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ABSTRACT

The world is in constant change, and so is the knowledge about it. Knowledge-based
systems — for example, online encyclopedias, search engines and virtual assistants — are
thus faced with the constant challenge of collecting this knowledge and beyond that, to
understand it and make it accessible to their users. Only if a knowledge-based system is
capable of this understanding — that is, it is capable of more than just reading a collection of
words and numbers without grasping their semantics — it can recognise relevant information
and make it understandable to its users. The dynamics of the world play a unique role in
this context: Events of various kinds which are relevant to different communities are shaping
the world, with examples ranging from the coronavirus pandemic to the matches of a local
football team. Vital questions arise when dealing with such events: How to decide which
events are relevant, and for whom? How to model these events, to make them understood
by knowledge-based systems? How is the acquired knowledge returned to the users of these
systems?

A well-established concept for making knowledge understandable by knowledge-based
systems are knowledge graphs, which contain facts about entities (persons, objects, locations,
..) in the form of graphs, represent relationships between these entities and make the
facts understandable by means of ontologies. This thesis considers knowledge graphs from
three different perspectives: (i) Creation of knowledge graphs: Even though the Web offers a
multitude of sources that provide knowledge about the events in the world, the creation of an
event-centric knowledge graph requires recognition of such knowledge, its integration across
sources and its representation. (i) Knowledge graph enrichment: Knowledge of the world
seems to be infinite, and it seems impossible to grasp it entirely at any time. Therefore,
methods that autonomously infer new knowledge and enrich the knowledge graphs are of
particular interest. (iii) Knowledge graph interaction: Even having all knowledge of the
world available does not have any value in itself; in fact, there is a need to make it accessible
to humans. Based on knowledge graphs, systems can provide their knowledge with their
users, even without demanding any conceptual understanding of knowledge graphs from
them. For this to succeed, means for interaction with the knowledge are required, hiding the
knowledge graph below the surface.

In concrete terms, I present FventKG — a knowledge graph that represents the happenings
in the world in 15 languages — as well as Tab2KG — a method for understanding tabular data
and transforming it into a knowledge graph. For the enrichment of knowledge graphs without
any background knowledge, I propose HapPenlng, which infers missing events from the
descriptions of related events. I demonstrate means for interaction with knowledge graphs at
the example of two web-based systems (FventKG+TL and FventKG+BT) that enable users
to explore the happenings in the world as well as the most relevant events in the lives of
well-known personalities.

Key words knowledge graphs, events, Semantic Web, creation of knowledge graphs,
enrichment of knowledge graphs, interaction with knowledge graphs



ZUSAMMENFASSUNG

Die Welt befindet sich im steten Wandel, und mit ihr das Wissen iiber die Welt. Wissens-
basierte Systeme — seien es Online-Enzyklopédien, Suchmaschinen oder Sprachassistenten —
stehen somit vor der konstanten Herausforderung, dieses Wissen zu sammeln und dariiber
hinaus zu verstehen, um es so Menschen verfiigbar zu machen. Nur wenn ein wissens-
basiertes System in der Lage ist, dieses Versténdnis aufzubringen — also zu mehr in der
Lage ist, als auf eine unsortierte Ansammlung von Wortern und Zahlen zuriickzugreifen,
ohne deren Bedeutung zu erkennen —, kann es relevante Informationen erkennen und diese
seinen Nutzern verstandlich machen. Eine besondere Rolle spielt hierbei die Dynamik der
Welt, die von Ereignissen unterschiedlichster Art geformt wird, die fiir unterschiedlichste
Bevolkerungsgruppe relevant sind; Beispiele hierfiir erstrecken sich von der Corona-Pandemie
bis hin zu den Spielen lokaler Fuflballvereine. Doch stellen sich hierbei bedeutende Fragen:
Wie wird die Entscheidung getroffen, ob und fiir wen derlei Ereignisse relevant sind? Wie sind
diese Ereignisse zu modellieren, um von wissensbasierten Systemen verstanden zu werden?
Wie wird das angeeignete Wissen an die Nutzer dieser Systeme zuriickgegeben?

Ein bewéhrtes Konzept, um wissensbasierten Systemen das Wissen verstédndlich zu
machen, sind Wissensgraphen, die Fakten iiber Entitaten (Personen, Objekte, Orte, ...)
in der Form von Graphen sammeln, Zusammenhénge zwischen diesen Entitaten darstellen,
und dariiber hinaus anhand von Ontologien verstéindlich machen. Diese Arbeit widmet
sich der Betrachtung von Wissensgraphen aus drei aufeinander aufbauenden Blickwinkeln:
(i) Erstellung von Wissensgraphen: Auch wenn das Internet eine Vielzahl an Quellen anbietet,
die Wissen iiber Ereignisse in der Welt bereithalten, so erfordert die Erstellung eines
ereigniszentrierten Wissensgraphen, dieses Wissen zu erkennen, miteinander zu verbinden
und zu reprasentieren. (ii) Anreicherung von Wissensgraphen: Das Wissen iiber die Welt
scheint schier unendlich und so scheint es unméglich, dieses je vollstandig (be)greifen zu
konnen. Von Interesse sind also Methoden, die selbststédndig das vorhandene Wissen erweitern.
(iil) Interaktion mit Wissensgraphen: Selbst alles Wissen der Welt bereitzuhalten, hat noch
keinen Wert in sich selbst, vielmehr muss dieses Wissen Menschen verfiigbar gemacht werden.
Basierend auf Wissensgraphen, konnen wissensbasierte Systeme Nutzern ihr Wissen darlegen,
auch ohne von diesen ein konzeptuelles Verstéandis von Wissensgraphen abzuverlangen. Damit
dies gelingt, sind Moglichkeiten der Interaktion mit dem gebotenen Wissen vonnéten, die
den genutzten Wissensgraphen unter der Oberflache verstecken.

Konkret prasentiere ich FventKG — einen Wissensgraphen, der Ereignisse in der Welt
reprasentiert und in 15 Sprachen verfiigbar macht, sowie Tab2KG — eine Methode, um in
Tabellen enthaltene Daten anhand von Hintergrundwissen zu verstehen und in Wissens-
graphen zu wandeln. Zur Anreicherung von Wissensgraphen ohne weiteres Hintergrundwissen
stelle ich HapPenlng vor, das fehlende Ereignisse aus den vorliegenden Beschreibungen
dhnlicher Ereignisse inferiert. Interaktionsmoglichkeiten mit Wissensgraphen demonstriere
ich anhand zweier web-basierter Systeme (FventKG+TL und EventKG+BT), die Nutzern
auf einfache Weise die Exploration von Geschehnissen in der Welt sowie der wichtigsten
Ereignisse in den Leben bekannter Personlichkeiten ermdglichen.

Schlagworter: Wissensgraphen, Ereignisse, Semantic Web, Erstellung von Wissens-
graphen, Anreicherung von Wissensgraphen, Interaktion mit Wissensgraphen
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FOREWORD

The work presented in this thesis has been published at various conferences
and journals, as follows.

Chapter 3 is built on the following works about my knowledge graph
EventKG:

e Simon Gottschalk and Elena Demidova. EventKG: A Multilingual Event-
centric Temporal Knowledge Graph. Extended Semantic Web Conference
(ESWC), 2018. (Resource paper) [GD18a]

e Simon Gottschalk and Elena Demidova. EventKG - the Hub of Event
Knowledge on the Web - and Biographical Timeline Generation. Semantic

Web Journal (SWJ), 2019. (Full Journal paper) [GD19a]
In Chapter 4, I describe the following work:

e Simon Gottschalk and Elena Demidova. Tab2KG: Transforming Tabular
Data into Knowledge Graphs using Semantic Domain Profiles. (Under
submission)

Chapter 5 presents the research published in:

e Simon Gottschalk and Elena Demidova. HapPenlng: Happen, Predict,
Infer — Event Series Completion in a Knowledge Graph. International
Semantic Web Conference (ISWC), 2019. (Full paper) [GD19b]

Chapter 6 again builds up on the FventKG Journal paper, as well as two
demonstration papers:

e Simon Gottschalk and Elena Demidova. EventKG - the Hub of Event
Knowledge on the Web - and Biographical Timeline Generation. Semantic

Web Journal (SWJ), 2019. (Full Journal paper) [GD19a]

e Simon Gottschalk and Elena Demidova. EventKG+BT: Generation of
Interactive Biography Timelines from a Knowledge Graph. Extended
Semantic Web Conference (ESWC), 2020. (Demonstration paper) [GD20)]
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e Simon Gottschalk and Elena Demidova. EventKG+TL: Creating Cross-
Lingual Timelines from an Event-Centric Knowledge Graph. Extended Se-
mantic Web Conference (ESWC), 2018. (Demonstration paper) [GD18b]

The complete list of publications during my PhD follows:

Journal articles

e Simon Gottschalk and Elena Demidova. EventKG - the Hub of Event
Knowledge on the Web - and Biographical Timeline Generation. Semantic
Web Journal (SWJ), 2019. (Full Journal paper) [GD19a]

e Simon Gottschalk and Elena Demidova. MultiWiki: Interlingual Text Pas-
sage Alignment in Wikipedia. ACM Transactions on the Web (TWEB),
2018. (Full Journal paper) [GD17]

Conference papers

e Tarcisio Souza Costa, Simon Gottschalk and Elena Demidova. Event-QA:
A Dataset for Event-Centric Question Answering over Knowledge Graphs.
Conference on Information and Knowledge Management (CIKM), 2020.
(Resource paper) [CGD20]

e Simon Gottschalk and Elena Demidova. HapPenlng: Happen, Predict,
Infer — Event Series Completion in a Knowledge Graph. International

Semantic Web Conference (ISWC), 2019. (Full paper) [GD19b]

e Simon Gottschalk, Viola Bernacchi, Richard Rogers, Elena Demidova.
Towards Better Understanding Researcher Strategies in Cross-Lingual

Event Analytics. International Conference on Theory and Practice of
Digital Libraries (TPDL), 2018. (Full paper) [GD18a]

e Simon Gottschalk and Elena Demidova. EventKG: A Multilingual Event-
centric Temporal Knowledge Graph. Extended Semantic Web Conference
(ESWC), 2018. (Resource paper) [GD18a]

e Simon Gottschalk, Nicolas Tempelmeier, Giinter Kniesel, Vasileios Iosi-
fidis, Besnik Fetahu and Elena Demidova. Simple-ML: Towards a Frame-
work for Semantic Data Analytics Workflows. International Conference
on Semantic Systems (SEMANTICS), 2019. (Short paper) [GTK*19]

Workshop papers

e Sara Abdollahi, Simon Gottschalk and Elena Demidova. EventKG+Click:
A Dataset of Language-specific Event-centric User Interaction Traces.
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(Full workshop paper) [AGD20]
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Introduction

1.1 Motivation

The world keeps changing every minute, as a result of a multitude of events. So does
the data that describes the world. Access to this data and the understanding of the
represented knowledge is a prerequisite for a vast amount of tasks in everyone’s life.
Examples are the use of weather forecasts and online encyclopedias or conversations
with virtual assistants. None of these applications may work without an understanding
of world knowledge: the collection of weather statistics alone does not make a weather
forecast, but an understanding of the involved concepts does.

A common concept underlying knowledge-based applications is the use of knowledge
graphs, where real-world objects and their relations are represented as a graph of
nodes and edges [HBC*20]. In a knowledge graph, such nodes and edges underlie
semantic annotations, which enables machines to understand and reason over the

represented knowledge. For example, [Washington, D.C.] <capital o ([nited States) does

represent knowledge about the United States and can be extended by many more
nodes and edges. Semantic annotations could now declare Washington, D.C., as
a city ([Washington, D.C.] pe, ) and require each city to have coordinates or
the number of inhabitants. Methods that interact with knowledge graphs benefit
from the represented knowledge and its semantics and open up a whole range of
knowledge-based applications.

The question of how to represent knowledge in a logical and formalised way goes
back to the 3rd century (with the suggestion of the Tree of Porphyry [Sow12]) and
has received growing attention in the last century, with the introduction of existential
graphs [Pei09] and conceptual graphs [Sow76], amongst others. These early works
have in recent years attributed to the creation of knowledge graphs such as DBpedia
[ABK™07], Freebase [BEP108], YAGO [SKWO07] and Wikidata [VK14], which are
nowadays well established and used in a broad range of applications. Examples of
applications based on these knowledge graphs include DBpedia Spotlight for natural

1



2 Chapter 1 Introduction

language understanding [MJGSB11], IBM Watson for answering questions posed in
natural language with the help of YAGO [FBCC™10], and the vision of creating
a multilingual Wikipedia, i.e., an encyclopedia based on a language-independent
abstraction of the facts in Wikidata [Vra20].

Knowledge graphs are a representation of the real world. Any changes in the real
world are initiated by events [Mat37], where the most significant ones are perceived
by large communities of people and reported by the media [DK92]. As analyses
have shown, events have a social impact — be it cultural events [DJ10], sports events
[HM™06], or natural disasters [Alb18]. Thus, events influence everyone’s life. Such
influence and the perception of the events can heavily vary across communities [Rog13].
A knowledge graph which is specifically designed to represent event knowledge is
an essential step towards event-centric analytics and exploration of events and their
impact in the world.

The representation of events in a knowledge graph adds new dimensions and
poses several new challenges. First of all, time takes an important role, given the
temporal nature of events. Second, events are very heterogeneous, both concerning
their characteristics and concerning the information available for the same event in
different sources (for instance, compare a natural eruptive event such as an earthquake
and a long-lasting, human-made event such as the Brexit). Third, there is a need to
set a limit of what to insert into a knowledge graph. The decision of what is an event
of historic nature and hence supposed to be added to an event knowledge graph is a
crucial question, as already discussed decades ago [Mat37]. While every action of each
individual may be regarded as an event, only those which are viewed as specifically
influential to some audience will make their way to a focused event knowledge graph.
These challenges demonstrate the importance of creating an event knowledge graph
which provides a semantic understanding of events.

The creation of a knowledge graph, i.e., the representation of knowledge in an
integrated schema, is a task which heavily depends on the present data and the given
scenario: (i) Integration of knowledge from existing sources: knowledge is spread across
the web in a large variety of formats, including textual data, semi-structured sources
and already existing knowledge graphs. The selection and extraction of data from
such sources and their integration into a knowledge graph is a common but challenging
task [WT10]. (ii) Creation of a knowledge graph from user-given data: For data
analysis, users often require deep analytics of just a specific fraction of data, which
they provide as an input to data analytics workflows. The transformation of such data
into a knowledge graph, and thus the provision of semantics, is an important factor for
making data analytics workflows more robust and efficient [GTK™19]. (iii) Enrichment
of an existing knowledge graph: In most cases, knowledge graphs do not represent
closed knowledge and are incomplete by nature, which calls for methods to enrich the
represented knowledge. One way of doing so is the inference of knowledge which is
already implicitly given in the knowledge graph itself [Paul7].

Access to a knowledge graph — wherever it comes from — does not imply immediate
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and intuitive access to the knowledge it represents: most potential users are not
familiar with the concepts of knowledge graphs, not to mention query languages and
the specific schema. Therefore, methods for intuitive access to knowledge is a crucial
task to make a knowledge graph usable for a broader audience [MKG™18]. Such
methods vary depending on the user needs: Users may want to take a close look at
single objects in a knowledge graph or want to start exploration from a much broader
viewpoint, for instance, the dependencies between several objects without a formulated
search intent to start with [WR09]. Approaches to tackling such requirements not
only need to provide an intuitive visualisation as an entry point to the knowledge but
also need to make a selection of what knowledge is worthy of showing to the user in
the respective scenario [ADM*15].

Figure 1.1 gives an example how an event makes its way from the real world to
end-user applications: At first, something happens which affects a large community
of people, as the inauguration of Barack Obama as US president. Such information
is modelled as part of a knowledge graph. When users later ask a search engine for
related information, they may indirectly profit from such knowledge graph. In this
example, Google returns a well-structured list of US presidents and their terms in
office as a reply to the particular user query “list of US presidents”. These examples
demonstrate that knowledge graphs are present in everyone’s life — even if the end-users
do not know what they are [Her16].

list of US presidents

Barack Obama YAl @ images @ News [ Books [ Videos i More

participant of United States/Presidents

i Obama's - B

resident of )
p R @ ’@( Lﬁi

1 .

-\ i
United States Donald Tru Barack George W. 8ill Clin
2017 Obama Bush 1993-2|

2009-2017 2001-2009

Real-world Event Knowledge Graph Knowledge Access

Figure 1.1. An example of how a real-world event (Barack Obama’s inauguration) is
first represented in a knowledge graph and how such knowledge can later be employed
by an end-user application (Google’s search engine).!

1.2 Research Questions

The path from collecting and representing knowledge to the provision of intuitive
access to such knowledge involves several challenges which are addressed in this thesis.

!The photo on the left is taken from Wikimedia Commons (https://commons.wikimedia.org/
wiki/File:US_President_Barack_Obama_taking_his_Oath_of _Office_- _2009Jan20.jpg) and in the public
domain in the United States. The screenshot on the right was taken from https://www.google.com/
search?q=list+of+us+presidents in July 2020.
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Based on these challenges, we derive four research questions which are introduced in
this section.

Knowledge Graph Creation

Obviously, the creation of a knowledge graph is the foundation of any upcoming
knowledge-based task. Therefore, we put a special focus on this issue. As already
explained before, the creation of an event knowledge graph is particularly challenging.
While event knowledge is present in several sources, it remains a challenge of how
to extract that knowledge from the sources and how to integrate it. This challenge
directly leads to our first research question:

e RQ1.1 How to create an event knowledge graph that integrates knowledge from
several sources?

Existing knowledge graphs already contain event knowledge: For example, YAGO
3.1 has 392,844 events and DBpedia currently has 77,583 named events such as
the Second World War and the FIFA World Cup 2014. This makes evident that
knowledge graphs vary in their coverage of events and the question of which nodes
in the graph are actually typed as events. In addition, they miss out important but
unlabelled events such as “WikiLeaks co-founder Julian Assange is arrested after seven
years in Ecuador’s embassy in London” which are typically found in news articles
or semi-structured sources such as Wikipedia’s Current Events Portal?. To bring
such heterogeneous sources together, RQ1.1 implies the need for creating a common
knowledge graph schema which integrates those different perspectives. RQ1.1 also
calls for the fusion of conflicting information: Input sources may disagree with specific
facts, as for example the happening time of a long-lasting event.

In the current scenario, we assume control over the incoming data that is trans-
formed into a new event-centric knowledge graph. But what if we do not know what
given data is about, but we still want to profit from semantic interpretation?

We envision a scenario where a user wants to analyse a dataset given in tabular
format, for example, a table of football matches, their attendances and betting odds.
Without any semantic interpretation, data analysis tools can only view such a table
as a set of text strings and numbers. Consequently, they miss out the opportunity to
view such values as actual semantic concepts. In this thesis, we will investigate how an
automated semantic interpretation of tabular data is possible, under the assumption
of the availability of underlying background knowledge:

e RQ1.2 How to create a knowledge graph from tabular data with the help of
background knowledge?

2https://en.wikipedia.org/wiki/Portal: Current_events
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We see background knowledge as observations from previously seen datasets in the
specific domain. Consider the football example from above: a column of numerical
values between 5,000 and 80,000 may be learnt to represent the attendance of football
matches, while betting odds are in a range between 1 and 10. Now if a user asks for
the semantic interpretation of a table with previously unseen values, the respective
concepts could be recognised following the background knowledge of value distributions.

After recognition of semantic concepts in the data, a new knowledge graph can
be created, which reflects what is represented in the input table. This newly created
knowledge graph will guide the subsequent steps of data analysis.

Enrichment of Knowledge Graphs

Typically, knowledge graphs follow the open-world assumption, which basically states
that the non-existence of facts in the knowledge graph does not imply they do not
hold in the real world. While this assumption makes knowledge graph creation flexible
towards missing information, it also implies that knowledge graphs are incomplete by
nature. Such characteristic calls for knowledge graph enrichment methods, which add
new nodes or edges to a knowledge graph. In this thesis, we pursue the question of
how to conduct knowledge graph enrichment in a setting without the availability of
additional data sources:

e RQ2 How to enrich a knowledge graph without relying on additional, external
knowledge?

This research question implies that we seek for knowledge which is already implicitly
contained in the knowledge graph, but not yet explicitly represented as part of it. As
an example, consider a knowledge graph which contains the fact that Obama was the
president of the United States, but misses the fact that he was a resident of the White
House. However, this fact could be inferred from facts about other US presidents.

Application of Knowledge Graphs

All the previous research questions contribute towards the final goal of this thesis, which
is to make knowledge graphs accessible to non-expert end-users. This is a challenging
task as we can not assume that such user has any idea of what a (knowledge) graph
is and how its information can be obtained. Even if a user was proficient in such
concepts, the user might still be overwhelmed by the amount of information potentially
identifiable in a knowledge graph. These challenges lead to the final research question
tackled in this thesis:

e RQ3 How to apply an event knowledge graph for providing event knowledge to
an end-user?
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Events are a particularly interesting example for knowledge graph applications:
There are many aspects surrounding an event, and thus there is much to explore.
Second, an event knowledge graph is temporal by nature, which opens up many
possibilities for applications that have a focus on the temporal order of things, with
a prominent example being timelines. However, the space of a timeline is limited.
Therefore, RQ3 is not just about creating an intuitive interface to a knowledge graph
but also about the collection and filtering of data which actually fulfils the user needs.

1.3 Contributions

Figure 1.2 summarises the contributions reported in this thesis, divided into three steps:
(i) knowledge graph creation, (ii) knowledge graph enrichment, and (iii) knowledge
graph application. In combination, this pipeline follows a logical order — starting from
input sources and ending in interactive demonstrators which are based on the created
and enriched knowledge graphs. In detail, we present the following contributions in
the remainder of this thesis:

1.3.1 Knowledge Graph Creation

Without surprise, the very first step on our way to knowledge graph-based applications
deals with the creation of said knowledge graphs. Based on the research questions
RQ1.1 and RQ1.2, we create knowledge graphs in two different settings:

FEventKG

In Chapter 3, we present EventKG, our temporal and event-centric knowledge graph.
FEventKG incorporates information extracted from several large-scale knowledge graphs
such as Wikidata, DBpedia and YAGO, as well as less structured sources such as the
Wikipedia Current Events Portal and Wikipedia event lists. To enable the integration
of such amount of heterogeneous sources, we develop a schema, an extraction pipeline
and methods for fusing conflicting input data.

In its current version 3.0, FventKG contains events in 15 languages and provides
information for over 1.3 million events and over 4.5 million temporal relations. More
than a half of the events (56.25%) originate from the existing knowledge graphs; the
others are extracted from semi-structured sources.

Tab2KG

In Chapter 4, we introduce Tab2KG, our approach towards RQ1.2, i.e., the transfor-
mation of tables into knowledge graphs. With Tab2KG, we consider as background
knowledge a domain profile, i.e., statistics with respect to a target schema. Given such
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background knowledge, Tab2K (G automatically infers the semantics of tabular data
and transforms this data into a knowledge graph. We propose a one-shot learning
approach that relies on these profiles to create a mapping between a tabular dataset
that contains previously unseen instances and a target schema. In contrast to the
existing approaches, Tab2KG relies on the profiles only and does not require direct
access to any data instances in the background knowledge. Our experimental evalua-
tion on several real-world datasets demonstrates that Tab2KG outperforms semantic
labelling baselines by nine percentage points on average.

1.3.2 Knowledge Graph Enrichment

Our method HapPenlng described in Chapter 5 conducts knowledge graph enrichment
based on event series.

HapPenlIng

RQ2 asks for the enrichment of a knowledge graph without the use of external resources.
We approach this task in a particular setting that opens up a new perspective into
knowledge graph enrichment: Typically, enrichment tasks infer new relations between
objects already represented in the knowledge graph. Instead of that, we propose a
novel approach that infers new objects, i.e., our approach adds new nodes to the
graph. This is challenging, as such objects are not known yet, and we need to infer
their label and more. Again, event knowledge graphs serve as a great example to
make such enrichment possible: They typically include event series, i.e., sequences of
related events, as the annual Wimbledon Championship editions or the US presidential
elections that happen every four years. The detection of patterns within event series
allows us to identify missing editions of event series, and to infer not only their label
but also their time and location.

HapPenlIng performs knowledge graph enrichment for event series in two steps:
First, it applies machine learning models for identifying missing sub-event relations
between two events (e.g., the Wimbledon Championships final of 2018 is a sub-event
of the Wimbledon Championships 2018) based on a set of textual and spatio-temporal
features. Then, it leverages structural features of event series for inferring missing
editions of an event series. As explained, HapPenlIng does not require any external
knowledge. Our experimental evaluation demonstrates that HapPenlng outperforms
baselines by 44 and 52 percentage points in terms of precision for the sub-event
prediction and the inference tasks, respectively.

1.3.3 Knowledge Graph Application

We present two types of event knowledge graph applications: biography timelines and
event timelines.
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Biography Timelines: FventKG+BT

Research on notable accomplishments and relevant events in the life of people of public
interest usually requires close reading of long encyclopedic or biographical sources,
which is a tedious and time-consuming task [GBRD18]. In Chapter 6, we demonstrate
an application of FventKG to biography timeline generation, where we adopt a distant
supervision method to identify relations most relevant for a biography of a person of
public interest. Our results of a user study and an automatic evaluation demonstrate
the effectiveness of the proposed method, and we show that our method significantly
outperforms the TimeMachine system [ADMT15] for biography generation.

FEventKG+BT is our interactive demonstrator of the generated biography timelines.
With FventKG+BT, users get access to concise and interactive spatio-temporal
representations of biographies and can start the exploration of any person of public
interest that is included in FventKG.

Event Timelines: EventKG+TL

FEventKG+TL is our interactive demonstrator of event timelines. It generates cross-
lingual event timelines based on FventKG and facilitates an overview of the language-
specific event relevance and popularity along with the cross-lingual differences. Thus,
FventKG+TL is a tool for exploring events and their perception in different language
communities. Analogous to EventKG+BT, FventKG+TL hides the event knowledge
graph from the user and abstracts its knowledge to make it accessible for a broad
audience.

1.4 Thesis Outline

The remainder of this thesis is organised as follows: In Chapter 2, we provide the
foundations of concepts and methods relevant in the following chapters. This includes
an introduction into knowledge graphs and the Resource Description Framework
(RDF) (Section 2.1), a definition of events and an overview of event knowledge graphs
(Section 2.2), a brief survey of knowledge graph creation and enrichment techniques
(Section 2.3 - 2.4) and an overview of applications based on knowledge graphs, with
a specific focus on timelines (2.5). This chapter also introduces a running example,
which is used throughout this thesis.

The following four chapters (Chapter 3 - 6) provide details of our research, all
framed with an introductory section, a problem statement, an evaluation and a
discussion, plus a section of chapter-specific background knowledge. In Chapter 3,
we introduce EventKG, our event-centric knowledge graph. Amongst others, this
chapter includes the definition of a schema and an extraction pipeline (Section 3.5),
as well as dataset characteristics and an evaluation of the extraction process (Section
3.6). Chapter 4 introduces Tab2KG, our approach for tabular data interpretation.



1.4 Thesis Outline 9

Within this chapter, we describe the Tab2KG approach in detail and explain the
role of semantic profiles (4.5), following an evaluation section (4.6). Chapter 5 deals
with HapPenlIng — an approach for event knowledge graph enrichment based on
event series. This approach is divided into two sub-tasks: sub-event prediction and
event inference, both described in Section 5.4, also followed by an evaluation (Section
5.5). In Chapter 6, we demonstrate example applications of FventKG at the example
of event and biography timelines. First, we describe and evaluate our approach to
biography timeline generation (Section 6.5 - 6.6). Then, we give two examples of
running systems for event-centric knowledge exploration: EventKG+BT (Section
6.7) and EventKG+ TL (Section 6.8).

Finally, Chapter 7 gives a summary of this thesis and a discussion of the findings.
The chapter closes with an outlook to future works.
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Figure 1.2. Overview of the contributions of this thesis. (i) Knowledge graphs are
created from tabular data, other knowledge graphs and semi-structured data. (ii) At
the example of an event knowledge graph, we demonstrate a method for knowledge
graph enrichment, which is solely based on information inherent in the event knowledge
graph. (iii) Finally, timelines are extracted from the knowledge graph and visualised
with interactive demonstrators.



Background

In this chapter, we give an overview of relevant concepts in this thesis: knowledge
graphs and events, as well as the creation, enrichment and application of knowledge
graphs. We start with an introduction to knowledge graphs and how they are used for
representing knowledge about real-world objects. Then, we define what events are
and how they can be represented as part of a knowledge graph. In the following, we
have a detailed look at how to create and enrich knowledge graphs from event data
and tabular data. Finally, we describe what applications can be built on top of event
knowledge graphs, with a particular focus on timelines.

2.1 Knowledge Graphs

Knowledge graphs'? are a means to represent knowledge about the real world. When
speaking of the real world, we refer to entities, which could be persons like Barack
Obama, locations like Washington, D.C.2, events such as the US Presidential Election in
2012, concepts such as Chemistry, and others. Such entities hold specific characteristics:
for example, Barack Obama was born in 1961, and Washington has 672,228 inhabitants.
Entities are related to each other via properties: Obama was the winner of the US
Presidential Election in 2012 and was a resident of Washington. On top of that,
knowledge graphs add semantics to the represented knowledge. Semantics define the
meaning of high-level terms in a knowledge graph [HBC*20] and thus allow for the
interpretation of data and the inference of new facts: For example, if we know that
Obama was the president of the United States, we could infer that he was a politician.

Formally, a knowledge graph is defined as follows (based on [HBC*20]):

!The term “Knowledge Graph” was first used to refer to the Google Knowledge Graph [Sin12],
but has since been adopted as a common name for similar datasets [MEC™18].

2A knowledge graph can also referred to as a graph-based knowledge base.

3We will abbreviate Washington, D.C., as Washington in the rest of this chapter.

11
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i has capital i
president of I | o4 States e, Washington, D.C. has population 672,228

Barack Obama

Figure 2.1. A first example of a knowledge graph about Barack Obama.

Definition 2.1. A knowledge graph is a directed graph G = (N, R), whose nodes
N represent entities and literal values, and whose edges R represent relations between
these entities.

Following this definition, a knowledge graph is a directed, edge-labelled graph that
represents entities in the real world and their relations, plus literal values (literals
like texts and numbers). There are no limitations given to the covered entities,
the edge labels or the domain covered in the knowledge graph. As a consequence,
knowledge graphs can grow flexibly, and they can be specifically about a domain (such
as medicine) or represent cross-domain knowledge. However, to uniformly interact
with different knowledge graphs and to provide machines with an understanding of
the semantics behind the entities and relations, a set of modelling rules and other
techniques are required.

In the remainder of this thesis, we will introduce different instantiations of this
knowledge graph definition, including a temporal knowledge graph, a data graph, a
schema graph, and a domain knowledge graph.

2.1.1 Running Example: Barack Obama’s Life Represented
in a Knowledge Graph

Throughout this thesis, we will repeatedly come back to a concrete example that deals
with the life of Barack Obama, the former president of the United States. Starting
from the basics of knowledge representation using a knowledge graph, we will end
up creating a timeline of significant events in his life. For a start, assume we want
to model the fact that Obama was the president of the United States. In addition,
we want to model context information about the United States, concretely about
its capital Washington, and its population. Figure 2.1 shows a simple knowledge
graph representing this knowledge: (i) There are three nodes, which represent the
real-world entities Barack Obama, the United States and Washington. Also, there is
a literal value (“672,228”) which denotes the population of Washington. (ii) There
are three edges, all directed and labelled that provide semantic connections between
two entities. Each of them comes with a property label (“president of”, “has capital”
and “has population”). While the first two relations connect two entities, the latter
one connects an entity to a literal value.
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2.1.2 The Resource Description Framework (RDF)

Until now, we have formally defined knowledge graphs. This does, however, not yet
explain how information represented as a knowledge graph can be represented in a
machine-understandable way. This idea goes back to the vision of Time Berners-Lee
in 1999 to create a Semantic Web which makes it possible for computers to “become
capable of analysing all the data on the Web — the content, links, and transactions
between people and computers” [BF00], based on “a language that expresses both data
and rules for reasoning about the data” [BLHLO1]. Such goals are enabled through
the Resource Description Framework (RDF), which is designed as ”a standard model
for data interchange on the Web” [W3C06].

In RDF, knowledge graph nodes are defined as resources that are represented by
Uniform Resource Identifiers (URIs) like http://example.org/resource#Barack-
_Obama. Relations between two resources are represented as triples consisting of a
subject, a predicate and an object. Alternatively, relations can connect a subject
resource to a literal value. Therefore, the subject of a triple is always a resource, but
the object can be either a resource or a literal value.

There are different textual syntaxes for expressing RDF, of which we use the Terse
RDF Triple Language (Turtle, TTL)* and N-Quads®® in the remainder of this thesis.

Knowledge graphs represented in RDF can be queried through the SPARQL
Protocol and RDF Query Language (SPARQL) [Con08].

Running Example

Listing 2.1 shows a set of RDF triples representing the example knowledge graph in
Figure 2.1, using the TTL notation. Now, each node is uniquely identified by a URI,
which is composed of a namespace and the local name. For example, ex :BarackObama
refers to the URI http://example.org/resource#Barack_Obama, using the prefix
ex, the corresponding namespace http://example.org/resource#, and the local name
Barack_Obama.

Each remaining line in Listing 2.1 follows the triple structure. For example, the
first triple has exo:BarackObama as its subject, exo:presidentOf as the predicate,
and exo:UnitedStates as the object. The third triple comes with a literal value as
the object.

4https://www.w3.org/TR/turtle/
Shttps://www.w3.org/TR/n-quads/
6N-Quads allow the declaration of multiple named graphs within one document (see Section 2.1.4).
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Listing 2.1: A first example of the RDF notation

@prefix ex: <http://example.org/resource#> .
@prefix exo: <http://example.org/ontology#> .

ex:Barack(Obama exo:presidentOf ex:UnitedStates .
ex:UnitedStates exo:hasCapital ex:WashingtonDC .
ex:WashingtonDC exo:hasPopulation 672228 .

2.1.3 Schemas and Ontologies

To add semantics to a knowledge graph, a schema or vocabulary defines and describes
a set of terms, which facilitates reasoning over the knowledge graph [HBC*20]. Such
terms include: (i) Classes: Typically, entities can be grouped into classes. For example,
both the United States and Washington are locations, i.e., they can be modelled as
instances of the class Location. Such an assignment of a resource to a class is done
using the rdf:type property. Within the schema, a class hierarchy can be defined:
For example, Washington can be modelled as City, which is a subclass of Location.
A reasoner may infer now that Washington is a Location. (ii) Properties: Properties
usually connect instances of specific classes. A schema can define the classes of the
subject (domain) and the object (range) a property connects. Furthermore, a schema
can also define property hierarchies. For example, the property president of can be
modelled as sub-property of head of state. Its domain could be Politician, and its
range could be Country. A common vocabulary for describing classes and properties
is RDF Schema (RDFS) [BGM14] which offers properties such as rdfs:subClass0f,
rdfs:subProperty0f, rdfs:domain and rdfs:range.

Domain-specific knowledge graphs are used to represent knowledge of a particular
domain (i.e., a specific subject area or area of knowledge [Hef04])7, e.g., medicine,
geography or events. To adequately represent such knowledge and to enable knowledge
inference, there is a need to define an ontology, which includes computer-usable
definitions of the classes in the domain and the relationships among them [Hef04]. To
this end, an ontology language such as the OWL Web Ontology Language (OWL)
[MVHO04] is used. OWL provides a much richer vocabulary for describing classes and
properties than RDFS, including cardinality of relations and negations. For example,
the property has capital can be modelled as owl:FunctionalProperty. Under this
condition, each country is only allowed to have exactly one capital.

“Note that the domains of properties and domains in the sense of knowledge areas are named the
same, but they are two different concepts.
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2.1.4 Additional Techniques for Knowledge Graph Represen-
tation in RDF

Figure 2.2 shows an extended version of the knowledge graph shown before in Figure
2.1, which covers several additional techniques for representing a knowledge graph
using RDF'. Still, the knowledge graph represents the real-world entities Barack Obama,
United States and Washington, using URIs®, labels and classes.

There are more techniques illustrated in Figure 2.2, that play an important role in
the remainder of this thesis:

Identity

I ex2:b_obama I

Named Graph
A

O6I0/0/0,

@ owl:sameAs Reification
P df:t ( dfs:label
@‘ Uil | ex:obama eane "Barack Obama" Data Type
A
Language Tag
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: rdf:type rdf:propert - dfs:sub :
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Y r--- - T —_—_—
exo:capital _! ] - : "672228" 1
X:Usa | ex:washington Bopulation Anxsdiinteger |!
]
rdfs Iabel ks T TR, N epap e @ ex:wikipedia“
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A "550000"
"United @[9 "Verelmgte . rdfs:sub M xsd:integer
States"@en Staaten"@de exo:Location ClassOf @

Figure 2.2. An extended version of the knowledge graph about Barack Obama. Some
advanced techniques are highlighted with circled numbers.

1. Identity: Nodes in different knowledge graphs can refer to the same real-
world entity. Such identify can be represented using the owl:sameAs property.
Interlinking nodes across different knowledge graphs is one of the core principles
of Linked Data [BLO6]. In Figure 2.2, ex: obama and ex2:b_obama both represent
Barack Obama and are linked accordingly.

2. Named Graphs: Statements in RDF can be identified using a named graph,
which is also identified by an URI. In Figure 2.2, there are two different values

8This knowledge graph uses the exemplary prefixes ex and ex2 for entities, exo for ontology terms,
as well as rdf, rdfs and xsd, which are described later.
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given for the population of Washington. One of them is assigned a source (ex:
wikipedia), using a named graph.

3. Reification: RDF requires the representation of a knowledge graph in triples.
However, not all relations in a knowledge graph are binary. For example, the
provision of temporal context information for a given relation demands additional
modelling techniques. One way of doing so is reification, where a new node is
introduced that represents an edge. In addition to the edge’s subject, property
and object (via rdf:subject, rdf:property and rdf:object), more context
can be added. In our example, the start and end year of Obama’s presidency
are attached to the node ex:rel145.

Further solutions to model non-binary relations include named graphs to group
together statements and RDF* where statements themselves can be treated as
nodes [Harl7].

4. Quoted Literals: In RDF, a literal value can be encapsulated in quotation
marks and enriched with a data type or a language tag:

(a) Data Types: The data type of a literal value (e.g., text, integer or date)
can be expressed in RDF. In our example, the population is declared
as integer using the xsd prefix, which is described in the next section.
Properties with a data type as range are called data type properties, in
contrast to object properties.

(b) Language Tags: The language of textual literal values can be assigned
using a language tag (e.g., @en or @de). In Figure 2.2, we use language
tags to differ between the German and the English label of the United
States.

2.1.5 Selected Knowledge Graphs and Vocabularies

As of May 2020, the Linked Open Data Cloud? contained 1,255 datasets “that have
been published in the Linked Data format”, in a variety of domains. In a similar
fashion, the Linked Open Vocabularies'® linked to 714 vocabularies. In this section,
we introduce selected knowledge graphs and vocabularies that are utilised in the
remainder of this thesis.

Table 2.1 gives an overview of three popular, free and cross-domain knowledge
graphs, which also play an essential role in this thesis. These knowledge graphs
depend on other sources, e.g., human input, WordNet [Mil98] (a lexical database) and
Wikipedia (the well-known free and user-generated encyclopedial'). Tt is important

9https://lod-cloud.net/
Ohttps://lov.linkeddata.es/dataset /lov/
Nywww.wikipedia.org


https://lod-cloud.net/
https://lov.linkeddata.es/dataset/lov/
www.wikipedia.org

2.1 Knowledge Graphs 17

Table 2.1. Selected cross-domain knowledges graphs.

Name Release Year Self Description

DBpedia [ABKT07] 2007 Crowd-sourced community effort to extract struc-
tured content from the information created in various
Wikimedia projects.'?

YAGO [SKWO07] 2008 Huge semantic knowledge base, derived from Wikipe-
dia WordNet and GeoNames.'?
Wikidata [VK14] 2012 Free and open knowledge base that can be read and

edited by both humans and machines.'*

Table 2.2. Selected vocabularies.

Name Prefix Self Description

RDF rdf: RDF is a standard model for data interchange on the Web.!?

RDF Schema'S rdfs:  Data-modelling vocabulary for RDF data.'”

XML Schema xsd: A language for expressing constraints about XML docu-
ments'®, whose data type definitions are used in RDF.'"

DBpedia ontology dbo:  Shallow, cross-domain ontology, which has been manually
created based on the most commonly used infoboxes within
Wikipedia.2°

Schema.org so: Collaborative, community activity with a mission to create,

maintain, and promote schemas for structured data on the
Internet, on web pages, in email messages, and beyond.?!

Data Catalog Vocabulary dcat: RDF vocabulary designed to facilitate interoperability be-
tween data catalogues published on the Web.??

to note that Wikipedia, although in itself only semi-structured [VKV106], takes an
important role for many knowledge graphs. For instance, DBpedia does only contain
resources which are also covered in Wikipedia, and they even share the same local

names. Similarly, all entities covered by Wikipedia are also represented as a node in
Wikidata.

Table 2.2 lists five particularly relevant vocabularies: RDF, RDF Schema (RDFS),
the DBpedia ontology, Schema.org, and DCAT, the Data Catalog Vocabulary [CT14].
More vocabularies are used in the remainder of this thesis, including the Simple
Event Model (sem:), the Semantic Sensor Network Ontology (sosa:), and Wikidata’s
property namespaces (wdt:).

2https:/ /wiki.dbpedia.org/about

Bhttps://www.mpi-inf.mpg.de/departments /databases-and-information-systems /research /
yago-naga/yago

Yhttps: / /www.wikidata.org/wiki/Wikidata:Main_Page

Bhttps://www.w3.org/TR/rdf-schema

Yhttps://www.w3.org/TR/rdf-schema/

https:/ /www.w3.org/TR /rdf-schema

Bhttps://www.w3.org/standards/xml/schema

Yhttps:/ /www.w3.org/TR/swbp-xsch-datatypes/

20https://wiki.dbpedia.org/services-resources/ontology
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2.2 Events and Event Knowledge Graphs

“Any past event is historical,
but only the most memorable ones are historic.”

— William Safire, 1992

Events, with examples including military conflicts (e.g., World War II), sports
tournaments (e.g., Wimbledon Championships 2018) and political elections (e.g., US
presidential election in 2012), take on a special role in the context of knowledge
graphs. As explained until now, knowledge graphs capture knowledge that can be
represented using statements and existing ontologies. The heterogeneity, variety in
cultural perception, and dynamics of events pose several challenges when it comes to
defining what an event is and when modelling an event as part of a knowledge graph.

2.2.1 Events

There is a wide variety in the definitions of what makes an event: From a physical
point of view, an event can be simply seen as a “change of state” [Mat37], which does
not give any restrictions to the event characteristics. On the contrary, Dayan and
Katz discuss that events are “interruptions of routine” and it is their media coverage
that makes them events [DK92]. Contemporary dictionaries follow a much more
generic definition of an event as “something that happens”??. In computer science,
such definitions are extended with specific event characteristics: Following Allan, an
event is “something that happens at a particular time and place” [APL98|. Another
important aspect is the societal significance of an event (“a thing that happens or
takes place, especially one of importance” [Dic89]), which is also expressed by the
quote of William Safire at the beginning of this section. In this thesis, events are
defined as real-world happenings of societal importance:

Definition 2.2. An event is something of societal importance that happened in the
real world.

Following this definition, we both ensure societal importance of events and do not
put any restrictions on the structure or characteristics of events. Instead, we define a
set of optional event characteristics, including but not limited to:

e Label: Named events have a unique label, e.g., “Second inauguration of Barack
Obama” and “Wimbledon Championships 2018”.

2https://schema.org/
Zhttps://www.w3.org/ TR /vocab-dcat-2/
2Marriam Webster Dictionary: https://www.merriam-webster.com /dictionary/event


https://schema.org/
https://www.w3.org/TR/vocab-dcat-2/
https://www.merriam-webster.com/dictionary/event

2.2 Events and Event Knowledge Graphs 19

e Location: Most?! events happen at one or more specific locations, e.g., the
second inauguration of Barack Obama happened in Washington.

e Time: Events happen at a specific time or time interval. In some cases, such
time is clearly identifiable (e.g., the day of an inauguration). In the case of
longer-lasting or ongoing events (e.g., the Brexit), it can be difficult to identify
the correct time interval.

e Participants: Events involve a set of participants, which can be persons, organi-
sations, and other entities.

Figure 2.3 gives an example of five events which all show different characteristics (in
clockwise order): (i) The second inauguration of Barack Obama follows the definition
by Allan et al. [APL98] of an event as something that happens at a particular time
and place. Beyond that, more information is given, such as the event participants.
(ii) The Wimbledon Championships is an annually held tennis tournament, i.e., an
event series, which has a set of editions, e.g., the Wimbledon Championships 2018.
(iii) In contrast to the former two event examples, the arrest of Julian Assange in
2019 does not come with a unique label and is instead represented by a sentence,
potentially extracted from a news article. (iv) The labels and descriptions of events of
local or regional importance (for example the opening of the Hannover trade fair) are
often not available in English. (v) The marriage between Barack and Michelle Obama
is modelled as a relation with a validity time span, i.e., as a temporal relation. Such
relation takes an important role in Barack Obama’s life and indirectly refers to their
wedding in 1992.

2.2.2 Event Knowledge Graphs

As an event knowledge graph, we consider an event-centric temporal knowledge graph,
i.e., a knowledge graph which represents events and their characteristics, as well as
temporal relations between entities and events. As shown in Figure 2.3, the creation
of such an event knowledge graph requires the integration of several different types of
events, which requires a joint event ontology and integration process.

Selected Event Vocabularies

Several data models and the corresponding vocabularies (e.g., [RVEVT16, VHMS™ 11,
Guhl11, STHO09, Sch12])?® provide means to model events. For example, the ECKG
model proposed by Rospocher et al. [RVEV116] enables fine-grained textual annota-
tions to model events extracted from news collections. The Conflict and Mediation
Event Observations framework (CAMEQ) [Sch12] is a framework to encode events

24Exceptions include virtual events such as virtual conferences.
Z5For a broader overview of event ontologies, refer to [STH09] and [VHMS*11].
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Second inauguration of Barack Obama
. :
e Time: January 21, 2013
e Participant: Barack Obama, Joe Biden, Michelle Obama, ...
Wimbledon Championships

% e Location: London
e Time: since 1877
e Editions: Wimbledon Championships
2017, Wimbledon Championships
il I% 2018, ...

Barack Obama
married to Michelle Obama
e Time: since 1992

"Eréffnung der Hannover-Messe
mit dem diesjahrigen Partnerland

"WikiLeaks co-founder Julian Assange
is arrested after seven years in

Schweden." Ecuador's embassy in London."
e Location: Hannover : e Location: London
e Time: April 1, 2019 e Time: April 11, 2019

Figure 2.3. Examples of different events and their representation in an event knowledge
graph.

extracted from the news, in particular in the political domain, using a specific event
taxonomy. The Simple Event Model (SEM) [VHMST11], the schema.org vocabulary
[Guh11] which focuses on events such as concerts, lectures and festivals, the Linking
Open Descriptions of Events (LODE) ontology [STH09], and the CIDOC Conceptual
Reference Model (CRM) [Doe03] provide means to describe events and interlink them
with participants, times and places. Figure 2.4 shows the most relevant classes and
properties of the Simple Event Model: It models events (sem:Event), event partici-
pants (sem:Actor), locations (sem:Place) and time spans (sem:hasBeginTimeStamp

and sem:hasEndTimeStamp).
xsd:dateTime xsd:dateTime

sem:Place

qin
TimeStamp TimeStamp

sem:hasSubEvent

Figure 2.4. Excerpt of the Simple Event Model (SEM). — marks a rdfs:subClassOf
relation, — denotes the domain and range of a property.
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Selected Event Knowledge Graphs

We now present a selection of event knowledge graphs. Given the heterogeneity of
event representations, these datasets vary a lot, and we divide them into three groups:

Annotated news article streams. Following Dayan [DK92], events are particularly
represented in media. Consequently, there exist several datasets which extract events
directly from news streams. The Global Data on Events, Location and Tone (GDELT)
[LS13] and the Integrated Conflict Early Warning System (ICEWS) [BLO'15] both
are large-scale datasets (GDELT has 326 million event mentions between January
2015 and February 2016%°) of actions between two entities, found in news articles
and encoded using the CAMEO framework mentioned before. Thus, these datasets
cover mainly events from the political domain and provide several annotations, but
no event labels or descriptions. A similar approach is taken by the Event Registry
[LEBG14], where events are represented as clusters of news articles, categorised and
annotated, e.g., with links to entity representations in Wikidata. Common to these
datasets is that they annotate news articles as they come in, without consideration of
the significance of the covered events.

Named events contained in knowledge graphs. Although not event-specific in parti-
cular, cross-domain knowledge graphs such as those presented in Section 2.1.5 contain
named events such as the Second World War and the Wimbledon Championships 2018.
For example, YAGO has 392, 844 resources typed as schema:Event and DBpedia has
77,583 instances of dbo:Event. A common problem with the event representation in
such sources is that they are tied to their specific ontologies and demand structural
information of their covered events, limiting their event coverage [RvEV'16].

Semi-structured sources. Between processing whole news articles and providing
single named event resources, there is the case of having short event descriptions. One
example of such event representations is the Wikipedia Current Events Portal?” where
users collect “brief summaries of the topic at hand, preferably no more than 30 - 40
words”, where topics are of “international interest” and “big at the moment”?®. Efforts
have been made to convert the Wikipedia Current Events into a machine-readable
format [HWP12, TA14]. However, in many cases, events from semi-structured sources
can only hardly be represented using existing event ontologies and thus cannot be
properly combined with existing knowledge graphs.

2.3 Knowledge Graph Creation

The creation of a knowledge graph means extraction and representation of data,
more concrete to discover and canonicalise entities and their semantic types and

26https://blog.gdeltproject.org/the-datasets-of-gdelt-as-of-february-2016/
2Thttps:/ /en.wikipedia.org/wiki/Portal: Current_events
Zhttps://en.wikipedia.org/wiki/Wikipedia:How_the_Current_events_page_works
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organizing them into clean taxonomies [WDRS20]. This process heavily depends on
its sources, which could provide structured, semi-structured or unstructured data.
Subject to the sources, a variety of different tasks can be involved in knowledge graph
creation, including machine learning, natural-language processing and data integration
[WT10, SWWT15]. In this thesis, we focus on two cases of knowledge graph creation:
the creation of event knowledge graphs from known semi-structured and structured
sources as well as the creation of knowledge graphs from previously unseen tabular
data.

[ President of the ]
United States

44th President of the United States

In office

A .
January 20, 2009 - January 20, 2017 has occupation Obama launches presidential bid
Vice President Joe Biden [ Barack Obama ] Democratic Senator Barack
Preceded by George W. Bush Obama has launched his
. . presidential campaign with
L:;,,A“\sfeeded by Donald Trump v'S candidate <: a speech in which he

i 7 WO United States senator pledged to "build a more
i EESnibnS 2008 United States hepafiil America?:
s presidential election
Wi
The Fre

Figure 2.5. Example of knowledge graph creation. On the left side, a fact is extracted
from the Wikipedia infobox about Barack Obama. On the right side, a fact is extracted
from unstructured text in a news article?.

Figure 2.5 gives an example of knowledge graph creation from a structured source
and an unstructured source.

2.3.1 Knowledge Graph Creation from Structured Sources

Structured web sources used for knowledge graph extraction include Wikipedia cate-
gories [WT10], the Wikipedia Current Events Portal [HWP12, TA14] and social media
platforms [FIND18]. Another prominent example are the Wikipedia infoboxes, which
are present alongside Wikipedia articles, follow pre-defined templates and contain facts
about the entity represented in the respective Wikipedia article. Figure 2.5 shows
an example of an infobox with facts about Barack Obama. Wikipedia infoboxes and
categories have always been the main focus of YAGO, where information about entities
extracted from these sources are combined with the classes of WordNet [TWS20]. In
general, knowledge graph creation from structured sources benefits from the pre-known
structures but obviously lacks all the knowledge on the web which is not represented
in a structured way.

29http:/ /news.bbe.co.uk/2/hi/americas/6349081.stm
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2.3.2 Knowledge Graph Creation from Unstructured Sources

Knowledge graph extraction from plain text such as news articles has been addressed in
a considerable number of works, many focusing on events [ABBC*17, RvVEV'16, 1.S13,
BLO™15, WKGS19, SWWT15]. These approaches apply open information extraction
methods (i.e., the identification and classification of previously unseen relations between
entities [EDGT17]) and develop them further to address specific challenges of event
extraction from news. State-of-the-art approaches that automatically extract events
from the news potentially obtain noisy and unreliable results (e.g., the state-of-the-art
extraction approach in [RvEVT16] reports an accuracy of only 0.55). Furthermore,
such systems provide billions of events at a very high granularity level, as typically
represented in news articles. Compared to the established knowledge graphs such
as YAGO, DBpedia or Wikidata, such events indicate significant differences in the
representation accuracy and event granularity.

2.3.3 Knowledge Graph Creation from Tabular Data

When referring to structured sources, we have assumed that their structures are
known before starting the extraction process. For example, we may know that a
specific Wikipedia infobox contains all facts related to a particular person, who is
the subject of all extracted facts. Here, we assume no knowledge about the structure:
all that is given is a table plus background knowledge about the respective domain,
e.g., football or weather data. This is a typical scenario when running data analytics
[GTK*19, TKSA16a].

Knowledge graphs as a means to add machine-readable semantics to any kind of
data can serve the purpose of making data analytics workflows more efficient, robust
and reusable [GTK'19]. One factor for doing so is the use of a machine learning
vocabulary that enables semantic configuration of machine learning [EMNT15]. In this
thesis, we focus on the first part of data analytics workflows, which is the preparation
of data. Consider Figure 2.6, where a tabular dataset of political events is transformed
into a knowledge graph.

e
Type Democrat
ti:,ité?%]g:;; 2009 | 1800000 | Democrat exo:winningParty
2nd inaugura- @ rdf: - rdfs:label "2nd inauguation of
fion of obara 2013 1000000 | Democrat :> fype |_eX:Events7 Obama"
Inauguation . -
of Trump | 2017 | 500000 | Republican exo:startear exo:attendance

I "2013"~~xsd:year I I "1000000"~"xsd:integer I

Figure 2.6. Example of a tabular dataset and the knowledge graph it is transformed
to. The marked row in the center is transformed into the knowledge graph shown on
the right.
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Ontology-based data access (OBDA) is a term first coined in 2008 by Poggi et al.
[PLCT08] that is predominantly used in the field of relational databases. In OBDA
systems, an ontology serves as a domain-specific abstraction layer that abstract away
from the way data is stored. Based on said ontology, users can query the relational
data using SPARQL queries [XCKT18]. An OBDA system translates SPARQL queries
into the SQL language for accessing data stored in a database (query translation), or
by translating the data into RDF format (data translation) [CPCF20]. An important
tool for doing so are mapping languages such as the RDF Mapping Language (RML),
which describe mapping rules from heterogeneous data to RDF [DVSC*14]. When
wrapping the data sources and the query processing with distributed methods, OBDA
can even handle large and heterogeneous data sources [MGS™19].

OBDA requires the availability of a mapping between data sets and an ontology.
In other words, there is a need to understand the semantics behind the different data
units, such as the columns in a data table. The process of gaining such understanding is
called semantic table interpretation, semantic labelling or semantification. Concretely,
semantic table interpretation is typically defined as the task that takes a data table
and a knowledge graph as input, and returns a semantically annotated table as output
[CRSDP19].

Recently, semantic table interpretation has often been split into three subtasks, as
defined in the SemTab challenge [JRHE20]:

e Column-Type Annotation (CTA) describes the mapping of all values in a table
column to a class in an ontology. In the example in Figure 2.6, this would be
the annotation of the first column with exo:Event.

e Cell-Entity Annotation (CEA) deals with the linking of single table cell values to
a resource in a knowledge graph. In the example, this could be the annotation of
the cell “Democrat” with the DBpedia entity dbpedia.org/resource/Democratic_
Party_(United _States), for example.

e Columns-Property Annotation (CPA) assigns a property to the relationship
between two columns. In the example, this is the annotation of the relationship
between the first and fourth column with the property exo:winningParty.

Semantic table interpretation methods involve several approaches, including entity
lookup and voting strategies [NKIT19, CJRHS19], feature-based entity matching at
the instance-level [CDPRS20, NKIT19] and user interaction [KSA*12, CCDPP19].
Based on the semantic annotations returned by the semantic table interpretation (i.e.,
the mapping of columns to classes and properties in the ontology), the input data
table can be transformed into a knowledge graph, as shown in Figure 2.6.


dbpedia.org/resource/Democratic_Party_(United_States)
dbpedia.org/resource/Democratic_Party_(United_States)
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2.3.4 Knowledge Fusion

With the extraction of knowledge from different sources comes the challenge of data
integration, which has been an active research area in the field of databases for several
decades [Len02]. In the case of knowledge graph creation, we deal with the specific
case of knowledge fusion, i.e., the identification of “true subject-predicate-object
triples extracted [...] from multiple information sources” [DGH"15]. Knowledge
fusion approaches include majority voting, quality-based methods that assess the

trustworthiness of sources [DGHT15], and embedding-based probabilistic approaches
[DGH™14].

2.3.5 Dataset Profiling

After the creation of a knowledge graph, it is important to make it accessible, for
example, as part of the Linked Open Data Cloud. This requires following standards
such as the aforementioned core principles of Linked Data [BLO6] and the FAIR
principles [WDA*16] for making data findable, accessible, interoperable, and reusable.
Most of these principles can be attributed to the provision of metadata or a dataset
profile.

A dataset profile is a formal representation of a set of dataset features, where
a dataset feature is a characteristic describing a certain attribute of the dataset
[BEBB*18]. Dataset features can be arranged in a taxonomy of general, qualita-
tive, provenance, links, licensing, statistical and dynamics categories [BEBB'18], for
example including the following ones:

e Statistical features, such as the size and the average number of triples in the
dataset, as well as the property co-occurrences.

e Provenance features that allow to track down the origins of the data.

e Licensing features, i.e., the type of license under which the dataset can be used.

Dedicated vocabularies can be used to describe a dataset profile in RDF, such as
the Data Catalog Vocabulary (dcat) introduced in Table 2.2 (with properties such
as dcat:downloadURL) and the VoID vocabulary [ACHZ11] (with properties such as
void:triples to denote the number of triples in a dataset).

Data profiling is important to dataset retrieval where users select corpora based
on specific criteria. In [IKKA13], the authors propose a user query approach to retrieve
relevant RDF datasets by applying semantic filters to a set of available datasets. [NP19]
demonstrates how to enable spatio-temporal search over Open Data catalogues through
the creation of a spatio-temporal knowledge graph. In our proposed framework, dataset
retrieval is enabled both through the semantic dataset profiles as well as through a
domain model.



26 Chapter 2 Background

2.4 Knowledge Graph Completeness & Enrichment

Upon creation, knowledge graphs are usually not complete, which calls for knowledge
graph enrichment.

2.4.1 Knowledge Graph Completeness
under the Open-World Assumption

Knowledge graphs usually follow the open-world assumption which “assumes only the
information given in the [knowledge graph| and hence requires all facts, both positive
and negative, to be explicitly represented”, in contrast to many databases that follow
the closed-world assumption, where a “negative fact is implicitly present provided
its positive counterpart is not explicitly present” [Rei81]. As an example, consider
the initial example knowledge graph shown in Figure 2.1: Under the closed-world
Assumption, there have not been other US presidents than Barack Obama. Under
the open-world assumption, the non-existence of the statement George Washington,
president of, United States does not imply the falseness of this statement. Conse-
quently, there can be more US presidents, although not (yet) included in the knowledge
graph.

Completeness is an essential dataset quality dimension [BEBB*18]|. However, due
to the open-world assumption, knowledge graphs are notoriously incomplete [RSN16,
TPS*17]. There has been research on several exemplary aspects of knowledge graph
completeness, for example, on the incompleteness of Wikidata [BRN18, ARP17] and
the relation between obligatory attributes and missing attribute values [LS18]. These
works emphasise the need for knowledge graph completion, in particular regarding
event-centric information.

2.4.2 Knowledge Graph Enrichment

The task of adding missing information to a knowledge graph has been given several
names, including knowledge graph enrichment, knowledge graph completion and
knowledge graph refinement. We will use the term knowledge graph enrichment in
the remainder of this thesis. Paulheim [Paul7] identifies three different knowledge
graph enrichment approaches which we will explain in the following. For illustration,
we come back to the first example given in this chapter (Figure 2.1), which can be
enriched with new nodes and edges, as shown in Figure 2.7.

1. Type Assertions Completion. Type assertions completion is the task of
predicting a type or a class of an entity [Paul7]. A common approach to
this task is to probabilistically exploit type information that is inherent in the
statement properties [PB13]. For example, assume that there are more persons
represented in the knowledge graph shown in Figure 2.7, of which a large number
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Type Assertions
Completion

@ 16 July 1790 @ Link Prediction
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A @ . ) @ External Methods
@ inception

type

l i i population
Barack Obama president of United States has capital Washington, D.C. 672.228

A
resident @

Figure 2.7. Examples of three different knowledge graph completion approaches. New
nodes and edges are marked in green.

with a president of relation is typed as Politician, while most others are not.
From that observation, one could infer that also Barack Obama is a politician.

2. Link Prediction. In the case of link prediction, a ranked list of subjects, pred-
icates or objects is generated, given an incomplete triple. Approaches to solving
this task are typically based on embeddings, i.e., lower-dimensional representa-
tions of the knowledge graphs, which are still preserving their structural infor-
mation and characteristics [CZC18]. Examples include the TransE [BUGD*13],
STransE [NSQJ16] and other graph embedding models [SW17, WMWG17]. In
Figure 2.7, there is a new relation (resident) added between Barack Obama
and Washington. This could be the result of link prediction if it infers that US
presidents always reside in Washington.

3. External Methods. Information extraction approaches can be used to detect
new edges [RGP17] and nodes [KVW14] from external textual data. An example
is shown in Figure 2.7, where the inception date of Washington is added to the
knowledge graph, extracted from an external source.

None of the knowledge graph completion and refinement tasks have yet considered
the inference of new nodes given only the knowledge graph itself [WMWG17, Paul7].
In Chapter 5, we generate new events not initially present in the knowledge graph
without the use of external sources.

2.5 Application of Knowledge Graphs

Access to the knowledge represented in a knowledge graph requires different levels
of expertise: A user needs to understand the concept of knowledge graphs, must be
proficient in the query language and needs to know the underlying ontology. Also, a
user might be overwhelmed with the potentially large amount of results for a specific
information need [ADM™15]. These limitations call for applications which lessen the
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burden of accessing and exploring knowledge represented in a knowledge graph and
provide easily understandable visualisations [GBRD18].

Methods to intuitively access semantic information included in knowledge graphs
include question answering (i.e., the translation of natural-language queries into a
query language) [HWM™17, HZLL19, CGD20], spatio-temporal search applications
[ZCZ*T17, HWM ™17, HZLL19, NP19] and interactive query construction interfaces
[DZN12, DZN13]. Such methods focus on the construction of queries, but less on
the exploratory nature of user indents which go beyond pure lookup tasks [WR09].
Given a clear setting (i.e., a user who explores historical paintings and their artists),
there are plenty of ways to interact with knowledge graphs. For example, consider the
four applications shown in Figure 2.8°, which are all based on Wikidata and serve
different needs: The openArtBrowser [Hum20] allows exploration of artists and their
works, Scholia [NMW17] presents statistics about the research of scientists, ViziData®!
provides a spatio-temporal visualisation of selected event categories, and Wikidata
Graphs®? displays query results on a timeline.

2.5.1 Timelines

In this thesis, we focus on timelines as a specific application of knowledge graphs, where
a timeline is a list of chronologically sorted timeline entries. Timelines help to identify
the relevant information that is often “buried in an avalanche of data” [ADM™15]
and can be used in several scenarios (for example, to identify linguistic points of view
[SLW*17]). Examples of timelines are (i) event timelines which provide relevant sub-
events or related events, given an entity or event of user interest [VCK15, Els16], and
(ii) biography timelines which show relevant events in the lifetime of a person of interest
[ADM*15, TEPW11]. Figure 2.9 gives an example of a biography timeline about
Barack Obama, which is created from the TimeMachine demonstrator [ADM*15], on
top of the Freebase knowledge graph [BEP108].

Common to both event and biography timelines are the following two tasks:
(i) Extraction of candidate timeline entries which are connected to the query entity,
and (ii) identification of relevant timeline entries. While the first task involves access
to the knowledge graph, the second task reduces the available information such that a
user can still grasp the presented knowledge without being overwhelmed by the given
wealth of knowledge.

30The four screenshots were taken from https://openartbrowser.org/artist /Q5582, https://scholia.
toolforge.org/author/Q64569192, http://sylum.lima-city.de/viziData and https://wikidata-graphs.
herokuapp.com/timeline/historical-countries in July 2020.

31https://sylum.lima-city.de/viziData/

3Zhttps:/ /wikidata-graphs.herokuapp.com

33This screenshot was taken from https://cs.stanford.edu/~althoff/timemachine/demo.html in
July 2020.
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Figure 2.8. Example applications based on the Wikidata knowledge graph.
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Figure 2.9. An example of a biography timeline about Barack Obama given by the
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Creation of an Event Knowledge Graph

Without surprise, the existence of a knowledge graph is a prerequisite for any knowledge
graph-based process or system. Such a knowledge graph reflects the knowledge which
is of interest in the respective setting. As we explained in Chapter 1 and 2, event
knowledge is of major interest in a large number of application scenarios. As there
was no knowledge graph specifically targeting to cover event knowledge, we create
an event knowledge graph based on several sources such as other knowledge graphs
that do contain event knowledge but do not treat events and temporal information as
first-class citizens in their schemas. The goal of creating an event knowledge graph
goes along with our research question RQ1.1, which asks about the creation of an
event knowledge graph from several sources. This chapter will give an answer to this
question, which is FventKG: a multilingual event-centric temporal knowledge graph.

3.1 Introduction

The amount of event-centric information regarding contemporary and historical events
of global importance, such as the US elections, the 2018 Winter Olympics and the
Syrian Civil War, constantly grows on the Web, in the news sources and within social
media. Efficiently accessing and analysing large-scale event-centric and temporal infor-
mation is crucial for a variety of real-world applications in the fields of Semantic Web,
Natural Language Processing and Digital Humanities. In Semantic Web and Natural
Language Processing, these applications include timeline generation [ADM™15, GD18b)]
and Question Answering [HWM™17, HZLL19]. In Digital Humanities, multilingual
event repositories can facilitate cross-cultural studies analysing language-specific and
community-specific views on historical and contemporary events (examples of such
studies can be seen in [GDBR17, Rogl3]). Furthermore, event-centric knowledge
graphs can facilitate the reconstruction of histories as well as networks of people
and organisations over time [RvEVT16, ABBC"17]. One of the pivotal pre-requisites
to facilitate effective analytics of events is the availability of knowledge repositories
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providing reference information regarding events, involved entities and their temporal
relations.

As described in Section 2.2, an event is typically described as something that
happens at a specific time and location [APL98]. In this thesis, we consider as
events real-world happenings of societal importance (Definition 2.2), with examples
including military conflicts, sports tournaments and political elections. In particular,
we consider events, entities they involve and temporal relations — i.e., real-world
relations between events and entities valid over a time period. Currently, event
representations and temporal relations are spread across heterogeneous sources. First,
large-scale knowledge graphs (e.g., Wikidata, DBpedia and YAGO, as introduced in
Section 2.1.5) typically focus on entity-centric knowledge. Event-centric information
included in these sources is often not clearly identified as such, can be incomplete and
is mostly restricted to named events and encyclopaedic knowledge.

For example, as discussed later in Section 3.6.1, out of 322,669 events included
in EventKG V1.1, only 18.7% are classified using the dbo:Event class in the English
DBpedia as of 12/2017. Furthermore, event descriptions in the existing knowledge
graphs often lack the key properties, i.e., times and locations. For example, according
to our analysis, only 33% of events in Wikidata provided temporal and 11.7% spatial
information at that time.

Second, a variety of manually curated semi-structured sources (e.g., the Wikipedia
Current Events Portal (WCEP) [TA14] and multilingual Wikipedia event lists) contain
information on contemporary events. However, the lack of structured representations
of events and temporal relations in these sources hinders their direct use in real-world
applications, e.g., through semantic technologies. Overall, a comprehensive, integrated
view on contemporary and historical events and their temporal relations is still missing.
FventKG will help to overcome these limitations.

An additional source of event-centric information on the Web are knowledge
graphs containing events obtained from unstructured news sources using Information
Extraction methods (such as [RVEVT16, YRH'18, PKN18, LS13, BLO"15]). These
knowledge graphs are potentially highly noisy [RVEVT16]. Due to significant differences
in quality and event granularity, the integration of events from these sources with the
information in the established knowledge repositories such as DBpedia or Wikidata
within a common knowledge graph does not appear meaningful. These event sources,
as well as the corresponding Information Extraction methods for unstructured news
articles, are out of the scope of this work.

In this chapter, we formalise the concept of a temporal knowledge graph that
interconnects real-world entities and events using temporal relations valid over a time
period. Furthermore, we present an instantiation of a temporal knowledge graph —
FventKG. FventKG takes an important step to facilitate a global view on events
and temporal relations currently spread across entity-centric knowledge graphs and
manually curated semi-structured sources. FventKG integrates this knowledge in an
efficient light-weight fashion, enriches it with additional features such as indications
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of relation strengths and event popularity, adds provenance information and makes
all this information available through a canonical RDF representation. Through the
light-weight integration and fusion of event-centric and temporal information from
different sources, FventKG enables to increase coverage and completeness of this
information. For example, FventKG increases the coverage of locations and dates for
the Wikidata events it contains by 14.43% and 17.82%, correspondingly (see Table 3.9
in Section 3.6.1 for more detail). Furthermore, relation strengths and event popularity
provided by FventKG are the characteristics that gain the key relevance given the
rapidly increasing amount of event-centric and temporal data on the Web and the
resulting information overload.

FventKG, including the dataset, a SPARQL endpoint, the code and evaluation
data, are available online!.

Contributions. Overall, our contributions in this chapter are as follows:

1 We formally define the concept of a temporal knowledge graph TKG that
incorporates entities, events and temporal relations.

2 We present an instantiation of the temporal knowledge graph TKG: FventKG —
a multilingual RDF knowledge graph that incorporates more than 1.3 million
events and more than 4.5 million temporal relations in version V3.0.

3 We provide insights into the extraction and fusion methods adopted to generate
the EventKG knowledge graph and their quality.

Outline. The remainder of this chapter is organised as follows: First, in Section
3.2, we motivate the need for a temporal knowledge graph. Then, in Section 3.3,
we provide connections to important concepts that were introduced in Chapter 2
and introduce more specific background where necessary. In Section 3.4, we formally
define the concepts of a temporal knowledge graph. Then, in Section 3.5, we describe
FventK (G, including its RDF data model and the extraction pipeline. In Section 3.6,
we provide statistics and evaluation results of the data contained in EventKG. This
includes an overview of the updates that happened between FventKG’s versions V1.1
and V3.0. Finally, we discuss our findings and provide a conclusion in Section 3.7.

3.2 Motivation

Our society faces an unprecedented number of events that impact multiple communities
across language and community borders. In this context, the efficient access to event-
centric multilingual information originating from different sources, as facilitated
by EventKG, is of utmost importance for several scientific communities, including
Semantic Web, NLP and Digital Humanities and a variety of applications, as timeline

Thttp://eventkg.13s.uni-hannover.de/
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Table 3.1. All events connected to Barack Obama in FventKG that started between
November 4 and November 16, 2011.

Start Date Sources Description

Nov4 YAGO, Wikidata, DBpediagy, 2011 G20 Cannes summit
DBpediapr, DBpediary
Nov 11  YAGO, Wikidata, DBpediagy 2011 White House shooting
Nov 16 Wikipediagy The President of the United States Barack
Obama visits Australia to commemorate the
60th anniversary of the ANZUS alliance.

Table 3.2. Most linked events in the English (EN) and the Russian (RU) Wikipedia.

Rank | Event (EN) #Links (EN) | Event (RU) #Links (RU)
1 | World War I1 189,716 | World War 1T 25,295
2 | World War I 99,079 | World War 1 22,038
3 | American Civil War 37,672 | October Revolution 7,533
4 | FA Cup 20,640 | Russian Civil War 7,093

generation, question answering, as well as cross-cultural and cross-lingual event-centric
analytics.

Timeline generation is an active research area [ADM™15, GD18b, GD20], where
the focus is to generate a timeline (i.e., a chronologically ordered selection) of events
and temporal relations for entities from a knowledge graph. In Chapter 6, we focus
on the application of FventKG to the automated generation of timelines representing
people biographies. In this task, information regarding event popularity and relation
strength available in EFventKG in combination with a benchmark extracted from
external biographical sources can enable the selection of the most relevant timeline
entries. In the same chapter, we will also show event timelines that particularly make
use of FventKG’s language-specific relations.

At the example of timelines, we can see that FventKG contains complementary
information originating from different reference sources, potentially resulting in more
complete timelines and event representations. For example, Table 3.1 illustrates an
excerpt from the timeline for the query “What were the events related to Barack
Obama between November 4 and November 16, 2011?” generated using EventKG.
The last event in the timeline in Table 3.1 about Obama visiting Australia extracted
from an English Wikipedia event list (2011 in Australia”?) is not contained in any
of the reference knowledge graphs used to populate EventKG (Wikidata, DBpedia,
and YAGO). The reference sources of the other two events include complementary
information. For example, while the “2011 White House shooting” is assigned a start
date in Wikidata, it is not connected to Barack Obama in that source.

Zhttps:/ /en.wikipedia.org/wiki/2011_in_Australia
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Table 3.3. Top-4 persons mentioned jointly with the financial crisis (2007-2008) per
language.

\EN FR DE RU PT
1|Barack Obama Kevin Rudd Barack Obama Michael Moore Barack Obama
2|George W. Bush John Howard Geir Haarde Roman Abramovich José Sécrates
3|Joseph Stiglitz Don Cheadle George W. Bush ~ Adam McKay Pope Benedict XVI

4|Ben Bernanke = Ben Bernanke Wolfgang Schauble Mikhail Prokhorov Gordon Brown

An important application of FventKG are cross-cultural and cross-lingual analytics.
Such analytics can provide insights into the differences in event perception and
interpretation across communities. For example, event popularity and relation strength
between events and entities varies across different cultural and linguistic contexts.
These differences can be observed and analysed using the information provided by
FEventKG. For example, Table 3.2 presents the top-4 most popular events in the English
vs the Russian Wikipedia language editions as measured by how often these events are
referred, i.e., linked to in the respective Wikipedia language edition. Whereas both
Wikipedia language editions mention events of global importance, here the two World
Wars, most frequently, the other most popular events (e.g., “October Revolution” and
“American Civil War”) are language-specific. The relation strength between events and
entities in specific language contexts can be inferred by counting their joint mentions
in Wikipedia. For example, Table 3.3 lists the persons most related to the financial
crisis in the years 2007 and 2008 in different Wikipedia language editions.

This information is directly provided by FventKG. As mentioned before, appli-
cations of FventKG are presented in Chapter 6, where we introduce two interactive
systems: EventKG+BT for biography timelines and FventKG+TL for language-specific
event timelines.

Another intended future application of EventKG is semantic event-centric question
answering. With the provision of FventKG, it becomes possible to answer questions
such as “Which events related to Bill Clinton happened in Washington in 19807” and
“What are the most important events related to Syrian Civil War that took place in
Aleppo?” that are of interest for both cross-cultural and cross-lingual event-centric
analytics (e.g., illustrated in [Rogl3, GBRD18]) as well as question answering and
semantic search applications (e.g., [HWM™17, ZCZ*17, HZLL19, DZN13]). Event-QA
is a dataset with 1,000 semantic queries and the corresponding English, German and
Portuguese verbalisations for answering event-centric questions over FventKG [CGD20].
For investigating user interaction traces in cross-lingual settings, EventKG+Click
[AGD20] is a dataset that builds upon FventKG and language-specific information on
user interactions with events, entities, and their relations derived from the Wikipedia
clickstream. VisE-D builds an event type hierarchy on top of FventKG to support
visual event classification [MBSH"21].
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3.2.1 Running Example: Barack Obama

In Section 2.1.1, we have introduced our running example of representing Barack
Obama’s life in a knowledge graph. In this chapter, we will repeatedly provide
examples of how FventK(G represents events and facts related to Barack Obama. First,
we will illustrate the heterogeneity of data about Barack Obama available in the
reference knowledge graphs used to populate FventKG (Wikidata, DBpedia, YAGO
and Wikipedia), and the extraction and integration of this data into a canonical RDF
representation in FventK(G. Later on, in Chapter 6, we will subsume these example
and explicitly tackle the task of biography timeline generation at the example of
Barack Obama’s life.

3.3 Specific Background

In this section, we provide more specific background in the areas of event knowledge
graphs.

Event Knowledge Graphs: To the best of our knowledge, currently, there are
no dedicated knowledge graphs aggregating event-centric information and temporal
relations for historical and contemporary events directly comparable to EventKG.
The heterogeneity of data models and vocabularies for event-centric and temporal
information (e.g., [STH09, RvEV*16, VHMS*11, Guhl1l, PKN18, YRH"18], as
presented in Section 2.2.2), the large scale of the existing knowledge graphs, in which
events play only an insignificant role, and the lack of clear identification of event-centric
information, makes it particularly challenging to identify, extract, fuse and efficiently
analyse event-centric and temporal information and make it accessible to real-world
applications in an intuitive and unified way. Through the light-weight integration
and fusion of event-centric and temporal information from different sources, FventKG
enables to increase coverage and completeness of this information. Furthermore,
existing sources lack structured information to judge event popularity and relation
strength as provided by FventKG — the characteristic that gains the key relevance
given the rapidly increasing amount of event-centric and temporal data on the Web
and the resulting information overload.

In EventKG, we build upon SEM [VHMS™11] shown in Figure 2.4 and extend this
model to represent a broader range of temporal relations and to provide additional
information regarding events.

Extracting event-centric and temporal information: Most approaches for
automatic knowledge graph construction and integration focus on entities and related
facts rather than events. Examples include DBpedia [LIJT15], Freebase [BEPT08],
YAGO [MBS14] and YAGO+F [DON13]. In contrast, EventKG is focused on events
and temporal relations. In [TA14], the authors extract event information from the
Wikipedia Current Events Portal (WCEP). EventKG builds upon this work to include
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WCEP events. For the extraction of temporal information, there are several approaches
to annotate both textual data [KSSW16] and relations [RPNT14, TWM12] with
temporal scopes inferred from external sources. In FventKG, we rely on the temporal
information already contained in the reference sources, which gives highly precise
values, as shown in Section 3.6.2. Increasing the coverage for temporal annotations in
case of missing values by using external resources is a potential extension for future
work.

The question of how to model temporal data is important as it comes to considering
time expressions of different levels of granularity or with uncertainty. Examples to
tackle such issues include the use of multiple potential start and end times as in the
temporal slot filling task [Surl3] or adding uncertainty scores to temporal relations
[CPSS17]. The representation of this information is facilitated through existing
relational models [Chel7], the Extended Date-Time Format (EDTF) [EDT] or with
the Time Ontology in OWL [HP06]. The Simple Event Model adopted in this work
supports a simple notion of temporal time spans, which is sufficient to represent
temporal information provided by the reference sources of FventKG and is compatible
with the time representation in these sources. Nevertheless, we see more advanced
time models as a potential future extension, in particular in the context of a possible
enrichment of FventKG with additional, and in particular, automatically inferred
temporal information. For example, FventKG V3.0 adds granularity information to
temporal literals.

Extraction of events and facts from the news: Recently, the problem
of building knowledge graphs and datasets directly from plain text news articles
[ABBC*17, RvEV'16, LS13, BLO"15], and extraction of named events from news
[KVW14, YRH"18] have been addressed. These approaches apply Open Information
Extraction methods and develop them further to address specific challenges in the
event extraction in the news domain. State-of-the-art approaches that automatically
extract events from news potentially obtain noisy and unreliable results (e.g., the
state-of-the-art extraction approach in [RvEVT16] reports an accuracy of only 0.551).

Furthermore, such systems provide billions of events at a very high granularity
level, as typically represented in news articles. Compared to the established knowledge
repositories such as DBpedia or Wikidata, such events indicate significant differences
in the representation accuracy and event granularity. In contrast, contemporary events
included in FventKG originate from high-quality community curated sources such as
WCEP and Wikipedia event lists and represent significant societal happenings at a
different granularity and abstraction level, compared to news sources.

3.4 Problem Statement

A temporal knowledge graph G'r connects real-world entities and events using temporal
relations, i.e., relations valid over a time period.
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Definition 3.1. A temporal knowledge graph Gr = (E;, R;) is a directed multi-
graph. The nodes in Ey = E'UYV are temporal entities, where E is a set of real-world
entities and V is a set of real-world events. The directed edges in R; represent temporal
relations of the temporal entities in F.

A temporal entity e € E represents a real-world entity such as a person, a location,
an organisation or a concept. A temporal entity e € V represents a real-world historical
or contemporary event. Examples of events include cultural, sporting or political
happenings. The temporal entities in G are characterised through their existence
time (for real-world entities) or happening time (for events).

Definition 3.2. A temporal entity e € E, represents a real-world entity or event.
e is annotated with a tuple ( €yri, €time ), Where ey, is the unique entity identifier,
and €yime = |Estart, €ena) denotes the existence time of the entity (for e € E) or the
happening time of the event (fore € V).

A temporal entity e € F; can be assigned further properties, such as an entity
type, a label and a textual description.

A temporal relation is a binary relation of the temporal entities valid over a certain
period of time. More formally:

Definition 3.3. A temporal relation r € R, represents a binary relation between
two temporal entities. 1 is annotated with a tuple (Typi, Ttime, €i,€5), Where Ty is
a unique relation identifier, e; and e; are the temporal entities participating in the
relation v and Tyme = [Fstart; Tena) denotes the validity time interval of the temporal
relation.

The relation identifier r,,; reflects the semantics of the temporal relation and is
typically specified as a vocabulary term.

3.5 FventKG: Approach

FventKG is a knowledge graph that instantiates the temporal knowledge graph defined
in Definition 3.1, and at the same time facilitates the integration and fusion of a
variety of heterogeneous event representations and temporal relations extracted from
several reference sources.

A reference source is a semantic source such as a knowledge graph (e.g., Wikidata
or YAGO) or a collection of articles (e.g., the French Wikipedia) used to populate
FEventKG.

In Section 3.5.1, we present the RDF data model of FventKG and its transformation
into a temporal knowledge graph (Section 3.5.2). Following that, we present the Fvent-
KG generation pipeline in Section 3.5.3 and illustrate the pipeline steps with our
running example of Barack Obama in Section 3.5.4.
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3.5.1 FEventKG RDF Data Model

The goals of the FventKG RDF data model are to facilitate a light-weight integration
and fusion of heterogeneous event representations and temporal relations extracted
from the reference sources, as well as to make this information available to real-world
applications through an RDF representation. The FventKG data model is driven by
the following objectives:

e Define the key properties of events through a canonical representation.

e Represent temporal relations between events and entities (including event-entity,
entity-event and entity-entity relations).

e Include information quantifying and further describing these relations.
e Represent relations between events (e.g., in the context of event series).

e Support an efficient light-weight integration of event representations and tempo-
ral relations originating from heterogeneous sources.

e Provide provenance for the information included in FventKG.

FEventKG schema and the Stmple Event Model: In EventKG, we build upon the
Simple Event Model (SEM) [VHMS™11] as a basis to model events in RDF. SEM is a
flexible data model that provides a generic event-centric framework.

The main rationale of SEM is to provide a simple model that can represent events
and their key properties. Events within EventKG come from heterogeneous sources
where they can be described at a different level of detail. SEM provides the lowest
common denominator for event-centric information, whereas it still includes the key
properties of events and their relations. The properties of events in the FventKG data
model are not mandatory, such that we can also include under-specified events in
FEventKG, e.g., in case the corresponding temporal or geospatial information is missing
in the reference sources.

In addition to SEM, within the EvenKG schema, we adopt additional properties and
classes to adequately represent the information extracted from the reference sources,
to model temporal relations, and event relations as well as to provide provenance
information. The schema of FventKG is presented in Figure 3.1 and the used RDF
namespaces are listed in Table 3.4.

FventKG is an RDF-based dataset, so extensions to its data model are easily
possible. In future work, such extensions can be performed to model confidence and
uncertainty in the information extraction, integration and fusion, or to provide more
fine-granular time information (e.g., using the EDTF (Extended Date-Time Format)
[EDT)).
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Figure 3.1. The FventKG schema based on SEM. Arrows with an open head denote
rdfs:subClassOf properties. Regular arrows visualise the rdfs:domain and rdfs:range
restrictions on properties. Terms from other reused vocabularies are coloured green.
Classes and properties introduced in EventKG are coloured orange.

FEvents and entities: SEM provides a generic event representation including topical,
spatial and temporal dimensions of an event, as well as links to its actors (i.e.,
entities participating in the event). Such resources are identified within the namespace
eventKG-r. Thus, the key classes of SEM and the EventKG schema are sem:Event
representing events, sem:Place representing locations and sem:Actor representing
entities participating in the events (see Figure 2.4). Each of these classes is a subclass
of sem:Core, which is used to represent all entities in the temporal knowledge graph?.
Events are connected to their locations through the sem:hasPlace property. A
sem:Core instance can be assigned an existence time denoted via sem:hasBegin-
TimeStamp and sem:hasEndTimeStamp. In addition to the SEM representation,
FEventKG provides textual information regarding events and entities extracted from
the reference sources including labels (rdfs:label), aliases (dcterms:alternative) and
descriptions of events (dcterms:description).

In the context of this thesis, the term temporal relation refers to real-world
relations between events and entities valid over a period of time. The set of temporal
relations in EventKG includes event-entity, entity-event and entity-entity relations.
Temporal relations between events and entities typically connect an event and its
actors (as in SEM), for example the marriage between two entities. Temporal relations

3Note that entities in FventKG are not necessarily actors in the events; temporal relations between
two entities are also possible.
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Table 3.4. Namespaces used in the FventKG RDF model.

Namespace prefix IRI
so: http://schema.org/
dbo: http://dbpedia.org/ontology/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.0rg/2000/01 /rdf-schema#
dcterms: http://purl.org/dc/terms/rdfs:
sem: http://semanticweb.cs.vu.nl/2009/11/sem/
eventKG-s: http://eventKG.13s.uni-hannover.de/schema,/
eventKG-r: http://eventKG.13s.uni-hannover.de/resource/
eventKG-g: http://eventKG.13s.uni-hannover.de/graph/

between entities can also indirectly capture information about events [RvEV*16]. For
example, the DBpedia property http://dbpedia.org/property/acquired can be used
to represent an event of acquisition of one company by another. Temporal relations in
SEM are limited to the situation where an actor plays a specific role in the context of
an event. This yields two limitations: (i) there is no possibility to model temporal
relations between events and entities where the entity acts as a subject. For example,
it is not possible to directly model the fact that Barack Obama participated in the
event “Second inauguration of Barack Obama”, as the entity “Barack Obama” plays
the subject role in this relation; and (ii) a temporal relation between two entities such
as a marriage can not be modelled directly*.

To overcome these limitations, FventKG introduces the class eventKG-s:Relation
representing relations between events and entities. This way of relation modelling
facilitates additional flexible attributes describing a relation®. This class links two sem:
Core instances (each representing an event or an entity). The resulting relation can be
annotated with a validity time and a property sem:RoleType that characterises the
relation using RDF predicates. Currently, the predicates are directly derived from the
reference sources. In future work, we envision the normalisation of these predicates
by mapping them to a dedicated ontology (e.g., the DBpedia ontology). This way,
arbitrary temporal relations between entity pairs or relations involving an entity and
an event can be represented. This model provides flexibility to express heterogeneous
temporal relations derived from the reference sources. Figure 3.2 visualises the example
mentioned above using the FventKG data model.

Other event and entity relations: Relations between events (in particular sub-event,
previous and next event relations) play an important role in the context of event series
(e.g., Olympic Games), seasons containing a number of related events (e.g., in sports),
or events related to a certain topic (e.g., operations in a military conflict). Sub-event

4Consider the difference between a wedding that is modelled as an event and a marriage between
two people that can be modelled as a temporal relation.

5See W3C Working Group Note from April 12, 2006 on defining N-ary Relations on the Semantic
Web: https://www.w3.org/TR/swhp-n-aryRelations.
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Figure 3.2. Example of the event representing the participation of Barack Obama in
his second inauguration as a US president in 2013 as modelled in EventKG. wdt:P793
is the Wikidata identifier for the “significant event” property.

relations are modelled using the sem:hasSubEvent property. To interlink events
within an event series such as the sequence of the Olympic Games, the properties
dbo:previousEvent and dbo:nextEvent are used. A location hierarchy is provided
through the property so:containedInPlace.

Towards measuring relation strength and event popularity: Measuring relation
strength between events and entities and event popularity enables answering questions
like “Who were the most important participants of the US Election 2016?” or “What
are the most popular events related to the Summer Olympics 20167”. Relation strength
and event popularity are of importance for many practical applications. For example,
relation strength can help when using the knowledge graph to jointly disambiguate
entities and events in text documents or natural language questions in the context
of question answering applications. Relation strength and event popularity can also
support ranking-based applications, including timeline generation and event-centric
information retrieval.

Whereas the exact computation of relation strength and event popularity met-
rics can be application-dependent, we include two major factors required for such
computations, namely links and mentions in the FventKG schema:

e Links: This factor represents how often the description of one entity refers
to another entity. Intuitively, this factor can be used to estimate the popu-
larity of events and the strength of their relations. In EventKG, the links
factor is represented through the predicate eventKG-s:1links in the domain
of eventKG-s:Relation. eventKG-s:1links denotes how often the Wikipedia
article representing the relation subject links to the entity representing the
object.

e Mentions: eventKG-s:mentions represents the number of relation mentions in
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external sources. Intuitively, this factor can be used to estimate the relation
strength. In FventKG, eventKG-s:mentions denotes the number of sentences
in Wikipedia that mention both, the subject and the object of the relation.

Links and mentions factors provided by FventKG are computed using sources
external to the knowledge graph, such as the entire Wikipedia corpus. Having this
information included directly in the knowledge graph can help the relevant applications
to obtain this information efficiently and to directly use it in their computations,
including (but potentially not limited to) relation strength and event popularity
metrics.

Provenance information: EventKG provides the following provenance information:
(i) provenance of the individual resources; (ii) representation of the reference sources;
and (iii) provenance of statements.

Provenance of the individual resources: FventKG resources typically directly
correspond to the events and entities contained in the reference sources (e.g., an
entity representing Barack Obama in EventKG corresponds to the DBpedia resource
http://dbpedia.org/resource/Barack_Obama). In this case, the owl:sameAs pro-
perty is used to interlink both resources. FventKG resources can also be extracted from
a resource collection. For example, philosophy events in 2007 can be extracted from
the Wikipedia event list at https://en.wikipedia.org/wiki/2007_in_philosophy. In
this case, the EventKG property eventKG-s:extractedFrom is utilised to establish
the link between the FventKG resource and the resource collection from which this re-
source was extracted. Through the provenance URIs, background knowledge contained
in the reference sources can be accessed.

Representation of the reference sources: EventKG and each of the reference sources
are represented through an instance of void:Dataset®. Such an instance in the
namespace eventKG-g includes specific properties of the source (e.g., its creation date
as in: eventKG-g:dbpedia pt dcterms:created "2016-10-01"""xsd:date).

Provenance information of statements: A statement in FventKG is represented as
a quadruple, containing a triple and a URI of the named graph it belongs to. Through
named graphs, FventKG offers an intuitive way to retrieve information extracted from
the individual reference sources using SPARQL queries.

3.5.2 FventKG as a Temporal Knowledge Graph

A named graph such as eventKG-g:event kg can be expressed as a temporal knowledge
graph G = (Ey, R;) as follows:

e FEntities and events: Each instance of sem:Core is a temporal entity e € E; and
each instance of sem:Event is an event v € V, such that E' = E; \ V is the set
representing real-world entities.

Shttps://www.w3.org/TR/void/
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e Time information for entities and events: For each temporal entity e = (€,
Ctime), € € Fy, ey is the URI of the corresponding EventKG entity. egqre and eepng
are set according to the sem:hasBeginTimeStamp and sem:hasEndTimeStamp
values in the eventKG-g:event_kg named graph, correspondingly.

o Temporal relations with known validity times: Each instance of eventKG-s:
Relation that has a start or an end time in the named graph is transformed into
a temporal relation 7 = (Furi, Ttime, €i, €;) € Ri. Here, ry,; is the URI of the Event-
KG relation instance, e; is the entity connected to the eventKG-s:Relation
instance via rdf:subject, e; is the entity connected via rdf:object and 74
includes the sem:hasBeginTimeStamp and sem:hasEndTimeStamp relations.

e [ndirect temporal relations: Information regarding the temporal validity of a
relation is not always explicitly provided in EFventKG. However, this information
can often be derived based on the existence times of the participating entities
or the happening times of the events. For example, the validity of a “mother’
relation can be determined using the birth date of the child entity. We refer
to such relations as indirect temporal relations. Each instance of eventKG-s:
Relation that represents such an indirect temporal relation is transformed into
a temporal relation 1, = (Furi, Ttime, €i5 €5) € Rey Ttime = €j,ie-

9

3.5.3 FEventKG Generation Pipeline

The EventKG generation pipeline is shown in Figure 3.3.

Input Input & Identification and
o&gy Pre-processing Extraction of Events
Il pBoacs — —
WIKIDATA la
- pre-process identify and
WCEP yaG0O raw input Input extract Events
R data Data events
5.“:“ ﬂ) {EN,FR,
wiarepr OFRUPT}
Extraction of Event Integration Fusion

and Entity Relations

Events fuse times
Relations and

locations

integrate
Relations | | events and

Entities entities

Events

extract
relations

Entities
(integrated)

Figure 3.3. The EventKG generation pipeline.
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Input € Pre-processing: First, the dumps of the reference sources in the corre-
sponding languages are collected. Both Wikidata and YAGO provide multilingual
information in a single data dump. DBpedia and Wikipedia provide language-specific
dumps, so we collect the dumps for the languages of interest, i.e., English (EN), French
(FR), German (DE), Russian (RU) and Portuguese (PT). The Wikipedia Current
Events Portal is currently available in English only. The mapping from the Wikidata
identifiers to the Wikipedia and DBpedia identifiers required for the integration is
collected as part of the Wikidata dump.

As part of the pre-processing, the following information is created for each lan-
7
guage’:

e Terms: Terms is a set of terms and regular expressions used throughout the
extraction process. This includes the month names, weekday names, a blacklist
of namespaces and prefixes of the Wikipedia articles to be ignored (e.g., the
prefix “Chronological list_of ” in English) as well as regular expressions to detect
titles of the Wikipedia articles representing events.

e Date expressions: To extract dates from unstructured reference sources, a set of
regular expressions is created. These expressions are sorted in the decreasing
order of specificity, where time intervals are considered to be more specific
than the individual dates or months. For example, a specific regular expression
to extract a span of two dates in English is: @regexMonthDay1@@hyphensOr@
Q@regexMonthDay2@, where @regexMonthDay1@ denotes a month name followed
by a date and @hyphens0r@ is any kind of hyphen. This regular expression
can match textual patterns such as “February 17 — April 23”. A less specific
expression is @regexDayl1@ that only checks for day numbers such as “17”.
Moreover, regular patterns to identify Wikipedia event lists such as “2007 in
Science” are created, together with the rules to extract the temporal scope (the
year 2007 in this example).

o Mapping of predicates representing event relations: We define a mapping table to
identify predicates that represent equivalent event relations in FventKG and its
reference sources such as so:hasSubEvent and Wikidata’s “part of” property.
Examples of such mappings are shown in Table 3.5. Currently, we define the
predicate mappings manually. In future work, schema mapping techniques can
be adopted to determine such links automatically.

Identification and Fxtraction of Events: Event instances are identified in the
reference sources and extracted as follows:

"To obtain a complete list of the manually defined terms, expressions and mappings adopted
in this work, please see the readme file in the open source software release provided at: https:
//github.com /sgottsch /eventkg


https://github.com/sgottsch/eventkg
https://github.com/sgottsch/eventkg
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e Wikidata [EGK™14]: We identify events as subclasses of Wikidata’s “event” (rep-
resenting temporary and scheduled events like festivals or competitions) and “oc-
currence” (representing happenings like wars or ceremonies). Some of the identified
subclasses are blacklisted manually. For example, the class “song” is blacklisted
because of the subclass hierarchy song > musical form > art form > format >
arrangement > act > process > occurrence.

e DBpedia [LIJT15]: For each language edition, we identify DBpedia events as
instances of dbo:Event or its subclasses.

e YAGO [MBS14]: We do not use the YAGO ontology for event identification due
to the noisy event subcategories we observed (e.g., event > act > activity >
protection > self-defense > martial art).

e Wikipedia: We use Wikipedia category names that match a manually defined
language-dependent regular expression (e.g., English category names that end with
“events”) as an indication that a knowledge graph entry linked to such an article is
an event.

e Wikipedia Event Lists: For each language, we identify Wikipedia event lists by
adopting a set of regular expressions defined manually during pre-processing. This
way, Wikipedia pages with titles such as “2007 in Science” and “August 117 are
retrieved. Within these pages, textual descriptions of events are collected using
methods similar to [HWP12]. Using the ordered list of regular temporal expressions
and Wikipedia link markup, representations of events including their descriptions,
linked entities and dates are extracted.

e WCEP: In the Wikipedia Current Events Portal, events are represented through
rather brief textual descriptions and refer to daily happenings. We extract WCEP
events using the WikiTimes tool [TA14].

Extraction of Event and Entity Relations: We extract the following types of
relations:

1. Relations with temporal validity are identified based on the availability of tem-
poral information. Temporal relations are extracted from YAGO and Wikidata.
DBpedia does not provide such information.

2. Relations with indirect temporal information: We extract all relations involving
events as well as relations of entities with known existence time.

3. Other event and entity relations: We use the manually defined mapping table
shown in Table 3.5 to identify predicates that represent event relations in Fvent-
KG such as so:hasSubEvent (e.g., we map Wikidata’s part of property (P361)
to so:hasSubEvent in cases where the property is used to connect events),
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Table 3.5. Example property mapping between FventKG and its reference sources.

EventKG Wikidata DBpedia YAGO
wd:P276 (location)
. :isL I
sem:hasPlace wd:P30 (continent) dbo:place yago:isLocatedIn
yago:happenedIn
wd:P580 (start time) yago:started-
sem:hasBegin- wd:P585 (point in time) B OnDate
) :P161 f off. i :h -
TimeStamp wd:P1619 (date of off. opening) yago:happenedOn
Date
wd:P582 (end time) yago:endedOnDate
sem:hasEnd- wd:P585 (point in time) — yago :happenedOn-
TimeStamp Date
dbo:isPart0f
sem:hasSub- wd:P361 (part of) d?oilsPartOf—.
MilitaryConflict
Event
dbo: i E t
so:previous- wd:P155 (follows) o:previoussvent
dbo:previousWork
Event
dbo:followingEvent
so:nextEvent wd:P156 (followed by) dbo' subsequentiork
wd:P36 (capital)
so:contained- wd:P706 (loc. on terrain feat.) — —

InPlace

dbo:previousEvent and dbo:nextEvent as well as so:containedInPlace to
extract location hierarchies.

4. Relation strength and event popularity information: For each event-entity rela-
tion, we extract language-specific interlinking information from Wikipedia. In
particular, we extract the number of links and the number of mentions for each
relation involving events. Link and mentions are extracted from each Wikipedia
language edition by parsing all of its pages.

Integration: The statements extracted from the reference sources are included in
the named graphs, such that each named graph corresponds to a reference source.
In addition, we create a named graph eventKG-g:event kg containing information
resulting from integration and fusion. Each sem:Event and sem:Core instance in the
eventKG-g:event_kg graph integrates event-centric and entity-centric information
from the reference sources related to equivalent real-world instances.

The integration of entities and events obtained from knowledge graphs and Wikipe-
dia articles is conducted using existing owl:sameAs links, as provided by the Wikidata
dataset. In particular, the entities and events covered by YAGO and different language
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versions of DBpedia and Wikipedia are also present in Wikidata. We use owl : sameAs
links to the Wikidata identifiers to represent each resource that is linked as equivalent
in multiple reference sources as one resource in FventKG. That way, information
regarding this resource in different reference sources, e.g., labels in different languages,
is integrated.

The events in the Wikipedia event lists and WCEP do not possess unique identifiers.
Such events are integrated using a rule-based approach to identify equivalent events.
Two events e; and ey extracted from such sources are represented as one FventKG
event if the times of these events are identical (e;.time = es.time) and the set of
entities they link to overlaps. A special case is given if an event e; without an identifier
links to exactly one event e, with a known identifier and their times are equal. In
that case, the text of e; is added as a description to e,.

Fusion: In the fusion step, we aggregate temporal, spatial and type information of
eventKG-g:event_kg events using a rule-based approach.

e Time Fusion: For each entity, event or relation with a known existence or a validity
time stamp, time fusion is conducted using the following rules: (i) ignore the dates
at the beginning or end of a time unit (e.g., January, 1st), if alternative dates are
available; (ii) apply majority voting among the reference sources; (iii) take the time
stamp from the more trusted source (in order: Wikidata, DBpedia, Wikipedia,
WCEP, YAGO).

e Location Fusion: For each event in eventKG-g:event_kg, we take the union of its
locations from the different reference sources and exploit the so:containedInPlace
relations to reduce this set to the minimum (e.g., the set {Paris, France, Lyon}
is reduced to {Paris, Lyon}, while France can still be induced as a location using
so:containedInPlace transitively).

e Type Fusion: We provide rdf:type information according to the DBpedia ontology
(dbo), using types and owl:sameAs links in the reference sources.

Output: Finally, extracted instances and relations are represented in RDF according
to the EventKG data model (see Section 3.5.1). As described above, information
extracted from each reference source and the results of the fusion step are provided in
separate named graphs.

3.5.4 Running Example: Barack Obama

In the context of our running example, we now provide an exemplary overview of
the FventKG generation pipeline and illustrate how exemplar relations are expressed
in the FventKG model and the temporal knowledge graph. We refer to individual
heterogeneous instances in the input data that are not yet expressed in the FventKG
schema as data items. Table 3.6 provides exemplary data items involving Barack
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Obama obtained from Wikidata, YAGO and different language editions of Wikipedia
and DBpedia.

Table 3.6. Example data items about Barack Obama extracted from different reference

sources.
# Reference Data Item Related Data Items
Source
1  Wikipediagny May 8, 2018: President Trump an- —
nounces his intention to withdraw the
United States from the Iranian nuclear
agreement. In a statement, former
U.S. President Barack Obama calls
the move ”a serious mistake”.
Wikidata:  first inauguration of
Barack Obama, point in time, 20 Jan-
uary 2009
YAGO: first inauguration of Barack
Obama, was created on, 17 July 1981
2 Wikidata Barack Obama, significant event, first Wikidata:  first inauguration of
inauguration of Barack Obama Barack Obama, instance of, United
States presidential inauguration
Wikidata: United States presiden-
tial inauguration, subclass of*, occur-
rence
3  Wikidata Barack Obama, spouse, Michelle —
Obama - start time: 8 October 1992
DBpediapg: Election
présidentielle  américaine  de
2012 owl:sameAs United States
4  DBpediapg Barack Obama,  prop-fr:candidat, presidential election, 2012
Election présidentielle américaine de Wikidata: United States presiden-
2012 tial election, 2012, point in time,
6 November 2012
5 Wikipediapr [The Portuguese Wikipedia page of Wikidata: Death of Osama bin

Barack Obama links to the page
“Death of Osama bin Laden” once.]

Laden, point in time, 2 May 2011

Identification and FExtraction of Events. The first data item is extracted from the

English Wikipedia event list in the article “2018 in the United States”. The entities
“first inauguration of Barack Obama”, “United States presidential election, 2012” and
“Death of Osama bin Laden” from the data items #2, #3 and #b5 are identified as
events using the class hierarchies in the reference sources. In this example, Obama’s
first inauguration is identified as an event, because it is an instance of “United States
presidential inauguration”, which can be traced back to inauguration > key event
> occurrence in Wikidata. Thus, the text event from data item #1 and the event
“first inauguration of Barack Obama” are stored as event instances with additional
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values such as a textual description for the former and a title for the latter event.

Extraction of Event and Entity Relations. Given the set of events, we can now
detect relations between them and other entities. For example, the statement that
Barack Obama was involved in his own inauguration as US president is extracted from
Wikidata. This statement represents an indirect temporal relation, as it alone does
not provide the required temporal validity information, which needs to be extracted
from a related fact about the event. Similarly, we can extract the information that
Barack Obama was a candidate of the US elections in 2012 from the French DBpedia.

With the help of Wikipedia links, we connect Barack Obama to the death of
Osama bin Laden (data item #b5). Given the relation ?rel that links to Barack
Obama as the subject and to the event “Death of Osama bin Laden” as the object,
the link information is modelled as follows, using a named graph (where eventKG-
r:entity 11973762 represents Barack Obama and eventKG-r:event_527087 represents
the event “Death of Osama bin Laden”):

?rel rdfs:type
eventKG-s:Relation .

?rel rdf:subject
eventKG-r:entity_11973762 .

?rel rdf:object
eventKG-r:event_527087 .

eventKG-g:wikipedia_pt {
?rel eventKG-s:links 1 .

T

For the relation ?rel, link information can be added using specific named graphs.
For example, such information can model the co-mentions of Barack Obama and the
death of Osama bin Laden in the Portuguese Wikipedia.

Another type of information is coming from the temporal relations between two
temporal entities: Here, the spouse relation between Barack and Michelle Obama is
directly assigned a temporal validity time by Wikidata.

Integration. The entities “Election présidentielle américaine de 2012” and “United
States presidential election, 2012, are modelled as the same event resource in FventKG,
using DBpedia’s owl:sameAs link.

Fusion. There are two different dates provided for the first inauguration of Barack
Obama (data item #2). While both dates are stored in EventKG together with their
provenance information (i.e., as named graphs for Wikidata and YAGO), a single
happening time for that event is created with our rule-based fusion approach (see
Section 3.5.3). As the majority voting is not sufficient here, we take the date from the
higher trusted source. In this case, Wikidata’s date (January 20, 2009) is selected for
FventKG’s named graph.
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With that time information, the indirect temporal relation about Obama’s par-
ticipation in his own inauguration can be transformed into the following temporal
relation in the temporal knowledge graph generated from the named graph eventKG-g:
event_kg:

Barack Obama,

significant event:

first inauguration of Barack Obama
[2009-01-20,2009-01-20]

3.6 Evaluation & Statistics

To demonstrate the quality of the data extraction, integration and fusion steps, we
first show characteristics of FventKG and provide several comparisons to its reference
sources in Section 3.6.1. Then, we provide evaluation results based on user annotations
in Section 3.6.2.

3.6.1 Characteristics

In FventKG V1.1, we extracted event representations and relations in five languages —
English (EN), German (DE), French (FR), Russian (RU) and Portuguese (PT) — from
the latest available versions of each reference source as of 12/2017. EventKG uses
open standards and is publicly available under a persistent URI® under the CC BY
4.0 license”. Our extraction pipeline is available as open-source software on GitHub!’
under the MIT License''. A description of EventKG and example SPARQL queries
are online'?.

Table 3.7 summarises selected statistics from FventKG V1.1, released in 03/2018.
Overall, this version provides information for over 690 thousand events and over 2.3
million temporal relations. Nearly half of the events (46.75%) originate from the
existing knowledge graphs; the other half (53.25%) is extracted from semi-structured
sources. The data quality of the individual named graphs directly corresponds to the
quality of the reference sources. In eventKG-g:event_kg, the majority of the events
(76.21%) possess a known start or end time. Locations are provided for 12.21% of the
events. The coverage of locations can be further increased in future work, e.g., using
NLP techniques to extract locations from event descriptions.

Along with over 2.3 million temporal relations, FventKG V1.1 includes relations
between events and entities for which the time is not available. This results in overall

8https://doi.org/10.5281 /zenodo.1112283
9https://creativecommons.org/licenses/by/4.0/
Ohttps://github.com /sgottsch/eventkg
Uhttps://opensource.org/licenses/ MIT

2http:/ /eventkg.13s.uni-hannover.de/
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Table 3.7. Number of events and relations in eventKG-g:event_kg.

#Events Known time Known location

Events from KGs 322,669 163,977 84,304
Events from semi-structured sources 367,578 362,064 not extracted
Relations 88,473,111 2,331,370 not extracted

Table 3.8. Number of events identified and extracted from the reference sources.

DBpedia Wikipedia event lists
Wikidata EN FR DE RU PT EN FR DE RU PT WCEP

266,198 60,307 43,495 9,383 5,730 14,641 131,774 110,879 21,191 44,025 18,792 61,382

Table 3.9. Comparison of the event representation completeness in the source-specific
named graphs (after integration).

DBpedia
EventKG Wikidata YAGO EN FR DE RU PT

#Events with 322,669 322,669 222,325 214,556 78,527 62,971 47,304 35,682

Location (L) 26.13% 11.70% 26.61%  6.21%  8.32% 4.03% 10.60% 6.15%
Time (T) 50.82% 33.00% 39.02%  7.00% 17.21% 2.00% 1.35% 0.08%
L&T 21.97% 8.83% 19.02% 4.29% 0.00% 4.84% 1.18% 0.08%

over 88 million relations. Approximately half of these relations possess interlinking
information.

Comparison of EventKG to its Reference Sources

We compare FventKG to its reference sources in terms of the number of identified
events and completeness of their representations. The results of the event identification
and extraction step in Section 3.5.3 are shown in Table 3.8. FEventKG V1.1 with
690, 247 events contains a significantly higher number of events than any of its reference
sources, which comes from the integration of knowledge graphs and semi-structured
sources.

Table 3.9 presents a comparison of the event representations in FventKG and
its reference knowledge graphs (Wikidata, YAGO, DBpedia). As we can observe,
through the integration of event-centric information, EventKG: 1) enables better
event identification (e.g., we can map 322,669 events from EventKG to Wikidata,
whereas only 266, 198 were identified as events in Wikidata initially - see Table 3.8)
and 2) provides more complete event representations (i.e., EventKG provides a higher
percentage of events with specified temporal and spatial information compared to
Wikidata, that is the most reference source which covers most events). The most
frequent event types are source-dependent (see Table 3.10).
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Table 3.10. The most frequent event types extracted from the references sources and
the percentage of the events in that source with the respective type.

DBpedia
Wikidata EN FR DE RU PT
dbo:t Military  Sports Tennis Military Soccer
o:type season Conflict Event Tournament Conflict Tournament
Events, % 11.37% 6.31% 21.86% 33.00% 11.87% 16.17%

Relation & Fusion Statistics

More than 2.3 million temporal relations are an essential part of FventKG. The
majority of the frequent predicates in FventKG such as “member of sports team”
(882,398 relations), “heritage designation” (221,472), “award received” (128,125) and
“position held” (105,333) originate from Wikidata. The biggest fraction of YAGO’s
temporal relations has the predicate “plays for” (492,263), referring to football players.
Other YAGO predicates such as “has won prize” are less frequent. Overall, about
93.62% of the temporal relations have a start time from 1900 to 2020. 81.75% of
events extracted from knowledge graphs are covered by multiple sources. At the fusion
step, we observed that 93.79% of the events that have a known start time agree on
the start times across the different sources.

Textual Descriptions

EventKG V1.1 contains information in five languages. Overall, 87.65% of the events
extracted from knowledge graphs provide an English label, whereas only a small
fraction (4.49%) provides labels in all languages. Among the 367,578 events extracted
from the semi-structured sources, just 115 provide a description in all five languages,
e.g., the first launch of a Space Shuttle in 1981. This indicates the potential for further
enrichment of multilingual event descriptions in future work.

3.6.2 FEvaluation of FventKG

The aim of the evaluation is to assess the effectiveness of the event identification, time
fusion and location fusion steps of the pipeline.

Event Identification

We manually evaluated a random sample of the events identified in the event iden-
tification step of EventKG (Section 3.5.3). For each reference source, we randomly
sampled 100 events and manually annotated whether they represent real-world events
or not. The results are shown in Table 3.11.
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Table 3.11. User-evaluated precision for the identification of events with selected
reference sources.

DBpedia Wikipedia
Wikidata ‘ DE RU PT ‘ EN RU
Precision 96% 100% 100% 98% 94%  88%

Table 3.12. Evaluation of FventKG'’s time information. For EventKG and the reference
sources, the percentage of correct, wrong and missing event dates with respect to the
user annotations in our sample is shown. These are based on the random sample
of events where the reference sources show disagreement between time information
provided (Corr.: Correct, Prec.: Precision).

Start Dates End Dates Start and End Dates
Source Corr. Wrong Missing |Corr. Wrong Missing | Corr. Wrong Missing Prec.
EventKG 71 25 0 73 23 0| 144 48 0 0.75
Wikidata 40 33 23 33 29 34 73 62 57 0.54
YAGO 21 60 15 20 57 19 41 117 34 0.26
DBpediagn 12 5 79 13 4 79 25 9 158 0.74
DBpediapg 0 2 94 2 0 94 2 2 188 0.5
DBpediapr 6 17 73 15 8 73 21 25 146 0.46
DBpediagy 0 2 94 0 2 94 0 4 188 0

For DBpedia and Wikidata, where we rely on the event types and type hierarchies,
we achieve a precision of 98% on average. On a random sample of 100 events extracted
from the category names in the English and the Russian Wikipedia, we achieve 94%
and 88% precision, correspondingly. One example for an entity wrongly identified as
an event is the cancelled project “San Francisco Municipal Wireless”, which was part
of the “Cancelled projects and events” category in Wikipedia.

Time Fusion

To evaluate the quality of the proposed rule-based time fusion approach, we randomly
sampled 100 events from FventKG, where each event has at least two reference sources
that differ in the event happening time (i.e., start and/or end time). Three users have
annotated this sample by providing a start and end time for at least 20 events each.
Additionally, we asked the users to denote which source they used to research the
actual event dates. For our evaluation, we then checked how many of the user-given
start and end dates are available in the reference sources and the joint EFventKG
named graph, and we computed how many of these dates are correct with respect to
the user annotations.

Table 3.12 provides the result overview: As the time fusion does always adopt
accessible time information from any reference source, all events in our random sample
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Table 3.13. Time fusion evaluation: The most frequent sources used by the users to
lookup event start and end dates.

Source #Uses Percentage
en.wikipedia.org 117 58.5%
www.google.com 37 18.5%
de.wikipedia.org 14 7.0%
no source used 7 3.5%
fr.wikipedia.org 6 3.0%
www.singapore-elections.com 2 1.0%
WWW.UN.OTg 2 1.0%

possess time information. Wikidata and YAGO provide the next highest coverage of
time information. In terms of precision, EventKG outperforms these two reference

sources by 21% (Wikidata) and 49% (YAGO). This result confirms the quality of the
proposed rule-based time fusion approach.

The results of a McNemar’s test [McN47] has shown a two-tailed p-value of less
than 0.0001, which confirms the statistical significance of this result.

Table 3.13 provides an overview of the sources most often used for finding the
event dates by the users participating in the evaluation. In 69% of the cases, the users
adopted Wikipedia articles in different languages as their source. When the users did
not use Wikipedia, either the information presented on the search engine’s result page
(18.5% of the cases) or domain-specific web sites such as www.singapore-elections.com
or www.un.org were used.

Location Fusion

To evaluate the correctness of the extracted locations, we selected a random sample of
100 events with at least one location. In the case of locations, multiple correct values
are possible; for example, South America, the United States of Colombia and the
Colombia-Ecuador border are valid locations for the Ecuadorian-Colombian War. We
presented all locations from each reference source to the users and for each location
asked the users to verify whether that location is correct or not. Four users have
annotated that sample.

Table 3.14 provides the result for our evaluation of the location fusion. We
distinguish between the locations directly provided by FventKG and those which
could be inferred using sub-location information via so:containedInPlace. We refer
to this extended knowledge graph as FventKG* throughout this evaluation. FventKG
and EventKG* have by far the highest coverage of locations (FventKG* finds 78.13%
more event locations than YAGO and 159.10% more than in Wikidata), while keeping
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Table 3.14. Evaluation of FventKG’s location information. For each event in the
sample, users judged for each location in FventKG and the reference sources whether
it is correct.

Source Correct Wrong Precision
FventKG* 116 7 94.31%
EventKG 87 4 95.60%
YAGO 64 2 96.97%
Wikidata 44 2 95.65%
DBpediapg 7 0 100.0%
DBpediaDE 1 0 1000%
DBpediagy 4 1 80.0%
DBpediapT 3 1 750%

Table 3.15. Location fusion evaluation: The most frequent sources used by the users
to lookup event locations.

Source #Uses Percentage
en.wikipedia.org 58 43.94%
no source used 35 26.51%
de.wikipedia.org 7 5.3%
www.google.com 5 3.79%
everipedia.org 3 2.0 %
fr.wikipedia.org 3 2.0 %
www .kicker.de 2 1.51%

the number of wrong locations low (approx. 7%). However, EventKG also inherits
wrong locations as provided by the reference sources due to the adopted location
fusion mechanism.

The results of a McNemar’s test [McN47] has shown a two-tailed p-value of 0.0005,
which confirms statistical the significance of this result.

Table 3.15 lists the sources used by the users in this task. Similarly to the
evaluation of the time fusion, Wikipedia and Google were the most frequently used
sources, followed by domain-dependent ones such as kicker.de for locating football
matches. However, in 26.51% of the cases in this task, the users did not use a source
at all, mainly because many event locations are self-explanatory or contained in the
event names. For example, no source was needed to verify the locations Monaco and
Circuit de Monaco for the 1956 Monaco Grand Prix.
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3.6.3 FventKG V3.0

The characteristics, statistics and evaluation results presented in this chapter refer to
FEventKG V1.1 released in March 2018.

In March 2020, we released EventKG V3.0 that includes several updates™® with
respect to the: i) inclusion of the current content of the reference sources and extended
language coverage, ii) enhanced relation fusion, iii) inclusion of geographic information,
iv) inclusion of information regarding temporal granularity, v) inclusion of an event
series type. In the following, we describe these extensions in more detail.

Reference sources and language coverage. FEventKG V3.0 includes data
extracted from the reference sources presented in Section 3.5.3 as of February 20th,
2020. Furthermore, FventKG V3.0 includes ten more languages, in addition to the five
languages supported in EventKG V1.1: Italian, Spanish, Dutch, Polish, Norwegian,
Romanian, Croatian, Slovene, Bulgarian and Danish. Overall, this leads to 1, 348, 561
events included in the dataset.

Relation fusion. In FventKG V3.0, we performed fusion of eventKG-s:Relation
instances extracted from different reference sources based on property mappings and
similarity. eventKG-s:Relation instances are fused if the following conditions are
met: (1) The values of rdf:subject, rdf:object, sem:hasBeginTimeStamp and sem:
hasEndTimeStamp are the same, and (2) the sem:roleType values are linked via
existing owl:sameAs relations in the reference sources. For example, this concerns
properties such as “place of birth” (Wikidata), “wasBornIn” (YAGO) and “birthPlace”
(English DBpedia).

Geographic information. For sem:Place and sem:Event instances, geographic
coordinates available in the reference sources are added to FventKG V3.0. The coor-
dinates are represented through their latitude and longitude as values of so:latitude
and so:longitude.

Temporal granularity information. In FventKG V3.0, we enriched the dates
encoded by sem:hasBeginTimeStamp and sem:hasEndTimeStamp with granularity
information, which denotes the precision of a given date. To this end, the properties
eventKG-s:startUnitType and eventKG-s:endUnitType are added to the schema.
Their range is time:TemporalUnit, which comprises existing classes in the Time
Ontology'* (time:unitDay, time:unitMonth and time:unitYear), as well as newly
created classes (eventKG-s:unitDecade and eventKG-s:unitCentury). For example,
the granularity information helps to identify whether the start time “January 1st,
19817 refers to that actual day (eventKG-s:startUnitType time:unitDay) or to an
unknown day of the year (eventKG-s:startUnitType time:unitYear).

Event series. Two new classes were added to the schema of FventKG: eventKG-s:
EventSeries and eventKG-s:EventSeriesEdition, which represent event series

13Here, we list updates from EventKG V1.1 to EventKG V3.0, including the updates of EventKG
V2.0.
Yhttp: / /www.w3.org/2006 /time# (namespace prefix “time:”)
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(such as the Wimbledon Championships) and their editions (e.g., the Wimbledon
Championships in 2018).

FventKG V3.0, its updated schema information and statistics, are accessible
online.?

3.7 Discussion

In this chapter, we presented the concept of a temporal knowledge graph that inter-
connects real-world entities and events using temporal relations. Furthermore, we
presented an instantiation of the temporal knowledge graph — FventKG. EventKG
is a multilingual knowledge graph that integrates and harmonises event-centric and
temporal information regarding historical and contemporary events. FventKG V1.1
includes over 690 thousand event resources and over 2.3 million temporal relations.
Unique EventKG features include the light-weight integration and fusion of structured
and semi-structured multilingual event representations and temporal relations in
a single knowledge graph, as well as the provision of information to facilitate the
assessment of relation strength and event popularity while providing provenance. The
light-weight integration enables to significantly increase the coverage and completeness
of the included event representations, in particular with respect to time and location
information.

We analysed the characteristics of the resulting knowledge graph and observed
a significant increase in coverage compared to the reference sources. For example,
FventKG V1.1 contains 50K more events than identified in Wikidata and more than
262K events than identified in the English DBpedia. Additionally, 360K events are
extracted from semi-structured sources. The quality of this resulting dataset was
confirmed in a manual evaluation. This evaluation indicated high precision for the
event identification step (with an average precision of 96%), the time fusion step
(with precision of 75% for the events that had a disagreement regarding their time
information in the reference sources) and the precision of the location fusion (94.31%).

The characteristics, statistics and evaluation results presented in this chapter refer
to FventKG V1.1 released in March 2018. In March 2020, we released FventKG
V3.0, briefly described in Section 3.6.3. In comparison to EventKG V1.1, FventKG
V3.0 includes an increased number of more than 1.3 million events, further enhances
relation fusion, provides geographical information, an event series type and EventKG
V3.0 integrates reference sources in 15 languages in total.

FventKG demonstrates the importance of adapting knowledge graphs to the given
setting: While well-established knowledge graphs such as Wikidata or DBpedia serve
as an excellent foundation for a large variety of general-purpose applications, they
may not be the perfect fit for other applications that are very domain-specific or have

Bhttp://eventkg.13s.uni-hannover.de/ and https://doi.org/10.5281/zenodo.1112283
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specific demands for the knowledge they utilise. At this point, the integration of

several, heterogeneous sources, is an important step towards the application of event
knowledge graphs.
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Creation of a Knowledge Graph from Tabular Data

Knowledge comes in many ways, not limited to existing knowledge graphs or encyclope-
dias. There are plenty of datasets around which are not understandable by computers.
One example are tabular datasets, which are structured into rows and columns but
lack semantic annotations. Typical data analytics tasks that aim at generating insights
from such data tables, oftentimes using machine learning, can highly benefit from
semantic annotations [GTK'19]. However, as several studies confirm [Mool8, Prel6],
the organisation and pre-processing of data is a highly time-consuming task, albeit not
as enjoyable as other tasks, including the configuration of a machine learning workflow.
But what if we can automatically transform input data tables into a knowledge graph,
and thus ease the whole process of data understanding, organisation and cleaning?
Such transformations require semantic table interpretation. Following RQ1.2, this
chapter deals with the problem of semantic table interpretation in a specific setting,
where tables are interpreted based on background knowledge, represented using domain
profiles. Consequently, this chapter is about Tab2KG, an approach for transforming
tabular data into knowledge graphs using domain profiles.

4.1 Introduction

A vast amount of data is currently published in a tabular format [CHLT18, RB17,
MNUP16]. Typically, this data does not possess any machine-readable semantics.
Semantic table interpretation is an essential step to make this data usable for a wide
variety of applications, with data analytics workflows (DAWSs) as a prominent example
[GTK™19]. DAWSs include data mining algorithms and sophisticated deep learning
architectures and require a large amount of heterogeneous data as an input. Typically,
DAWSs treat tabular data as character sequences and numbers without inferring any
further semantics. This practice can often lead to error-prone analytics processes and
results, particularly when data analytics frameworks utilize the data from various
heterogeneous sources. Therefore, DAWs can substantially profit from the semantic
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interpretation of the involved data tables [Gar19, PPKT18].

In this context, semantic table interpretation aims to transform the input data
table into a semantic data graph. In this process, table columns are mapped to a
domain ontology’s classes and properties; table cell values are transformed into literals,
forming the data graph — a network of semantic statements, typically encoded in RDF.
This process is typically called semantic table interpretation, as introduced in Section
2.3.3.

In the context of DAWSs, semantic table interpretation can bring several advantages.
First, an abstraction from tabular data to semantic concepts and relations can guide
domain experts in the DAW creation [GTK'19]. Second, validation options (e.g., type
inference) that become available through the semantic table interpretation can increase
the robustness of DAWs [HLLS17]. Third, semantic descriptions can be employed to
facilitate the explainability of the data analytics results [Lecl9]. Fourth, semantic
table interpretation adds structure directly usable for knowledge inference [LSB*17].

The existing approaches to semantic table interpretation do not adequately support
the semantic interpretation of tabular data for DAWSs. At the core of such approaches
(e.g., [INKIT19, CDPRS20, CJRHS19]) is the instance lookup task, where table cells
are linked to known instances in a target knowledge graph, with DBpedia [ABK*07]
being a popular cross-domain target. Subsequent steps such as property mapping are
based on the results of this lookup step. However, as shown by Ritze et al. [RLOB16],
only about 3% of the tables contained in the 3.5 billion HTML pages of the Common
Crawl Web Corpus' can be matched to DBpedia. In the context of DAW, the input
data typically represents new instances (e.g., sensor observations, current road traffic
events, ...), and substantial overlap between the tabular data values and entities
within existing knowledge graphs cannot be expected.

The unavailability of known instances becomes particularly evident in the context
of DAWSs, where input data typically represents new knowledge. Consider the following
three exemplary DAW tasks:

e Weather prediction based on sensor observations that do not contain any refer-
ences to instances in a knowledge graph.

e Traffic jam prediction based on a file of recent events not yet covered in the
target knowledge graph.

e An analysis of recent events that are not yet present in cross-domain knowledge
graphs such as DBpedia.

These examples demonstrate that approaches solely relying on matching table cells
to resource in a knowledge graph are not applicable in common DAW settings.

thttp://commoncrawl.org/
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In this article, we present Tab2KG — a novel semantic table interpretation approach.
Tab2KG aims to transform a data table into a semantic data graph. As a backbone
of the data graph, Tab2KG relies on an existing domain ontology that defines the
concepts and relations in the target domain. To facilitate the transformation, Tab2KG
introduces original lightweight semantic profiles for domains and data tables. Domain
profiles enrich ontology relations and represent domain characteristics. A domain
profile associates relations with feature vectors representing data types and statistical
characteristics such as value distributions. To transform a data table, Tab2KG first
creates a data table profile. Then, Tab2KG uses the domain and data table profiles to
transform the table into a data graph using a novel one-shot learning approach.

To create domain profiles, Tab2KG uses a domain ontology and a data sample
that can be obtained from an existing domain knowledge graph. Lightweight semantic
profiles generated by Tab2KG can be utilized as compact domain representations
and complement and enrich existing dataset catalogs. Such profiles can be generated
automatically from the existing datasets and described using the DCAT? and the
SEAS? vocabularies to enable their reusability. We believe that lightweight semantic
profiles presented in this article are an essential contribution that can benefit a wide
range of semantic applications beyond semantic table interpretation.

4.1.1 Contributions

In summary, our contributions presented in this chapter are as follows:

1. We introduce lightweight semantic domain and table profiles. Domain profiles
enrich relations of domain ontologies and serve as a lightweight domain repre-
sentation. Semantic table profiles summarize data tables facilitating effective
semantic table interpretation.

2. We propose the Tab2KG approach to transform tabular data into a data graph
with one-shot learning based on semantic profiles.

3. We evaluate the proposed method on several real-world datasets. Our evaluation
results demonstrate that Tab2KG outperforms state-of-the-art semantic table
interpretation baselines.

4. We make the scripts for creating lightweight semantic profiles and transforming
data tables into data graphs publicly available*.

Zhttps://www.w3.org/TR/vocab-dcat-2/
3https://ci.mines-stetienne.fr/seas/index.html
4https://github.com/sgottsch/Tab2KG
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4.1.2 Running Example: Weather Observations

Tab2K(G is a domain-independent approach that generalizes to previously unseen
domains and data tables. There are no constraints on the data nature (e.g., sensor
data, numbers, strings, ...), and we demonstrate in our evaluation how Taub2KG
performs on different domains, including soccer and advertisements data. As a new
running example throughout this chapter, we use the weather observation domain and
a data table that provides observations of sensors measuring air conditions.

— rdfs: sosa: rdfs: - -
label Sensor comment

¢ IOUdy 16:30 17:00 52 sosa:made|Observation
clear 10:00 10:30 S3
cloudy 17:00 17:30 S3
rain 16:30 17:00 S1
cloudy 17:30 18:00 S2
clear 08:30 09:00 S1
clear 09:00 09:30 S1

Figure 4.1. Example of a data table as a  Figure 4.2. Excerpt of the Semantic Sen-
tab-separated file without column titles.  sor Network Ontology.

time:Interval—
time:hasBegin

Type: Temporal

Unique values: 56% 0.0 1.0
1.0 0.0

sosa:Observation— =P | 056 1.0
rdfs:label 0.0 20

Type: Textual
Unique values: 100% Domain Profile
Average length: 2

Figure 4.3. An example profile of the weather observation domain. The domain profile
is represented as a set of feature vectors, each containing statistical features, such as
value distributions. The domain profile can also be used for visualization of the data.

Consider the table in Fig. 4.1 that contains weather observation sensor data,
separated by a tab character (—). The table does not include column titles. As a
human, we can observe that the first column refers to the air condition (cloudy, clear,
rain). The second and third column may represent a time interval of the measurement
(e.g., 16:30 and 17:00). The fourth column containing the values 52, S3, and S7 is
hard to interpret without background knowledge.
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To facilitate semantic table interpretation, Tab2KG relies on background knowledge
regarding the target domain. Such background consists of two parts: a domain ontology
and a domain profile.

sosa:made|Observation

sosa:has

. sosa:has
:Observation1 SimpleResuT

sosa:phenolmenonTime

hasBegin hasEnd

Figure 4.4. Correct mapping of the third  Figure 4.5. Incorrect mapping of the third
line in Figure 4.1 to the ontology in Fig- line in Figure 4.1 to the ontology in Fig-
ure 4.2. For brevity, we omit rdf :type ure 4.2. For brevity, we omit rdf:type
relations. relations.

e The domain ontology models the specific domain of interest. In our running
example, we use the Semantic Sensor Network Ontology® illustrated in Fig.
4.2. Amongst others, this ontology provides classes to model sensors, their
observations, and corresponding time intervals.

e The semantic domain profile is a lightweight representation of typical value
distributions for the ontology relations. In this example, such distributions
can be obtained from prior weather observations. Fig. 4.3 gives an exemplary
illustration of such a domain profile in the weather observation domain. Here, we
illustrate statistical features of two observation properties (the beginning of the
observation and the sensor label) using box plots and histograms. Such features
can be represented as numerical feature vectors and included in a semantic
domain description using DCAT and SEAS vocabularies.

Tab2KG enables the semantic table interpretation through profile matching, which
maps table columns to the ontology relations. Given the mapping, Tab2KG transforms
the table into the data graph shown in Fig. 4.4. As we can observe, the first three
columns are mapped to the observations and their time intervals. The fourth column
is mapped to the sensor labels.

The transformation process is challenging and potentially error-prone. For example,
Fig. 4.5 illustrates a wrong transformation result, with an incorrect column mapping
and an erroneous graph structure.

In this case, the sensor label “S3” was erroneously interpreted as an observation
label. In addition, the beginning and end times are swapped. Tab2KG utilizes semantic
profiles to avoid such interpretation errors.

sosa: https://www.w3.org/TR/vocab-ssn/
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4.1.3 Outline

The structure of this chapter is as follows: In Section 4.2, we discuss related work
specifically relevant for Tab2KG. Then, in Section 4.3, we define the problem of
semantic table interpretation, followed by the definition and creation of domain and
data table profiles (Section 4.4). In Section 4.5, we describe our proposed Tab2KG
approach and its implementation. We present evaluation setup and results in Section
4.6, followed by a discussion of our profile-based approach in Section 4.7. Finally, we
provide a conclusion in Section 4.8.

4.2 Specific Background

In this section, we provide an overview of specifically relevant works in the areas of
dataset profiling and semantic table interpretation.

Given the growth of data available on the Web and in industrial data lakes, there
is a high demand for dataset profiling, e.g., for creating data catalogs [NUP16]. The
profile features typically belong to several categories, including statistical observations
at the instance and schema level [BEBB*18, AGN15]. Such features are not restricted
to the initially defined schemas. For example, Neumaier et al. demonstrate how
user interaction and search functionalities profit from the inclusion of spatio-temporal
features into a dataset profile [NP19]. For tabular data, other approaches for dataset
profile enrichment include the generation of table titles [HLY19] and schema labels
[CJHD18]. The inferred relation-specific rules and observations can further verify the
data quality and become part of dataset profiles [SLST18, SRLJ19].

Recently, approaches to annotate tabular data with concepts from a knowledge
base to predict column types gained increased attention. In the following, we introduce
approaches for semantic table interpretation and the methods they use.

Instance-level lookup. Most semantic table interpretation tools require access
to a target knowledge graph, as they link data table cells to its resources [RB17]. Such
approaches on the instance-level have recently been driven by the SemTab Challenge
[JRHET20, JHE*20], which explicitly postulates a cell-entity annotation (CEA) task,
where labels in data table cells are linked to entities in a target knowledge graph. The
subsequent steps of column-type annotation (CTA) and columns-property annotation
typically build upon the CEA results.

Several approaches are based on entity lookup (ColNet [CJRHS19], MantisTable
[CDPRS20], LinkingPark [CKN*+20], DAGOBAH [LT19, HLC*20], MTab [NKIT19),
T2KMatch [RLB15], CSV2KG [SVDTO19], TableMiner+ [Zhal7|, and the work by
Zhang et al. [ZMBR20]), with different (combined) query strategies, including URL
matching [SVDTO19], (partial) string lookup [CDPRS20, HLC"20, CKN*20], string
similarity [NKIT19, HLC*20, RLB15, ZMBR20], spelling correction [CKN"20] or
the use of named entity linking tools [CDPRS20]. After linking data table cells to
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resources in the knowledge graphs, the CTA is typically decided through voting or
counting [NKIT19, CJRHS19, CKN*20], ranking [SVDTO19, CDPRS20, Zhal7] or
clustering [HLC"20]. ColNet and TableMiner+ apply learning strategies to reduce
the number of lookup tasks required for detecting the class of the entities represented
by a column. MantisTable and CSV2KG utilize concept graphs in their ranking to
identify the most-specific sub classes. Also, identifying properties represented by the
data tables typically relies on the CEA and additional knowledge graph lookups. For
example, MTab does pairwise queries between entities identified in different columns to
identify potential entity relations. To identify literal relations, MTab and TableMiner+
row-by-row compute data-type specific similarities between the literals in the target
knowledge graph and the cell values. CSV2KG also involves the target ontology in
this step. Sherlock [HHB"19] is a system that performs CTA and does not rely on
CEA. However, it extracts column features for training a neural network, which is
solely trained on DBpedia and explicitly predicts one of the selected DBpedia classes.

The reliance on entity linking with the target knowledge graph makes these
approaches unsuitable in settings where data tables only contain previously unseen
data, which is a common issue [RLOB16]. Even if the data instances in the data table
are not entirely unknown, these approaches do not perform well when the number of
matching entities drops [CJRHS19]. Another thing these approaches have in common
is the reliance on a large underlying knowledge base such as DBpedia and stable
lookup services. In contrast, Tab2KG does not require access to the target knowledge
graph after the domain profile has been created.

Subject column detection. Several approaches [CDPRS20, Zhal7] for semantic
table interpretation assume the existence of a subject column, i.e., the main column of
the data table where every other column is directly connected to. The subject column
detection is typically identified through a set of statistic features. Approaches relying
on a subject column do not consider the involvement of any classes which are not
directly represented in the data table (for example, consider Fig. 4.1, but without the
first column). Tab2KG utilizes a graph-based approach where such class relations can
be found.

Column titles. Some data tables come with column titles, which may indicate
respective classes or properties. Efthymiou et al. [EHRMC17] propose a method
based on ontology matching, where one column title defines the class label, and
other column titles represent property labels. Domain-independent Semantic Labeler
[PAKS16], DAGOBAH [HLC"20] and TableMiner+ [Zhal7] exploit column titles as
one of their features. Tab2KG does not require any column titles. This way, we ensure
the generalizability for data tables without headers and language-independence.

Data type restrictions. Data tables contain data of various types, and thus there
are approaches specific to some of them. For example, EmbNum+ [NNIT19] transforms
data table columns with numeric values into embedding vectors. Alobaid et al.
demonstrate that using more fine-grained numeric data types increases semantic table
interpretation performance for numeric column values [AKC19]. For the interpretation
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of cross-lingual textual values, Luo et al. propose using several translation tools
[LLCZ18]. Tab2KG aims at the interpretation of data tables as a whole without
restricting to particular data types or languages and thus establishes profiles that do
not depend on particular data types or languages.

User feedback. Instead of relying on fully-automated approaches for semantic
table interpretation, which may be error-prone due to the challenges involved in this
task, manual or semi-automated approaches rely on user feedback. Karma [KSAT12],
Odalic [Knal7], and ASIA [CCDPP19] are interactive tools that let users decide on
the correctness of suggested table annotations and thus achieve high precision, but
demand both time and expertise from the user. Tab2KG is a fully-automated approach
for semantic table interpretation that does not require user interventions.

Domain-independent semantic table interpretation. Domain-independent
approaches are not restricted to specific target knowledge graphs. Instead, they
learn domain-independent similarity features to generate the mapping. The Seman-
ticTyper [RMKS15] scores similarity between columns and data type relations based
on handcrafted features for numeric and textual values. Based on similar features,
the Domain-independent Semantic Labeler [PAKS16] adopts machine learning and
handcrafted features to predict the similarity between a column and a class in the
domain knowledge graph. Taheriyan et al. [TKSA16a] generate a ranked list of
potential column mappings learned from a sample of the domain ontology, which is
then presented to the user. While both approaches are flexible concerning the target
domain, Tab2KG aims to use only features present in the dataset profiles.

4.3 Problem Statement

In this section, we first formally define the concepts of a domain knowledge graph and
a data table. Then, we present the task of semantic table interpretation.

The entities and relations in the domain of interest can be represented in a domain
knowledge graph.

Definition 4.1. A domain knowledge graph is a knowledge graph G = (N, R) as
defined in Definition 2.1, whose nodes N represent entities and literals, and whose
edges R represent relations between these nodes in the specific domain.

A domain knowledge graph consists of two sub graphs: a domain ontology and a
data graph.

Definition 4.2. A domain ontology Go = (No, Ro), No C N,Ro C R, where
No = C'U DU P includes a set of classes C, a set of data types D, and a set of
properties P = PyU P,, where Py are data type properties, and P, are object properties.
Data type properties relate entities to literals. Object properties relate entities to each
other.
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The relations represented by Ro = Roc U Rop include class relations Roc and
data type relations Rop:

o Roc is the set of class relations:
ROC - C x Po x C.

e Rop is the set of data type relations:
ROD - C x Pd x D.

For example, in the excerpt of Semantic Sensor Network Ontology illustrated
in Fig. 4.2, (sosa:Sensor sosa:madeObservation sosa:Observation) is a class
relation and (sosa:Sensor rdfs:label xsd:string) is a data type relation.

Definition 4.3. A data graph is a graph Gp = (Np, Rp), Np C N,Rp C R. The
nodes Np = C'U D U E U L include classes C, data types D, entities E and literals
L. Each literal | € L is assigned a data type dt(l) € D. Within Rp, we distinguish
between entity relations (E x P, x E) and literal relations (E x Py x L).

A data table is defined as follows:

Definition 4.4. A data table T is a M x N matriz consisting of M rows and N
columns. A cell Ty, m € {1,...,M},n € {1,..., N}, represents a data value. A
row r,, 18 a tuple that represents a set of semantically related entities. A column c,
represent a specific characteristic of the entities in a row.

For example, the data table illustrated in Fig. 4.1 contains M = 7 rows and N =4
columns, where the columns represent the weather conditions, time intervals, and
sensor labels, and each row contains three semantically related entities: an observation,
a time interval, and a sensor. The column values can belong to different data types,
including text, numeric, Boolean, temporal and spatial.

Semantic table interpretation is the task of transforming a data table into a data
graph.

Definition 4.5. Semantic table interpretation: Given a data table T and a
domain knowledge graph G, create a data graph G5 = (NL, RE) with nodes N} and
relations RE. Its literal values LT C N}, are connected to the entities ET C N} and
represent the values in the literal columns of T. The entities ET are connected via
entity relations in RY.

4.4 Semantic Profiles

Semantic table interpretation in Tab2KG does not require any instance lookup in a
domain knowledge graph. Instead, Tab2KG uses a sample domain knowledge graph
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to create a lightweight semantic domain profile. This domain profile, together with
a domain ontology, build reusable domain background knowledge that is later
on used to interpret the data tables semantically. Note that the entities and literals
in the sample domain knowledge graph do not need to overlap with the data tables’
instances to be interpreted.

Tab2KG involves the creation of two types of profiles: domain profiles and data
table profiles, both represented as feature vectors and described in a semantic data
catalog to facilitate their reusability. Such profiles are inspired by the dataset profiles
described in Section 2.3.5, where statistical features are defined as an important
element of the dataset profiles taxonomy. In Tab2KG, the primary purpose of the
domain and data table profiles is to enable effective and efficient access to the domain
and table statistics for semantic table interpretation.

We present domain profiles in Section 4.4.1 and data table profiles in Section
4.4.2. We discuss profile features in Section 4.4.3. Then, in Section 4.4.4, we describe
how we represent domain and data table profiles in a semantic, machine-readable
way. Finally, in Section 4.4.5 we provide an example of a data catalog that includes
semantic profiles.

4.4.1 Domain Profiles

For creating a domain profile, we make use of a domain knowledge graph G that
contains representative values for the data type relations in the target domain. A
domain profile is a set of data type relation profiles derived from G, where a data
type relation profile is a set of statistical characteristics (features) of the literals covered
by this data type relation in G’s data graph Gp.

Definition 4.6. The data type relation profile n(rp) € R/ of the data type
relation rp € Rop 1s a vector that includes f features of the literal relations covered
in the domain knowledge graph G.

In brief, the profile of a data type relation rp is a feature vector containing a set
of statistics, computed using all literals corresponding to 7p.

To create a profile for the data type relation rp = (¢, pg, d), we utilize all literals
| € Gp, such that: (e,pq,1) € Rp, (e,rdf : type,c) € Rp, and dt(l) = d.

In our running example, in Fig. 4.4, the data type relation (sosa:Sensor rdfs:
label xsd:string) in the domain ontology corresponds to the literal relation (:
Sensor3 rdfs:label “S3”) in the data graph. Therefore, we use “S3” as one of the
literals to create the data type relation profile.

4.4.2 Data Table Profiles

To facilitate semantic interpretation of a data table, we create a data table profile.
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A data table profile is a set of column profiles, each representing a specific data
table column. More formally, the profile of a data table T' consists of a column profile
m(en),n € {1,..., N} for each table column ¢, € T as defined in Definition 4.4.

A column profile is defined as follows:

Definition 4.7. A column profile ©(c,) € R’ of a column ¢, is a vector of f
statistical characteristics (features) of the values contained in that column.

We create column profiles using literal values contained in the table columns.

Column profiles and data type relation profiles are created analogously and contain
the same features, presented in Section 4.4.3.

4.4.3 Profile Features

Motivated by the RDF profile characteristics defined by Ellefi et al. [BEBB™ 18], we
include data types, as well as completeness and statistical features described in the
following into the profiles in Tab2KG. The selection is motivated by the expected
feature effectiveness for semantic table interpretation, i.e., matching the domain and
data table profiles. We demonstrate in our evaluation that these features can facilitate
an effective matching in several application domains. This feature set can be further
extended to include relevant characteristics in specific domains.

e Data type: We represent data types as binary profile features. We include
fine-granular data types to facilitate the precise matching of domain and data
table profiles. The following data type taxonomy includes the most common
cases observed in our evaluation domains.

Text: Categorical, URL, Email, Other
e Numeric: Integer, Decimal / Sequential, Categorical, Other®

Boolean

Temporal: Date, Time, Date Time

Spatial: Point, Linestring, Polygon

A data type relation or column can be assigned multiple (fine-granular) data
types (e.g., integer and categorical). We provide technical details regarding the
identification of fine-granular data types later in Section 4.5.8.

e Completeness: We include the number of non-null values as a completeness
indicator.

bfollowing the taxonomy defined in [AKC19]
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e Basic statistics: We include the number of values, the number of distinct
values, as well as the average length and the average number of digits in the
literals.

e Histograms: Histograms are an effective means for RDF data summarization
[HHK*10]. We create a histogram for a given number of buckets as part of the
data type relation profile or column profile. As features, we add the number of
literals in each bucket, in the increasing order of bucket ranges. For histogram
creation, we remove the outliers detected using the interquartile range (1.5 IQR)
rule.

e Quantiles: We add quartiles and deciles to the profile (including minima and
maxima). In addition, we add the number of outliers detected using the 1.5 IQR
rule.

To derive numerical features, we transform literals into numbers. The features
of textual data type relations are computed based on the textual values’ lengths.
Temporal values are transformed into timestamps. For spatial values, we consider the
line string length or the polygon area, respectively.

4.4.4 Semantic Profile Representation

Domain and data table profiles can be represented as semantic profiles in RDF,
as an extension of the Data Catalog Vocabulary (DCAT)" and the SEAS Statistics
ontology®.

Within the DCAT vocabulary, a data catalog (dcat:DataCatalog) consists of
datasets (dcat:Dataset), where a dataset is a collection of data, published or curated
by a single agent. In the context of Tab2KG, both the domain knowledge graph and
the data tables can be represented using dcat:Dataset. We extend the descriptions
of datasets in a Tab2K(G data catalog to include semantic profiles. For example,
we introduce an Attribute class representing the data table columns and data type
relations. We make the definitions of this vocabulary available online?.

Fig. 4.6 provides an overview of the classes involved in representing semantic
profiles. A dcat:Dataset in a Tab2KG data catalog includes several attributes. In
the case of a data table profile, these attributes the columns. In the case of a domain
profile, these attributes are the data type relations. These attributes are assigned the
profile features, as presented in Section 4.4.3:

1. Data types: Data type assignments follow the previously mentioned taxonomy.

Thttps://www.w3.org/TR/vocab-dcat-2/
8https://ci.mines-stetienne.fr/seas/StatisticsOntology
https://github.com/sgottsch/Tab2KG
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Figure 4.6. Classes and properties used for describing a semantic profile. — marks
owl:subClassOf relations. Dashed arrows indicate the existence of further classes
which are not included in this excerpt. The two feature types (data types and numeric
features) are grouped by different colors.

2. Numeric features: The numeric profile features are represented through subclasses
of seas:Evaluation. In the case of quartiles, deciles, and histograms, the values
come with a rank. For example, we can denote the second decile using seas:
rank 2.

In the case of domain profiles, the existing mapping to the domain ontology can
be modeled by connecting attributes to their corresponding classes, and data type
properties [GTK'19].

Note that such semantic profiles do not only enable semantic table interpretation
but can also be used to provide lightweight dataset visualizations, e.g., through box
plots (quartiles) or bar charts (histograms).

4.4.5 Running Example: Weather Data Catalog

An excerpt of an example data catalog for our running example from the weather
observation domain introduced in Section 5.1.1 is shown in Fig. 4.7. The data catalog
identified as WeatherCatalog includes two data tables (RainData and AirData).
Here, the AirData data table has two columns, one of them with a column profile
feature denoting the maximum value of the observation end time.

With Tab2KG, we can directly utilize this catalog for semantic table interpretation.
Both example data tables can be interpreted through their data table profiles when a
domain profile of the weather observation domain is provided.
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Figure 4.7. Running example: Excerpt of a weather data catalog containing two data
tables and an exemplified column profile feature denoting the maximum end time
value (ObservationEndTimeMax).

4.5 Tab2KG: Approach

To facilitate semantic table interpretation, Tab2KG utilises a schema graph that
describes the specific domain (e.g., weather observations) and domain background
knowledge encoded in a domain profile. In this section, we describe the interpretation
process and how such profiles are created and matched.

4.5.1 Approach Overview

Fig. 4.8 provides an overview of our proposed Tab2KG approach to semantic table
interpretation, where a data graph G5 is created from a data table T'. To facilitate the
interpretation, Tab2KG utilizes domain background knowledge that includes a domain
ontology G and a domain profile. The domain profile is generated in a pre-processing
step from a domain knowledge graph G.

In brief, the Tab2KG pipeline consists of the following steps:

1. Domain Profile Creation: In a pre-processing step, we create a domain profile
from a domain knowledge graph G.

2. Data Table Profile Creation: We create a profile of the input data table T

3. Column Mapping: We generate candidate mappings between the columns of
T and the data type relations in G using the domain profile, the data table
profile, and a one-shot learning mapping function.

4. Data Graph Creation: We use the candidate column mappings and the
domain ontology Go to create a data graph G7 representing T’s content.

In the following, we describe these steps in more detail.
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Figure 4.8. An overview of semantic table interpretation with Tab2KG. Input is a
data table T' and a domain knowledge graph G. The output is a data graph G% that
represents the content of T as a data graph.

4.5.2 Domain Profile Creation

The semantic table interpretation in Tab2KG requires the availability of a domain
profile. This profile can be inferred from a domain knowledge graph G as described in
Section 4.4.1. The domain profile is created by computing the feature values given
the literal relations in the domain knowledge graph. This profile can be used as
a lightweight domain representation. The domain profile can be created in a pre-
processing step and become available as part of a data catalog as described in Section
4.4.4.

Note that the domain profile does not contain any entities or literals from the
domain knowledge graph G. The domain knowledge graph is not directly used for the
semantic table interpretation.

4.5.3 Data Table Profile Creation

From the input data table T, we create a data table profile by computing the profile
features based on the column values as described in Section 4.4.2.

4.5.4 Column Mapping

With the help of the domain profile and the data table profile, we create column
mappings.

Definition 4.8. A column mapping is a mapping from a column c, in a data table
T to a data type relation rp € Rp in the domain ontology Go: ¢, — rp.
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Figure 4.9. Architecture of the mapping function to predict the similarity between a
column ¢, and a data type relation rp.

For example, we can create a mapping from column ¢, of the data table illustrated
in Fig. 4.1 to the data type relation (time:Interval - time:hasBegin - xsd:time)
in the ontology illustrated in Fig. 4.2.

Within the Tab2KG pipeline shown in Fig. 4.8, we use a mapping function that
creates a set of candidate column mappings M., for each column ¢, in the data table
T. Given a column profile and a data type relation profile, the mapping function
returns a similarity score in the range [0, 1]. The mapping is created by detecting all
data type relation profiles m(rp) similar to the respective column profile 7 (c,). In this
step, we only consider mappings between columns and data type relations of the same
data type (numeric, textual, temporal, spatial or Boolean).

The architecture of the column mapping function is shown in Fig. 4.9. First, it
takes two profiles as an input and performs a joint normalization, i.e., the features
are normalized in a range between 0 and 1 concerning the sum of the values in both
profiles. Then, we follow the idea used for one-shot learning for image classification
[KZS15]. Here, the task is not only to classify images into known classes (e.g., many
images showing tigers) but also to generalize towards new classes (e.g., new images
showing lions). That means, the underlying classifier needs to acquire features which
enable the model to successfully generalize. This is done by inducing a metric that
represents the domain-independent similarity between two input feature vectors (e.g.,
between an unknown image and a single image showing a lion).

As we cannot train a classifier on known classes (in contrast to domain-specific
approaches such as Sherlock [HHB*19] and ColNet [CJRHS19]), we are in a one-shot
learning setting as well: We may learn how to map column profiles to known data
type relations. But when facing a new domain, our classifier needs to generalize
towards unseen data type relations. In Tab2KG, the similarity between a column
and a data type relation is predicted based on the experience of the similarity of
other profiles learned earlier. The score to measure such similarity is facilitated by a
Siamese network that encodes both profiles using the same weights and then predicts
the similarity score based on the difference between the two profile encodings. As in
[KZS15], we use Rectified Linear Units for the hidden layers and a Sigmoid output
layer.
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4.5.5 Data Graph Creation

Given a set of candidate column mappings M., with similarity scores for each column
¢, in the input data table T, we now assign each table column a data type relation
in a greedy manner. First, we take the column mapping with the highest similarity
score. Then, we remove all candidate column mappings with the particular column or
data type relation. These two steps are repeated until all columns are assigned a data
type relation.

From the chosen column mappings set, we create the data graph G% that contains
all data type relations resulting from the chosen mapping. G% needs to adhere to the
following four conditions:

1. The data graph covers all literal columns of 7', and each literal column has
exactly one mapping to a data type relation.

2. The set of entities in a table row is connected via entity relations.

3. GE is minimal, i.e., no relation can be removed without invalidating the previous
two conditions.

4. Each class relation represented by GF is connected to at least one class that is
part of M., . This condition ensures semantic closeness of the data table columns
and reduces the number of potential paths in the graph.

4.5.6 Creation of Training Instances for Column Mapping

For the computation of the column mapping function, we utilize a Siamese network
trained once in a pre-processing step. This training process requires the extraction of
positive and negative training instances. Following Definition 4.5 (see also Fig. 4.8),
this step requires a set of (G, T, G%) triples, where G is the domain knowledge graph,
T is the data table and G7 is the resulting data graph. For each triple (G, T, G%),
each pair of data type relations in G' and a column in 7T is a positive training instance.
We select the remaining (data type relation, column) pairs from the same knowledge
graph G as negative instances.

In the first step, we synthetically create a set of (G, T, GE) triples for the model
training, intending to have a large dataset of positive and negative examples derived
from existing data tables and knowledge graphs. Such data is difficult to obtain,
except for manually created, task-specific research datasets [PAKS16], which are not
large enough for training deep neural networks and do not provide enough topical and
structural diversity. Therefore, we utilize existing knowledge graphs to create training
data.

Given a set of knowledge graphs, we create a new dataset of triples (G, T, G%).
Each input knowledge graph G is disjunctly split into two KGs: G; and G,. Gy
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represents the domain knowledge graph, while G5 is transformed into a data table T'.
The transformation of Gy into T is based on a set of domain ontology templates. A
template is a directed tree with up to k& nodes, where k is a parameter. The nodes
and edges of these trees are placeholders for classes and properties. A set of trees is
transformed into domain ontologies by replacing these placeholders with the classes
and properties of G5. From the knowledge graph Gs, a data graph G is extracted
and transformed into a data table T to create the triple (G, T, GT).

We aim to retrieve a set of heterogeneous data tables that represent the original
knowledge graph characteristics. Therefore, the data table creation process incorpo-
rates several stochastic decisions in proportion to the knowledge graph statistics:

e Entities and entity relations (and consequently, the literal relations) in G are
split at a random ratio between 25% and 75% into GG; and G5, whereas their
domain ontologies remain the same.

e During the template creation, classes, and properties are assigned randomly to
a domain ontology template, proportionally to their occurrence rate in G.

e Data type relations are added in the same manner, under the condition that
each leaf node has to be connected with at least one data type relation. After
adding the minimal required number of data type relations, we add data type
relations as long as any of them are left and if a randomly generated number
between 0 and 1 exceeds a predefined threshold 4.

4.5.7 Running Example: Data Table Creation

For our running example introduced in Section 4.1.2, Fig. 4.10 illustrates the transfor-
mation of a domain knowledge graph GG and a domain ontology 7 into a data table T
with two rows and two columns. In this specific minimal example, the data graph G%
is identical with the input knowledge graph G, as 7 equals the domain ontology of Gb.

4.5.8 Implementation

Tab2K(G is implemented in Java 1.8. The Siamese network is trained and applied using
Keras in Python 3.7. We load knowledge graphs using Apache Jena'?. We represent
the column mappings inferred by Tab2KG in the RDF Mapping Language (RML)
[DVSCT14]. RML definitions are then utilized to materialize the data graph. Data
tables are provided as CSV files; knowledge graphs and data graphs as Turtle (.ttl)
files.

Ohttps://jena.apache.org/
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Figure 4.10. Creation of a data table T and a data graph G% from a domain knowledge
graph G and a domain ontology template 7. For brevity, we omit type relations. In
this particular example, GX equals G.

4.5.9 Data Table Pre-Processing

Each data table interpreted in Tab2KG runs through three pre-processing steps:

1. Data type identification: For each table column, we identify its data type(s)
by trying to parse more than 90% of the values as numeric, Boolean, spatial (Well-
Known Text or Well-Known Binary format [ISO16]) or temporal. If that is not
possible, we assign the column to the text data type. For the more fine-grained
data types mentioned in Section 4.4, we utilize regular expressions (text: URL
or email), follow the algorithms proposed by Alobaid et al. [AKC19] (numeric:
sequential or categorical) or analyze the parsed objects (temporal: date, time,
date-time; spatial: point, line string, polygon). We follow the algorithm in
[AKC19], using the threshold of not more than 20 different categories to detect
categorical text values.

2. Key column detection: When we transform a data table into a data graph
based on the RML mapping, we create new entities. In RDF, each entity is
identified by a Unique Resource Identifier (URI). It is important to understand
how to create these URIs, as we need to re-use URIs referring to the same entity:
For example, each row in our running example in Fig. 4.1 forms a new instance
of sosa:0bservation, together with a new URI (e.g., sosa:0bservation7),
but there should only be three different sosa:Sensor URIs: sosa:SensorSi,
sosa:SensorS2, sosa:SensorS3, created using the literal values assigned to the
data type property rdfs:label.

To create URIs, we detect data type relations representing the unique literal
values of an entity as follows: (i) the data type relation is used on all instances
of the class exactly once, and the literal values are unique across their instances.
Currently, we do not consider the combinations of literal relations as identifiers
[HQRA™13]; we leave such combinations for future work.
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3. Identifier generation: RML transformation requires referenceable columns
and instances in data tables. Therefore, we automatically generate identifiers
for each column and row of the data table. If available, column names are used
as part of the column identifier.

Mapping Representation in RML

We utilize RML for storing column mappings inferred by 7Tab2KG in a machine-
readable format such as Turtle. The RML defines subject maps that specify how to
generate subjects for each row of the data table and predicate-object maps to create
predicate-object pairs. In Tab2KG, the inferred column mappings are translated into
the RML definitions according to the following four steps:

1. We create one instance of rml:source and csvw:Table each, denoting relevant
characteristics for parsing the data table T' (file location, delimiter, ...).

2. For each class part of the data graph G%, we create a new instance of rr:
TriplesMap, together with a rr:subjectMap that denotes the class as well as
the target node URIs.

3. For each column mapping ¢, — rp, we create a rr:predicateObjectMap de-
noting the source column c¢,, the data type property and a reference to the data
type relation rp.

4. For each class relation r € Rpe in the domain ontology G, we create a rr:
predicateObjectMap connecting the respective entities and the object property.

Running Example: RML Mapping Definitions

Listing 4.1 provides an example of the RML definitions that were automatically gene-
rated for our running example introduced in Section 4.1.2 — without the time intervals,
for brevity. Instances of sosa:Sensor and sosa:0bservation are created alongside
their relations. The sensor labels in the third column were detected as identifiers, i.e.,
we create node URIs as https://www.w3.org/ TR /vocab-ssn/Sensor{ col3}*.

Listing 4.2 provides the resulting Turtle file representing the knowledge graph
inferred from the input data table. The correct mapping of the third line shown in
Fig. 4.4 is contained here.

1 The RML template definitions do not allow to use prefixes.
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@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix ex: <http://example.com/resource/>.
@prefix csvw: <http://www.w3.org/ns/csvw#>.

ex:File a rml:source ;
rml:source ex:FileSource ;
rml:referenceFormulation <http://semweb.mmlab.be/ns/ql#CSV> .

ex:FileSource a csvw:Table;
csvw:url ”sky_sensors.tsv” ;
csvw:dialect [
a csvw:Dialect;
csvw:delimiter 7 —";

].

ex:Mapping0 a rr:TriplesMap ;
rml:logicalSource ex:File ;
rr:subjectMap |
rr:class sosa:Sensor ;
rr:template ”https://www.w3.org/TR/vocab—ssn/Sensor{col3}” ;

J

rr:predicateObjectMap |

rr:predicate rdfs:label ;
rr:objectMap |

rml:reference ”col3”;

]
I

rr:predicateObjectMap |
rr:predicate sosa:madeObservation ;
rr:objectMap |
rr:template ”https: //www.w3.org/ TR /vocab—ssn/Observation{rowNumber}”;

]
]

ex:Mappingl a rr:TriplesMap ;
rml:logicalSource ex:File ;
rr:subjectMap |
rr:class sosa:Observation ;
rr:template https://www.w3.org/TR/vocab—ssn/Observation{rowNumber}” ;

]

Listing 4.1: A working example of an RML file transforming the data table given in
Fig. 4.1 (“sky_sensors.tsv”) into the data graph indicated in Fig. 4.4. To perform the
transformation, the table needs to be pre-processed: the column titles “col0”,. .., “col3”
were added, and a “rowNumber” column. For brevity, we skip the mapping of the
second and third column to time:Interval.
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<https://www.w3.org/TR/vocab—ssn/Observation0>
a <http://www.w3.org/ns/sosa/Observation> .

<https://www.w3.org/TR/vocab—ssn/Observationl >
a <http://www.w3.org/ns/sosa/Observation> .

<https://www.w3.org/TR/vocab—ssn/Observation2>
a <http://www.w3.org/ns/sosa/Observation> .

<https://www.w3.org/ TR /vocab—ssn/SensorS2>
a <http://www.w3.org/ns/sosa/Sensor>;
<http://www.w3.0org/2000/01 /rdf—schema#label> 7 S2”;
<http://www.w3.org/ns/sosa/madeObservation>
<https://www.w3.org/ TR /vocab—ssn/Observation0> .

<https://www.w3.org/TR/vocab—ssn/SensorS3>
a <http://www.w3.org/ns/sosa/Sensor>;
<http://www.w3.0rg/2000/01 /rdf—schema#label> ”S3”;
<http://www.w3.org/ns/sosa/madeObservation>
<https://www.w3.org/ TR /vocab—ssn/Observationl>,
<https://www.w3.org/TR/vocab—ssn/Observation2> .

Listing 4.2: The Turtle file resulting from running the RML file in Listing 4.1 to
transform the table given in Fig. 4.1 into a data graph. For brevity, we only consider
the first three lines of the data table.

4.6 Evaluation

The goal of the evaluation is to assess the performance of Tab2KG concerning the
semantic table interpretation effectiveness. In this section, we describe the datasets
utilised for the evaluation and provide the evaluation results.

4.6.1 Datasets

For training and evaluating Tab2K G, we use several datasets.

The Siamese network training requires a dataset that spans over multiple domains
and domain knowledge graphs, respectively, to ensure generalization. As the datasets
typically used for semantic table interpretation only target a single domain or a
cross-domain knowledge graph such as DBpedia, we created a new synthetic dataset
automatically extracted from GitHub repositories dealing with knowledge graphs.

For testing, we consider the GitHub dataset and well-established datasets for
semantic table interpretation that target specific domains (soccer and weapon adver-
tisements), and DBpedia as a cross-domain knowledge graph.




4.6 FEvaluation 83

Synthetic GitHub Dataset

To gain a dataset that covers a large variety of domains and schemas, we collect
knowledge graphs from GitHub. The GitHub advanced code search'? provides access
to millions of data repositories. We selected files larger than 5KB with the specific file
extensions'? that contain the text “xsd” or “XSDSchema”. To ensure the heterogeneity
of our dataset, we limited the number of files per GitHub repository to three. Each
file that was successfully parsed as a knowledge graph with more than 50 statements
including at least 25 literal relations was added to our dataset. This way, we obtained
3,922 files.

We set the parameter for maximum tree size k = 3, and the parameter for adding
data type relations 0 = 0.2. The knowledge graphs set was split into a training set
(90%) and a test set (10%). Knowledge graphs from the same repository were not
included in the same set.

Test Datasets

We use the following datasets for evaluating our approach:

e GitHub (GH): The test split of the synthetic GitHub dataset, without a
restriction on the used vocabularies.

e Soccer (So): 12 data sources regarding soccer players and their teams, anno-
tated with the schema.org vocabulary [PAKS16].

e Weapon Ads (WA): 15 data sources about weapon advertisements, annotated
with the schema.org vocabulary [TKSA16b].

e SemTab (ST): A collection of data tables extracted from the T2Dv2 web table
corpus, Wikipedia and others, annotated with the DBpedia ontology [JRHE*20].

e SemTab Easy (SE): A subset of ST, including only data tables whose columns
are mapped to one class only. Only classes appearing in the T2KMatch corpus
[RLB15] are included.

For all data tables contained in these datasets, we set the following constraints:

1. The input table file is parseable as a CSV file without errors.

2. There are no classes that are instantiated multiple times in the same row. This
condition is to avoid cyclic structures. We discuss limitations regarding cyclic
structures in Section 4.7.

2https://github.com/search/advanced
13tt1, rdf, nt, nq, trix, n3, owl
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Table 4.1. Datasets used in the evaluation. # is the number of (G, T, G%) triples.
The other columns contain average values. For example, the tables in ST dataset have
about four columns on average.

‘ Tables ‘ Domain Knowledge Graphs

Data Type Class
Dataset # | Columns Relations Relations
GitHub (Training) 867 | 2.18 | 3.03 1.35
GH: GitHub (Test) 98 2.24 3.16 1.44
So: Soccer 15 6.25 9.38 2.75
WA: Weapon-Ads 16 10.57 11.2 4.4
ST: SemTab 233 4.09 5.54 1.26
SE: SemTab Easy 125 4.2 5.53 0.0

3. There is no pair of columns with identical values. This condition is to avoid
randomness during the evaluation.

It is important to emphasize the difference in the evaluation setting compared to
typical evaluation using the previously mentioned datasets such as ST: In the experi-
ments conducted by [PAKS16, CKN*20, Zhal7], target general-purpose knowledge
graphs such as DBpedia or Wikidata are given. Each data table in the test set is then
mapped to the nodes in such a knowledge graph. In our evaluation setting, we assume
that no data instances are given, i.e., an instance lookup is not possible. Instead, a
domain profile and a domain ontology are provided. For evaluation, we select data
table pairs, such that one data table mimics the domain knowledge graph from which
we can derive a domain profile.

Following our setting defined in Definition 4.5 and illustrated in Fig. 4.8, the
datasets are transformed into a set of triples (G, T', G), consisting of a data table
T, a domain knowledge graph G and the mapping definition which transforms data
table T into the data graph G%. Technically, we extract a set of test instances,
consisting of (i) a .t file representing the domain knowledge graph G, and (ii) a .csv
file representing the data table T" and a .rml file representing the mapping from 7' to
G’s domain ontology. To transform the datasets into such test instances, we identify
pairs of data tables where the columns of the first data table are a subset of the second
data table’s columns. Then, the second data table represents the domain knowledge.
Table 4.1 provides an overview of the datasets used during training and evaluation
under these conditions.

We make the scripts to extract such evaluation datasets and the code for training
the Siamese network publicly available!?.

Yhttps://github.com/sgottsch/Tab2KG
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4.6.2 Baselines

We compare Tab2KG against the following three semantic table interpretation base-
lines:

e DSL: The Domain-independent Semantic Labeler [PAKS16] uses logistic regres-
sion on a set of hand-crafted features; some of them compare value pairs at the
instance-level. It has been shown to outperform previous approaches such as the
SemanticTyper [RMKS15]. We train DSL on the same GitHub training data set
as Tab2KG.

e DSL*: The Domain-independent Semantic Labeler without using value simi-
larity at the instance level. In contrast to Tab2KG and the other baselines,
DSL utilizes a domain-specific data graph. As Tab2KG is solely based on the
domain profile, DSL is in an advantageous setting that does not entirely reflect
our setting. Therefore, we remove features at the instance-level for the DSL*
baseline.

e T2KMatch: T2KMatch [RLB15] performs semantic table interpretation on
the instance level. In contrast to other approaches [CDPRS20, NKIT19, Zhal7]
that rely on a costly knowledge graph lookup at runtime, T2KMatch cre-
ates an index over the instances of frequently used DBpedia classes and is
thus commonly used as a baseline for semantic table interpretation approaches
[ZMBR20, EHRMC17, CJRHS19]. It combines a ranking of entities found in
the lookup phase for column type identification and data type-specific similarity
measures (Levenshtein distance for strings, deviation for numbers, and devia-
tion of years for dates) for property identification. T2KMatch assumes that a
table only describes one entity class at a time and thus does not consider class
relations.

Now, we describe the training performance and the evaluation results based on
the evaluation setup described before.

4.6.3 Accuracy of the Column Mapping Function

We train our Siamese network for 1, 000 epochs with a batch rate of 100 and a learning
rate of 0.00006, following Hsiao et al.’s approach for one-shot image classification
[HKLT19]. We use 256 dimensions for the hidden layer. 10% of the training dataset
are used for validation. The feature vectors contain histograms with 10 buckets.

After training for all epochs on the synthetic training dataset, the Siamese network
has an accuracy of 0.84 and a loss (binary cross-entropy) of 0.48 on the validation set.
On the test set, it achieves an accuracy of 0.76, when treating scores of greater than
0.5 as candidates for column mapping.
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Table 4.2. Semantic table interpretation performance of Tab2KG, compared to the
baselines on five datasets. We report the accuracy, i.e. the percentage of correctly
identified data type relations (Rop) and class relations (Roc) in the datasets.

GH So WA ST SE Average

DSL 0.89 0.65 0.38 0.62 0.61 0.67
DSL* 0.87 0.43 0.44 066 0.71 0.70
T2KMatch - - - - - 0.44
Tab2KG 0.88 0.64 048 0.78 0.78 0.79

4.6.4 Semantic Table Interpretation Results

We evaluate the performance of the semantic table interpretation achieved by Tab2KG
compared to the baselines. Table 4.2 shows how the approaches perform on the different
datasets, measured using accuracy, i.e., the percentage of the columns correctly mapped
to data type relations and correctly identified class relations. We do not evaluate the
performance of T2KMatch on other datasets than SE, as T2KMatch assumes one
entity class per table only.

As we can observe in Table 4.2, the accuracy of the approaches varies considerably
across the datasets, which can be explained by the different dataset characteristics
shown in Table 4.1. In all cases except for the GH and So datasets, where Tab2KG and
DSL show similar performance, Tab2KG achieves higher accuracy than the baselines
concerning column mapping. Even though Tab2KG utilizes less information than
DSL, Tab2KG performs better by 12 percentage points on average on this task.

Surprisingly, DSL is also outperformed by DSL* on three of the five datasets (WA,
ST, SE). To explain this behavior, we have computed the percentage of table values
that also appear in the mapped data table relations: GH (33.38%), So (16.92%),
WA (2.65%), ST (14.67%), SE (10.63%). This observation shows that profile-based
semantic table interpretation can outperform instance-level approaches when the
overlap between the data table and the instances in the domain knowledge graph is
low.

Second, we assess the results of the column mapping (percentage of correctly
mapped columns to the data type relations Rop) and the graph creation (correctly
identified class relations Roc) in isolation. We report the results achieved by Tab2KG
in comparison to the baselines in Table 4.3. In the case of column mapping, Tab2KG
performs best on average, outperforming DSL by 10 percentage points. In general,
the class relation mapping results in less accuracy than the column mapping. One
reason is that errors propagate along the pipeline, i.e., a wrongly mapped data type
relation invokes an erroneous class relation mapping.
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Table 4.3. Semantic table interpretation performance of Tab2KG in detail, compared
to the baselines on five datasets, reported as the accuracy of class relations (Roc) and
data type relations (Rop). Averages are computed in relation to the number of class
relations and data type relations in the datasets, respectively.

GH So WA ST SE Avg
Roc Rop Roc Rop Roc Rop Roc Rop Roc Roc Rop
DSL 0.93 0.62 0.42 0.46 0.45 0.40 0.65 0.70 0.71 0.67 0.57
DSL* 094 071 060 081 033 047 0.60 0.87 061 062 0.71
T2K Match - - - - - - - - 044 044 -
Tab2KG 0.92 0.71 0.61 0.73 0.59 0.24 0.77 0.89 0.78 0.77 0.64

4.6.5 Error Analysis

By inspection of the results, we have identified two typical sources of erroneous results
in Tab2KG: (i) Value formatting: For example, the soccer dataset has data tables with
column values such as “Germany”, whereas the domain knowledge graphs had “GER”
as a country label. Thus, the respective profile features were highly different. In the
case of high-quality domain knowledge graphs that, for example, distinguish between
labels and abbreviations, the error rate should be lower. (ii) Data type differences: For
example, the SemTab dataset has elevations of mountains both denoted via integer
values (“5291”) and as text (“2,858 ft (871 m)”). Again, the proper use of an ontology
and its rdfs:range constraints on properties should alleviate this problem.

Overall, our evaluation results demonstrate that domain profiles in combination
with zero-shot learning adopted by Tab2KG are an effective method for semantic table
interpretation. This method does not require any instance lookup and achieves the
highest accuracy on several datasets compared to the baselines.

4.7 Limitations

We identified few limitations of Tab2KG, which can be attributed to the idea of using
semantic lightweight dataset profiles, without requiring knowledge about particular
data instances.

4.7.1 Column Mapping without Knowing the Dataset Instances

In contrast to approaches that perform semantic table interpretation at the instance
level, i.e., with the help of the instance lookup in the domain knowledge graph, Tab2KG
derives column mappings from statistical features in the domain profile. We have
identified two limitations to this approach:
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e Cyclic class relations: Currently, we do not address cyclic relations in the domain
ontology, as for example (dbo'®:Event dbo:nextEvent dbo:Event). Consider
Fig. 4.11, where the second column provides the follow-up event of the event in
the first column. Even if Tab2KG identifies the correct mapping for the third
column to the property dbo:locationCity, we cannot tell if the third column
maps to the location of the entity in the first or the second column.

e (lass relations connecting the same classes: We do not have a decision criterion
for distinguishing between class relations that connect the same subject and
object classes. For example, consider the two object properties dbo:leader and
dbo:viceLeader mapped to the second column in Fig. 4.12, both connecting
countries to politicians. Only via statistical features extracted from the data
table (which may only include the politician’s name) it does not appear possible
to decide if Kamala Harris is the president or the vice president of the United

States.
Olympics 2004 Olympics 2008 Athens USA Kamala Harris
Olympics 2012 Olympics 2016 London Russia Michail Mischustin

Figure 4.11. Cyclic class relation: Did the Figure 4.12. Class relations connecting the
London Olympic Games happen in 2012 same classes: Is Kamala Harris the presi-
or in 20167 dent or the vice president of the US?

4.7.2 Correlations between Columns and Data Type Rela-
tions

Our data table profiles consist of column profiles, i.e., the features of the single columns
are computed in isolation (the same applies to domain profiles and data type relations).
Such column profiles can be efficiently computed and added to the dataset profile.
However, the dependencies between columns may hold additional knowledge. Consider
the running example in Fig. 4.1 where the time in the second column (begin time)
does always precede the time in the next column (end time), i.e., there is a correlation
between the values in these two columns.

We have decided against the inclusion of correlation features into the domain
and data table profiles because of the following reasons: First, correlations are often
implicitly captured by the column profiles (e.g., in Fig. 4.1, the second column’s mean
value is less than the third column’s mean value). Second, the variety of data types
requires different correlation and dependency measures that are hard to compare.
Third, we observed that the number of column pairs heavily exceeds the number of
potentially meaningful correlations in our datasets. For example, consider the football

5http://dbpedia.org/ontology/
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dataset where the length of the first names may be compared to the length of last
names, team names, the number of goals, ..., potentially leading to correlations by
chance. Fourth, the computation and semantic representation of all possible column
combinations are impractical due to the quadratic number of pairwise comparisons.

4.7.3 Asymmetry between Domain Profiles and Data Table
Profiles

The domain profile and the data table profile can vary, even though they represent
the same knowledge. Consider our running example of weather observations. In the
table shown in Fig. 4.1, three rows refer to the sensor labeled “S1” but only two rows
refer to the other sensors. When modeled as a knowledge graph following the mapping
shown in Fig. 4.4, each sensor is modeled precisely as one node in the knowledge
graph. Consequently, the statistical characteristics related to the sensors vary between
the data table profile and the domain profile.

4.7.4 Lightweight Semantic Dataset Profiles

Lightweight semantic profiles generated by Tab2KG can be utilized as a compact
domain and dataset representation to complement and enrich existing dataset catalogs.
Such profiles can be generated automatically from the existing datasets and described
using the DCAT'S and the SEAS!” vocabularies to facilitate their reusability. We
believe that lightweight semantic profiles presented in this article are an essential
contribution that can benefit a wide range of semantic applications beyond semantic
table interpretation.

4.8 Discussion

4.8.1 Discussion

In this chapter, we presented Tab2KG — an approach for tabular data semantification.
Tab2KG relies on domain profiles that enrich the relations in a domain ontology and
serve as a lightweight domain representation. Tab2KG matches these profiles with
tabular data using one-shot learning. Our evaluation shows that Tab2KG outperforms
the baselines for semantic table interpretation of five real-world datasets. In future
work, we plan to consider how to integrate user feedback into the Tab2KG pipeline,
to support an extension of the domain ontology in cases where tabular data contains
previously unseen relations. Furthermore, the domain profiles generated by Tab2KG

Yhttps:/ /www.w3.org/TR/vocab-dcat-2/
17https://ci.mines-stetienne.fr/seas/index.html
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can build a basis for a compact domain representation to complement and enrich
dataset catalogues.

Tab2KG demonstrates that knowledge graphs do not necessarily need to be huge,
general-purpose solutions that are well placed into the Linked Open Data Cloud.
The representation of single tables as knowledge graphs already opens up several
possibilities for making the lives of data scientists easier — with benefits including
increased efficiency and robustness of data analytics workflows. By automating the
step of transforming a data table to a knowledge graph, Tab2KG takes an important
step to assisting users without expertise in ontologies and knowledge graphs and adds
an important layer of abstraction.



Enrichment of an Event Knowledge Graph

After the creation of a knowledge graph, be it an event knowledge graph or any other
kind of knowledge graph created from tabular data, there is no reason to assume it
is complete. One reason being the open-world assumption under which there is no
demand for a knowledge graph to be complete at any point in time, the other reason
being the fact that the world is changing — and with it does the represented knowledge.
The latter case is particularly relevant in the case of event knowledge graphs.

To address the problem of knowledge graph incompleteness, we proposed RQ2
in Section 1.2, which calls for the enrichment of a knowledge graph. Considering the
creation of such a knowledge graph already relied on external resources and probably
subsumed all their information, we now go a step further and envision the enrichment
of a knowledge graph without any further external knowledge. To this end, this
chapter deals with the enrichment of an event knowledge graph based on event series.

5.1 Introduction

Event series, such as sports tournaments, music festivals and political elections are
sequences of recurring events. Prominent examples include the Wimbledon Champi-
onships, the Summer Olympic Games and the United States presidential elections.
The provision of reliable reference sources for event series is of crucial importance for
many real-world applications, for example in the context of Digital Humanities and
Web Science research [SA00, GBRD18, GD18b], as well as media analytics and digital
journalism [MB16, SAMA17].

Popular knowledge graphs such as Wikidata, DBpedia and FventKG V1.1 cover
event series only to a limited extent. This is due to multiple reasons: First, entity-
centric knowledge graphs such as Wikidata and DBpedia do not sufficiently cover
events and their spatio-temporal relations (see the analysis in Section 3.6.1). Second,
reference sources for knowledge graphs such as Wikipedia often focus on recent and

91



92 Chapter 5 Enrichment of an Event Knowledge Graph

current events to the detriment of past events [KL12]. This leads to the deficiency in
supporting event-centric applications that rely on knowledge graphs.

In this chapter, we tackle a novel problem of event series completion in a knowledge
graph. In particular, we address two tasks: 1) We predict missing sub-event relations
between events existing in a knowledge graph, and 2) we infer real-world events that
happened within a particular event series but are missing in the knowledge graph. We
also infer specific properties of such inferred events such as a label, a time interval and
locations, where possible. Both addressed tasks are interdependent. The prediction of
sub-event relations leads to an enriched event series structure, facilitating inference of
further missing events. In turn, event inference can also lead to the discovery of new
sub-event relations.

The proposed HapPenlng approach exclusively utilises information obtained from
the knowledge graph, without referring to any external sources. This characteristic
makes HapPenlIng approach unique with respect to the event inference task. In
contrast, related approaches that focus on the knowledge graphs population depend
on external sources (e.g., on the news [KVW14, YRH*18]).

Contributions. The contributions of this chapter include:

e A novel supervised method for sub-event relation prediction in event series.

e An event inference approach to infer real-world events missing in an event series
in the knowledge graph and properties of these events.

e A dataset containing new events and relations inferred by HapPenlng:

— over 5,000 events and nearly 90, 000 sub-event relations for Wikidata, and

— over 1,000 events and more than 6,000 sub-event relations for DBpedia.

Our evaluation demonstrates that the proposed HapPenlIng approach achieves a
precision of 61% for the sub-event prediction task (outperforming the state-of-the-art
embedding-based baseline by 52 percentage points) and 70% for the event inference
task (outperforming a naive baseline by 44 percentage points). Our dataset with new
sub-event relations and inferred events is available online!.

5.1.1 Example: Wimbledon Championships

The Wimbledon Championships (WC), a famous tennis tournament, are an event
series that takes place in London annually since 1877. As of April 2019, Wikidata
had 132 WC editions and 915 related sub-events, for example, Women’s and Men’s
Singles and wheelchair competitions. However, according to our analysis, this event
series is incomplete. In particular, the HapPenlIng approach proposed in this chapter

Thttp://eventkg.13s.uni-hannover.de/happening
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Figure 5.1. A fraction of the event graph containing the Wimbledon Championships
(WC) events. Nodes represent events. Solid arrows represent sub-event relations.
Dashed arrows represent follow-up event relations. The three upper events are the
W' editions.

was able to generate 125 sub-event relations and 15 event instances related to this
event series that are currently missing in Wikidata.

Figure 5.1 illustrates a small fraction of the Fvent Graph that contains event nodes
and their relations as available in Wikidata as of September 18, 2018. For each year,
Wikidata includes an event edition, such as the 2008 WC. The individual competitions
such as the Men’s Singles are provided as sub-events of the corresponding edition.

In this example, we can illustrate two tasks of the event series completion tackled
in this chapter: (i) Sub-event prediction: The missing sub-event relation between
the Men’s Singles final of 2008 and the Men’s Singles competition in 2008 can be
established; and (ii) Event inference: The missing event instance labelled 2010 WC' —
Men’s Singles final can be inferred as a sub-event of the Men’s Singles 2010.

Outline. The remainder of this chapter is organised as follows: First, we give
more specific background (Section 5.2) which is particularly relevant in this chapter
and connect it to the methods for knowledge graph enrichment that were presented in
Section 2.4. Then, we formally define the problems of sub-event prediction and event
inference in Section 5.3. In Section 5.4, we describe our methods for approaching
the two tasks of event series completion, followed by an evaluation of our results in
Section 5.5. Finally, we discuss the findings of this chapter (Section 5.6).
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5.2 Specific Background

In Section 2.4.2, we introduced three ways for knowledge graph enrichment, including
link prediction and the use of external resources. In contrast to link prediction, Hap-
Penlng generates new events not originally present in the knowledge graph and profits
from the inclusion of textual and tempo-spatial features on top of embeddings. Instead
of using external resources, HapPenlIng solely relies on the information inherent to the
knowledge graph and does not depend on the availability of the text corpora. In general,
none of the knowledge graph completion and refinement tasks has yet considered the
inference of new nodes given only the knowledge graph itself [WMWG17, Paul7].

As human-curated knowledge graphs such as Wikidata demand a high quality
of inserted data, there have been several tools developed that help integrating auto-
matically generated information with the respective knowledge graph. One of these
tools is the Primary Sources Tool [PTVST16], where suggestions for new relations are
confirmed manually, and [DPRN17] that provides an overview of potentially missing
information. Such tools can help to integrate inferred event series data into existing
knowledge graphs.

5.3 Problem Statement

In this chapter, we consider an event graph, which is a knowledge graph solely
containing event-related knowledge.

Definition 5.1. An event graph Gy, = (V, RsURp) is a knowledge graph as defined
in Definition 2.1, with the following restrictions on the types of nodes and relations:
The nodes of the event graph V represent real-world events. The edges Rs represent

sub-event relations: Rs CV x V. The edges Rp represent follow-up event relations:
Rp CV X V.

Events in GGy, represent real-world happenings; the key properties of an event in
the context of event series include an event identifier, an event label, a happening
time interval and relevant locations.

Definition 5.2. Given an event graph Gy = (V,Rs U Rp), an event e € V is
something of societal importance that happened in the real world (see Definition 2.2).
e is represented as a tuple e = (uri,l,t, L), where uri is an event identifier, | is an
event label, t = (ts,t.) is the happening time interval with ts, t. being its start and end
time. L is the set of event locations.

An event can have multiple sub-events. For example, the WC Men’s single final
2009 is a sub-event of 2009 WC.

Definition 5.3. An event e; € V is a sub-event of the event e, € V, i.e., (es,€p) €
Rs, if es and e, are topically related and es is narrower in scope. Rg is the set of
sub-event relations.
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We refer to e, as a parent event of e;. Typically, e; happens in the temporal and
geographical proximity of e,.

An event can be a part of an event series. An example of an event series are the
WC' that have the 2008 WC' as one of its editions.

Definition 5.4. An event series s = (ey,es,...,¢€,), Ve; € s:¢; €V, is a sequence
of topically related events that repeatedly occur in a similar form. The sequence
elements are ordered by the event start time and are called editions. We refer to the
set of event series as S.

The follow-up relations Ry connect event editions within an event series. For
example, the 2009 W' is the follow-up event of the 2008 WC.

Definition 5.5. Given an event series s = (€1, €,...,€,), €; is a follow-up event
of e, i.e., (e;,e;) € Rp, if e; € s and e; € s are the neighbour editions in s and e;
precedes e;. Rp is the set of follow-up relations.

The sub-event relations in an event graph are often incomplete, as a consequence
of the open-world assumption. In particular, we denote the set of real-world sub-event
relations not included in the event graph as R¥. Then the task of sub-event prediction
can be defined as follows:

Definition 5.6. Given an event graph Gy, = (V, Rs U Rr) and two events e € V
and e, €V, the task of the sub-event prediction is to decide if es is a sub-event of
ep, i-€., to determine if (es,e,) € Rg U RY, where RY is a set of real-world sub-event
relations not included in the event graph.

The set of real-world event representations included in an event graph is often
incomplete as well. The context of event series can help to infer real-world events
missing in particular editions.

Definition 5.7. Given an event graph Gy = (V,Rs U Rp) and an event series
s = (e1,€,...,e,), with ey, eq,...,e, €V, the task of event inference is to identify
a real-world event ey € V U VT that belongs to the series s. Here, VT is a set of
real-world events that are not included in the event graph. In particular, ef is a
sub-event of the edition e; € s, i.e., (ef,e;) € Rs URS.

5.4 HapPenIng: Approach

We address event series completion in two steps: First, we adopt a classification method
to predict sub-event relations among event pairs. Second, we develop a graph-based
approach to infer events missing in particular editions through event series analysis.
A pipeline of the overall approach is shown in Figure 5.2.
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Figure 5.2. The HapPenlng pipeline. Solid arrows represent the processing order.
Dashed arrows represent the data flow.
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5.4.1 Sub-Event Prediction

We model the problem of sub-event prediction as a classification problem. Given an
event pair (es, e,), we aim to predict whether e, is a sub-event of e,:

true, if(es,e,) € Rs U RY;

5.1
false, otherwise. (5:1)

sub — event(es, e,) = {

Features

We adopt textual, spatio-temporal and embeddings features.

Textual features (TEX): Events connected through a sub-event relation can have
similar or overlapping labels whose similarity is measured using textual features. Such
features are also applied on the template labels. Template labels are series labels
obtained from the original event labels after removal of any digits. The textual features
we consider include:

e Label Containment: 1 if e,.l is a sub-string of e,.l, 0 otherwise.

e LCS Fraction: The length of the Longest Common Sub-string (LCS) of e,.l and

LCS(es.Lep.l
ep.l, compared to the shorter label: frcs Fraction(€s, €p) = Wufeil)\)

e Unigram Similarity: The labels of both events are split into word unigrams. The

feature value is the Jaccard similarity between the unigram sets:
f ) o ( ) __ unigrams(es.l) N unigrams(ep.l)
Unigram Similarity \€s; €p) = unigrams(es.l) U unigrams(ep.l) "

e Template Containment, Template LCS Fraction, Template Unigram Similarity:
These features are computed equivalent to the label features but are based on
the template labels.
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e Label Cosine Similarity: The cosine similarity between event labels based on
tf-idf vectors to take frequency and selectivity of terms into account.

e Parent Event Label Length: fparent Bvent Label Length (€ss €p) = |€p.1].

e Sub-Event Label Length: fSub-Event Label Length(esa ep) = ‘65.”.

Spatio-temporal features (STP): We assume that sub-events happen in the
temporal proximity of their parent events. We consider the temporal proximity
through temporal overlap, containment and equality.

e Time Overlap: 1 if e;.t Ne,.t # &, 0 otherwise.
e Time Containment: 1 if e;.t C e,.t, 0 otherwise.

e Time Equality: 1 if e;.t = e,.t, 0 otherwise.

Sub-events typically happen in the geographical proximity of their parent events.
Therefore, we introduce Location Overlap - a spatial feature that assigns a higher
score to the event pairs that share locations:

e Location Overlap: 1if e;.L Ne,.L # 0, 0 otherwise.

Embedding features (EMB): The link structure of the knowledge graph can be
expected to provide important insights into possible event relations. First, we can
expect that this structure provides useful hints towards predicting sub-event relations,
e.g., follow-up events can be expected to have a common parent event. Second, events
related to different topical domains (e.g., politics vs sports) are unlikely to be related
through a sub-event relation. To make use of this intuition, we train an embedding on
the knowledge graph using any relations connecting two events in E. For this feature,
we pre-train the embeddings following the STransE embedding model [NSQJ16], which
provides two relation-specific matrices W7 and Ws, a relation vector r and entity
vectors (here, e and ep). Intuitively, given that model, we can compare the embedding
of an event with the embedding of the assumed parent event plus the embedding of
the sub-event relation (sFE):

e Embedding Score: frmbedding(€s, €p) = [|Wip1€p + Ts5 — Wi 2€5]l4,

Training the sub-event classifier

To train a classifier given the features presented above, a set of labelled event pairs is
required. The set of positive examples contains all event pairs with known sub-event
relations in the event graph Gy,. Formally, given the set V of events, this is the set
Cy ={(es,ep)|(es,€p) € Rs}es € Ve, € V.



98 Chapter 5 Enrichment of an Event Knowledge Graph

In addition, a set of negative examples, i.e., event pairs without sub-event relation
is required. When composing event pairs randomly, most of the paired events would be
highly different (e.g., having highly dissimilar labels and no spatio-temporal overlap).
Consequently, the model would only learn to distinguish the most straightforward
cases. To address this problem, we collect a set of negative examples C'_ that has as
many event pairs as C',, and consists of four equally-sized subsets with the following
condition for each contained event pair (e, e,), where (es, e,) ¢ Rg:

e Both events are from the same event series, but (es,e,) ¢ Rs. Example: (1997
WC — Women’s Doubles, 2009 WC — Men’s Singles final).

e Both events have the same parent event. Example: (2009 WC — Men’s Singles,
2009 WC — Women’s Singles).

e The parent of e,’s parent is the same as e,’s parent. Example: (2009 WC —
Men’s Singles final, 2009 WC — Women’s Singles).

e ¢, is a transitive, but not a direct sub-event of e,. Example: (2009 WC — Men’s
Singles final, 2009 WC).

Note that we only consider direct sub-event relations to be valid positive examples.
In particular, we aim to learn to distinguish the directly connected sub-events from
transitive relations, as well as to distinguish similar events that belong to different
editions. Due to the inherent incompleteness of the event graph under the open-world
assumption, a missing sub-event relation does not necessarily imply that this relation
does not hold in the real world. However, we expect that false-negative examples
would occur only rarely in the training set, such that the resulting model will not be
substantially affected by such cases.

Overall, the set of training and test instances C' contains all positive sub-event
examples ', found in the event graph, and an equally sized set of negative examples
C_ that consists of the four event pair sets described above.

Predicting sub-event relations using the classifier

The trained classifier is adopted to predict missing sub-event relations within event
series. We apply an iterative algorithm, given a classifier ¢l and the event graph Gy.
As it is not feasible to conduct a pairwise comparison of all events in Gy, we limit
the number of events compared with their potential parent event: For each potential
parent event e, that is part of an event series, a set of candidate sub-events is selected
as the set of events with the largest term overlap with the potential parent event label.
For each candidate event, the classifier ¢l predicts whether this event is a sub-event
of e,. To facilitate the prediction of sub-event relations in cases where the parent
event initially is not a part of the series, the procedure is run iteratively until no new
sub-event relations are found.
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5.4.2 FEvent Inference

The task of event inference is to infer real-world events not initially contained in the
event graph (i.e., events in the set V1). We infer such missing events and automatically
generate their key properties such as label, time frame and location, where possible.
The intuition behind event inference is that the event graph indicates specific patterns
repeated across editions. Thus, we approach this task via comparison of different
editions of the same event series to recognise such patterns. Consider the WC example
in Figure 5.1: Although there is no event instance for the 2010 Men’s Singles final, we
can infer such instance from the previous edition 2009 Men’s Singles final.

Event Series Pre-processing

We pre-process the set S of event series to avoid cycles or undesired dependencies
within the single series. Each event series is transformed into a sequence of acyclic
rooted trees where each root represents one particular edition of the series. Events
or relations violating that structure are removed from the series. If removal is not
possible, we exclude such series from S.

An important concept of the event inference is the concept of a sub-series: A series
sp has a sub-series s, if the sub-series contains sub-events of s,. For example, the WC
— Men’s Singles final series is a sub-series of the WC' — Men’s Singles because the
event 2009 WC — Men’s Singles final is a sub-event of 2009 WC' — Men’s Singles.

We determine sub-series relation as:

Definition 5.8. An event series s; € S is a sub-series of s, € S if for an event
e, € s, there is a sub-event in s,: I(es, e,) € Rg e, € 5, N\ €5 € 5.

Inferring New Events

The intuition behind event inference is to identify similar patterns in the different
editions of an event series. According to Definition 5.4, the editions of an event series
repeatedly occur in a similar form. This way, events repeated in most of the editions
of the series but missing in a particular edition can be inferred. To do so, we process
all editions in the event graph and inspect whether its neighboured editions have a
sub-event not covered in the particular edition.

Algorithm 1 illustrates our event inference approach. As shown in our pipeline
(Figure 5.2), this algorithm is invoked for each edition e of the event series in S. First,
a set M is constructed that contains all sub-series of the current edition’s series, i.e.,
e.series (line 2). Then, the algorithm removes all series from M, for which the current
edition contains events already (line 4). That way, M is reduced to a set of event
series not covered by the sub-events of the current edition e.

For each remaining sub-series m € M, a new event is inferred that is a sub-
event of the current edition e and a part of m. Within the respective method
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Algorithm 1 Event Inference

1: procedure INFERSUBEVENTS(e)

2 M < getSubSeries(e.series)

3 for each e, € {e|(es,e) € Rs} do

4 M = M\ es.series

5: for each m € M do

6 if constraintsNotSatisfied(m, e) then

7 continue

8 new Event < inferEvent(e, m)

9 if oldEvent « findEvent(V, newFEvent.l) # & then

10 Rs < Rg U (e, oldEvent)

11: else

12: V < VUnewEvent; Rg < Rg U (e, newEvent)
13: for each e, € {e;|(es,¢,) € Rg} do

14: inferSubEvents(e;)

[ e.series: WC |

[ e.series: WC Men's Singles |

‘2008 WC 2009 WC 2010 WC »
< 2008 WC” ) ( 2009 WC” ) <e “2010 WC> < Men's S|ng|es> <Men s SIngIes) (Men s Singlath >

“2008 WGC- “2009 WC— “2010 WG 200s V.VC 2009 Wes
X > . Men's Singles Men's Singles
Men's Singles” Men's Singles Men's Slngles final” final’

final” 1/
| m € M: WC — Mens Singles | I m € M: WC — Mens Singles final newEvent

Men's Singles ~ *:

sub-event of e and in m

(a) Step 1: The event inference algorithm is
invoked with the 2010 WC' event e. For the sub-
series m of e.series, 2010 WC' — Men’s Singles

(b) Step 2: The algorithm is now invoked with
the WC 2010 — Men’s Singles event e. For the
sub-series m of e.series, there is no sub-event of

is already a sub-event of e. No new event is e. A new event is inferred.

inferred.

Figure 5.3. Event inference example for the Wimbledon Championships.

inferEvent (e, M), a new label, time span and set of locations is generated as
described later. The algorithm is invoked recursively with all known (also newly
identified) sub-events. To increase precision, a sub-series m is only retained in M if
a set of constraints is satisfied (line 6). These constraints are described later in this
section.

The event inference algorithm can infer an event for which an equivalent event
already exists in the event graph. To avoid the generation of such duplicate events, we
check if an event with the same label as the newly inferred event exists in the event
graph. In this case, the algorithm adds a new sub-event relation across the existing
events to the event graph and discards the inferred event (line 10).
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Algorithm 2 Label Generation

1: procedure GENERATELABEL(e, m)

2 mostSimilar Events < getSimilarEvents(e, e.series)
3 sortEventsByEditionCloseness(e, mostSimilar Events)
4: ¢ < mostSimilar Events|0]

5: d <+, st (d,e) eRs N €m

6 L7751 <= 0 0pren < 0

7 for each § € getEdits(c.l, e.l) do

8 if 6.0p = DELETE then

9

: Oprev < 0
10: else if d.0p = INSERT A dpev.0op = DELETE then
11: [ < L+ [ rindexO f (Oprey-text)] + 0.text
12: 74— 1+ r[rindexO f (Oprey.text) + len(Sprey-text) |
13: else if not (d.0p = EQUAL A 0y, = () then
14: return ()

return [ +r

Table 5.1. Generating the label 2010 WC' - Men’s Singles. The edit operations ¢ are
the result of Myers’ algorithm to detect the edit operations between 2009 WC - Men’s
Singles and 2010 WC - Men’s Singles. The final label is the concatenation of [ and r.

step d.op Oprev-0p  O.text 1 ‘ r
init 2009 WC - Men’s Singles final
1 DELETE 2009 2009 WC - Men’s Singles final
2 INSERT DELETE 2010 2010 | WC - Men’s Singles final
3 EQUAL WC - Men’s Singles 2010 | WC - Men’s Singles final

Wimbledon Championships Example

Consider the example in Figure 5.1, with the goal to infer new events within the
edition ey..,: 2010 WC. Figure 5.3a depicts the first step when invoking the algorithm
InferSubEvents(e,.,) (without constraints). The edition becomes the input event e,
and its series e.series is WC. The event series WC — Men’s Singles (m) is identified
as one of its immediate sub-series in M. However, as there is already an event 2010
WC — Men’s Singles that is a sub-event of e and part of that sub-series m, it is
removed from M. Therefore, M is empty and no new events are inferred at this point.

Subsequently, Algorithm 1 is executed with the sub-event 2010 WC' — Men’s
Singles as input edition e, as shown in Figure 5.3b. Here, the sub-series is W(C —
Men’s Singles final which is inserted in M. Consequently, a new event is created that
is a sub-event of e and part of the event series WC' — Men’s Singles final.
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Label Generation

Each newly generated event requires a label. This label is generated by exploiting the
labels within its event series, as shown in Algorithm 2. The input is its future parent
event e and its event series m. First, the events in the parent series e.series, whose
labels are most similar to the label of e, are collected (line 2). Then, within this set of
events, the one from the closest event edition and its sub-event in m is selected (lines 3
- 5). Finally, the label of that event is transformed into the new label by applying the
same edit operations § (i.e., equality, delete or insert) as if we transformed the parent
event labels (lines 6 - 14). To identify the edits, we adopt the difference algorithm by
Myers [Mye86].

FEzxample: Consider the newly added event in Figure 5.3b. As an input to the
algorithm, there is e which is the event 2010 WC' — Men’s Singles and the series m
consisting of the Men’s Singles finals of 2008 and 2009. First, the event 2009 WC
— Men’s Singles within e.series is identified as the most similar event c¢. ¢ is the
sub-event of ¢ that is also in m: 2009 WC — Men’s Singles final. Given ¢'.[ and the
edit operations § between the labels of e and ¢, Table 5.1 shows how they are used to
generate the correct label 2010 WC — Men’s Singles final.

Location and Time Generation

Each event can be assigned a happening time and a set of locations. In both cases,
we use a rule-based approach.

Locations: Some events, such as the Olympic Games change their location with
every edition. Currently, we reconstruct event locations only if they remain unchanged
across editions: If there is a location assigned to every event s € m, this location is
also assigned to e. In future work, we intend to utilise sub-location relations, that
facilitate the generation of correct locations at a lower level of geographical granularity.

Happening Times: Three rules are applied in the following order until a happening
time is identified:

1. If the happening time of each event s € m equals its parent event’s happening
time, also e adopts its happening time directly from its parent event.

2. If the happening time of each event s € m is modelled as a whole year, the
happening time of e is also modelled as the same year as any of its (transitive)
parent events.

3. If the event label contains a year expression, that part is transformed into its
happening time.
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Constraints

We propose several configurations of constraints to decide whether an event should be
created:

e Baseline (BSL): No constraints.

e Time Evolution (EV0): The constraints are only satisfied if there was at least
one event in the series that happened before e. For example, the Wimbledon
Women’s Doubles was held for the first time in 1913, so it would be wrong to
generate an event for the Women’s Doubles series in 1912 and before.

e Interval (INT): The constraints are only satisfied if there was at least one event
in the series that happened before and at least one event in the series that
happened after e. Under this constraint, events that re-occurred only until a
specific edition are not generated for each edition. An example is the tug of war
which was part of only six Olympic Summer Games.

e Window (WIN): Given start and end thresholds a and b, this constraint is satisfied
if there is at least one event within the last a editions of the series that happened
before e and at least one event in the following b editions that happened after
e. For example, Tennis competitions in the Olympic Summer Games were held
between 1896 and 1924, and then only since 1984. The Window constraint helps
to identify such gaps.

e Coverage (COV): Event series are only valid if they are part of a sufficient fraction
of the editions: Iml/|s| > «a, given a threshold «.

e Coverage Window (CWI): A combination of WIN and COV: The coverage is only
computed after restricting both event series to the dynamic time window.

e Evolution Coverage Window (ECW): A combination of EVO, WIN and COV: The
coverage is only computed after restricting both event series to the dynamic
time window, and if at least one event in the series happened before e.

5.5 Evaluation

The goal of the evaluation is to assess the performance of the HapPenlng approach
with respect to the sub-event prediction and event inference tasks.

5.5.1 Data Collection and Event Graph Construction

We run our experiments on event graphs extracted from two sources: (i) Wikidata
as of October 25, 2018 (Wikidata Event Graph), and (ii) DBpedia from the October
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2016 dump (DBpedia Event Graph). Both datasets are enriched with additional
information regarding events obtained from the FventKG knowledge graph [GD18a].
Compared to other knowledge graphs, EventKG contains more detailed information
regarding the spatio-temporal characteristics of events (see the analysis in Section
3.6.1). More concretely, events in the event graph are enriched with location and
time information using the properties sem:hasPlace, sem:hasBeginTimeStamp and
sem:hasEndTimeStamp of FventKG.

One event graph containing events, sub-event relations and follow-up relations, as
well as a set S of event series is constructed for each dataset. For the Wikidata Event
Graph, we collect as events all data items that are (transitive) instances of the “event”
class®>. Event series are extracted using the instance of® and the series* properties
in Wikidata. For the DBpedia Event Graph, we extract events using the dbo:Event
class and series assignments using the provided Wikipedia categories. In both cases,
we apply two heuristics to ensure that only event series compatible with Definition
5.4 are extracted: (i) We only consider series with mostly homogeneous editions. To
this end, we make use of the Gini index [RS04], a standard measure for measuring
impurity. In our context, it is used to assess the diversity of the template labels of
editions in an event series. We reject the (rare) cases of event series with high Gini
impurity, where the edition labels do not follow any common pattern.” An event is
kept in S if the set of template labels of its editions shows a Gini impurity less than
0.9. Besides, we ignore editions whose removal decreases that impurity. (ii) We ignore
events typed as military conflicts and natural disasters because such events typically
do not follow any regularity. If we can find connected sub-graphs of events in the
event graph through sub-event and follow-up relations, but the data item representing
that series is missing in the dataset, we add a new unlabelled event series to S. To
train the embeddings, we collect all relations connected to events.

The extraction process results in a Wikidata Event Graph Gy, containing |V| =
352,235 events (DBpedia Event Graph: 92,523) and |S| = 9,007 event series (DBpedia
FEvent Graph: 1,871). As input to train the embeddings, there are 279,004,908
relations in Wikidata and 18,328,678 relations in DBpedia. Both event graphs, as
well as embeddings, annotated samples and other evaluation datasets described in the
remainder of this section, are available online.%

Zhttps://www.wikidata.org/wiki/ Q1656682

3https:/ /www.wikidata.org/wiki/Property:P31

4https://www.wikidata.org/wiki/Property:P179

SFor example, the event series “TED talk”, whose set of edition template labels (e.g., “Avi
Reichental: What’s next in 3D printing” and “Amanda Palmer: The art of asking”) has a high Gini
impurity, is not included in the set of event series.

Shttp://eventkg.13s.uni-hannover.de/happening
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Table 5.2. 10-fold cross-validation of the sub-event prediction using different classifiers
and all the introduced features. STransE is the baseline we compare to.

Wikidata DBpedia

Method TP TN FP FN Accuracy | Accuracy

Baseline STranskE | 46,479 43,143 6,949 13,859 0.81 0.50
HapPening LOG 54,345 46,605 3,487 5,993 0.91 0.87
configurations SVM 55,958 48,825 1,267 4,380 0.95 0.92
RF 58,649 49,497 595 1,689 0.98 0.97

5.5.2 Sub-Event Prediction
Training and Test Set Generation

Before running the experiments, a set of positive and negative sub-event relations is
created from the event graphs as described in Section 5.4.1. In total, this collection
of relations consists of 55,217 event pairs within S that were extracted as correct
sub-event pairs from Wikidata (DBpedia: 16, 763) and the same number of negative
event pairs.” This collection is split into ten folds to allow 10-fold cross-validation.
We learn the STransE embeddings as described in Section 5.4.1 for each fold, with its
parameters set as follows: SGD learning rate A = 0.0001, the margin hyper-parameter
v =1, vector size k = 100 and 1,000 epochs. While learning the embeddings on the
folds, we exclude the sub-event relations from the respective test set.

Baseline

As a baseline for sub-event prediction, we utilise an embedding-based link prediction
model based on the STransE embeddings [NSQJ16]. Given an input event, this model
retrieves a ranked list of candidate sub-events with the corresponding scores. We
use these scores to build a logistic regression classifier. STransE is a state-of-the-art
approach that had been shown to outperform previous embedding models for the link
prediction task on the FB15K benchmark [BUGD"13].

Classifier Evaluation

Table 5.2 shows the results of the 10-fold cross-validation for the sub-event prediction
task, with three different classifiers: LOG (Logistic Regression), RF (Random Forest)
and SVM (Support Vector Machine with linear kernel and normalisation) in terms
of classification accuracy (75 +$§i£]]\3] 7~ where T'P are true positives, T'N true
negatives, F'P false positives and F'N false negatives). Among our classifiers, the RF

"Existing benchmark datasets do not contain a sufficient amount of sub-event relations. For exam-
ple, FB15K [BUGD13] only contains 224 triples containing one of the Freebase predicates /time/even-
t/includes_event, /time/event/included_in_event or /time/event/instance_of recurring_event.
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Table 5.3. 10-fold cross-validation of the sub-event prediction using the RF classifier
for Wikidata and DBpedia with different feature sets.

Wikidata DBpedia

Feature Group Accuracy Accuracy

All features: TEX, STP, EMB 0.98 0.97
No spatio-temp. features: TEX, EMB 0.97 0.96
No textual features: STP, EMB 0.82 0.73
No embedding: TEX, STP 0.98 0.97

classifier performs best, with an accuracy of nearly 0.98 in the case of the Wikidata
FEvent Graph and 0.97 for the DBpedia Event Graph. The results show a clear
improvement over the STransE baseline, outperforming the baseline by more than 16
percentage points in case of the RF classifier for Wikidata. For DBpedia, the STransE
baseline is outperformed by a larger margin using our proposed features. This can
be explained by the insufficient number of relations for training the embeddings in
DBpedia.

Table 5.3 shows the performance of the RF classifier under cross-validation with
different feature groups. The combination of all features leads to the best performance
in terms of accuracy. Although the use of textual features already leads to high
accuracy (0.97), embedding features and spatio-temporal features help to further
increase accuracy in the case of Wikidata (0.98). Again, while DBpedia does profit
from the spatio-temporal features, there is no improvement when using embeddings,
due to the insufficient data size.

Wikidata Statistics and Examples

While the classifiers demonstrate very accurate results on the test sets, the performance
on predicting sub-event relations not yet contained in G requires a separate evaluation.
As explained in Section 5.4.1, a large number of predictions is needed that could
potentially also lead to a large number of false positives, even given a highly accurate
classifier. The actual label distribution is skewed towards unrelated events, and we are
now only classifying event pairs not yet contained in Rg. In fact, running the sub-event
prediction algorithm using the best-performing RF classifier with all features leads to
the prediction of 85,805 new sub-event relations not yet contained in Wikidata and
5,651 new sub-event relations in DBpedia.

To assess the quality of the predicted sub-event relations that are not initially
contained in Rg, we extracted a random sample of 100 sub-event relations consisting
of an event and its predicted sub-event and manually annotated each pair as correct
or incorrect sub-event relation. According to this manual annotation, 61% of the
sub-event relations predicted with our HapPenlng approach that are not yet contained
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Table 5.4. Complementing corrupted event series. For each corruption factor (i.e., %
of removed events), we report the percentage of events that could be reconstructed.

Wikidata DBpedia
Corruption Factor
Constraints 5% 10% 15% | 5% 10% 15%
Baseline BSL | 61.81 63.13 61.83 | 39.58 38.40 38.17

EVO | 53,63 54.70 53.12 | 31.04 31.32 30.12
INT | 46.68 47.89 46.39 | 24.58 24.04 23.46
HapPenlng WIN | 46.06 47.45 45.94 | 22.71 2227 21.93
configurations ~ COV | 45.49 45.65 43.64 | 11.46 11.03  9.30
CWI | 53.36 53.93 51.32 | 23.96 21.96 19.43
ECW | 48.89 49.17 47.03 | 21.67 20.71 18.18

in the event graph correctly represent real-world sub-event relations in Wikidata
(DBpedia: 42%). In comparison, the STransE baseline predicted only 46,807 new
sub-event relations, and only 9% of them are correct based on manual annotation of a
random 100 relations sample (DBpedia: 2%). The difference in performance on the
test set and on the predicted sub-event relations not contained in Rg can be explained
by the large class disbalance in the set of relations collected in the sub-event prediction
procedure, such that the majority of the candidate relations are negative examples.

5.5.3 Event Inference Performance

We evaluate the event inference performance in two steps: First, we conduct an
automated evaluation of recall by reconstruction of corrupted event series. Second, we
assess precision by annotating random samples of new events.

Complementing Corrupted Event Series (Recall)

To evaluate the recall of the event series completion, we remove events from the event
series and investigate to which extent our event graph completion constraints can
reconstruct them (we consider the naive unconstrained approach BSL as our baseline).
To this end, we randomly remove leaf nodes (events without sub-events) from the
whole set of event series S until a specific percentage (determined by the corruption
factor) of leaf nodes is removed. For the Wikidata Event Graph, there are 45,203
such leaf events in total before corruption, for DBpedia 9,600. Table 5.4 shows the
results for three corruption factors (5%, 10% and 15%) and the constraints introduced
in Section 5.4.2 (we set the parameters to a = b = 5 and a = 0.5). As expected,
the unconstrained naive approach BSL results in the highest percentage of correctly
reconstructed events: More than 60% of the Wikidata and nearly 40% of the DBpedia
events can be recovered, including their correct labels. If applying constraints, fewer
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Table 5.5. Manual evaluation of the correctness of inferred events. For the baseline,
each HapPenlng constraint and event graph, 100 inferred events were randomly
sampled and judged as correct or not. The number of additional sub-event relations
found during the event inference process is reported as well (P: Precision).

Wikidata DBpedia
Inferred Events Rela- | Inferred Events Rela-
Constraints Number P tions | Number P tions
Baseline BSL | 114,077 0.26 16,877 31,410 0.24 3,420
EVO 28,846 0.47 10,045 11,295 0.35 1,170
INT 5,256 0.57 5,376 2,115 0.67 3,419
HapPenlng WIN 3,363 0.56 4,547 936  0.71 783
configurations cov 7,297 0.54 2,712 1,313 0.45 417
CWI 7,965 0.59 4,442 1,965 0.61 718
ECW 5,010 0.70 3,687 1,364 0.70 655

events are reconstructed. In particular, the WIN constraint results in the lowest recall,
as it demands to cover the event before and after the series edition within 5 editions.

Overall, we observe that HapPenlng is able to reconstruct more than 60% of
missing events from a knowledge graph and correctly infer event labels.

Manual Assessment (Precision)

To access precision, we created random samples of 100 newly inferred events for each
of the constraints proposed in Section 5.4.2 and both event graphs, and manually
annotated their correctness. Table 5.5 provides an overview of the results. While the
naive unconstrained approach results in a precision of less than 0.30 for both event
graphs, the inclusion of constraints leads to clear improvement, with a precision of
up to 0.70 for the ECW constraint for Wikidata and 0.71 for the WIN constraint for
DBpedia. Table 5.5 also reports the number of additional sub-event relations created
during the event inference procedure when checking for duplicate events.

Additional Statistics

The manual assessment shows that HapPenlng with the ECW constraints is able to
infer 5,010 new events with a precision of 70% in Wikidata and 1,364 new DBpedia
events with similar precision. Events are inferred wrongly in cases where sub-events
are happening in an irregular manner. For example, this includes the wrongly inferred
event “1985 Australian Open — Mixed Doubles” that was extracted although there
were no Mixed Doubles in that event series between 1970 and 1985 or competitions like
the men’s single scull in the World Rowing Championships that used to follow a highly
irregular schedule. In future, external knowledge can be used to verify the inferred
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events. Differences between the Wikidata and the DBpedia results can be explained by
the less complete event type assignments and the lack of a proper sub-event relation
in DBpedia, where we use category assignments instead.

As the ECW constraint is most precise for the Wikidata Event Graph, we provide
more insights for this constraint and event graph in the following:

e Impact of the sub-event prediction on the event inference: If the sub-event
prediction step is skipped, only 3,558 new events are inferred, compared to
5,010 events otherwise.

e Additional relations: 3,687 new sub-event relations were created during the event
inference step in addition to the 85,805 sub-event relations from the sub-event
prediction step (in total: 89,492 new sub-event relations).

e Happening times: 99.36% of the inferred events are assigned a happening time.
0.38% of them were inferred by the first, 81.52% by the second and 18.10% by
the third rule from Section 5.4.2.

e Locations: Only 79 of the 5,010 inferred events were assigned a location under
the strict conditions proposed in Section 5.4.2.

Overall, the two steps sub-event prediction and event inference enable HapPenlng
to generate ten thousands of new sub-event relations and events. These relations and
new instances can be given as a suggestion to be inserted in the respective dataset
using human confirmation with external tools, such as the Primary Sources Tool for
Wikidata [PTVS*16].

5.6 Discussion

In this chapter, we addressed a novel problem of event series completion in a knowledge
graph. The proposed HapPenlng approach predicts sub-event relations and real-world
events missing in the knowledge graph and does not require any external sources. Our
evaluation on Wikidata and DBpedia datasets shows that HapPenlIng predicts nearly
90,000 sub-event relations missing in Wikidata (in DBpedia: over 6,000), clearly
outperforming the embedding-based baseline by more than 50 percentage points, and
infers over 5,000 new events (in DBpedia: over 1,300) with a precision of 70%. Our
dataset was made publicly available to encourage further research.

These events and relations can be used as valuable suggestions for insertion in
Wikidata and DBpedia. Manual verification is still required to conform to the goal of
having a high precise event knowledge graph, as even event series can be unpredictable:
For example, back in 2019, there was no way for to predict the coronavirus pandemic
in 2020, which lead to the cancellation of many planned events.
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HapPenlng demonstrates that under specific conditions, event knowledge graphs
can be enriched not only with new edges, but with new nodes as well. HapPenlIng may
motivate researchers to think of new methods for knowledge graph enrichment. The
presented approach could be extended to further resource types beyond event series,
like series of cars or books. Within event knowledge graphs, there is much potential
of inferring events from given relations: Consider the marriage relation between two
persons, which does implicitly represent up to two events: the wedding and, optionally,
the divorce. Based on these thoughts, we conclude that HapPenlIng is an excellent
example for getting more out of a knowledge graph, using strategies that go beyond
the standard methods of knowledge graph enrichment presented in Section 2.4.2.



Application of an Event Knowledge Graph

Even the existence of a perfectly created and enriched knowledge graph does not
per se lead to the access to its knowledge. As already insinuated with RQ3, users
who are not familiar with the concept of knowledge graphs can not interact with the
represented knowledge, given the lack of SPARQL expertise and the missing knowledge
of the knowledge graph specific schema. To overcome this issue, we hereby introduce
a chapter which is entirely based on the application of event knowledge graphs.

6.1 Introduction

Wikipedia, with more than one million articles dedicated to famous people, as well as
other encyclopedic or biographical corpora on the Web, are rich sources of biographical
information. These sources can help to answer questions like “What were the notable
accomplishments in the life of Barack Obama?”, and to learn about the life of people
of public interest. Researchers who analyse event-centric cross-lingual information
(in particular, computer scientists, information designers, and sociologists) prefer to
approach such questions by exploiting concise representations, rather than by close
reading of lengthy articles [GBRD18].

Knowledge graphs can serve as a valuable resource for answering these kinds of
information needs. However, a popular entity such as an influential person, a city
or a large organisation can impose hundreds of temporal relations within a temporal
knowledge graph. For example, the entity Barack Obama possesses 2,608 temporal
relations in FventK(G. Identifying the most important temporal relations within the
temporal knowledge graph to provide a concise overview of a given entity becomes a
challenging task in these settings.

Timelines are an effective method to provide a visual overview of entity-centric
temporal information, such as temporal relations in a knowledge graph [ADM™15].
In particular, biography timelines describe significant happenings in a person’s life
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candidate/successful United States presidential election, 2008
candidate United States Senate election in lllinois, 2004 United States presidential election, 2012
commander death of Osama bin Laden
Iraq War
War in Afghanistan (2001-present)
related 2008
Barack Obama presidential campaign, 2008
residence White House
Chicago
successful candidate United States presidential election in New ] ersey, 2012

Democratic Party presidential primaries, 2008
United States presidential election in New | ersey, 2008

other head of government:
United States of America

position held:
President of the United States of America

related/named after:
presidency of Barack Obama

participant/significant event:
first inauguration of Barack Obama

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 6.1. An excerpt of the biography timeline for the entity Barack Obama,
generated from the FventKG knowledge graph using a proposed model trained on the
Wikipedia abstracts of other entities. Orange lines represent the temporal validity of
the relations. Each row corresponds to a predicate characterising the relation (e.g.,
commander) to the specific event or entity (e.g., Irag War).

and typically include events of major relevance from the personal perspective such
as birth, education and career. Figure 6.1 illustrates a biography timeline for Barack
Obama, which includes places where Barack Obama lived (first Chicago and then the
White House), important events he was involved in (e.g., the Iraq War) and the major
political positions he held (e.g., the President of the United States). This timeline
also indicates the temporal validity of these relations.

First, we present an approach for the generation of biography timelines from a
temporal knowledge graph. To generate such timelines, we propose a distant supervi-
sion method, where we train the relevance model using external sources containing
biographical and encyclopaedic texts. With that model, we extract the most relevant
biographical data from the temporal knowledge graph concisely describing a person’s
life, while using features such as relation strength and event popularity information
contained in FventKG, as well as predicate labels. The results of our user evaluation
demonstrate that this approach is able to generate high-quality biography timelines
while significantly outperforming a state-of-the-art baseline for timeline generation:
our timelines were preferred over the baseline’s timelines in approximately 68% of the
cases.

The process of making knowledge graphs accessible does not stop with the creation
of timelines: there is a need for creating interfaces which visualise timelines and makes
them available to non-expert users. To this end, we introduce two applications based
on timelines extracted from FventKG.



6.2 Specific Background 113

Contributions. Our contributions in this chapter are as follows:

1 We define the problem of biography timeline generation from a temporal know-
ledge graph and present our method based on distant supervision.

2 We demonstrate the effectiveness of the proposed timeline generation method in
a user study.

3 We demonstrate the usefulness of timeline-based applications at the example of
two interactive interfaces.

Outline. The remainder of this chapter is organised as follows: First, we provide
specific background for the task of timeline generation in Section 6.2. Then, we
demonstrate how to access knowledge graphs without the provision of any visual
interfaces by means of two example SPARQL queries on EventKG (Section 6.3). In
Section 6.4, we define the problem of biography timeline generation, followed by
our approach to solve that problem in Section 6.5. The experimental setup and
evaluation of the biography timelines generated with our approach using FventKG
are provided in Section 6.6. Afterwards, we demonstrate two interfaces based on
EventKG: EventKG+BT (Section 6.7) and FventKG+TL (Section 6.8). Finally, we
provide a conclusion and discuss our findings in Section 6.9.

6.2 Specific Background

Existing work on timeline generation from knowledge graphs has mainly focused on
the selection of relevant events or relations. The works of Althoff et al. [ADM™15] and
Tuan et al. [TEPW11] come closest to our task definition. With the TimeMachine
system [ADMT15], the authors create timelines for politicians, actors and athletes
from the Freebase knowledge graph, adding visual and diversity constraints on the
generated timelines. An example of a timeline generated by TimeMachine is shown
in Figure 2.9. In [TEPW11]|, person timelines are generated by ranking relations
extracted from Wikipedia and YAGO knowledge graphs. Similarly, in [TLR16], entity
summarisation is created based on link counts, but without taking temporal data
into account. In difference to our work, in both these approaches, the feature weights
are handcrafted, and no machine learning is involved. [CRH17] and [LGA16] aim at
generating biographies in a natural language, that means to generate textual summaries
for people, by mapping facts from knowledge graphs to one-sentence biographies. Both
works incorporate neural models to learn text, but the biographies are limited to a few
facts such as birth dates and entity types. Similarly, Pantheon is a manually verified
biography dataset, that is limited to non-temporal facts and features and does not
provide relations between persons and events [YRHT16].

Other approaches generate timelines for different use cases, for example, to get
an overview of news articles over a large time span [TAH15, SA00] or for depicting
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singular events such as football matches in a very fine-grained manner [AS13]. For
visualisation, there are approaches to transform relationship paths from knowledge
graphs into sentences [ADM™ 15, VMdR17] and different interaction models that let a
user explore the timeline [ADM™15, ZDFB12, SA00]. In this chapter, we focus on the
generation of timelines containing relevant temporal relations and do not limit the
approach by any visual constraints. This way, the models obtained by our methods
can be used in a broader range of interfaces and application scenarios.

One important subtask of the timeline generation is to judge whether a temporal
relation is relevant in a particular context. This task has been addressed by other works
using classification and ranking approaches. For example, to rank news articles related
to a query entity, Singh et al. [SNA16] employ a diversified ranking model based
both on the aspect and temporal dimension. Approaches such as the one proposed by
Setty et al. [SAMA17] impose methods to rank the importance of events, but without
taking into account the specific timeline entity. In comparison to these approaches, the
task addressed in our work is more specific, as it considers the relevance of individual
temporal relations to a timeline entity.

Biography and Timeline Visualisation. Few systems exist that provide visu-
alisations of biography timeline extracted from knowledge graphs: BiographySampo
[HLT*19] provides Finnish textual biographies that a user can explore using network
exploration and maps. The TimeMachine by Althoff et al. [ADM™15] gives a compact
overview of only a few related entities but does not provide time intervals, or any
further information.

6.3 Example Queries for FventKG

To get an impression of what it means to manually query a knowledge graph, and to
get a first idea of creating a biography timeline directly from EventKG, we present two
example SPARQL queries that illustrate the retrieval of particular event and entity
characteristics.

6.3.1 Query 1: Provenance and Event Locations

The SPARQL query in Listing 6.1 uses the named graph notation to find the locations
of the event “Second inauguration of Barack Obama” in any source. This is done
using the sem:hasPlace predicate introduced in Section 3.5.1. Table 6.1 lists the
query results from FventKG V1.1. While YAGO has the United States Capitol and
Washington, D.C., as location, Wikidata has Washington D.C. only. There are no
locations for this event found in any of the DBpedia language editions. After fusion,
the union of potential locations (United States Capitol and Washington, D.C.) is
reduced to the United States Capitol only, which is located in Washington, D.C!.

IThis information could be inferred using so:containedInPlace transitively.
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Fused locations are placed within EventKG’s named graph.

Table 6.1. Locations of the first inauguration of Barack Obama in FventKG.

?location ?named_graph

dbr:United_States_Capitol eventKG-g:event_kg

dbr:Washington, D.C. eventKG-g:wikidata
dbr:United_States_Capitol eventKG-g:yago
dbr:Washington, D.C. eventKG-g:yago

6.3.2 Query 2: Important Events of an Entity

The second query shown in Listing 6.2 employs the relation strength information
contained in FventKG. It returns a list of events connected to Barack Obama, sorted
by the number of common mentions (eventKG-s:mentions) with Barack Obama in
the English Wikipedia (GRAPH eventKG-g:wikipedia en). Additionally, if there
is an event start date available, this is returned as well, using the named FventKG
graph to retrieve the fused date. The results from FventKG V1.1 in Table 6.2 reveal
that the United States presidential election of 2008 is the event mentioned most often
together with Barack Obama.

SELECT 7location 7named_graph

WHERE {
7event owl:sameAs dbr:First_inauguration_of_Barack_0Obama .

GRAPH ?named_graph {
7event sem:hasPlace ?7loc

T

GRAPH eventKG-g:dbpedia_en {
?loc owl:sameAs ?location .
}

+
ORDER BY 7named_graph

Listing 6.1: SPARQL query for retrieving the locations of the first inauguration of
Barack Obama using sem:hasPlace, together with their named graph for provenance
information.
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Table 6.2. Events that are most often mentioned together with Barack Obama.

7event 7cnt  7startDate
dbr:United_States_presidential_election, 2008 719  2008-11-04
dbr:United_States_presidential_election_in_New_Jersey, 2012 530  2012-11-06
dbr:United_States_presidential _election_in_New_Jersey, 2008 522  2008-11-04
dbr:First_inauguration_of_Barack_Obama 68 2009-01-20

SELECT 7event 7cnt 7startDate

WHERE {

}

7obama owl:sameAs dbr:Barack_Obama .
?relation rdf:subject 7obama .
?relation rdf:object 7eventEKG

GRAPH eventKG-g:wikipedia_en {
?relation eventKG-s:mentions 7cnt .

}

7eventEKG rdf:type sem:Event .

GRAPH eventKG-g:dbpedia_en {
7eventEKG owl:sameAs 7event

T

OPTIONAL {
GRAPH eventKG-g:event_kg {
7eventEKG sem:hasBeginTimeStamp 7startDate
b
}.

ORDER BY DESC(?cnt)

Listing 6.2: SPARQL query for retrieving the events that are most often mentioned
together with Barack Obama. Instances of eventKG-s:Relation are searched who
are connected to Barack Obama as their subject and an instance of sem:Event as
their object.

From the results presented in Table 6.2, a biography timeline could be created by
ordering the results with respect to the ?startDate column. However, this procedure
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does not only require SPARQL expertise but it also does not limit the timeline to
specifically relevant temporal relations, and Table 6.2 only covers temporal relations
of a specific type.

6.4 Problem Statement

Biography timeline generation facilitates the creation of chronological timelines of
relevant relations and events in the life of a person.

Given a temporal knowledge graph Gr = (Ey, R;) as in Definition 3.1, we denote
the temporal entity of user interest e € F; for which the biography timeline is generated
as a timeline entity.

A biographiy timeline is a chronologically ordered list of temporal relations involving
the timeline entity and relevant to that entity’s biography.

Definition 6.1. A biography timeline T L(e, bio) = (r1,...,r,) of a timeline entity
e is a chronologically ordered list of timeline entries (i.e., temporal relations involving
e), where each timeline entry r; is relevant to the entity biography bio.

In this chapter, we assume a binary notion of relevance, i.e., Vr; € TL(e, bio) :
relevance(e, r;, bio) = 1.

The list of timeline entries in T'L(e, bio) is ordered chronologically by their start
time: Vr;,r; € TL(e,bi0) : i < j < Ti0s < Tiar-

An entity connected to e via a timeline entry r; is denoted as a connected entity in
the following.

6.5 Biography Timeline Generation: Approach

In this section, we show how FventKG can be applied as a temporal knowledge graph
for the task of biography timelines generation.

First, we present our approach based on distant supervision in Section 6.5.1. The
features used in the relevance model are introduced in Section 6.5.2. Subsequently,
we describe the benchmarks involved in our process to generate biography timelines
in Section 6.5.3 and discuss how the model is used to generate them in Section 6.5.4.
Finally, we illustrate these steps on our running example of Barack Obama’s timeline
in Section 6.5.5.

6.5.1 Approach

Given a timeline entity e for which we need to generate a biography timeline, the
number of candidate timeline entries (i.e., temporal relations involving e) is potentially
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very high, especially for popular entities and a large-scale temporal knowledge graph.
In fact, for our set of famous persons described later in Section 6.6.1, FventKG contains
272.75 temporal relations per person entity on average. In order to determine the
relevance of a temporal relation to the timeline entity, we propose a classification
approach using distant supervision. The key idea of our approach is to learn a
relevance model for temporal relations using occurrences of these relations extracted
from biographical sources. Examples of such biographical sources include collections of
biographical or encyclopedic articles. We adopt a distant supervision approach, where
we assume that a particular temporal relation r is relevant for the entity’s biography
if this relation occurs in a known biographical source. Figure 6.2 gives an example of
this approach.

Temporal Timeline Entries Textual
Knowledge Graph G, relevant to e Biography

Figure 6.2. Distant supervision for relevance judgement of timeline entries: First,
timeline entries relevant to the timeline entity e are extracted from the temporal
knowledge graph. Then, their relevance is judged with respect to a biographical source:
Here, r; and ry could be mapped to parts of the textual biography, and are thus
marked ad relevant.

An overview of the training phase and the timeline generation is depicted in Figure
6.3, which illustrates the role of the temporal knowledge graph, the biographical and
reference sources and the benchmark. Initially, we use the temporal knowledge graph
and a biographical source to create a benchmark that provides relevance judgements for
candidate timeline entries. We train the prediction model with features extracted for
each candidate timeline entry. This includes entity type and interlinking information
included in the named graphs corresponding to the reference sources of FventKG. To
generate a timeline for a timeline entity e, we collect its candidate timeline entries R,
from G and identify the relevant entries using the trained model.

6.5.2 Relevance Model

In our approach, we train a classification model that identifies the relevance of a
candidate timeline entry towards a biography of the timeline entity e. The candidate
timeline entry is a temporal relation involving e and obtained from a knowledge graph.
To train such classification models, we adopt a range of features in several categories
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Figure 6.3. Creating a timeline for a timeline entity e, after training a model from
a biographical source to predict the relevance of temporal relations in the temporal
knowledge graph for biography timelines.

reflecting the characteristics of the timeline entity, the entity connected to it via a
temporal relation, the temporal relation and time information. In total, we consider
four language-independent numerical features, six language-dependent features, as
well as a number of binary features representing frequent entity types and properties
in FventKG.

We illustrate the features described in the following at the example of the candidate
timeline entry representing Barack Obama’s participation in his second inauguration
(see Figure 3.2) in Table 6.3.

Timeline Entity Features

The timeline entity features (TEF) reflect specific characteristics of the timeline entity
e. These features address the intuition that the relevance of the particular temporal
relation r for a given timeline entity e depends on the specific characteristics of e. For
example, winning an award may be more important for athletes or actors than for
politicians. Based on this intuition, we introduce the timeline entity features:

TEF-C Timeline entity characteristics: A set of binary features denoting if the entity is
an instance of the specific type (e.g., a politician or an actor).
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Connected Entity Features

The connected entity features (CEF) take into account the characteristics of the
connected entity e/. In particular, we consider indications of the importance and
popularity of €’ in the context of the reference collections by using mention counts,
similar to Thalhammer et al. [TLR16]. We consider different representations of the
mention counts of ¢

CEF-M Connected entity mentions: The set of features, each reflecting the absolute
number of mentions of the connected entity ¢’ in a reference collection.

CEF-MR Connected entity mentions rank: For each reference collection, we rank the
entities connected to the timeline entity e by the number of their mentions. This
feature represents the rank of the specific connected entity, where the rank of 1
is assigned to the entity with the highest number of mentions.

CEF-MRR Connected entity mentions relative rank: We normalise the CEF-MR rank by
the maximal rank.

CEF-E Connected entity represents a real-world event: A binary feature denoting
whether the connected entity is an event (i.e., ¢ € V).

Features of Temporal Relations

The features of temporal relations (TRF) reflect the semantics of the temporal relation
between the timeline entity and the connected entity. Furthermore, we consider
features related to the importance and popularity of entity relations.

TRF-PI Property identifier: Temporal relations possess property identifiers r,,; that
express the semantics of the relation (e.g., dbo:spouse). Each property identifier
is modelled as a binary feature.

TRF-M Relation mentions: The number of co-mentions of both entities involved in the
temporal relation in a reference collection (independent of relation semantics).

TRF-MR Relation mentions rank: We rank the connected entities according to the number
of their co-mentions with the timeline entity in a reference collection. This
feature represents the rank of the specific connected entity involved in the
relation.

TRF-MRR Relation mentions relative rank: We normalise the TRF-MR rank by its maximal
rank.
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Temporal Features

The temporal features (TF) reflect the relevance of the temporal relations based on
the time information. This includes the temporal differences in the existence time of
the entities or happening times of the events involved in the relation. For example,
Barack Obama gave a speech related to World War II — a historical event finished
before Obama’s birth date in 1961. Here, the temporal difference in the existence
times of both entities can be an indication of the low relevance of this speech for
Obama’s biography. Therefore, we attempt to learn to discard the temporal relations
involving events that happened too early for the entity timeline. This had also been
observed by Althoff et al. [ADM™15], who implemented a rule to discard such relations.
In addition to that, our temporal features could help to learn whether some events
may be more relevant at specific stages of the entity’s life or existence. Furthermore,
temporal features include the provenance of the temporal information by denoting
whether a relation was induced from an indirect temporal relation (as described in
Section 3.5.2) or not.

To capture this intuition, we introduce the following temporal features:

TF-TDS Temporal distance (start): The temporal distance between the beginning of the
existence time of the timeline entity and the start of the relation validity time

€start — Tstart-

TF-TDE Temporal distance (end): The same feature as TF-TDS, but using the entity
existence end time ¢ — Tstart-

TF-TP Time provenance: This categorical feature specifies the provenance of the relation
validity time. If the relation has initially been a temporal relation, the feature
value is set to 3. If the temporal validity was induced from an event happening
time (e; € V), then the feature value is set to 2; 1 otherwise (e; € &£’).

6.5.3 Benchmarks for Distant Supervision

To facilitate supervised model training, we require a benchmark that provides relevance
judgements for temporal relations. These judgements can be obtained from the specific
biographical source.

Definition 6.2. A benchmark B is a mapping of the form: relevance(e;,r;, bio)
J,J € {0,1}, where e; is a temporal entity, r; is a temporal relation involving e; and
J 18 a relevance judgement.

Given the large number of entities and temporal relations in the existing knowledge
graphs, manual relevance judgements appear unfeasible. Therefore, we adopt an
automatic approach to benchmark generation. We extract entities and temporal
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Table 6.3. Selected feature values for the candidate timeline entry “Barack Obama,
significant event, Second inauguration of Barack Obama” for the timeline entity
“Barack Obama”.

Feature Feature Value Note
Instance
Politician 1 Barack Obama is an instance of dbo:Politician.

TEF-C President 1 Barack Obama is an instance of dbo:President.

Scientist 0 Barack Obama is not an instance of dbo:Scientist.

CEF-M CEF-Mgy 84 The inauguration is linked 84 times in the English Wikipe-
dia.

CEF-MR CEF-MRgN 361 Among all entities connected to Obama in the English
Wikipedia, the inauguration is linked the 361st most times.

CEF-MRR CEF-MRgn 0.817 Among all entities connected to Obama in the English
Wikipedia, there are 442 different CEF-MRgn scores, such
that inauguration’s relative rank is % ~ 0.817.

CEF-E CEF-E 1 The inauguration is an instance of sem:Event.

TRF-PI wd:signifi- 1 Obama is connected to the inauguration through Wikidata’s

cantEvent “significant event” property.
wd:spouse 0 Barack Obama is not connected to the inauguration through
Wikidata’s “spouse” property.

TRF-M TRF-Mpr 4 In the Portuguese Wikipedia, there are 4 sentences mention-
ing both Barack Obama and the inauguration.

TRF-MR TRF-MRpr 18 Among all co-mentions of Barack Obama and an event, the
co-mention with the inauguration is the 18th most frequent
one the Portuguese Wikipedia.

TRF-M TRF-Mary, 36 In all the five involved Wikipedia language editions together,
there are 36 sentences mentioning both Obama and the
inauguration.

TRF-MR TRF-MRay,1, 39 Among all co-mentions of Barack Obama and an event, the
co-mention with the inauguration is the 39th most frequent
one in all the five involved Wikipedias together.

TF-TDS TF-TDS 18798 The inauguration started 18798 days (51 years) after Barack
Obama’s birth.

TF-TDE TF-TDE 18798 The inauguration ended 18798 days (51 years) after Barack
Obama’s birth.

TF-TP TF-TP 2 The validity time assigned to this temporal relation is in-

duced from the happening time of an event instance.

relations contained in the biographical sources and map them to the temporal relations
in G using an automatic procedure involving source-specific heuristics (described
later in Section 6.6.1). Temporal relations extracted from the biographical sources are
considered relevant.
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Although the resulting benchmarks can potentially contain noisy relevance judge-
ments due to the automatic extraction and mapping methods applied, our experimental
results demonstrate that these benchmarks, used as a training set in a distant super-
vision method, facilitate the generation of high-quality timelines.

The benchmarks created in this work are publicly available online?.

6.5.4 Model Training and Timeline Generation

We address the relevance estimation for a timeline relation r with respect to the
timeline entity e as a classification problem. For each biographical source BS, we
build a classification model using the features presented in Section 6.5.2 and a binary
classifier.

Note that a classification model is chosen over a ranking-based approach because
of two reasons: First, the timeline entries are ordered chronologically and not by their
importance. Therefore, for the purpose of timeline generation, we can assume that
each timeline entry is equally relevant. Second, if a ranked list of timeline entries
would be provided, a cut-off threshold value would still be required to decide which of
the entries are to be shown.

To facilitate efficient training, we limit the number of instances of the TEF-C
and TRF-PI features considered. In particular, the 50% most frequent types in the
training set are added as a TEF-C feature. Furthermore, only properties that occur
in at least 25% of the relations in the training set are added as a TRF-PI feature.

Our benchmark is equally divided into a training and a test set of person entities
so that the relevance judgements are obtained from the training set. We adopt a
binary notion of relevance. The datasets used as biographical sources to build the
classification models are presented in Section 6.6.1.

We use the resulting classification model to build a timeline T'L(e, bio). Each
candidate timeline entry (i.e., a temporal relation involving the timeline entity e in
Gr) is classified using the classification models learned from a biographical source.
The classification function relevance(e, r, bio) uses this model to classify the temporal
relations of the timeline entity e as either 0 (non-relevant) or 1 (relevant). As illustrated
in Figure 6.3, the timeline is generated by ordering the timeline entries classified as
relevant by their start time.

6.5.5 Running Example: Barack Obama

Following Section 3.5.2, we extract temporal relations from FventKG as the union of
the following three relation types:

1. Relations where the object is a temporal literal. Example:

Zhttp://eventkg.13s.uni-hannover.de/timelines.html
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e Barack Obama, born, 4 Aug 1961
2. Relations that are directly assigned a validity time span. Example:
e Barack Obama, marriedTo, Michelle Obama [3 Oct 1992 — |

3. Indirect temporal relations where the validity time is identified using the object’s
happening or existence time. Example:

e Barack Obama, child, Malia Ann Obama [4 Jul 1998 — |

As discussed in Section 3.5.4, FventKG contains many relations involving Barack
Obama. In order to create a timeline of his life, we collect all relations with Obama as
a subject or an object, together with their temporal validity. Another example is the
temporal relation about Obama’s first inauguration shown at the end of Section 3.5.4.

As this procedure leads to more than 2,500 candidate timeline entries for Barack
Obama, we now need to apply the previously trained model to determine the timeline
entries relevant for a biography. To this end, we train the classifier that predicts
whether a candidate timeline entry is relevant given a biographical source, i.e., whether
it is probable to be part of entity biography in such source. All candidate timeline
entries that are classified as relevant by this model are inserted into the timeline in
chronological order.

Figure 6.1 provides a visual representation of Obama’s timeline obtained using a
model trained on a Wikipedia abstracts dataset (BS-ENC) described later in Section
6.6.

6.6 Evaluation

In this section, we first describe the biographical sources and the set of timeline entities
used to create our biography timeline benchmark used to train the classification models
(Section 6.6.1) and to run our experiments described in Section 6.6.2. Then, we evaluate
our approach against a baseline (Sections 6.6.3 and 6.6.4).

6.6.1 Benchmark: Entities and Biographical Sources

We collect a dataset P that contains 2,760 timeline entities of the type Person,
including its subtypes like politicians, actors, musicians and athletes. This set of
2,760 entities contains all persons that are included in FventKG and described in
each biographical source described below. Consequently, the training and the test set
consist of 1,380 person entities each, after random division.
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To train the relevance models for the biography timeline generation, we consider
the following biographical sources:

e BS-BIO: Biographical articles;

e BS-ENC: Encyclopedic articles.

Biographical articles (BS-BIO):

Biographies of important entities (e.g., famous people) are available in the form of
textual descriptions from dedicated Web sources. We collect data from two publicly
accessible biographical web sources (Thefamouspeople.com?® and Biography.com?).
After collecting the biographical texts from both websites, they are pre-processed as
follows: 1) The texts are split into sentences using the Stanford Tokenizer [MSB*14]. 2)
Time expressions are collected from each sentence using HeidelTime [SG10]. 3) Entity
mentions are identified using DBpedia Spotlight [MJGSB11]. Table 6.4 illustrates
example annotations in the BS-BIO and BS-ENC' datasets extracted for the entity
Barack Obama, including his birth, education and political activities. In order to map
the extracted information to the temporal relations in the temporal knowledge graph
(as illustrated in Figure 6.2), we use the following rule-based approach:

Table 6.4. Example data extracted from the biographical sources for Barack Obama.

BS-BIO BS-ENC

biography.com,

Source thefamouspeople.com Wikipediagn abstracts

1961-8-4, {Honolulu} 1961, {Honolulu}
Example 1979, {Punahou School, Basketball} 2013, {US presidential election 2012, Mitt Romney,
Data 2000, {Democratic Party, Bobby Rush} Second inauguration of Barack Obama}

2010-8, {War in Afghanistan, Iraq} 2009, {Nobel Peace Prize}

An annotated sentence in the biographical article is mapped to the temporal
relation in G if they both happened on exactly the same date, or if they share both
entities and time. A special case is given if one of the linked entities is an event in V.
In that case, the temporal overlap is not required, as events are typically inherently
connected to a validity time span. The mapped temporal relations from G are added
to the Bps_pro benchmark.

Encyclopedic articles (BS-ENC):

Wikipedia is a rich source of encyclopedic information. Wikipedia articles usually
provide an abstract — a brief overview of the specific entity (e.g., a person’s life) that
typically contains important biographical sentences [CRH17, LGA16]. From these

3www.thefamouspeople.com
4www.biography.com
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Table 6.5. Statistics of the dataset P involving 2, 760 entities of type person.

thefamouspeople.com biography.com Wikipedia Abstracts

Time expressions 50,919 41,318 18,099
Entity links 107,126 92,149 32,516
180
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Figure 6.4. The number of person entities with the given number of relevant relations
in the BS-BIO benchmark. The top-3 entities with the highest number of relevant
relations are marked.

abstracts, we extract all the event mentions, i.e., links to the event articles, as these
represent significant events in the entity’s life. For example, Table 6.4 shows selected
events for the entity Barack Obama based on BS-ENC. In contrast to the annotations
in Bps_pro, these events are more focused on political happenings with major public
impact. The benchmark Bgg_gnc includes all relations of the specific entity to the
events linked from the abstract of the Wikipedia article representing this entity.

Statistics of the entity-related information for the entities contained in the dataset
P in the biographical sources, including in particular the number of relevant entity
links and time expressions is provided in Table 6.5.

Figure 6.4 illustrates the distribution of the number of relevant relations per person
in the BS-BIO benchmark. Except for very few popular entities such as David Bowie
and Barack Obama, the number of relevant relations is typically below 100, with an
average of 13.64.

We generate a benchmark Bpgg for each biographical source B.S considered in this
work. The statistics regarding these benchmarks are presented in Table 6.6.

Table 6.7 provides the percentage of person types in the benchmarks. Actors and
musical artists are the most frequent person types in both the training and test set.
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Table 6.6. Benchmark statistics: the number of entities and relevant temporal relations.

#Relevant Temporal Average # Temporal
Relations Relations per Entity

Bps_B10 2,760 37,638 13.64
Bps_pne 2,760 33,106 12.00

# Persons

Table 6.7. Percentage of top-5 entity types in the training and test set.

Training Test

Actor 27.73% 28.57T%
Musical Artist 13.32% 16.17%
Athlete 10.50%  6.16%
Politician 10.35% 10.44%
Writer 6.95% 11.31%

6.6.2 Classifier Setup and Timeline Statistics

As our binary classifier, we adopted a Support Vector Machine (SVM) due to its good
generalisation ability, in particular when applied to smaller datasets. We trained this
classifier on the training dataset containing 1,380 person entities, with input data
normalisation, an increased weight of 3.0 for predicting relevant instances and a linear
kernel, using Weka’s LibSVM implementation [WFHP16]. From the training data, a
balanced set of relevant and irrelevant instances is given to the SVM.

As described in Section 6.5.4, the timelines are generated by ordering the timeline
entries classified as relevant chronologically by their start time. On average, each
biography timeline of the person entities in the test set contains 8.54 entries after
training the classifier on Bgs_pro (Bps—gnc: 7.81). Figure 6.5 illustrates the number
of timelines generated for the BS — BIO with the specific number of entries.

6.6.3 The TM Baseline Algorithm

We compare our proposed approach with the state-of-the-art Time Machine (TM)
approach for timeline generation proposed by Althoff et al. [ADM*15] and shown
in Figure 2.9. The TM approach creates events from the entity-entity relations in a
knowledge graph, where one entity possesses a property with a time value. Resulting
events are filtered using frequency and existence time heuristics; then, a greedy
algorithm selects the events that maximise a relevance score. To facilitate a fair
comparison, we perform the following adjustments to implement the TM baseline:

e The TM approach in [ADM™15] was initially proposed for entity-centric know-
ledge graphs such as Freebase. Therefore, events in the TM terminology mean
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Figure 6.5. The number of timelines with the specific number of entries generated for
the BS — BIO test set.

link structures in an entity-centric knowledge graph that vary with respect to
their complexity. In FventKG, the events are connected to the entities directly
via temporal relations. To facilitate the comparison, we adopt the TM baseline
such that so-called ”simple events” in the TM-terminology are generated. Such
”simple events” in TM directly correspond to the temporal relations in FventKG.

In the original TM approach, the maximum number of temporal relations on
the timeline is restricted due to the visualisation constraints; i.e., these relations
are ranked by their relevance and retrieved until the visualisation constraint is
met. Our goal is to provide all relevant relations, such that we do not enforce
any visualisation-based constraints on the number of relations. To facilitate
comparison, we retrieve an equal number of relations from the baseline and our
approach.

TM was initially evaluated on the Freebase dataset, and the relevance scores
were computed using a search engine query log and a textual corpus. We
apply all methods on the EventKG data; we use the same reference sources (i.e.,
Wikipedia articles) to estimate the parameters related to the global importance of
entities, their occurrences and temporal relations for all baselines and approaches
evaluated in this chapter.

6.6.4 FEvaluation of the Timeline Generation

The goals of the evaluation of the timeline generation are to assess the effectiveness
of the proposed method for timeline generation and the role of the reference and
biographical sources.

In particular, we assess:
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G1 Quality of the generated timelines in comparison to the baseline (in a user
evaluation).

G2 Impact of the individual features on the timeline generation (using correlation
measures).

G3 Relevance of the timeline entries with respect to the biographical source (by
measuring the performance of the classification model).

G4 Coverage of the timeline entries with respect to the reference sources (by mea-
suring the mean coverage of the temporal relations in the reference sources).

Timeline Quality Evaluation

In order to evaluate the timeline quality, we performed a user evaluation. We generated
timelines for 60 popular entities of the types actors, athletes, musical artists, politicians
and writers for both biographical sources BS-BIO and BS-ENC. These entities were
selected from the persons in the test set described in Section 6.6.1 based on their
popularity (measured as the link count of the corresponding Wikipedia article).

In each task, the user was presented with: (i) a task description, (ii) a timeline
entity including its label and a Wikipedia link, and (iii) a pair of timelines. One
timeline in the pair was generated by the specific configuration of our approach, the
other timeline was generated by the TM baseline described in Section 6.6.3. Both
timelines were visualised as illustrated in Figure 6.1. Each timeline contained all
entries generated by the corresponding generation method. The user could scroll
and zoom within each individual timeline. In the user interface, both timelines were
presented simultaneously, one above the other, in random order. We asked the users
to vote for their preferred timeline in the pair. We provided four options: two options
to vote for one of the timelines, a neutral option indicating no preference for a specific
timeline, and a "don’t know” option. We encouraged the users to research the timeline
entity (e.g., using Wikipedia) before evaluating the timeline pair, if necessary.

Each pair of timelines was rated by three or four users each. Then, majority voting
was applied. In total, 11 users (graduate Computer Science students) participated in
the user evaluation. A user evaluated 42 timeline pairs on average. On average, the
users took 69 seconds to decide between two timelines.

We compute the rater preference RPref score adopted from [ADMT15] as the
fraction of votes for the particular method, based on the annotation that is most
frequent among the three users per timeline entity. The results of the user evaluation
are presented in Table 6.8. The timelines generated by our approach with both
biographical sources (BS-BIO and BS-ENC) were preferred over the baseline by the
users most of the time, for all entity types. For example, all of the 16 timelines for
politicians generated by our approach with BS-ENC were preferred over the TM



130 Chapter 6 Application of an Event Knowledge Graph

Table 6.8. RPRef scores from user ratings for different timeline configurations and
entity types. As users could also give a neutral rating or skip a rating, the RPRef
scores do not necessarily sum up to 100%.

Biographical Source BS-BIO BS-ENC

Method BS-BIO TM baseline BS-ENC TM baseline
Actor 81.82% 9.09% 72.73% 9.09%
Athlete 75.00% 8.33% 58.33% 25.00%
Musical Artist 70.00% 0.00% 50.00% 30.00%
Politician 53.33% 13.33% 100.00% 0.00%
Writer 61.54% 30.77% 53.85% 25%
Total 67.21% 13.11% 69.35% 14.52%

timelines. In total the timelines from BS-BIO were preferred in 67.21% of the cases,
and the BS-ENC timelines were preferred in 69.35% of the cases.

For BS-BIO, the mean number of ratings favouring our timeline is 1.50 (BS-ENC:
1.58) with a standard deviation of 0.72 (BS-ENC: 0.97), for the TM baseline, the
mean is 0.40 (BS-ENC: 0.59) with a standard deviation of 0.67 (BS-ENC: 0.74). The
results of the paired t-test confirm the statistical significance of this result for the
confidence level of 99%.

Feature Impact

In total, 411 features are utilised by the model during the timeline generation. In order
to better understand the impact of the individual features on the classification task,
we compute the correlation between the features and the benchmark judgements using
the Pearson Correlation Coefficient (PCC € [—1, 1], with PCC = 0 corresponding to
no linear relationship), shown in Table 6.9.

For both biographical sources, the highest PCC is achieved for the property born
(PCC = 0.39 for BS-ENC, PCC = 0.25 for BS-BIO). The died property and the
time provenance feature TRF-TP are of similar relevance in both biographical sources,
followed by the features related to relation mentions. In contrast, properties like cover
artist and draft team do not correlate with the relation importance. One interesting
difference between the biographical sources is the property spouse that is highly
relevant in the biographical source BS-BIO but is ranked lower in BS-ENC. Such
personal happenings are often not included in Wikipedia’s encyclopedic abstracts.

Relevance of the Timeline Entries

We evaluated the performance of the classification models for predicting the relevance
of the individual temporal relations with respect to the benchmarks presented in
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Table 6.9. PCC correlation coefficient between top-5 features and the benchmark
judgments, sorted by the absolute PCC values (first column: Rank).

BS-BIO BS-ENC

Feature PCC|Feature PCC

1 TRF-PI: born 0.25 | TRF-PI: born 0.39

2 TF-TP: Time provenance 0.21| TRF-PI: died 0.27

3 TRF-PI: died 0.19| TF-TP: Time provenance 0.23
4 TRF-MR: Relation mentions rank, EN -0.19| TRF-MR: Relation mentions rank, EN -0.19

5 TRF-MR: Relation mentions rank, all -0.18 TRF-MR: Relation mentions rank, all -0.18
10 TRF-PI: spouse 0.13‘TRF—MR: Relation mentions rank, RU -0.14
65 TRF-PI: director 0.03‘TRF—PI: spouse 0.03
410 TRF-PI: cover artist 0.00| TRF-PI: malitary rank 0.00
411 TRF-PI: illustrator 0.00| TRF-PI: draft team 0.00

Section 6.6.1. The results of this automated evaluation using 10-fold cross-validation
are presented in Table 6.10. In general, our models learned from the training set
are generalisable to the test set, reaching F-measure values of 0.827 in the case of
BS-ENC and 0.738 for BS-BIO. Across the biographical sources, the usage of all
features combined leads to the best precision and recall scores. The removal of features
leads to a decrease in performance: leaving out property labels or the features based
on mentions leads to the biggest performance decrease.

Coverage of the Reference Sources

To demonstrate the gain of integrating data from multiple reference sources into Fvent-
KG, we assess the coverage of temporal relations in the biographical sources. That
means, for each person in our benchmark, we compute the percentage of benchmark
relations that are found in the temporal relations of a reference source. Table 6.11
shows the results, measured by mean coverage per person entity. For example, 27.45%
of the relations extracted from BS-ENC can be mapped to a temporal relation in
Wikidata. Additionally, we compute the coverage for extended reference sources, i.e.,
we still only consider relations from the specific source, but use the fused information
about temporal entities (i.e., existence and happening times) from EventKG.

The results show that there is a higher coverage for BS-ENC than for BS-BIO
across all reference sources. This can be explained by the fact that the texts from
BS-BIO are longer and fewer event links are provided: not only does the BS-BIO
benchmark rely on named entity recognition, as this source does not contain any
links, but events are also harder to recognise as they can be described in several ways
(e.g., “first inauguration of Barack Obama” and “Barack Obama was sworn in as the
president on January 20, 2009”). In general, YAGO and Wikidata clearly outperform
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Table 6.10. Weighted precision and recall scores for both classes (relevant and irrele-
vant) for predicting the benchmark labels of the temporal relations using a 10-fold
cross-validation. Additionally, the F-measure as harmonic mean of precision and recall
is reported. T All language-dependent features except for EN are omitted.

BS-BIO BS-ENC
Features Omitted Precision Recall F-Measure|Precision Recall F-Measure
Features
all features / 0.796 0.749 0.738 0.848 0.829 0.827
no property labels TRF-PI 0.753 0.691 0.671 0.822 0.802 0.799
no mentions TRF-RM 0.769 0.700 0.679 0.802 0.734 0.719
no temporal TE-TP,
foatures TF-TDS, 0.795 0.747 0.736 0.847 0.829 0.827
TF-TDE
English only T 0.791 0.737 0.724 0.843 0.821 0.819

Wikipedia and DBpedia (as DBpedia does not contain statements with validity times).
Through the integration and fusion in EventKG, the coverage increases to more than
50% in BS-ENC.

6.7 FEventKG+BT: Biography Timeline Interface

In this section, we introduce EventKG+BT?> — a system that enables exploration of
the biography timelines. We demonstrate how the EventKG+BT system implements
the distant supervision approach to biography timeline generation presented before
and provides an interactive biography timeline. In this way, EventKG+BT can help
to obtain a concise overview of a biography, alleviating the burden of time-consuming
reading of long biographical or encyclopedic articles.

6.7.1 Biography Timelines

We assume a use case where the user task is to gain insights into the life of a person
of interest, e.g., to get the first impression and a rough understanding of that person’s
role in history, the notable accomplishments, and to obtain a starting point for further
in-depth research. To this extent, FventKG+BT shows a biography timeline to
the user as the core of the visualisation. In total, FventKG+BT consists of several
components that together enable interaction with the biography timeline. Figure 6.6
presents an example of the generated biography timeline for Barack Obama.®

Shttp://eventkg-biographies.13s.uni-hannover.de

6The photo of Barack Obama is in the public domain (https://commons.wikimedia.org/wiki/
File:President _Barack_Obama.jpg), the map is from OpenStreetMap, licensed under Attribution-
ShareAlike 2.0 Generic (CC BY-SA 2.0, https://creativecommons.org/licenses/by-sa/2.0/).


http://eventkg-biographies.l3s.uni-hannover.de
https://commons.wikimedia.org/wiki/File:President_Barack_Obama.jpg
https://commons.wikimedia.org/wiki/File:President_Barack_Obama.jpg
https://creativecommons.org/licenses/by-sa/2.0/
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Table 6.11. Mean coverage of the temporal relations in the benchmarks per reference
source and biographical source.

BS-BIO BS-ENC
Mean Mean Coverage (%) Mean Mean Coverage (%)
Coverage (%) (extended) Coverage (%) (extended)

Wikidata 14.39 16.09 36.15 38.64
YAGO 11.96 12.34 37.90 38.40
Wikipediagn 0.51 14.56 0.80 23.65
Wikipediargr 0.34 11.04 0.61 18.96
Wikipediapg 0.16 0.86 0.40 16.66
Wikipediapt 0.00 8.61 0.16 15.73
Wikipediary 0.22 8.68 0.43 15.41
Wikipedia 0.86 15.08 1.37 23.74
DBpediagn 5.05 9.27 27.94 34.97
DBpediaggr 4.10 7.27 22.01 28.40
DBpediapg 4.48 6.41 25.69 28.90
DBpediapt 0.0 2.60 0.0 4.75
DBpediary 0.0 1.48 0.0 2.64
DBpedia 5.73 14.53 30.02 45.10
EventKG 23.29 — 55.09 —

Wikipedia biography. On top, a brief textual biography and the person’s
Wikipedia link is shown next to the person’s image.

Event map. An interactive map displays the locations of timeline entries and
events in the person’s life.

Biography timeline. The actual biography timeline is displayed in the centre.
At first glance, the user can see the person’s life span, as well as relevant phases in the
person’s life. Among other timeline entries, the example timeline indicates Obama’s
residences, as well as his term as US president. The user can interact with the timeline
to obtain additional information.

Related people. Below the timeline, a list of people relevant to the selected
person is shown to enable the exploration of further biography timelines.

Events. FventKG+BT also presents a chronological list of textual events in the
person’s life (e.g., “Senator Barack Obama officially announces his candidacy for
president during a speech at the Old State Capitol in Springfield, Illinois.”) that are
queried from FEventKG.

User Interaction and Data Export

The different components of FventKG+BT are connected and are highly interactive.
For example, a click on a timeline entry leads to the selection of the associated location,
event and people.
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EventKG+BT does also offer an export option for the events and relations that
underline the timeline generation, which provides access to the timeline facts in a
JSON file. Moreover, the exported file contains all the temporal relations that were
judged as non-relevant by our model. That way, we envision that EventKG+BT can
facilitate further research on biography timeline generation from the knowledge graph.

6.7.2 Datasets and Implementation

FventKG+BT relies on models pre-trained on Wikipedia and biographical websites,
temporal relations extracted on-the-fly from EventKG and additional information
obtained from Wikipedia (the brief textual biography and image). The user can
generate biography timelines for nearly 1.25 million persons. The pre-trained models
were learnt on the benchmarks Bgs_p;o and Bgs_gnc consisting of 2,760 persons
and more than 750 thousand biography entries introduced in Table 6.6.

EventKG+BT" is accessible as an HTML5 website implemented using the Java
Spark web framework®. The biography timelines are visualised through the browser-
based Javascript library vis.js’, the maps are generated through the Leaflet Javascript
library!?, and pop-overs showing detailed information are based on Bootstrap't. Event-
KG data is queried through its SPARQL endpoint!?, and Wikipedia information is
retrieved via the MediaWiki action API'®. To reduce the number of calls to the
SPARQL endpoint, biography timelines are cached.

6.8 FventKG+TL: Event Timeline Interface

The amount of event-centric information regarding contemporary and historical events
of global importance, such as the Brexit and the migration crisis in Europe, constantly
grows on the Web, in Web archives, in the news as well as within emerging event-
centric collections [GDR15] and knowledge graphs generated from these sources (e.g.,
[GD18a], [RVEVT16]). An important research area in this context is cross-cultural and
cross-lingual event analytics (e.g., see [Rogl3], [GDBR17] for case studies, and [GD17]
for a cross-lingual user interface). These studies aim to analyze language-specific and
community-specific representations and perceptions of historical and contemporary
events, including their popularity and relations in a language context as well as to
better understand the cross-lingual differences.

"http://eventkg-biographies.13s.uni-hannover.de
8http://sparkjava.com/
9http://visjs.org/timeline_examples.html

Ohttps:/ /leafletjs.com
Hhttps://getbootstrap.com/

2http:/ /eventkg.13s.uni-hannover.de/sparql.html
Bhttps://www.mediawiki.org/wiki/API:Main_page


http://eventkg-biographies.l3s.uni-hannover.de
http://sparkjava.com/
http://visjs.org/timeline_examples.html
https://leafletjs.com
https://getbootstrap.com/
http://eventkg.l3s.uni-hannover.de/sparql.html
https://www.mediawiki.org/wiki/API:Main_page
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Timeline ¢

Barack Obama

Barack Hussein Obama |1 { (listen); born August 4, 1961) is an
American politician and attorney who served as the 44th
president of the United States from 2009 to 2017. A member of
the Democratic Party, Barack Obama was the first African
American president of the United States. He previously served as
a U.S. senator from |llincis from 2005 to 2008 and an lllinois state
senator from 1997 to 2004. (Wikipedia)

Leaflet | Map data € Oper i . CC-BY-SA, Imagery © Mapbaox

Candidate |Democretic Party presidential primaries, 2008
|Un|ted States Senate election in lllinois, 2004
|Uni1ed States presidential election, 2008
United States presidential election, 2012
Educated at
Jan 20, 2009 - Jan 20, 2017
Position held:
Harvard Law School President of the United States
Position held I—g
United States senator
member of the State Senate of lllinois
Related Iﬂﬁrmatmns of Barack Obama's Calng
@s |Unned States prefidential election, 20716
Residence
Chicago |Kalomma
White House
Sianataru | rrnenimb i ki Aanistannn Candann and Comndrie et

Related Persons
s B Hillary Clinton
« B George W. Bush
« R Joe Biden
« 8 Michelle Obama
o R John Kerry
s 8 Paul Ryan
s 2 Ann Dunham
s 8 Eric Holder

Events

s ¢y Jul 27, 2004: Barack Obama gives the Keynote speech at the Democratic National Convention, launching his career on the national stage.

= ¥y Aug B, 2004: U.S. Senate election, 2004: Alan Keyes, a resident of Maryland, indicates he will seek the Republican nomination for the lllinois seat, to run
against Barack Obama.

» ¥y Feb 10, 2007: United States presidential election, 2008: Senator Barack Obama (D-IL) officially announces his candidacy for president during a speech
at the Old State Capitol in Springfield, lllinois.

s ¥y Feb 11, 2007: U. 8. Senator Barack Obama (D-IL) following a political rally in Ames, lowa, regretted saying the lives of military personnel had been
"wasted.”

« ¥y Feb 11, 2007: Prime Minister John Howard causes a diplomatic stir when he publicly criticises U.S. presidential nominee Barack Obama for his plan to
withdraw U.S. troops from Irag. R

Figure 6.6. An excerpt of the biography timeline about Barack Obama, showing a
short textual biography, a map, the generated biography timeline, related people
and events. If possible, the timeline entries are grouped by property labels of the
underlying temporal relations (e.g., “Candidate” and “Position held”). The “Events”
section shows textual events related to Barack Obama, e.g., his announcement for
presidential candidacy.
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FventKG can facilitate a variety of studies and applications related to cross-cultural
and cross-lingual event analytics. However, given a query entity, i.e., an entity or
an event of user interest, FventKG can contain hundreds of related events along
with their descriptions in several language contexts, which makes the provision of a
comprehensive cross-lingual overview and a selection of relevant events for further
detailed analysis challenging.

Timelines are an intuitive way to provide an overview of events related to a query
entity over a certain period of time. However, existing timelines do not explicitly
support a cross-lingual comparison of language-specific event representations, including
their popularity and relation to the query entity in different language contexts.

FventKG+TL presented in this section is a timeline generator that creates cross-
lingual timelines for a query entity, while relying on EventKG to provide language-
specific information with respect to the event popularity and the relation strength
between the events and the query entity. To this extent, FventKG+TL conducts a
language-specific event ranking and complements this ranking with a cross-lingual
visual representation. The timelines generated by FventKG+TL facilitate efficient
identification of relevant events based on their language-specific popularity, relation
strength and the cross-lingual differences.

6.8.1 Scenarios & Timelines

A multilingual event-centric temporal knowledge graph Gp = (L, E, R) is a labelled
directed multigraph, where L is a set of language contexts, E is a set of nodes (i.e.,
events or entities), and R is a multiset of directed edges (i.e., relations).

Given a query entity q € E, the timelines generated by FventKG+TL can assist
users in answering questions such as:

QQ1: What are the most popular events related to q?
Q2: Which events are the most closely related to q?
Q3: Which of the most popular events are the most closely related to q?

Q4 How does the popularity of the identified events and the strength of their
relations to the query entity q differ across the language contexts?

The provision of EventKG+TL facilitates users to answer these questions with
respect to a particular language context [ € L and enables a visual cross-lingual
comparison. To answer these questions, the user of FventKG+TL can issue a timeline
query that includes the following parameters:

e a query entity q € E;
e a set of the language contexts of user interest L' C L;

e the maximum number k of the events to be selected per language context;
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e the ranking criterion rc¢; to identify the top-k most relevant events among all
events B’ C E related to ¢ in G, according to the questions @)1 — Q3.

The ranking criteria include:
rey: popularity(e, () is the popularity of an event e € E' in [ € L;

reg: relation strength(q, e, l) is the relation strength between the query entity ¢ and
an event e € E’ in a language context [ € L'; and

res: combined(q, e, l) is a combination of the event popularity of e € E’ and the
relation strength between e and the query entity ¢ inl € L'.

The timelines generated by FventKG+TL complement the language-specific event
ranking with a cross-lingual visual representation to address the question Q4. To this
extent, FventKG+ TL utilises labelled pie charts located on a timeline, where each
pie chart represents an individual event. The size of the pie chart corresponds to an
overall (i.e., language independent) relevance of the event according to the ranking
criterion r¢;. Each slice of the pie chart represents a language context. The area of
each slice is proportional to the contribution of the corresponding language context to
the ranking criterion rc;.

Figure 6.7 exemplifies a timeline of the 2012 presidential elections in the United
States. In the shown excerpt, we can observe that the most important event according
to rcg are the 72012 Summer Olympics”, which is the most popular event in all
considered language contexts'*, followed by the “2012 Republican Party presidential
primaries”. Some of the events are more important in the specific language contexts,
e.g., "Death of Osama bin Laden” in the German and ”Occupy Wall Street” in the
Russian context.

6.8.2 Timeline Generation
The Knowledge Graph

To answer a timeline query, EventKG+TL utilises EventKG. One of the key features of
FventKG is the provision of event-centric information for historical and contemporary
events, including their interlinking in the language-specific contexts to facilitate an
assessment of relation strength and event popularity (see Section 3.5). The information
on language-specific interlinking provided by FventKG is based on the corresponding
Wikipedia language editions.

14The Olympics are connected to the elections through the hashtag #romneyshambles (https:
/ /www.newyorker.com/news/lauren-collins/romneyshambles-part-ii).


https://www.newyorker.com/news/lauren-collins/romneyshambles-part-ii
https://www.newyorker.com/news/lauren-collins/romneyshambles-part-ii
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2012 Summer Olympics

S

Barack Obama 2012 presidential campaign

2012 Republican National Convention

2012 Republican Party presidential primaries
Egyptian revolution of 2011 Occupy Wall Street

Jan Apr Jul Oct Jan Apr Jul Oct

2011 2012
SleliSlall (German | |French| JRelgileFEREY NRUSSED]

Figure 6.7. An excerpt of an EventK G+ TL timeline representing events related to the
query entity ”2012 United States presidential election” in the time interval 01/2011-
12/2013, overall including the top-10 events for five available language contexts ranked
according to rc3 — i.e., a combination of the popularity and the relation strength of
the events towards the elections. Each event is represented by a labelled pie chart.
The size of the pie chart corresponds to the language independent event relevance
according to rc3. The coloured slices determine the ratio of the relevance in a language
context (see the legend for the colour encoding). The duration of events that lasted
for more than a day is marked by a yellow interval. Upon click on a timeline entry,
detailed information, including scores and link counts, is shown.

Event and Relation Retrieval

To retrieve relevant information from FEventKG, EventKG+TL adopts SPARQL
queries. First, FventKG+TL retrieves the query entity ¢, including its existence
time, if available. Second, FventKG+TL retrieves a set of events E' C E that are
connected to g via an FventKG relation as the subject or the object, along with the
time information associated with these events. Third, the interlinking information
related to the events in E’ is retrieved from FEventKG’s link relations and their
eventKG-s:1links and eventKG-s:mentions property values.

Event Ranking and Timeline Creation

The top-k events related to q are selected according to the ranking criterion. For each
event e € E' and language [ € L', the language-specific relevance score is computed
using the interlinking information provided by FventKG. The following link counts
are used:

o countynks(e,l): Event link count, i.e., the number of links pointing to the event
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e in a language context [ (via eventKG-s:1links).

o countp,-(q,e,l): Pair count, i.e., the number of links from ¢ to e plus the number
of links from e to ¢ in [, denoted by eventKG-s:1links values.

° countmentwns(q, e, l): Mention count, i.e., the number of sentences in a language
context [ that jointly link to ¢ and e, denoted by eventKG-s:mentions.

Each count is normalised to [0, 1] by dividing its value by the highest value of
this count related to the events in £’ in the respective language. That way, the bias
resulting from the differences in the language-specific coverage is reduced. To avoid
the domination of the disproportionately often linked events (e.g., the World War
IT), a smoothing parameter «, experimentally set to 0.25, is adopted. The scores are
computed as follows:

_ countinks(e,l) “
larit l) = 6.1
popularity(e, ) (max{countlmks(e’, e’ € £} (6.1)
) 1 countpqir(q, e, 1) ¢
lation strength(q,e,l) = = - s
relation strength(q, e, () 5 (ma:p{countpm(q,6’,l)|€’ cET 62

+ 1 Countmentions(qa €, l) “
2\ max{count entions(q, €, 1)|e’ € E'}

The combined score (rcg) is computed as a linear combination of the two ranking
criteria. We experimentally set its weight to w = 1/3.

combined(q, e,1) = w - popularity(e, () (6.3)
+ (1 — w) - relation strength(q, e, [) '

The resulting timeline consists of a chronologically ordered list of the top-k highest
ranked events per language with respect to the ranking criterion.

System Implementation

The FventKG+TL system is accessible as an HTML5 website. It is implemented using
the Java Spark web framework!®. The timeline is visualized through the browser-
based Javascript library vis.js'®, the pie charts are created using the Google Charts
Javascript library!”, and pop-ups showing detailed event information are based on
Twitter Bootstrap'®.

Bhttp://sparkjava.com/

http:/ /visjs.org/timeline_examples.html

1"https:/ /developers.google.com /chart /interactive/docs/gallery /piechart
8https://getbootstrap.com/
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6.9 Discussion

In this chapter, we introduced two demonstrators which allow the interaction with
FventKG without expertise of FventKG or knowledge graphs in general. A special
focus was on the problem of biography timeline generation. In order to generate
biography timelines from a large-scale temporal knowledge graph, we proposed a
method based on distant supervision. This method uses features extracted from the
temporal knowledge graph as well as a benchmark extracted from external biographical
sources to train an effective relevance model. Our results of a user study and an
automatic evaluation demonstrate the effectiveness of the proposed method. Our
method significantly outperforms the baseline in the biography generation. According
to the rater preference score, our method achieves 68% on average, in contrast to the
baseline that achieves only 14%.

We presented EventKG+BT that generates a concise overview of a person’s
biography on an interactive timeline from EventKG. Thus, EventKG+ BT demonstrates
how knowledge graphs can facilitate research on notable accomplishments and essential
events in the life of people of public interest.

We also presented FventKG+TL that generates event timelines, with a specific
focus on the language-specific relevance of events in the surroundings of the event of
user interest.

Knowledge graph applications for non-expert end-users need to take the step from
using SPARQL queries for accessing the knowledge graph towards interfaces which add
a layer of abstraction to the knowledge graph in a way that a user does not even need
to know about the existence of a knowledge graph below the surface. FventKG+BT
and FventKG+TL are two examples of such interactive interfaces, and while they
provide visualisations of specific aspects in an event knowledge graph, there are still
many options for extension or the creation of new interfaces. One may think that an
ideal system based on a knowledge graph allows access to the whole complexity of a
knowledge graph plus machine learning models applied to it. However, our systems
illustrate that the selection of particular sub-tasks already serves as a great entry
point towards exploring event knowledge.
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World knowledge that covers people, places, their histories and cultures, and much
more keeps on growing: Every day, new events are happening which may impact the
world as a whole or large communities across the globe. To grasp this knowledge, to
make it accessible and understandable, there is a need to accumulate such knowledge
in a way that is both machine-readable but still retains the semantics behind all
involved concepts. One solution towards this goal is the creation and use of knowledge
graphs, where all the concepts are nodes in a graph, connected if they are related
to each other. Current knowledge graphs only insufficiently model and cover events
and temporal relations [FEMR15]. Therefore, I set as my goal to create a novel event
knowledge graph, to enrich it and to make it accessible to any user via interactive
applications.

7.1 Summary of Contributions

In this thesis, I have dealt with knowledge graphs, with a special focus on events. Lead
by four research questions introduced in Chapter 1, I followed a pipeline consisting of
three steps: (i) knowledge graph creation, (ii) knowledge graph enrichment and (iii)
the application of knowledge graphs.

7.1.1 Knowledge Graph Creation

I have presented two approaches for representing knowledge as a graph: (i) event
knowledge graph creation from (semi-)structured sources and (ii) knowledge graph
creation from tabular data using background knowledge.
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Event Knowledge Graph Creation

In Chapter 3, I presented FventKG, my temporal and event-centric knowledge graph. I
have defined a schema and an extraction pipeline, which used data from several sources:
Wikidata, YAGO and several DBpedia language editions, as well as multilingual text
data proceeded from Wikipedia and Wikipedia’s Current Events Portal. The manual
evaluation showed that the fusion of event times and event locations from different
sources through rules and majority voting was successful in 75% and 94% of the cases
with conflicting information from the sources (compared to 54% and 96% in the case
of Wikidata, which has fewer event locations, though).

In its current version, FventKG V3.0 provides information for over 1.3 million
events and over 4.5 million temporal relations, far more than any of its sources. Event-
K@ is an extensible event-centric resource modelled in RDF that relies on Open Data
and best practices to make event data spread across different sources available through
a common representation. FventKG is reusable for a variety of novel algorithms and
real-world applications, including Question Answering [CGD20], image classification
[MBSH"21], recommendation [AGD20] and news analytics [MBTD"21]. EventKG is
at the core of the Open Event Knowledge Graph [GKA*21] and has been cited more
than 75 times until now [GD18a, GD19a].

Knowledge Graph Creation from Tabular Data

During the creation of FventKG, 1 assumed control over the data contained in the
sources. In Chapter 4, I introduced Tab2KG where I tackle an opposite scenario:
given a data table and domain background knowledge, I transform the data into a
new knowledge graph, without knowing any semantics beforehand, i.e., without any
additional user input or a user-defined extraction pipeline. To this end, I have first
defined semantic profiles, which reflect the background knowledge of a specific domain
(e.g., weather data). Based on these profiles, I trained a Siamese neural network
that rates the similarity between a semantic class contained in the domain profile
and the values contained in a table column. Using a graph-based algorithm, I have
identified the relations between those semantic classes. Put together, the identification
of semantic classes and relations enabled us to create a knowledge graph from the
data tables. Tab2KG outperforms an embedding baseline by 9 percentage points on
five datasets.

7.1.2 Knowledge Graph Enrichment

Under the Open-World Assumption, a knowledge graph is incomplete by nature. This
calls for knowledge graph enrichment methods. I have introduced a novel approach
called HapPenlng to enrich event knowledge graphs in Chapter 5. In contrast to
existing enrichment methods [Paul7|, HapPenlng does not only add new edges to the
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knowledge graph, but it does also create new nodes — without the use of any external
knowledge. To do so, I rely on a specific type of nodes that lies in event knowledge
graphs: event series such as the Wimbledon Championships.

For event series completion in an event knowledge graph, I proposed two steps:
First, I trained machine learning models to predict missing sub-event relations. Second,
I ran a graph-based algorithm for the detection of missing event series editions under
the assumption of similar patterns within event series. For determining when a new
node is to be added, I created a set of constraints. As a result of HapPenlIng, new
nodes are added to the knowledge graph and enriched with a label, locations and a
time span. These event characteristics are inferred using a rule-based approach and a
label generation algorithm based on edit distances.

For the first step of sub-event relation prediction, I trained a random forest classifier
which has an accuracy of 0.98 in 10-fold cross validation. The second step of event
inference was evaluated as follows: Under the most balanced constraint, I could
reconstruct close to half of randomly removed event nodes, with a precision of 0.70 —
outperforming an embedding-based baseline with a precision of 0.26. All together, I
created a dataset of 90,000 new sub-event relations and over 5,000 events missing in
Wikidata.

7.1.3 Knowledge Graph Applications

Representing and storing knowledge alone does not imply access to it and understanding
of it. Therefore, I took the last crucial step of creating applications which enable
non-expert users to explore my event-centric knowledge graph. In Chapter 6, I
demonstrated two systems:

e In Section 6.7, I introduced EventKG+BT. FventKG+BT is a system that let’s
a user explore the lives of any persons that are represented in EventKG. Instead
of making users read a whole biography text about a person of interest, they
can easily interact with FventKG+BT and follow what was really important in
that person’s life. At the example of Barack Obama, I demonstrated how this
system facilitates a fast overview of his life, including the most relevant events
and temporal relations.

e In Section 6.8, I introduced FventKG+TL. FventKG+TL is a system that let’s a
user explore any event of interest that is represented in FventKG. I have defined
several criteria for rating the relevance of an event based on its popularity and
its relation strength towards other events. Based on these criteria, I have created
language-specific relevance scores which are directly reflected by the interactive
tool that I created. At the example of the Brexit, I showed relevant events
in its surroundings and how their relevance towards the Brexit varied across
languages.
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Both systems take a step towards the reduction of the workload that is necessary
when closely reading encyclopedic articles, which is a significant aspect in event
analytics as I have found in my prior research [GBRD18].

In Chapter 6, i also describe my approach for the creation of biography timelines.
These timelines are of immediate benefit to end-users and serve as a basis for Fvent-
KG+BT. In a first step, I have created a publicly available benchmark for training and
evaluating biography timelines by mapping temporal relations found in FventKG to
textual biographies. I trained a classifier on this benchmark and on features extracted
from EventKG, to identify temporal relations relevant to a biography timeline. My
evaluation showed that users prefer timelines created with my approach over the
timelines created by the state-of-the-art Time Machine approach [ADMT*15] in close
to 70% of the cases. I also identified which features are particularly important for
timeline creation. Finally, I have shown that EFventKG serves as the best source
for biography-relevant facts: EventKG contains 55% of the facts extracted from my
encyclopedic benchmark, in contrast to other knowledge graphs such as YAGO and
Wikidata, which only cover less than 40% of these facts.

7.2 Open Research Directions

Based on the work presented in this thesis, there is great potential for continuation.

Extensions of FventKG

In its current version, FventKG covers more than 1.3 million events in 15 languages,
extracted from other knowledge graphs and event lists in Wikipedia. While EventKG
already opens up many application scenarios, there is still potential for an extension.
Examples of such extensions include but are not limited to the following four aspects:

(i) Reduction of cultural bias: Even though Wikipedia and the popular know-
ledge graphs such as Wikidata and YAGO claim to be multilingual, investigations
have shown biases: research on Wikipedia has revealed a linguistic point of view
[MS11] and a Eurocentric bias in Wikipedia [SLW*17]. Wikidata has a problem with
language maldistribution [KPV*17]. Consideration of events and entities from all over
the world is a requirement for an event knowledge graph not biased towards selected
cultures or communities. (ii) Live updates: Until now, a new version of EventKG
is built by running its extraction pipeline as a whole, on the current dumps of its
sources. Therefore, EventKG is not suited for exploring ongoing or very recent events.
Approaches of live knowledge graph updates have been studied [Pral9] and could be
adopted to FventKG. (iii) Extension of sources: News is a natural source for event
detection [DK92, KVW14, RvEV'16] and could be considered for adding more events
to FventKG. (iv) Reduction of recency bias: With live updates, there comes the
problem of recency bias: Wikipedia is skewed towards more recent events [SLW™17].
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A focus on news sources alone would strengthen this issue.

As with EventKG, the implementation of such four aspects needs to follow the
goal of representing events that are of significance. Consequently, there is a need to
generate criteria for judging the significance of events before adding them to FventKG.
Furthermore, all events in EventKG are represented using a common schema. Thus,
FEventKG calls for extensions, yet these extensions need to fit the requirements specific
to my event-centric knowledge graph.

Validation of knowledge graphs

The creation of knowledge graphs is a potentially error-prone process. Therefore, I
envision the inclusion of an additional step in my knowledge graph processing pipeline:
knowledge graph validation, which is relevant both before and after enrichment of
the knowledge graph. In this thesis, I have conducted a manual evaluation of specific
aspects of a knowledge graph (i.e., the fusion of contrasting information about event
happening times) and showed performance of my knowledge graph enrichment under
very specific evaluation settings (i.e., the reconstruction of randomly removed nodes).
Until now, dataset validation systems considered the distribution of single dataset
attributes [SLST18] or focused on specific types of relations, i.e., in the case of type
assertions [Paul7]. I envision a system that performs knowledge graph validation based
on inferred rules and constraints. For example, a knowledge graph validation system
may infer a rule that the times of different event series editions do never intersect.
Such a system could also infer constraints, given a sample of gold annotations: While
the Second World War should always be typed as an event, Barack Obama should
never. Finally, a knowledge graph validation system would be particularly interesting
in my use case of knowledge graph creation from tabular data described in Chapter 4:
Rules learnt from previously seen data could be applied on the unseen data and serve
as a quality check.

Creation of a fully integrated application for the exploration
of events

Several applications based on knowledge graphs have been developed, including those
presented in Chapter 6. The goal of these applications is to make knowledge graph
accessible to non-expert end-users. Typically, this means to hide the query language
from the user. In return, the user needs to forgo the complexity and expressiveness
of a query language. Instead, the application defines a specific usage scenario and
identifies information assumed to be relevant. To tackle this trade-off, I envision
a fully integrated system that gives access to all the knowledge represented in an
event knowledge graph and lets a user explore any of the involved concepts: persons
and places, their relations to each other, their spatio-temporal and language-specific
characteristics, and more.
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