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Abstract

Metamodel-based uncertainty quantification for the mechanical behavior of braided
composites

The main design requirement for any high-performance structure is minimal dead weight. Pro-
ducing lighter structures for aerospace and automotive industry directly leads to fuel efficiency
and, hence, cost reduction. For wind energy, lighter wings allow larger rotor blades and, conse-
quently, better performance. Prosthetic implants for missing body parts and athletic equipment
such as rackets and sticks should also be lightweight for augmented functionality. Additional de-
mands depending on the application, can very often be improved fatigue strength and damage
tolerance, crashworthiness, temperature and corrosion resistance etc. Fiber-reinforced composite
materials lie within the intersection of all the above requirements since they offer competing
stiffness and ultimate strength levels at much lower weight than metals, and also high optimiza-
tion and design potential due to their versatility. Braided composites are a special category with
continuous fiber bundles interlaced around a preform. The automated braiding manufacturing
process allows simultaneous material-structure assembly, and therefore, high-rate production
with minimal material waste.

The multi-step material processes and the intrinsic heterogeneity are the basic origins of the ob-
served variability during mechanical characterization and operation of composite end-products.
Conservative safety factors are applied during the design process accounting for uncertainties,
even though stochastic modeling approaches lead to more rational estimations of structural
safety and reliability. Such approaches require statistical modeling of the uncertain parame-
ters which is quite expensive to be performed experimentally. A robust virtual uncertainty
quantification framework is presented, able to integrate material and geometric uncertainties of
different nature and statistically assess the response variability of braided composites in terms
of effective properties. Information-passing multiscale algorithms are employed for high-fidelity
predictions of stiffness and strength. In order to bypass the numerical cost of the repeated multi-
scale model evaluations required for the probabilistic approach, smart and efficient solutions
should be applied. Surrogate models are, thus, trained to map manifolds at different scales
and eventually substitute the finite element models. The use of machine learning is viable for
uncertainty quantification, optimization and reliability applications of textile materials, but not
straightforward for failure responses with complex response surfaces. Novel techniques based
on variable-fidelity data and hybrid surrogate models are also integrated.

Uncertain parameters are classified according to their significance to the corresponding re-
sponse via variance-based global sensitivity analysis procedures. Quantification of the random
properties in terms of mean and variance can be achieved by inverse approaches based on
Bayesian inference. All stochastic and machine learning methods included in the framework
are non-intrusive and data-driven, to ensure direct extensions towards more load cases and
different materials. Moreover, experimental validation of the adopted multiscale models is
presented and an application of stochastic recreation of random textile yarn distortions based
on computed tomography data is demonstrated.
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Kurzfassung

Metamodell-basierte Unsicherheitsquantifizierung des mechanischen Verhaltens von
geflochtenen Faserverbundwerkstoffen

Die wichtigste Entwurfsanforderung für jede Hochleistungsstruktur ist ein möglichst geringes
Eigengewicht. In der Luft- und Raumfahrt- sowie der Automobilindustrie führen leichtere
Strukturen direkt zur Erhöhung der Treibstoffeffizienz und damit zur Senkung der Kosten. Bei
der Windenergie ermöglicht eine leichtere Bauweise die Anwedung von längeren Rotorblättern
und führt somit zu einer gesteigerten Leistung. Prothetische Implantate für fehlende Körperteile
und Sportgeräte, wie z.B. Schläger, sollen ebenfalls leicht sein, um deren Funktionalität zu
erhöhen. Zusätzliche Anforderungen sind beispielsweise, je nach Anwendung, eine verbesserte
Ermüdungsfestigkeit und Schadenstoleranz, Crashfestigkeit, sowie Temperatur- und Korro-
sionsbeständigkeit. Faserverbundwerkstoffe liegen im Schnittpunkt all dieser Anforderungen,
da sie vergleichbare Steifigkeits- und Festigkeitsniveaus bei viel geringerem Gewicht im Ver-
gleich zu Metallen anbieten und aufgrund ihrer Vielseitigkeit ein hohes Optimierungs- und
Entwurfspotenzial aufweisen. Eine besondere Unterkategorie der Faser-Kunststoff-Verbunde
sind Geflechte, bei denen kontinuierliche Faserbündel um eine Vorform geflochten werden. Das
automatisierte Herstellungsverfahren für Geflechte ermöglicht den gleichzeitigen Aufbau von
Material und Struktur und damit eine hohe Produktionsrate bei minimalem Materialabfall.

Die mehrstufigen Materialprozesse und die intrinsische Heterogenität sind die Hauptursachen
für die Variabilität, welche bei der mechanischen Charakterisierung und der Verwendung von
Verbundwerkstoff-Endprodukten vorliegt. Während des Entwurfsprozesses werden konserva-
tive Sicherheitsfaktoren angewandt, welche Unsicherheiten berücksichtigen, obwohl stochastis-
che Modellierungsansätze zu rationaleren Schätzungen der Tragfähigkeit und Zuverlässigkeit
führen. Solche Ansätze erfordern eine statistische Modellierung der Zufallsparameter, welche
in der Regel unter hohen Kosten experimentell bestimmt werden müssen. Es wird ein ro-
bustes, virtuelles Framework zur Quantifizierung von Unsicherheiten dargestellt, welches in der
Lage ist, materielle und geometrische Unsicherheiten unterschiedlicher Art zu berücksichtigen
und die Antwortvariabilität von geflochtenen Verbundwerkstoffen im Hinblick auf die effek-
tiven Eigenschaften statistisch zu bewerten. Für die zuverlässige Vorhersage von Steifigkeit
und Festigkeit werden informationsübertragende Multiskalenalgorithmen eingesetzt. Um den
numerischen Aufwand der wiederholten Multiskalenmodellauswertungen, welche für den
probabilistischen Ansatz erforderlich sind, zu umgehen, sollen intelligente und effiziente Lö-
sungen angewandt werden. Ersatzmodelle werden daher trainiert, um Mannigfaltigkeiten in
verschiedenen Maßstäben abzubilden und schließlich die Finite-Elemente-Modelle zu ersetzen.
Der Einsatz von maschinellem Lernen ist zwar für die Quantifizierung von Unsicherheiten,
die Optimierung und die Zuverlässigkeitsbewertung von textilen Materialien vernünftig, aber
für Versagensreaktionen mit komplexen Anwortflächen nicht trivial. Neuartige Techniken
basierend auf Daten mit variabler Genauigkeit und hybriden Ersatzmodellen werden ebenfalls
berücksichtigt.

Die Zufallsparameter werden anhand ihrer Bedeutung für die entsprechende Antwort mittels
varianzbasierter globaler Sensitivitätsanalyseverfahren klassifiziert. Die Quantifizierung der
Zufallsparameter in Bezug auf Mittelwert und Varianz kann durch inverse Ansätze auf der
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Grundlage der Bayes’schen Inferenz erreicht werden. Alle stochastischen und maschinellen
Lernmethoden, die in dem dargestellten Framework angewendet werden, sind nicht-intrusiv
und datengesteuert, um eine direkte Erweiterung für weitere Lastfälle und unterschiedliche
Materialien zu ermöglichen. Darüber hinaus wird die experimentelle Validierung der verwen-
deten Multiskalenmodelle vorgestellt und eine Anwendung der stochastischen Rekonstruktion
zufälliger Textilgarnverformungen auf der Grundlage von Computertomographiedaten demon-
striert.
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“Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.”
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Chapter 1

General Introduction

1.1 Introduction and motivation

The current market circumstances are driving the main engineering focus towards cost and
process optimization, while concurrently the requirement for lightweight structures with high
reliability remains a target. Reducing weight is advantageous in multiple ways, such as fuel
efficiency and carbon dioxide emission minimization for aerospace and automotive industries,
but also the possibility for larger structures for the wind turbine industry. Additionally, require-
ments like temperature, fire and corrosion resistance, energy absorption and damage tolerance
apply to numerous high-performance structures.

It is clearly not elementary to capture all these aspects from a material point of view. Fiber-
reinforced composite materials, however, have the biggest prospect to achieve the above and
have, thus, been studied and evolved widely over the last 30-40 years. The combination of
highly anisotropic fibers carrying most of the load, with a ductile matrix made of polymeric
materials preserving the fiber architecture and protecting the fibers from environmental effects,
creates a versatile orthotropic material with high optimization potential. As a result, composite
parts are continuously substituting metal parts within industrial applications, since they provide
higher stiffness-to-weight and strength-to-weight ratios.

Braided composites belong to the category of textiles or 3D composites and combine structural
stability, low cost, as well as attractive damage tolerance and energy absorption abilities. Braid-
ing is defined as a composite material preform manufacturing technique, where a braiding
machine deposits continuous, interwined fiber bundles to create desired reinforcing braid ar-
chitectures before or during the impregnation of the fibers. The mixture of an automated and
reproducible process, along with an excellent rate of material deposition for mass-production,
has created a plethora of applications in different industrial sectors, such as aeronautics, auto-
motive, civil engineering, medicine and athletics. Relevant examples of braided applications are
shown in Fig.1.1.

A convoluted topic for composite design, however, is the presence of uncertainties associated
with material heterogeneity and the production processes they encounter. The influence of
those uncertainties on the characterization and mechanical response of composites cannot be
addressed rigorously via traditional deterministic approaches. In fact, it is rather inefficient
to rely on conservative safety factors provided by design codes for a material with such high
utilization and exploitation potential. Probabilistic modeling approaches are more appropriate
for rational estimations of structural safety and reliability. The main obstacle preventing the
global approval of such methods is the need for quantification of all the uncertain parameters
involved. The latter would require extensive experimental campaigns and online monitoring of
the manufacturing for a direct statistical modeling based on measurements. A practical solution
would be the development of virtual uncertainty quantification frameworks, able to integrate
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FIGURE 1.1: Sectors of applications for braided composite materials.

the stochastic variability of the material properties and design parameters while statistically
assessing the mechanical response.

A further challenge, however, is to develop probabilistic frameworks for complex structures
and materials that demand a lot of computational resources for high-fidelity modeling. Braided
composites belong to the latter category due to their complicated architecture which can be
reliably tacked solely with multiscale modeling. Taking into account the already elevated cost of
stochastic analyses due to repeated random simulations, it is evident that smart techniques able
to reduce the numerical effort are necessary. Machine learning models consist a valuable tool
in this direction, since they can be used as surrogates substituting the demanding numerical
simulations in the probabilistic routines, when they are sufficiently trained. A small amount of
data required for training is the total numerical cost in this case. This synergy between high-
fidelity multiscale modeling, probabilistic methods and machine learning shall be further studied
and exploited to efficiently quantify the uncertainties and their effect in braided composite
materials and textiles in general.

1.2 State of the art

This section presents a literature review on the modeling of textile composites from the per-
spective of simulation techniques and uncertainty evaluation, with a special focus on braided
composites. The chapter is divided into two parts: first an overview of multiscale methods, man-
ufacturing processes, and mechanical properties prediction, and then applications of uncertainty
quantification and machine learning methods.

1.2.1 Textile and braided composites

Modeling of textile composites

Textile or 3D composites have been available and operational for several decades already but
still remain one of the most active engineering research topics. Analyzing such materials sets
numerical challenges, as detailed models are required in order to capture the complexity of their
architecture. Unlike typical composite laminates, the fibers are first assembled to yarns (or tows)
and these are subsequently interlaced into specific patterns. Having yarns interlocked in multiple
directions offers balance between in-plane and out-of-plane properties. A comprehensive review
on textiles including applications can be found in (Mouritz et al., 1999). Reviews focusing on the
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(A) Woven (B) Braided (C) Non-crimp fabric

FIGURE 1.2: Main types of textile architectures: woven (A), braided (B) and non-
crimp fabric (C).

finite element (FE) modeling challenges are presented in (Lomov et al., 2011) and (Tan, Tong,
and Steven, 1997).

The interlacing pattern of the yarns defines the textile type. There are three basic classes: woven,
braided and non-crimp fabrics, as illustrated in Fig.1.2. Woven textiles have two orthogonal
yarn families forming a grid. The plain weave is the simplest pattern (Fig.1.2A) as each yarn
undulates when meeting another yarn in the vertical direction. More complex patterns, e.g.
undulation every two yarns, also exist. Information on the characterization and modeling
techniques of woven composites is provided in (Dixit and Mali, 2013). The yarns in braided
textiles are interweaved diagonally with a certain angle. Fig.1.2B illustrates a biaxial braiding
pattern. In case a family of equally spaced yarns exists aligned to the axial direction, the textile
is called a triaxial braid. An informative overview on braided modeling can be found in (Fang
and Liang, 2011). Non-crimp fabrics are essentially layers of straight yarns stitched with a
lightweight thread, as in Fig.1.2C. The term is derived from the lack of crimp, namely the
undulation of the yarns present at the previous types. The reader is referred to (Lomov, 2011)
for a detailed review. Another type of relatively limited use is knitted fabrics, in which the yarns
are interlaced with each neighboring yarn in a loop (Hasani et al., 2017).

Regarding performance and applicability of the three aforementioned main textile types, the
differences lie mostly on the orthogonal interlacement of woven fabrics, as opposed to braided
where there is a range of possible angles and, thus, ability to tailor the structural demand
according to the load state. Moreover, the extra set of axial yarns of triaxial braids offers more
toughness and fatigue strength. Concerning non-crimp fabrics, despite the low-cost production
methods in comparison with the other types and the improved strength and stiffness due to
the lack of crimp, the reduced drapability of such materials due to the stitching hinders their
industrial application.

The mechanical behavior of heterogeneous materials is driven by the properties of their individ-
ual components, along with lower-scale geometrical parameters defining their size and spatial
distribution. The direct integration of detailed textile architectures to macroscale structural mod-
els is impractical, even with the current computational resources. Instead, multiscale modeling
provides effective properties for higher-scale simulations, by homogenizing the components of
the microstructure via lower-scale models (Kanouté et al., 2009).

A typical multiscale scheme for textile composites is illustrated in Fig.1.3. Based on the concepts
of periodicity and statistical ergodicity, the effective mechanical properties of an impregnated
yarn can be determined by a microscopic model (order of µm) via fiber and matrix properties.
The acquired information passes to the mesoscale (order of mm), where the inner textile geometry
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FIGURE 1.3: Typical multiscale information-passing scheme for textile composites:
homogenization at microscale level extracting the yarn properties, second homog-
enization at mesoscale level extracting the textile properties and, finally, analysis

of a homogeneous structural part at the macroscale.

is integrated and a second homogenization is performed. Having acquired the textile properties,
the macroscale model of interest can be analyzed. In case of a multilayered structure, the classical
lamination theory (CLT) can be used assuming the mesoscale model accounts for a single textile
layer or, alternatively, a layered mesoscale model and a solid homogeneous macroscopic model
can be combined. A handbook on micromechanics and transitioning between scales is given in
(Zohdi and Wriggers, 2005).

Multiscale methods for composite materials are divided in two categories: a) hierarchical multi-
scale methods predicting mechanical properties, where information passes from lower to higher
scales, monotonic loading is assumed and models are analyzed sequentially, and b) multiscale
and multilevel or FE2 methods, where information goes both ways and models in different
scales are analyzed simultaneously. The latter category allows non monotonic loading as the
lower-scale models are updated according to the stress state of the macroscopic model. Such
methods have been extensively applied to typical fiber composites, e.g. (Feyel, 1999; Feyel and
Chaboche, 2000; Nezamabadi et al., 2015), but are rather expensive computationally. Regarding
textiles, there is a limited number of FE2 studies considering an additional homogenization
stage is necessary (Rouf, Liu, and Yu, 2018; Tikarrouchine et al., 2021). Attempts to improve
efficiency have been made either by creating databases for the microscopic problem offline and
interpolating through the data during the macroscale analysis (Xu et al., 2020; Huang et al.,
2021b), or by substituting FE with fast Fourier transforms at the lower scale (Spahn et al., 2014).
A recent study combined the two concurring simulations in a single step (Tan, Raju, and Lee,
2020).

Regarding the hierarchical multiscale category, most studies employ FE-based computational
homogenization via representative volume elements (RVEs) as in (Ernst et al., 2010) for non-
crimp fabrics, in (Patel, Waas, and Yen, 2018) and (Madke and Chowdhury, 2019) for woven,
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and in (Aranda-Iglesias et al., 2021) for knitted textiles. This is because the design of textile
geometries and the material behavior is easier to be modeled with FE programs. An informative
overview of such procedures is given in (Lomov et al., 2007).

Nevertheless, the computational cost and the periodic mesh of the complex geometry remain a
challenge. The development of textile modelers like TexGen (Lin, Brown, and Long, 2011; Lin
et al., 2012) and WiseTex (Verpoest and Lomov, 2005) offered automated meshes compliant to
standard FE software. An extension of TexGen for dimensionally reducible structures, enabling
a similar concept like substructures and superelements called mechanics of structure genome,
can be found in (Liu et al., 2017). For repeated processes, the voxel mesh approach gained
recognition due to its versatility (Kim and Swan, 2003). However, it requires further processing
when applied to damage predictions due to stress concentrations at the sharp material interfaces,
such as smoothing the interface nodes as in (Fang et al., 2016).

A further alternative regarding the irregular mesh at the interface is the extended finite element
method (XFEM), as used in (Kästner, Haasemann, and Ulbricht, 2011). In (Li, Wen, and Aliabadi,
2011), a meshfree method is proposed for the stiffness prediction of woven composites, while
Voronoi tessellation has also been employed towards more accurate geometry descriptions
(El Said et al., 2016; El Said et al., 2018). Moreover, different approaches have been proposed
towards the computational cost reduction, as in (Nasution et al., 2014) where the asymptotic
expansion homogenization is employed, while in (Wang et al., 2018) damage predictions based
on fast Fourier transforms show fair approximations compared to FE for a braided composite.
An overview of analytical models for stiffness prediction is presented in (Hallal, Younes, and
Fardoun, 2013).

Manufacturing simulation, characterization and material modeling of braided composites

The braided textile architecture described in the previous section is a result of a manufacturing
process called braiding. It is a semi or fully automated procedure which allows versatility in
terms of manufacturable shapes and also minimizes material waste, since material and structure
are produced concurrently. Concerning machinery, the circular or maypole braiding machine
is currently the most commonly used among other types. Its primary concept is based on the
motion of a mandrel through a plane formed by radially placed carriers, as illustrated in Fig.1.4
where an isometric view is shown on the left side and a top view focusing on the carrier plane is
shown on the right. The carriers support the yarn bobbins, or spools, and move within the horn
gears on a sinuous path, half of them clockwise and half counterclockwise. The yarns contact
the mandrel at the fell front at specific locations in order to form a helical pattern. The distance
between the fell front and the spool plane is the convergence zone, in which the guide rings are
also placed to ensure the accurate placement of yarns as the mandrel moves in the direction of
the take-up speed. Detailed information on the braiding production process are provided in
(Kyosev, 2014; Rana and Fangueiro, 2015), where also other types of braiding procedures are
described, such as the Cartesian braiding where the carrier plane is an orthogonal grid instead
of circular.

The machine parameters govern the mechanical behavior of the braided structure. For instance,
the take-up speed controls the braid angle which is very sensitive for the overall stiffness
and strength. Therefore, simulating the manufacturing process has received attention. An
overview of simulation approaches is included in (Carey, 2016). Many studies are based on
the classical geometric approach first introduced by (Ko, 1987), which established analytical
formulations linking process parameters (e.g. take-up speed, mandrel radius etc.) with the
braid angle. A similar approach with a visualization tool for 3D preforms is developed in
(Potluri et al., 2003). However, those predictions are only accurate for simple circular preforms.



6 Chapter 1. General Introduction

yarns
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FIGURE 1.4: Operation and terms for a maypole braiding machine: isometric view
(left) and top view with details on the carrier plane (right).

An attempt to predict the braid angles for complex, non-axisymmetric preforms was made in
(Kessels and Akkerman, 2002), by improving the aforementioned classical theory. A coupling
of this formulation with analytical homogenization schemes is provided in (Bigaud, Dréano,
and Hamelin, 2005). Alternative analytical approaches based on differential geometry can be
found in (Guyader, Gabor, and Hamelin, 2013) and (Na et al., 2014). More recent endeavors
include a method correlating process and structure parameters via an oblique coordinate system
and curve fitting (Mei et al., 2020) and a method based on the mechanical equilibrium of yarns
(Imbert, Finckh, and Gresser, 2021).

Regarding more complex approaches, an inverse kinematics-based formulation was established
by (Ravenhorst and Akkerman, 2014), generating the take-up speed for a given braid angle
while allowing fast calculations and preforms of variable shape and size. The effect of yarn
interactions was later incorporated in (Ravenhorst and Akkerman, 2016). In (Ma, Dong, and
Wang, 2016), a strategy based on matrix theory and symbolic operation simulating the carrier
movement is proposed. A meshless method simulating the relative movement of multilayer
horn gears in order to predict the yarn paths is presented in (Kim, 2017). FE simulations of the
complete braiding process are also found in the literature for example, in (Hans et al., 2015;
Swery et al., 2017) where also structural modeling is integrated, and in (Wang et al., 2021) for
preforms with irregular shapes. However, the computational cost of such simulations remains
quite high.

The mechanical characterization of braided composites, whether experimentally or via virtual
testing frameworks, is an active research topic with a broad spectrum. Extensive experimental
campaigns under multi-axial stress states have been reported in (Cichosz et al., 2016) for biaxial,
and in (Wehrkamp-Richter, Hinterhölzl, and Pinho, 2017) for triaxial braided composites and
for different braiding angles, including both monotonic and loading-unloading conditions. The
free-edge effect (i.e. stress concentration at the free edges of the interface between two plies)



1.2. State of the art 7

and the strain rate influence for tensile loading have been investigated in (Cai et al., 2021) and
(Sun, Liu, and Gu, 2005), respectively. Optical microscopy (Roy, Potluri, and Soutis, 2017) and
computed tomography (CT) scans (Ge et al., 2021) have been employed for the identification of
tensile failure modes and pore defects. Moreover, compression tests have also been performed
e.g. in (Ching Quek et al., 2004; Li et al., 2011; Li et al., 2014) where complex failure modes,
including instability phenomena at the yarns, were observed.

Regarding modeling-based characterization, the elastic behavior has been thoroughly investi-
gated via the FE method, e.g. in (Zeng, Wu, and Guo, 2004; Tian et al., 2016; Ni and Wei, 2016),
while in (Wehrkamp-Richter, De Carvalho, and Pinho, 2018a) a framework was developed to
account for the compaction of the yarns and, thus, RVEs with higher volume fractions were
simulated. Furthermore, in order to reduce the computational cost, many analytical approaches
have emerged over the years. Classical micromechanical formulas for the elastic prediction of
unidirectional (UD) composites were tailored around braided composites in (Hong et al., 2019;
Ye et al., 2019). In (Huang, 2000; Zhang, Binienda, and Kohlman, 2014), the bridging model
was used to correlate the volume averaged stress increments in the fiber and matrix of braided
RVEs, while in (Byun, 2000; Shokrieh and Mazloomi, 2012; Xu and Qian, 2016) the multi-unit cell
method was employed, which disassembles the RVE to several unit cells with approximately UD
properties. An alternative approach called digital element method using 2-node rod elements
for the yarns can be found in (Sun and Sun, 2004).

Predicting the tensile strength response is also mostly based on the FE method, with various
approaches employing continuum damage mechanics (CDM) and the Hashin criterion coupled
with an elastic damage model for the yarn modeling, e.g. in (Guo-dong, Jun, and Bao-lai, 2009;
Ge et al., 2018; Zhu, Li, and Jiang, 2020). Interlaminar progressive failure for the debonding of
yarn-matrix interface is also regarded in (Zhang et al., 2015). Alternative approaches include
a physically-based smeared-crack model for the yarns and the Drucker-Prager criterion for
the matrix in (Wehrkamp-Richter, De Carvalho, and Pinho, 2018b), a pressure dependent
elastoplastic matrix damage model with a paraboloidal yield criterion in (He et al., 2019) and
an instantaneous stiffness degradation approach with Stassi and Hashin criteria for matrix and
yarns, respectively, in (Nobeen et al., 2016). Besides uniaxial loading conditions, the biaxial
tension and compression response was studied in (Tian et al., 2018). Concerning compression,
an analog micromechanical model accounting for yarn kinking under axial loading has been
developed in (McGregor et al., 2007; McGregor et al., 2008), while a combination of Hashin
and Hou criteria coupled with a Murakami damage model for the transverse properties can be
found in (Zhao et al., 2019). Studies accounting for porosity effects and elevated temperatures
can be found in (Gao et al., 2020) and (He et al., 2020), respectively.

A recent trend towards cost-effectiveness is to avoid using FE simulations for characterization.
An analytical model based on the subcell concept is proposed in (Dang et al., 2020), able
to predict the linear and nonlinear behavior of triaxial braided materials under tension and
compression for all uniaxial loading conditions. In (Wang et al., 2020), a concurrent multiscale
method is proposed based on fast Fourier transforms for both scales under compressive loading.
Finally in (He et al., 2021), a multilevel multiscale method with a reduced order model based on
clustering is proposed for longitudinal tensile and compressive loading. Results of the above
studies are promising in terms of both accuracy and efficiency.

Besides manufacturing assessment, material characterization and modeling, there are several
studies related to the structural design of braided composites. In (Sturm and Heieck, 2015),
design principles are developed for braided frames with enhanced energy absorption capacity
under bending loads. A study on buckling and post-buckling behavior of stiffened braided
panels is presented in (Kosztowny and Waas, 2021), while thermal induced buckling is studied
in (Li and Shen, 2009; Li, 2014). Moreover, the considerable delamination resistance has driven
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studies towards fatigue assessment, e.g. in (Tate and Kelkar, 2008; Montesano et al., 2013; Zhang,
Curiel-Sosa, and Bui, 2018). Optimal design has also received attention, as in (Ghiasi et al., 2010)
where a bicycle part was optimized under manufacturing constraints, in (Schatz, Hermanutz,
and Baier, 2017) for a braided aircraft propeller, and in (Wu and Viquerat, 2017) where the
composite design of hybrid bistable tubes was optimized based on their natural frequencies.

As an overall conclusion, the FE method is dominating regarding the homogenization processes
required for the stiffness and strength properties calculation of braided and, in general, textile
composite materials. The numerical cost, however, generates a tendency to bypass the FE models
when it comes to repeated procedures, as for example the concurrent simulations of FE2 schemes.
Manufacturing-induced effects on the geometry of braided structures are non-negligible and
many studies studied the production process simulation from several aspects. Moreover, besides
several alternatives reported in this section, the voxel-based mesh is the sole feasible option for
automated remeshing of complex and repetitively varying geometries.

1.2.2 Uncertainty quantification and machine learning for composite materials

Probabilistic modeling

The heterogeneous nature and the uncertainties related to the manufacturing processes of fiber
composite materials drove the research community towards probabilistic assessments more
than 40 years ago (Phoenix, 1978; Fukuda and Chou, 1982). Stochastic approaches allow the
integration and propagation of uncertainties to the mechanical response and, thus, enable the
justification and quantification of the observed experimental scatters. A noteworthy attempt to
report those scatters is made in (Sriramula and Chryssanthopoulos, 2009), where probability
models are fitted to ply-level mechanical properties based on experimental data and goodness-
of-fit tests, e.g. Kolmogorov-Smirnov. It should be noted that the majority of the studies reported
herein are related to typical composite laminates. The probabilistic assessment of textiles is
limited and is reported in the last paragraph of this section.

Uncertainty assessment with full probabilistic detail including higher order statistical moments
relies mostly on Monte Carlo simulations and, hence, repeated model evaluations. This is
affordable for predicting elastic properties as in (Gusev, Hine, and Ward, 2000) and (Melro,
Camanho, and Pinho, 2008), where also an algorithm for generating random microstructures
with high volume fraction is proposed. In (Stefanou, Savvas, and Papadrakakis, 2015), the
synergy of XFEM with brute-force Monte Carlo is demonstrated for the effective properties of
composites with randomly-shaped inclusions.

Stochastic perturbation methods based on classical Taylor expansions have also been applied
for the elastic prediction in (Kamiński and Kleiber, 2000; Sakata et al., 2008), as they require less
model realizations. Variance-reduction methods like importance sampling were used in (Zhang,
Shields, and TerMaath, 2020), while the spectral stochastic finite element method (SSFEM) was
applied in (Chen and Guedes Soares, 2008) and in (Sasikumar, Suresh, and Gupta, 2015) for
laminated composites. In SSFEM the spatial uncertainties are modeled via random fields and
the system response is projected in a polynomial chaos basis. A similar approach was applied in
(Clément, Soize, and Yvonnet, 2013) together with principal component analysis for reducing
the stochastic dimension, accounting also for nonlinear behavior. Non-probabilistic treatment of
uncertainties as in (Naskar, Mukhopadhyay, and Sriramula, 2019), is more limited within the
literature.

Besides efficiency in terms of minimum model evaluations, numerous studies have dealt with
the accurate description of spatial uncertainty via random field modeling. Statistical fitting of
spatial stiffness and strength distributions to 2D random fields was performed in (Sasikumar
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et al., 2015), based on repeated tests of flat carbon-fiber laminates. The random fiber distribution
obtained from scans or microscopy is usually captured by the moving window technique as
in (Stefanou, Savvas, and Papadrakakis, 2017; Savvas, Papaioannou, and Stefanou, 2020) for
particle-reinforced composites, in (Buryachenko et al., 2003; Koley, Mohite, and Upadhyay, 2019)
for long fiber-reinforced composites, and in (Rauter, 2021) for short fiber-reinforced composites.

The accurate recreation of uncertainties for fiber composites is not limited to the random
fiber distribution based on cross-sectional images. A recent contribution on the statistical
representation of fiber waviness with applications on progressive failure under compression
can be found in (Huang et al., 2021a). In (Matveev et al., 2018), the defects occurring due to
automated fiber placement (AFP) processes are statistically characterized and their effect to the
permeability of the dry preform during resin moulding is studied. Moreover, the recreation of
stochastic imperfections on structural level via random fields based on a Fourier methodology
and the discrete Karhunen-Loève transform, can be found in (Kriegesmann et al., 2011) for
composite cylinders and in (Kriegesmann, Jansen, and Rolfes, 2012) for composite stiffened
panels.

The studies already reported propagate the measured uncertainty to the response, since the
statistical evaluation of geometrical uncertainties (e.g. volume fraction, imperfections, defects)
is feasible through image processing techniques or in-situ inspections. The same does not stand
for the inherent uncertainty of composite material properties, such as fiber, matrix and interface
properties, as repeated test campaigns are required for the complete statistical characterization.
Therefore, inverse approaches, similar to structural health monitoring (SHM) procedures, have
been developed towards the identification of material scatters from response data. The random-
ness of elastic ply properties has been identified from measurements of the displacement field in
(Gogu et al., 2013) and in (He, Liu, and Makeev, 2018) via Bayesian updating and optimization,
respectively. Eigenfrequencies and modal analysis were used in (Sepahvand and Marburg, 2014)
also for the elastic properties identification, while some strength properties based on CLT were
included in (Pepper, Montomoli, and Sharma, 2021), where an optimization scheme tailored
around Kolmogorov-Smirnov tests was proposed.

Identification of random microscopic parameters is possible by coupling the inverse algorithm
with a multiscale approach, as in (Sakata and Ashida, 2010) for elastic constituent properties
of particle-reinforced composites, and in (Cappelli et al., 2019) for long-fiber composites. In
(Wu, Adam, and Noels, 2018), a Mori-Tanaka elastic model was employed. Regarding strength
properties a nonlinear solver and an optimization scheme for the solution of the inverse problem
was proposed in (Hu, Fish, and McAuliffe, 2017), while a Bayesian framework based on FE
homogenization was presented in (Mustafa, Suleman, and Crawford, 2018). However, the added
numerical cost for nonlinear predictions is an issue which has only been moderately addressed,
considering also that stochastic inverse problems require more model evaluations than forward
uncertainty cases.

Structural reliability is the probability of satisfying a given performance criterion and is eval-
uated by defining a limit-state function that distinguishes safety and failure (Guedes Soares,
1997). Regarding composite structures, this topic has been addressed on a macro-mechanical
level for laminates via the Monte Carlo method in (Jeong and Shenoi, 2000) and (Frangopol
and Recek, 2003), and via the stochastic perturbation method in (Onkar, Upadhyay, and Yadav,
2007). The influence of lower-scale parameters on reliability is studied in (Shaw et al., 2010) with
Monte Carlo, first and second-order reliability method (FORM and SORM) based on analytical
criteria, while in (Omairey, Dunning, and Sriramula, 2018) FE homogenization is performed
coupled with Monte Carlo simulations.
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As mentioned in the beginning of this section, the stochastic assessment for textile composite
materials is rather limited, mainly due to the dual homogenization cost that accompanies
them. An attractive research topic is the efficient stochastic characterization of yarn distortion
at the cross-section level and out-of-plane waviness from the yarn nominal path based on
tomography data, as in (Guo-dong et al., 2009) where a methodology for distorted yarns is
proposed based on differential geometry. Markov chains are enabled in (Vanaerschot et al., 2013)
and (Vanaerschot et al., 2017) for recreating the random deviations from the nominal yarn path
in the cross-section of a woven composite. An inverse approach towards the prediction of elastic
properties via modal analysis data for braided composites can be found in (Jiang et al., 2015).
The stochastic perturbation method was used in (Zhou et al., 2016) for the random homogenized
elastic properties of woven composites, and in (Zhou and Gosling, 2018) for the reliability
analysis based on first-ply failure under tension. A framework for the multiscale uncertainty
quantification of woven textiles was presented in (Bostanabad et al., 2018), in which Kriging
modeling and nested random fields were used. However, even in the presence of metamodeling
techniques only a few simulations for the elastic properties were reported. A recent study in
(Tao et al., 2020a; Tao et al., 2020b) proposed vine copulas for the stochastic characterization of
woven internal geometry and predicted scatters for the effective stiffness and strength properties.
Once more, only a few Monte Carlo runs were provided. Consequently, the response samples
are not adequate for a full statistical characterization or further quantification usages. Overall,
there is a noticeable gap regarding textile uncertainty quantification and methods allowing fast
evaluations that can be further used for reliability, optimization, sensitivity etc., especially for
failure responses.

Machine learning applications

The employment of machine learning algorithms to fiber composite modeling is relatively
recent but advances rapidly. There are two main categories of studies around that subject:
uncertainty-related studies and deterministic studies. Studies of the first category train machine
learning models in order to substitute expensive simulations for uncertainty quantification
purposes. Several applications of artificial neural networks (ANN) can be found, as in (Dey
et al., 2016) for stochastic modal analysis of composite plates, in (Zhou et al., 2021) for stochastic
strength prediction based on the the microscopic structure, and in (Olivier, Shields, and Graham-
Brady, 2021) for predicting the stochastic effective tensile stress-strain response including
plastic properties for the matrix. Applications of non-intrusive polynomial chaos expansions
(PCE) can be found in (Thapa, Mulani, and Walters, 2019) for stochastic buckling analysis of
laminates and in (Thapa et al., 2021) for stochastic progressive failure analysis of laminates. A
hybrid ANN-PCE surrogate model was recently developed for stochastic multiscale analysis of
composites with multiple spherical inclusions in (Henkes, Caylak, and Mahnken, 2021). Further
approaches include a probabilistic multiscale analysis with random voids aided by radial basis
functions in (Li et al., 2018), probabilistic modal and buckling analyses of sandwich plates with
spline-based adaptive regression in (Dey et al., 2019), and an application of reliability-based
design optimization of composite stiffened panels with various surrogate models in (Díaz, Cid
Montoya, and Hernández, 2016). An overview on surrogate assisted uncertainty quantification
of laminates, including performance comparisons, can be found in (Dey, Mukhopadhyay, and
Adhikari, 2017).

Regarding the studies of the second category, machine learning techniques are used to advance
the deterministic response prediction in terms of efficiency. Studies able to emulate the complete
effective stress-strain response, including the post-failure regime, can be found in (Yang et al.,
2020) combining PCA and ANN, and in (Yan et al., 2020) combining regression and classification
ANN models. An overview on how ANN can assist the composite constitutive modeling is
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provided in (Liu et al., 2021). In (Qi et al., 2019), a decision tree regression model was used to
emulate the elastic behavior of a cross-ply laminate. Material and geometric nonlinearities were
taken into account in (Liu and Wu, 2019) for multiscale modeling with deep ANN. Moreover, a
novel ANN-based failure criterion for yarns able to be integrated in progressive failure modeling
of textiles was developed in (Liu et al., 2019), while adaptive sampling and Kriging were used
for the first-ply failure envelope prediction in (Tian and Yu, 2021). Applications of classification
for cracking detection and clustering for automated inspection of yarn deformations can be
found in (Mardanshahi et al., 2020) and (Mendoza et al., 2019), respectively. Finally, non-classical
effects regarding composite modeling with shell elements were evaluated combining the Carrera
unified formulation and ANN in (Petrolo and Carrera, 2020) and (Petrolo and Carrera, 2021).

Judging from the literature review presented in this chapter, there is an evident gap regarding
the probabilistic assessment of textile composites in terms of stiffness and strength prediction
but also at a structural part level, mainly due to the high numerical cost, especially concerning
the failure response. It is only recently that machine learning methods and metamodels began
to be integrated in order to boost the efficiency of multiscale models and approximate important
response surfaces that can be used in costly procedures, like optimization, reliability and inverse
approaches. However, there is still a disanalogy between typical fiber composites and textile
composites. Taking into account the cost of multiscale simulations for a textile composite
including progressive material failure, even acquiring a sufficiently large amount data for
training a metamodel is challenging and, consequently, yet not fully addressed. Therefore, it is
currently a very active research topic with many applications yet to be covered.

1.3 Objectives and outline

The objective of this work is to develop a framework of methods able to evaluate material and
geometric uncertainties in braided composites and quantify their effects on their homogenized
stiffness and strength. As shown in Fig.1.5, an information-passing multiscale scheme is initially
established able to homogenize the elastic and ultimate strength properties of the yarns from the
constituent properties at the microscopic level and, consecutively, perform homogenization of
stiffness and ultimate strength for a triaxially braided structure at the mesoscale. A progressive
failure algorithm is integrated for the strength homogenization. The framework is parametrized
to account for uncertainties related to material properties, e.g. the fiber and matrix properties
at the microscale and the fibel volume fraction of the yarns, but also production-induced
uncertainties, such as the braid angle at the mesoscale which controls the yarn volume content of
the braided structure, the out-of-plane waviness of the yarns and the distortions of the yarn shape
at a cross-sectional level. Regarding uncertainty quantification, a global sensitivity analysis
technique is applied for the classification of the random parameters in terms of importance
to the response and exploration of possible dependencies along the different length scales.
Furthermore, an inverse uncertainty quantification method based on Bayesian updating for the
mean and variance of random parameters is also integrated. In order to make the computational
cost of such procedures affordable, metamodels are trained to map the random input with the
elastic and strength macroscale response and are used as surrogates instead of the costly FE
algorithms, during the demanding in terms of model evaluations uncertainty quantification
processes. The framework is non-intrusive so that the extension to different setups, load cases
and materials is straightforward.

This thesis is divided into seven chapters in total. In the current introductory section, follow-
ing the motivation, literature review and objective sections, an overview of the basic theory
around probabilities, random variables and random fields is presented in order to assist the
comprehension of the core chapters/publications. Finally, a section regarding basic machine
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FIGURE 1.5: Overview of the developed framework.

learning terms and processes is documented, covering the fundamentals of training and testing
a machine learning algorithm by employing a simple example of polynomial fitting running
throughout the section.

Chapter 2 introduces the proposed uncertainty quantification framework for the linear elasticity
case, predicting scatters for all parameters of the effective elastic tensor of a triaxially braided
material, based on micro and mesoscopic uncertainties. The FE-based homogenization method
integrated into the multiscale algorithm is described in detail together with the global sensitivity
analysis formulation. Artificial neural networks are used to boost the Monte Carlo procedure of
the sensitivity analysis, allowing results for all elastic parameters and providing a clear view on
the most important parameters of each load case.

In Chapter 3, the parametrization of random distortions of imperfectly shaped yarns and
random deviations of the nominal yarn paths in the interlaminar direction are presented through
novel mathematical models. More specifically, Fourier-based random fields are employed for
the yarn section representation, able to be calibrated from measurements of the deviations
from hypothetically perfect yarn shapes. Regarding the stochastic waviness, a random field
formulation based on the Kriging model is presented which considers variance and correlation
information in a straightforward manner. Furthermore, the expansion of the framework for the
ultimate strength prediction under tension via a progressive failure algorithm is presented, so
scatters for both the effective stiffness and strength scatter are presented. Results for both kinds
of random imperfections are shown for a braided structure and a discussion concerning the
metamodeling potential of those uncertainties is included.

The previously unaddressed problem of mapping randomly generated input with the ultimate
strength of a textile composite via machine learning is studied in Chapter 4. The observed
complex response surface and the numerical cost of the nonlinear multiscale scheme were dealt
with a multi-fidelity strategy and a novel hybrid metamodeling technique. The proposed model
integrates artificial neural networks into the kernel of the hierarchical Kriging formulation,
providing improved efficiency compared to the original hierarchical Kriging model. The trained
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model is used for a global sensitivity analysis of the strength of the braided structure, revealing
strong interaction effects between the random input parameters. Several discussions are also
included for some numerical aspects of the adopted failure prediction algorithm.

Chapter 5 expands the uncertainty quantification framework further with an inverse approach,
able to indirectly characterize uncertainties of microscopic parameters by employing datasets
from standard structural tests at higher scales. The approach is able to quantitatively characterize
the mean and variance of the governing random parameters, while due to its indirect nature
is able to identify scatters of low-scale parameters for which physical testing is challenging.
The methodology is based on the combination of Bayesian inference and polynomial chaos
metamodeling, which provides sensitivity indices immediately after training. The framework
is applied on a UD carbon fiber composite plate, since a textile specimen cannot be used for
investigating the matrix properties, as its response is dominated by the interlacing yarns and,
therefore, fibers. As a result, a UD specimen must be additionally used for determining the
properties of textiles. The experimental campaign utilized herein, includes elastic and failure
data and also measurement errors. Thus, there is a clear distinction between aleatoric and
systematic errors preventing assumptions which might distort the updated scatter results.

Chapter 6 provides experimental validation for the numerical models and methodologies
presented in the previous chapters. The chapter is divided in two subsections. First, the deter-
ministic FE-based braided modeling (middle part of Fig.1.5) is validated against experimental
data from the literature in terms of stiffness and strength accuracy at the mesoscale level. The
validation is performed via a triaxially braided composite material under axial tension. The sec-
ond part of the chapter verifies the feasibility of the methodology proposed in Chapter 3 for the
stochastic characterization and parametrization of the sectional yarn distortion, by processing
CT-scan data of a braided tube specimen. A statistical sample of distorted yarns is collected via
image processing, which is then processed to extract the deviations from nominal shapes. A
discrete Karhunen-Loève transformation is used to generate random input distortions with the
same statistical properties as the data. Finally, the realistic distortion uncertainty is propagated to
the effective elastic response of the braided material via the developed probabilistic framework.

Chapter 7 is the closure of this thesis providing the summary of the content and the main
conclusions, followed by a future outlook for consecutive research suited for academia but also
relevant to industry needs.

1.4 Probability and uncertainty

Uncertainties may affect the behavior of a physical system in an unknown manner, whether
of aleatory or epistemic nature. Aleatory (or statistical) uncertainty refers to the inherent ran-
domness in the system (e.g. random earthquake excitation), while epistemic (or systematic)
uncertainty refers to partial knowledge or negligence of the system’s parameters (e.g. mea-
surement errors). Probability theory is the fundamental tool for modeling and introducing
uncertainties to structural engineering applications. This section briefly covers basic definitions
on probabilities, random variables and random processes or fields, essential for the next chapters
of this thesis. For deeper inquiry, the reader may refer to (Rice, 2007), (Larsen and Marx, 2010)
and (Grigoriu, 2002).
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1.4.1 Probability theory and random variables

Probability definition

The classical definition of probability as presented in the works of Laplace and Bernoulli,
expresses the probability of an event A as the number of successful outcomes N(A) divided by
the total number of possible cases N(Ω). The classical approach served as a predecessor for the
frequentist approach of von Mises (Mises, 1981), in which the probability of an event A is its
relative frequency of occurrence over an indefinite number of trials:

P (A) = lim
n→∞

N(A)

n
(1.1)

The axiomatic approach of Kolmogorov (Kolmogorov, 1950) avoids the assumption of equally
probable events and of random experiments under the same exact conditions. According to
Kolmogorov, the probability P on a set Ω is a function of subsets or eventsAi of Ω to R, satisfying
the following conditions:

P (Ai) ≥ 0 , for Ai ⊂ Ω (1.2)
P (Ω) = 1 (1.3)

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai) , for A1 ∩A2... = ∅ (1.4)

Conditional probability

The conditional probability is a revised probability that considers the known occurrence of
another event of the same space. Let A1 and A2 be events defined on Ω, with P (A2) > 0. The
conditional probability of A1 assuming the occurrence of A2 is given as:

P (A1|A2) =
P (A1 ∩A2)

P (A2)
(1.5)

Bayes’ theorem

Based on conditional probabilities, the Bayes’ theorem introduces a more subjective perspective
by expressing probability as the degree of belief in an event, which is updated in light of new
evidence. In case of two events A1 and A2, the Bayes’ rule relates the conditional probability
P (A1|A2) with P (A1) and P (A2) as follows:

P (A1|A2) =
P (A2|A1)P (A1)

P (A2)
(1.6)

where P (A1) is called the prior or unconditional or marginal probability, P (A1|A2) is the
posterior probability and P (A2) is the evidence.

Random variables

A random variable is a function from the sample space of random experiments Ω to R. A discrete
random variable takes values from a finite or countably infinite space, whereas a continuous
random variable contains an uncountably infinite number of values. The cumulative distribution
function (CDF) of a random variable X is the probability of X being less or equal to a number x:

FX(x) = P (X ≤ x) (1.7)
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The CDF is the integral of the probability density function (PDF) fX(x), which is given by:

FX(x) =

∫ x

−∞
fX(x)dx⇒ fX(x) =

dFX(x)

dx
(1.8)

The moments of a PDF of a random variable help to characterize its shape. The first moment is
the mean value given by:

µ(x) = E[X] =

∫ +∞

−∞
xfX(x)dx (1.9)

The second central moment provides the variance σ2(x) as:

σ2(x) = E[
(
X − µ(x)

)2
] =

∫ +∞

−∞

(
x− µ(x)

)2
fX(x)dx (1.10)

while its square root is the standard deviation. A useful normalized measure of the variance is the
coefficient of variation (COV), which is given by:

COV(x) =
σ(x)

µ(x)
(1.11)

The above definitions cover the case of continuous random variables, while for the discrete case
the integrals are replaced with sums.

Joint distributions

In case of two or more random variables defined on a sample space, their simultaneous behavior
is characterized by the joint CDF and PDF. For two random variables X and Y , the joint CDF is
given by:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) (1.12)

Consequently, the joint PDF is defined as:

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
⇒ FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (uX , uY )duXduY (1.13)

The statistical independence of two random variables X and Y is defined via the joint PDF as:

fX,Y (x, y) = fX(x)fY (y) (1.14)

The level of association is characterized by the covariance and the correlation of X and Y . The
covariance C(x, y) measures the joint variability and is given by:

C(x, y) = E[
(
X − µ(x)

)(
Y − µ(y)

)
] =

∫ y

−∞

∫ x

−∞

(
uX − µ(x)

)(
uY − µ(y)

)
duXduY (1.15)

while the correlation is a normalized measure defined in terms of covariance by the correlation
coefficient ρ(x, y):

ρ(x, y) =
C(x, y)

σ(x)σ(y)
(1.16)
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Two random variables can be positively or negatively correlated, but also uncorrelated if:

ρ(x, y) = 0⇒ C(x, y) = 0⇒ E[X,Y ] = µ(x)µ(y) (1.17)

1.4.2 Random field theory

When modeling spatial or temporal uncertainties, random/stochastic fields (for space) or
processes (for time) are more suitable than random variables.

Random field definition

A random field H(x, ω) is a mapping from a random event ω to a function of random variables
through space x (Grigoriu, 2002). As illustrated in Fig.1.6 for the 1D case, each infinitely small
spatial coordinate xi is associated with a random variable and each random outcome ωi provides
a single realization H(x, ωi) of the random field, which is called sample function.

x1 x2 xn

FIGURE 1.6: Illustration of a 1D random field H(x, ω) within the space interval
[0,10]: every fixed random outcome ω1, ω2, ..., ωn provides a sample function of
the field (realization) along the x space, while the family of values for every fixed

location x1, x2, ..., xn consists a random variable.
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Joint distributions and correlation structure

Considering that a random fieldH(x, ω) is a sequence of random variablesH(x1), H(x2), ...,H(xn)
for any given spatial coordinate x1, x2, ..., xn ∈ x, the joint distribution and the correlation struc-
ture of these random variables are required for the complete characterization of the field. The
joint CDF is the generalization of Eq.1.12, namely:

FH(x1),H(x2),...,H(xn)(x1, x2, ..., xn) = P (H(x1) ≤ x1, H(x2) ≤ x2, ...,H(xn) ≤ xn) (1.18)

and the derivative gives the joint PDF accordingly.

The autocorrelation function expresses the correlation of two random variables H(x1) and H(x2)
along the x space:

RH(x1, x2) = E[H(x1), H(x2)] =

∫ +∞

−∞

∫ +∞

−∞
ξ1 · ξ2 · fH(x1),H(x2)(ξ1, ξ2)dξ1dξ2 (1.19)

Accordingly, the autocovariance function CH(x1, x2) is given by:

CH(x1, x2) = E
[(
H(x1)− µH(x1)

)(
H(x2)− µH(x2)

)]
(1.20)

The autocovariance function is linked with the autocorrelation by the following equation:

CH(x1, x2) = RH(x1, x2)− µH(x1) · µH(x2) (1.21)

There are several correlation models (or kernels) which can be used for the description of
the autocorrelation or autocovariance function, e.g. exponential or square exponential kernel,
Matérn etc. Every kernel includes the correlation length parameter, which is the distance over
which significant loss of correlation occurs. Small correlation lengths lead to high variability
within a sample function of H(x, ω), while a large correlation length produces a slowly varying
sample function. The effect of this parameter for a 1D field within the space interval [0,10]
is shown in Fig.1.7, where two sample functions are plotted for different correlation lengths,
namely 1 and 5.
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FIGURE 1.7: Effect of the correlation length parameter for a 1D random field
H(x, ω) within the space interval [0,10].
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A measure of correlation between two different random fields H(x, ω) and Z(x, ω) at two
locations x1, x2 is given by the cross-correlation function:

RHZ(x1, x2) = E[H(x1), Z(x2)] =

∫ +∞

−∞

∫ +∞

−∞
ξ1 · ξ2 · fH(x1),Z(x2)(ξ1, ξ2)dξ1dξ2 (1.22)

The cross-covariance function CHZ(x1, x2) is, accordingly, given by:

CHZ(x1, x2) = E
[(
H(x1)− µH(x1)

)(
Z(x2)− µZ(x2)

)]
(1.23)

Properties

The second-moment characterization of a random field is achieved by identifying its mean and
correlation function.

A random fieldH(x, ω) is called Gaussian if all random variablesH(x1, ω), H(x2, ω), ...,H(xn, ω)
have a Gaussian PDF.

A random field is stationary (or homogeneous) if its joint PDF is independent of the spatial position,
thus the mean and variance do not change if shifted in space and do not follow any trends.
An illustration of the above definition is shown in Fig.1.8. If all statistics are constant over the
space domain the field is called strictly stationary, while if just the mean and autocorrelation are
constant the field is called wide-sense stationary.
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FIGURE 1.8: A sationary and a non-stationary 1D random field within the space
interval [0,4].
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A stationary random field is called ergodic with respect to any statistical property, if this property
can be acquired from a single, sufficiently long sample function of the field. For example,
in case the sample mean 1

n

∑nH(xj , ωn) at a specific location j , is equal to the mean value
1
Ω

∫
ΩH(x, ω)dx of a single sample function over a long space domain Ω, then the random field

H(x, ω) is ergodic in the mean. This property is important when characterizing a random field
from measurements, since in the presence of ergodicity the joint PDF of a field can be obtained
from just one realization.

Furthermore, it is worth mentioning some famous categories of random processes with dis-
tinct properties such as the martingale, the Wiener or Brownian motion process, the Markov
process or Markov chain (when discrete) etc. Markov processes are especially important for
Markov Chain Monte Carlo algorithms, and according to the Markov property their next value
H(xn+1, ω) conditionally to all previous values of the process H(x1, ω), H(x2, ω), ...,H(xn, ω) is
only dependent on the current value H(xn, ω):

P
(
H(xn+1, ω)|H(x1, ω), H(x2, ω), ...,H(xn, ω)

)
= P

(
H(xn+1, ω)|H(xn, ω)

)
(1.24)

1.5 Machine learning fundamentals

Machine learning allows computers to predict behaviors based on algorithms and example
data providing past experience, instead of applying specifically targeted codes. Metamodels
(or surrogate models) used for regression problems consist a subclass of machine learning
algorithms, which are able to learn how to mimic the behavior of a costly engineering process
and, eventually, substitute it. This section provides the basic concepts of machine learning and
allows the reader to comprehend the terminology used in the following chapters regarding
surrogate modeling for uncertainty quantification. The detailed formulation of the models used
in this thesis (artificial neural networks, polynomial chaos expansions and Kriging) are provided
within the following chapters. Even though some of these methods have been defined within
the literature as response surface methods due to their polynomial nature, they still comply with
the fundamental procedures of machine learning, as they are trained in a non-intrusive way
without altering the inner structure of the model (black-box approach). The reader may refer to
(Alpaydin, 2020) and (Bishop, 2006) for more details on classification and pattern recognition
and (Jiang, Zhou, and Shao, 2020) for regression problems.

Categorization of problems

The concept of machine learning lies on training algorithmic models to learn relationships of
features or parameters solely by using data in the form of input-output. An algorithm is initially
trained (training phase) based on a dataset targeting to optimize a performance criterion and then
its performance is validated (testing phase), ideally, on a different dataset. If accurate predictions
for data outside the training dataset are provided, the algorithm has achieved good generalization
capabilities.

The two basic categories of tasks within machine learning are classification and regression, and
the distinction lies on the type of the output parameters. In case of a boolean output where the
aim is assigning each input to a finite number of discrete classes, the task is called classification.
For regression problems, the output parameters are continuous variables. The machine learning
applications and developments of the current thesis fit the latter category, as the main target is
to surrogate costly multiscale models predicting composite properties, by training a regressor-
metamodel which can interpolate in case the data are not noisy, extrapolate (i.e. predict values
outside the training range) and, of course, perform regression on noisy data.
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Training/learning phase

The training phase is the optimization of the model parameters in order to fit the available
(or intelligently selected) data. In case the training dataset includes both the input vectors
and the corresponding target outputs, the training follows a supervised learning technique.
The unsupervised learning technique consists of data without any corresponding target values
and is mostly common in classification problems. For example, in search of groups within
the input data with similar features (clustering) or the projection of high dimensional data to
lower dimensions (dimensionality reduction). Moreover, there are semi-supervised variations
enabling active learning techniques, where the algorithm can intervene in the data selection and
dynamically select new data in order to boost performance. A different strategy not based on
target outputs is reinforcement learning, where the algorithm interactively discovers appropriate
actions by trial and error in order to maximize a reward or avoid a punishment.

The surrogate models of this thesis are based on supervised learning, as most of the regression-
based predictive models. The training process consists of selecting the training dataset and
tuning the model parameters towards good generalization. The first part is called design of
experiments in uncertainty quantification and requires efficiency due to the cost of the numerical
procedures providing the target outputs. The second part is called model selection and depends
on the model in-hand.

As an example, let a training set with x = {x1, ..., xM} as input and ŷ = {ŷ1, ..., ŷM} as the
observed target values. The output is generated by the function y = sin(3πx) with the addition
of random noise in every observation. Let also a polynomial function of the form:

y(x,β) =
N∑
i=0

βix
i (1.25)

be the predictive model based on least-squares fitting of coefficients {β1, ..., βN}, where N is
the order of the polynomial. Fig.1.9A shows a prediction when M = 4 and Fig.1.9B when
M = 10, assuming uniform stratified sampling of input points in [0, 1]. The polynomial order N
equals to 4 in both subfigures. The difference between the predictions is evident, as the small
training set results in a poor fit while the larger set provides an acceptable fit. However, it is
quite challenging to select an adequate training set in advance, considering also the potential
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FIGURE 1.9: Polynomial fitting to a poor training set (A) and an adequate training
set (B).
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FIGURE 1.10: Fitting of polynomials with different orders N : underfitting for 1st

and 3rd order (A and B), good fitting for 4th order (C) and overfitting for 9th order
(D).

cost of acquiring observations.

The same example is used to illustrate the effect of meticulous model selection. The parameter
requiring tuning for the linear regression model of Eq.1.25 is the polynomial order N and
Fig.1.10 shows its effect for a training dataset of 10 sample points. The 1st (Fig.1.10A) and 3rd

order (Fig.1.10B) polynomials do not fit the training data well. This inability of capturing the
actual response is also called bias in machine learning applications. The 4th order polynomial
(Fig.1.10C) approximates the data and the original function quite adequately. The 9th order
polynomial (Fig.1.10D) fits the training data perfectly, but it partially oscillates and provides a
bad approximation to the original function y = sin(3πx). This phenomenon is called overfitting
and occurs when the model learns the training data too well, ultimately also the noise, and
generalizes poorly.

Testing phase

Overfitting is a good reason why machine learning methods need a measurable criterion to
assess training and generalization performance. Error metrics are essential for monitoring
training and validating models, keeping in mind that visualizations similar to the previous
example are not possible for higher dimensions. Moreover, model selection and design of
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experiments are mostly based on experience and trial-and-error methods, as there is not a
generally accepted strategy except for some rules of thumb.

Once the model is trained, generalization is examined by assembling a new dataset with sample
points outside the training set, called the testing set or validation set. Various error functions exist
in order to quantify the prediction uncertainty and obtain an overall assessment of the model,
by comparing test predictions against the corresponding target values.

The mean absolute error (MAE) and mean squared error (MSE) are among the simplest choices of
error metrics. Following the concept and nomenclature of the previous curve fitting example, if
ŷi is the target (true) value and y(xi,β) is the prediction of the corresponding sample point, they
are given by:

MAE =
1

n

n∑
i=1

|y(xi,β)− ŷi| (1.26)

MSE =
1

n

n∑
i=1

[
y(xi,β)− ŷi

]2 (1.27)

where n is the size of the dataset. Assuming a testing set of 100 randomly chosen sample
points in [0,1] outside the training set, the above error functions are illustrated in Fig.1.11 as the
polynomial order of the model increases. The error calculated from the 10 points of the training
set is also included. Both training and testing errors are improving until the 8th order, when
the inconsistent increase of the testing error reveals the overfitting of the 9th order (Fig.1.10D).
This parametric analysis is representative of a model selection procedure for polynomial-based
surrogate models.

Another typical metric for regression problems is the coefficient of determination R2, given by the
following formula:

R2 = 1−
∑n

i=0

[
ŷi − y(xi,β)

]2∑n
i=0

[
ŷi − ȳi

]2 (1.28)

where ȳi is the mean of the observed responses. The second term is also called the fraction of
variance unexplained as due to its denominator is always proportional to the data variance. The
closer the value is to 1, the closer the predictions are to the observed responses.
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FIGURE 1.11: Mean absolute error (A) and mean squared error (B) as an evolution
of the polynomial order for both the training and testing sets.
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In case there is not enough data for adequate training and testing sets, cross-validation methods
can be beneficial, since a fraction of data is used for training while all data points are used for
validation. For a dataset consisted of M sample points, the k-fold cross-validation splits the set
to k subsets of equal size N = M/k. The model is trained k times, each time using all but one
subsets for training and the remaining subset for testing. Assuming an error function E similar
to the ones already mentioned, the k-fold error metric is given by:

ek-fold =
1

k

k∑
i=1

1

N

N∑
j=1

E
[
ŷj , y−i(xj ,β)

]
(1.29)

where y−i(xj ,β) is the prediction of the model trained from all subsets except i for the point xj .
A special cross-validation case is the leave-one-out method where the number of folds is equal to
the number of original sample points (k = M ).

Bootstrapping can also be used to assess the performance of a predictive model. Several bootstrap
subsets are created by resampling datapoints from the original dataset with equal probability
(resampling with replacement). The model is trained from each subset and the points not sampled
from the original set are used as testing set. The errors are collected and the overall bootstrap
error is calculated via a leave-one-out strategy as:

eboot =
1

k

k∑
i=1

E−i (1.30)

where k is the number of bootstrap subsets and E−i is the error of all subsets except i.

Curse of dimensionality

When machine learning methods are applied in high-dimensional spaces they suffer from the
curse of dimensionality, which is described as the exponential growth of required samples towards
high accuracy with each additional dimension. An example is presented in Fig.1.12 for a set of
1000 sample points drawn from a 2D standard Gaussian distribution. By projecting the data to
the lower dimensions X and Y, the samples falling within the area of [1,3] are 15.5% and 14.5%,
respectively. However, only 1.15% of the data are covering the equivalent area in 2D, hence it is
unlikely to reach good accuracy levels without increasing the number of samples.

An additional barrier is the consequent growth of model parameters which boosts the compu-
tational cost during the training phase. Returning to the curve fitting example of Eq.1.25 and
assuming d input variables and a 2nd order polynomial, the following formula is developed:

y(x,β) = w0 +

d∑
i=1

βixi +

d∑
i=1

d∑
j=1

βijxixj (1.31)

while the number of coefficients grows proportionally to d2 as the dimension increases. Consid-
ering that complex surfaces require higher order polynomials, the method becomes practically
ineffective.

Besides the straightforward solution of adding more samples to the learning sets, dimensionality
reduction techniques provide a remedy when working in high-dimensional spaces. Principal
component analysis is an unsupervised method calculating the dimensions with the highest
variance via eigenvalue analysis and, eventually, identifying a reduced space with almost the
same variance (Jolliffe, 2002). The method of active subspaces is a recent variation in which the
gaps between the eigenvalues are used instead of their magnitude (Constantine, 2015).
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15.5%

14.5%

1.15%

FIGURE 1.12: Illustration of the curse of dimensionality: from 1000 normally
distributed points in 2D (µ=0, σ=1) only 1.15% falls within the area of 2±1, whereas

the percentage at the 1D projections of the original space is 15.5% and 14.5%.
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Chapter 2

Neural Network Assisted Multiscale
Analysis for the Elastic Properties
Prediction of 3D Braided Composites
under Uncertainty

This paper presents an efficient probabilistic framework predicting effective stiffness properties
of triaxially braided composites. The framework is based on FE modeling accelerated by
artificial neural networks and is able to integrate both material and geometric uncertainties. A
classification of the importance of each random input parameter is achieved via global sensitivity
analysis.

The paper is published in Composite Structures, Volume 183, 2018, Pages 550–562.
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a b s t r a c t

The stiffness prediction of textile composites has been studied intensively over the last 20 years. It is the
complex yarn architecture that adds exceptional properties but also requires computationally expensive
methods for the accurate solution of the homogenization problem. Braided composites are of special
interest for the aerospace and automotive industry and have thus drawn the attention of many research-
ers, studying and developing analytical and numerical methods for the extraction of the effective elastic
properties. This paper intends to study the effect of uncertainties caused by the automated manufactur-
ing procedure, to the elastic behavior of braided composites. In this direction, a fast FEM-based multiscale
algorithm is proposed, allowing for uncertainty introduction and response variability calculation of the
macro-scale properties of 3D braided composites, within a Monte Carlo framework. Artificial neural net-
works are used to reduce the computational effort even more, since they allow for rapid generation of
large samples when trained. With this approach it is feasible to apply a variance-based global sensitivity
analysis in order to identify the most crucial uncertain parameters through the costly Sobol indices. The
proposed method is straightforward, quite accurate and highlights the importance of realistic uncertainty
quantification.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Even though composite materials have been available for sev-
eral decades already, they are steadily one of the most active engi-
neering research topics. This is justified by their excellent
performance in terms of stiffness-to-weight and strength-to-
weight ratio, fatigue strength, corrosion resistance, stability and
impact properties and numerous other advantages over conven-
tional engineering metals. Composite structures are mainly sepa-
rated into two categories according to the fiber architecture:
laminated composites (a bundle of unidirectional laminas) and
2D or 3D textile composites (where the fibrous reinforcements
are interlaced in multi-directions). In textiles, the linear assem-
blage of the fibers into yarns and the consequent bonding/inter-
locking of the yarns into specific patterns, add through-the-
thickness reinforcement and thus balance between in-plane and
out-of-plane properties. A review on textile composites can be
found in [1], whereas modeling challenges are investigated and

documented in [2]. In [3], a review emphasizing on woven textiles
is presented.

Braided composites consist a class of textiles, increasingly used
in a wide variety of high-performance industry applications in
aerospace, automotive and marine sectors. Braiding can be defined
as a composite material preform manufacturing technique where a
braiding machine deposits continuous, interwined, fiber tows
(yarns) to create desired reinforcing braid architecture before or
during the impregnation of the fibers, according to [4]. The combi-
nation of an automated and reproducible process together with an
excellent rate of material deposition for mass-production of high-
level structures, is the main reason for the attention braided com-
posites have received. Nevertheless, analysis of such materials sets
challenges and computational obstacles, as it requires very
detailed models in order to capture the complexity of braided
structures. Review papers on braided describing modeling chal-
lenges and trends, can be found in [4,5].

In most problems of engineering and applied mechanics, only
the macroscopic mechanical behavior is of interest. However, in
composites and generally in heterogeneous materials, the mechan-
ical properties of the individual components along with other
lower-scale parameters defining their spatial and size distribution

http://dx.doi.org/10.1016/j.compstruct.2017.06.037
0263-8223/� 2017 Elsevier Ltd. All rights reserved.
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(e.g. volume fractions etc.), govern in fact the overall mechanical
behavior. Hence, attributes of micro and meso scale are extremely
important for a better understanding of the elemental properties of
those materials. On that account, various modeling approaches for
predicting the effective elastic properties of braided composites
have been developed, with the intention to describe accurately
and efficiently the connection between micromechanical charac-
teristics and macro stiffness properties. A review on the stiffness
prediction modeling approaches is offered in [4]. An attractive ana-
lytical micromechanics model able to also predict the inelastic and
strength behavior (called bridging), is presented in [6], while
another analytical model based on numerical simulation and
mathematical modeling after analyzing the microstructure of the
braided preforms, can be found in [7]. Besides analytical, plenty
of numerical multiscale models can be found in the literature, like
[8] which is based on the homogenization variational principle and
[9] where use of the TexGen mesoscale modeling software is made.
In [10], a recent study concerning the friction consideration in a
novel interface constitutive model is presented, whereas in [11] a
comparison is performed between periodic meshes and a more
efficient freely generated mesh of the braided unit-cell. A complete
study on elastic prediction of braided composites using both ana-
lytical and numerical models is presented in [12]. Recently, an
interesting numerical study accounting for the pore defects effect
on the elastic properties of braided was offered in [13]. A general
information-passing multiscale numerical approach is presented
and used in [14,15], enabling material nonlinearity introduction
and providing not only stiffness but also strength.

Due to the multiphase and heterogeneous nature of composites,
uncertainties are of great substance. Therefore the variability in
elastic constants needs to be considered in the mechanical
response analysis of composite structures. In principal, uncertain-
ties are classified as either aleatory (inherent randomness in the
system) or epistemic (due to partial knowledge of the problem
and parameters). A noteworthy attempt to compile and classify
the uncertainty modeling approaches for composite structures
was made in [16], where it is stated that regarding composite
materials, aleatory uncertainty typically refers to fiber and matrix
characteristics, manufacturing variations etc., whereas epistemic
may be associated with the type of experimental and modeling
methods being used. Recent studies [17,18] showed that aleatory
uncertainty and specifically fiber waviness, plays an important role
in compressive failure of polymer composites by triggering fiber
kinking. Significant work regarding the aleatory uncertainty
assessment of composite shells and the coupling with current
design methods has been performed in [19,20].

Consequently, the scatter in the mechanical properties due to
aleatory uncertainty is a dynamic research field, with various
approaches considering the probabilistic homogenization problem.
Linear perturbation techniques were introduced in [21], while
approximate solutions of the elastic response aided by Kriging
models were presented in [22]. The influence of random inclusions
in the microstructure by applying the extended finite element
method (XFEM) was described in [23], whereas the study in [24]
established the synergy of Monte Carlo simulation (MCS) and the
XFEM for the homogenization problem with random microstruc-
tures. A variety of probabilistic approaches in carbon fiber rein-
forced polymers can be found in [25]. Moreover, the
implementation of surrogate (or meta) models becomes a neces-
sity when it comes to the stochastic assessment of such materials.
Reviews on neural network (NN) applications in composite materi-
als can be found in [26,27], while a recent review covering a variety
of surrogates (polynomial chaos, radial basis functions, Kriging
etc.) is presented in [28]. Stochastic optimization is also a field of
application for the above models [29,30]. NN have been also used
for forming processes simulations [31] while an interesting

approach that couples polynomial approximations and NN is
offered in [32].

However, the aforementioned work concerns only continuous
unidirectional fiber laminate composites. It is only recently that a
perturbation technique for the stochastic homogenization of
woven composites was proposed in [33], which theoretically could
be applied in any textile, though being perturbation-based is lim-
iting information on the shape of the elastic parameters probability
density functions (PDFs) and also investigates exclusively uncer-
tainties caused by the material properties of the constituents. A
study adding scatter information on braided composites was
offered in [34], but it is founded more on model updating based
on experimental data, than on probabilistic homogenization mod-
eling for the variability calculation. Also there is not information
about the exact source of uncertainty.

In this paper, a probabilistic FEM-based method is proposed for
the prediction of the elastic constants of braided composites, under
various sources of aleatory uncertainty. The algorithm is based on a
Monte Carlo framework so that statistical characteristics of the elas-
tic response can be described in full detail. Uncertainties are covering
a wide range of imperfections that can be caused frommanufacturing
processes, while the numerical tools used in the method allow ran-
dom properties to be inserted independently. As a result, the effect
of every random input can be measured with the aid of a sensitivity
analysis technique. With the mesoscale modeler used in the pro-
posed methodology, important geometric properties for a braided
material can be taken into account. To further improve the efficiency
of the costly Monte Carlo technique and sensitivity analysis, artificial
Neural Networks are implemented as surrogate models, decreasing
the computational cost by orders of magnitude. The proposed
method is applied on a typical triaxial 3D braided model.

2. Homogenization scheme

2.1. Theoretical approach

Consider a macrostructure that is heterogeneous on a lower
scale. Let a continuous body of this heterogeneous material
denoted M, with multiple phases (Fig. 1). The governing equilib-
rium and kinematic equations for a solid mechanics problem posed
on this structure are:

divðrÞ þ q b ¼ q €u in R ð1Þ
r ¼ C e ð2Þ

where r is the stress tensor, e is the strain tensor, b are the acting
body forces, q is the body density and C is the elasticity tensor of
the constitutive equation (Eq. (2)). The essential and natural bound-
ary conditions (BCs) respectively are:

Fig. 1. Heterogeneous material M of the macrostructure in domain R, subjected to
essential and natural boundary conditions on surfaces @Ru and @Rt respectively.
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u ¼ �u on @Ru ð3Þ
t ¼ r n ¼ �t on @Rt ð4Þ
where n is the unit vector normal to the surface @Rt where the traction
�t is applied. Due to the presence of heterogeneities, the density and the
explicit form of the constitutive equation fluctuate from phase to phase,
rendering the solution of the problem very challenging in its original
form. The subject of homogenization is the determination of approxi-
mate effective quantities q� and C�, so that the problem of the homo-
geneous effective material M� with the same BCs would be solvable.

In essence, the homogenization process is performed on a rep-
resentative volume element (RVE) of the heterogeneous material
which is defined by Hill [35] as the smallest sample entirely typical
of the whole mixture on average. So after several averaging proce-
dures, the homogenization problem degenerates to the following
RVE problem under quasistatic conditions:

Determine u so that:

divðrÞ ¼ 0 in volume V of RVE ð5Þ
subject to BCs such that:

r� � e� ¼ 1
jV j

Z
V
r � e dV ð6Þ

Eq. (6) is known as the Hill’s energy averaging theorem and
states that the strain energy of the homogenized macro-
continuum, with macroscopic stress and strain tensors r� and e�

respectively, has to be equal to that of the microstructured RVE,
with r and e being the corresponding microscopic quantities.

When the solution of the previous problem is obtained, the
effective constitutive formulation is determined by relating r� to
e�. For an elastic orthotropic material, the generalized stress–strain
constitutive law of Eq. (2) is given via:

r1

r2

r3

s23
s31
s12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼
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2
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777777775

e1
e2
e3
c23
c31
c12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð7Þ

The inverse of the macroscopic stiffness matrix S ¼ C�1 is the
compliance (or flexibility) matrix. The elastic properties can be
determined from compliance constants by applying separately uni-
axial normal/shear stresses in each direction/plane and restricting
the remaining degrees of freedom. The compliance matrix as a
function of the engineering constants has the following form:
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c23
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r1
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s23
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8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
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ð8Þ

The compliance matrix is naturally symmetric due to Maxwell’s
reciprocal theorem:

v ij

Ei
¼ v ji

Ej
ð9Þ

2.2. Numerical implementation

This study employs the open-source software TexGen [36] for
the treatment of the homogenization problem. TexGen is a 3D solid

modeler of textile structures at unit-cell level, developed at the
University of Nottingham. It allows user-friendly modeling of the
complex yarn architecture through either graphical user interface
or Python scripting. The fact that yarns are simulated as solid vol-
umes representing the approximate bounds of the fibers contained
within them, makes the modeling feasible through simply defining
the path nodes and the cross-section of the yarns.

TexGen approaches the unit-cell according to the principles
documented in [37], where only translational symmetry transfor-
mations are employed (reflectional or rotational symmetries are
excluded). This results in major advantages, as the unit-cell can
be subjected to arbitrary combinations of macroscopic stresses
and strains with a single set of BCs, but also can be applicable to
nonlinear problems of any nature. Periodic BCs are applied on
the unit-cell in order to satisfy Eq. (6), based on the following rela-
tions between the macroscopic strains and the relative displace-
ments at a point P in the unit-cell to those at P0 as the image of P
in another cell:

u0 � u ¼ ðx0 � xÞe0x þ ðy0 � yÞc0xy þ ðz0 � zÞc0xz
v 0 � v ¼ ðy0 � yÞe0y þ ðz0 � zÞc0yz
w0 �w ¼ ðz0 � zÞe0z

ð10Þ

where x; y and z are the coordinates of point P;u;v and w are the
displacements at the same point, the respective symbols with an
apostrophe are associated with the point P0 (an image of P) and
e0x ; e0y ; e0z ; c0yz; c0xz; c0xy are the macroscopic strains. In obtaining the dis-
placement field of Eq. (10), the following kinematic constraints are
applied:

u ¼ v ¼ w ¼ 0
@w
@x

¼ @v
@x

¼ @w
@y

at x ¼ y ¼ z ¼ 0 ð11Þ

The exact procedure on how to derive the periodic BCs from this
formulation, is referred to [37].

TexGen has the ability to automatically produce an input file for
the ABAQUS commercial FE package [38], including all necessary
data about geometry, materials and support of the unit-cell. The
ABAQUS implementation of the periodic BCs involves the use of
an equation for the representation of the relative displacement of
two node sets at opposite boundaries (faces, edges etc.), equal to
the displacement of a dummy node. In this manner the unit-cell
deformation is controlled by applying BCs to the dummy node.

Regarding the elastic properties extraction, concentrated loads
are applied on those dummy nodes separately in every necessary
direction, which are related to the macroscopic stresses through
virtual work equilibrium [37]. For example, if a force Fx is applied
to the degree of freedom e0x of a unit-cell while all the other extra
degrees of freedom are free from constraints, the work done by the
force is:

W ¼ 1
2
Fxe0x ð12Þ

The strain energy stored in the unit-cell can be expressed in
terms of the macroscopic stresses and strains as:

E ¼ 1
2

Z
V
r0

xe
0
x dV ¼ 1

2
Vr0

xe
0
x ð13Þ

where r0
x is the macroscopic normal X stress and V is the unit-cell

volume. Equating W to E results in the following relationship for
the X-direction:

r0
x ¼ Fx

V
ð14Þ

The effective longitudinal modulus of the material would then
be obtained as:
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E0
x ¼ r0

x

e0x
¼ Fx

Ve0x
when Fy ¼ Fz ¼ Fyz ¼ Fzx ¼ Fxy ¼ 0

ð15Þ

The forces are applied volumetrically so that all stresses similar to
Eq. (14) would be unitary. As a result, the displacement output from
the FE analysis at the dummy nodes will represent the strain and
according to Eq. (15), the moduli would simply be the inverse of cal-
culated strains. The remaining effective properties for an orthotropic
material are obtained accordingly (six load cases in total).

3. Global sensitivity analysis for Monte Carlo simulation

The inherent probabilistic nature of most design parameters
hampers the deterministic treatment of engineering problems
and leads to analysis under uncertainty. In a probabilistic model
with multiple discrete sources of uncertainty, sensitivity analysis
offers the impact of each random input to the total output variabil-
ity of the model. Hence, the system complexity can be reduced and
the cause-and-effect relationship can be explained.

This paper applies a variance-based global sensitivity analysis
(GSA) that is able to describe the sensitivity pattern of a model,
through a full decomposition of the output variance into terms cor-
responding to the input parameters and their interactions. The
principal advantages of such techniques over local sensitivity anal-
yses are the consideration of the whole input space, the applicabil-
ity in nonlinear responses and the ability to measure effects of
interaction in non-additive systems [39].

3.1. Formulation

Consider a model y ¼ f ðx1; x2; . . . xkÞ with y a scalar. Given that f
is a square integrable function over the k-dimensional unit hyper-

cube Xk, the model may be decomposed in the following way [40]:

f ¼ f 0 þ
X
i

f i þ
X
j>i

f ij þ . . .þ f 12...k ð16Þ

where f i ¼ f iðxiÞ; f ij ¼ f ijðxi; xjÞ etc. All the terms in the functional
decomposition are orthogonal. Consequently, they can be calculated
using the conditional expectations of the model output y as:

f 0 ¼ EðyÞ
f i ¼ EðyjxiÞ � EðyÞ
f ij ¼ Eðyjxi; xjÞ � f i � f j � EðyÞ

ð17Þ

If Eq. (16) is squared and integrated, appears the expression:Z
f 2dx� f 20 ¼

X
i

Z
f 2i dxiþ

X
j>i

Z
f 2ijdxidxjþ . . .þ

Z
f 212...kdx1dx2 . . .dxk

ð18Þ
The left part of Eq. (18) is the total variance of output y and the

terms of the right part are decomposed variance terms with
respect to the sets of the input xi. With the aid of Eq. (17) the final
expression for the variance decomposition is reached:

VarðyÞ ¼
Xk

i¼1

Vi þ
Xk

j>i

V ij þ � � � þ V12...k

where Vi ¼ Varxi ðEx�i
ðyjxiÞÞ

Vij ¼ Varxij ðEx�ij
ðyjxi; xjÞÞ � Vi � Vj etc:

ð19Þ

The x�i notation indicates the set of all variables except xi. A
direct variance-based measure of sensitivity called first-order sen-
sitivity index or first order Sobol index, can be obtained by dividing
the term of interest from the decomposed variance by the uncon-
ditional variance VarðyÞ:

Si ¼ Vi

VarðyÞ ð20Þ

This is the contribution to the output variance of the main effect
of xi, therefore it measures the effect of varying xi alone, but aver-
aged over variations in other input parameters. It is normalized by
the total variance to provide a fractional contribution.

3.2. Monte Carlo implementation

In the majority of cases, the model does not allow for an analyt-
ical evaluation of the integrals in the variance decomposition.
Thus, GSA is performed through estimators for the Sobol indices,
emerging from a sampling technique within a Monte Carlo frame-
work. A summary of the estimators described so far in the litera-
ture is documented in [41]. In this paper we use the following
estimator for the first order index:

Vi ¼ Varxi ðEx�i
ðyjxiÞÞ � 1

N

XN
j¼1

f ðBÞjðf ðAi
BÞj � f ðAÞjÞ ð21Þ

In the above equation, N is the problem-dependent base sample
(large enough sample size for the Monte Carlo procedure to con-

verge) and f ðAÞ; f ðBÞ; f ðAi
BÞ are the model outputs of the input

matrices A;B and Ai
B respectively. The sample matrices are gener-

ated as follows [39]: A and B are two ðN; kÞ matrices with random
sample points of the input space, where k is the number of random

inputs. Matrix Ai
B is identical with A, except that its ith column is

substituted with the ith column of B (i ¼ 1; . . . ; k). As a result, k

matrices similar to Ai
B are required, which leads to a total compu-

tational cost of Nðkþ 2Þ simulations.
The accuracy of the estimators is highly dependent on N. So

computational expense is a problem when the model needs con-
siderable time for a single simulation (e.g. FE model). In addition,
the convergence of the Sobol index (Eq. (20)) might require a large
sample N when approximated with an estimator (Eq. (21)), regard-
less if the crude Monte Carlo problem has already converged for a
smaller size. The potential excessive cost of the Sobol indices has
guided researchers to alternative techniques, like polynomial
chaos expansions [42,43].

4. Artificial neural networks

Artificial neural networks, or simply neural networks (NN), are
mathematical models based on biological nervous systems, with
the ability to learn their environment by example through training
via samples. In principal, they are used as a Machine Learning
method for a variety of applications, such as prediction, pattern
recognition, decision making etc. For engineering mechanics, they
are mostly considered as surrogate (or meta) models for the rapid
mapping between given input and output quantities. Their mas-
sively parallel structure composes a very fast information-
processing mechanism, which can enhance the efficiency of
numerical simulations by producing extreme amount of results
with trivial computational effort. As a result, the use of NN can
practically eliminate any limitation on the scale of the problem
and the sample size used for MCS.

4.1. Basic neural network structure

A neural network consists of at least three layers: the input, the
output and one hidden layer. In general there might be several hid-
den layers. Terminology is borrowed from neuroscience, as the
units (nodes) inside every layer are called neurons, while the links
between them are called synapses. Although there are numerous
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different NN architectures (e.g. radial basis function networks,
Kohonen self-organizing networks, recurrent networks among
others [44]), the most commonly used for surrogate modeling in
engineering are the multilayer feed-forward NN.

A typical configuration of a single layer feed-forward network is
demonstrated in Fig. 2. The input neurons (squares) do not process
information and only connect the network to the external environ-
ment, as terminal points. The neurons of the hidden layer (circles)
process information coming from a previous layer and feed their
output to the next layer. The hidden denotation originates from
the lack of directly observable data. Thus, information is propa-
gated in a single direction, from the input data towards the output
(feed-forward). It is noted that there is no connection among neu-
rons of the same layer.

Regarding the processing neurons, their interior structure is
summarized in the lower part of Fig. 2. For every connection
between neurons there is a weight parameter wij, which corre-
sponds to the influence of each of the preceding neurons. Every
input xi received by the neuron is multiplied with the correspond-
ing weight and then the sum of those products is calculated by the
following formula:

zj ¼
Xn

i¼1

xiwij þ b ð22Þ

where b is a bias term allowing the neuron to cover a wider range.
The result is sent through a nonlinear transfer function called acti-
vation function, where the nonlinearity of the decision boundary is
introduced. Common activation functions are the sign function and
sigmoid functions like the logistic or the hyperbolic tangent func-
tion etc.

4.2. Training process

Training a NN is a challenging task, as the problem of overfitting
is lurking. The learning procedure is based on a general function
optimization problem, where the weights are adjusted in order
for the mapping to approximate closely the training set. The objec-

tive function is the sum squared error between the predicted out-
put tðwÞ and the target output y0:

EðwijÞ ¼ 1
2

X
½tðwijÞ � y0�2 ð23Þ

In the minimization process, the weights of all the synapses are
modified until the desired error level is achieved or the maximum
number of cycles is reached. The weights are updated through an
iterative procedure:

wðtþ1Þ
ij ¼ wðtÞ

ij þ Dwij ð24Þ
where Dwij is the correction of the weight at the tth learning step,
which is calculated by the following formula:

Dwij ¼ �n
@E
@wij

ð25Þ

where n is a small parameter adjusting the correction each time,
called learning rate. The algorithm described above is called back-
propagation algorithm [44].

The definition of overfitting is the poor generalization ability of
a NN despite the very small error prediction over the training data.
The learning process is so powerful that guides the NN to learn the
train data ‘‘too well”. However, due to the large amount of neurons
involved, the error for new predictions (outside the training data)
is large. An illustrative example is given in Fig. 3 for the 2D space
(scalar input and output), where an overfitting of the training sam-
ple (Fig. 3a) is contradicted with a good fit for the exact same data
(Fig. 3b).

There are several methods able to rectify the overfitting prob-
lem, with the most popular among others being the early stopping
of the training and the regularization of the error function [45]. The
first one involves a fraction of the sample data being used as a val-
idation dataset, whose error is monitored over the iterations and
stops training if its value increases rapidly. Regularization is the
intention to smoothen the network’s response by modifying the
objective function. The idea emerged because of the excessive out-
put variability observed by large weights.

Fig. 2. Architecture of a single layer feed-forward network and neuron structure.
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5. Proposed methodology

As mentioned in the introduction, the proposed method is used
for the probabilistic analysis of 3D braided composite structures in
a Monte Carlo framework. However, it is not limited on braided
because the use of TexGen as a modeler allows for any kind of tex-
tile composite. Even though the problem is linear, the method is
based on the versatile tool of MCS and is, therefore, able to calcu-
late the complete PDF of the response (not just low order moments
or probabilities of exceedance of a prescribed value etc.).

Moreover, the method not only allows for material property
related uncertainties, but also for geometric uncertainties at the
unit-cell level, such as braid and undulation angles. Uncertainties
are distinct and due to the clear boundaries between the scales,
the variability propagation towards higher levels can be predicted.
The division of the uncertainties enables sensitivity analysis and

subsequently offers the identification of the parameter with the
most crucial effect. The algorithm is quite efficient but the perfor-
mance is further accelerated by using NN for the repetitive proce-
dure of MCS.

5.1. Multiscale algorithm

Python scripting provides great synergy between the pre-
processing in TexGen and the post-processing in ABAQUS. Hence,
the algorithm can be implemented in Python in a straightforward
manner. The parametric geometrical model of the unit-cell at the
mesoscale is scripted with the functions provided by TexGen, with
respect to geometric variable of interest, which will be potentially
used as an uncertainty. Building a unit-cell textile model requires
definition of the yarn paths, the yarn cross-sections and the yarn
repeats within a domain. Since the model simulates the yarns as
solids, homogenization of their material properties needs to be
performed.

The algorithm is much faster if analytical expressions for the
microscale material behavior are used and since the Chamis model
[46] has been found quite accurate for laminate composites, it is
applied for the micro-to-meso scale transition. The yarns in a
textile-based composite are essentially unidirectional continuous
fiber composites, so the applicability of the model is valid. The
transversely isotropic properties of the yarn according to the Cha-
mis model are governed by the following expressions:

E11 ¼ Vf Ef ;11 þ 1� Vf

� �
Em

E22 ¼ E33 ¼ Em

1� ffiffiffiffiffiffi
Vf

p
1� Em

Ef ;22

� �

G13 ¼ G12 ¼ Gm

1� ffiffiffiffiffiffi
Vf

p
1� Gm

Gf ;12

� �

G23 ¼ Gm

1� Vf 1� Gm
Gf ;23

� �

m12 ¼ m13 ¼ mm þ Vf mf ;12 � mm
� �

m23 ¼ Vfmf ;23 þ Vm 2mm � m12
E11

E22

� �

ð26Þ

where Ef ;11; Ef ;22;Gf ;12;Gf ;23; mf ;12 and mf ;23 are the transversely isotro-
pic material properties of the fibers, Em;Gm and mm are the isotropic
material properties of the polymer matrix and Vf is the yarn volume
fraction (percentage of the volume of fibers inside the volume of the
yarn).

The next step is to call ABAQUS via Python, for the FE solution of
the input file generated by TexGen. It is noted that a mesh conver-
gence study is necessary for the trade-off between accuracy and
efficiency in order to adjust the voxel mesh parameters of the
unit-cell. Once the model is solved, the effective elastic properties
of the macroscale (assumed orthotropic) are extracted with a script
implementing the process described in Section 2.2. The procedure
described so far needs to be automated in order to generate a sam-
ple through Monte Carlo analysis.

The generated sample is used as a training dataset for a NN in
MATLAB [47]. An early stopping method is used in order to further
improve generalization. In this technique, which is enclosed in
MATLAB NN tool, the available data are divided into three subsets:
the training, validation and testing set. The training set is used for
the procedure described in Section 4.2 (gradient computation and
weights updating). The validation set is used as a separate dataset
whose error is monitored during the training, so that the general-
ization performance is evaluated. During the initial phase of train-
ing the validation error normally decreases, along with the training
error. When the network begins to overfit the data, the validation

Fig. 3. Overfitting example.
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error begins to rise and the training process is stopped. The
weights and biases at the minimum error are adopted. Finally,
the testing dataset is used strictly after the training process has fin-
ished and offers a representative error which can be expected from
absolutely new data. In our study, the input data are randomly
divided so that 70% of the samples are assigned to the training
set, 15% to the validation set and 15% to the testing set.

Afterwards, the NN is evaluated through a target value for the
mean squared error of the prediction. If the criterion is met, the
NN is used for the MCS, enabling the fast extraction of excessive
response samples for the effective material properties. Further-
more, a GSA framework for the calculation of the Sobol indices
can be scripted, for the case of a vector input of uncertainties,
according to the formulation of Section 3. If the error is larger than
the threshold, the NN needs to be redesigned, either in terms of a
new dataset or number of layers and neurons.

A schematic description of the aforementioned methodology is
presented in Fig. 4. Uncertainties can be introduced either in the
microscale (Chamis micromechanical model), or in the mesoscale
through parametric scripting for the unit-cell geometry. As men-
tioned previously, at least the left part of the chart is required to
be automated, as the training of the NN could be performed man-
ually. Nevertheless, it is considered much more efficient to auto-
mate the entire algorithm by coupling Python with the MATLAB
NN tool. The post-processing for the calculation of the Sobol sensi-
tivity indices is also scripted in Python.

5.2. Experimental validation

The combination of Chamis model, TexGen and ABAQUS for the
numerical extraction of the elastic properties, is validated through
selected experimental results studied in [48]. This study obtained,
among others, the mechanical properties of a triaxial braided car-
bon/epoxy composite and investigated the effect of the braid angle.
Three different braid architectures with a braid angle of 30�;45�

and 60� are each tested in their longitudinal and transverse direc-
tion. The values for these cases are presented in Fig. 5 in compar-
ison with the numerical prediction of the multiscale modeling,

represented by the solid lines, for the cases of E1 and E2. The accu-
racy is satisfactory, even though there are some approximation
errors introduced by the scaling of the results due to volume frac-
tion discrepancies.

6. Numerical examples

6.1. Model description

The model examined herein, can be specified as a typical 3D tri-
axial braided composite. Triaxial means that the yarns run in three
directions. The axial (or warp) yarns lay straight and equally
spaced, while the weft yarns interlace the axial yarns at an angle,
according to the pattern shown in Fig. 6a. The layer architecture
is based on a CT scan conducted on a braided tubular structure.

Fig. 4. A flow chart of the proposed methodology.

Fig. 5. Comparison of the proposed multiscale methodology (solid lines) with
experimental values.
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A cross-section of the braiding pattern is presented in Fig. 6b,
where the heterogeneity of the yarns is emphasized by illustrating
the embedded fibers. The section area of the weft yarns (green and
blue) is lenticular (intersection of two circles), while the axial yarns
(red) are of elliptical shape.

The representative unit-cell (RUC) extracted from the braiding
pattern for the TexGen modeling (Fig. 6a) is presented in Fig. 7a
in an isometric projection. The in-plane angle between the weft
yarn and the axial yarn is the braid angle (BA) and the out-of-
plane angle that the weft yarns are forming within the cell thick-
ness, is the undulation angle (UA). These two geometric variables
consist the most significant structural parameters of the mesoscale
for a braided composite, considering that they are fully correlated
with the unit-cell volume fraction (percentage of the volume of
yarns inside the volume of the unit-cell). Fig. 7b presents the
meshed unit-cell model in ABAQUS (matrix is excluded for visibil-
ity reasons). Characteristics from AS4 Carbon Fibers and EPON

9504 resin for the polymer matrix are used. Material properties
selected from [49], are summarized together with the mesoscale
geometric properties in Table 1.

6.2. Microscale uncertainty – A single case

As mentioned in Section 5.1, uncertainties could be introduced
either in the microscale through the Chamis model (fiber/matrix
properties, volume fraction etc.), or in the mesoscale through para-
metric scripting for the geometric parameters of interest (braid and
undulation angles, yarn section shapes etc.), which have a direct
impact on the unit-cell volume fraction and consequently the
effective macro properties. In this section, the yarn volume fraction
(Vf in Eq. (26)) is considered as an uncertainty and we present its
effect to the output macro-properties, from a statistical point of
view.

Despite the fact that most of the uncertain quantities appearing
in practical engineering problems are non-Gaussian in nature, the
Gaussian assumption is often used due to its simplicity and the
lack of relevant experimental data. To that end, the yarn volume
fraction is modeled as a Gaussian random variable, with mean
value according to Table 1 and coefficient of variation (COV) equal
to 10%. COV is defined as the ratio of the standard deviation over
the mean value and is used in this study as a unitless measure
for both input and output variability, representing the second sta-
tistical moment.

Fig. 8 presents the required simulations for a sufficient repre-
sentation of the COV of the effective macroscopic properties. As
shown, statistical convergence is practically achieved after 400
simulations, which means that for the PDF roughly 1000 simula-
tions would surely be an adequate estimation. The evolution of
the mean value is not presented since the convergence is almost
instant.

Fig. 6. Triaxial braiding pattern: (a) Top view, (b) Side view (cross-section)

Fig. 7. Representative unit-cell mesoscale model.

Table 1
Material and geometric parameters of braided model.

Parameter Mean value

Longitudinal fiber modulus Ef1 227.53 GPa
Transverse fiber modulus Ef2 16.55 GPa
Shear fiber modulus Gf12 24.82 GPa
Shear fiber modulus Gf23 6.89 GPa
Fiber Poisson’s ratio v12 0.2
Fiber Poisson’s ratio v23 0.25
Matrix Young’s modulus Em 3.5 GPa
Matrix Poisson’s ratio vm 0.38
Yarn volume fraction (YVF) 70%
Braid angle (BA) 45�
Undulation angle (UA) 57�
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The response PDFs are calculated with the aid of the kernel den-
sity estimation method (KDE), which is a fundamental data
smoothing technique, where inferences about the population are
made based on a finite data sample [50]. In Fig. 9, we compare
the response after 1000 crude MCS (which is considered as a refer-
ence solution) and after 1000 simulations with a trained NN,
according to the methodology described in Section 5.1, for E1; E2

and E3. It is observed that the accuracy of the NN-assisted algo-
rithm is very good, providing that the NN is well trained. In gen-
eral, the problem described in this paper does not need more

than one hidden layer for good NN performance. On average, a
training sample of 40–60 input/output sets is sufficient and the
neurons should not be more than 10. The exact number of neurons
is always dependent on the size of the training sample. In Fig. 10a,
an illustrative error plot of the data sets against the internal itera-
tions of a well trained NN is presented, while the convergence of
the response with respect to the size of the sample used for train-
ing is presented in Fig. 10b in terms of cumulative distribution
functions (CDFs) and in Fig. 10c in terms of PDFs. All three plots
correspond to the response of the longitudinal modulus E1, while

Fig. 8. Statistical convergence of COV for the effective properties.

Fig. 10. Training information.

Fig. 9. Accuracy of the proposed NN-aided method (values in GPa).
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the hidden layer holds 5 neurons for this case. Naturally, conver-
gence can be achieved more easily for the CDF case, since the data
are going through an additional integration procedure.

To further boost the training procedure, a Latin Hypercube Sam-
pling (LHS) technique could be used for a more efficient choice of
the input sample, as the random variables are sampled from the
complete range of their possible values, ensuring a smaller sample
size is required [51]. Since the relation between the elastic proper-
ties and the Vf is almost linear [52], the PDF shape in Fig. 9 is Gaus-
sian. Skewness is expected to be introduced by other uncertain
parameters, like the braid and undulation angles, where the rela-
tion is nonlinear as in Fig. 5 (see also [12,48,53]), in case they dom-
inate the response. In terms of efficiency, an Intel Core i7-3770
processor required 195600 s (3260 min) for 1000 crude MCS real-
izations, while 1000 realizations with a trained NN were per-
formed in 10.53 s (0.1755 min).

Regarding the uncertainty propagation, the response variability
is calculated in both the mesoscale and the macroscale phase.
Results are illustrated in bar charts for all material properties
involved, in Fig. 11. An horizontal solid line is drawn at the COV
level of 10% as a reference to the input variation. It is worth noting
the slight reduction of the variability through the scales, especially
the high G12 variability of the yarns in the mesoscale, which how-
ever does not increase the output samples of the macroscale.

6.3. Sensitivity analysis – General case

The efficiency provided by the NN, enables the application of
the variance-based GSA described in Section 3, since it is costless
to perform the large number of simulations required for the con-
vergence of the Sobol index estimation. Several uncertain parame-
ters are considered herein and through the total output variance
decomposition, it is straightforward to draw conclusions about
the statistical importance and impact of each input.

The selected random input parameters are inspired from possi-
ble uncertainties caused by manufacturing procedures. We choose
the following 6 random properties from Table 1: Ef1; Ef2;Gf12, YVF,
BA and UA. The first four parameters are introduced in the micro-
scale, while the last two in the mesoscale and they are all consid-
ered as the most influential according to some preliminary
analyses and the literature. The mean values are summarized in
Table 1. Concerning the input variance, all four random variables
of the microscale have a COV equal to 10%, while the COV of the
mesoscale geometric variables (BA and UA) is selected so that
the induced COV of the unit-cell volume fraction does not exceed

3%. This assumption maintains the simulation realistic, but also
abides with the modeling limitation of the non-consideration of
the yarns’ contact and intersection.

The output variability is presented in Fig. 12. The in-plane elas-
tic moduli E1 and E2 gather the highest COV levels, which makes
sense due to the geometric variation of the yarns in the mesoscale.
This is also related with the slight skewness introduced in the PDF
shapes of those moduli, as shown in Fig. 13a and b. In this figure,
the output histograms along with the PDF shapes according to
the KDE method and the best fit among known probability distri-
butions, are presented. Most of the effective properties are of Gaus-
sian shape. The highest skewness is obtained in E2 (Fig. 13b) and
v12 (Fig. 13g), implying they are profoundly sensitive to the mesos-
cale uncertainties.

Results of the variance-based GSA are demonstrated in Fig. 14,
in terms of evolution of each Sobol index (Eq. (20)) over the num-
ber of simulations. It is highlighted that this illustration is prefer-
able in comparison with the table values after a standard
number of simulations (which is the trend in the literature), in
order to be certain that the indices have converged. In all subfig-
ures there are solid lines indicating the indices limits of 0 and 1.
The variance of the shear moduli (Figs. 14d, e and f) is dominated
by the yarn volume fraction variability. E2 and v12 are indeed gov-
erned by the braiding angle input as assumed (Figs. 14b and g) and

Fig. 11. Variability propagation through the scales.

Fig. 12. Output variability for the general case.

G. Balokas et al. / Composite Structures 183 (2018) 550–562 559



the skewness of the PDFs is explained. In general, the yarn volume
fraction seems as the most influential parameter, together with the
braid angle. The undulation angle does not seem to have a note-
worthy variability impact on the elastic properties. It is also noted
that some of the output parameters required up to 8000 simula-
tions to converge.

7. Concluding remarks

Uncertainties due to manufacturing imperfections affect the
elastic behavior of braided composites. In this paper, a method is
described for the effective properties prediction under uncertainty
for textile composites. A multiscale model of a triaxial braided
composite is presented and the effect of several micro and meso

scale uncertainties is investigated. The developed algorithm is
modeling a unit-cell at the mesoscale over TexGen, with homoge-
nized yarn properties through an analytical model. Numerical
homogenization is performed via ABAQUS and the effective
mechanical properties are extracted with a Python post-
processing script. Response variability is calculated via trained
NN in the core of Monte Carlo simulation, thus results can be
obtained with orders of magnitude less computational effort com-
pared to the standard procedure. Sensitivity analysis is performed
through a global technique, by measuring the contribution of the
uncertain parameters to the output variance through the Sobol
indices. Both material and geometric related uncertainties can be
introduced. With reliable uncertainty measurements the method
can solve accurately the forward uncertainty propagation problem

Fig. 13. Histograms of the effective mechanical properties and best fits.
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and provide accurate PDFs for the effective properties of braided
macrostructures, that could be later used for reliability analyses.
The method can be extended to consider the contact between
the yarns with an ad hoc code.
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Chapter 3

Stochastic Modeling Techniques for
Textile Yarn Distortion and Waviness
with 1D Random Fields

In this paper, a probabilistic framework integrating stochastic manufacturing-induced geo-
metrical imperfections of textile yarns is proposed. The study includes methodologies for the
distortion of the yarn’s shape and the deviations from their nominal path. The effects of the
above defects are investigated via a forward uncertainty propagation application of a triaxially
braided composite for both effective stiffness and strength properties.

The paper is published in Composites Part A: Applied Science and Manufacturing, Volume 127,
2019, 105639.
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A B S T R A C T

Within the concept of simulation approaches for manufacturing-induced imperfections of composite structures,
this work proposes modeling frameworks for the consideration of stochastic deviations concerning the yarns of
textile composite materials. The random distortion of a yarn’s cross-section, is addressed by flexible 1D Fourier-
based random fields, with the potential to be calibated from measurements of the deviations from the nominal
yarn shape and their statistical characteristics. Furthermore, a Kriging-based modeling approach is presented,
able to randomize any nominal yarn path in short or long range problems, considering data for the correlation
and variance in a straightforward manner. The effects of defects due to stochastic yarn distortion and waviness,
are investigated by simulating a forward uncertainty propagation problem of a triaxially braided composite
material. The response variability concerning stiffness and strength for different uncertainty levels is high-
lighted, while several comments are offered regarding numerical issues and potential surrogate modeling
techniques.

1. Introduction

Mechanical properties and behavior of textile composites can be
analyzed with multiple methods. Internal complexity of the mesoscale
(level of individual tows ≈ −10 3 m) is the main reason for the excessive
use of the finite element method (FEM) when it comes to such mate-
rials. However, even when numerical multiscale analyses are per-
formed, mostly an ideal representative volume element (RVE) is as-
sumed, without consideration of any geometrical imperfections. In fact,
manufacturing procedures of composite materials introduce several
sorts of defects.

For textiles, the first process step is the insertion of the fibers into
the resin impregnation system (resin bath), and then the assembly into
yarns/tows and the forming of their nominal shape. Afterwards, the
forming of the textile architecture follows, by interlacing the yarns
through processes like braiding, weaving, stitching and filament
winding. The tension of the yarns over the preform might cause dis-
tortion of some cross-sections along the yarn path, or of the nominal
path itself. Especially for braiding, the jamming action (tightening/
straightening of the yarns after every machine cycle) adds an extra
pinch to the yarn geometry. The dry fabric is then impregnated with
resin, so that the curing process begins, which is another main source of

imperfections [1,2].
Processes like resin transfer molding (RTM) are common for such

fabrics due to their scale. They exhibit a high level of compaction
during RTM, in order to reach considerable fiber volume fractions.
Pultrusion might also be applied, in which the fabric is pulled through a
mechanism directly after the curing chamber, or is cured while being
pulled through a heated die. Such processes induce out-of-plane com-
pression and cause the yarns to pressure each other. Other manu-
facturing factors which are potential sources of defects, are thermal
processing, filament winding, storage, deformation during moving, etc.
In industrial practice, their influence is taken into account by knock-
down factors, which are derived from experimental tests. For reducing
experimental effort, the uncertainties need to be taken into account by
realistic and reliable simulations.

The issue of geometrical imperfections and spatial variability
modeling of fiber yarns due to manufacturing processes, is mainly
partitioned in the literature into two problems: (a) the deformation of
yarns in a cross-sectional level and the divergence from ideally elliptical
or lenticular shapes, mostly expressed as yarn distortion, and (b) the
deviations from the assumed perfect trajectories of the yarn paths, a
concept predominantly entitled as yarn waviness. It should be clarified
that for most textile composites where weft yarns have an inherent

https://doi.org/10.1016/j.compositesa.2019.105639
Received 29 March 2019; Received in revised form 15 September 2019; Accepted 17 September 2019

⁎ Corresponding author.
E-mail address: georgios.balokas@tuhh.de (G. Balokas).

Composites Part A 127 (2019) 105639

Available online 21 September 2019
1359-835X/ © 2019 Elsevier Ltd. All rights reserved.

T



periodic variation (called trend), the term yarn waviness stands for the
additional stochastic deviations, besides the systematic variation. Yarn
waviness can be modeled for short-range, meaning that deviations are
limited within the size of a unit cell, or long-range yarn paths.

Production-induced imperfections have been basically handled by
researchers as uncertainties, thusly modeled within a stochastic ap-
proach. Nevertheless, several studies with a deterministic scope can be
found, aiming for a precise representation of an architecture, captured
by scanning particular textile specimens. Šejnoha and Zeman [3] de-
scribed the unit cell of a plain weave textile with several independent
parameters, which were used as design variables to a minimization
routine, aiming to approximate the macroscopic behavior of a mea-
sured material. Mahadik and Hallet [1] examined the influence of yarn
waviness on the compressive strength and failure properties of a woven
textile composite, however purely from an experimental point of view.
An interesting paper by Green et al. [4], highlighted that idealized
multiscale models overestimate stiffness and strength of woven com-
posites, by comparing results with experimental data. A numerical tool
based on the multi-chain digital element method, was used to predict
the deformations during weaving and molding, which were transferred
to unit-cell models implemented with the TexGen software [5], leading
to distorted sections and yarn paths. The realistic models produced
results closer to the experimental data. Furthermore, Xu and Qian [6]
recently developed an analytical model able to include the yarn dis-
tortion effect, by introducing the twist angle of interior yarn filaments
and predict the elastic tensor of the material. Finally, a recent study by
Wang et al. [7] investigated the jam-action-induced yarn deformation,
by perturbing the centerline of the yarns of a braided composite and
developing a progressive failure algorithm for the stress-strain response
on a macroscale level.

As far as the stochastic modeling is concerned, two main approaches
have been widely applied in the literature. The first one was introduced
by Yushanov and Bogdanovich [8,9] and is based on a stochastic metric
theory. The random yarn path is specified by a position vector in a
parametric form, which is bisected into a deterministic and a stochastic
part. The key point of this approach is the local stochastic metric basis,
through which the orientation of the random yarn is obtained. The
stochastic stiffness matrix can then be evaluated with an orientation
averaging procedure. Wang and Wang [10–12] expanded this theory, to
be able to consider yarn distortion as well. Moreover, Guo-dong et al.
[13] implemented this method into a multiscale algorithm to also
predict the strength of four-directional braided composites. In all, al-
though the method only needs the mean path and standard deviations
of the local tangents as uncertainty input, implementing the theoretical
formulation to an actual model is not straightforward, as it demands a
solid background on differential geometry.

The second approach, was initially proposed by Blacklock et al.
[14]. At first, the centroid path vector is once again decomposed into a
non-stochastic, periodic part and a second part where the stochastic
deviations are added. The level of information extracted from CT scans,
is increased by the usage of the Reference Period Collation (RPC)
method, which was first introduced by Bale et al. [15] to classify de-
viations into stochastic and non-stochastic. Subsequently, a virtual
specimen generator is established. In order to model stochastic devia-
tions corresponding to the specimen, a Markov Chain Monte Carlo
(MCMC) method is calibrated from the correlation matrix having been
extracted from the data. The original study of Blacklock et al. generated
low-order representations for a rather obsolete binary model. A fol-
lowing study [16] expanded the method to 3D yarn representations.

Vanaerschot et al. have studied the yarn waviness problem and
worked extensively on the latter method. In [17], they extended the
characterization procedure to polymer textiles arranged in a laminate
with different topology. In [18], the virtual specimen generator was
implemented via the WiseTex software [19] for a woven textile lami-
nate. A novel approach for the representation of long-range yarn var-
iations can be found in [20]. Random fields generated with the

Karhunen-Loève expansion are used, so that the cross-correlation be-
tween different yarns is also considered, aside from the auto-correlation
within the same yarn. Moreover, a general and instructive paper dis-
cussing different modeling techniques is presented in [21], while in
[22] a recent extension towards more sophisticated 3D textile compo-
sites is provided, considering yarn distortion as well. Applications of
this technique in permeability of fabrics were recently published
[23,24]. Skordos and Sutcliffe [25] were among the first to employ
random fields for yarn misalignment modeling and study the effect on
the forming of woven composites. The generation of random realiza-
tions was performed without MCMC. There are also some further stu-
dies available, independent from the two basic stochastic modeling
approaches described above [26–28].

The stochastic techniques previously reported, contain a certain
level of complexity, especially when it comes to implementation. This
paper proposes alternative modeling methods (one for each problem)
based on the random field theory, able to simulate yarn distortion and
waviness in a straightforward manner. Both formulations rely on the
concept of randomizing a motif (systematic or recurring theme) with a
clear pattern, with the first one inspired from random inclusions stu-
dies, while the second uses Gaussian Process/Kriging modeling. The
proposed methodologies are flexible enough to allow calibration from
captured data and, thus, lead to realistic stochastic mesoscale simula-
tions. To the authors’ knowledge, random fields have not been applied
for yarn distortion modeling in previous studies, while a thorough
discussion is made on the advantages of the proposed Kriging approach
over existing waviness modeling methods (Section 3.4). The theoretical
modeling is presented in detail and applied to a 3D triaxially braided
composite with short-range spatial deviations. The current study pro-
vides a forward uncertainty quantification problem for the elastic and
ultimate tensile strength properties extraction, yet with arbitrary input
due to lack of experimental data. The effect of the yarn distortion and
waviness to both stiffness and strength output variability is highlighted.
Moreover, the methodology is designed to fit FE models and is, herein,
implemented via the voxel method [29,30]. Numerical issues arising
from this approach are discussed as well. Finally, some remarks are
made about the feasibility of surrogate models.

2. Yarn distortion modeling

2.1. General description

It is widely evident from CT-scan captured images that textiles
display a considerable amount of asymmetries on a cross-sectional
level. Modeling the yarn section in the mesoscale as e.g. a perfect el-
lipse, is a rough approximation which in most cases leads to over or
understatements, concerning response and results. It is obvious by ob-
serving images from the literature [31,2,32] like in Fig. 1, that almost
all shapes deviate in a random manner, for both the orthogonal and
angle interlock woven architecture, while the basic trend could be ei-
ther an ellipse, a power ellipse, or a lenticular shape (e.g. section be-
tween two circles). Occasionally, the cross-section could exhibit a
greater number of waves on the perimeter, leading to highly irregular
shapes.

Previous attempts to simulate this effect included the character-
ization of distortion through a twist angle, which is a description of the
twist extent of the yarn about the tangent vector of the yarn path, and
consequently representation of the angle with a random variable [11].
The modified stochastic metric theory [10] additionally uses the semi-
major and minor axes of the cross-section. More simplified approaches
also existing in the literature, with only random diameters or cross-
section heights and widths [24,26], are not suitable for tailoring the
randomly distorted shapes. More flexibility in the variation of the sec-
tion shape along its perimeter, can be achieved with a one-dimensional
(1D) random field. In the next section, a formulation which can simu-
late the spatial variability of the distorted yarns by randomizing a trend
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shape (e.g. an ellipse or a lenticular shape), is proposed.

2.2. Formulation

The methodology is inspired from former studies on the stochastic
representation for random inclusions of arbitrary shape in multiphase
materials [33,34]. These inclusions (also called ”rough circles”) are
generated within the context of level set functions and are expressed as
random functions of the form:

= − −x x c xψ θ R ϕ θ( , ) ‖ ‖ ( ( ), ) (1)

where x is the spatial location of a point in the domain, c is the center
of the arbitrary inclusion, xR ϕ θ( ( ), ) is the radius of the inclusion ex-
pressed as a random field, xϕ ( ) is the polar angle at position x which
lies within the interval π[0, 2 ] and lastly θ stands for the randomness of
a quantity. The random field for the radius of the rough circle, is de-
fined as [34]:

= + +
+ + +

R ϕ θ Y θ Y θ k ϕ
Y θ k ϕ Y θ k ϕ Y θ k ϕ

( , ) 0.2 0.03 ( ) 0.015{ ( )cos( )
( )sin( ) ( )cos( ) ( )sin( )}

1 2 1

3 1 4 2 5 2 (2)

In the above equation ∈ −Y θ U( ) ( 3 , 3 )i , with = …i 1, ,5, are
independent and identically distributed, uniform random variables. Y1

controls the mean reference radius, while the rest of the random vari-
ables control the amplitude of the deviation from the rough circle. The
period of oscillations of the random shape around the perfect circle is
defined from the two deterministic constants k1 and k2 inside the har-
monic functions. The choice of the parameters (0.2, 0.03, 0.015) is not
justified by these studies.

However, it is evident that Eq. (2) is derived from a Fourier series,
restricted to describe a superposition of two distortions with wave
lengths k1 and k2. As an extension, a more general description of the
random field would be:

∑= + +
=

∞

R ϕ θ a a θ iϕ b θ iϕ( , )
2

( )cos( ) ( )sin( )
i

i i
0

1 (3)

In order to get the same representation from the generic Eq. (3) and
its subset (Eq. (2)), the Fourier coefficients are determined by:

= + = =
= =

a Y a Y a Y
b Y b Y

0.2 0.03 , 0.015 , 0.015 ,
0.015 and 0.015

k k

k k

0 1 2 4

3 5

1 2

1 2 (4)

where if i ≠ k1 and i ≠ k2, the coefficients are equal to zero.
The basic idea for implementing the above to the stochastic yarn

distortion problem, is that random fields in the form of Eq. (2) or Eq. (3)
can be tailored around any desired section shape, just by expressing the
section into the polar coordinate system and expanding the semi-minor
and semi-major axes accordingly. Consider, for instance, an elliptical
shape in a parametric form, given width w and height h. It is described
as:

= ⩽ ⩽X t w πt t( )
2

cos(2 ), 0 1 (5)

= ⩽ ⩽Y t h πt t( )
2

sin(2 ), 0 1 (6)

If the width and height expand to random fields, namely:

= + +
+ + +

w ϕ θ w Y θ Y θ k ϕ
Y θ k ϕ Y θ k ϕ Y θ k ϕ

( , ) 0.03 ( ) 0.015{ ( )cos( )
( )sin( ) ( )cos( ) ( )sin( )}

0 1 2 1

3 1 4 2 5 2 (7)

= + +
+ + +

h ϕ θ h Y θ Y θ k ϕ
Y θ k ϕ Y θ k ϕ Y θ k ϕ

( , ) 0.03 ( ) 0.015{ ( )cos( )
( )sin( ) ( )cos( ) ( )sin( )}

0 1 2 1

3 1 4 2 5 2 (8)

where w0 and h0 are the mean values, Eq. (5) and (6) turn into random
fields as well, thus can form a random elliptical shape for every reali-
zation θ. Fig. 2 presents such realizations and also the effect of the
constants k1 and k2, for an ellipse of width 0.5mm and height 0.2mm.
The Y1 variable was kept constant for Fig. 2b, Fig. 2c and Fig. 2d, in
order to demonstrate the distortion level.

The weft yarns of braided textiles are mostly simulated with lenti-
cular cross-sections, because of the jamming-action of the braiding
machine and the consequent stretching around the preform. Let two
circles of radii r1 and r2 on a common Cartesian coordinate system, offset
vertically by distances <o r1 1 and <o r2 2 from the coordinate center.
The lenticular shape is defined as their intersection and all the above
parameters can be calculated from the desired width w, height h and
distortion d of the section (Fig. 3):

= + −
−

r w h d
h d
( 2 )

4( 2 )1
2 2

(9)

= + +
+

r w h d
h d
( 2 )

4( 2 )2
2 2

(10)

= − +o r h
21 1 (11)

= −o r h
22 2 (12)

For the particular case of a symmetric section, the distortion para-
meter d equals to zero. The reader is referred to Appendix A for the
mathematical proof of Eq. (10). The parametric equations for the len-
ticular section are given as:

= ⎧
⎨⎩

⩽ ⩽
⩽ ⩽

X t
r γ t
r γ t

( )
sin , if 0 0.5
sin , if 0.5 1

1

2 (13)

= ⎧
⎨⎩

+ ⩽ ⩽
− + ⩽ ⩽

Y t
r γ o t

r γ o t
( )

cos , if 0 0.5
cos , if 0.5 1

1 1

2 2 (14)

where the angle γ is calculated by the following formula:

Fig. 1. Mesoscale cross-sections of yarns [32].
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=
⎧

⎨
⎪

⎩⎪

− ⩽ ⩽

− + ⩽ ⩽

( )
( )

γ
t t

t t

(1 4 )arcsin , if 0 0.5

( 3 4 )arcsin , if 0.5 1

w
r

w
r

2

2

1

2 (15)

As in the elliptical case, uncertainty is introduced through the expan-
sion of the size parameters into random fields: =w w ϕ θ( , ) and
=h h ϕ θ( , ) (see Eqs. (7) and (8)). The stochastic equations are obtained

by propagating the uncertainties to Eqs. (13) and (14). Results for

random realizations are shown in Fig. 4 for different cases of k k,1 2, for a
lenticular section of w=1mm and h=0.2mm. Once again, Y1 was
kept constant for Fig. 4b, c and d, in order to demonstrate the distortion
level.

It is noted that using the Fourier series of Eq. (3) requires to care-
fully choose the amplitudes ai and bi as well as the upper limit of the
series. On the other hand, the great advantage of the general approach
is that in case of measurement data availability for the yarn distortion,
the Fourier coefficients and their stochastic distribution can be de-
termined directly from the data. A similar methodology as in [35] could
be used for this purpose, e.g. use of the discrete Karhunen-Loève
transformation to the measured data covariance matrix, which leads to
uncorrelated Fourier coefficients describing the stochastic distribution
of deviations from the nominal yarn shape. Furthermore, the correla-
tion between adjacent yarns (cross-correlation) can be modelled by
correlating the Fourier coefficients of the yarn cross sections (e.g. cor-
relating a θ( )i

k and a θ( )i
j for yarns k and j). In case of available mea-

surement data, these correlations can be determined as a function of the
distance xϕ ( ) of the cross sections. That way it could be possible to
avoid modelling of textile compaction to obtain yarn shapes at cross-
over locations.

2.3. Modeling implementation

Implementation of the above formulation to a FE analysis, demands
a modeling software that treats yarns as solid volumes, representing the
approximate bounds of the fibers contained within them. This is fea-
sible with a textile software such as WiseTex or TexGen, where yarn
paths are represented by a 1D curve defined in 3D space, while yarn
sections are described by 2D shapes emerging when cutting the yarn by
a plane perpendicular to the yarn path tangent. The proposed metho-
dology ensures continuity of the random section, thus application to the

Fig. 2. Randomly generated elliptical cross-sections.

Fig. 3. Lenticular shape definition. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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aforementioned softwares is evidently feasible.
Fig. 5 presents TexGen models of an elliptical, warp yarn (red) and a

lenticular, interwined, weft yarn (green), as would emerge from a
braiding process. In Fig. 5b the cross-sections are randomly generated
to account for distortion, as opposed to Fig. 5a, where the ideal model is
illustrated. This snapshot could represent distortion due to compaction,
as the cross-sections, even though randomly generated, are constant
along the yarn path. Implementation of variable sections is also fea-
sible, and even with different oscillation periods, by modifying k k,1 2 on
each discrete section along the yarn length. This occurs because of the
interpolation algorithms of TexGen between specified cross-sections,
defined as:

= + − ⩽ ⩽ ⩽ ⩽C t μ A t B t A t μ t μ( , ) ( ) [ ( ) ( )] , 0 1, 0 1 (16)

where C t( ) is the interpolated section between sections A t( ) and B t( )
and μ varies from 0 to 1 linearly with the distance between them.
Options for linear spline, natural cubic spline and Bezier spline inter-
polation are offered. Such techniques could be potentially used for
pinching modeling, induced by jamming-action. An example is shown
in Fig. 6.

3. Yarn waviness modeling

3.1. General description

Contrary to the common assumption in numerical studies, warp and
weft yarn geometrical paths of textile composites are neither straight,
nor perfectly harmonic. In fact, physical samples show random fluc-
tuations from the trajectory of the ideal paths, as in Fig. 7 where pro-
cessed images of textile layers from the literature are shown, after CT
image enhancement techniques.

As mentioned in the introduction, this problem has first been

addressed with a local stochastic metric basis theory, and later with a
MCMC methodology able to generate stochastic paths complying with
data from physical samples. The early approach requires good knowl-
edge of differential geometry, while the random walk transition matrix
of the MCMC method could be troublesome to generate. A novel ap-
proach, employing the Kriging model for generating stochastic devia-
tions of yarn paths, is presented in the next section.

3.2. Formulation

The basic principle of the yarn waviness problem, regardless which
method is being used, is that yarn paths can be statistically represented
by partitioning their components into periodic, systematic variations
and non-periodic, stochastic deviations. In mathematical terms, each
yarn position x y( , )i i on the centerline, can be regarded as shifted by a
deviation vector u v( , )i i from the location x y( ¯ , ¯ )i i , that the yarn would
hypothetically have in the perfect path:

= +x y x y u v( , ) ( ¯ , ¯ ) ( , )i i i i i i (17)

The Kriging model (also known as Gaussian process modeling) ax-
iomatically holds the distinction between trend and deviation. Let
= = …x x i N{ , 1, , }i be a vector of the input space (called experimental

design - ED) and Y the corresponding scalar output. The basic as-
sumption is that Y can be approximated by a single realization of a
Gaussian random field:

≈ = +x β f x xY M σ Z( ) ( ) ( )T 2 (18)

The first term = ∑=β f x β f x( ) ( )T
i
P

i i1 characterizes the trend of the field
via linear regression, with β being the coefficient vector and f the set of
P-order regression functions (generally Vandermode polynomials). The
variance term includes the Kriging variance σ2 and a zero-mean, unit
variance Gaussian random field xZ ( ). The spatial correlation of Kriging

Fig. 4. Randomly generated lenticular cross-sections.
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is controlled by the autocorrelation function of xZ ( ), namely
− ′ θR x x(| |; ) for two points x and ′x , where θ are the correlation length

parameters to be computed. Assuming a kernel type (e.g. exponential,
square exponential, Matérn, etc.) for the above function, the correlation
matrix R of the ED is computed:

=
⎡

⎣

⎢
⎢
⎢

…
…

⋮ ⋮ ⋱ ⋮
…

⎤

⎦

⎥
⎥
⎥

R

R x x R x x R x x
R x x R x x R x x

R x x R x x R x x

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )

N

N

N N N N

1 1 1 2 1

2 1 2 2 2

1 2 (19)

Kriging parameters β and σ2 are calibrated via the generalized least-
squares method, for a specific value of the correlation length parameter
of the Gaussian field ̂θ , as:

̂ = − − −β θ F R F FR Y( ) ( )T 1 1 1 (20)

̂ = − −−θ Fβ R Fβσ
N

Y Y( ) 1 ( ) ( )y
T2 1

(21)

where = = … = …F f x i N j P{ ( ), 1, , , 0, , }ij j i is the regression matrix at
the input design points. For the calculation of the optimum correlation
length ̂θ , a minimization procedure should be applied in either of the
following estimates:

̂ = ⎡
⎣

− − ⎤
⎦

−θ Fβ R Fβ Rmin
N

Y Y detarg 1 ( ) ( )( )ML
T N1 1

(22)

̂ = − − − −θ R R Rmin Y diag Yarg [ ( ) ]CV
T 1 1 2 1 (23)

Fig. 5. Modeling representation of yarn distortion: (a) perfect model and (b) randomly generated imperfections. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Yarn pinch modeling via interpolation of variable, randomly generated
sections. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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where ML stands for Maximum Likelihood and CV for Cross-Validation.
The latter approach is more robust if the autocorrelation function is not
known a priori, according to [36]. Consequently, predicting the re-
sponse of a new point ∉ = = …xx x i N{ , 1, , }i0 of the input space, is
feasible with the following formulas for the mean value and variance:

= + −−f β r R Fβμ x x x Y( ) ( ) ( ) ( )T T
0 0 0

1 (24)

̂ ⎜ ⎟= ⎛
⎝
− 〈 〉⎡

⎣
⎤
⎦
⎡
⎣⎢

⎤
⎦⎥
⎞
⎠

f r F
F R

f
r

σ x σ x x
x
x

( ) 1 ( ) ( ) 0 ( )
( )y y

T T T2
0

2
0 0

0

0 (25)

where ̂= −r θx R x x( ) (| |; )i0 0 is the correlation between the unknown
point x0 and the ED x , while f x( )0 is the set of regression functions
evaluated at x0. It must be noted that Kriging is an exact interpolator,
meaning that:

̂= = ∀ ∈ xμ x M x σ x x( ) ( ), ( ) 0,i i y i i
2 (26)

3.3. Modeling implementation

The yarn waviness is taken into account by mapping the variation of
the yarn path to the coordinates along the center line. Assuming that
the centerline coordinates are given in a 3D Cartesian system (Fig. 8a),
the first step is to establish a transformation into a 2D system (Fig. 8b),
where x coordinate is the in-plane direction of the yarn and y the out-of-
plane direction (undulation). The 2D system allows acquiring the sys-
tematic yarn position x y( ¯ , ¯ )i i of Eq. (28). A few pairs are enough as an
ED, to fit a Kriging model describing the function
= = …y f x i N¯ ( ¯ ), 1, ,i i .
Afterwards, by applying the formulation described in the previous

section, the yarn path can be fully represented by the Kriging predictor
μ x( ) of Eq. (24), for any point x outside the ED. Once the systematic
curve is predicted, random path generations can eventually be ex-
tracted from Eq. (18), where the parameters β and σ2 have already been

computed from the training procedure (Eq. (20)), while a zero-mean,
unit variance random field realization xZ ( ), can be generated by either
the spectral representation method [37], or the Karhunen-Loève ex-
pansion [38]. Formulation for simulating a random field with the
spectral representation method can be found in Appendix B.

For illustrative purposes, the proposed approach is demonstrated on
a non-periodic, harmonic function. Let the function =f x x x( ) sin( )
within the interval [0, 10]. Considering 10 equally spaced points within
this interval as an ED, the Kriging predictor μ x( ) of Eq. (24) can per-
fectly represent the function with just a first-order Vandermode poly-
nomial, as shown in Fig. 9, where the black, dashed line is the exact
function and the blue, continuous line is the Kriging representation.
Nevertheless, when using Eq. (18) for generating random paths, the
regression order p should be slightly higher, depending on the data size
N available (by definition ⩽p N ). Artificial oscillations due to Runge’s
phenomenon must be avoided. Random generations with the use of Eq.
(18) are also visible in the same figure. Considering the kernel type, a
Gaussian kernel was employed for both this example and the applica-
tion of the next section and is highly recommended due to its strong
generalization capabilities.

The correlation and variance factors of the zero-mean Gaussian field
xZ ( ) of Eq. (18), offer flexibility to the Kriging representation and add

desired characteristics to the random path. The effect of the correlation
length parameter is presented in Fig. 10a. It is evident that Kriging is
able to ”wrap” the random generation around the systematic, non-sto-
chastic curve effectively. The effect of variance is shown in a parametric
plot in Fig. 10b, for a constant correlation length value. The afore-
mentioned variance parameter of xZ ( ), is not to be confused with the
scalar Kriging variance parameter ̂σy

2 of Eq. (21).

3.4. Discussion

From a purely mathematical perspective, the essential target here is
to generate non-stationary random fields tailored around specific

Fig. 7. Yarn waviness illustration from different sources: (a) [12], (b) [22] and (c) [17]. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 8. Coordinate system transformation in TexGen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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trends. The proposed methodology holds several advantages. As men-
tioned, the random Kriging paths can be calibrated with specific sta-
tistical characteristics, by adjusting the correlation and variance para-
meters of the zero-mean random field xZ ( ). This means that correlation
information from scanned samples, can be directly introduced into the
Kriging formulation, either by extracting correlation lengths from the
deviations’ correlation matrix and putting them into the kernel of the
autocorrelation function of Z x( ), or if using the Karhunen-Loève ex-
pansion, by decomposing the actual correlation matrix [21]. Re-
construction of random paths is then straightforward, as there is no
need for a MCMC algorithm.

In addition, smoothing operations due to the discrete nature of
Markov Chains are not required, which makes the proposed modeling
attractive. Another drawback of the Markov Chain approach is the in-
ability to simulate cross-correlated data between different yarns. As a
series expansion method, the proposed approach can take cross-corre-
lation into account [39], while being more efficient than the Karhunen-
Loève approach in [20], as there is no integral equation to be solved
numerically. Furthermore, besides short-range periodic paths extracted
from RPC methods, Kriging is also able to represent non-periodic paths.
Such cases could rise from symmetry-breaking features (e.g. heat ex-
changers, aerofoils, etc.), when attempting to quantify randomness on
aperiodic, long-range textile preforms.

Random deviations of the fiber yarn path could as well be modeled
with Fourier series. The procedure is similar to the one given in Section
2.2 for the yarn cross-section. However, compared to the Kriging model
the following drawbacks emerge: (i) as mentioned, the random yarn
path is not necessarily a periodic function. Modeling a non-periodic
function is possible with Fourier series, but leads to inaccuracies at the

edges of the domain of the approximated function [40]. (ii) The spatial
correlation of the points along the yarn path is captured by the corre-
lation of the (large number of) Fourier coefficients. Adjusting the de-
viation amplitude or frequency is much less straightforward compared
to Kriging, because a multitude of Fourier coefficients needs to be
modified at the same time, in order to describe effects as shown in
Fig. 10. (iii) For a small number of measurement points (i.e. large
distance), the number of Fourier coefficients that may be used is lim-
ited. When using Fourier terms with a period similar to -or smaller than-
the distance of two measurement points, an artificial short wave os-
cillation is introduced in the approximation. The Kriging model how-
ever, provides a smooth approximation even for a small number of
points.

4. Application to a 3D triaxially braided multiscale model

4.1. Model description

The effect of yarn distortion and short-range yarn waviness is de-
monstrated herein, within a multiscale framework of a triaxially
braided material model. The proposed modeling approaches are applied
on a mesoscale level to create random RVEs with stochastic geometric
imperfections. The response variability is calculated in terms of mac-
roscale stiffness and strength scatter. The model is a typical 3D triaxi-
ally braided layer, where the axial (or warp) yarns lay straight and
equally spaced, while the weft yarns interlace the axial yarns at an
angle, according to the pattern shown in Fig. 11a. An isometric view of
the RVE extracted from this pattern and its dimensions, are presented in
Fig. 11b. The section area of the weft yarns (green and blue) is lenti-
cular while the axial yarns (red) are of elliptical shape. Regarding the
material properties, AS4 Carbon Fibers and EPON 9504 resin for the
polymer matrix are used. The values are given in Table 1 along with
some geometrical model parameters. For further information regarding
the model, the reader is referred to [41].

4.2. Stiffness and strength prediction algorithms

The response this study will focus on, is the effective stiffness and
strength properties of the macroscale. Reliable estimation of the me-
chanical properties for such complex materials requires numerical
multiscale schemes. Regarding the elastic properties, a two-step
homogenization scheme is employed as in a previous study by the au-
thors [41].

As a first step, assuming transversely isotropic properties for the
carbon fibers and isotropic properties for the matrix on the microscale,
the effective stiffness properties of the yarns are calculated with the
Chamis analytical criterion [42]. For the second step, these properties
are provided to the mesoscale RVE, where a numerical homogenization

Fig. 9. Kriging random generations of a non-periodic harmonic function. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Parametric plots in terms of correlation and variance for randomly generated Kriging representations of a non-periodic harmonic function. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

G. Balokas, et al. Composites Part A 127 (2019) 105639

8



is performed with TexGen for the computation of the effective ortho-
tropic stiffness properties of the braided layer at the macroscale. Peri-
odic boundary conditions along with the unit-stress method are applied,
while a voxel mesh is created in Abaqus [43] for the numerical solution
of all six load cases required for the elastic tensor. For detailed in-
formation on the numerical homogenization procedure, the reader is
referred to [41].

Concerning strength properties, the current study deals with the
ultimate strength prediction of the macroscale, solely under uniaxial
tension. Once more, a two-step multiscale scheme is employed, how-
ever both steps include FE models in this case. For the micro-to-meso-
scale transition, a typical hexagonal RVE arrangement is applied in
order to extract the effective strength properties of the yarns. Prescribed
displacement boundary conditions according to Barbero [45] are ap-
plied, whereas the required load cases for longitudinal tension/com-
pression, transverse tension/compression, in-plane shear and out-of-
plane shear properties are shown in Fig. 12. The fiber material model is
considered as linear elastic up to brittle failure, according to a max-
imum stress criterion:

⩾
⩾

σ X
σ X| |

f ft

f fc (27)

while the matrix accounts for both permanent deformation due to
plasticization, according to the von Mises plasticity model of Abaqus,
and fracture failure initiation according to the Christensen criterion
[46]:

⎜ ⎟+ ⎛
⎝

− ⎞
⎠

⩾
σ

X X X X
I1 1 1vm

mc mt mt mc

2

1
(28)

The above criterion is a modified version of von Mises, considering the
discrepancy between compressive and tensile strength due to the hy-
drostatic pressure (σvm is the von Mises stress and = + +I σ σ σ1 1 2 3 is the
first stress invariant). All symbols are reported in Table 1.

At the second step of the strength prediction algorithm, the me-
soscale RVE extracted from TexGen is properly modified to account for
failure of the yarns and matrix, while the stresses are monitored within
a displacement control solution method. Initiation of failure for the
yarns is predicted according to the Hashin criterion [47], where the
following four failure modes (fibre failure in tension, fibre failure in
compression, matrix failure in tension and matrix failure in compres-
sion respectively) are associated with the yarn damage:
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In these equations, σi is the stress component in i direction, τij are the
components of the shear stresses and X X Y Y S S, , , , ,t c t c 12 23 are the ef-
fective strength properties of the yarns, having been extracted from the
previous step (see also Fig. 12). The matrix material model remains the
same as in the first step.

The progressive damage model is implemented for all scales as a
user defined field subroutine (USDFLD) in Abaqus, based on the in-
stantaneous stiffness degradation concept. Namely, when stresses at an
integration point of the model satisfy the failure initiation criterion, its
stiffness is reduced to a specific value according to the relevant failure
mode and the respective degradation factor. It is a popular choice
among researchers [48–50], since it can be easily implemented while
not adding any convergence difficulties to the progressive failure al-
gorithm. Especially for probabilistic analyses, this is a viable option
since convergence, robustness and efficiency are assured, as opposed to
an UMAT approach. The algorithm is illustrated in a flow chart for
better comprehension (Fig. 13), including the degradation factors
chosen for both scales according to [44]. It should be noted, that after
damage localization (post-failure path) the described approach is not

Fig. 11. Triaxial braiding pattern: (a) Top view, (b) TexGen RVE mesoscale model. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Material and geometric parameters of braided model.

Parameter Symbol Value

Longitudinal fiber modulus Ef 1 227.53 GPa
Transverse fiber modulus Ef 2 16.55 GPa

In-plane shear fiber modulus Gf 12 24.82 GPa
Out-of-plane shear fiber modulus Gf 23 6.89 GPa

In-plane fiber Poisson’s ratio v12 0.2
Out-of-plane fiber Poisson’s ratio v23 0.25

Tensile fiber strength Xft 3.16 GPa
Compressive fiber strength Xfc 0.728 GPa

Matrix Young’s modulus Em 3.5 GPa
Matrix Poisson’s ratio vm 0.38
Matrix tensile strength Xmt 60.18MPa

Matrix compressive strength Xmc 107.37MPa
Matrix plastic yield σy 69MPa

Yarn volume fraction YVF 80%
Braid angle BA 45°

Undulation angle UA 57°
Total fiber volume fraction VFtot 48–50%
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reliable; firstly, because the homogenization problem under periodic
conditions becomes ill-posed, but also because the error due to the
energy dissipation negligence would become crucial. Moreover, the
assumption of small strains (geometrically linear analysis) becomes
invalid after damage initiation.

Table 2 presents the results of the previously discussed multiscale
methodologies for stiffness and strength prediction, if applied to the
braided model of Section 4.1, when no uncertainties have yet been
implemented (deterministic case). It is highlighted, that the nonlinear
response is highly dependent on whether the yarns are in contact or not.
As shown in Fig. 14, a stiffer model with a volume fraction of 49.86%
reaches a failure strength of 230.967MPa, while a slightly less stiff
model ( =V 47.98%f ) with a thin film of matrix around the yarns,
reaches a higher ultimate strength (281.081MPa). For this study, the
unfavorable case of the stiffer model will be used as nominal response,
while the distortion and waviness variability is expected to cover all
possible scenarios.

4.3. Numerical issues

The complex braided architecture of the mesoscale seen in Fig. 11,
requires high-fidelity FE modeling to be sufficiently captured. Meshing

such surfaces with tetrahedral elements (i.e. conformal meshing) may
result in bad element shapes, and since the mesh generation needs to be
automated, this approach cannot be applied. The voxel (volume pixel)
technique is based on hexahedral elements of the same size with aspect
ratio of one. This technique offers easier mesh generation, with ele-
ments of higher accuracy than those of conformal meshes, and can
discretize in a robust way models of high complexity.

The voxel mesh is adopted in this study due to the robustness and
the complete lack of bad elements; features vital for a study of prob-
abilistic nature. Convergence analyses have been conducted for both
the stiffness and strength outputs, and the results are presented in
Fig. 15. In both plots, the horizontal axis labeled as ”voxels”, accounts
for the number of elements located in the direction of the longest aspect
of the RVE. For the strength case of Fig. 15b, the top horizontal axis
demonstrates the convergence related to the number of analysis steps in
Abaqus, due to the USDFLD subroutine. The routine has access to ma-
terial point quantities only at the start of each increment (explicit ap-
proach), hence the accuracy of the results is also step-dependent [43].
As a trade-off between accuracy and efficiency, 120 voxels (equals to
700920 DOFs) where each of them has an aspect of approximately
0.02mm, and 120 steps are selected for all analyses further on. The
above mesh choice is also assumed sufficient to represent the geometric

Fig. 12. Hexagonal microscale RVE and required load cases for the effective yarn properties. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 13. Strength prediction algorithm via USDFLD approach: the microscale model reduces the fiber stiffness by 1% and the matrix stiffness by 10% for each failed
element; for the mesoscale model where the Hashin criterion is applied, d1 equals to 0.07 for tension (Eq. (29)) and 0.2 for compression (Eq. (30)), while d2 equals to
0.14 for tension (Eq. (31)) and 0.4 for compression (Eq. (32)). For combined shear longitudinal or transverse damage, the shear moduli of the yarn G G,12 13 and G23

are degraded as well by = − − −d d d1 (1 )(1 )3 1 2 [44].
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deviations for the stochastic analysis of distorted yarn sections and
waviness.

Nonetheless, the voxel technique carries some burdens as well. A
fine voxel mesh is computationally demanding and combined with
probabilistic methods of repetitive type, could be proven prohibitive.
Another issue is the possible oscillation of stresses at the matrix/yarn
boundary because of the pointy interface surfaces, which may affect
strength predictions. Several studies have addressed this problem, by
applying non-local methods and smoothening either the stresses or the
voxel geometry. Other studies however, have shown that for uniaxial
cases the error can be neglected [51,30]. The focus of the current study
is on variability due to aleatory uncertainties. Such systematic mod-
eling errors (epistemic uncertainty) will not affect the variance results
and will not be considered. They will, nonetheless, be investigated in a
future study entirely dedicated to uncertainty quantification of textiles’
strength properties.

Another numerical issue is the intersections between yarns that
could possibly emerge in a stochastic realization of the distorted geo-
metry. TexGen eliminates most of the small intersections as the mesh is
generated, via a method based on interference depth, which iteratively
adjusts the node position in the volume mesh until the intersection is
reduced to a given tolerance [5]. This of course leads to slight loss of
yarn volume, which adds an extra error to the procedure. A potential
gross error was avoided in this work, with a simple threshold in the
algorithm and an acceptance-rejection sampling technique (accept only
the samples found less than this threshold value, while in the opposite
case generate another sample).

5. Response variability estimates

The triaxially braided layer presented in the previous section, is

investigated herein under stochastic yarn distortion and waviness. The
purpose of this study is to implement the proposed uncertainty mod-
eling framework and examine the scatter of the response, in terms of
stiffness and strength at a macroscale level. Due to lack of data, a for-
ward uncertainty propagation problem is implemented, while para-
metric analyses with respect to the distortion and waviness amplitude
of the input, are performed. The random RVE used in the multiscale
scheme, composes a short-range application of spatial variations. As a
result, the cross-correlation between different yarns is not taken into
account. However, as discussed in Section 3.4, the methodology is able
to incorporate this assumption.

5.1. Yarn distortion

The same level of distortion was introduced for both the warp (el-
liptical shape) and weft (lenticular shape) yarns of the model. The
random cross-section of the yarns is assumed constant along the RVE.
Three parametric cases were conducted with an increasing distortion
amplitude, namely k1=0, k2=3, k1=0, k2=6 and k1=4, k2=6. These are
the same cases used in Section 2.2, so a graphical sense of the distortion
level can be acquired from Figs. 2 and 4. However, the value of random
parameter Y1, which controls the mean reference width and height, thus
the volume of the yarns, was kept constant in these figures. A sense of
the maximum deviations that can occur from the nominal sections, can
be acquired by calculating an extreme value for the most distorted case
with k1=4, k2=6. A potential maximum deviation of 0.05mm from
Fig. 4d for the lenticular yarns, if added with an extreme case of
variability for Y1 (e.g. three standard deviations away from the mean)
results in a total maximum deviation of 0.15mm. According to mea-
surements from a twill carbon fabric in [24], this value is within rea-
listic range. Moreover, the variance values for yarn heights and widths

Table 2
Deterministic results of the triaxially braided model.

Mesoscale (yarn) Stiffness (GPa)
E11 E22 E33 G12 G13 G23 ν12 ν13 ν23

182.72 11.88 11.88 8.38 8.38 4.69 0.24 0.24 0.27
Strength (MPa)

Xt Xc Yt Yc S12 S23
2546.62 590.63 43.38 160.15 41.68 31.33

Macroscale (layer) Stiffness (GPa)
E11 E22 E33 G12 G13 G23 ν12 ν13 ν23

34.53 12.05 7.46 7.09 3.17 3.68 0.52 0.07 0.55
Strength (MPa)

Xt
ult

230.97

Fig. 14. Comparison of nonlinear behavior regarding the contact of the yarns. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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found in the same reference (in terms of coefficient of variation (COV),
a normalized measure of variance equal to the standard deviation σ ,
divided by the mean value μ), are comparable with the COV offered by
Y1, for example for the width of the elliptical yarns (Eq. 7):
COV = = =w σ Y( ) (0.03 )/0.5 0.03/0.5 6%1 .

5.1.1. Stiffness properties
Seeking for an adequate number of random simulations, the COV is

plotted against the increasing amount of model evaluations. The re-
sponse variability of all elastic parameters has practically converged
after 300 Monte Carlo simulations, as it can be seen in Fig. 16, for the
case of k1=0, k2=3. The same stands for the rest of the cases.

Regarding the variability estimation, it is shown in Fig. 17a that the
majority of the parameters lies in the range of 8–10%. So even for
mildly distorted shapes (k1=0, k2=3), the response variability is sig-
nificant. It is also evident that yarn distortion affects equally the
longitudinal and transverse stiffness (COV(E1) ≈ COV(E2)). Variability
slightly increases for the medium distortion case (k1=0, k2=6), while
for the extreme case of k1=4, k2=6, it drops. This could be justified
from the filtering of intersections between the yarns and the adjust-
ments made from TexGen; the stiffness is highly dependent on the vo-
lume fraction of the RVE, hence the filtering of intersections between
wavy shapes causes small insensitivity to the volume fraction and
consequently to the stiffness.

An estimation for the shape of the probability density function
(PDF) of E1, is illustrated in Fig. 17b. The rest of the major elastic
parameters (E E G, ,2 3 12) are omitted as they have similar shapes. The

strong correlation between the PDFs of the elastic parameters and the
volume fraction, for this type of uncertain input, is something to be
further investigated. However, as an illustration a scatter plot is shown
in Fig. 18 for the case of k1=0, k2=3. It is noted that the PDFs of
Fig. 17b are also similar to the PDF of yarn volume fraction extracted
from measurements in [24].

5.1.2. Strength properties
Concerning the strength variability for the case of uniaxial tension

in the longitudinal yarns’ direction, the scatter levels were found higher
compared to the stiffness (≈ 13%). An interpretation for the higher COV
level in comparison with stiffness, is that failure is a more local-oriented
phenomenon and distortions are very likely to act as damage initiation
areas. Once again, 300 Monte Carlo simulations were enough for the
COV to converge (Fig. 19), for all three cases performed. If the scatter of
the stress-strain curves is plotted, it can be seen that two major sub-
groups are forming. Fig. 20a displays the case of mild distortion (k1=0,
k2=3), where the first core is located around a value of 230MPa and
the second around 280MPa. This could be expected from the discussion
made in Section 4.2 regarding the effect of contact between yarns.

A more interesting remark can be made from the parametric PDF
plot of Fig. 20b. Even though the mode with the higher strength value is
more probable for the first case (k1=0, k2=3), the median approximates
the lower value mode as the distortion level increases. This is con-
sidered reasonable in terms of physical interpretation, and highlights
the importance of uncertainty quantification for such input data.

Fig. 15. Convergence analysis of the voxel-based FE model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 16. Variation convergence of elastic properties under stochastic yarn distortion, for the case k1 =0, k2 =3. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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5.2. Yarn waviness

In this section, stochastic waviness is introduced to the weft yarns of
the model. The modeling framework presented in Section 3, allows
calibration in terms of variance (σ) and correlation (θ). In order to
explore the effects of both, a general case is first chosen as a baseline,
with =σ 3 and =θ 1. Then, the second case weakens the correlation
scale to =θ 0.4 to examine possible effects, while the variance is fixed.
Finally, the input variance is boosted in the third case to =σ 4, for the
same correlation length as in the baseline case. Graphical representa-
tions for the three cases mentioned are shown in Fig. 21, where the
black line is a part of the nominal yarn path in 2D, while the grey lines
are random path generations. The maximum deviations from the

nominal paths, are roughly 0.25mm (Fig. 21a,b) and 0.50mm
(Fig. 21c), which according to the literature [52,53] lie within possible
amplitudes for textiles. Regarding the variance levels, the COV values
for the waviness offered in [53], put the chosen input into context, as
the calculated COV of 23% at the straight yarn segment ( =x 2mm) of
Fig. 21a, lies well within range. Regarding the correlation length va-
lues, the two cases of θ=1 and θ=0.4, could be interpreted as one with
no dips (change of wave phase) at the straight yarn segments and one
with at least one dip. The terminology is borrowed from [17], where
dips where observed from measurements of a 2/2 twill weave.

5.2.1. Stiffness properties
Regarding the elastic properties, all response samples converge

smoothly within the 300 performed simulations. Fig. 22 confirms the
latter, for the baseline case of =σ 3 and =θ 1. Convergence is ensured
for the other parametric cases as well. A comparative bar plot for an
overview on the elastic response variability, is presented in Fig. 23. In
most cases, the variance ranges between 5 and 10%; however, the
transverse stiffness exceeds this range and consequently, so does the
Poisson’s ratio v12. As opposed to Section 5.1.1, the transverse stiffness
is more sensitive than the longitudinal, since variability is implemented
only to the weft yarns, which are interlacing the axial, unaltered warp
yarns. Concerning the parametric cases, the rough paths after the cor-
relation decrease ( =θ 0.4), do not have a crucial effect on the varia-
bility, although they tend to lower it, presumably because of the in-
teractions and the slight loss of volume. On the other hand, the variance
increase of the third parametric analysis ( =σ 4), boosts indeed the
response variability, but not to a great extent.

The effect of stochastic waviness to the weft yarns and the sensi-
tivity of the transverse direction, is also evident from the density esti-
mations of Fig. 24. The PDF of E1 is mainly unimodal and approximates
a normal distribution (Fig. 24a). On the contrary, the PDF of E2 is
highly skewed, with a second mode rising on the right part, meaning
that nonlinearities are introduced due to the asymmetric spatial var-
iations.

5.2.2. Strength properties
The scatter of the ultimate tensile strength for the stochastic wavi-

ness case is quite large. The COV reaches the value of 20%, while it has
the most fluctuating behavior among all other cases reported so far,
within the span of the 300 Monte Carlo runs performed. As shown in
Fig. 25, all three parametric analyses converge approximately to the
same value, while the case with the shortest correlation length
( = =σ θ3, 0.4 - Fig. 21b) has the most irregular behavior until con-
vergence.

However, the variability extent is relatively misleading, since the
scatter plot of the baseline case ( = =σ θ3, 1) in Fig. 26a, shows that
there is a principal spread around 100MPa and then some higher

Fig. 17. Variability and density estimation of the stiffness properties. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 18. Scatter plot of stiffness against the fiber volume fraction for the case of
k1 =0, k2 =3. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)

Fig. 19. Variation convergence of strength under stochastic yarn distortion.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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dispersed results, which are of course stretching the overall variance.
This is also illustrated in terms of probability density estimation in
Fig. 26b.

The reason behind the large response variability is linked with the
rather low median value of roughly 100MPa. The assumption of un-
correlated yarns results in asymmetries within the RVE. Therefore,
damage localization can occur at different locations and also quite
earlier than the nominal case. So even though some local damage could
be followed by a strengthening part (which was often the case for many
realizations close to the median), the method considers as failure the
first softening occurrence, due to the assumptions discussed in Section
4.2. Moreover, it is evident from Fig. 26b that this problem is rather
insensitive to the modifications of variance and correlation. This is
probably connected with the short scale of this application, meaning
that changes in the variation of the yarn path within the RVE range, are
hard to be reflected in the strength response of the longitudinal direc-
tion.

5.3. Surrogate modeling

The proposed probabilistic modeling framework could be also ap-
plied for uncertainty quantification purposes (e.g. global sensitivity
analysis) or reliability analysis. However, the excessive number of ne-
cessary evaluations of the high-fidelity FE model, raises a prohibitive
computational burden. Bypassing the FE simulation with a surrogate
model holds as a remedy, as these models can reduce the computational
effort by orders of magnitude. For formulating and applying surrogate
models to uncertainty quantification problems, the reader is referred to
[41,54]. These references explain how to map uncorrelated random
variables with the desired response, by using artificial neural networks,
polynomial chaos expansions and Kriging models. Yet approximating
the response function when sampling random fields might be de-
manding, depending on the stochastic dimension of the problem or the
discretization of the model.

Towards an efficient surrogate-based stochastic FE methodology,
some comments are made herein concerning the problems of yarn

distortion and waviness, by utilizing the described braided use case. For
the yarn distortion problem, a dimensionality reduction could be
achieved by using as an input vector the five uniform random variables
of Eq. 2, instead of the uncertain input parameters emerging from the
spatial discretization of the field. In this manner, the input space is
independent from the size of the field and the FE model, so an efficient
training procedure can be accomplished. Regarding the accuracy, a
comparison between a surrogate model (Kriging) and a conventional
Monte Carlo approach for predicting the E1 scatter, shows sufficient
convergence in terms of cumulative distribution function (CDF)
(Fig. 27a), but also point-to-point for 50 samples outside the training
dataset. (Fig. 27b).

The prediction considering yarn waviness via surrogates is harder
and requires more training data. Depending on the problem, a similar
dimensionality reduction as before can be used, for example mapping
the phase angle of the spectral representation method (see Appendix B)
to the output, instead of the coordinates of the random field re-
presenting the yarn. This technique was first proposed by Giovanis and
Papadopoulos [55], but even though it was tested for the current use
case, the results were not satisfactory, while due to the interpolation of
TexGen between the path points, not many of them are required.
Consequently, the training was performed by mapping the undulation
coordinates of the yarns with the response and the results are presented
in Fig. 28.

Evidently, the accuracy of the latter figure is not ideal and further
investigation is worthwhile. What is even more challenging is the
emulation of the strength prediction, which requires more advanced
methods in order to be accurate (e.g. hybrid surrogates, adaptive
techniques, etc.) This will be investigated in a future work regarding
uncertainty quantification of the nonlinear behavior of textiles. It
should be finally noted, that further efficiency can be reached for all
cases, if the training samples emerge from a space-filling technique,
such as latin hypercube sampling [55].

Fig. 20. Scatter plot and density estimation of the ultimate tensile strength under stochastic yarn distortion. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 21. Yarn waviness parametric cases.
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6. Concluding remarks

This paper presented two methodologies, for the integration of
random geometric imperfections of textile yarns, into numerical mod-
eling procedures of probabilistic nature. Random, production-induced
distortions of the yarns’ cross-section, are modeled as random fields via
a Fourier series-based procedure, inspired from studies of random in-
clusions for heterogeneous media. Application of such stochastic im-
perfections to a multiscale algorithm, predicting the stiffness and
strength of a triaxially braided composite layer, showed that variability
levels due to distortions are non-negligible. A big part of the response
variability was caused by the volume fraction variation (≈ 7%), when
the stiffness variability was found ≈ 10% and the equivalent of ultimate
strength ≈ 13%. The parametric cases performed, highlighted the im-
portance of imperfection modeling, especially for localization-driven
behaviors, such as strength response. The second modeling approach
uses the Kriging formulation to generate random yarn paths, based on
sample points characterizing a nominal (average) yarn path and a

simple manifold transformation. In case measurement data are avail-
able, calibration concerning correlation and variance is straightfor-
ward, while the application of stochastic waviness to the interlacing
yarns of the braided model, revealed significant scatter of the linear
response in the transverse direction and severe effects on the strength
capacity. Results seem to be less affected by the fiber volume fraction
variability (≈ 6%) in this case, for both stiffness and strength para-
meters. The elastic response variability levels for both yarn distortion
and waviness are found to be within the range offered by similar studies
[10,11]. The proposed methodologies will be tested with experimental
data derived from CT-scans in a future endeavor, while another chal-
lenge is the accurate mapping of the random fields to the nonlinear
response, with appropriate surrogate modeling techniques.
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Appendix A. Function of lenticular shape parameters with intersecting circles’ radii

There is a relationship between the radii of the intersecting circles that form the lenticular section and its dimensions. For the general asymmetric
case ( ≠d 0), the radii are given by Eqs. (9) and (10). The proof of those equations is similar. If we consider Eq. (10), by applying the Pythagorean
theorem on the triangle formed by r2, vertical axis y and the radical line (connecting the two points of intersection), which is hatched in Fig. 29, we
get:

Fig. 26. Scatter plot and density estimation of the ultimate tensile strength under stochastic yarn waviness. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 27. Verification of the surrogate model for yarn distortion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 28. Verification of the surrogate model for yarn waviness. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Appendix B. Spectral representation method for random field simulation

Spectral representation method expands the random field as a series of cosine functions with random phase angles. A one-dimensional,
homogeneous random field ̂ xf ( ), truncated after N terms, is given by the following formula:

̂ ∑= +
=

x xf A ω ϕ( ) 2 cos( )
i

N

i i i
1 (B.1)

where = …ϕ i N, 1, ,i are independent and uniformly distributed random phase angles within the range [0,2π]. The coefficients Ai are defined as
follows:

= = = …A A S ω ω i N0, 2 ( )Δ , 1, ,i f i0 0 (B.2)

where S f0 is the power spectral density function, which is a real non-negative function of the frequencies. These frequencies are given by:

= = = …ω i ω i ω
N

i NΔ , 1, ,i
u

(B.3)

where ωu is the upper cut-off wave number, after which the power spectrum becomes practically zero. The A0 coefficient is chosen zero so that the
temporal mean value averaged over the whole simulation time =T π20 / ωΔ of the generated stochastic field ̂ xf ( ) remains zero. The simulated
process of Eq. (B.1) is asymptotically Gaussian as → ∞N and ergodic in the mean and in correlation due to the central limit theorem [37]. The same
procedure is generalized for the cases of two and three dimensional random fields.
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Chapter 4

A Variable-Fidelity Hybrid Surrogate
Approach for Quantifying Uncertainties
in the Nonlinear Response of Braided
Composites

This paper addresses the problem of efficient stochastic failure prediction for textiles. A multi-
fidelity scheme and a novel hybrid NN-Kriging surrogate model are proposed towards the
uncertainty quantification of the failure response of a braided material under tension. A global
sensitivity analysis is applied indicating important interaction effects among the random input.

The paper is published in Computer Methods in Applied Mechanics and Engineering, Volume
381, 2021, 113851.
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Abstract

The ultimate strength prediction of textile composite materials requires high-fidelity FE modeling with information-passing
multiscale schemes and damage initiation and propagation algorithms. The numerical demand of this procedure together with
the complexity of the observed response surface, hampers the quantification of uncertainties contributing to the scatter of
strength values. This study proposes a surrogate methodology able to efficiently emulate the nonlinear multiscale procedure,
based on a combination of artificial neural networks and Kriging modeling under a variable-fidelity framework. A triaxially
braided textile under longitudinal tension is used as a use-case and the methodology is employed to identify the most critical
parameters in terms of variance via a global sensitivity analysis technique. Results show strong interaction effects between the
uncertain parameters. The approach is non-intrusive and can be easily extended to other types of textiles and load cases.
c⃝ 2021 Elsevier B.V. All rights reserved.

Keywords: Braided composites; Failure prediction; Sensitivity analysis; Uncertainty quantification; Variable-fidelity; Surrogate modeling

1. Introduction

Composite materials have a predominant role in research, design and production of lightweight structures for
aerospace, energy and automotive sectors. High strength and stiffness conditional to weight, toughness, thermal
conductivity and energy absorption are a few of their primary advantages over other material types. A challenging
fact, however, is the observed scatter of the mechanical response parameters, due to their heterogeneous nature and
the multiple manufacturing stages they encounter, which results in uncertainty occurring at different spatial scales.

The investigation of these uncertainties through the development and employment of probabilistic methods,
has grown over the last 10–15 years. Concerning the parameters governing the elastic behavior of typical
composites, there are numerous uncertainty assessment studies with both analytical and numerical homogenization
techniques [1,2]. The statistical relation between lower and higher scales, in terms of elastic parameters, has been
also addressed for particle-reinforced composites [3,4]. Textile composites are a special category, consisting of
yarns/tows (i.e. linear assemblage of fibers) interlocked within the plies into specific patterns [5]. They have
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gained attention because of the enhancement regarding specific properties (e.g. delamination resistance, tailorability,
through-thickness reinforcement etc.), while due to their demanding numerical modeling, surrogate models are
implemented for the quantification of uncertainty [6,7].

The stochastic failure prediction is certainly more complex. For thin-walled structures, failure is mainly driven
by buckling, which can be used for estimating the probability of failure or identifying uncertainties related to
stiffness and fiber volume content [8,9]. When it comes to material nonlinearities, uncertainty quantification has been
moderately addressed including applications of composite laminates [10,11], short-fiber [12] and particle-reinforced
composites [13]. Regarding textile composites, there are only a few studies dealing with the uncertainties in the
nonlinear response [14,15], in which the results are based on limited model evaluations. As a result, only the first
two statistical moments can be reliably estimated.

This is due to the complexity of textile materials regarding their failure response and the necessity of demanding
finite element (FE) models for an accurate and reliable prediction. For uncertainty quantification (UQ) procedures
like variance-based sensitivity analysis or Bayesian inference, but also for the integration in optimization routines,
the required number of model evaluations might reach the order of 104–105 [6,9], so the training of a surrogate
model is a precondition. However, even training such a surrogate requires a significant amount of model evaluations
because of the complex failure response surface and the numerous parameters of the problem. Recently, variable-
fidelity methods have been proposed for demanding problems of this sort, able to assist the training procedures with
faster evaluations of lower fidelity [16–18].

In this study, the unaddressed problem of emulating the nonlinear response of textile composites is investigated.
The proposed solution is based on training artificial neural networks for the surrogate modeling of the yarn properties
and on a novel variable-fidelity framework for the mesoscale simulations, which integrates an artificial neural
network into the Hierarchical Kriging formulation. The algorithm employs the step size of the nonlinear analysis as
a novel fidelity parameter, ensuring sufficient correlation and considerable reduction in computing resources. The
method is applied to a 3D triaxially braided structure, towards the UQ of its failure behavior under longitudinal
uniaxial tension. By employing the successfully trained surrogate model, the identification of the most critical
parameters related to the ultimate strength of the braided material is achieved via a variance-based global sensitivity
analysis. The method is non-intrusive in the sense that it could be easily extended to other textile types or load cases
by modifying solely the FE model. The sensitivity results reveal interactions between the input parameters of the
problem, which justifies the plethora of necessary samples for a sufficient surrogate training.

The remaining of the paper is organized as follows: Section 2 recapitulates the theory of homogenization and
describes the multiscale modeling approach. Section 3 recalls the basic formulation of artificial neural networks and
Kriging and describes their integration to a global sensitivity analysis framework. The latter models are combined to
assemble the proposed variable-fidelity analysis procedure in Section 4 and the application of the proposed approach
to a braided composite is presented in Section 5. Finally, Section 6 points out the major conclusions of the present
study.

2. Deterministic failure prediction modeling

2.1. Computational homogenization

The formulation for an elastostatic macroscale problem of a continuous body under small strains is given by:

∇ · σ̄σσ T
+ b̄bb = 0 (1)

σ̄σσ = C : ε̄εε (2)
ε̄εε = ∇s · ūuu (3)

where ∇ and ∇s are the gradient and symmetric gradient operators, σσσ and εεε are the macroscopic stress and strain
tensors, uuu is the displacement vector and bbb are the acting body forces. The material behavior is characterized by
the generalized constitutive law of Eq. (2) and the elasticity tensor C .

The solution of this problem given a heterogeneous body is intractable. Instead, effective homogeneous properties
are extracted under the assumption that any material point is associated to a statistically representative volume
element (RVE) on a lower scale. The characteristic length of this scale should be much smaller than the macroscale
one. The equilibrium state of the RVE with volume Ω in absence of body forces, is then formulated as [19]:

∇ · σσσ (xxx)T
= 0, ∀ xxx ∈ Ω (4)
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σσσ = CΩ : εεε (5)

where CΩ is the elastic tensor that varies due to the different phases of the RVE. Any constitutive law can be
introduced for each phase, thus assuming a progressively damaging microstructure, a typical constitutive law of a
phase R is of the form:

σσσ (xxx) =
(
1 − d(xxx)

)
CR : εεε(xxx), ∀xxx ∈ R ⊂ Ω (6)

where d ∈ [0, 1) is a scalar damage variable and CR is the stiffness tensor of the phase.
A basic principle in homogenization theory is the Hill–Mandel equation, through which energy consistency

between every material point on the macroscale and the associated RVE is established in an average sense:

σ̄σσ · ε̄εε =
1

|Ω |

∫
Ω

σσσ · εεε dΩ (7)

The above is typically enforced in practice by applying periodic boundary conditions (PBCs) on the RVE,
e.g. periodicity on the displacement field uuu and anti-periodicity on the traction field ttt by mapping opposite
boundaries [19]:

uuu(x+) = uuu(x−), ∀x+
∈ ∂Ω+, ∀x−

∈ ∂Ω− (8)

ttt(x+) = −ttt(x−), ∀x+
∈ ∂Ω+, ∀x−

∈ ∂Ω− (9)

The coupling between the scales can then be performed via the volume average of the microscopic stress and strain
values as:

σ̄σσ =
1

|Ω |

∫
Ω

σσσ dΩ , ε̄εε =
1

|Ω |

∫
Ω

εεε dΩ (10)

When the nonlinear stress–strain behavior of a heterogeneous material is of interest, the effective curves are
obtained from the above equations, according to the numerical discretization of the RVE. For example, in a
finite element (FE) approach the macroscopic stresses can be extracted in each solution step, by applying strains
corresponding to specific load cases, through appropriate degrees of freedom on the RVE, and by calculating:

σ̄σσ =
1

|Ω |

∫
Ω

σσσ dΩ ≈
1

Ωtot

Np∑
k=1

σσσ kΩ k (11)

where Np is the total number of integration points. The above procedure is valid until the localization of damage
within the RVE, as then the problem under PBCs becomes ill-posed and the small strains assumption is violated.

2.2. Multiscale strength prediction algorithm and material modeling

A high-fidelity estimation of the mechanical properties for textile composite materials (or fabrics) is feasible
through numerical multiscale schemes, since the heterogeneities and their complex patterns inside the material
architecture have significantly lower length scales than the final structure. The final textile geometry is specified in
two stages: the assemblage of the fibers into yarns and the consequent bonding/interlocking of the yarns into specific
patterns in multiple directions. Accordingly, a two-step homogenization scheme is fitting, initially on a microscopic
level (≈ 10−6 m) to predict the yarn behavior and then on a mesoscale level (≈ 10−3 m) for the extraction of the
textile layer’s properties [6,20].

In this work, the probabilistic assessment of the tensile strength properties of a braided fabric is of interest.
Hence, a two-scale information-passing algorithm is used, computing the stiffness and strength properties of each
scale and transferring the data from lower to higher scales, as shown in Fig. 1. Due to the incorporated uncertainties
and the local periodicity assumption (i.e. periodicity only in a small proximity of each macroscopic point) the term
statistical volume element (SVE) is used from now on, instead of the RVE [21]. Failure criteria are applied for
each constituent (fibers, matrix, interface and yarns) and a continuous damage approach is employed for addressing
the material degradation of the progressively damaging system. The last part of Fig. 1 illustrates the dependency
of the layer’s stiffness and strength properties in the macroscale, on the material properties of the constituents on
lower scales (CΩ , CR), but also on geometric properties like volume fractions, yarn angles etc., represented with
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Fig. 1. 2-step multiscale scheme: from microscale (left) to macroscale (right).

the vector ggg. Eventually, the homogenized layer properties can be used in a composite layup for the formulation of
a macroscale model.

Regarding the material laws of the constituents, carbon fibers were used in this work which exhibit a transversely
isotropic behavior and follow a linear elastic law until brittle failure, governed by a maximum stress criterion of
the form:

σ f ≥ X f t

σ f ≤ |X f c|
(12)

where X f t and X f c are the fiber strengths in tension and compression. Matrix regions are simulated with an isotropic
material following the von Mises plasticity model. Fracture initiation is modeled by a modified von Mises criterion
[22] as:

σ 2
vm

Xmc Xmt
+

(
1

Xmt
−

1
Xmc

)
I1 ≥ 1 (13)

considering the discrepancy between compressive and tensile strength due to the hydrostatic pressure, where σvm
is the von Mises stress, I1 = σ1 + σ2 + σ3 is the first stress invariant and Xmt and Xmc are the matrix strengths in
tension and compression, respectively.

The yarns essentially behave like unidirectional continuous fiber composites, so they are modeled with trans-
versely isotropic properties. The failure initiation is characterized by the Hashin criterion [23], accounting for the
following four different failure modes: fiber failure in tension (σ1 > 0), fiber failure in compression (σ1 < 0), matrix
failure in tension (σ2 + σ3 > 0) and matrix failure in compression (σ2 + σ3 < 0). The corresponding expressions to
each of the above modes are:(

σ1

X t

)2

+
τ 2

12 + τ 2
13

S2
12

= 1 (14)

− σ1 = Xc (15)(
σ2 + σ3

Yt

)2

+
τ 2

23 − σ2σ3

S2
23

+
τ 2

12 + τ 2
13

S2
12

= 1 (16)[(
Yc

2S23

)2

− 1
]
σ2 + σ3

Yt
+

(
σ2 + σ3

2S23

)2

+
τ 2

23 − σ2σ3

S2
23

+
τ 2

12 + τ 2
13

S2
12

= 1 (17)

where σi is the stress component in i direction, τi j are the components of the shear stresses and X t , Xc, Yt , Yc, S12,
S23 are the effective strength properties of the yarns (X stands for the longitudinal direction, Y for the transverse,
S for the shear and the subscripts t for tension and c for compression).

The progression of damage is addressed with a Murakami-type degradation model, meaning that the material
properties are reduced in a single step once the failure criterion is met [24,25]. This approach, also known as
instantaneous stiffness degradation, is straightforward in terms of implementation, but also much more efficient than
a gradual degradation approach, since the damage variables of Eq. (6) are constant, instead of solution-dependent.
To ensure numerical stability, the stiffness matrix is kept positive by enforcing the physical conditions reported
in [25] and by keeping the off-diagonal terms of the damaged compliance matrix unaffected.
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Fig. 2. CT images from cylindrical braided specimen: (a) diamond braiding pattern and (b) cross-section segment.

For the case of an orthotropic textile material in 3D, the aforementioned matrix has the following form:

S(di ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11

1 − d1
S12 S13 0 0 0

S12
S22

1 − d2
S23 0 0 0

S13 S23
S33

1 − d2
0 0 0

0 0 0
S44

1 − d3
0 0

0 0 0 0
S55

1 − d3
0

0 0 0 0 0
S66

1 − d4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

The choice of damage variables in this study is based on the work of Warren et al. [26], thus d1 corresponding to
longitudinal damage due to fiber rupture is 0.93 for tension (Eq. (14)) and 0.8 for compression (Eq. (15)), while d2
corresponding to transverse damage due to matrix cracking is 0.86 for tension (Eq. (16)) and 0.6 for compression
(Eq. (17)). For combined shear, longitudinal or transverse damage, variables d3 and d4 are equal to 1−(1−d1)(1−d2).
The matrix located between the yarns for the mesoscale, as well as within the fibers for the microscale has a pure
matrix damage variable of 0.9. For the microscopic fiber damage the stiffness is dropped to 1% of the initial value.
A flow chart of the progressive failure algorithm can be found in a previous work by the authors [15].

2.3. Modeling approach

The model under investigation in this work is based on a triaxially braided cylindrical specimen, following a
diamond braiding pattern [5] which can be visualized in Fig. 2a, an image extracted from a computed tomography
(CT) scan. The axial (or warp) yarns lay straight and equally spaced, while the weft yarns interlace the axial yarns at
a specified angle. According to the manufacturer, the plies of the specimen vary along its length. The cross section
of Fig. 2b has 3 plies, however severe nesting effects are visible due to high compaction.

The exact material properties of the constituents are unknown, thus typical AS4 carbon properties are used for
the nominal values of the fiber properties, according to a published report on braided material characterization [27].
The values are summarized in Table 1. The compressive strength value is missing from the above report, so a value
from a similar material is used from the literature [28]. Regarding the matrix, the same document uses an EPON
9504 resin, however information like the hardening curves are missing. Hence, a RIM 135 epoxy resin is used
from [20], which has very similar stiffness and strength values, but also the tensile and shear hardening curves
available. The nominal matrix properties are reported in Table 2.

Without loss of generality, this work deals only with the ultimate strength response of a single braided layer
under uniaxial tension in the longitudinal direction. The same procedures can be followed for calculating tensile
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Table 1
AS4 carbon fiber properties.

Parameter E f 1 (GPa) E f 2 (GPa) G f 12 (GPa) G f 23 (GPa) v12 v23 X f t (MPa) X f c (MPa)

Value 227.53 16.55 24.82 6.89 0.2 0.25 4150 3000

Table 2
RIM 135 resin matrix properties.

Parameter Em (GPa) Gm (GPa) vm Xmt (MPa) Xmc (MPa) Xms (MPa)

Value 3.35 1.24 0.35 69 120 55

Fig. 3. SVE with hexagonal fiber arrangement for the microstructure.

properties in other directions, by changing the boundary conditions on the mesoscale level. The commercial software
Abaqus [29] is employed for all FE calculations. The damage progression algorithm is implemented as a user
defined field subroutine (USDFLD). This routine works in an explicit approach, meaning that the material point
quantities are only accessed at the start of each increment. The accuracy of the results depends on the size of the
time increment, hence in order to ensure this, a convergence analysis was carried out by the authors in [15].

2.3.1. Yarn properties (micro-to-meso transition)
The microstructure of the yarns is similar to that of a unidirectional laminate in terms of fibers, matrix and

interface. The random fiber positioning as in Fig. 1 (left), can be well approximated by a periodically structured
fiber pattern [21]. Thus, a typical SVE assuming a hexagonal fiber arrangement is used, as illustrated in Fig. 3. The
appropriate load cases for the virtual testing of the SVE can be found in [15,20].

Regarding geometry, the fiber diameter is 7 · 10−6 m and the fiber volume fraction in the SVE is 80%. This
relatively high value is typical for textiles due to the extra fiber (yarn) placement process e.g. weaving or braiding,
as the final fiber volume fraction at the macroscale must remain at a satisfactory level (≈50%–60%). Given the
diameter d f and the volume fraction V f , the SVE in-plane dimensions X,Y are calculated from the nonlinear
system below:

V f =
πd f

2

2XY
Y = X tan(60◦)

(19)

The SVE thickness (out-of-plane) can be chosen arbitrarily.
For the transverse and shear load cases which are matrix-driven, a cohesive traction-separation law was used

to account for potential debonding between matrix and fiber. The interface damage initiation is described with a
quadratic stress criterion of the form:(

⟨σn⟩

Nmax

)2

+

(
σs

Smax

)2

+

(
σt

Tmax

)2

= 1 (20)
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Fig. 4. Stress–strain curves for the yarn properties: (a) longitudinal direction, (b) transverse direction and (c) in-plane and out-of-plane shear.

Table 3
Yarn mechanical properties.

Parameter Value Units

FEM Analytical

E11 182.526 182.694 GPa
E22 11.312 11.688 GPa
G12 8.098 8.252 GPa
G23 4.403 4.652 GPa
v12 0.23 0.23 –
v23 0.2659 0.2562 –
X t 3351.28 3332.22 MPa
Xc 2420.23 2391.43 MPa
Yt 55.856 63.803 MPa
Yc 176.065 192.841 MPa
S12 54.186 50.066 MPa
S23 40.575 – MPa

where σn is the normal stress perpendicular to the cohesive zone, σs , σt are the shear stresses and Nmax, Smax and
Tmax are the corresponding maximum allowable stresses. The modeling is implemented with the cohesive zone
approach of Abaqus, allowing for an energy-based evolution of damage via the Benzeggagh–Kenane formulation
of mixed fracture modes [29]. Assuming isotropic interface failure, all allowable stresses were set to 57 MPa and
the fracture energy for all modes to 280 J/m2 [30].

The results for the yarn properties after the virtual testing of the micro-SVE are shown, in terms of stress–strain
plots, in Fig. 4. The stiffness values are calculated from the tangent of the curves in the elastic region. Both stiffness
and ultimate strength results are gathered in Table 3. Values from analytical criteria of composite materials are also
provided where available, for comparison/verification purposes. The well known Chamis criterion [31] is used for
verification of the stiffness properties. For the strength properties there is not a unified framework of equations,
especially for the matrix-driven strength properties. This is mainly due to the several potential failure modes that
can be triggered (e.g. matrix failure, plasticization, debonding etc.) The formulas used herein can be found in [8,32].
The small discrepancies observed (e.g. for Yt , Yc) are justified by the inability of the criteria to capture more than
one failure mode.

2.3.2. Braided layer properties (meso-to-macro transition)
The mesoscale SVE is modeled with the textile design software TexGen [33]. The braiding pattern is shown in

Fig. 5a and an isometric view of the SVE with its outer dimensions in Fig. 5b. The warp yarns have an elliptical
cross-section while the weft yarns follow a lenticular shape [15]. The fiber volume fraction of the SVE is 48%,
considering the nominal braid angle is 45◦.

The voxel mesh technique is used to discretize the SVE for the FE solution. It is a hexahedral-based mesh
where all elements have the same size with an aspect ratio of one. Thus it provides meshes of accepted accuracy for
models of high geometrical complexity, e.g. geometries resulting from topology optimization routines, or automated
re-meshing algorithms accounting for geometrical variations [34]. A mesh convergence study can be found in the
authors’ previous study [15].
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Fig. 5. Triaxial braiding pattern: (a) Top view, (b) TexGen SVE mesoscale model.

Fig. 6. Stress–strain curve of braided layer and damage levels for three levels a, b and c corresponding to the subplots (in each subplot the
left figure corresponds to the matrix tensile failure mode and the right to the fiber tensile failure mode).

The response curve for the SVE under uniaxial longitudinal tension is shown in the upper part of Fig. 6, together
with some damage plots of the yarns for three states along the loading history (Fig. 6a, b and c). In each of these
states, the plot on the left corresponds to the tensile damage of the matrix (Eq. (16)), while the one on the right
to the tensile damage of the fibers within the yarns (Eq. (14)), since those are the governing failure modes. The
damage progressively expands throughout the weft yarns, until the warp yarns fail at point c, which is the ultimate
strength state. The ultimate strength value of 337.15 MPa is considered within realistic range according to [24,25,27],
considering the differences in volume fraction levels and material types within the different studies.

There are two numerical issues worth discussing that rise from the failure prediction method described. The first
is the energy dissipation due to failure, which is ignored by the instantaneous stiffness degradation approach. Even
though there is a physical inconsistency, it can be easily seen that the energy loss is not critical until the peak of
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Fig. 7. Verification of the modeling approach through comparisons: (a) Instantaneous stiffness (USDFLD) and continuous stiffness (UMAT)
degradation approach and (b) conformal, voxel and smoothened voxel approach.

the homogenized curve, by plotting the internal and external work of the SVE, hence the homogenized strength is
not affected. The post-failure path is anyway not reliable, as noted in Section 2.1. The same deduction is reached, if
the adopted approach is directly compared with a continuous stiffness degradation scheme. A Matzenmiller energy-
based damage evolution model was implemented in an UMAT subroutine for Abaqus [35], with the Hashin criterion
for damage initiation, for the same use-case braided model. The results against the adopted USDFLD approach are
shown in Fig. 7a, where discrepancies are negligible. It is noted that the UMAT approach is about 8 times slower
than the USDFLD.

The second issue is the voxel mesh approach and its fidelity regarding strength prediction, due to possible
oscillations of stresses at the sharp matrix–yarn interfaces. Indeed a conformal mesh (i.e. tetrahedral elements)
would be more accurate for textile geometries, however creating one is quite challenging and often results in bad
element shapes. Besides, uncertainty quantification requires numerous analyses and, therefore, an automated and
robust pre-process is a prerequisite. Nonetheless, the stress concentrations that may emerge from a voxel mesh are
not so severe for uniaxial loading cases. Alternatively, smoothing the voxel geometry at the interfaces is a possible
remedy.

A comparison between a conformal, a voxel and a smoothened voxel mesh is presented in Fig. 7b. The geometry
of the model was herein modified (smaller sections towards a smaller volume fraction) in order to be conformally
meshed. For the smoothing, a modified Laplacian algorithm was used [36], based on iteratively moving the node
coordinate of interest xi towards the barycenter created by the neighboring nodes, with the transfer function
x ′

i = xi + λ∆xi , where ∆xi =
∑

j∈i∗ wi j (xi − x j ) is the Laplacian and j is a node in the neighborhood of
i . The weights wi j are non-negative values adding up to unity for each node. The scaling factor 0 < λ < 1 is
changing sign in every iteration to prevent shrinkage. For this example, 15 smoothing iterations were performed, as
more would lead to highly distorted elements. The figure verifies that the error is not severe and could indeed be
improved by smoothing. Since the error is small and the cost of smoothing is considerable (use of nearest-neighbors
algorithm), it will not be employed in this study.

3. Variance-based global sensitivity analysis with surrogate models

3.1. Global sensitivity analysis formulation

In an uncertainty quantification framework, global sensitivity analysis (GSA) is a tool to classify the importance
of each random input parameter in terms of variance. Considering the whole bounded input space, this technique
decomposes the output variability into normalized fractions corresponding to the input variables and their possible
interactions.

Assuming a square integrable function y = f (x1, x2, . . . xk) over the k-dimensional unit hypercube Ω k , the
following decomposition is feasible [37]:

f = f0 +

∑
i

fi (xi ) +

∑
j>i

fi j (xi , x j ) + · · · + f12...k(x1, x2, . . . , xk) (21)

9
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For brevity, the following nomenclature is applied: fi (xi ) = fi , fi j (xi , x j ) = fi j etc. Since all the terms are
orthogonal, they can be calculated using the conditional expectations of the scalar output y as:

f0 = E(y) (22)

fi = E(y|xi ) − E(y) (23)

fi j = E(y|xi , x j ) − fi − f j − E(y) (24)

By raising the terms of Eq. (21) to the power of 2 and integrating, the following statement appears:∫
f 2dxxx − f 2

0 =

∑
i

∫
f 2
i dxi +

∑
j>i

∫
f 2
i j dxi dx j + · · · +

∫
f 2
12...kdx1dx2...dxk (25)

where on the left is the total variance of y and on the right are the decomposed variances with respect to the input
xxx = {x1, x2, . . . , xk}. The final expression is reached after substituting Eqs. (22)–(24):

σ 2(y) =

k∑
i=1

Vi +

k∑
j>i

Vi j + · · · + V12...k (26)

where Vi = σ 2
xi

(Ex∼i (y|xi )) (27)

Vi j = σ 2
xi j

(Ex∼i j (y|xi , x j )) − Vi − V j etc. (28)

The x∼i notation stands for the set of all variables except xi . The first-order sensitivity index (or first order Sobol
index) for the variable xi , measures the additive effect and is obtained as a fraction of the unconditional variance
σ 2(y):

Si =
σ 2

xi
(Ex∼i (y|xi ))

σ 2(y)
(29)

while the total Sobol index accounts also for higher order interactions [38]:

ST
i =

Ex∼i (σ
2
xi

(y|xi ))

σ 2(y)
= 1 −

σ 2
x∼i

(Exi (y|xi ))

σ 2(y)
(30)

For models which cannot be solved analytically, a sampling procedure is applied for the solution of the integrals.
The estimators used in this work are the following:

Si ≈

[ 1
N

N∑
j=1

f (B) j ( f (Ai
B) j − f (A) j )

]
/σ 2(y) (31)

ST
i ≈

[ 1
2N

N∑
j=1

( f (A) j − f (Ai
B) j )2

]
/σ 2(y) (32)

In these equations, A and B are two (N , k) matrices with random samples from the input space, where k is the
input dimension and N is the number of evaluations. Matrix Ai

B is identical with A, except that its i th column is
substituted with the i th column of B (i = 1, . . . , k).

Estimators of this sort might require up to 105 realizations in order to converge, which makes them impractical
for demanding numerical models. Therefore, the use of surrogates instead of the original models is vital.

3.2. Surrogate models

Surrogate modeling (or metamodeling) in computational engineering denotes the replacement of intensive
simulators by proxy mathematical models that are cheap to evaluate. Such models are able to emulate predefined
input–output relationships, even if a model is not available but only data sets exist, which is common in machine
learning applications.

In the context of UQ, if xxx = {xi , i = 1, . . . , k} is a random input vector, with k being the total amount of
input random variables, and if Ω (xxx) is the model simulating a physical process, then the statistical characteristics
of the scalar quantity of interest (QoI) y ∈ R (could also be multidimensional), are obtained by propagating the

10



G. Balokas, B. Kriegesmann, S. Czichon et al. Computer Methods in Applied Mechanics and Engineering 381 (2021) 113851

Fig. 8. Configuration of a single layer feed-forward artificial neural network.

uncertainty in xxx multiple times (random realizations). A surrogate is a low-cost approximation of the original model
of the form:

Ω (xxx) = Ω̂ (xxx,aaa) + ϵ (33)

where ϵ is the approximation error and the vector aaa includes the parameters which are tuned during the training
process according to a small set of model runs, called the experimental design (ED). Once trained, the surrogate
Ω̂ (xxx,aaa) can produce extreme amounts of results with trivial computational effort and, therefore, bypass the sampling
over the original model Ω (xxx). The next sections present a brief overview of the formulation for two powerful
surrogate types, namely artificial neural networks and Kriging.

3.2.1. Artificial neural networks
Artificial neural networks (ANN) are rapid information-processing systems with a parallel architecture of nodes

(neurons), able to handle high dimensional data of discrete or continuous nature [39]. They consist of at least three
layers: the input, the output and one (or more) hidden layers. The neurons inside every layer are linked by the
so-called synapses. Deep learning methods [40] involve ANNs with many hidden layers, however for structural
engineering applications with continuous variables, typically no more than one layer is required.

A typical single-layer ANN configuration, assuming an input vector xxx = {xi , i = 1, . . . , k}, is shown in Fig. 8.
The input neurons (squares) do not process information and only connect the network to the external environment.
The neurons of the hidden layer (circles) process information coming from a previous layer and feed their output to
the next layer. Information is propagated only in a single direction (feed-forward network). For every synapse there
is a weight parameter wi j corresponding to the importance of the preceding neuron. Every neuron j calculates a
weighted sum of the form:

z j =

k∑
i=1

xiwi j + b (34)

where b is a bias term allowing the neuron to cover a wider range. Each result is going through an activation
function, usually of sigmoid type, in which the nonlinearity of the decision boundary is introduced.

The training procedure is essentially the inference of the weights by minimizing the sum squared error between
the predicted output t(wi j ) and the target output y:

min
wi j

(
E(wi j )

)
= min

wi j

{1
2

∑
[t(wi j ) − y]2

}
(35)

Throughout the optimization process, the weights of all synapses are updated until the desired error level or the
maximum number of cycles is reached. The weights are updated via an iterative procedure:

w
(t+1)
i j = w

(t)
i j + ∆wi j (36)

where ∆wi j is the correction of the weight at the t th learning step, which is calculated by the gradient:

∆wi j = −n
∂ E
∂wi j

(37)
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where n is a small parameter adjusting the correction each time, called learning rate. This algorithm is known as
back-propagation algorithm, because the residual error is spread back to the neurons in order for the weights to be
updated. A fraction of the input data set is used as a validation set and an early stopping criterion is applied in case
of overfitting [6].

3.2.2. Kriging
Kriging (a.k.a. Gaussian process regression) is a series expansion method that approximates the original function

by a single realization of a Gaussian random field [41]:

Ω (xxx) ≈ βββT fff (xxx) + σ 2 Z (xxx) (38)

where βββ is a vector of hyper parameters multiplying the set of P-order regression functions fff , σ 2 is a scalar hyper
parameter characterizing the variance and Z (xxx) a zero-mean, unit variance Gaussian random field. The first term of
Eq. (38) defines the trend of the surrogate, whereas the second the local deviations.

Regarding the training, if an ED data set of size N is assumed, the hyper parameters βββ and σ 2 are calculated
via the generalized least-squares method, depending on the correlation length parameter of the Gaussian field θ̂θθ , as:

βββ(θ̂θθ ) = (FFF T RRR−1FFF)−1FFF RRR−1 y (39)

σ 2(θ̂θθ ) =
1
N

(y − FFFβββ)TRRR−1(y − FFFβββ) (40)

where FFF is the regression matrix, RRR is the correlation matrix of the ED for a certain kernel type and y is the actual
output of the ED. The correlation length θ̂θθ inserting the above equations, is extracted through an optimization routine
from either of the following expressions:

θ̂θθML = arg min
[ 1

N
(y − FFFβββ)TRRR−1(y − FFFβββ)|RRR|

1
N

]
(41)

θ̂θθCV = arg min
[

yTRRR−1diag(RRR−1)−2RRR−1 y
]

(42)

where ML stands for Maximum Likelihood and CV for Cross-Validation and |RRR| is the determinant of the correlation
matrix.

The use of Kriging as a surrogate relies on using the following predictor µ for points x0 /∈ x = {x i , i = 1, . . . , N }

outside the ED:

µ(x0) = fff (x0)Tβββ + rrr (x0)TRRR−1(y − FFFβββ) (43)

where rrr (x0) = RRR(|x0 − xi |; θ̂θθ ) is the correlation between the unknown point x0 and the ED, while fff (x0) is the set
of regression functions evaluated at x0. Adjustable parameters able to help the training process are the order of the
regression functions fff , the correlation kernel type (e.g. Gaussian, Matérn etc.) and a stable optimization algorithm
for the calculation of θ̂θθ . The clear distinction between trend and variance in the Kriging formulation offers great
flexibility for hierarchical approaches [16] and non-stationary calibrations [15].

4. Proposed variable-fidelity approach

4.1. Overview of variable-fidelity surrogate methods

Variable-fidelity (VF) or multi-fidelity surrogates are approximations combining information from at least two
different models in terms of accuracy (fidelity) and cost. The model differences could lie in the discretization level,
dimensionality reduction, simplifications in mathematical or numerical description etc., assuming that there is good
correlation between them regarding the QoI. As a result, if constructing a surrogate model requires an excessive
amount of training samples, or if the original high-fidelity (HF) model is computationally prohibitive even for a
few samples, a VF surrogate approach is a viable trade-off [16–18].

VF surrogate methods, as well as the multi-level Monte Carlo (MLMC) [42], are founded on the linearity of the
expectation operator. Meaning that if H is a high-fidelity and L a low-fidelity (LF) approximation of a QoI, the
following sum stands:

E(H ) = E(L) + E(H − L) ≈
1

NL

NL∑
i=1

L (i)
+

1
NH

NH∑
i=1

(H (i)
− L (i)) (44)
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where the number of cheap evaluations NL could be much bigger than NH . As a generalization, a variable-fidelity
surrogate model ΩV can replace a high-fidelity surrogate ΩH , assisted by a lower fidelity surrogate ΩL in the
following manner:

ΩV (xxx,aaa) = ΩV (ΩL (xxx),aaa) ≈ ΩH (xxx) (45)

where xxx a vector from the input space and aaa a vector of tuning parameters, which is calculated by a limited number
of HF data.

The simplest type of VF surrogate uses a scaling function to map the input space with a scalar parameter
representing the error between fidelity levels. If k is the dimension of the input space, a LF surrogate is first trained
with xi , i = 1, . . . , N ∈ Rk points. Then, a subset of points xi , i = 1, . . . , M ⊂ N is chosen and is used as a
training set for the HF surrogate. The scaling factor αi , i = 1, . . . , M can be of additive or multiplicative form:

αi = H F(xi ) − L F(xi ) or
H F(xi )
L F(xi )

, i = 1, . . . , M (46)

where L F(xi ) and H F(xi ) are the low and high fidelity model evaluations. The second surrogate is then trained
from Rk to R1 to establish the mapping xi ↦→ αi , i = 1, . . . , M . The final form of the VF surrogate is obtained
as:

ΩV (xxx) = ΩL (xxx) + ααα or ΩL (xxx) ∗ ααα (47)

An alternative approach is the so-called space mapping, where the second surrogate model is a direct R1
↦→ R1

mapping from the LF outcome to the HF outcome.
Although the latter approaches are useful for local approximations, they are often greedy when the whole region

of the input space is of interest. A more powerful VF surrogate is the hierarchical Kriging approach [16], in which
the trend term of Eqs. (38) and (43), as presented in Section 3.2.2, is substituted by a Kriging model trained with
LF data, instead of the regression functions of the original model. The enhanced VF predictor is given by:

µV = βββµL + rrrTRRR−1(yH − FFFβββ) (48)

where µL is the predictor of the LF Kriging model, yH is the output vector of the original HF model. The remaining
terms represent the same parameters as in Section 3.2.2. It is noted that the entire term related to the deviations
from the trend depends solely on the output of the HF level. It is clear from the latter formula, that any surrogate
method can be integrated in the trend, besides the original Kriging. Indeed, Schöbi et al. [43] used polynomial
chaos expansions which performed well in their studied cases.

4.2. Hybrid hierarchical surrogate method

In order to overcome the computational obstacles set by the demanding FE simulation of a textile SVE and
to construct a fast and reliable surrogate method suitable for UQ schemes, a VF surrogate enabling ANNs and
hierarchical Kriging is proposed.

Among other solid advantages, hierarchical Kriging is flexible in terms of the correlation between different levels
and does not require the HF training set to be a subset of the LF dataset, which would require a costly nearest-
neighbor type of algorithm for the selection. A further enhancement allowed by the versatility of this model, is
the integration of ANNs in the trend of Eq. (48), as the predictor µL of the LF model. Such a machine learning
technique discards limitations regarding the input dimension, the processing speed and the data complexity because
of its parallel structure. Moreover, it has been found to require less or equal training samples for sufficient accuracy
than series expansion methods [44].

Concerning the type of different fidelity levels, the failure prediction algorithm described in Section 2, allows
the use of the step size, or equivalently the total number of steps. As mentioned, the step should be kept small
towards a high fidelity simulation, resulting of course in longer FE runs, due to the explicit approach of the
USDFLD subroutine. However, choosing fewer steps still drives the results towards the correct direction with good
correlation and simultaneously decreases the analysis cost. In this study, 20 steps were chosen for the LF models
and 150 steps for the HF ones, resulting to a reduction of 7.5 times. The option of the step for the proposed VF
approach was preferred to the obvious choice of the mesh size, because the combination of the automatic voxel
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Fig. 9. Flow chart of the proposed VF method.

mesh generation and the variability of a geometric parameter (e.g. the braid angle) could introduce small, but non
negligible, numerical noise.

The proposed approach is described in the flow chart of Fig. 9. Initially, the micro-to-meso transition established
by the FE models providing the yarn properties (Section 2.3.1), is surrogated by ANNs. Within every necessary
load case, one ANN predicts the stiffness and one the ultimate strength value. It is also possible to train one model
to predict both the above parameters, yet it would be slightly less accurate. The micro-SVE FE models are not very
computationally demanding and their response can be captured with relatively few samples, as it will be shown in
the next section. Hence, there is no need for a VF approach in this part of the algorithm.

Subsequently, two different training sets are generated for the LF and HF model evaluations. At this point, all
random parameters to be investigated within the UQ framework should be included, from both the micro and the
mesoscale. The different fidelity FE models could run in parallel, while the trained ANNs from the previous step
are used to accelerate the process. The LF data are used to train the ANN model of the LF mesoscale SVE, which
is later used as the trend of the hierarchical VF model. The required Kriging parameters βββ, σ 2, θ̂θθ (Eqs. (39)–(42))
are estimated based on the HF data and the FFF matrix is filled by the LF surrogate. Provided that the ANNs from
the previous stages are suitably trained, the only way to increase the accuracy of the VF model without increasing
the correlation between levels, is to increase the number of HF data.

5. Uncertainty quantification: analysis and results

The VF approach presented in Section 4.2, is applied towards the global sensitivity analysis of a triaxially braided
composite, using the model and properties given in Section 2. The random input consists of material and geometrical
parameters that were found important for the elastic behavior in an older study [6], as well as strength parameters
likely to play a role in the damage behavior, under the longitudinal uniaxial tension load case. Specifically, the
following eight parameters are considered as random: the longitudinal fiber stiffness (E f 1), the volume fraction of
the yarns (Y V f ), the axial fiber tensile strength (X f t ), the tensile matrix strength (Xmt ), the compressive matrix
strength (Xmc), the cohesive stiffness (Ecoh), the cohesive strength (Xcoh) and the braiding angle (BA). The first
seven of those are introduced at the microscale and propagated towards higher scales through the yarn properties,
whereas the braiding angle variation is introduced at the mesoscale SVE. It should be noted that the spatial variation
of the effective properties cannot be captured by the current modeling and that ideally they should be simulated as
random fields. However, due to the lack of correlation data, random variables are considered.
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Fig. 10. Performance of longitudinal tension surrogate models: (a) scatter of model evaluations, (b) evaluation of stiffness surrogate (50
training samples) and (c) evaluation of strength surrogate (90 training samples).

5.1. Experimental design

The nominal values of the random vector are reported in Section 2. The training sample points for all EDs are
generated by an optimal Latin Hypercube sampling algorithm [45], for an efficient filling of the input space. It is
also noted that all sampling methods are one-shot (e.g. all samples are generated at the same time), as no adaptive
techniques are used for simpler implementation. Regarding the scatter, all parameters of the random vector follow
a Gaussian distribution with a coefficient of variation (COV = σ/µ) of 10%, except the Y V f which follows a
truncated Gaussian distribution up to 0.9 for physical consistency.

5.2. Training results and verification in all fidelity levels

In total, 10 surrogate training procedures are performed within the proposed approach: eight surrogate models
for the mapping of the microscopic properties to the properties of the yarns (micro-to-meso transition, 2 surrogates
for each load case), one surrogate for the LF level of the meso-SVE and one final VF hybrid surrogate using both
the LF model and HF data of the meso-SVE (Fig. 9). The training procedure and the validity of the surrogate
modeling is verified by direct comparisons of the trained models against the original FE models. Data sets of 20
points outside the training state, are used for that purpose at each stage of the proposed approach.

As an approximation error metric, the coefficient of determination R2 is given by the formula:

R2
= 1 −

∑N
i=1(yi − ŷi )2∑N
i=1(yi − ȳi )2

(49)

where yi is the true response, ŷi is the respective prediction of the trained surrogate, ȳi is the mean of the true
responses and N is the total number of samples. The values of R2 are bounded in [0,1] where the better fit is the
closer to 1. Point-to-point comparison plots and the respective coefficients of determination are presented for all
aforementioned surrogate models, as well as the required training samples for each case.

Starting from the eight ANN surrogates emulating the micro-SVE response, Fig. 10 illustrates the response for
the longitudinal tension case. The scatter of the original model evaluations in the stress–strain plane, is shown in
Fig. 10a, the stiffness surrogate in Fig. 10b and the strength surrogate in Fig. 10c, reporting also R2 for each case.
The response surface is quite smooth as the damage behavior is governed by the fiber strength, hence the surrogate
prediction is exceptional with 50 training sample points for E11 and 90 for X t .

The cases of transverse tension, in-plane and out-of-plane shear are bit more demanding for the training of
the nonlinear response. Fig. 11 illustrates the transverse tension case, where the response scatter is bigger due to
multiple failure modes. Nevertheless, the performance is fully satisfactory as shown in Fig. 11b and c, with 150
training points for E22 and 200 for Yt . The same stands for the shear cases (Figs. 12 and 13), even though the
behavior, as illustrated in the scatter plots, is more complex and highly nonlinear. To reach this performance level,
400 model evaluations were used in the training set of S12 and S23. The elastic behavior is always easier to capture,
with 50 samples for G12 and 60 for G23.

Overall, the ANNs emulating the micro-SVE response perform well, as the biggest error is around 1%, when
in fact the model evaluations required are not prohibitive considering the micro-SVE FE model. The number of
neurons in the hidden layer of these 8 surrogates ranges from 6 (simpler cases) to 15 (more complex cases).
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Fig. 11. Performance of transverse tension surrogate models: (a) scatter of model evaluations, (b) evaluation of stiffness surrogate (150
training samples) and (c) evaluation of strength surrogate (200 training samples).

Fig. 12. Performance of in-plane shear surrogate models: (a) scatter of model evaluations, (b) evaluation of stiffness surrogate (50 training
samples) and (c) evaluation of strength surrogate (400 training samples).

Fig. 13. Performance of out-of-plane shear surrogate models: (a) scatter of model evaluations, (b) evaluation of stiffness surrogate (60 training
samples) and (c) evaluation of strength surrogate (400 training samples).

Moving on to the mesoscale simulations, the lower fidelity FE model evaluations are used to train an ANN
mapping the microscopic and mesoscopic input parameters with the ultimate tensile strength (QoI), which is used
as a kernel in the hybrid hierarchical approach described in Section 4.2. The scatter of the LF model evaluations is
shown in Fig. 14a and the point-to-point comparison against the original FE modeling in Fig. 14b. The LF surrogate
required 2000 samples and 35 neurons in order to reach the illustrated performance. In order to further boost the
generation of the training data set, the microscale surrogate models previously described were applied. However,
the original FE micro-SVEs were used to calculate the reference response for the 20 training runs shown in the
evaluation plot (Fig. 14b).

Furthermore, 100 HF model evaluations were used as the training data set for the hierarchical VF surrogate
methodology. The response scatter is shown in Fig. 14a together with the LF data. The evaluation plot of the final
VF surrogate shown in Fig. 14c, illustrates an adequate performance against 20 HF reference FE simulations, where
the total approximation error is calculated as 4% (R2

= 0.96). The hierarchical ANN–Kriging surrogate works
with an exponential kernel and the cross-validation expression (Eq. (42)) for the correlation length calculation. A
differential-evolution algorithm is employed for the optimization procedure.
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Fig. 14. Performance of LF and VF surrogate models: (a) scatter of LF and HF model evaluations, (b) evaluation of LF surrogate (2000
LF training samples) and (c) evaluation of hybrid VF surrogate (100 HF training samples).

Fig. 15. Statistics of response variability: (a) probability density function and (b) cumulative density function.

Fig. 16. GSA results: first-order and total Sobol indices.

5.3. Sobol indices

The trained surrogate model enables the necessary rapid mapping for UQ purposes. The GSA methodology
described in Section 3.1, is applied towards the identification of the most critical parameters of the input vector
for the probabilistic response of the QoI. The same scatter is applied to all random input parameters, with a COV
of 10%. To acquire a sense of the response variability, the normalized histogram with a fitted probability density
function (PDF) and the cumulative distribution function (CDF) are demonstrated in Fig. 15. The output mean and
standard deviation are equal to 317.55 MPa and 40.48 MPa respectively, which results in a response COV of 13%.
The PDF is slightly skewed, even though all inputs are symmetrically distributed, displaying the nonlinearity of the
input–output relationship.

The results of the variance-based GSA are illustrated in a bar plot form in Fig. 16. Both the first-order and
the total indices are visible for each parameter. A first interpretation is that the contribution is distributed, as there
is not a single parameter with a dominating percentage. The parameters related to the elastic behavior are more
influential than the ones related to strength. The fiber stiffness, followed by the fiber volume content of the yarns
and the braiding angle have the lead, while the fiber and matrix strengths have a less profound effect to the response
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Fig. 17. Scatter plots of each input parameter against the ultimate tensile strength.

Fig. 18. Evolution of first-order (a) and total (b) Sobol indices over the number of model evaluations.

variability. The interface properties do not contribute much due to the load case under investigation. Moreover, it
should be noted that geometrical parameters like the volume fraction and the braiding angle play an important role,
a fact that proves the validity of the focus shift towards manufacturing improvement and optimization.

An element maybe even more interesting, is the clear presence of interactions between the input variables. It
can be observed from the sum of the first-order indices (0.8<1), but also more specifically from the differences
of certain variables between the first-order and the total index. The interactions explain the non-smooth response
surface and consequently, the difficulty in training accurately a surrogate model able to emulate the response and
the requirement for a variable fidelity approach. An explanation for the variables with strong interaction effects is
the multiscale nature of the problem under investigation, as the biggest discrepancies are observed at variables from
different length scales (Y V f and BA) and variables which are introduced in both scales (Xmt and Xmc).

A fast way to verify the GSA results and avoid possible mistakes, is the visualization of the scatter of each input
parameter against the QoI. The scatter plots are presented in Fig. 17, where the clouds formed from the points
are in line with the sensitivity results of the GSA. Moreover, it is meaningful to check the convergence of the
Sobol indices by plotting their evolution over the number of model evaluations. The plots in Fig. 18 verify that
such an analysis would be prohibitive without using an effective surrogate model, since the first order indices start
converging after 35.000 simulations.

6. Concluding remarks

The nonlinear behavior of textile composites within an uncertainty quantification framework has barely been
addressed due to the difficulties in approximating the complex response surfaces. A surrogate modeling methodology
is proposed herein for the solution of this problem, allowing for the variance-based global sensitivity analysis
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Fig. A.19. Performance comparison between ANN and Kriging for LF training sets of increasing size.

of a progressively damaging triaxially braided composite layer. The microscopic properties are mapped to the
yarn properties with artificial neural networks, enabling a fast micro-to-meso scale transition. A novel variable-
fidelity surrogate model is presented for the emulation of the demanding braided SVE, which modifies the
already established Hierarchical Kriging into a more powerful surrogate, by using a neural network for the low
fidelity approximations. The use of the step size as the fidelity level allows a 7.5 times cost reduction without
compromising the accuracy levels due to the simultaneous application of automatic voxel mesh generation and
geometric variabilities. In total, only 100 HF runs were required for an approximation error of 4%.

The results of the GSA did not identify a single parameter as the governing factor, but rather a spread of
the contribution to the yarn volume fraction, the fiber longitudinal stiffness and the braiding angle variation. The
differences between first-order and total Sobol indices for several parameters revealed the interactions of the input
properties, which can be justified by the multiscale nature of the problem. Moreover, the Sobol indices were found
to converge at around 35.000 simulations, proving the necessity of a metamodeling solution.

The proposed approach is non-intrusive and can be applied to any type of textile and load case. Additionally,
several future prospects could rise with respect to different focal points, e.g. if the material characterization is the
main concern, a VF approach combining USDFLD routines for the LF runs and precise UMAT routines for the
HF runs, or voxel meshes for LF runs and conformal meshes for HF runs for load cases with considerable shear
phenomena. Finally, in the presence of experimental strength values, the integration of the surrogate model into a
Bayesian updating scheme is straightforward and a potential future endeavor of the authors.
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Appendix. Performance comparison between ANN–Kriging and Hierarchical Kriging

The proposed approach of the ANN–Kriging VF surrogate is compared with the Hierarchical Kriging approach.
Since the second part of Eq. (48) is identical for both approaches, the predictor of the trend will be compared
using LF data for training. So it is essentially a comparison of ANN versus Kriging performance with the LF data.
Fig. A.19 presents the coefficient of determination of each surrogate, using training data sets of increasing size. The
same data set was used for training both surrogates and the coefficient of determination was calculated against the
same reference data set. The ANN surrogate performs better for all three cases for this specific problem, while the
number of parameters to be estimated and tuned is larger for the Kriging approach (polynomial order, correlation
length, kernel etc.).
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Chapter 5

Data-Driven Inverse Uncertainty
Quantification in the Transverse Tensile
Response of Carbon Fiber Reinforced
Composites

In this paper, a Bayesian inverse method is applied, able to quantify uncertainties on a mi-
croscale level in terms of mean and variance, by enabling experimental data from higher scales.
Experimental stiffness and strength data from a UD composite under transverse tension are
employed and a polynomial chaos expansion is used as a surrogate model. The methodology is
generic and non-intrusive, therefore it can be easily extended to other load cases and setups.

The paper is published in Composites Science and Technology, Volume 211, (2021), 108845.
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A B S T R A C T   

Uncertainty quantification is critical for the full exploitation of composite materials’ potential. Inverse methods 
offer the possibility of indirectly characterizing the uncertainty of microscopic parameters by employing data sets 
from standard structural tests in higher scales. Two crucial requirements though, are the efficient modeling 
especially for the nonlinear prediction, and the measurement error availability from the tests which affects the 
updated scatter. This study employs effective stiffness and strength experimental data in order to quantify un-
certainties of a carbon fiber UD composite in the microscale. A polynomial chaos surrogate model is trained from 
finite element simulations, able to efficiently predict the homogenized stiffness and strength for the uncertainty 
quantification procedure. The random parameters which are influential enough to be updated, are identified via 
a variance-based global sensitivity analysis. The inverse problem is solved with the Bayesian inference method, 
which updates any prior estimation of the probability models of the input parameters, based on output obser-
vations from the tests. Results show significant uncertainty reduction in comparison with typically used variance 
values in the literature and can be used to enrich the composite material databases. The proposed methodology is 
applied for the transverse tensile load case, although its non-intrusive nature allows applications for more load 
cases and various setups.   

1. Introduction 

The heterogeneity of composite materials combined with their 
manufacturing processes, introduces uncertainties which are observed 
as variability in their mechanical response. The variability is apparent in 
their material properties, e.g. stiffness, strength etc., but also on a 
structural level (displacement, buckling capacity etc.). These un-
certainties include the material properties of the different phases, as well 
as geometrical parameters like the fiber volume fraction and defects on 
lower scales and the ply thickness, fiber orientation and imperfections 
on higher scales. In the design of composites, these uncertainties are 
accounted for by applying knockdown factors, implicitly assuming that 
multiple effects are present at the same time. This conservatism hinders 
the full exploitation of composite structures, although it may be over-
come by using probabilistic design methods. 

Efficient probabilistic methodologies and models are essential for the 
uncertainty assessment. Over the last 10–20 years, the development of 
probabilistic methods pertinent to composite structures has flourished. 
A first indicative classification can be made according to the spatial 

scale, where the uncertainty is simulated at a microscopic level [1,2], at 
a mesoscopic level [3,4] and at a structural level [5,6]. The available 
studies are not limited to typical long-fiber reinforced plastics, but also 
particle-reinforced and discontinuous composites [7,8]. There is also 
variety on the type of structure, e.g. cylinders [9], beams [10] etc. 
Furthermore, a differentiation can be made related to the target of the 
probabilistic assessment which can be the efficient uncertainty propa-
gation [11,12], the uncertainty quantification (UQ) [13,14], the direct 
integration of data towards the reliable regeneration of uncertainties 
[15,16] and lastly the reliability-based or robust design optimization 
[17,18]. 

The developed probabilistic models, however, need to be calibrated 
in terms of statistical information, which requires repeated experiments 
in order to create statistical samples. A study by Sriramula and Chrys-
santhopoulos [19] has reviewed and reported significant experimental 
information on the scatter of different ply-level parameters. The 
extracted probability models are based on goodness-of-fit tests from 
repeated experiments. Most studies apply the measured uncertainty 
from the available data directly to the input properties and afterwards 
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perform forward uncertainty propagation. In Ref. [20], 2D random 
fields from discrete material measurements on laminate level were 
generated, allowing for a realistic probability of failure estimation 
through Monte Carlo evaluations. Kriegesmann et al. [12] followed a 
similar strategy for random imperfections of composite cylinders, 
applying additionally an order reduction transformation. Yang et al. 
[21] developed a UQ method for C/SiC composites integrating proba-
bilistic distributions extracted from sparse data, directly in the consti-
tutive laws. 

Nevertheless, there are parameters within the modeling of compos-
ites often difficult to measure directly, or requiring expensive test setups 
for a statistical characterization. A convenient way to identify the un-
certainty of these parameters is via inverse or updating approaches, by 
using available responses from higher scales and standard tests. The 
distributions of the elastic ply properties have been identified in Refs. 
[22,23], while in Ref. [24] the effects of measurement errors and 
modeling uncertainties were investigated via an updating methodology. 
Regarding the microscopic properties identification, Sakata and Ashida 
[25] employed optimization for particle-reinforced composites, while 
Wu et al. [26] calibrated a Mori-Tanaka model based on computational 
homogenization simulations. However, not all studies employ actual test 
data, while the identification of strength properties has not been 
adequately addressed, mainly due to the requirement of a fast nonlinear 
model necessary for the inverse algorithm. More recently, Hu et al. [27] 
proposed a nonlinear solver which still led to large errors, while Mustafa 
et al. [28] developed a FE-based Bayesian inference scheme and used 
published data to update strength parameters of glass fibers and matrix. 
However, in both the above studies the lack of detailed statistical in-
formation for the data (e.g. the measurement errors) led to several as-
sumptions, while the choice of random parameters is vague. 
Consequently, it is hard to deduce whether the identified scatters also 
include epistemic uncertainties (i.e. modeling/measurement errors). 

In this study, a methodology able to quantify both elastic and 
strength microscopic uncertain parameters of fiber reinforced compos-
ites is proposed. A numerical homogenization-based multiscale FE pro-
cedure is used for the prediction of the effective stiffness and strength 
properties of a UD composite. The numerical burden of the nonlinear 
solver encountered by other studies, is bypassed by a polynomial chaos 
expansion, which reduces the cost of the UQ process to the cost of setting 
up the surrogate model. As a first step towards UQ, a variance-based 
global sensitivity analysis (GSA) is performed for both the elastic and 
the failure behavior. That way a clear perspective on the parameters 
influential enough to be updated is acquired. The dominant parameters 
are inserted into a Bayesian inference scheme, which -based on experi-
mental effective stiffness and strength data-offers updated probability 
distributions. A recently published experimental campaign of carbon 
fiber reinforced polymers (CFRPs) by Lüders [29] is employed. The 
detailed test setups including the measurement errors, along with the 
excellent deterministic agreement of the numerical model with the data, 
allows this work to focus on the aleatory uncertainty, exempt of sys-
tematic errors, and make almost no assumptions which might distort the 
results. Therefore, a contribution can be made towards the improvement 
of the composite material databases. While the method is generic, only 
the transverse tension load case is studied herein, although the 
non-intrusive nature of the procedures enables applications to other load 
cases, and consequently the identification of different microscopic 
parameters. 

2. Micromechanical failure modeling 

The current section recapitulates the homogenization theory, sum-
marizes the experimental behavior and describes the finite element 
modeling. 

2.1. Brief summary of homogenization theory 

The effective properties of a continuous, heterogeneous body under 
small strains, can be extracted from the solution of a statistically 
representative volume element (RVE) in a lower scale [30]. The equi-
librium and constitutive equations of a RVE with volume, in absence of 
body forces, are expressed as: 

∇ ⋅ σ(x)T
= 0, ∀ x ∈ Ω (1)  

σ = CΩ : ε (2)  

where CΩ is the stiffness tensor that fluctuates due to the body’s het-
erogeneity. Each phase can have a separate material law. To simulate a 
progressively damaging microstructure under the spectrum of contin-
uum damage mechanics, the following form is introduced for a phase R: 

σ(x)= (1 − d(x))CR : ε(x), ∀x∈R⊂Ω (3)  

where d ∈ [0, 1) is a scalar damage variable and CR is the elastic tensor of 
the phase. 

Two basic principles that should be preserved in homogenization 
theory, are the clear separation and the energy consistency between the 
spatial scales. Clear separation means that the microstructure consists of 
heterogeneities orders of magnitude smaller than those of the macro-
scopic problem. Moreover, the energy consistency between any 
macroscopic material point associated with a RVE in average, is given by 
the Hill-Mandel equation: 

σ ⋅ ε =
1
|Ω|

∫

Ω

σ⋅ε dΩ (4)  

where σ, ε are the macro stresses and strains and σ, ε are the ones on the 
microscale. 

To ensure the above, periodic boundary conditions (PBCs) are 
applied on the RVE, by mapping opposite boundaries and enforcing 
periodicity on the displacement field u and anti-periodicity on the 
traction field t : 

u(x+)=u(x− ), ∀x+ ∈ ∂Ω+, ∀x− ∈ ∂Ω− (5)  

t(x+)= − t(x− ), ∀x+ ∈ ∂Ω+, ∀x− ∈ ∂Ω− (6) 

The homogenized properties of interest, are calculated by solving the 
RVE under the appropriate load cases and then using the volume 
average of either the microscopic stresses, or the strains: 

σ =
1
|Ω|

∫

Ω

σ dΩ , ε =
1
|Ω|

∫

Ω

ε dΩ (7) 

When damage localizes in the RVE, the formulated problem is no 
longer valid under the assumptions of PBCs and small strains. 

2.2. Experimental data and material properties 

The experimental source of this study is a recently published article 
by Lüders [29], in which six flat, rectangular specimens of a carbon fiber 
unidirectional (UD) composite were statically tested under uniaxial, 
transverse tension. The epoxy resin used was tested under uniaxial 
tension with dog-bone shaped coupons, thus a set of hardening curves 
characterizing the plasticity is also available. 

Transverse failure in composites is a multi-parametric phenomenon 
and the experimental characterization often results in big scatters. 
Interfacial strength, thermally induced residual stresses, plasticity and 
fiber distribution are the main parameters governing damage initiation 
and evolution [31–34]. Experimental observations typically show nearly 
vertical cracks, perpendicular to the load direction, that initiate between 
the different phases. 
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The data used herein are shown in Fig. 1. The results of the composite 
testing (Fig. 1b) reveal an almost linear behavior with a rather brittle 
failure. This suggests strong fiber-matrix interface properties (otherwise 
a more ductile behavior would appear) which makes the micro-cracking 
of the matrix in that area, the triggering failure parameter [29]. In terms 
of scatter, the mean and standard deviation of the ultimate strength 
value are μ = 44.1MPa and σ = 3.58MPa, respectively. The statistical 
moments of the stiffness value are μ = 9.137GPa and σ = 0.539GPa. 
The matrix parameters required for modeling, are calibrated in Ref. [29] 
from a fitting procedure based on the raw epoxy data (Fig. 1a). The 
material properties for both carbon fibers and matrix, are reported in 
Table 1. 

2.3. Finite element modeling 

The modeling approach is a typical homogenization-based multi-
scale FE simulation of a transversely loaded RVE, under PBCs (Eq. (5)). A 
hexagonal array is sufficient for capturing the actual response of the 

specimens, as Lüders proved in Ref. [29]. The RVE in-plane dimensions 
X,Y are calculated conditional to the fiber diameter and volume fraction 
(Vf = 62%), as X = 3.145⋅10− 3mm and Y = 5.447⋅10− 3mm. The RVE 
thickness (out-of-plane) can be chosen arbitrarily. 

Concerning material modeling, the fibers are not critical for the 
damage behavior of this loading condition, so they are modeled as linear 
elastic. The epoxy matrix is simulated as an isotropic material following 
the von Mises plasticity model of Abaqus FE software [35]. This 
approach is generally not well suited for epoxies as it is not influenced by 
the hydrostatic pressure above yielding initiation, however it does not 
have a critical effect for the specific load case and material in hand. The 
initiation of damage is modeled by the Christensen criterion [36] as: 

σ2
vm

XmcXmt
+

(
1

Xmt
−

1
Xmc

)

I1 ≥ 1 (8) 

considering the discrepancy between compressive and tensile 
strength due to the hydrostatic pressure, where σvm is the von Mises 
stress and I1 = σ1 + σ2 + σ3 is the first stress invariant. The matrix 

Fig. 1. Experimental stress-strain curves [29]: a) epoxy resin coupons and b) UD composite plates.  

Table 1 
IM7 carbon fiber and epoxy resin matrix properties [29].  

Parameter Ef1(GPa)  Ef2(GPa)  Gf12(GPa)  Gf23(GPa)  v12  v23  Xft(MPa)  Xfc(MPa)  Em (GPa)  Gm (GPa)  vm  Xmt (MPa)  Xmc (MPa)  

Value 276 19 27 7 0.2 0.357 5180 3200 3.748 1.343 0.395 89 194  

Fig. 2. Finite element prediction: a) stress-strain curve compared with the experimental curves and b) damage pattern at the failure onset.  
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strengths in tension and compression are represented with Xmt and Xmc. 
Regarding the damage progression, the model follows an instanta-

neous stiffness degradation approach (Eq. (3)), where the material 
properties are reduced to 0.01% of their initial value [29] in a single step 
once the failure criterion is met. To ensure numerical stability, the 
stiffness matrix is kept positive by enforcing the physical conditions 
below [13] and by keeping the off-diagonal terms of the damaged 
compliance matrix unaffected: 

v12 −

̅̅̅̅̅
E1

E2

√

< 0 (9)  

v23 −

̅̅̅̅̅
E2

E3

√

< 0 (10)  

2v12v13v23
E3

E1
+ v2

12
E2

E1
+ v2

23
E3

E2
+ v2

13
E3

E1
− 1 < 0 (11) 

The progressively damaging algorithm is implemented in Abaqus via 
a user-defined field (USDFLD) subroutine [16]. 

After the solution, the homogenized stress-strain curve is extracted 
with a post-processing script, employing Eq. (7) according to the RVE 
discretization for each solution step: 

σ =
1

Ωtot

∑Np

k=1
σkΩk, ε =

1
Ωtot

∑Np

k=1
εkΩk (12)  

where Ωk is the volume of each element and Np is the total number of 
integration points, given that each element has a single integration point 
(C3D8R elements are used). A practical implementation of the above is 
given in the appendix of [29]. The resulting curve for the material 
properties reported in the previous section, is shown in Fig. 2 against the 
experimental curves, together with the damage pattern of the RVE, a few 
steps after the peak point of the curve. 

The response of the described numerical model is accurate in terms 
of stiffness and lies well within range regarding failure stress and failure 
strain, as shown in Fig. 2a. The damage pattern illustrated in Fig. 2b 
starts at the fiber-matrix interface and has a reasonable orientation, 
perpendicular to the load direction. The distributions of transverse 
stresses and plastic strains, right before the damage initiation, are also 
shown in Fig. 3. Results are in line with similar models from the liter-
ature [28,37,38] and verify the consistency of the adopted approach. 

3. Inverse uncertainty quantification approach 

The FE procedure needs to be bypassed in order to acquire a faster 
model for the demanding (in terms of model evaluations) UQ methods, i. 
e. the variance-based sensitivity analysis and the Bayesian inference. 
The surrogate choice in this study is a non-intrusive polynomial chaos 
model [39], due to the instant acquisition of the Sobol indices after 
training without any further calculations and the affordability due to the 
low stochastic dimension of the problem. 

3.1. Polynomial chaos formulation 

Assuming a scalar output variable y with finite variance and a vector 
x = {xi, i= 1,…,M} of independent input parameters, the polynomial 
chaos expansion (PCE) of y approximates the model Ω with an infinite 
series of orthonormal polynomials: 

y=Ω(x) ≈
∑

α∈NM

yαΨα(x) (13)  

where M is the size of the input vector x, yα are the coefficients to be 
computed, α is a M-dimensional multi-index (M-tuple) and Ψα(x) are 
multivariate orthonormal polynomials. The orthonormal basis of the 
series is constructed as a product of univariate orthogonal polynomials 
P: 

Ψα(x) =
∏M

i=1
P(i)

αi
(xi) (14) 

Every major probability distribution family corresponds to specific 
known polynomials, e.g. Legendre for Uniform, Hermite for Gaussian, 
Laguerre for Beta and Jacobi for Gamma distributions. Regarding the 
truncation and the procedure towards the calculation of the coefficients 
yα, the interested reader is referred to Appendix A. 

3.2. Variance-based global sensitivity analysis 

The variance-based GSA offers normalized fractions of the total 
output variance of a model that correspond to each input variable and 
their possible interactions. For an input variable xi of a function y =

Ω(xi) ∈ R, the first-order sensitivity (or Sobol) index measures the effect 
of the variable alone and is obtained as a fraction of the unconditional 

Fig. 3. Contour plots of the RVE before damage localization: a) transverse normal stress distribution b) matrix plastic strain distribution.  
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variance σ2(y): 

Si =
σ2

xi

(
Ex∼i (y|xi)

)

σ2(y)
(15) 

The total Sobol index considers also higher order interactions and is 
given by Ref. [40]: 

ST
i =

Ex∼i

(
σ2

xi
(y|xi)

)

σ2(y)
= 1 −

σ2
x∼i
(Exi (y|xi))

σ2(y)
(16) 

The x∼i notation stands for the set of all variables except xi. In 
practice, most models cannot be solved analytically, thus the above 
expressions are intractable. Instead, several estimators have been pro-
posed [40], which however might require up to 105 realizations in order 
to converge, hence can only be used for costless models. 

Nevertheless, an essential advantage of the PCE is that the Sobol 
indices can be derived immediately after training, without any sort of 
estimator, simply by post-processing the computed coefficients ya [41]. 
The first-order indices are given by the following expression: 

Si =

∑

a∈Ai

y2
a

σ2(y)

where : Ai =
{

a ∈ ℕM : ai > 0, aj∕=i = 0
}
, σ2(y) =

∑

a∈ℕM
a∕=0

y2
a

(17)  

whereas for the total Sobol indices, the subset changes to: Ai =

{a∈ NM : ai > 0}. The interested reader on the GSA formulation and 
the combinations with surrogate modeling is referred to Refs. [11,40, 
41]. 

3.3. Inverse identification via Bayesian inference 

The acquisition of response data can be used within an inverse UQ 
framework, in order to improve the knowledge on the input parameters 
of a system, by updating their statistical information based on the dis-
crepancies between model predictions and observations. In this study, 
the experimental data of the composite tests are employed in a Bayesian 
inference scheme, leading to updated information on the scatter of the 
microscopic parameters. 

If Ω is the model between an input x and the response of interest, 
then the expression: 

y=Ω(x) + ε (18)  

establishes the deviation/error ε between the observed quantities y and 
the model response. Based on the Bayes’ theorem, the posterior proba-
bility density function (PDF) of the input x given a set of observation 

data y has the form: 

p(x|y)=
p(y|x)p(x)

∫
p(y|x)p(x)dx

(19)  

where p(y|x) is the likelihood function, p(x) is the prior PDF and the 
denominator is a normalizing constant called evidence. Essentially, the 
prior belief about the probability of the input x, is being updated to the 
posterior, after observing the data y. 

In order to configure the likelihood function, a typical strategy is to 
consider the errors of Eq. (18) as independent and identically distributed 
random variables, following a Gaussian distribution N (0,σ2

ε ), where σε 
represents the measurement error. It is also common to include potential 
modeling errors into the same variable [42]. The likelihood function can 
then be formatted as Gaussian, and the posterior is expressed as: 

p(x|y)∝
(
2πσ2

ε
)− n/2exp

{

−
1

2σ2
ε

∑n

i=1
[yi − Ωi(x)]2

}

p(x) (20)  

where n is the number of available measurement data. The last equation 
represents the solution of the inverse Bayesian problem as a propor-
tionality and provides the joint posterior distribution of the input pa-
rameters, conditional to the observed data. 

An analytical solution for the posterior distribution is usually not 
possible, thus typically numerical techniques are used in order to sample 
from an unknown distribution by constructing a Markov Chain. Markov 
Chain Monte Carlo (MCMC) methods allow the iterative generation of 
samples which asymptotically behave as the target PDF. In this work the 
Metropolis-Hastings algorithm is used for that purpose [43]. In brief, 
starting from a point xk in space, a so-called random-walk is performed 
in the neighborhood based on a proposal distribution Q(x

⃒
⃒xk). The 

candidate point x∗ is accepted or rejected according to the following 
expression: 

xk+1 =

⎧
⎪⎨

⎪⎩

x* ∼ Q
(
x
⃒
⃒xk), if u ∼ U[0, 1] < min

{

1,
p(x*|y)
p(xk

⃒
⃒y)

}

xk, else

(21)  

where essentially points with higher likelihood are always accepted, 
otherwise they are either accepted or rejected randomly (based on a 
comparison with a standard uniform sample) with decreasing proba-
bility, the less likely they are. 

Some noteworthy points regarding Bayesian inference with MCMC, 
are the measurement error choice and the spread of the proposal dis-
tribution. The measurement error essentially controls the acceptance 
space of the problem, so it affects the variance of the results. In case it is 
not available, many studies perform a parametric analysis starting from 
a reasonable (from an engineering judgment perspective) value. More-
over, the spread of the proposal distribution in MCMC controls the area 

Fig. 4. Polynomial chaos training and verification: a) response of training data set, b) verification for stiffness and c) verification for strength, via comparison for 20 
sample points outside the training set. 
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covered by the Markov chain samples, hence the efficiency of the 
method. A small spread leads to correlated samples (meaning ergodicity 
problems) and slows down convergence, whereas a big spread reduces 
the acceptance rate, which drives the efficiency of the method. A 
convenient choice can be found by trial and error, conditional to a 
desired acceptance rate (usually 40–50%). For more information the 
reader is referred to Refs. [42,44,45]. 

4. Uncertainty quantification results 

4.1. Surrogate modeling verification 

The approach presented in section 3 is applied to quantify the un-
certain inputs of the micro-parameters of a UD composite, using the data 
and model given in section 2. The parameters consisting the random 
input are: x = {Ef2,Em,Vf ,Xmt}. Based on prior experience, those are the 
governing microscopic parameters for the elastic and damage behavior 
of the material. The training sample points (also known as design of 
experiments) were generated by an optimal Latin Hypercube sampling 
algorithm [46], for an efficient filling of the input space. 

A data set of 160 FE model evaluations was generated for training 
and verification. The scatter of this data set in terms of stress-strain 
response, is shown in Fig. 4a. The quantities of interest for the current 
study are the effective stiffness and strength response of the UD com-
posite, as a result two different PCEs are trained. For the stiffness PCE 
model, a second-order polynomial was used and 60 samples were 
required, while for the strength model, a third-order polynomial with 
140 samples was used. Both PCEs use the 1-norm, without any order 
reduction (see Appendix A). For the verification of the training, a set of 
20 points outside the training set was used to compare the PCE pre-
dictions against the original FE model. The coefficient of determination 
(R2) is used as an error metric, which is given by the formula: 

R2 = 1 −

∑N
i=1

(

yi − ŷi

)2

∑N
i=1

(

yi − yi

)2 (22)  

where yi is the true response, ŷi is the respective prediction of the con-
structed PCE, yi is the mean of the true responses and N is the total 
number of samples. The metric values of R2 are bounded in [0,1] and the 
closest the values are to 1, the better is the fit. A point-to-point com-
parison plot and the coefficient of determination are presented for both 
PCEs in Fig. 4b and c, where excellent convergence is observed, as the 
error in both cases is less than 0.2%. 

4.2. Variance-based global sensitivity analysis 

The Sobol indices for both responses are immediately available after 

the surrogate training, by post processing the PCE coefficients (Eq. (17)). 
The results are provided in Fig. 5 for both stiffness and strength, in a bar 
plot form. The first-order indices and the total ones (including in-
teractions) are directly compared for each input parameter. 

Concerning the elastic response (Fig. 5a) the fiber volume fraction is 
governing the response variability, as it is responsible for almost 65% of 
the total output scatter. The stiffness properties of the two phases are 
following with 21% for the matrix and 13% for the fibers. The strength 
response however (Fig. 5b), is dominated by the matrix tensile strength 
up to a percentage of 95%. The interactions among the input, observed 
from the discrepancies between the total and the first-order indices, 
appear rather low. Therefore, it would be safe to use an order reduction 
by selecting a q-norm during the PCE construction, which would lead to 
a more efficient surrogate model in terms of model evaluations (see 
Appendix A). The results appear realistic from an engineering perspec-
tive, and while the strength response is clear, the dominance of Vf for the 
stiffness response can be interpreted from the inverse rule of mixtures 
(or Reuss model): E2 = (Vf/Ef2 + (1 − Vf )/Em)

− 1, by calculating the 
partial derivatives of the denominator: 

∂(E− 1
2 )

∂Vf
= 1

Ef
− 1

Em

∂
(
E− 1

2

)

∂Ef 2
= −

Vf

E2
f 2

∂
(
E− 1

2

)

∂Em
= −

1 − Vf

E2
m

(23) 

The derivatives with respect to Ef2 and Em have numerators smaller 
than 1, while the denominators are squared Young’s moduli, hence large 
values. As a result, both expressions are much smaller (absolute value) 
than the derivative with respect to the volume fraction. 

According to the sensitivity results, the microscopic parameters that 
can be identified when integrated to the Bayesian inference scheme, are 
the volume fraction based on the stiffness response and the matrix 
tensile strength based on the failure response. It is of great importance 
for a sensitivity analysis to precede an inverse identification, as irra-
tional results might appear from the updated distribution of a non- 
influential parameter. 

4.3. Uncertainty quantification via Bayesian inference 

4.3.1. Stiffness 
The Bayesian inference methodology described in section 3.3, is first 

applied to identify the volume fraction Vf based on the effective stiffness 
response of the UD composite. As discussed in the previous section, the 
elastic variables Ef2 and Em also contribute to the output scatter. How-
ever, after some trials it was observed that the model is not sensitive 
enough to those parameters in order for them to be updated, because 
their posterior distributions were highly dependent on the priors and 
had mostly larger variance. Therefore, these parameters are considered 

Fig. 5. GSA results for the first order and total indices: a) stiffness response and b) strength response.  
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random but they are not updated. The experimental data extracted from 
the derivative of the curves in Fig. 1 are (in GPa) [9.939, 8.399, 8.979, 
9.128, 8.767, 9.699] and the measurement error for this specific test 
campaign is 0.122 GPa [29]. The availability of the experimental mea-
surement error is of great significance, since it affects the variance of the 
results, as discussed in section 3.3. 

The first performance evaluation concerns the convergence of the 
MCMC samples. Fig. 6 illustrates the trace plot and the autocorrelation 
of the generated Markov chains. The prior for Vf is chosen as a Gaussian 

distribution with a mean value of 0.62 (as given in Ref. [29]) and a 10% 
coefficient of variation (COV = σ/μ). The starting point of the Markov 
chain is intentionally chosen quite lower, in order to capture the 
convergence speed through the trace plot (Fig. 6a). Indeed, the gener-
ated samples are mixing well with fast convergence and stationarity. The 
autocorrelation between accepted samples shows a quick decrease and 
stays in low levels around zero (Fig. 6b), which is the target as a sample 
should only depend on the previous sample. These plots also provide 
clues about the burn-in period which is the amount of samples at the first 
stages of the Markov chain that are deleted due to high correlation. In 
this case the burn-in was chosen as 50 samples. 

Regarding the updated values of Vf , the mean value decreased from 
0.62 to 0.57. For the variance, an assumption must be made on the 
variance of the random parameters which are not updated. Three cases 
were considered, with a COV of 0.02, 0.03 and 0.04 for each parameter. 
The updated variance is lower than the prior (10%) and ranges between 
2.5 and 5%. The differences in the mean and variance between the prior 
and the posterior distributions are also illustrated in Fig. 7, in terms of 
cumulative distribution and probability density functions. 

The response prediction after the update is also directly available 
with MCMC, with no need for extra model evaluations. The predicted 
response sample is shown as a histogram in Fig. 8, in contrast with the 
experimental data. The mean of the response is well captured and all 
data lie within range. It is worth mentioning that a direct comparison 
between the predicted variance and the data variance is not reliable, due 
to the low number of data. 

4.3.2. Strength 
The Bayesian inference based on the strength response is more 

straightforward since the GSA identified the matrix strength Xmt as the 
utterly dominant parameter concerning the response variability. The 

Fig. 6. Evaluation plot of generated MCMC for the stiffness case: a) trace plot and b) autocorrelation plot.  

Fig. 7. Comparison of prior and posterior distributions of Vf , for three cases of COV of the parameters which are not updated: a) cumulative distribution and b) 
probability density. 

Fig. 8. Response prediction in contrast with experimental data for the stiff-
ness case. 
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remaining parameters are considered deterministic. The experimental 
data as extracted from the curves of Fig. 1 are (in MPa) [40.523, 49.990, 
47.413, 42.044, 40.318, 44.306] and the measurement error is 4 MPa 
[29]. 

The convergence and autocorrelation plots are shown in Fig. 9. Once 
more, convergence is established rapidly, even though the initial point 
of the Markov Chain was selected in a lower value. The autocorrelation 
plot verifies there are no ergodicity problems and the first 50 samples 
are deleted as burn-in. The prior is a Gaussian distribution with 89 MPa 

as mean value, as identified by the fitting procedure in Lüders, while the 
COV is equal to 10%. The posterior distribution has a reduced mean 
value of 86 MPa with a COV of 3%. The comparison between prior and 
posterior is shown in Fig. 10. It appears that the fitting process over-
estimated Xmt. 

The histogram of the predicted sample of the response based on the 
updated posterior, is shown in Fig. 11, together with the data mea-
surements. The mean value of the available data is slightly smaller than 
the one of the prediction, because of the three measurements within the 
range of 40–42 MPa. Even though all measurements lie within the 
predicted range, they appear quite dispersed and their variance, if 
calculated the conventional way, is bigger than the one of the predicted 
sample. However, for such a small sample, a different variance estimator 
is likely to be more appropriate, such as range/4 or range/6. In that case, 
the variances of the prediction and the data are quite close. 

5. Concluding remarks 

A full uncertainty quantification framework was presented herein, 
regarding the most influential microscopic properties of a carbon UD 
composite material, based on a recently published experimental 
campaign. A global variance-based sensitivity analysis was initially 
performed, which identified the governing parameters related to the 
elastic and the failure response. Afterwards, the prior beliefs of the 
statistical moments of these parameters were updated, via a Bayesian 
inverse quantification approach. 

A FE multiscale methodology was established for the modeling 
response, while a polynomial chaos surrogate model was employed to 
boost the efficiency of the UQ methods, due to the high number of 
necessary model evaluations. Even though this study only deals with the 
transverse tension load case, an extension towards other load cases is 
straightforward, as all methods employed are non-intrusive (PCE, GSA, 

Fig. 9. Evaluation plot of generated MCMC for the strength case: a) trace plot and b) autocorrelation plot.  

Fig. 10. Comparison of prior and posterior distributions of Xmt : a) cumulative distribution and b) probability density.  

Fig. 11. Response prediction in contrast with experimental data for the 
strength case. 
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Bayesian inference). Hence, a potential follow-up study could integrate 
the experimental data from Ref. [29] for transverse compression and 
in-plane shear loads, towards the quantification of more microscopic 
parameters. 

Results showed that the microscopic volume fraction and the matrix 
tensile strength are the governing parameters for the response vari-
ability of the effective stiffness and strength, respectively. The Bayesian 
inference methodology indicated a shift of their previously determined 
mean values, namely 57% from 62% for the Vf and 86 from 89 MPa for 
the Xmt. Moreover, a significant uncertainty reduction was observed for 
both parameters. Starting from a very common prior belief of a 10% 
COV, the updated Vf lies in the range of 2.5–5% depending on the un-
certainty of the phases’ elastic parameters, while the posterior of Xmt 
showed a 3% COV. It is worth mentioning that the COV of Xmt has been 
identified as approximately 11% in a similar study [28], which however 
is very likely to have included measurement errors and uncertainties of 
other parameters in this scatter. 

The availability of the experimental measurement error is really 
important, as no critical assumptions were made regarding the scatter 
results. Finally, it is noteworthy that the results of this study are 
representative solely for the material under investigation. For a different 
material system where the cohesive properties would be more 

pronounced, the same methodology can be followed for the UQ of the 
cohesive stiffness and strength properties under the same load case. 
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Appendix A. Polynomial chaos truncation and computation of coefficients 

For the truncation of the PCE (Eq. (13)), the simplest option consists of confining the total degree of polynomials with an upper bound: 

AM,p =
{

α∈NM : |α| ≤ p
}

(A.1)  

where |α| =
∑M

i=1αi is the total degree of polynomials and p is the maximum degree. The cardinality of this set is: 

cardAM,p ≡Z =
(M + p)!

M!p!
(A.2) 

hence the set size grows polynomially both in M and p (e.g. for M = 6 and p = 5, Z = 210). The number of model evaluations required for training, 
needs to be 3–4 times the cardAM,p. As a result, this truncation can be expensive when the stochastic dimension M is high. A reduction is achieved with 
the use of hyperbolic index sets based on q-norms [47]: 

AM,p
q =

{

α∈NM :

(
∑M

i=1
αq

i

)1
q

≤ p

}

(A.3)  

where 0 < q < 1. This strategy is suitable for problems with minimal interactions between the stochastic input. 
There are various ways to compute the unknown coefficients yα [41]. In this study, a non-intrusive technique (i.e. model independent for 

generalization purposes) based on minimizing the mean square error between the prediction and the model response for each sample point, is 
employed. If Ŷ is the vector of the coefficients, then: 

Ŷ = argminE

{[
∑Z− 1

j=0
yjΨj(x) − Ω(x)

]2}

(A.4) 

And by applying least-square minimization, the final expression is reached: 

Ŷ =
(
AT A

)− 1AT Ω (A.5)  

where A = Aij = Ψj(x(i)) for {i= 1,…,M; j= 0,…,Z − 1} is the so-called experimental matrix and Ω is the vector of true responses for the sample 
points. A prediction for any x outside the training sample, is carried out by applying the inferred coefficients Ŷ and the polynomials Ψα(x) to Eq. (13). 
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Chapter 6

Validation of FE Modeling at Mesoscale
level and CT Data Integration

This chapter consists of two subsections and provides experimental validation for some of the
numerical models and methodologies presented in the previous chapters. In the first subsection,
the mesoscale FE modeling (middle part of Fig.1.5) is validated against experimental data from
the literature in terms of stiffness and strength prediction. The comparison is performed based
on a triaxially braided composite material under uniaxial tension.

The second part of this chapter verifies the feasibility of the methodology proposed in Chapter 3
for the stochastic characterization of distorted yarns. The methodology is applied on CT-scan
data of a carbon-fiber braided tubular specimen through the following steps: a) a statistical
sample of distortions is initially extracted via image processing, b) the sample measurements
are used for the generation of a random distortion input with the same statistical properties,
and c) the realistic distortion uncertainty is propagated through the developed probabilistic
framework to the effective stiffness response.

6.1 Validation of mesoscale modeling against experimental data

The modeling approach for the mesoscale braided structure is based on the synergy of TexGen
and Abaqus software, as described in detail in Chapters 2, 3 and 4. The stiffness accuracy has
been verified in Chapter 2 for both the longitudinal and transverse direction, using literature test
data for three different braid angle values. The mesoscale strength prediction accuracy of the
framework of this thesis (Fig.1.5) and, consequently, the integrated progressive failure algorithm
are validated in this section by the test data provided in (Miravete et al., 2006). The same test
data, although filtered, were used for validating the modeling approach in (Xu, Jin, and Ha,
2015), as most of the essential information for creating a representative model are included.

The yarn material properties used are shown in Table 6.1 for both stiffness and strength. The
elastic matrix properties are reported in Table 6.2. Concerning the specimen, a coupon with a
regular triaxial braid (2/2) and a braid angle of 30◦ was tested according to ASTM D 3039/D
3039M. Even though the yarn volume fraction within the mesoscale RVE is not explicitly stated,
it can be extracted as follows: the fiber volume content in the yarns is 80% and the measured
fiber volume content of the specimen was equal to 39%, consequently their ratio provides the
yarn volume fraction in the RVE as 48.75%. The exact dimensions of the yarn sections are not
disclosed.

The results of FE modeling with the current progressive failure framework and the test curve
under uniaxial tension are shown in Fig.6.1. Regarding the discretization, 376740 voxels were
used to mesh the mesoscopic RVE with an aspect of 0.02mm each. The experimental curve
is quite unstable before the failure peak, but the overall stiffness convergence is satisfactory.
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TABLE 6.1: UD carbon/epoxy yarn material properties (Miravete et al., 2006)

Parameter Value Units
E1 168.6 GPa
E2 21.99 GPa
G12 9.035 GPa
G23 8.654 GPa
v12 0.287 -
v23 0.269 -
Xt 2175 MPa
Xc 2511 MPa
Yt 53.53 MPa
Yc 53.53 MPa
S12 43.3 MPa

TABLE 6.2: Epoxy Hexcel RTM-6 matrix properties (Miravete et al., 2006)

Parameter Value Units
E 2.89 GPa
v 0.3 GPa

The ultimate strength and strain values are close and the slight difference could be partially
explained by the general underestimation of the Hashin failure criterion observed by other
researchers, e.g. in (Gu and Chen, 2017). Furthermore, the damage accumulation is in agreement
with both (Miravete et al., 2006) and (Xu, Jin, and Ha, 2015), as matrix damage is initially
observed on the weft yarns, and as soon as fiber damage occurs within the axial tows which
carry most of the load, ultimate failure follows (see also Chapter 4 for details).

For the case of micromechanical models predicting the mechanical response of the yarns (left
part of Fig.1.5), it is noted that the numerical microscopic RVE configurations have been verified
in Chapter 4 against analytical models. In addition, Chapter 5 provides validation with test data
for the transverse tensile case.

0.0 0.5 1.0 1.5 2.0
effective strain (%)

0

100

200

300

400

500

600

ef
fe

ct
iv

e 
st

re
ss

 (M
Pa

)

test data
FE model

FIGURE 6.1: Comparison between the FE model prediction and experimental
data from (Miravete et al., 2006) in terms of effective stress-strain behavior, for a

triaxially braided composite with a 30◦ braid angle under uniaxial tension.
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6.2 Geometrical Uncertainty Propagation for a Braided Tube based
on CT Data

This section describes an application of the stochastic framework for yarn distortion modeling
with random fields presented in Chapter 3 to a tubular braided composite part, verifying
the feasibility of the proposed approach in the presence of data. A CT scan of the part was
performed at ILK of TU Dresden (Institute of Lightweight Engineering and Polymer Technology,
Technical University of Dresden, Germany) in order to extract a statistical sample concerning
distorted yarn shapes. The geometrical uncertainty is then propagated to the elastic effective
response of the structure via Monte Carlo simulations. As the exact material properties of
the braided specimen were not disclosed, the elastic fiber modulus was inversely identified
from compression tests performed at KVWEB of TUHH (Institute of Polymers and Composites,
Hamburg University of Technology, Germany).

6.2.1 Methodology

Image processing

The first step consists of processing the images extracted from the CT scan. An isometric view of
the scanned part is shown in Fig.6.2 in which the yarn pattern is visible. The target is to identify
several distorted yarn shapes from the cross-section images, in order to create a sample. Ideally,
an automated procedure shall be compiled, in which a threshold is applied to the greyscale
images to convert them into binary, and finally perform boundary detection. However, this is
not possible due to the low resolution and similar densities of carbon and resin. A manual image
processing strategy was instead employed, based on improving the visibility with a spatial filter
and adjusting the contrast within Matlab software and, finally, identifying the distorted shapes
with the open source software ImageJ.

FIGURE 6.2: Isometric CT view of the scanned specimen.
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FIGURE 6.3: Processed cross-sectional image of the braided specimen: representa-
tion of 3 axial yarns (red color) and 3 binding yarns (green color).

A cross-section illustration is presented in Fig.6.3 where two types of yarns can be identified.
The axial yarns (red color) have bigger volumes and were approximated by an elliptical shape
in previous chapters, while the binding yarns (green color) are thinner and were modeled with
a lenticular cross-section. The distortion due to compaction is evident especially for the binding
yarns. In total, two different samples of yarn edges were created, one for axial yarns and one for
binding yarns, with 50 sections each. The data were collected from different locations within the
scanned specimen. Moreover, the braid angle was measured equal to 38.4◦ from a front view of
the specimen, as shown in Fig.6.4.

Stochastic modeling

After extracting the distorted yarn data, the stochastic modeling approach proposed in Chapter
3 is employed for the geometric uncertainty recreation via random fields. Initially, a geometric
shape is fitted to the points of each section of the sample by solving a nonlinear least-squares
problem that minimizes the distances of each point from the shape. Ellipses are fitted to the
axial yarn data and lenticular shapes to the binding yarn data. An example is shown in Fig.6.5A
for an elliptical shape, in which the red points are the distorted yarn data extracted from image
processing and the solid gray curve is the fitted ellipse resulted from the optimization problem.

Afterwards, the distortions in terms of radial distances of each point from the fitted shape
are calculated. This can be easily done by transforming the data from the Cartesian to the
polar coordinate system. As described in Chapter 3, the calculated distances can be sufficiently
approximated by a Fourier series, given that the upper limit, and consequently the number of

FIGURE 6.4: Processed image of the outer surface of the braided specimen and
braiding angle measurement.
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FIGURE 6.5: Illustration of ellipse fitting and Fourier approximation to data points
of a distorted yarn section: Cartesian coordinate system (A) and polar coordinate

system (B).

coefficients, is carefully chosen. The accuracy of such an approximation is illustrated in Fig.6.5B
for the polar coordinate system and in Fig.6.5A for the Cartesian system (dashed black line).

The above procedure is followed for all yarns in the sample. In order to generate random
input with the same statistical characteristics as the data extracted, a variant of the discrete
Karhunen-Loève transformation is used, which decorrelates the random vector of the Fourier
coefficients. If x is the latter vector, µ its mean vector and C its covariance matrix, the following
formula connects x with a vector z of zero mean and unitary standard deviation:

x = µ + V
√
D z (6.1)

where D is the eigenvalue diagonal matrix and V is the eigenvector matrix coming from the
spectral decomposition of the covariance matrix C, as follows:

C = VDVᵀ (6.2)

The reader is referred to (Kriegesmann, 2012) for more details.

Uncertainty propagation

With the realistic random input of the described stochastic modeling, Monte Carlo simulations
can be performed based on the FE methods described in the previous chapters and scatter
predictions for the macroscopic mechanical properties can be extracted (see also Fig.1.5). The
target of this section is to quantify the response variability of the axial stiffness of the braided
structure due to the measured geometric uncertainties of the distorted yarns.

Concerning the material properties, carbon fibers have been used during production, however,
the exact type and values were not disclosed by the manufacturer. The tube was cut in half and
the resulting two specimens were tested under compression towards the stiffness extraction.
By calculating the section stiffness and using a trial-and-error strategy, the fiber stiffness in the
longitudinal direction was tuned so that the deterministic macroscopic stiffness of the model
would approximate the median of the test results. The fiber stiffness outcome was 100GPa
indicating a low modulus pitch-based carbon type (Frank, Hermanutz, and Buchmeiser, 2012),
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which is reasonable considering the specimen was a bicycle handle part and, hence, low cost
materials would be selected.

Another noteworthy element emerging from the section image of Fig.6.3, is the apparent over-
braiding (i.e. braiding the same preform more than once to form multiple layers) resulting
in three nested layers due to high compaction (i.e. interpenetration of yarns to neighboring
layers). The modeling approach of the previous chapters accounts for one layer with periodic
boundary conditions also in the out-of-plane direction, so implicitly considers multiple plies. A
comparison was performed between the adopted approach and a 3-layer model with a nested
configuration from TexGen, with the results being almost identical. Therefore, the single-layer
model used throughout the thesis was employed for efficiency.

6.2.2 Results and discussion

In total, 300 Monte Carlo simulations were performed in order to collect the scatter of macro-
scopic stiffness in the longitudinal direction Ex, accounting for random yarn distortions based
on CT measurements. The evolution of the first two statistical moments over the number of sim-
ulations is shown in Fig.6.6. The mean evidently converges fast (Fig.6.6A), while the coefficient
of variation (COV) requires at least 200 simulations to converge (Fig.6.6B).

The response variability results are plotted in a histogram form in Fig.6.7 together with the two
test values extracted from the compression tests. The COV of the sample equals to 3.6% and
the test results fall within the range of the predictions. In fact, the test data are located within
the ±1σ region of the sample, within which 68.27% of the sample points are located assuming a
symmetric unimodal distribution (e.g. Gaussian). However, a few more test data would provide
a clearer perspective on whether this range is representative or one of the values is possibly an
outlier.

Moreover, it is known that the volume fraction is the governing parameter for the elastic
response of composites. This is confirmed by the scatter plot of Fig.6.8A which correlates the
longitudinal stiffness scatter with the yarn-to-matrix volume content of the mesoscale RVEs.
However, it is noteworthy that for the case of the axial yarns of the braided specimen fitted with
elliptical shapes, the contribution of their thickness and width to the overall area variation, and
consequently to the volume fraction, is quite balanced, as shown in Fig.6.8B where the width
and thickness of the 50 yarns included in the original sample are plotted against the sectional
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superimposed with the test values of the specimen.

yarn area. The thickness variation is strongly correlated to the area while the width influence is
slightly weaker, as opposed to (Bodaghi et al., 2017) where measurements from a woven carbon
fabric revealed almost no sensitivity of the width variation. This is probably due to the flattened
shape of the woven yarns, as the major axis is more than 10 times larger than the minor axis in
the latter study.
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Chapter 7

Summary and Outlook

7.1 Summary

This thesis presents the development of a comprehensive, probabilistic, virtual-testing frame-
work towards the uncertainty quantification of braided composites, based on intelligent and
efficient metamodeling techniques. Uncertainties of material and geometric parameters at lower
scales can be propagated to the homogenized stiffness and strength response via the proposed
multiscale scheme and can be assessed both qualitatively and quantitatively. In order to over-
come the computational cost of the probabilistic runs, various surrogate modeling techniques
were applied and a novel hybrid metamodel was developed for the emulation of the failure
response. All the integrated stochastic algorithms are non-intrusive and purely data-driven,
in the sense that no modifications are required within their structure in case of a different FE
model. Hence, the extension of the framework towards more load cases or even different textile
setups is straightforward.

The application presented in Chapter 2 for the linear elastic case towards the effective stiffness
prediction under uncertainty, revealed the fiber volume content of the yarns and the braiding
angle variation as the most influential parameters overall for a triaxially braided composite.
The geometric randomness introduced to the mesoscale RVE caused slight skewness to some
response parameters, while the efficiency of artificial neural networks is indisputable with only
30-40 samples needed for training.

Random geometric imperfections in terms of yard distortion and yarn waviness were modeled
with random fields in Chapter 3. The modeling approaches were based on Fourier series and
Kriging for a straightforward calibration of the variance and correlation in the presence of
measurement data. The uncertainty propagation application for a braided composite showed
that the variability levels due to the above uncertainties are non-negligible, especially for the
ultimate strength response. Stochastic deviations on the nominal path of the binding yarns
caused significant scatter to the transverse elastic properties as well.

The surrogate modeling of the stochastic failure response for braided composites was addressed
in Chapter 4. Due to the complex response surface, a novel hybrid metamodeling technique was
developed able to make use of low and high fidelity data. The metamodel integrates an artificial
neural network in the kernel of the hierarchical Kriging model to boost the training performance.
A fast transition from the microscale to the yarn properties was achieved with two artificial
neural networks per load case. The step size of the solution algorithm was chosen as the fidelity
level to reduce the numerical cost by 7.5 times. The proposed model was employed for the
global sensitivity analysis of the failure response and indicated strong interactions between the
input properties.

A Bayesian inference scheme for the inverse uncertainty quantification of microscopic composite
properties was presented in Chapter 5. The FE multiscale methodology was substituted by a
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polynomial chaos surrogate model in order to boost efficiency, but also provide the sensitivity
of each random input to the elastic and failure response by processing its coefficients. The test
data of a carbon UD composite plate from a published experimental campaign were integrated
towards the identification of the first two statistical moments of the most influential parameters.
A significant uncertainty reduction was observed compared to typical prior beliefs, while the
results are exempt of systematic errors due to the availability of the epistemic uncertainty. The
mean properties were also corrected from the chosen values during the initial calibration.

Finally, the numerical multiscale prediction algorithms were validated in Chapter 6 based on
test data from the literature. The resulting effective stress-strain response for a triaxially braided
composite under uniaxial tension was sufficiently approximated by the FE model adopted in this
thesis. Furthermore, the feasibility of the proposed modeling approach of Chapter 3 was verified
by calibrating random yarn distortions based on CT-scan measurements. After processing
the section images, the Fourier-based methodology was used to tailor random fields around
the distorted sections with the same statistical characteristics extracted from the data. The
uncertainty was propagated to the effective stiffness of the specimen and revealed a noteworthy
response variability.

7.2 Outlook

Even though the effective elastic properties can be statistically characterized for all load cases,
stochastic failure prediction has been developed solely for the uniaxial tensile case. Therefore, a
direct extension for compressive, shear, transverse or even biaxial load cases can be pursued,
considering also the non-intrusive nature of the framework, which allows the straightforward
integration of different FE models and cases. This extension can lead to a unified framework for
full material characterization under uncertainty, with powerful potential for industrial practice.
Nevertheless, several challenges must be addressed for the success of this next step.

Modeling the compressive failure of textile composites is not trivial as complex failure modes
occur, including phenomena of stability loss within the yarns. Furthermore, the automated
meshing strategy with voxels has been verified for the cases studied in this thesis, but is likely
to produce inaccurate results for shear, compressive and biaxial load cases. This is part of a
bigger issue regarding conformal meshing algorithms able to automatically re-mesh complex
geometries after modifications in every iteration. Lots of research projects have made attempts
in this regard, as it is also relevant for topology optimization applications. But a universal
solution for all textiles is yet to come, as e.g. meshing braided structures is harder than it is for
woven.

Another aspect which can be enhanced is the progressive failure modeling approach based on
the elastic-damage model. Different approaches with the potential to capture the majority of load
cases can be investigated, e.g. peridynamics (able to predict interaction of damages) or phase-
field modeling. A constant consideration, however, should be to avoid extremely expensive
algorithms due to the probabilistic runs required for the data generation of the machine learning
algorithms. Extensions regarding cohesive modeling within the mesoscale RVEs shall also be
pursued.

Having such a unified probabilistic framework available, brings the engineering community one
step closer towards the disengagement from the unfavourable safety factors of current industrial
practices. As described in Chapter 1, the quantification of uncertainty for the statistical modeling
necessary for probabilistic analyses is one of the main barriers for industry. In the short term,
testing 10 composite coupons for a specific load case is, of course, more expensive than testing
3 as is the current practice. However, these 10 values could be enough to quantify and model
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uncertain parameters that can be used for a full probabilistic approach, leading to higher design
allowables for the studied part and, thus, major cost savings in the long term.

As stated earlier in the thesis, machine learning applications to composite materials is an active
research topic during the last three years. There is a lot of ground yet to be covered, as it is
crucial to surrogate as many response surfaces as possible. Mappings of different nature in
order to connect different parameters and responses with mathematical models is often not
straightforward, especially for failure and damage responses as displayed in Chapter 4. The
emulation of more response surfaces will assist processes like optimization, reliability and
sensitivity analysis and will shift engineering science further towards data-driven methods.

An extension related to the latter point concerns the fidelity level choice when employing
multi-fidelity strategies. The step size of the solution algorithm used in Chapter 4 was applied
in order not to compromise the accuracy due to voxel meshing and geometric uncertainties.
The cost reduction was satisfactory but further reductions could be achieved by testing fidelity
correlations related to the damage progression algorithms and meshing strategies. Regarding
damage progression, simplified approaches like instantaneous stiffness degradation or even
first-ply failure could be applied for the low fidelity level and detailed damage models for high
fidelity. Similar approaches apply for the mesh, e.g. with coarse voxels for low fidelity and
dense conformal meshes for high fidelity.

Another important aspect is also the application of quantified uncertainties to individual parts
or components for structural safety assessment. Uncertainty quantification on the material
properties and mechanical behavior is valuable, but it has been observed that some responses
and macroscale models are not so much affected. Furthermore, the correlation magnitude is the
decisive parameter on whether random variables or random fields are appropriate for modeling.
Hence, this should be further studied and quantified. Finally, as illustrated in Chapter 3, it is
challenging to employ surrogate models when the input is modeled with random fields, so
further research in that direction is reasonable.
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