each domain in Figure 5.4) exhibits
a high degree of domain independence since it is among the top 3 classifiers for seven of the
ten domains (viz. ES, Che, CS, Ast, Agr, MS, and Bio).
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Most Specialised Domain: Mat (the second last bar in each domain in Figure 5.4)
shows the lowest performance in extracting scientific concepts from all domains except itself.
Hence it shows to be the most specialised domain in our corpus. Notably, a characteristic
feature of this domain is that it has short abstracts (nearly a third of the size of the longest
abstracts), so it is also the most underrepresented in our corpus. Also, distinct from the other
domains, Mat has triple the number of Data entities compared to each of its other concepts,
where in the other domains Process and Material are consistently predominant.

Medical and Life Science Domains: The Med, Agr, and Bio domains show strong
domain relatedness. Their respective domain-specific classifiers show top five system per-
formances among the three domains, when applied to another domain. For instance, the
Med domain shows the strongest domain relatedness and is classified best by Med (last bar),
followed by Bio (third bar) and Agr (first bar).

Domain-Independent vs. Domain-Specific Classifier: Except for Bio, the domain-
independent classifier clearly outperforms the domain-specific one in extracting concepts
from their respective domains. We attribute this, in part, to the improved span-detection
performance. Span-detection merely relies on syntactic regularity; thus the domain-inde-
pendent classifier can benefit from more training data of other domains. e.g. the CS classifier
shows an improvement from 49.5% F1 with the domain-specific classifier to 65.9% F1 with
the domain-independent classifier, which is supported by the enhanced span-detection per-
formance from 73.4% to 82.0% in F1. Accuracy on token-level also improves from 67.7% to
77.5% F1 for CS, that is correct labelling of the tokens also benefits from other domains.
This is also supported by the results in the confusion matrix depicted in Figure 5.5 for the
CS and the domain-independent classifier on token-level.

Scientific Concept Extraction: Figure 5.6 depicts the ten domain-specific classifier
results for extracting each of the four scientific concepts. It can be observed that Agr,
Med, Bio, and Ast classifiers are the best in extracting their respective Process, Method,
Material, and Data concepts.

5.5.2 Domain-Independent Classifier with Active Learning

The results of the active learning experiment over the full dataset plotted over the 25 itera-
tions are depicted in Figure 5.7, showing that MNLP clearly outperforms the random base-
line. While using only 52% of the training data, the best result of the domain-independent
classifier trained with all training data is surpassed with an F1 score of 65.5% (± 1.0). The
random baseline achieves an F1 score of only 62.5% (± 2.6) with the same proportion of
training data. When 76% of the data are sampled by MNLP, the best active learning per-
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Figure 5.7: Progress of active learning with MNLP and random sampling strategy; the areas
represent the standard deviation (std) of the F1 score across 5 folds for MNLP
and random sampling strategy, respectively.

Table 5.5: Performance (F1 in percent) of active learning with MNLP and random sampling
strategy for the fraction of training data when the performance with entire train-
ing dataset is achieved; for SciERC and ScienceIE-17 results are reported across
5 random restarts.

Training Data F1 (MNLP) F1 (random) F1 (full data)

STM (our corpus) 52 % 65.5 (± 1.0) 62.5 (± 2.6) 65.5 (± 1.3)
SciERC [178] 62 % 65.3 (± 1.5) 62.3 (± 1.5) 65.6 (± 1.0)
ScienceIE17 [9] 38 % 43.9 (± 1.2) 42.2 (± 1.8) 43.8 (± 1.0)

formance across all steps is achieved with an F1 score of 69.0% on the validation set, having
the best F1 of 66.4% (± 2.0) on the test set. Thus, 76% of our annotated sentences suffice
to train an optimal performing model.

Analysing the distribution of sentences in the training data sampled by MNLP, shows
(Math, CS ) as the most preferred domains and (Eng, MS ) the least preferred ones. Nonethe-
less, all domains are represented, that is a non-uniformly mix of sentences sampled by MNLP
yields the most generic model with less training data. In contrast, the random sampling
strategy uniformly samples sentences from all domains.

Furthermore, we show in Table 5.5 the proportion of training data for MNLP when the
performance using the entire training dataset is achieved for related SciERC [178] and
ScienceIE-17 [9] datasets. The results indicate that also for related datasets on scientific
texts, MNLP can significantly reduce the amount of labelled training data.
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Table 5.6: Inter-annotator agreement (κ) and the number of concept phrases (#) per do-
main; F1 and std of domain-specific classifiers on their domains; F1 and std of
domain-independent and active learning classifier (AL-trained) on each domain;
the right side depicts correlation coefficients (R) of each row with κ and the
number of concept phrases.

Agr Ast Bio Che CS ES Eng MS Mat Med R κ R #

κ 0.6 0.57 0.75 0.77 0.85 0.81 0.79 0.9 0.58 0.94 1.00 -0.02
# concept phrases (#) 741 791 649 483 553 698 741 574 297 600 -0.02 1.00

domain-specific (F1) 0.58 0.61 0.71 0.54 0.49 0.46 0.64 0.61 0.31 0.55 0.20 0.70
domain-independent (F1) 0.68 0.66 0.71 0.64 0.65 0.63 0.71 0.69 0.48 0.61 0.28 0.76
AL-trained (F1) 0.65 0.67 0.74 0.65 0.62 0.63 0.72 0.69 0.50 0.60 0.23 0.68

domain-specific (std) 0.06 0.06 0.09 0.08 0.05 0.06 0.04 0.11 0.06 0.07 0.29 0.28
domain-independent (std) 0.04 0.04 0.11 0.08 0.07 0.05 0.03 0.04 0.06 0.03 -0.11 -0.05
AL-trained (std) 0.04 0.04 0.09 0.08 0.07 0.04 0.07 0.05 0.15 0.02 -0.41 -0.72

5.5.3 Correlations between Inter-Annotator Agreement and Performance

In this section, we analyse the correlations (Pearson’s R) of inter-coder agreement κ and the
number of annotated concepts per domain (#) on (1) the performance F1 and (2) variance
resp. standard deviation (std) of the classifiers across five-fold cross validation.

Table 5.6 summarises the results of our correlation analysis. The active learning classifier
(AL-trained) has been trained with 52% training data sampled by MNLP since it is the
point at which the performance of the full data trained model is surpassed (see Table 5.5).
For the domain-specific, domain-independent, and AL-trained classifier we observe a strong
correlation between F1 and number of concepts per domain (R 0.70, 0.76, 0.68), and a weak
correlation between κ and F1 (R 0.20, 0.28, 0.23). Thus, we surmise that the number of
annotated concepts in a particular domain has more influence on the performance than the
inter-annotator agreement.

The correlation values for the variance are different between the classifier types. For the
domain-specific classifier the correlation between κ and std, and the number of concepts
per domain and std are slightly positive (R 0.29, 0.28), i.e. the higher the agreement and
the size of the domain, the higher the variance of the domain-specific classifier. For the
domain-independent classifier, there is no correlation (R 0.11, -0.05) and for the AL-trained
classifier, the correlations become negative (R -0.41, -0.72), i.e. higher agreement and more
annotated concepts per domain lead to less variance for the AL-trained classifier. In sum-
mary, we hypothesise that more diverse training data across multiple domains lead to better
performance and lower variance because the classifier can generalise better.
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5.6 Summary

This chapter has addressed the research questions RQ2 (adaptable to new domains with few
labelled data) and RQ3 (domain-independent extraction) for the task of scientific concept
extraction. To investigate RQ3, we have introduced the novel task of domain-independent
concept extraction from scientific texts. With a systematic annotation procedure involving
domain experts, we have identified four general core concepts that are relevant across ten
domains from Science, Technology, and Medicine (STM). Using this concept set, we have
annotated a corpus of abstracts from these domains. We have verified the adequacy of the
concepts by evaluating the inter-annotator agreement for our corpus. The results indicate
that the identification of the generic concepts in a corpus of ten different scholarly domains is
feasible by non-experts with moderate agreement (0.52 κ) and after consultation of domain
experts with substantial agreement (0.76 κ).

Furthermore, we evaluated a state-of-the-art system [19] on our annotated corpus, which
achieved a fairly high F1 score (65.5% overall). The domain-independent system noticeably
outperforms the domain-specific systems, which indicates that the model can generalise well
across domains. We also observed a strong correlation between the number of annotated
concepts per domain and classifier performance, and only a weak correlation between inter-
annotator agreement per domain and the performance. It is assumed that more annotated
data positively influence the performance in the respective domain.

Finally, to address RQ2, we have proposed active learning for our novel task. We have
shown that only approximately five annotated abstracts per domain are sufficient as training
data to build a performant model. Our active learning results for SciERC [178] and Sci-
enceIE17 [9] datasets were similar. Thus, active learning can significantly save annotation
costs and enables fast adaptation to new domains.

♦♦♦

This chapter has addressed the task of domain-independent scientific concept extraction,
which is the first essential step in the KG population pipeline (see Section 2.4.2.2). In the
next Chapter 6, we extend our domain-independent information extraction approach with
the task of coreference resolution and populate an RKG.
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This chapter extends the domain-independent extraction approach introduced in the pre-
vious Chapter 5 with the task of coreference resolution that is a further essential step in
the KG population pipeline (see Section 2.4.2.2). Consequently, this chapter also addresses
RQ2 and RQ3 but for the task of coreference resolution, namely:

RQ2: How can we modify machine learning methods for information extraction
from scientific texts to be adaptable to new domains with few labelled data?

RQ3: How can we automatically extract information from research papers from
multiple scientific domains in a domain-independent manner?

Furthermore, this chapter addresses RQ4 and describes how an RKG can be populated
using the domain-independent extraction approach, namely:

RQ4: How can we automatically populate an RKG that covers multiple scientific
domains?

The remainder of the chapter is organised as follows: Section 6.1 motivates the task of
coreference resolution while Section 6.2 summarises related work for this task. Section 6.3
describes the annotation procedure and the characteristics of our annotated corpus, and our
proposed approaches for coreference resolution, KG population, and KG evaluation. The
experimental setup and results are reported in Section 6.4 and Section 6.5, while Section 6.6
summarises this chapter.

6.1 Introduction

Coreference resolution is the task of identifying mentions in a text which refer to the same
entity or concept (see also Section 2.4.2.2). It is an essential step for automatic text un-
derstanding and facilitates down-stream tasks such as text summarisation, question an-
swering, or KG population. As depicted in an excerpt text from the Astronomy domain
in Figure 6.1, coreference resolution can recognise that the mentions “The moon Ence-
ladus” and “the moon” both refer to the same entity. This enables to extract the fact
(Cassini_spacecraft, f lew_by,moon_Enceladus).
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The moon Enceladus, embedded in Saturn's radiation belts, is … 

… 

In the time period 2005-2010 the Cassini spacecraft flew close by the moon … 

Cassini 
spacecraft 

Moon 
Enceladus 

flew by 

Extracted fact using 
coreference resolution 

Example from the domain of Astronomy: 

Figure 6.1: An excerpt from the abstract of a research paper in the STM corpus (see Chap-
ter 5) from the domain of Astronomy and the extracted fact with the help of
coreference resolution.

Current methods for coreference resolution based on deep learning achieve quite impressive
results (e.g. an F1 score of 79.6% for the OntoNotes 5.0 dataset [136]) in the general domain,
that is non-academic data from phone conversations, news, magazines, etc. But results of
previous work indicate [58, 146, 201, 248] that general coreference resolution systems perform
poorly on scientific text. This is presumably caused by the specific terminology and phrasing
used in a scientific domain. Some other studies state that the annotation of scientific text is
costly since it demands certain expertise in the respective domain [9, 92]. Most corpora for
research papers cover only a single domain (e.g. biomedicine [58], artificial intelligence [178])
and are thus limited to these domains. As a result, the annotated corpora are relatively
small and overall, only a few domains are covered. Datasets for the general domain are
usually much larger, but they have not been exploited yet by approaches for coreference
resolution in research papers.

As described in Section 2.4.2.2, coreference resolution is also one of the main steps in the
KG population pipeline [179, 226]. However, to date it is not clear, to which extent (a) coref-
erence resolution can help to reduce the number of scientific concepts in the populated KG,
and (b) how coreference resolution influences the quality of the populated KG. Besides, a
KG covering multiple scientific domains has not been populated yet.

In this chapter, we address the task of coreference resolution in research papers and
subsequent RKG population. Our contributions can be summarised as follows:

1. First, we annotate a corpus for coreference resolution that consists of 110 abstracts
from ten domains from Science, Technology, and Medicine (STM). The systematic
annotation resulted in a substantial inter-coder agreement (0.68 κ). We provide and
compare baseline results for this dataset by evaluating five different state-of-the-art
approaches. Our experimental results confirm that state-of-the-art coreference ap-
proaches do not perform well on research papers.
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2. Consequently, we propose sequential transfer learning for coreference resolution in
research papers. This approach utilises our corpus by fine-tuning a model that is pre-
trained on a large corpus from the general domain [222]. Experimental results show
that our approach significantly outperforms the best state-of-the-art baseline (F1 score
of 61.4%, i.e. +11.0% absolute improvement).

3. We investigate the impact of coreference resolution on automatic RKG population.
To evaluate the quality of various RKG population strategies, we (i) compile a gold-
standard RKG from our annotated corpus that contains scientific concepts referenced
by mentions from text, and (ii) present a procedure to evaluate the clustering results
of mentions.

4. We release (i) an automatically populated RKG from 55,485 abstracts of the ten
STM domains and (ii) a gold RKG (Test-STM-KG) from the annotated STM corpus.
Experimental results show that coreference resolution has only a small impact on the
number of concepts in a populated RKG, but helps to improve the quality of the RKG
significantly: the population with coreference resolution yields an F1 score of 63.5%
evaluated against the gold-standard RKG (+21.8% absolute improvement).

5. We have released the data corpora and the source code to facilitate further research:
https://github.com/arthurbra/stm-coref

6.2 Related Work

In the following, we provide an overview of approaches for coreference resolution and avail-
able datasets from research papers.

6.2.1 Approaches for Coreference Resolution

For a given document, the task of coreference resolution is (a) to extract mentions of scientific
concepts, and (b) to cluster those mentions that refer to the same concept (see also Sec-
tion 2.4.2.2). Recent approaches mostly rely on supervised learning and can be categorised
into three groups [199]:

1. Mention-pair models [200, 265] are binary classifiers that determine whether two men-
tions are coreferent or not.

2. Entity-mention models [51, 231] determine whether a mention is coreferent to a pre-
ceding cluster. A cluster has more expressive features compared to a mention in
mention-pair models.

3. Ranking-based models [66, 170, 187] simultaneously rank all candidate antecedents
(i.e. preceding mention candidates). This enables the model to identify the most
probable antecedent.
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Lee et al. [170, 171] propose an end-to-end neural coreference resolution model. It is a
ranking-based model that jointly recognises mentions and clusters. Therefore, the model
considers all spans in the text as possible mentions and learns distributions over possible
antecedents for each mention. For computational efficiency, candidate spans and antecedents
are pruned during training and inference. Joshi et al. [137] enhance Lee et al.’s model with
BERT-based word embeddings [71], while Ma et al. [182] improve the model with better
attention mechanisms and loss functions.

Furthermore, several approaches propose multi-task learning, such that related tasks may
benefit from knowledge in other tasks to achieve better prediction accuracy: Luan et al. [178,
287] train a model on three tasks (coreference resolution, entity, and relation extraction) us-
ing one dataset of research papers. Sanh et al. [246] introduce a multi-task model that is
trained on four tasks (mention detection, coreference resolution, entity, and relation extrac-
tion) using two different datasets in the general domain.

Results of some previous studies [58, 146, 201, 248] revealed that general coreference
systems do not work well in the biomedical domain due to the lack of domain knowledge.
For instance, on Colorado Richly Annotated Full Text (CRAFT) corpus [58] a coreference
resolution system for the news domain achieves only 14.0% F1 (-32.0%).

To the best of our knowledge, a transfer learning approach from the general to the scientific
domain has not been proposed for coreference resolution yet.

6.2.2 Corpora for Coreference Resolution in Research Papers

For the general domain, multiple datasets exist for coreference resolution, e.g. Message
Understanding Conference (MUC-7) [256], Automatic Content Extraction (ACE05) [72], or
OntoNotes 5.0 [222]. The OntoNotes 5.0 dataset [222] is the largest one and is used in many
benchmark experiments for coreference resolution systems [137, 170, 182].

Various annotated datasets for coreference resolution exist also for research papers (see
also Section 3.2.3.1): The CRAFT corpus [58] covers 97 papers from biomedicine. The cor-
pus of Schäfer et al. [248] contains 266 papers from computational linguistics and language
technology. Chaimongkol et al. [42] annotated a corpus of 284 papers from four subdis-
ciplines in computer science. The SciERC corpus [178] comprises 500 abstracts from the
artificial intelligence domain and features annotations for scientific concepts and relations.
It was used to generate an artificial intelligence (AI) knowledge graph [70]. Furthermore,
as described in Section 3.2.3.1, several datasets exist for scientific concept extraction and
relation extraction that cover various scientific domains.

To the best of our knowledge, a corpus for coreference resolution that comprises a broad
range of scientific domains is not available yet.

122



6.3 Coreference Resolution in Research Papers

6.3 Coreference Resolution in Research Papers

As the discussion of related work reveals, existing corpora for coreference resolution in sci-
entific papers normally cover only a single domain, and coreference resolution approaches
do not perform well on scholarly texts. To address these issues, we systematically annotate
a corpus with coreferences in abstracts from ten different science domains. Furthermore,
current approaches for coreference resolution in research papers do not exploit existing
annotated datasets from the general domain, which are usually much larger than in the
scientific domain. We propose a sequential transfer learning approach that takes advantage
from large, annotated datasets. Finally, to the best of our knowledge, the impact of (a)
coreference resolution and (b) cross-domain collapsing of mentions to scientific concepts on
KG population with multiple science domains has not been investigated yet. Consequently,
we present an evaluation procedure for the clustering aspect in the KG population pipeline.

In the sequel, we describe our annotated corpus, our transfer learning approach for coref-
erence resolution, and an evaluation procedure for clustering in KG population.

6.3.1 Corpus for Coreference Resolution in 10 STM Domains

In this section, we describe the corpus, which we used as the basis for the annotation, our
annotation process, and the characteristics of the resulting corpus.

STM Corpus: We extend our STM corpus introduced in Chapter 5 with coreference
annotations. In particular, we (1) annotate coreference links between existing scientific
concept mentions in abstracts using the BRAT annotation tool [271], and (2) annotate
further mentions, i.e. pronouns and noun phrases consisting of multiple consecutive mentions.

Annotation Process: Other studies have shown that non-expert annotations are viable
for the scientific domain [43, 85, 248, 279], and they are less costly than domain-expert
annotations. Therefore, we also annotate the corpus with non-domain experts, i.e. by two
students in computer science. Furthermore, we follow mostly the annotation procedure of
the STM corpus (see Section 5.3.2), which consists of the following three phases:

1. Pre-Annotation: This phase aims at developing annotation guidelines through trial
annotations. We adapted the comprehensive annotation guidelines of the OntoNotes
5.0 dataset [223], which were developed for the general domain, to research papers.
In particular, we provide briefer and simpler descriptions with examples from the
scientific domain. Within three iterations, both annotators labelled independently 10,
9 and 7 abstracts (i.e. 26 abstracts), respectively. After each iteration, the annotators
discussed the outcome and refined the annotation guidelines.
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Table 6.1: Per-domain and overall inter-annotator agreement (Cohen’s κ and MUC) for
coreference resolution annotation in our STM corpus.

Mat Med Ast CS Bio Agr ES Eng Che MS Overall

κ 0.84 0.80 0.78 0.72 0.70 0.66 0.61 0.58 0.56 0.52 0.68
MUC 0.83 0.69 0.78 0.73 0.70 0.72 0.61 0.66 0.56 0.63 0.69

2. Independent Annotation: After the annotation guidelines were finalised, both annota-
tors independently re-annotated the previously annotated abstracts and 24 additional
abstracts. The final inter-coder agreement was measured on the 50 abstracts (5 per
domain) using Cohen’s κ [57, 155] and MUC [284]. As shown in Table 6.1, we achieve
a substantial agreement with 0.68 κ and 0.69 MUC.

3. Consolidation: Finally, the remaining 60 abstracts were annotated by one annotator
and the annotation results of this author were used as the gold standard corpus.

Corpus Characterstics: Table 6.2 shows the characteristics of the resulting corpus bro-
ken down per concept type, while they are listed per domain in Table 6.3. The original
corpus has in total 6,127 mentions. 2,577 mentions were annotated as coreferent resulting in
908 coreference clusters. Thus, each coreference cluster contains on average 2.84 mentions,
while Method clusters contain the most (3.4 mentions) and Data clusters the least (2.3
mentions). Furthermore, 705 mentions were annotated additionally (referred to as NONE)
since they represent pronouns (422 mentions) or noun phrases consisting of multiple consec-
utive original mentions (283 mentions) such as ‘... [[A], [B], and [C] [treatments]]... [These
treatments]...’. Fifty clusters (5%) contain mentions with different concept types (referred to
as MIXED) due to disagreements between the annotators of the original concept mentions,
and the annotators of coreferences. For instance, non-coreferent mentions were annotated as
coreferent, or coreferent mentions have different concept types. Finally, 138 clusters (15%)
do not have a concept type (NONE) since they form clusters which are not coreferent with
the original concept mentions.

6.3.2 Transfer Learning for Coreference Resolution

We suggest sequential transfer learning [238] for coreference resolution in research papers
(see Section 4.2.2 for an overview for transfer learning). Thus, we fine-tune a model pre-
trained on a large (source) dataset to our (target) dataset. As the source dataset, we use the
English portion of the OntoNotes 5.0 dataset [222], since it is a broad corpus that consists
of 3,493 documents with telephone conversations, magazine and news articles, Web data,
broadcast conversations, and the New Testament. Furthermore, our annotation guidelines
were adapted from OntoNotes 5.0.
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Table 6.2: Characteristics of the annotated STM corpus with 110 abstracts per concept type
in terms of number of scientific concept mentions, number of coreferent mentions,
number of coreference clusters and singleton clusters, and the number of overall
clusters. MIXED denotes clusters consisting of mentions with different concept
types, NONE denotes coreference mentions and clusters without a scientific con-
cept mention.

Data Material Method Process MIXED NONE Total

# mentions 1,658 2,099 258 2,112 0 0 6,127
# coreferent mentions 351 910 101 510 0 705 2,577

# coreference clusters 153 339 30 198 50 138 908
# singleton clusters 1,307 1,189 157 1,602 0 0 4,255

# overall clusters 1,460 1,528 187 1,800 50 138 5,163

Table 6.3: Characteristics of the STM corpus per domain (11 abstracts per domain).

Agr Ast Bio Che CS ES Eng MS Mat Med Total

# mentions 741 791 649 553 483 698 741 574 297 600 6,127
# coreferent mentions 276 365 275 282 181 241 318 256 124 259 2,577

# coreference clusters 106 120 98 90 67 93 117 87 48 82 908
# singleton clusters 520 549 443 384 339 525 503 371 210 411 4,255

# clusters 626 669 541 474 406 618 620 458 258 493 5,163

For the model, we utilise BERT for Coreference Resolution (BFCR) [137] with Span-
BERT [136] word embeddings. This model achieves state-of-the-art results on the Onto-
Notes dataset [136]. Another advantage is the availability of the pre-trained model and the
source code. The BFCR model improves Lee et al.’s approach [171] by replacing the LSTM
encoder with the SpanBERT transformer-encoder. SpanBERT [136] has different training
objectives than BERT [71] to better represent spans of text.

6.3.3 Cross-Domain Research Knowledge Graph Population

Figure 6.2 illustrates the collapsing of five clusters from two example abstracts to four
scientific concepts. In the following, this process is described formally. Let d ∈ D be an
abstract, M(d) = {m1, ...,mh} the mentions of scientific concepts in d, and cd(mi) ⊆M(d)

the corresponding coreference cluster for mention mi in d. If mention ms is not coreferent
with other mentions in d, then cd(ms) = {ms} is a singleton cluster. The set of all clusters
is denoted by C. An equivalence relation collapsable ⊆ C × C defines if two clusters can
be collapsed, i.e. if the clusters refer to the same scientific concept. To create the set of all
concepts E, we build the quotient set for the set of clusters C with respect to the relation
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Abstract 1 (Astronomy) 
- c1 = {The moon Enceladus, the moon} 
- c2 = {the spacecraft, the Cassini spacecraft} 

Abstract 2 (Astronomy) 
- c3 = {the spacecraft, the Cassini spacecraft} 
- c4 = {the moon Titan, the moon} 
- c5 = {the Magnetospheric Imaging Instrument} 

moon Enceladus 
{c1} 

moon Titan 
{c4} 

Cassini spacecraft 
{c2, c3} 

Magnetospheric 
Imaging Instrument 

{c5} 

Concepts and entities in KG 
Extracted clusters in abstracts 

Figure 6.2: The process of collapsing clusters c1-c5 of two example abstracts to four scientific
concepts in the KG.

collapsable:

C = {cd(m) | d ∈ D,m ∈M(d)} (6.1)

[c] = {x ∈ C | collapsable(c, x)} (6.2)

E = {[c] | c ∈ C} (6.3)

Now, we can construct the KG: For each paper d ∈ D and for each scientific concept e ∈ E,
we create a node in the KG. The scientific concept type of e is the most frequent concept
type of all mentions in e. Then, for each mention m ∈ M(d), we create a “mentions” link
between the paper and the corresponding scientific concept [m] ∈ E.

Cross-Domain vs. In-Domain Collapsing: One commonly used approach to define
the collapsable relation is to treat two clusters as equivalent, if and only if the ‘label’ of the
clusters is the same. The label of a cluster is the longest mention in the cluster normalised
by (a) lower-casing, (b) removing articles, possessives, and demonstratives, (c) resolving
acronyms, and (d) lemmatisation using WordNet [82] to transform plural forms to singular.
Other studies [70, 178] used a similar label function for KG population.

However, an RKG that comprises multiple scientific disciplines has not been populated yet.
Thus, it is not clear whether it is feasible to collapse clusters across domains. Usually, terms
within a scientific domain are unambiguous, but some terms can have different meanings
across scientific disciplines (e.g. “neural network" in CS and Med). Thus, we investigate
both cross-domain and in-domain collapsing strategies.
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Table 6.4: Characteristics of the Test-STM-KG : number of concepts per concept type and
per domain. MIX denotes the number of cross-domain concepts.

Agr Ast Bio CS Che ES Eng MS Mat Med MIX Total

Data 5 18 3 20 4 9 28 13 37 8 9 154
Material 27 35 30 20 26 52 32 30 9 40 7 308
Method 1 1 1 21 6 2 4 10 3 8 7 64
Process 17 12 21 34 13 33 20 25 15 38 8 236
Total 50 66 55 95 49 96 84 78 64 94 31 762

Knowledge Graph Population Approach: We populate an RKG with research papers
from multiple scientific domains, i.e. 55,485 abstracts of Elsevier with CC-BY licence from
the 10 investigated domains. First, we extract (a) concept mentions from the abstracts using
the scientific concept extractor of the STM corpus (see Section 5.4), and (b) clusters within
the abstracts with our transfer learning coreference model. Then, those mention clusters,
which contain solely mentions recognised by the coreference resolution model and not by
the scientific concept extraction model, are dropped, since the coreference resolution model
does not recognise the concept type of the mentions. Finally, the remaining clusters serve
for the population of the KG as described above.

6.3.4 Evaluation Procedure of Clustering in Knowledge Graph
Population

One common approach to evaluate the quality of a populated KG is to annotate a (random)
subset of statements by humans as true or false and to calculate precision and recall [70, 291].
To evaluate recall, small collections of ground-truth capturing all knowledge is necessary,
that are usually difficult to obtain [291]. To the best of our knowledge, a common approach
to evaluate the clustering aspect of the KG population pipeline does not exist yet. Thus, in
the following, we present (1) an annotated test KG, and (2) metrics to evaluate clustering
of mentions to concepts in KG population.

Test-STM-KG: To enable evaluation of KG population strategies, we compile a test KG,
referred to as Test-STM-KG. For this purpose, we reuse the STEM-ECR corpus [61], in
which 1,221 mentions of the STM corpus are linked to Wikipedia entities. First, we extract
all annotated clusters of the STM corpus in which all mentions of the cluster uniquely refer to
the same Wikipedia entity. Then, we collapse all clusters which refer to the same Wikipedia
entity to concepts. Formally, the Test-STM-KG is a partition of mentions, where each part
denotes a concept, i.e. a disjoint set of mentions. A mention is uniquely represented by the
tuple (start offset, end offset, concept type, document id).
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Table 6.4 shows the characteristics of the compiled Test-STM-KG. It consists of 920
clusters, of which 711 are singleton clusters. These clusters were collapsed to 762 concepts,
of which 31 concepts are used across multiple domains (referred to as MIX).

Evaluation Procedure: To evaluate the clustering result of a KG population strategy,
we use the metrics of coreference resolution. The three popular metrics for coreference
resolution are MUC [284], B3 [12], and CEAFeφ4 [180]. Each of them represents differ-
ent evaluation aspects (see Section 2.5.2.3 and Pradhan et al. [221] for more details). To
calculate these metrics, we treat the gold concepts (i.e. a partition of mentions) of the Test-
STM-KG as the ‘key’ and the predicted concepts as the ‘response’. We also report the
CoNLL P/R/F1 scores, that is the averages of MUC’s, B3’s and CEAFeφ4’s respective
precision (P), recall (R) and F1 scores.

6.4 Experimental Setup

Here we describe our experimental setup for coreference resolution and KG population.

6.4.1 Automatic Coreference Resolution

We evaluate three different state-of-the-art architectures on our STM dataset:

(I) BERT for Coreference Resolution (BFCR) [137] with SpanBERT [136] word embed-
dings (referred to as BFCR_Span).

(II) BFCR with SciBERT [19] word embeddings (referred to as BFCR_Sci).

(III) Scientific Information Extractor (SCIIE) [178] with ELMo [217] word embeddings
(referred to as SCIIE ).

The three architectures are evaluated with the following six approaches (#1 - #6):

• Pre-Trained Models: We evaluate already pre-trained models on the test sets of the
STM corpus, i.e. #1 BFCR_Span trained on the English portion of the OntoNotes
dataset [223], and #2 SCIIE trained on SciERC [178] from the AI domain.

• Supervised Learning: We train a model from scratch with the three architectures using
the training data of the STM corpus and evaluate their performance with the test sets
of STM: #3 BFCR_Span, #4 BFCR_Sci, and #5 SCIIE.

• Transfer Learning: This is our proposed approach #6. We fine-tune all parameters of
a pre-trained model on the English portion of the OntoNotes dataset [136] with the
training data of our STM corpus. For that, we use the BFCR_Span architecture.
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Evaluation: We use the metrics MUC [284], B3 [12], CEAFeφ4 [180], and CoNLL [221]
in compliance with other studies on coreference resolution [137, 170, 182]. To obtain robust
results, we apply five-fold cross-validation, according to the data splits of the original STM
corpus, and report averaged results. For each fold, the dataset is split into train/valida-
tion/test sets with 8/1/2 abstracts per domain, respectively, i.e. 80/10/20 abstracts. We
reuse the original implementations and default hyperparameters of the above architectures.
Hyperparameter-tuning of the best baseline approach #3 according to [137] confirmed that
the default hyperparameters of BFCR_Span perform best on our corpus.

6.4.2 Evaluation of Knowledge Graph Population Strategies

We compare four KG population strategies: (1) cross-domain and (2) in-domain collapsing
with coreference resolution, as well as (3) cross-domain and (4) in-domain collapsing without
coreference resolution. To evaluate cross-domain and in-domain collapsing, we take the gold
clusters (i.e. mention clusters within the abstracts) of the Test-STM-KG and collapse them
to concepts according to the respective strategy. When leaving out the coreference resolution
step, we treat all mentions in the Test-STM-KG as singleton clusters and collapse them to
concepts according to the respective strategy. Finally, we calculate the metrics as described
in Section 6.3.4.

6.5 Results and Discussion

In this section, we discuss the experimental results for automatic coreference resolution and
KG population.

6.5.1 Automatic Coreference Resolution

Table 6.5 shows the overall results of the six evaluated approaches and Table 6.6 the results
per domain of the best baseline #3 and our approach #6. Our transfer learning approach
#6 BFCR_Span from OntoNotes (Onto) [222] to STM significantly outperforms the best
baseline approach #3 with an overall CoNLL F1 of 61.4% (+10.0%) and a low standard
deviation ±1.5 across the five folds.

The approaches #1 BFCR_Span pre-trained on OntoNotes [222], and #2 SCIIE pre-
trained on SciERC [178] achieve a CoNLL F1 score of 37.1% and 7.4%, respectively. These
scores are quite low compared to the approaches #3 - #6 that use training data of the
STM corpus. This indicates that models pre-trained on existing datasets do not generalise
sufficiently well for coreference resolution in research papers. Models trained only on the
STM corpus (i.e. #3 - #5) achieve better results. However, they have quite low recall
scores indicating that the size of the training data might not be sufficient to enable the
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6 Coreference Resolution for Knowledge Graph Population

Table 6.5: Performance of the baseline approaches (in percent) #1-#5 and our transfer learn-
ing approach #6 on the the STM corpus across five-fold cross validation.

MUC B3 CEAFeφ4 CoNLL
Training data P R F1 P R F1 P R F1 P R F1

#1 BFCR_Span OntoNotes 57.1 31.1 40.2 55.9 25.7 35.2 50.2 28.1 36.0 54.4 28.3 37.1
#2 SCIIE SciERC 13.4 4.5 6.8 13.1 4.3 6.5 18.1 6.0 9.0 14.9 4.9 7.4
#3 BFCR_Span STM 61.6 45.6 52.3 59.8 41.5 48.8 57.9 44.4 50.0 59.8 43.8 50.4
#4 BFCR_Sci STM 61.9 40.2 48.6 59.7 36.1 44.9 61.7 36.9 46.0 61.1 37.7 46.5
#5 SCIIE STM 60.3 45.2 51.6 57.6 41.7 48.3 56.6 43.6 49.1 58.1 43.5 49.7
#6 BFCR_Span Onto→STM 64.5 63.5 63.9 61.0 60.0 60.4 60.5 59.6 60.0 62.0 61.0 61.4

Table 6.6: Per domain and overall CoNLL F1 results (in percent) of the best baseline #3
and our approach #6 on the STM corpus across five-fold cross validation.

Training data Agr Ast Bio Che CS ES Eng MS Mat Med Overall

#3 BFCR_Span STM 48.0 50.5 52.2 49.0 59.1 39.6 52.8 47.6 42.5 51.0 50.4
#6 BFCR_Span Onto→STM 62.8 61.1 57.5 56.3 74.9 57.5 59.8 52.1 55.7 62.1 61.4

model to generalise well. The approach SciBERT #4, although pre-trained on scientific
texts, performs worse than SpanBERT #3. Presumably the reason is that SpanBERT has
approximately 3 times more parameters than SciBERT. Our transfer learning approach #6
achieves the best results with quite balanced precision and recall scores.

Furthermore, to evaluate the effectiveness of our transfer learning approach, we compare
the best baseline #3 and our transfer learning approach #6 also with the SciERC cor-
pus [178]. The SciERC corpus comprises 500 abstracts from the AI domain. Since SciERC
has around 5 times more training data than STM, we compare the approaches #3 and #6
also using only 1

5th of the training data in SciERC while keeping the original validation
and test sets. It can be seen in Table 6.7 that our transfer learning approach #6 improves
slightly the baseline result using the whole training data with 60.1% F1 (+0.8%). When
using only 1

5th of the training data, our transfer learning approach noticeably outperforms
the baseline with 54.2% F1 (+7.1%). Thus, our transfer learning approach can help sig-
nificantly to improve the performance of coreference resolution in research papers with few
labelled data.

6.5.2 Cross-Domain Research Knowledge Graph

In this subsection, we describe the characteristics of our populated RKG (referred to as
STM-KG) and discuss the evaluation results of various KG population strategies.
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6.5 Results and Discussion

Table 6.7: CoNLL scores (in percent) on the SciERC corpus [178] across 3 random restarts
of the approaches: approach of Luan et al. [178], the best baseline approach (#3),
and our transfer learning approach (#6). We report results using the whole and
using only 1

5th of the training data of SciERC [178] (referred to as 1
5SciERC).

Training data P R F1

Luan et al. [178] SciERC 52.0 44.9 48.2
#3 BFCR_Span SciERC 63.3 55.7 59.3
#6 BFCR_Span OntoNotes→SciERC 63.9 57.1 60.1
#3 BFCR_Span 1

5SciERC 63.1 39.1 47.1
#6 BFCR_Span OntoNotes→ 1

5SciERC 52.8 56.7 54.2

Table 6.8: Characteristics of the populated cross-domain and in-domain research STM-KGs
per domain: (1) number of abstracts, number of extracted scientific concept men-
tions and coreferent mentions, (2) the number of scientific concepts for the KG
with cross-domain collapsing, (3) in-domain collapsing, (4) cross-domain collaps-
ing but without coreference resolution, and (5) in-domain collapsing but without
coreference resolution. Reduction denotes the percentual reduction of mentions
to scientific concepts and MIX the cross-domain concepts.

Agr Ast Bio CS Che ES Eng MS Mat Med MIX Total

# abstracts 7,731 15,053 11,109 1,216 1,234 2,352 3,049 2,258 665 10,818 - 55,485
# mentions 332,983 370,311 423,315 45,388 46,203 129,288 127,985 86,490 20,466 586,019 - 2,168,448
# coref. men. 108,579 120,942 143,292 17,674 14,059 40,974 42,654 25,820 8,510 203,884 - 726,388

cross-domain collapsing
KG concepts 138,342 173,027 177,043 20,474 21,298 62,674 55,494 39,211 9,275 227,690 70,044 994,572
- Data 27,132 64,537 32,946 5,380 5,124 19,542 17,053 10,629 2,982 66,473 19,715 271,513
- Material 69,534 45,296 83,627 6,242 10,154 24,322 19,689 17,276 2,406 68,141 20,812 367,499
- Method 2,992 8,819 6,135 2,001 1,055 1,776 2,953 1,605 685 9,363 1,627 39,011
- Process 38,684 54,375 54,335 6,851 4,965 17,034 15,799 9,701 3,202 83,713 27,890 316,549
reduction 58% 53% 58% 55% 54% 52% 57% 55% 55% 61% - 54%

in-domain collapsing
KG concepts 180,135 197,605 229,201 30,736 32,191 81,584 78,417 55,358 14,567 278,686 - 1,178,480
reduction 46% 47% 46% 32% 30% 37% 39% 36% 29% 52% - 46%

cross-domain collapsing without coreference resolution
KG concepts 146,894 182,479 187,557 21,950 22,555 66,600 59,689 41,776 9,939 242,797 77,493 1,059,729
reduction 56% 51% 56% 52% 51% 48% 53% 52% 51% 59% - 51%

in-domain collapsing without coreference resolution
KG concepts 184,218 199,894 234,399 31,525 32,937 83,445 80,476 56,690 14,911 284,547 - 1,203,042
reduction 45% 46% 45% 31% 29% 35% 37% 34% 27% 51% - 45%

6.5.2.1 Characteristics of the Research Knowledge Graph

Table 6.8 shows the characteristics of the populated cross-domain and in-domain STM-KGs
per domain. The resulting STM-KGs with cross-domain and in-domain collapsing have more
than 994,000 and 1.1 Mio. scientific concepts, respectively, obtained from 55,485 abstracts
with more than 2,1 Mio. concept mentions and 726,000 coreferent mentions. Ast and Bio
are the most represented domains, while CS and Mat are the most underrepresented.

131



6 Coreference Resolution for Knowledge Graph Population

Table 6.9: Performance of the collapsing strategies evaluated against the Test-STM-KG :
in-domain and cross-domain collapsing with and without coreference resolution.

#concepts MUC B3 CEAFeφ4 CoNLL
in KG P R F1 P R F P R F1 P R F1

in-domain collapsing 859 86.3 70.6 77.7 86.0 69.0 76.6 84.1 23.1 36.2 85.5 54.2 63.5
- without coreferences 900 75.5 38.8 51.2 75.2 37.9 50.4 71.1 14.0 23.4 73.9 30.2 41.7

cross-domain collapsing 837 85.0 73.0 78.5 84.5 72.1 77.8 84.7 24.6 38.1 84.7 56.6 64.8
- without coreferences 876 73.5 41.0 52.6 72.2 15.5 25.5 72.2 15.5 25.5 73.0 32.4 43.5

6.5.2.2 Evaluation of Knowledge Graph Population Strategies

Next, we discuss the different KG population strategies. For each strategy, Table 6.8 reports
the number of concepts in the populated KG and the percentage reduction of mentions to
concepts, and in Table 6.9 the evaluation results of KGs against the Test-STM-KG.

Cross-Domain vs. In-Domain Collapsing: Cross-domain collapsing achieves a higher
CoNLL F1 score of 64.8% than in-domain collapsing with a score of 63.5% (see Table 6.9).
However, in-domain collapsing yields (as expected) a higher precision (CoNLL P 85.5%),
since some terms have different meanings across domains (e.g. Measure_(mathematics) vs.
Measurement in https://en.wikipedia.org). Furthermore, the Test-STM-KG has only 31
cross-domain concepts due to its small size. Thus, we expect that cross-domain collapsing
would yield worse results on a larger test set.

Furthermore, as shown in Table 6.8, cross-domain collapsing yields less concepts than
in-domain collapsing (more than 994,000 versus 1.1 Mio. concepts). We can also observe
that only 70,044 (7%) of the concepts are used across multiple domains. This indicates that
every scientific domain mostly uses its own terminology. However, the concepts used across
domains can have different meanings. Thus, when precision is more important than recall
in downstream tasks, in-domain collapsing should be the preferred choice.

Effect of Coreference Resolution: Coreference resolution has only a small impact on
the number of resulting concepts in a populated STM-KG (see Table 6.8). However, as
shown in Table 6.9, leaving out the coreference resolution step during KG population yields
only low CoNLL F1 scores, i.e. 41.7% (-21.8) F1 and 43.5% (-21.3) F1. Thus, coreference
resolution significantly improves the quality of a populated KG .

6.5.2.3 Qualitative Analysis

We also inspected the top-five frequent domain-specific concepts in the populated STM-KG.
A list of these concepts can be found in our public repository and an excerpt is depicted in
Table 6.10. As far as we can judge with our computer science background, we consider the
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6.6 Summary

Table 6.10: Topmost domain-specific and cross-domain concepts in the populated STM-KG.

Agr Ast Bio CS Che ES Eng MS Mat Med MIX

Process pollinate
quantum
chromo-
dynamics

analytical
ultracentri-
fugation

cyber
attack

potent
activity

new
hydro-
logical
insight

thermal
energy
storage

spherical
inden-
tation

bisimu-
lation

surgical
treatment increase

Method

braun-
Blanquet
proce-
dure

standard
model SPSS 16

material
point
method

scanning
tunneling
micro-
scopy

X-ray
photo-
emission
electron
micro-
scopy

contour
method

magneto-
metry

spectral
theory

intention-
to-treat
popula-
tion

in vitro

Data number neutrino
mass

mass
spectro-
metry
proteomics
data

runtime
perfor-
mance

electrode
potential

geological
record

internal
tempera-
ture

average
crystallite
size

finite
sample

age and
gender number

Material
conser-
vation
status

black
hole

PRIDE
repository

inter-
active
environ-
ment

spark
ignition
engine

volcano near-wall
region

polycry-
stalline
sample

monoid study
group model

extracted top frequent concepts to be reasonable and useful for the domains. For instance,
in Ast, the method ‘standard model’ is frequently mentioned, while in CS the process ‘cyber
attack’ appears most often. The frequency of the top concepts differs significantly between
the domains: In Med, Ast, Eng, ES, and Agr, a top frequent concept is referenced 10.8, 10.2,
4.9, 3.8, and 3.1 times per 1000 abstracts, respectively. In Che, MS, Mat, Bio, and CS, a top
frequent concept is referenced only by few abstracts (0.3, 0.4, 1.0, 1.4, and 2.3, respectively,
per 1000 abstracts).

6.6 Summary

This chapter has addressed the research questions RQ2 (few labelled data) and RQ3
(domain-independent extraction) for the task of coreference resolution in research papers
and also RQ4 (RKG population) by populating an RKG. To investigate RQ3, we have
annotated our STM corpus (see Chapter 5) comprising ten different domains from Science,
Technology, and Medicine (STM) with coreference annotations and obtained a substantial
inter-annotator agreement (0.68 κ). Baseline results on our corpus with current state-of-the-
art approaches for coreference resolution confirmed that current approaches perform poorly
on scientific text.

To address RQ2, we have proposed a sequential transfer learning approach that exploits
annotated datasets from the general domain. Our experimental results demonstrated that
the proposed approach noticeably outperforms the state-of-the-art baselines (F1 score of
61.4%, i.e. +11.0% absolute improvement). Thus, our transfer learning approach can help
to reduce annotation costs for scientific papers while obtaining high-quality results at the
same time.
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6 Coreference Resolution for Knowledge Graph Population

Furthermore, we have explored RQ4 (RKG population) in this chapter. First, we have
investigated the impact of coreference resolution on KG population. For this purpose, we
have compiled a gold KG from our annotated corpus and proposed an evaluation procedure
for KG population strategies. We have demonstrated that coreference resolution has a
small impact on the number of resulting concepts in the KG, but improved its quality
significantly (F1 score of 63.5%, i.e. +21.8% absolute improvement). Moreover, collapsing
mentions of scientific concepts across domains achieved a higher recall but a lower precision
than collapsing mentions only within a single domain. Thus, collapsing of mentions within
a domain should be preferred when precision is more important than recall in downstream
tasks. Finally, we have generated an RKG (referred to as STM-KG) from 55,485 abstracts
of the ten investigated domains. We have shown that every domain mainly uses its own
terminology and that the populated RKG contains useful concepts.

♦♦♦

The objective of this chapter and the previous Chapter 5 was to populate a fine-grained
RKG. In the next Chapter 7, we propose a novel approach for citation recommendation
that can leverage such RKGs. Using that approach, we demonstrate the usefulness of our
populated RKG.
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7 Citation Recommendation via Knowledge
Graphs

This chapter proposes a new approach for the task of citation recommendation using Re-
search Knowledge Graphs (RKGs) and demonstrates the usefulness of our populated RKG
introduced in the previous Chapter 6 for this task. Thus, this chapter addresses RQ5,
namely:

RQ5: How can we exploit an automatically populated RKG to enhance the task
of citation recommendation?

This chapter is organised as follows: Section 7.1 motivates the usage of RKGs for the task of
citation recommendation. Section 7.2 reviews existing approaches for citation recommenda-
tion, and Section 7.3 describes our proposed approach. The experimental setup and results
are reported in Section 7.4 and 7.5, while Section 7.6 summarises this chapter.

7.1 Introduction

Citations are a core part of research articles as they enable the reader to position the novel
contribution in the scientific context. Moreover, relating own contributions with relevant
research via references can also improve visibility. In consequence, it is in the interest of
authors to provide complete and high-quality citation links to existing research. However,
this task becomes ever more complicated since the number of published research articles has
been growing exponentially in the recent years [27, 188].

Consequently, the recommendation of suitable references for a piece of scientific writing
is an important task to (a) improve the quality of future publications, (b) help authors
and reviewers to point out additional relevant related work, and (c) discover interesting
links to other areas of research. Färber and Jatowt [80] distinguish between local citation
recommendation which aims to provide citations for a short passage of text, and global
citation recommendation which uses the documents’ full text or abstract as the input. Here,
we focus on the task of global citation recommendation that is illustrated in Figure 7.1.

Current best-performing approaches for global citation recommendation [21, 56, 302] pri-
marily leverage the articles’ text and the citation network as information sources. In this
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Global Citation
Recommendation

Input: 
abstract of
a research paper

Output: 
ranked list of candidate
research papers to be cited

Figure 7.1: In the task of global citation recommendation, the system takes as input the
abstract of a research paper and outputs a ranked list of candidate research
papers to be cited.

chapter, we explore another source of information, that is the set of scientific concepts which
are mentioned in the article. The assumptions are (1) that additionally to the article’s text,
these provide condensed evidence to the described problem statement, used methodology or
evaluation metrics, and (2) that research papers which should cite one another usually share
a similar set of concepts. Consequently, we investigate whether an RKG that interconnects
papers based on the mentioned scientific concepts is instrumental in improving citation rec-
ommendation. For this purpose, we propose an approach which combines automatically
extracted scientific concepts from the research articles with existing approaches for citation
recommendation. The approach is evaluated on the STM-KG introduced in the previous
Chapter 6 that has been automatically populated from papers of ten scientific domains.
The experimental results demonstrate that our proposed approach consistently improves
the state of the art with a MAP@50 (mean average precision of top-50 results) of 20.6%
(+0.8% absolute improvement). To facilitate further research, we release all our corpora
and source code: https://github.com/arthurbra/citation-recommendation-kg

7.2 Related Work

In the following, we outline recent approaches for global citation recommendation. For local
citation recommendation, we refer to the survey of Färber and Jatowt [80].

Bhagavatula et al. [21] propose a neural network-based document embedding model to
retrieve candidate documents for a query document via similarity search [134] and a ranking
model to rerank the top-k candidates. The document embedding model is trained via a
triplet loss with the papers’ abstract and title using a Siamese architecture. It learns a high
cosine similarity between embeddings of papers citing each other. The reranker estimates the
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probability that a query document should cite a candidate document using the abstract, title,
and optional metadata (e.g. author, venue) as features. Cohan et al. [56] propose a document
embedding model named SPECTER (Scientific Paper Embeddings using Citationinformed
TransformERs). It is trained with an approach similar to Bhagavatula et al. [21]. However,
they use a BERT encoder [71] pre-initialised with SciBERT embeddings [19]. Furthermore,
Cohan et al. [56] omit the reranking step and obtain the ranked results directly via the
document embeddings’ cosine similarity.

Graph-based approaches learn document embeddings via graph convolution networks on
the citation graph [107, 149, 293]. However, they require the citation network also at infer-
ence time [56]. Other approaches [40, 132, 302] frame citation recommendation as a binary
classification task: given a query and a candidate paper, the model learns to predict whether
the query paper should cite the candidate paper. The models learn rich relationships be-
tween the contents of the two documents via various cross-document attention mechanisms.
However, in contrast to the document embedding models [21, 56], such binary classification
models cannot be used for retrieval, but only for reranking the top k results, since a query
paper has to be compared with all other documents [45], that is inefficient.

To the best of our knowledge, approaches for citation recommendation that exploit KGs
with scientific concepts have not been proposed yet.

7.3 Citation Recommendation using a Knowledge Graph

As the discussion of related work shows citation recommendation approaches have not ex-
ploited RKGs yet. To leverage RKGs, we propose an approach to combine document embed-
dings learned from textual content and the citation graph together with scientific concepts
mentioned in the document.

Let G = (D,E,V) be a KG, D the set of documents, E the set of concepts, V ⊆ D × E
the set of links between papers and concepts, and Ed ⊆ E the set of concepts mentioned in
a paper d ∈ D. Let onehot(ei) ∈ R|E| be the one-hot vector for concept ei in which the i-th
component equals 1 and all remaining components are 0. Now, we construct the concept
vector cd ∈ R|E| for a paper d ∈ D as follows:

cd =
∑
ei∈Ed

onehot(ei) (7.1)

Furthermore, let sd be a document embedding of a paper d obtained via an existing document
embedding model (e.g. SPECTER [56]). The vector representation d of a paper d is the
concatenation of the concept vector cd and the document embedding sd:

d = [cd, sd] (7.2)
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Table 7.1: Characteristics of the STM-KG (see Section 6.5.2) per domain in terms of num-
ber of abstracts, the number of citation links within the KG, and the number
of scientific concepts in the cross-domain and in-domain KG. The number of
concepts used across multiple domains are denoted as MIX. The domains are:
Agriculture (Agr), Astronomy (Ast), Biology (Bio), Chemistry (Che), Computer
Science (CS), Earth Science (ES), Engineering (Eng), Materials Science (MS),
Mathematics (Mat), and Medicine (Med).

Agr Ast Bio CS Che ES Eng MS Mat Med MIX Total

# abstracts 7,731 15,053 11,109 1,216 1,234 2,352 3,049 2,258 665 10,818 - 55,485
# citations 1,670 1,853 1,347 171 151 477 677 375 65 2,116 - 15,395

cross-domain KG
KG concepts 138,342 173,027 177,043 20,474 21,298 62,674 55,494 39,211 9,275 227,690 70,044 994,572

in-domain KG
KG concepts 180,135 197,605 229,201 30,736 32,191 81,584 78,417 55,358 14,567 278,686 - 1,178,480

For a query paper q ∈ D the task is to retrieve the top k results such that papers to be
cited appear at the top of the list. We use cosine similarity for retrieval and ranking where
q for the query paper q is constructed in the same way as d for a paper d:

rank(q, d) = cos(q,d) =
qᵀ · d
||q|| · ||d||

(7.3)

7.4 Experimental Setup

In this section, we describe the experimental setup, i.e. the used benchmark dataset, baseline
approaches, and the evaluation procedure.

Benchmark Dataset: Existing benchmark datasets for research paper citation recom-
mendation (e.g. [21, 56, 177]) do not provide an RKG that interlinks papers with scientific
concepts. Therefore, we use the STM-KG introduced in Chapter 6 as our benchmark dataset
whose characteristics are depicted in Table 7.1. It has been populated from 55,485 abstracts
in ten different STM domains and comes in two variants: (1) in-domain KG that shares
scientific concepts only between papers of the same domain to avoid ambiguity of scientific
terms (e.g. neural network in medicine vs. computer science), and (2) cross-domain KG that
shares scientific concepts also between domains.

The KG contains 15,395 citation links within the KG in total, of which 2,200 citation links
are across papers from different domains. For evaluation, analogous to related work [21, 56],
we use only papers that cite at least four papers within the KG which results in 720 query
documents and 4,069 citations links. In contrast to Cohan et al. [56], we pursue a realistic
approach like Bhagavatula et al. [21], i.e. we retrieve top-k documents from all documents
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in the corpus instead of using predefined candidate sets of 30 documents (5 cited and 25
uncited papers) for each query document.

Baseline Approaches: We compare our approach with two simple (1 and 2) and three
strong baselines (3, 4, and 5):

1. Random: We use randomly initialised document embeddings with dimension 200.

2. Concept vector: Only the concept vector is used for ranking (see Equation 7.1).

3. GloVe: Document embedding of a paper is the average of GloVe [212] word embed-
dings obtained from the abstract of the paper.

4. SciBERT: Document embedding is also the average of the contextual word embed-
dings obtained from the abstract of the paper via SciBERT [19] that is based on
BERT [71] and has been pre-trained on scientific text. It has demonstrated superior
performance in various downstream tasks on research papers [19].

5. SPECTER: Document embedding is obtained via SPECTER [56] from the title and
the abstract. The SPECTER model has been trained on the textual content and the
citation graph of research papers, and is the current state of the art.

To compute GloVe and SciBERT document embeddings, we use the sentence transformers
library [235]. For SPECTER we use the implementation of Cohan et al. [56].

Evaluation: To evaluate the quality of the ranking results for the top k citation recom-
mendations, we use Mean Average Precision (MAP@k) [16, 162] as in related work [56] (see
also Section 2.5.2.4). The metric assumes that a user is interested in finding many relevant
documents and is thus an appropriate evaluation metric for citation recommendation.

7.5 Results and Discussion

The boxplots in Figure 7.2 depict the distribution of cosine similarities of concept vectors
between citing and non-citing papers. It can be seen that papers citing each other have on
average a higher cosine similarity than papers not citing each other. This underlines our
hypothesis that papers citing each other share a common set of scientific concepts.

Table 7.2 shows the results of the evaluated approaches. Using only the concept vectors
for ranking outperforms the random baseline noticeably. When using only certain concept
types (i.e. Process, Method, Material, or Data), we can observe that Material and
Process concept types contribute most to the results. However, using all concept types
together yields the best results.
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Figure 7.2: Boxplot for cosine similarities between concept vectors of papers citing each other
(15,395 links) for cross-domain and in-domain KG, respectively, and papers citing
random papers (15,395 links). The green triangles depict the mean values.

Table 7.2: Experimental results (in percent) for citation recommendation with random vec-
tors, only the concept vector as well as document embeddings obtained from
GloVe, SciBERT, and SPECTER with and without using the concept vector.

MAP@10 MAP@20 MAP@50

Random 0.0 0.0 0.0
Concept vector (cross-domain KG) 7.5 8.0 8.5
Concept vector (in-domain KG) 8.1 8.7 9.3
- Material 3.7 4.1 4.4
- Process 3.6 3.9 4.2
- Data 1.9 2.1 2.2
- Method 1.1 1.2 1.4
GloVe 9.1 10.0 10.8
GloVe + concept vector (cross-domain KG) 11.4 (+2.3) 12.5 (+2.5) 13.4 (+2.6)
GloVe + concept vector (in-domain KG) 11.3 (+2.2) 12.5 (+2.5) 13.5 (+2.7)
SciBERT 10.2 11.5 12.6
SciBERT + concept vector (cross-domain KG) 12.1 (+1.9) 13.3 (+1.8) 14.4 (+1.8)
SciBERT + concept vector (in-domain KG) 11.9 (+1.7) 13.2 (+1.7) 14.4 (+1.8)
SPECTER 16.5 18.3 19.8
SPECTER + concept vector (cross-domain KG) 16.9 (+0.4) 18.9 (+0.6) 20.5 (+0.7)
SPECTER + concept vector (in-domain KG) 17.0 (+0.5) 19.0 (+0.7) 20.6 (+0.8)

Baseline ranking approaches via document embeddings learned from the text (GloVe and
SciBERT), or text and the citation graph (SPECTER) outperform the ranking only via
concept vectors noticeably, while SPECTER performs best as expected. This indicates that
concept vectors alone do not contain enough information for the task of citation recom-
mendation. However, our proposed approach combining document embeddings and concept
vectors consistently improves all baseline approaches. For SPECTER, the in-domain KG
yields slightly better results than the cross-domain KG. However, in our error analysis we
found out that concept vectors from the cross-domain KG provide more accurate rankings
for cross-domain citations.
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7.6 Summary

Our results indicate that the exploitation of an RKG as an additional source of information
can improve the task of citation recommendation.

7.6 Summary

This chapter has addressed RQ5 (exploit RKGs) by investigating whether an automatically
populated RKG can enhance the task of citation recommendation. For this purpose, we have
combined document embeddings learned from text and the citation graph together with
concept vectors representing scientific concepts mentioned in a paper. The experimental
results on our RKG introduced in Chapter 6 demonstrated that the concept vectors provide
meaningful features for the task of citation recommendation. Thus, our approach could
improve the state of the art with a MAP@50 (mean average precision of top-50 results) of
20.6% (+0.8% absolute improvement).

The successful application of our RKG for the task of citation recommendation supports
our hypothesis introduced in Chapter 3 that automatically populated RKGs with high com-
pleteness but noisy data have the potential to support downstream information retrieval
tasks such as finding related work or recommending research papers.

♦♦♦

This chapter has proposed an approach that can exploit an automatically populated RKG for
an information retrieval task, namely citation recommendation. Thus, we could demonstrate
the usefulness of the RKG for a downstream task. The next chapter concludes the thesis
and outlines areas of future work.
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Current research infrastructures are not able to assist scientists appropriately in their core
tasks since fundamental contents of research papers are not machine-interpretable. This
thesis aims to extract relevant information from research papers with machine learning
approaches for Research Knowledge Graphs (RKGs) that should structure and interlink
scholarly knowledge.

The question of how to represent scholarly knowledge via KGs is an active area of research,
and Section 1.2 outlined several challenges, i.e. the diversity and heterogeneity of scholarly
knowledge, lack of labelled data and domain experts, and usefulness of automatically popu-
lated RKGs. Based on these challenges, we formulated five research questions RQ1 to RQ5
that are investigated in this thesis. In the following, Section 8.1 first provides results and
answers with regard to the research questions, while Section 8.2 briefly summarises the con-
tributions. Then, Section 8.3 outlines remaining limitations and sketches possible directions
of future work.

8.1 Summary

As outlined in Section 1.2.1, scholarly knowledge is very heterogeneous and diverse, and
its structured and interlinked representation yields conflicting requirements: On the one
hand, we desire a comprehensive ontology and instance data with high correctness and
completeness. On the other hand, comprehensive ontologies require a manual population of
the instance data by domain experts, which is too time-consuming and costly and prevents
high completeness; automatic approaches can only populate relatively simple ontologies with
moderate accuracy and thus cannot ensure high correctness. To illuminate this problem, we
have explored RQ1:

RQ1: What are the main requirements for scholarly knowledge representation to
support various use cases in an RKG?

In Chapter 3, we have conducted a requirements analysis for an ORKG [7] as an example
for an RKG with regard to RQ1. Our analysis has focused on the elicitation of use cases,
definition of quality requirements for the underlying KG to support these use cases, and
construction strategies for an ORKG. First, we have presented literature-related use cases
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of researchers that should be supported by an ORKG and their specific requirements for
the underlying ontology (i.e. granularity and domain-specificness) and instance data (i.e.
completeness and correctness). The identified use cases are: get research field overview (#1),
find related work (#2), assess relevance of research papers (#3), extract relevant information
from research papers (#4), get recommended articles (#5), obtain deep understanding of a
research paper (#6), and reproduce results of a research paper (#7). Then, based on this
analysis, the identified use cases have been categorised into two groups:

1. The first group of use cases, i.e. get research field overview (#1), extract relevant
information from research papers (#4), obtain deep understanding of a research paper
(#6), and reproduce results of a research paper (#7), requires instance data with high
correctness and rather fine-grained, domain-specific ontologies. However, moderate
completeness of the instance data should be sufficient.

2. The second group of use cases, i.e. find related work (#2), assess relevance of research
papers (#3), and get recommended articles (#5), requires high completeness of the
instance data. However, the ontologies can be rather simple and domain-independent,
and moderate correctness of the instance data should be adequate.

For each use case, we have presented strategies and described possible approaches for manual,
semi-automatic, and fully-automatic construction of an ORKG. Manual and semi-automatic
approaches are necessary for the first group of use cases since they require instance data
with high correctness. Fully-automatic approaches are required for the second group of use
cases since they require instance data of high completeness but can tolerate noisy data.
Furthermore, we proposed a framework using lightweight ontologies (called templates) that
can evolve by community curation. Moreover, we have outlined the interdependence of an
ORKG with external systems, user interfaces, and APIs for third-party applications.

This thesis has focused on the second group of use cases and provided contributions for
machine learning tasks that aim to support them. In Chapter 4, we addressed the task of
sequential sentence classification that can assist the use case assess relevance of research
papers (#3) since it enables identifying relevant sentences in research papers. Furthermore,
we introduced the novel task of domain-independent information extraction that allows for
the extraction of scientific concepts from research papers in a domain-independent man-
ner. This can contribute to the use cases find related work (#2) and get recommended
articles (#5) since we claim that a simple and domain-independent ontology and instance
data with moderate correctness should be sufficient for them. Domain-independent infor-
mation extraction consists of the two sub-tasks scientific concept extraction (see Chapter 5)
and coreference resolution (see Chapter 6). To demonstrate the usefulness of our domain-
independent information extraction approach, we proposed methods to populate an RKG
spanning ten different scientific domains and presented a novel approach for the task of
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citation recommendation that can leverage this RKG (see Chapter 7). The task of citation
recommendation can assist the use cases (#2) and (#5).

Next, we describe our results with regard to the research questions RQ2-5 in the context
of the aforementioned tasks. An RKG should cover multiple scientific domains, but the
manual annotation of datasets for each scientific discipline is challenging and costly [9, 92].
Therefore, machine learning methods are required that can be adapted to new domains with
few labelled data. This has been addressed by our next research question RQ2:

RQ2: How can we modify machine learning methods for information extraction
from scientific texts to be adaptable to new domains with few labelled data?

We have explored RQ2 for three different tasks, namely sequential sentence classification,
scientific concept extraction, and coreference resolution:

Sequential Sentence Classification: Previous work proposed different kinds of ap-
proaches for sequential sentence classification. For abstracts, deep learning is the preferred
approach [54, 69, 100, 133, 257, 295], whereas for full papers, hand-crafted features and
linear models have been suggested [6, 11, 85, 174]. We presented a unified deep learning
approach that can be used to classify sentences in abstracts and full papers.

Furthermore, we have investigated transfer learning for sequential sentence classification
since the community lacks studies for this task [15, 46, 106, 168, 169, 178, 207]. Transfer
learning enables the combination of knowledge from multiple datasets to improve classifica-
tion performance and thus reduces annotation costs. However, various studies showed that
the success of transfer learning depends largely on the semantic relatedness of the tasks [196,
205, 238, 253]. We have presented a unified multi-task deep learning approach for sequential
sentence classification and investigated the semantic relatedness of datasets from different
scientific domains that cover either only abstracts or full papers. Our results demonstrated
that classes of various dataset annotation schemes are semantically related, even though the
datasets come from different domains, and cover either only abstracts or full papers. Thus,
our approach enables us to combine datasets from different domains with varying structures
to improve the overall prediction accuracy. Our cross-domain multi-task learning approach
has outperformed the state of the art without any feature engineering on full paper datasets
significantly while being competitive for datasets consisting of abstracts only.

Scientific Concept Extraction: Existing datasets for scientific concept extraction focus
on at most three scientific domains and are annotated with rather domain-specific concept
types [9, 53, 139, 178, 229]. We have introduced four generic scientific concept types,
namely Process, Method, Material, and Data, and annotated a dataset comprising
ten different scientific domains from Science, Technology, and Medicine (STM) using these
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concept types. We have demonstrated that a model trained with data from all domains
noticeably outperforms the domain-specific models that were trained only with data from the
respective domain. As for the results of transfer learning in sequential sentence classification
(see above), the results confirm that the combination of training data from different scientific
domains is also beneficial for scientific concept extraction.

Furthermore, we have proposed active learning in order to obtain an optimal selection
of training instances, which to our knowledge, has been demonstrated for the first time on
scholarly text. Our approach that combines active learning with a state-of-the-art deep
learning system for scientific concept extraction achieves the same performance with only
about half of the training data. Thus, our approach can significantly save annotation costs
and enables a fast adaptation of machine leaning models to new domains.

Coreference Resolution: Datasets for coreference resolution in scientific text [42, 58,
178, 248] are smaller than datasets from the non-academic domain (e.g. [222]). However,
current approaches for coreference resolution in research papers do not leverage these large
datasets yet [137, 170, 171, 178, 182]. We have proposed a transfer learning approach in
which a model is first trained with a large dataset from a non-academic domain and then
fine-tuned with a (much smaller) dataset from a scientific domain. Our results showed that
our approach significantly outperforms the state-of-the-art baselines so that it can help to
reduce annotation costs while at the same time obtaining high-quality results.

In summary, we can conclude that a proper adaptation and selection of methods for
(1) multi-task learning, (2) sequential transfer learning, and (3) active learning, as well as
(4) the combination of training data from different scientific domains or even (5) exploiting
training data from non-academic domains are effective strategies for information extrac-
tion from scientific texts. This enables machine learning models to adapt to new scientific
domains with few additional labelled data.

As outlined above, an RKG should cover multiple scientific domains, but the manual an-
notation of datasets for each scientific domain is costly, time-consuming, and challenging.
Therefore, our next research question RQ3 has addressed information extraction from re-
search papers in a domain-independent manner to avoid the manual annotation of datasets
for each scientific discipline.

RQ3: How can we automatically extract information from research papers from
multiple scientific domains in a domain-independent manner?

Again, we have explored this research question for the three tasks of domain-independent
sequential sentence classification, scientific concept extraction, and coreference resolution.
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Domain-Independent Sequential Sentence Classification: Our proposed multi-
task learning approach for sequential sentence classification enables us to exploit datasets
from different scientific domains that cover either only abstracts or full papers. We have
presented an approach to identify semantically related classes from different datasets semi-
automatically. This allows for the support of manual comparison and inspection of different
annotation schemes across domains and thus enables their consolidation. In contrast to prior
work [175], our approach can avoid the re-annotation of datasets with different annotation
schemes. Using our proposed approach, we have provided an analysis of four annotation
schemes and presented a domain-independent model that allows for the classification of
sentences in research papers with generic classes across disciplines. This model can support
downstream applications such as academic search engines to structure research papers in a
domain-independent manner.

Domain-Independent Scientific Concept Extraction: As stated above, existing
datasets for scientific concept extraction cover at most three scientific domains that use
rather domain-specific concept types. Moreover, these datasets were annotated either by
domain experts [9, 68, 147, 175, 178, 229] (an approach that is costly) or non-experts [43,
85, 279] (an approach that is presumably cheaper). We have proposed a cost-efficient middle
course: annotations by non-experts with scientific proficiency and consultation with domain
experts. Using a systematic annotation procedure involving domain experts, we have anno-
tated a corpus comprising ten STM domains and verified the adequacy of the concepts (i.e.
Process, Method, Material, and Data) by evaluating the inter-annotator agreement.
The results showed that the identification of the generic concepts in a corpus of ten different
STM domains is feasible by non-experts with moderate agreement, and after consultation
of domain experts with substantial agreement. Thus, the annotation of scientific datasets
by non-experts annotators and involving domain experts for consultation is a promising
strategy. Furthermore, as stated above, we have trained a state-of-the-art model using our
annotated dataset that can extract scientific concepts from ten scientific domains with a
fairly high F1 score.

Domain-Independent Coreference Resolution: Coreference resolution is an impor-
tant complement for scientific concept extraction. However, existing corpora for coreference
resolution in scientific texts are limited to a single domain [42, 58, 178, 248]. Furthermore,
results of some previous studies [58, 146, 201, 248] revealed that general coreference systems
do not work well in scientific domains due to the lack of domain knowledge. Therefore,
we have extended our corpus for scientific concept extraction with coreference annotations.
During a systematic annotation procedure, our non-domain experts achieved a substantial
inter-annotator agreement. We have provided and compared baseline results for this dataset
by evaluating five different state-of-the-art approaches. Our experimental results confirmed

147



8 Conclusions and Future Work

that state-of-the-art coreference approaches do not perform well on research papers. There-
fore, we have proposed a sequential transfer learning approach that leverages an existing
(large) dataset from non-academic domains (see above). The suggested approach noticeably
outperformed five different state-of-the-art baselines on our annotated corpus.

In summary, we have proposed information extraction approaches to classify sentences
in abstracts and full papers, and extract scientific concepts and coreferences from abstracts
across several domains. Next, we have populated an RKG that spans multiple scientific
domains. This has addressed our next research question RQ4:

RQ4: How can we automatically populate an RKG that covers multiple scientific
domains?

To the best of our knowledge, an RKG that spans multiple scientific domains has not been
provided yet. Thus, it is not clear whether it is feasible to collapse coreference clusters of
different papers across domains. Furthermore, the impact of coreference resolution on KG
population has not been investigated yet. For this purpose, we have compiled a gold standard
RKG from our annotated corpus that contains scientific concepts referenced by mentions
from text, and presented a procedure to evaluate the clustering results of mentions. We have
shown that coreference resolution has a small impact on the number of resulting concepts in
the RKG, but improves its quality significantly. Moreover, we investigated two strategies of
collapsing mentions of scientific concepts to entities in the RKG. The results demonstrated
that collapsing mentions across domains achieved a higher recall but a lower precision than
collapsing mentions only within a domain. Thus, collapsing of mentions within a domain
should be preferred in downstream tasks when precision is more important than recall.

Consequently, we have generated an RKG from 55,485 abstracts of the ten investigated
STM domains. We have shown that every domain mainly uses its own terminology and that
the populated RKG contains useful concepts.

Finally, to demonstrate the usefulness of our populated RKG for the use cases find related
work (#2) and get recommended articles (#3), approaches that can exploit such RKGs are
required. For this purpose, we have explored the task of citation recommendation that can
recommend researchers suitable related work based on a piece of scientific writing. This has
been targeted by our last research question RQ5:

RQ5: How can we exploit an automatically populated RKG to enhance the task
of citation recommendation?

Current approaches for the task of citation recommendation primarily rely on the text of
the papers and the citation network [21, 40, 56, 132, 302]. We have proposed to exploit
an additional source of information, namely RKGs that interlink research papers based on
mentioned scientific concepts. For this purpose, we have combined document embeddings

148



8.2 Summary of Contributions

learned from text and the citation graph together with concept vectors representing scientific
concepts mentioned in a paper. The achieved experimental results were better than state-of-
the-art baselines when utilising our populated RKG of ten STM domains. This indicates that
the concept vectors provide meaningful features for the task of citation recommendation.

8.2 Summary of Contributions

Overall, the contributions of this thesis can be summarised as follows:

1. requirements analysis for an ORKG, including:

1.1. a use case analysis of literature-related tasks of researchers;

1.2. the definition of data quality requirements for the underlying ontologies and in-
stance data;

1.3. an elaboration of RKG construction strategies for the corresponding use cases.

1.4. a new framework using lightweight ontologies (templates) that can evolve by
community curation.

2. new methods for the task of sequential sentence classification, including:

2.1. a unified deep learning approach that is applicable to datasets of different text
types, i.e. abstract and full papers, without any feature engineering;

2.2. a comprehensive empirical comparison of sequential transfer learning and multi-
task learning approaches as well as an investigation of the transferability of vari-
ous neural network layers;

2.3. a new cross-domain multi-task learning approach that enables the utilisation of
datasets from scientific domains with different structures and text types;

2.4. a new semi-automatic approach for the identification and analysis of the semantic
relatedness of sentence classes across different annotation schemes to support their
consolidation;

2.5. a new domain-independent sequential sentence classification approach that en-
ables the classification of sentences in research papers in a domain-independent
manner.

3. introduction of the novel task of domain-independent scientific concept extraction,
including:

3.1. an annotated corpus of 110 abstracts from ten different STM domains including:

i. scientific concepts of four generic scientific concept types;

ii. coreference links between the scientific concepts.
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3.2. demonstration of the usefulness of a new cost-effective annotation strategy by
non-domain experts and consultation with domain experts;

3.3. a new annotation strategy for scientific concepts that combines active learning
with a state-of-the-art deep learning approach;

3.4. a comprehensive comparison of the domain-specific classifiers and the domain-
independent classifier for scientific concept extraction for ten STM domains;

3.5. a new sequential transfer learning approach for coreference resolution that ex-
ploits large datasets from non-academic domains;

3.6. a comprehensive evaluation of state-of-the-art approaches for coreference resolu-
tion on scientific text from ten STM domains.

4. population of a cross-domain RKG, including:

4.1. an automatically populated RKG from over 55.000 abstracts that covers ten dif-
ferent STM domains;

4.2. a novel approach is proposed that investigates:

i. the impact of coreference resolution on the KG population;

ii. KG population strategies (i.e. cross-domain and in-domain collapsing).

4.3. a new compiled gold-standard RKG that enables to evaluate RKG population
strategies;

4.4. qualitative analysis of the extracted concepts in the populated RKG.

5. a novel approach for the task of global citation recommendation that exploits RKGs
by combining existing state-of-the-art approaches for citation recommendation with
concept vectors that represent scientific concepts of an RKG mentioned in a paper;

6. the source code and datasets of this thesis are made publicly available to facilitate
further research.

8.3 Limitations and Future Work

The realisation of an RKG is an ambitious project that requires a lot of research and en-
gineering effort. This thesis has made some important contributions towards RKGs in the
context of cross-domain information extraction from research papers. However, there are
still some remaining limitations and interesting areas of future research, which are described
in the following.

Requirements Analysis: Our analysis aimed to give a holistic view of the requirements
for an ORKG and outlined possible approaches for the construction of it. Next, following
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the Design Science Research (DSR) methodology [35, 121], the suggested approaches have
to be refined, implemented, and evaluated in an iterative and incremental process. In this
thesis, we focused on automatic KG population approaches that are necessary for specific
use cases that require high completeness of the instance data (i.e. find related work, get
recommended articles, assess relevance). Other use cases (e.g. extract relevant information,
get research field overview) require a rather high correctness of the instance data, and thus
semi-automatic KG population approaches are better suited for them. However, these use
cases also require a high domain-specificness, so that it is necessary to annotate datasets
and train machine learning models for each specific ontology. For instance, each defined
template requires a separate machine learning model. One promising research direction is
to employ few-shot learning, which enables training machine learning models with only a few
samples (e.g. 16 to 32 samples). Current few-shot learning approaches leverage large pre-
trained language models and achieve promising results [37, 95]. Moreover, the development
of intuitive user interfaces with a high usability should also be addressed in the future to
support manual curation of data in an ORKG. Furthermore, since ontologies and instance
data evolve in an ORKG, solutions are required to adequately support this evolution process
(e.g. editing, versioning, support to report inconsistencies, etc.).

Sequential Sentence Classification: Our unified multi-task learning approach for
sequential sentence classification enabled us to combine training data from different scientific
domains. However, there are several possible improvements to our approach. For instance,
the architecture does not exploit the hierarchical structure of the text in full papers (e.g.
sections and paragraphs). Furthermore, it can be extended with further tasks such as
scientific concept extraction or entity linking to KGs utilising multi-task learning (e.g. [178,
246, 290]). The mentions of certain scientific concepts in a sentence could help the model to
detect the sentence class more accurately and vice versa. Moreover, the domain-independent
sentence classifier should be evaluated in an information retrieval scenario (e.g. [242]).

Domain-Independent Information Extraction: Our annotated corpus contains four
generic concept types and covers ten STM domains. However, during our annotation study,
we also identified further domain-independent candidate concept types such as Task, Ob-

ject, and Result, which were almost always nested with the other scientific concepts.
Therefore, a second layer using these concept types can be annotated in future work. Ad-
ditionally, the concept types can be refined for specific domains (e.g. a participant in a
clinical trial is treated as Material in our corpus), and the corpus should be extended
with relations between scientific concepts, which would allow for the population of a richer
RKG. Furthermore, our domain-independent information extraction approach requires the
training of two models, one for scientific concept extraction and one for coreference reso-
lution. Multi-task learning would allow for the training of a single model (e.g. [178, 246,
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290]). Both tasks could also benefit from one another in a multi-task learning setting since
concept extraction might help coreference resolution to detect the concepts more accurately
and vice versa.

Cross-Domain Research Knowledge Graph: This thesis has evaluated our populated
RKG only for one downstream task, namely for citation recommendation. In future work,
the RKG should also be evaluated on further information retrieval tasks such as academic
search engines [294] or graph-based research paper recommendation systems [18]. For this
purpose, a much larger RKG should be populated and integrated with existing KGs such
as the Microsoft Academic Knowledge Graph [78]. Furthermore, a large RKG might give
us more insights into scientific language use and enable co-occurrence analysis between
scientific concepts. Finally, the integration of graph completion tasks (see Section 2.4.2.2) is
a promising research direction to remove irrelevant or incorrect data from a populated KG.

Citation Recommendation: Our approach for citation recommendation can leverage
an RKG as an additional source of information and we evaluated the approach on our
populated RKG from ten STM domains. In future work, the approach should also be evalu-
ated with further RKGs. Furthermore, more powerful approaches that can learn document
embeddings jointly from text, the citation graph, and the RKG may be explored (e.g. [56]).

♦♦♦

In summary, this thesis explored automatic methods for information extraction from sci-
entific text for RKGs. The results suggest that automatic methods are appropriate for
use cases, in which the extracted information is consumed by computers (e.g. retrieval and
ranking for the use cases find related work and get recommended articles), or presented as
suggestions for the user (e.g. in the use case assess relevance). However, for other use cases,
where a user consumes the information (e.g. get research field overview), semi-automatic
approaches are more appropriate and are thus also a promising direction of future research.
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