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A B S T R A C T

In today’s computer networks, short-lived flows are predominant. Conse-
quently, transient start-up effects such as the connection establishment in
cellular networks have a significant impact on the performance. Although
various solutions are derived in the fields of queuing theory, available band-
widths, and network calculus, the focus is, e.g., about the mean wake-up
times, estimates of the available bandwidth, which consist either out of a
single value or a stationary function and steady-state solutions for backlog
and delay. Contrary, the analysis during transient phases presents funda-
mental challenges that have only been partially solved and is therefore
understood to a much lesser extent.

To better comprehend systems with transient characteristics and to ex-
plain their behavior, this thesis contributes a concept of non-stationary
service curves that belong to the framework of stochastic network calculus.

Thereby, we derive models of sleep scheduling including time-variant
performance bounds for backlog and delay. We investigate the impact of
arrival rates and different duration of wake-up times, where the metrics
of interest are the transient overshoot and relaxation time. We compare
a time-variant and a time-invariant description of the service with an
exact solution. To avoid probabilistic and maybe unpredictable effects from
random services, we first choose a deterministic description of the service
and present results that illustrate that only the time-variant service curve can
follow the progression of the exact solution. In contrast, the time-invariant
service curve remains in the worst-case value.

Since in real cellular networks, it is well known that the service and sleep
scheduling procedure is random, we extend the theory to the stochastic
case and derive a model with a non-stationary service curve based on
regenerative processes.

Further, the estimation of cellular network’s capacity/ available band-
width from measurements is an important topic that attracts research, and
several works exist that obtain an estimate from measurements. Assum-
ing a system without any knowledge about its internals, we investigate
existing measurement methods such as the prevalent rate scanning and
the burst response method. We find fundamental limitations to estimate
the service accurately in a time-variant way, which can be explained by
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the non-convexity of transient services and their super-additive network
processes.

In order to overcome these limitations, we derive a novel two-phase prob-
ing technique. In the first step, the shape of a minimal probe is identified,
which we then use to obtain an accurate estimate of the unknown service.

To demonstrate the minimal probing method’s applicability, we perform
a comprehensive measurement campaign in cellular networks with sleep
scheduling (2G, 3G, and 4G). Here, we observe significant transient back-
logs and delay overshoots that persist for long relaxation times by sending
constant-bit-rate traffic, which matches the findings from our theoretical
model. Contrary, the minimal probing method shows another strength:
sending the minimal probe eliminates the transient overshoots and relax-
ation times.

Keywords: Cellular networks, sleep scheduling, DRX, network calculus, service
curves, non-stationary service curves, transient backlog, transient delay
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Z U S A M M E N FA S S U N G

In den heutigen Computernetzwerken sind kurzlebige Ströme vorherrschend. Fol-
glich haben transiente Anlaufeffekte wie der Verbindungsaufbau in zellularen
Netzwerken einen erheblichen Einfluss auf die Leistung. Obwohl verschiedene
Lösungen in den Bereichen Warteschlangentheorie, verfügbare Bandbreiten und
Netzwerkkalkül hergeleitet wurden, liegt das Hauptaugenmerk, z.B. auf den mitt-
leren Aufwachzeiten, Schätzungen der verfügbaren Bandbreite, die sich entweder
aus einem Einzelwert oder einer stationären Funktion zusammensetzen, und sta-
tionäre Lösungen für Puffer und Latenzen. Im Gegensatz dazu stellt die Analyse
während transienter Phasen grundlegende Herausforderungen dar, die nur teil-
weise gelöst sind und daher in weitaus geringerem Maße verstanden werden.

Um Systeme mit transienten Eigenschaften besser zu verstehen und ihr Verhalten
zu erklären, trägt diese Arbeit ein Konzept von nicht-stationären Dienstkurven bei,
das in den Rahmen der stochastischen Netzwerkkalkülberechnung gehört.

Darin leiten wir Modelle der Schlafplanung ab, die zeitvariante Leistungsgren-
zen für Pufferrückstände und Verzögerungen beinhalten. Wir untersuchen die
Auswirkungen von Ankunftsraten und die unterschiedliche Dauer der Aufwachzei-
ten, wobei die Metriken über das vorübergehende Überschwingen und die Re-
laxationszeit von besonderem Interesse sind. Wir vergleichen eine zeitvariante
und eine zeitinvariante Beschreibung des Dienstes mit einer exakten Lösung. Um
probabilistische und möglicherweise unvorhersehbare Effekte durch zufällige Di-
enste zu vermeiden, wählen wir zunächst eine deterministische Beschreibung der
Dienstkurve und präsentieren Ergebnisse, die veranschaulichen, dass nur die zeit-
variante Dienstkurve dem Verlauf der exakten Lösung folgen kann. Im Gegensatz
dazu verbleibt die zeitinvariante Dienstkurve im schlimmstmöglichen Wert.

Da es bekannt ist, dass in realen zellularen Netzwerken das Dienst- und Schlaf-
planungsverfahren zufällig ist, weiten wir die Theorie auf den stochastischen Fall
aus und leiten ein Modell mit einer nicht-stationären Dienstkurve ab, die auf
regenerativen Prozessen basiert.

Darüber hinaus ist die Schätzung aus Messungen der Kapazität/verfügbaren
Bandbreite von zellularen Netzwerken ein wichtiges Thema, das die Forschung
anzieht. Hier gibt es mehrere Arbeiten, die eine Schätzung aus Messungen erhalten.
Ausgehend von einem Blackbox-System, untersuchen wir bestehende Messmeth-
oden wie das vorherrschende Rate Scanning und die Burst Response-Methode.
Wir haben grundlegende Einschränkungen bei der zeitvarianten Schätzung des
Dienstes gefunden, die sich durch die Nicht-Konvexität der transienten Dienste
und ihrer super-additiven Netzwerkprozesse begründen lassen.

Um diese Einschränkungen zu überwinden, leiten wir ein neuartiges, zweiphasiges
Probe-Verfahren her. Im ersten Schritt wird die Form einer minimalen Probe iden-
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tifiziert, die wir dann verwenden, um eine genaue Schätzung der unbekannten
Dienste zu erhalten.

Um die Anwendbarkeit der Methode der minimalen Probe zu demonstrieren,
haben wir eine umfassende Messkampagne in zellularen Netzwerken mit Schlaf-
planung durchgeführt (2G, 3G und 4G). Hier beobachten wir signifikante transiente
Pufferrückstände und Verzögerungsüberschreitungen, die für lange Relaxations-
zeiten fortbestehen, indem wir Verkehr mit konstanter Bitrate senden, was den
Erkenntnissen aus unserem theoretischen Modell entspricht. Im Gegensatz dazu
zeigt die Methode der minimalen Probe eine andere Stärke: Das Senden der mini-
malen Probe eliminiert die transienten Überschwinger und Relaxationszeiten.

Schlagwörter: Zellulare Netzwerke, Schlafplanung, DRX, Netzwerkkalkül,
Dienstkurven, nicht-stationäre Dienstkurven, transiente Puffer, transiente Latenzen
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Ãmp(t) estimate of Amp(t)

B(t) backlog

Bε(t) backlog quantile

Bξ(r) steady-state backlog for rate r

Bξ(r, t) backlog quantile for rate r

xiii



br burst response

dj departure time of j-th packet

D server D

D(t) departures process

Dω(t) departure sample path

E(t) deterministic arrival envelope

F0 set of all non-negative, non-decreasing func-
tion that pass the origin

f,g bivariate functions

h bivariate or univariate functions

inf infimum

K(t) state of the Markov chain

lj j-th packet length

M moment generating function (MGF)

mp minimal probe

nGoP number of frames in group of picture

q stochastic service rate as Bernoulli trials

qenv burst size of a leaky-bucket envelope

Q(t) transition matrix

p service parameter for random wake-up times

P(t) state distribution

Pi(t) i-th regeneration point

P set of regeneration points

r rate for CBR traffic

R(t) deterministic service rate

rs rate scanning

S(t) service process

Si(t) i-th service process

Si(t) i-th regeneration process

Snet(t) network service process

Sε(t) statistical service envelope, such as ε-effective
and non-stationary service curve

Sεbr(t) non-stationary service curve from burst re-
sponse method

Sεmp(t) non-stationary service curve from minimal
probe method

xiv



Sεrs(t) non-stationary service curve from rate scan-
ning method

Sω(t) service sample path

sl(r) stationary latency (rate)

τ, t time instances

tl(r) transient latency (rate)

VFTj j-th Virtual Finishing Time

W(t) delay

xv



A C R O N Y M S

3GPP 3rd Generation Partnership Project

AMPS Advanced Mobile Phone Service

br burst response

CBR Constant Bit Rate

CCDF Complementary Cumulative Distribution Function

CSMA/ CA Carrier Sense Multiple Access/Collision Avoidance

DRX Discontinuous Reception Mode

EBB Exponentially Bounded Burstiness

EDF Earliest Deadline First

EDGE Enhanced Data Rates for GSM Evolution

eNodeB Evolved Node B (Base Station)

FCFS First-Come-First-Serve

FIFO First-In-First-Out

fps frames per seconds

foi flow of interest

Gbps Gigabit per seconds

GoP Group of Pictures

GPRS General Packet Radio Service

GPS Generalized Processor Sharing

GR Guarantee Rate

gSBB generalized Stochastically Bounded Burstiness

GSM Global System for Mobile Communications

HARQ Hybrid Automatic Repeat Request

HSPA High Speed Packet Access

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

iid independent and identically distributed

ISP Internet Service Provider

kbps Kilobit per seconds

LRD Long Range Dependent

LTE Long Term Evolution

xvi



MAC Media Access Control

Mbps Megabit per seconds

MGF Moment Generating Function

MIMO Multiple-Input-Multiple-Output

mp minimal probe

MPEG Moving Picture Experts Group

NTP Network Time Protocol

OFDM Orthogonal Frequency Division Multiplexing

OWD One Way Delay

PDCCH Physical Downlink Control Channel

pmf probability mass function

PMOO Pay Multiplexing Only Once

PSRG Packet Scale Rate Guarantee

RRC Radio Resource Control

rs rate scanning

RTT Round Trip Time

SBB Stochastically Bounded Burstiness

SFA separated flow analysis

SINR Signal-To-Interference-Noise-Ratio

SP Static Priority

SNR Signal-to-Noise-Ratio

SOTAT State-Of-The-Art Transient Bounds

TBS Transport Block Size

TCP Transmission Control Protocol

TPG Train of Packet Groups

TTI Transmission Time Interval

UE User Equipment

VFT Virtual Finishing Time

VoIP Voice over IP

WTB Wireless Transient Bounds

xvii



Part I

D I S S E RTAT I O N



1
I N T R O D U C T I O N

In today’s computer networks, most Internet connections are short-lived [109],
such as TCP streams, which persist for less than five seconds in about 50%
of cases [82]. Consequently, the TCP slow-start has a relevant influence
on performance where the initial congestion window is discussed time
and time again[63]. Apart from that, there are many other transient effects
which have a significant impact on the performance, e.g., in wireless net-
works the time it takes to converge for routing protocols[75], using polling
strategies to save energy, or in cellular networks the signaling procedures
and discontinuous reception mode (DRX) to increase the battery lifetime of
mobile devices [21].

Considering the cellular networks, we have, in the past 15 years, a tremen-
dous increase of mobile devices or user equipments (UEs)1, where more
than five billion people, i.e., 65% [155] of the world population, possess a
device these days. Moreover, we know that in 2017 almost 80% of the Inter-
net users are online through UEs [117]. Hence, they particularly use and
generate mobile data to communicate with each other and use applications,
which leads to a huge data mix traffic. To name a few, we have HTTP web
browsing traffic, telephony over VoIP, video streaming, the down- or upload
of files such as music and videos, as well as periodic refresh messages, e.g.,
for news and messenger applications. For a detailed discussion of mobile
applications see [117].

To be able to receive or transmit data in cellular networks, the UE must
be connected to the base station (eNodeB). In the case of LTE (4G), the
UE monitors the Physical Downlink Control Channel (PDCCH) to receive
paging messages from the eNodeB. Doing this procedure continuously
suffers the battery and reduces their lifetime. The longer no data can be
received or transmitted, the more likely it is that further continuous polling
of the PDCCH will lead to unnecessary battery consumption. The aim
of the DRX mode is to extend the battery lifetime of UEs by entering
different types of sleep states in which the UE turns off power-intensive
parts, e.g., radio interfaces and displays. Generally, a mobile in an LTE
network is in one of two radio resource control (RRC) states, i.e., RRC_IDLE

1 In the sequel, we refer to smartphones and tablets as user equipment (UE).
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P0 time

idle
data transfer

sleep
channel request

data

P1P0+T0 P1+T1 P2

Figure 1.1: Sleep scheduling as implemented in discontinuous reception (DRX).

or RRC_CONNECTED [7]. In RRC_CONNECTED, the UE is connected to the eNodeB.
Among other states in RRC_CONNECTED, the UE permanently monitors the
channel draining the battery in the continuous reception mode. In RRC_IDLE,
the UE does not possess an RRC connection [7]. Here, the UE has to establish
one to the eNodeB, which consists of 16 to 19 signaling messages in uplink
or downlink direction, respectively. This procedure leads to an additional
delay of more than 100 ms, see Sec. 7.2.1. Consequently, data is buffered
for later transmission while the mobile is asleep. This results in transient
effects on backlog and delay that are non-negligible, see Sec. 7.4.1.

Fig. 1.1 illustrates a possible DRX sleep schedule process. In the beginning,
the mobile is in an idle state. Due to a channel request at P0, the mobile is
awaking and takes T0 units of time for activating. Subsequently, data can
be transmitted. After the data transfer has taken place, the UE returns to
sleep mode at P1 and wakes up T1 units later. The process is now repeated
as often as required.

We model the sleep duration Ti in the next chapters, where we assume
either deterministic or random wake-up times in Sec. 2.2.2, 3.1 and in
Chap.5, 6, respectively.

However, the current literature mainly investigate the obvious trade-off
for the DRX mode, i.e., between battery lifetime and wake-up delays where
a mobile during sleep mode cannot be paged for incoming packets. Besides
the time needed to establish a connection, it has to wait until it wakes up to
monitor the PDCCH. Therefore, a packet intended for a sleeping UE has to
be buffered in between, which in turn leads to an increased delay.

The trade-off for similar mechanisms in 2G and 3G is analyzed, e.g.,
in [116, 130]. For 4G, a lot of research is done by modeling the DRX states
and mean wake-up time by semi-Markov chains [23, 144, 148, 156, 157].
Note that we consider the DRX mode in more detail in Sec. 7.2.1.

In addition to optimizing DRX cycles [60, 138], there are applications
such as video and music streaming, where a continuous connection to the
base station causes a permanent battery discharge at the UE that affects the
user experience. In [134], the authors investigated that traffic shaping can
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save up to 60% of the energy. The idea is to send bursts such that the mobile
can switch off the radio interface in between. Although this method can
save energy, it may lead to a massive increase in packet delays. For example,
in one of our earlier works [21], we observed that sending traffic at a higher
rate than the LTE system can serve, leads to a massive blowing up of packet
delays, e.g., from 10 ms to more than 300 ms. Thus, for delay-sensitive
applications, one should be careful by sending burst traffic and adapt the
traffic according to the service a network provides.

To find the service of a network, measurement-based approaches are the
preferred choice. The methods assume a system, as described by Lübben
et.al. in [103].

Here, the author interprets a general system from the classical system
theory as a computer network, where the inputs become arrivals, the sys-
tem’s responses are the service of the network and the outputs departures.
Depending on what knowledge we have about the internals of the system,
we divide the methods into grey- [15, 27] or black-box [103] models. In
grey-box models, we already have certain information about the service,
such as that it has a constant rate and a specific one-way delay (OWD).
So from measurements, only these two parameters need to be determined,
whereas a black box model does not provide any information at all.

Further classifications can be made by the general choice of arrival traffic.
Do we estimate the service from existing traffic, or do we actively inject
test traffic into the network? Methods using the first case are called passive
[15, 32, 101] and the second case is called active measurement methods,
where popular test traffic are packet pairs [136], i.e., two successive packets
with a predefined spacing, packet trains [108], i.e., sending a series of
packets with constant rate and packet chirps [120], which are packet trains
where the rate increases within the train. The goal is to find the available
bandwidth, i.e., the long-term average unused capacity of a system. An
overview of the different methods can be found in [133, 136].

Even though the measurement methods used to estimate the available
bandwidth in wired networks perform well, the accuracy of wireless trans-
mission technologies is found to be poor. In [99], the authors described
difficulties encountered in IEEE 802.11 wireless networks. More specifically,
tools such as Spruce [136], TOPP [108], PathChirp [120], and many others
are impacted by wireless networks where the mechanisms are affected by
contention for channel access from other traffic. Although a new method
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called WBest is being introduced to overcome these problems, we know
that additional challenges need to be dealt with for cellular networks.

For example, in LTE, the resource allocation is done by the base station,
where several packets are in one transport block due to concatenation or
segmentation. As a consequence, methods, e.g., based on packet pairs, are
not suitable anymore.

Generally, the known methods try to estimate the available bandwidth or
maximum capacity, which results in a single value. Hence, it is naturally
not possible to represent time-dependent characteristics. So they are not
suitable to illustrate the influence of DRX mode on the service in mobile
networks such as in LTE. We take a closer look on that in Sec.3.2.

Therefore, we find that a time-dependent service estimation to investigate,
e.g., transient effects in cellular networks is not present so far. Moreover,
the analysis of transient effects in computer networks is sparse. In queuing,
theory results are mainly derived as steady-state solutions. As an exam-
ple, we have an M|M|1 system where the solution follows from linear
balance equations [126]. To investigate transient behavior, we have to solve
a set of differential equations. Here, mainly numerical solutions exist [153],
or the solutions are highly specific ones such as for the TCP congestion
control [109].

In order to address these problems, we choose the theory of network
calculus that provides the necessary foundations.

1.1 the theory of network calculus

The network calculus is a framework established at the beginning of the
1990s. The seminal work of Cruz [53, 54] laid a foundation to model com-
puter networks where several networks can be concatenated, and perfor-
mance bound , e.g., backlog and delay, are derived. Generally, we consider
a system as in Fig. 1.2. Here, several endpoints, such as servers, personal
computers, printers, smartphones, and so on, are connected via a network.
The network consists out of nodes that are, e.g., routers and switches, which
are then modeled as a queuing system with a queue and a server. We
marked a possible route where a server A sends data to a server D through
the network. Due to the complexity of such networks, we simplify it for a
moment and assume a system as in Fig. 1.3, where all possible nodes are
combined into one system with a corresponding queue and a specific ser-
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vice rate. Note that we use the terms network and system interchangeably
during the whole work.

The idea is that data at the sender A in the form of, e.g., bits enter the
network. We name this input arrivals A. Then, the arrivals are processed
with a service S through the network and leave the system as output traffic
at the server D, which we denote as departures D.

With network calculus, we are then able to derive performance bounds
such as backlog and delay. Moreover, the deterministic network calculus[37,
52, 96] is a theory that can explore transient effects. Because time-variant
and non-linear systems are replaced by time-invariant and linear bounds,
only worst-case results are obtained, where e.g.the maximal backlog and
delay is computed, as we will show in Sec. 2.1.

In order to take advantage of the statistical nature of data flows, the
stochastic network calculus [31, 37, 47, 48, 68, 70, 73, 86, 98] is derived. Here,
the knowledge about certain traffic characteristics such as the scheduling
discipline and statistical multiplexing is used to obtain statistical guarantees
of the type P[backlog > x] 6 ε and P[delay > x] 6 ε. Although the
stochastic network calculus takes time-variant systems into account, it



1.2 thesis contributions 7

typically either assumes stationary random processes or uses stationary
bounds. Hence, a complete analysis of transient phases is not possible.

However, apart from the derivation of performance bounds, the net-
work calculus also provides a suitable framework for the estimation of the
networks service. Depending on the assumptions such as linearity and
stationarity, we can classify the existing work. Researches that deal with
work-conserving systems, are [15, 27, 32, 140]. Assuming the system is min-
plus linear we have deterministic, time-invariant models [10, 15, 27, 79, 101]
or stochastic models in stationary systems [32, 105, 103, 140]. Note that
these works, either assume time-invariance or stationarity where univariate
functions are used to describe the system. Hence, a time-dependent analysis
of the network or characterization of the service is not possible.

Anyway, in [11, 40], a time-variant system is derived that replaces the
univariate functions with bivariate ones. The use of the notion of bivariate
functions gives us a basis and enables us to extend the current literature
to model changes over time accurately and to find time-variant or non-
stationary service characteristics which occur, e.g., during the connection
establishment in cellular networks such as LTE.

1.2 thesis contributions

In this thesis, we contribute a non-stationary service curve model in the
framework of network calculus. It enables us to analyze the transient be-
havior of computer networks and systems such as cellular networks. We
derive solutions for systems with sleep scheduling and present results of
the time-dependent formulation of performance bounds backlog and delay.
Moreover, we estimate the service of unknown systems where we show
the limitations of existing methods regarding a transient description of the
service. A new two-phase measurement method is developed, which can
estimate a non-stationary service within a defined accuracy. Further, we
substantiate our findings from simulations by performing an extensive mea-
surement campaign in cellular networks. The evaluation provides insights
into transient service characteristics of 2G, 3G, and 4G networks. Next, we
describe the contributions in more detail.

In the first place, we use the notion of time-variant systems as in [11, 40],
i.e., to model changes over time we use bivariate instead of univariate
functions. Then, we model systems with deterministic sleep scheduling,
i.e., with fixed wake-up times and compare a time-invariant formulation
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of the service [37] with a time-variant one. Here we can illustrate that both
service descriptions show the same growth of performance bounds, such as
the backlog during the sleep period. How the backlog is cleared after the
start of service can only be explained by the time-variant model, whereas
the time-invariant model remains in the worst-case. Due to our choice of a
Poisson arrival process, we are able to derive statistical arrival envelopes,
for example, by applying Chernoff’s bound and compare the results with
an exact solution. We observe that only the time-variant service follows
the progression of the exact solution where a closer bound is achieved by
using Doob’s Martingale inequality. In addition to that, we investigate the
influence of the arrival rate, service rate, and the duration of sleep cycles
where the measures of interests are, e.g., the transient overshoot and the
relaxation time, i.e., the time it takes to reach steady-state.

Secondly, we derive a non-stationary service curve based on the time-
variant concept and the regenerative service processes followed by the
time-dependent description of statistical performance bounds backlog and
delay. It allows us to model systems with sleep scheduling, where the
wake-up times and services are random. It lays the theoretical basis to
investigate the transient and stationary behavior of systems with random
wake-up times, such as the DRX mode in cellular networks. From our work
in [21], we know that the transition from RRC_IDLE to RRC_CONNECTED state
takes a random amount of time. Thus, this step from the deterministic to
the stochastic network calculus is necessary to analyze, e.g., the specific
implementation of sleep scheduling in real networks.

The third main contribution is about unknown systems and the estimate
of their service curves from measurements of probe traffic. More precisely,
our goal is to estimate a general service model of a linear system, with a
time-varying, regenerative service that avoids specific assumptions about
the network internals. Thereby, we consider known measurement methods,
i.e., the rate scanning [103, 105] and burst response method [101] and refine
them to estimate non-stationary service curves. In doing so, we come across
additional difficulties due to the non-convexity and super-additivity of the
service. To overcome these limitations, we are developing a novel method
which we call minimal probing that estimates a non-stationary service curve
and provides a measure of accuracy. The method consists of two steps. In
the first step, it computes a probe that is minimal under certain conditions.
The second step then consists of using this minimal probe and estimating a
non-stationary service curve with a defined accuracy. Our method can reveal
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the actual service progression of the network, that includes various effects
such as transient delays due to sleep scheduling, stationary OWDs, time-
dependent service rates, and service outages due to wireless transmission
characteristics, see Sec. 7.4.2.

To analyze transient and stationary latencies, we explore a model with a
server with vacations from the literature [37] and elaborate on the effects of
transient and stationary latencies on the (super)-additivity of the service
in detail. Our findings demonstrate that the service is additive in case of a
transient latency, whereas it is super-additive in case of stationary latency,
which is comparable to OWDs. Additionally, we show the deviation from
additivity for networks of n systems with random sleep scheduling in series.
Since real networks have non-zero OWDs, this result is essential for our
measurements of production networks.

The fourth contribution is about a measurement-based evaluation of the
DRX mode in cellular networks and includes the first practical validation
of our new method in several real production networks. The campaign
produces results in 2G, 3G, and 4G networks for two different providers
at day and night. In order to provide statistically relevant results, we
have fixed the position for each provider, the transmission technology, and
the time of day and assume stationary channel conditions for each setup.
Then, we measured for each setting the non-stationary service curve by
performing up to 2000 measurements, each. As an example, for 4G and the
provider ISP1 we estimated the service curves over ten nights, as described
in Sec. 7.4.2, i.e., we send 100 bursts and estimate the minimal probe for
ε = 0.05. Subsequently, we send the minimal probe 100 times, take the
backlog B(t) at t = 1 sec and compute the 0.95-quantile Bε(t). Out of this,
we obtain the non-stationary service curve, as described in Sec.6.4. We repeat
this procedure ten times and take the average over all estimates. Thus, we
have 1000 measurements for the burst response and 1000 measurements for
minimal probing. Taking the 0.95 confidence interval of the burst response
estimates confirms that our new approach yields stable results. Moreover,
from our results, we are able to explain the behavior of the DRX mode,
i.e., the specific implementation of sleep scheduling in cellular networks.
Out of the non-stationary service curve obtained from minimal probing, we
extract a set of information, including the accuracy of the method, transient
and stationary latencies, service outages, and capacity limits. Hence, in
comparison to other methods that estimate stationary results or estimate
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only a single value, e.g., for the available bandwidth, our method produces
much more information.

We sum up that by taking into account, the measurement results from
Chap. 7, we believe that the measurement results provide good evidence that
our model of non-stationary service curves and the method for estimating
the shape of the service curve is suitable for characterizing key aspects of
mobile network service, such as stationary and transient delays and rate
limitations.

1.3 thesis outline

The remainder of this thesis is structured as follows. In Chap. 2 we introduce
the network calculus, where we explain the main ideas and concepts of this
theory. We describe the basics for the deterministic and stochastic network
calculus. It lays the foundation for the next chapters.

Next, we consider the related work in Chap. 3. There, we divide the
chapter into two parts. The first part considers the state-of-the-art of time-
variant systems in network calculus, whereas the second part, is about
measurement-based methods to estimate the service of unknown systems.

It illustrates the main difficulties of the current literature. To better for-
malise the limitations, we state the problems in Chap. 4.

In Chap. 5 we define the non-stationary service curve. We present a
method of construction and derive performance bounds for backlog and
delay. Also, we present models of systems with sleep scheduling.

To estimate the non-stationary service of unknown systems, we refine
known methods in Chap. 6 and explain their limitations, which are due to
the convexity and (super)-additivity of the service. We introduce a new and
novel method, the minimal probing method that is able to overcome the
limitations as shown, e.g., in simulations.

In Chap. 7, we do the first practical validation of the minimal probing
method. There, we perform a massive measurement campaign in the cel-
lular networks of 2G, 3G, and 4G for two different providers. From each
service curve, we extract all possible information, such as the transient and
stationary delays, the accuracy of the method, capacity limit, and outages.

Finally, we conclude the thesis in Chap. 8 and present further ideas and
topics for future work.



2
S Y S T E M M O D E L S I N N E T W O R K C A L C U L U S

In this chapter, we lay the foundation for deriving a time-dependent model,
enabling us to analyze transient phases in cellular networks caused by, e.g.,
the DRX-cycles in LTE. In order to do so, we choose the network calculus
framework. We summarize the theory and present the main results briefly.
An extended elaboration of network calculus can be found in [37, 52, 96].

Recalling the system model as in Fig. 1.3 from Sec.1.1 the basic point
of view is to consider data at time t that enters a system in form of an
arrival function A(t) which is processed with a service S(t) and leave the
system as departures D(t). Thereby, we use the cumulative form of these
functions. Thus, the cumulative arrival function A(t) represents all data,
e.g., the number of bits in the time interval (0, t]. Further we define no
arrivals for t 6 0 and consider only positive time-scales t > 0 with A(0) = 0.
For reasons of causality the number of bits cannot be negative, and so it
is straightforward that A(t) for t > 0 is a non-negative, non-decreasing
function .

We define F0 as the set of all non-negative, non-decreasing functions that
pass the origin, i.e.,

F0 = {f : f(t) > f(τ) > 0 ∀t > τ, f(0) = 0}, (2.1)

such that A(t) ∈ F0. Here, A(t) is the short-handed form to denote all bits
in the interval (0, t].

If we consider the interval (τ, t], where t > τ > 0 we distinguish between
univariate and bivariate functions. For the arrivals and the bivariate case
we take all data into account which arrives in the interval (τ, t] such that
for this concrete time-interval we have that A(τ, t) = A(t) −A(τ), where we
assume A(τ, t) to be additive. Note that the set F0 has to be slightly adapted
to bivariate functions , i.e., F0 = {f : f(τ, t) > f(τ,ν) > 0 ∀t > ν > τ, f(t, t) =
0 ∀t} see [51, 70]. In the univariate case we do not consider the time instances
τ and t explicitly, where t > τ > 0. We are only interested in the length of
the interval. Hence, we get the arrivals by A(t− τ). Generally, we consider
univariate functions as the time-invariant and bivariate functions as the
time-variant case. It might look like a small change, but as we will see, it
has significant implications for the analysis of transient effects.

11
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In the same way, we define the cumulative departures D(t), D(t− τ),
D(τ, t) and services S(t), D(t − τ), S(τ, t) provided by the network for
t > τ > 0 at the appropriate intervals.

Next, we can compute the departures D(t) from the arrivals A(t) and the
service S(τ, t) with the following assumptions. First, we assume a lossless
system. This corresponds to a buffer with sufficient space to store the
incoming data. An extension to lossy systems can be found in [51], where
the author introduced a traffic clipper that discards non-conforming data.
Another way is shown in [38], where packets are dropped when delays
or buffering constraints are violated. An overview of lossy systems can be
found in [37, 96]. Throughout this work, we assume that time is discrete.
Continuous-time requires an additional discretization step, see [47]. Apart
from that it is reasonable to assume A(t) > D(t) for all t > 0. Last but not
least, arrivals from several flows Ai(t) for i = 1, . . . ,m are multiplexed to
one flow A(t) by summing up the individual flows, i.e., A(t) =

∑m
i=1Ai(t).

We then use the concept of service curves as in [12, 13, 36, 55, 57, 95, 127]
to obtain the departure guarantee [11, 37, 38, 40] for the service process
S(τ, t). Hence, we get

D(t) > inf
τ∈[0,t]

{A(τ) + S(τ, t)} =: A⊗ S(t). (2.2)

In Eq. (2.2) we defined the operator ⊗ which is known as convolution under
min-plus algebra [37, 96].

In case we choose a time-invariant service process, i.e., S(τ, t) = S(t− τ),
Eq. (2.2) becomes

D(t) > inf
τ∈[0,t]

{A(τ) + S(t− τ)} . (2.3)

Performance Bounds

The service guarantee of Eq. (2.2) enables us to derive performance bounds
such as backlog and delay. The backlog can be considered as the amount of
data in the system, which includes the data in the queue as well as all in
transmission. It can be computed as the vertical deviation of arrivals and
departures at a given time t > 0. Thus,

B(t) = A(t) −D(t) (2.4)
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at some time t > 0. An upper bound of the backlog follows immediately by
Eq. (2.2) see [96], i.e.,

B(t) 6 sup
τ∈[0,t]

{A(τ, t) − S(τ, t)}. (2.5)

Similarly, the first-come-first-serve (FCFS) delay at time t can be viewed as
the horizontal deviation. It is defined as

W(t) = inf{w > 0 : A(t) 6 D(t+w)}. (2.6)

Again, an upper bound follows from Eq. (2.2) as

W(t) 6 inf
{
w > 0 : sup

τ∈[0,t]
{A(τ, t) − S(τ, t+w)} 6 0

}
. (2.7)

Assuming time-invariant functions simplify the computation of backlog
and delay as in Eq.(2.14).

Comparisons to the system theory and properties of the min-plus convolution

Despite the inequality, which will be an equal sign later on, at this point, the
attentive reader may recognize similarities of Eq. (2.3) to the system theory.
There, we map the incoming, arriving signals to the outgoing departures by
the impulse response function. Most commonly, the system is linear and
time-invariant, see 3 for the definitions. As before, a time-invariant impulse
response means that it does not depend on the explicit time-instances itself,
but to the amount of time. Furthermore, if the system is linear, then the
impulse response describes the system completely. In the discrete case, the
mapping is done by

D(t) =
∑
τ

A(τ) · S(t− τ) =: (A ∗ S)(t), (2.8)

where ∗ is the convolution operator and S(t) is the system response to
the Dirac unity impulse δ(t). In the discrete case Dirac impulse function
becomes the Kronecker δ-function [78], which means that δ(t) = 1 for t = 0
and zero otherwise, such that it is the neutral element of the convolution. For
continuous functions the sum becomes an integral [115] and

∫∞
−∞ δ(t)dt = 1,

where δ(0) =∞ and zero otherwise.
By comparing the convolution in system theory, the sum becomes an

infimum and the multiplication a plus sign, respectively, under min-plus
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convolution. Despite these differences, there are also similarities. As in
the case of system theory, we have an exact service curve in min-plus
algebra if and only if the system is time-invariant and linear. Again, these
definitions can be found in the appendix, see definition 5. Shortly spoken,
min-plus linearity means that any (min-plus linear) combination of input
signals c1 +A1 ∧ c2 +A2 results in the output signal c1 +D1 ∧ c2 +D2,
where ∧ denotes the minimum operator and c1 and c2 are constants. So,
under the min-plus algebra, the service curve is the response of the system.
Similarly to the Dirac impulse function we can define a neutral element of
the min-plus convolution, i.e., δ⊗ S(t) = S(t), where

δ(t) =

0 for t = 0,

∞ for t > 0.
(2.9)

It can be seen as a burst impulse such that A(t) = δ(t). It reveals the service
S(0, t) for all t > 0 as the system’s burst response. We will use this property
in a further course to develop a new measurement method.

From a mathematical point of view the algebraic structures (R∪∞,∧,+)

and (F0,∧,⊗) are commutative dioids. They are not rings because there
exists no inverse element for the minimum (∧)-operator. A list of properties
can be found in the appendix 6 or for deeper insights into this algebra
see [17, 37, 96]. For our purposes, the most important properties are as-
sociativity, distributivity, and commutativity. The operators ∧,⊗,+ are all
associative and commutative, apart from ⊗ that is commutative not in
general but only in the univariate case. Moreover, +,⊗ are distributive
with repect to ∧. Particularly noteworthy is the associativity of ⊗ as it
facilitates the concatenation of systems in series. Further properties follow
in the corresponding sections. For more information about similarities from
system theory to network calculus, see [37, 96].

Hereinafter, we follow the classification from [46] where the author sub-
classifies into deterministic and stochastic network calculus. The classical
deterministic network calculus replaces possible time-variant functions,
which are crucial for a time-dependent analysis of transient phases, by
time-invariant functions, e.g., to express the service curve in Eq. (2.2). As a
consequence, we are able to consider transient phases, but as we will show
below, the analysis remains in the worst case due to invariant functions.
In contrast, stochastic network calculus includes time-variant services and,
as described in [46] by using stationary random processes or stationary
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bounds specified by invariant functions, again. Please note that we present
among others results from our own works [19].

2.1 deterministic network calculus

In the following, we describe the basic principles for deterministic network
calculus and give examples for service curves, performance bounds, schedul-
ing disciplines, end-to-end analysis of several systems in a row, and enve-
lope functions for the arrivals and service curves. A good overview of the de-
terministic network calculus we get from the work of Le Boudec [94, 96, 97].

Recalling the statement that the deterministic network calculus uses
time-invariant functions we start with Eq. (2.3), where the system offers a
lower service curve S(t) to an arrival process A(t) to obtain the departure
guarantee D(t). The lower service curve is a lower bound on the amount of
service the arrivals receive. Note, that Eq. (2.3) becomes equal, if S(t− τ)
is linear. Then, the lower bound on the departures is also an upper bound
and the service curve is called exact. Hence,

D(t) = inf
s∈[0,t]

{A(s) + S(t− s)} . (2.10)

Examples for exact service curves are, e.g., constant rate server where
S(t) = R · twith capacity R, and a leaky-bucket-shaper, see Eq. (2.15).Further
results of service curves are formulated in [12, 13, 36, 55, 58, 95, 127].

Apart from the different types of service curves mentioned above, the
concept even allows the characterization of different scheduling algorithms.
Besides the fact that we do not make any assumptions regarding a schedul-
ing discipline, we give a brief list of some well-known types. To be precise,
we find more information about first-in-first-out (FIFO) in [37, 57, 96], for
earliest-deadline first (EDF) see [102], Generalized Processor Sharing (GPS)
in [37, 91] and Static Priority Scheduling (SP) is explored in [37, 96].

2.1.1 End-to-End Analysis

As in system theory, one of the main strengths of min-plus convolution
is the concatenation of tandem systems along a network path, where the
individual service curves of the systems can be easily concatenated by
convolution, resulting in a network service curve that specifies the available
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Figure 2.1: A network path with n systems and corresponding service curves Si(t)
for i ∈ [1,n] in tandem are simplified to one end-to-end service curve
Snet

end-to-end service. In this way, a general framework for the analysis of
entire networks is created. Let’s consider a system as in Fig. 2.1. Due to the
associativity of the min-plus convolution, we can compute an end-to-end
service curve for the whole network. In particular, we have

D(t) > (A⊗ S1)⊗ S2)⊗ ...)⊗ Sn
= A⊗ (S1 ⊗ S2...⊗ Sn)︸ ︷︷ ︸

:=Snet

(t), (2.11)

where we used associativity in the second line and convolved all individual
service curves Si(t) for i ∈ [1,n] to obtain the network service curve
Snet [37].

2.1.2 Envelope Functions

Generally, we cannot expect to know the total traffic in advance. An example
is a video encoder that changes the video’s quality based on some criteria
that might be unknown. For more information about the effect of changing
the quantization parameter qp of the H-264 encoder on the signal-to-noise
ratio (SNR) and delay, see on our own work [71]. Consequently, the traffic
might be highly bursty, and certain delays, backlog, and loss constraints
could be violated. However, the network calculus provides some ideas and
models to deal with such problems. More precisely, we look for some upper
limits of arrival traffic
( arrival envelope ) or, if the service is not fully known, for a lower limit of
the service curve ( service envelope ). These envelope functions could be
stated as some strict bounds ( deterministic ) or some bounds that allow
a small probability of violation ( probabilistic ), and can be used for the
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provisioning of deterministic or statistical guarantees and performance
bounds.

In this section, we consider the deterministic case. So, we call E(t) a deter-
ministic upper bound of the arrivals if the function is non-decreasing and
non-negative, i.e., E(t) ∈ F0, see Eq. (2.1) and it holds that the cumulative
traffic is bounded as follows

A(t) −A(τ) 6 E(t− τ) (2.12)

∀t > τ > 0. We can rewrite Eq. (2.12) by adding A(τ) on both sides and
taking the infimum on the right hand side

A(t) 6 A⊗ E(t). (2.13)

The backlog bound from Eq (2.5) becomes

B(t) 6 sup
τ∈[0,t]

{E(t− τ) − S(t− τ)} = sup
u∈[0,t]

{E(u) − S(u)}, (2.14)

where we used the univariate service description from Eq. (2.3) and substi-
tute u = t− τ. Note that we obtain a bound for the delay similarly.

An example of traffic envelopes is a leaky-bucket-shaper. It allows a
specific, immediate amount of arrivals and delays other traffic, such that,
e.g., the output can be handled by the network. A leaky-bucket-shaper has
the form

E(t) = qenv + ρenvt, (2.15)

where qenv is the max instantaneous burst of arrivals permitted, and ρenv
is the envelope rate, which is an upper bound on the mean rate of the
arrivals [52, 53]. Note that we already got the conditions for a lower bound
of the service from Eq. (2.3). A good overview of traffic arrival envelopes
we find in [106] and for service curves in [70].

Next, we consider the first example with an MPEG video source. Here,
we assume that the video consists of a set of pictures/ frames, where
each frame is either an I-frame or a B-frame. For simplicity, we do not
use P-frames. Thereby, the order of the frames, i.e., the group of pictures
(GoP) is (IBBB . . . BBB︸ ︷︷ ︸

nGoP frames

I). To learn more about MPEG and the GoP see [74].

Further, we assume that the frames arrive in a uniform order. Hence, time
is discretised with time-slots t ∈ [0, 1, 2, . . .]. In each time-slot, we assume



2.1 deterministic network calculus 18

that a packet arrives with probability α = 1, which corresponds to the
deterministic case. The packet size of the B-frames Bframe are equal to
two in all cases, whereas we change the size of the I-frames Iframe, i.e.,
Iframe ∈ [10, 20, 30, 40, 50]. The length of a GoP is nGoP = 50. In order
to compute performance bounds such as the backlog, we choose a leaky-
bucket arrival envelope from Eq. (2.15). For sure, the permitted burst size
qenv is equivalent to the size of the I-frames. We adjust the envelope rate
ρenv according to the mean rates for all I-frame sizes, which are between
two and three. We increase all rates by 10% to get an upper bound of the
mean rates.
The service curve is a latency rate function of the form

Sslr(τ, t) = R[t− τ− T ]+ = Sslr(t− τ) (2.16)

∀t > τ > 0, where the superscript slr indicates that the latency is stationary,
i.e., time-invariant. Note that a stationary latency conforms to a propagation
delay. However, the parameters in Eq.(2.16) are R = 4 for the rate and
T = 100 for the the latency.

Fig. 2.2 shows the first indications of the influence of the I-frame’s size.
Clearly, the burst size qenv of the leaky-bucket envelope depends on the
I-frame size. In consequence the mean rate increases, too, see Fig. 2.2a. The
influence on the backlog we illustrate in Fig. 2.2b. Here, the backlog bound
increases until the service starts at T = 100. Afterwards, the backlog bound
remains at this worst-case value. The reason is that the time-invariant model
is generally non-decreasing in t due to the sup in Eq.(2.14) if S is invariant.
Thus, we conclude that the I-frame sizes have a high impact on the backlog
bounds.

To substantiate this, we modify the example. Therefore, we increase the
I-frame size to 1000 and set nGoP = 1000. This way, we have for every 1000

frames one I-frame. The mean rate is around three, i.e., similar as in the
above case, where Iframe = 50. Although the average rates are similar, we
see in Fig. 2.2c a significant difference in the backlog bounds. This is due to
the enormous burst of 1000.

The cases so far considered a fixed I-frame size. We now choose a case
where the size of the I-frame increases continuously. More precisely, we set
nGoP = 50, again, and Iframe = t. The results we see in Fig. 2.2d where we
plotted the backlog for a maximum amount of time tmax ∈ [200, 1000, 3000].
This yields a maximum I-frame of 200 for tmax = 200 and similarly of 3000

for tmax = 3000. Consequently, the backlog in Fig. 2.2d increases with t.
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Figure 2.2: Deterministic leaky-bucket envelope
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Note, we adjusted the service rate R such that R > ρenv for every tmax.
Otherwise, the backlog would grow continuously.

This example illustrates what can happen if the video gets longer and so
the number of frames is getting higher and higher. It means that with every
additional frame, there is a chance that this new frame is larger than all the
other ones before, such that the arrival envelope increases.

In this scenario, we only have 3000 as the maximum amount of frames.
However, it is not unusual that videos have 60 frames per second (fps),
today. This means that watching a movie of 2 hours and longer results in
approximately 500.000 frames.

Thus, despite some outstanding qualities that include the system mod-
eling and the concatenation of the tandem system, the worst-case view
results in an overly pessimistic performance bounds and is a significant
shortcoming of the deterministic network calculus. This becomes even more
obvious by considering, e.g., audio and video applications that tolerate vio-
lations with a small probability of the delay, backlog, and loss constraints.
A discussion of client requirements can be found in [67].

Apart from that, it is not guaranteed that there exist some deterministic en-
velopes for arrival traffic and service. An example is radio channels, where
the service is random due to fading, interference, and non-deterministic
medium access control. Consequently, deterministic worst-case bounds are
not trivial and may not even exist in random systems.

An extension of the deterministic network calculus that overcomes these
limitations is the stochastic network calculus. It guarantees some statistical
bounds that hold with a certain probability ε > 0 for some arrival and
service functions [25].

2.2 stochastic network calculus

The deterministic network calculus is a framework with outstanding qual-
ities, for example, by modeling systems and concatenation of systems in
series. However, in the following, we want to overcome the described draw-
backs from the previous section by introducing the stochastic network
calculus and presenting the main results. A broad overview can be found
in [17, 31, 37, 46, 70, 86].

For repetition, a major disadvantage of the deterministic network calculus
is that a few rare events could lead to an extremely weak estimation of
performance bounds. The stochastic network calculus is a framework that
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excludes these rare events. Thereby, the objective is to find or bound the
probability that performance measures, such as delay and backlog, exceed
a given threshold.

Let ε be a small violation probability, which could be in the order of 10−5,
it leads to the following bounds for delay and backlog [25, 46]

P[delay > q] 6 ε or P[B > b] 6 ε. (2.17)

Note that for ε = 0 we have the deterministic case. Moreover, it has been
shown that stochastic service curves can efficiently model effects such as
the variability of the service provided by radio channels [69, 143] or the
CSMA/CA random access control [29].

Although stochastic network calculus has a certain strength by exploiting
the knowledge of scheduling algorithms and achieving a multiplexing gain,
it is still modest in comparison to the leap from deterministic to stochastic
network calculus [98]. Therefore, we use a blind multiplexing model. Thus,
no assumptions are made about the scheduling algorithms such as GPS,
EDF, and FIFO. Further scheduling traffic, and service models have been
investigated, for example, in [25, 30, 31, 37, 46, 47, 48, 49, 52, 56, 70, 86, 89,
96, 98, 106, 128, 135, 149, 151].

In the following, we classify the stochastic network calculus according to
the random systems description in [46]. There, Ciucu describes a random
system and their statistical envelopes either as random processes, see [34,
92, 152] or as non-random functions as in [25, 149].

In the first case, time-variance is embedded in bivariate functions, whereby
these functions are interpreted as random processes.

In the second case, invariant functions are used to encounter the variabil-
ity of random systems as a probabilistic bound.

2.2.1 Random Processes

We start the consideration of random processes in stochastic network calcu-
lation by recalling equation Eq. (2.2), whereD(t) > infτ∈[0,t] {A(τ) + S(τ, t)}.
Here, the arrivals A(τ, t), service S(τ, t) and departures D(τ, t) are bivariate
deterministic functions with the properties as seen so far and as stated, e.g.,
in [11, 40]. There, the authors Chang and Cruz noted that the time-varying
system with the bivariate deterministic functions could be extended to the
stochastic case as random processes where statistical envelopes of arrivals
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and services are derived. The envelopes are bounds that may be violated
with a defined probability. In [37, 40], the author used the concept of a dy-
namic server where the service is a random process to derive the departure
bound from Eq.(2.2). To achieve equality, the system requires linearity [96].
An example that satisfies the definition of a dynamic server and leads to
equality is a loss-less, work-conserving server with time-varying capacity.
In comparison, a non-linear system is obtained by a first-in-first-out (FIFO)
scheduler [101], i.e., it satisfies only >. However, results for services with
bivariate random processes are shown in [35, 56]. Here, random processes
are analysed, and stationary bounds are derived. In order to classify the
results, we first need a better understanding of what stationarity is.

Definition 1 (Stationarity). A process S(t) is stationary if it holds that

P[S(τ, t) 6 x] = P[S(τ+ δs, t+ δs) 6 x], (2.18)

for any τ, t, δs > 0. In other words: If the probability of observing a certain
amount of service in an interval does not depend on the time instances
themselves, but only on the length of the interval.

The stationary bounds thus lead to a situation similar to the deterministic
case, although time-dependent processes are investigated.

In the next chapter 3, we will present some first results for time-dependent
services in a deterministic scenario. The extension to the stochastic case is
shown in the chapter 5 where non-stationary systems are shown.

2.2.2 Non-Random Functions

In the section for deterministic network calculus, we have already seen
that the derivation of deterministic envelopes in section 2.1.2 could lead
to an overly pessimistic estimate, especially when the number of arrivals
is not known or tends to infinity. Then some single packets can lead to
an extremely bad envelope function for Eq. (2.12). To overcome this, we
introduce now statistical envelopes as non-random functions, a stochastic
extension of Eq. (2.12) and present a method of construction. We call E(t) a
statistical envelope of the arrivals A(t) if it holds ∀t > τ > 0 that

P[A(τ, t) > E(t− τ) + σA] 6 ε(σA) (2.19)

where ε(σA) is the violation probability, also referred as overflow profile
with parameter σA. Depending on the choice of E(t), σA and ε(σA) we
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distinguish between several models, such as the Exponentially Bounded
Burstiness (EBB) model by Yaron and Sidi [149, 150], the Stochastically
Bounded Burstiness (SBB) model by Starobinski and Sidi [135], the general-
ized Stochastically Bounded Burstiness (gSBB) [87, 151] and the effective
envelopes by Boorstyn et.al [25]. To get deeper insights see [46, 86]. For
E(t−τ) = ρA(t−τ) we have an extension of the affine leaky-bucket function
from Eq. (2.15).

Note that the formulation in Eq. (2.19) holds for a fixed τ, only. Therefore,
it is also referred as a point-wise violation probability. In order to obtain
guarantees for the complete path we formulate Eq. (2.19) as follows

P[∃τ ∈ [0, t] : A(τ, t) > E(t− τ) + σA] 6 ε(σA) (2.20)

and call it a sample path envelope. Note, that ε(σA) in Eq. (2.19) and
Eq. (2.20) are different. Alternatively, we can rewrite Eq. (2.20) as

P[A(τ, t) 6 E(t− τ) + σA, ∀τ ∈ [0, t]] > 1− ε(σA). (2.21)

The advantage is that we can use an equivalent formulation, which can be
estimated for all and not just a specific value of τ. More precisely, we have

P

[
sup
τ∈[0,t]

{A(τ, t) − E(t− τ)} > σA

]
6

t∑
τ=0

P [A(τ, t) − E(t− τ) > σA] (2.22)

where we used the union bound to find an upper bound of the sample
path envelope. Note the similarities of the left hand side in Eq. (2.20) to the
backlog computation in Eq. (2.14). To get more information about point-
wise versus sample path envelopes and how to handle the sum in Eq.(2.22)
that might tend to infinity for t→∞ see [70, 73].

To construct such envelopes, we refer to Mao [106] and Fidler [70] where
two methods of construction are mentioned. The first one defines rate-
variance envelopes with the help of the central limit theorem, see [44, 89].
The second method uses moment generating functions (MGF) to construct
an envelope and is our method of choice.

In the following, we choose σ = 0 which corresponds to the effective
envelopes from Boorstyn et.al [25]. Moreover, to clarify that the statistical
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arrival envelope has a relation to the violation probability ε we denote the
statistical arrival envelope as Aε(t) from now on. Hence Eq. (2.21) becomes

P[A(τ, t) 6 Aε(t− τ), ∀τ ∈ [0, t]] > 1− ε. (2.23)

For the arrivals we define the MGF as

MA(θ, t) = E[eθ(A(τ,τ+t))] (2.24)

where θ > 0 is a free parameter. Using Chernoff’s bound, see in the ap-
pendix and theorem 1 we obtain for E(t− τ) in Eq.(2.22) and θ > 0 the
following statistical envelope

P[A(τ, τ+ t) > Aε(t)] 6 e−θA
ε(t)MA(θ, t) (2.25)

where it holds for every τ > 0 by assuming stationarity.
A method of construction for the statistical envelope Aε(t) we find in

[47, 98]. Following similar steps for the arrival envelope, we have that

Aε(t) =
1

θ(t)
(ln MA(θ, t) + ρt− ln(ρε)) (2.26)

is a statistical envelope function of A(t) in Eq. (2.25) that provides the
sample path guarantee from Eq. (2.20) and Eq.(2.21) for all t > 0. Above,
ε ∈ (0, 1] is a probability of overflow, and θ(t) > 0 and ρ ∈ (0, 1/ε] are
free parameters where ρ is referred to as the slack rate. The derivation is
similar to Eq.(5.6). Note, that for a computationally efficient implementation
θ(t) is a time-variant parameter, which allows to optimize θ(t) for each t,
individually. A backlog bound follows immediately by substituting Aε(t−τ)
for A(τ, t). Thus, Eq.(2.5) becomes

P[B(t) 6 sup
τ∈[0,t]

{Aε(t− τ) − S(τ, t)}] > 1− ε. (2.27)

Next, we give a concrete example for a statistical arrival envelope and
present results for the backlog. Let us reconsider the example from the sec-
tion about deterministic network calculus, where we used a deterministic
pattern for the packet sizes in a video that arises in each time-slot with
probability one. As already mentioned, some applications tolerate losses,
e.g., video streaming. Hence, we relax the assumption that in a discrete
interval of length t, the probability of a successful packet arrival is one. In
other words, in each time-slot, the probability of a packet arrival is α ∈ [0, 1],
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which is an independent Bernoulli trial. Consequently, the number of ar-
rivalsN(t) in the complete interval is binomially distributed with parameter
α. So, we can interpret α as an average arrival rate. Further, we do not have
deterministic packet sizes anymore, which is reasonable, for example, for
radio channels with changing characteristics. We assume independent and
identically distributed (iid) packet size Y(i) for i = 0, 1, 2, . . . which follow a
geometric distribution with parameter β ∈ (0, 1]. Using basic stochastic, we
obtain 1/β as the average packet size. Thus, this example is a discrete-time
M|M|1-queue equivalent of a Poisson process. We will use it throughout
the theoretical part of this work as our stochastic arrival process, where the
quotient α/β has the interpretation of the system’s utilization if we assume
a constant rate service R = 1.

Now, to compute the statistical arrival envelope Aε(t) from Eq. (2.26) we
need the moment generating functions from Eq. (2.24). From [125] we can
derive the corresponding MGFs for N(t) and Y(i), i.e.,

MN(ϑ, t) = (αeϑ + 1−α)t

and

MY(θ) = βeθ/(1− (1−β)eθ)

for θ ∈ [0,− ln(1−β)). Then, we get the cumulative arrivals for an interval
(τ, t] from A(τ, t) =

∑N(t)
i=N(τ)+1 Y(i). Thus, it is a doubly stochastic process

with MGF

MA(θ, t− τ) = MN(ln MY(θ), t− τ) (2.28)

[73, 125] so that by insertion of MN(ϑ, t) and MY(θ) we obtain

MA(θ, t) =
(

αβeθ

1− (1−β)eθ
+ 1−α

)t
. (2.29)

Clearly, MA(θ, t) = (MA(θ, 1))t as A(t) has iid increments.
In Fig. 2.3 we show the backlog changes over time for Eq. (2.27) and the

time-invariant service curve from (2.16) with parameter T = 100 and R = 1.
For the arrival process we choose α = 0.09 and β = 0.3 such that we obtain
a utilization of 0.3. We optimize θ and ρ ∈ (0, 1/ε] numerically, where the
overflow probability is set to ε = 10−9.
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Figure 2.3: Progression of the transient backlog over time. The time-invariant
service model remains in the worst-case bound whereas the shape of
the (1− ε)-quantile decreases.

For the time-invariant service curve from the deterministic network
calculus Eq. (2.16) we see that the backlog bound increases until the service
starts at t = 100. Afterwards it remains at this value, although the service
rate with R = 1 is significantly larger than the utilization a/β = 0.3. This is
because the univariate function depends only on the width of the interval
(τ, t] and not to the corresponding time instances such that the sup in
Eq. (2.27) is non-decreasing in time t. Consequently, the backlog considers
the transient phase at the beginning, but remains at the worst-case due
to the univariate service function as in the example of the deterministic
network calculus and Fig.(2.2).

Due to our choice of a discrete Poisson arrival process, we can compare
the results with an exact solution. This exact solution is obtained from a
discrete Markov chain. Here, the arrivals at time t are represented by the
state of the Markov chain K(t) > 0 and starts in state K(0) = 0. Hence,
the initial state distribution P(0) is the column vector (1, 0, 0, . . .). For all
other states t > 0 the state distribution follows from the repeated insertion
of P(t) = Q(t)P(t− 1), where Q is the transition matrix. For all t 6 T no
service is available and the state depends only on the arrivals which follow a
binomial distribution, such that Q is assembled with the probabilities qi,i =
1− α, qi,i+1 = α, and all other qi,j = 0. For t > T the service started, i.e.,
the chain makes a transition to qi,i−1 = (1−α)β, qi,i = (1−α)(1−β)+αβ,
qi,i+1 = α(1−β), and qi,j = 0 else. Letting t→∞ it tends to the geometric
state distribution [16], i.e.,

P[K(∞) = k] =
β−α

β(1−α)

(
α(1−β)

(1−α)β

)k
.
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Now, we can compute the backlog distribution from

P[B(t) = b] =
∞∑
k=1

P[B(t) = b|K(t) = k]P[K(t) = k], (2.30)

where b > 0. Note that the sum starts at k = 1, since for the case that b = 0

P[B(t) = 0] = P[K(t) = 0].
As seen from Eq. (2.30) the backlog in state k is conditional and follows

from the sum of k geometric random variables that is negative binomial,
i.e., for k,b > 0

P[B(t) = b|K(t) = k] =
(
b− 1

k− 1

)
βk−1(1−β)b−k.

We included the backlog progression for a (1 − ε)-quantile of B(t) in
Fig. 2.3. As before, the backlog increases until t = 100. In contrast to
the time-invariant service, the backlog declines and converges towards a
stationary backlog bound that is significantly lower in comparison to the
worst-case bound. The deviation of the two curves, e.g., for t = 100 in Fig. [?
] is due to inequalities such as the union and the Chernoff bound, which
are used to derive the Poisson envelope. Especially for the Poisson process,
the deviation can be reduced using tighter martingale bounds [45]. We will
introduce and compare them in Sec. 5.2.2. Results and their envelopes for
other non-trivial arrival processes can be obtained, e.g., for self-similar, long-
range dependent [100, 122], and heavy-tailed processes [100]. The advantage
of comparing bounds with an exact solution is that we get an estimate of the
accuracy for the bounds. This knowledge helps us to evaluate thresholds
for cases where no exact solution is available.

However, as seen from the backlog progression of the exact solution
in Fig. 2.3, the performance bounds for statistical arrival envelopes and
deterministic, time-invariant service curves does not match this pattern
and remains in the worst-case. Therefore, we present some of the state-
of-the-art results in the next chapter. Among other things, we show the
extension of the network calculus to time-variant services, and additionally,
the ε-effective service curve, which is able to handle random services.

In the cases described so far, we know the services in the system. Scenarios
in which they are unknown, we have not yet investigated. To close this gap,
we also present measurement methods, e.g., in the field of network calculus,
that can estimate the service for unknown systems. We also explain their
disadvantages in the calculation of time-variant service curves.



3
R E L AT E D W O R K

In this chapter, we present, among other things, well-chosen parts of the
current literature to analyze systems and estimate their services in a time-
dependent way.

So far, in the previous chapter, we have introduced basic principles in
network calculus. As can be seen in Chap. 2, the standard concepts, such
as the deterministic network calculus in Sec. 2.1, take transient phases into
account, but they remain in the worst-case and therefore, cannot accurately
predict system progress due to time-invariant functions.

The extension to the stochastic network calculus in Sec.2.2 either assumes
stationarity as in Sec.2.2.2 or uses stationary bounds to handle time-variant
random processes, see Sec. 2.2.1. Further references are [31, 37, 47, 48, 68, 70,
73, 86, 98]. So, the currently shown theory is not able to take a similar course
as the exact solution from the example in Fig. 2.3. We therefore present
in Sec. 3.1 a time-dependent extension of the service curves in network
calculus, which follows the desired progression. For the stochastic network
calculus, this extension is accompanied by the removal of the assumption
of stationarity, which is also dealt with in Chap. 5. In Sec.3.1.3 we also
introduce the ε-effective service curve. It is a statistical service curve that is
able to consider time-variant, random processes, but under the assumption
of stationarity.

All these considerations have one major thing in common, namely that we
already know the service in the network. If we relax this assumption, i.e., if
we have only a little or no knowledge at all about the service of the system,
the question arises how to find an adequate service curve. In Sec. 3.2, we
introduce methods, which are state-of-the-art in estimating random services
in (cellular) networks. Further, we show limitations of these methods in
measuring the service in a time-dependent way. Please note that we present
among others results from [19].

3.1 time-variant network calculus

To find time-dependent performance bounds, we relax the assumptions
of time-invariance in the network calculus as in [11, 38, 39, 40], where a

28
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time-varying min-plus system theory, is developed. Note that the service
is not necessarily deterministic and can also be a stochastic process. For a
summary see [37].

Following the description from the introduction of Chap. 2, we have non-
negative, non-decreasing, bivariate functions to model arrivals, departures,
and services, such that for a time-varying lower service curve S(τ, t) Eq. (2.2)
holds. The service curve is called exact, if and only if the system is min-plus
linear. Thus Eq. (2.2) holds with equality. Examples for a min-plus linear
system for bivariate functions are work-conserving links with a time-varying
capacity, see [37, 38, 40].

Generally, the system description by bivariate functions is less intensively
studied than for an univariate system. An overview of algebraic properties
we find, e.g., in [37, 38, 40]. Taking a closer look at the properties of time-
invariant functions , see Appendix, we find many similarities. For sure,
the backlog is still the vertical and the delay the horizontal deviation of
arrivals and departures. Hence, the performance bounds from Chap. 2 are
still valid. Further, if a system has a certain constraint on the delay and
backlog Chang [37] solved the problem for time-varying services. The upper
envelope functions for the arrivals have to be adjusted to bivariate functions.
In this sense, E(τ, t) is an upper arrival envelope of the arrivals if it holds
for all t > τ

A(τ, t) 6 E(τ, t). (3.1)

Clearly, due to the equal sign A(τ, t) itself is an upper envelope [68]. Simi-
larly, it holds for the service. Then, we still have the property of associativity.
As in equation Eq. (2.11) it is allowed, for example, to convolve two systems
in series with the service curve S1(τ, t) and S2(τ, t) into a single system
S(τ, t), i.e.

S(τ, t) = inf
ν∈[τ,t]

{S1(τ,ν) + S2(ν, t)} = S1 ⊗ S2(τ, t).

Having n systems in series the iterative convolution yields Snet(τ, t) =

S1⊗S2⊗ ...⊗Sn(τ, t). Apart from these and other similarities, there are also
characteristics that no longer apply, e.g., that the convolution of bivariate
functions is no longer commutative, i.e.,

S1 ⊗ S2(τ, t) 6= S2 ⊗ S1(τ, t).
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Furthermore, we will see later on that the assumption of additivity, i.e.
S(t) = S(τ) + S(τ, t) ∀t > τ > 0, is generally not correct. In Chap. 6, we
will examine the effects of the assumption of the additivity and how it
influences the measurement methods.

3.1.1 Deterministic Network Calculus

For the moment we extend the theory of deterministic network calculus
and consider deterministic, time-dependent, bivariate service curves. In
Sec. 2.1.2 we introduced the latency rate service function in Eq. 2.16, that
is a univariate, and so time-invariant function. We are able to extent these
functions to time-variance, where the latency is transient. This is done as
described in our works [19], by the following bivariate function, where for
all t > τ > 0 we have

Stlr(τ, t) =


0, t 6 T

R(t− T), t > T , τ 6 T

R(t− τ), t > T , τ > T

or equivalently

Stlr(τ, t) = R[t− max{τ, T }]+ (3.2)

where [x]+ = max{0, x} is the non-negative part of x. To emphasize the
transient latency, we abbreviated by superscript tlr.

For numerical evaluation we use the same example as in Sec. 2.2.2. Hence,
we use the same Poisson arrival process, with α = 0.09, β = 0.3 and
ε = 10−9. It enables us to compare the results with the exact solution from
Fig. 2.3. For the service, we choose again a latency of T = 100 and a rate
of R = 1. This applies both to the time-invariant Sslr and the time-variant
service Stlr.

In Fig.3.1 we show the results for the time-variant, time-invariant and
the (1− ε)-quantile of the Markov-chain, where the progression for the
exact (1− ε)-quantile and the time-invariant bounds are the same as in
Fig.2.3. As discussed earlier, the time-invariant, stationary latency function
cannot recover the shape of the exact solution, whereas the function with
the transient latency does. Again, the deviation is due to the bounds which
are used to derive the envelope function of the Poisson process.
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Figure 3.1: Progression of the transient and stationary backlog over time. The
time-variant service model correctly estimates the shape of the (1− ε)-
quantile.
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0 200 400 600 800 1000
0

50

100

150

200

250

time

ba
ck

lo
g

T

(b) T = {0, 25, . . . , 150}
Figure 3.2: Impact of arrival rate α and sleep cycle T on the backlog quantile.

The importance of dealing with such transient effects is shown in Fig. 3.2.
Here, we use the same parameters as in Fig. 2.3 and Fig. 3.1 and illustrate
the influence of the arrival rates α for T = 100 and the influence of the sleep
cycle T for α = 0.15 on the backlog quantile.

We are particularly interested in the maximum overshoot compared to
the steady-state solution and the time needed to reach the steady-state
backlog within a defined range, i.e., the relaxation time, see [141].

As can be seen in Fig. 3.2a, the impact of α is significant on the transient
overshoot and the relaxation time. Interestingly, the maximum overshoot
occurs after T for large α, i.e., after the service has already started, or
strictly speaking during the transition from binomial to geometric state
distribution. Intuitively, this can be explained by the fact that after time T
there is a certain probability that the service is smaller than the arrivals,
see Sec. 2.2.2. By increasing T for fixed α, we investigate the relaxation
time, where Fig.3.2b illustrates that it can reach values that are an order of
magnitude greater than T .
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3.1.2 Stochastic Network Calculus

Considering the time-variance with stochastic processes, we find several
interesting works in recent years [33, 66, 112, 113]. Similarly as our example
for the deterministic network calculus it is also based on [37, 38, 40].

For example, in [112] Nikolaus et al. derived transient end-to-end delay
bounds where the underlying topology is a sink tree with one flow of
interest (foi), and n cross traffic flows. After simplifying the topology into
a tandem system, arrival bounds for each cross flow are computed at the
point where it crosses the foi. Then, with MGFs and Hölders inequality delay
bounds for separated flow analysis (SFA) and pay multiplexing only once
(PMOO) are derived. Comparing SFA and PMOO for arrivals of the form
of fractional Brownian motion (fBm) yields that PMOO outperforms SFA in
case of sink tree topologies since SFA applies more the Hölder inequality.
Further, the authors showed that for long-range dependent (LRD) traffic,
i.e., the Hurst parameter is between (0.5, 1), and by increasing the stochastic
dependence of the flows, the delay bounds get worse, e.g., by using the
Hölder inequality.

Another example of time-dependent end-to-end delay bounds is pre-
sented in [33]. Here, Champati et al. analyzed the transient behavior of
arrival traffic traversing multi-hop wireless networks. Novel wireless tran-
sient bounds (WTB) are compared with state-of-the-art transient bounds
(SOTAT). As a result, WTB provides tighter bounds than SOTAT, which
cannot adequately deal with the short-term variability of wireless service.
Additionally, a new theoretical model for queuing is introduced. It can
handle an initial buffer greater than zero and random services, such as the
Rayleigh-block fading channel model.

In comparison to this thesis, these papers consider the violation proba-
bility for end-to-end delay bounds to find closer bounds, whereas in our
work, the transient behavior over the entire time is investigated to find new
insights, e.g., into the implementation of the DRX mode in cellular networks
and the consequences for backlog and delay. Note that in [18] the author
extended our results from [19, 20] to an analysis of backlog and delays,
where the service and additionally the arrivals are time-variant. It is the
first work that considers time-dependent arrivals and services at once. It
substantiates our idea to investigate processes in a time-variant way.
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3.1.3 ε-effective Service Curve

As described earlier in Sec. 2.2.2, one way to handle time-variant services in
stochastic network calculus is done by the use of stationary functions. In
[31] the authors derived the so called ε-effective service curve. It belongs
to the effective envelopes by Boorstyn et al. [25] where we set σ = 0 on
the right hand side in Eq.(2.20). We define a lower service envelope of the
system Sε(t) that satisfies

P[S(τ, t) > Sε(t− τ)∀τ ∈ [0, t]] 6 1− ε (3.3)

for t > 0, where ε > 0 is a probability of underflow. Generally, a system
has an ε-effective service curve if a service envelope Sε(t) > 0 such as in
Eq. (3.3) provides for all t > 0 the service guarantee

P

[
D(t) > inf

τ∈[0,t]
{A(τ) + Sε(t− τ)}

]
> 1− ε, (3.4)

where ε is the violation probability [31]. In [101], the authors Liebeherr,
Fidler, and Valaee have accomplished to transfer the estimate of the available
bandwidth into the min-plus theory, where the service curve expresses the
available bandwidth. Furthermore, a measurement based rate scanning
method is introduced. It can represent the available bandwidth for different
time-scales, which is usually given as a single value.

Even though Eq. (3.4) can handle the stochastic nature of systems, it
cannot represent in a time-variant way. The reason is that the ε-effective
service curve only considers the time interval’s length and not the time
instances itself. Regarding our earlier example, the backlog’s progression
would be similar to the deterministic case, due to the same arguments. In
order to obtain a behavior as for Eq. (3.2) we will extend the definition of
Eq. (3.4) in Chap. 5.

3.2 measurement-based estimation methods

So far, we have used a model-based approach to analyze transient effects in
networks. In the current literature, it is possible in some places to specify
bounds, e.g., for backlog and delay in networks with respect to time-variant
perspectives. An example is given in Sec 3.1, where we have shown a
time-variant service curve of sleep planning.
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However, we assumed that we are completely informed about the in-
ternals of the system. To identify the service curve of a system without
knowledge of its internals, we now investigate measurement methods that
estimate them. The resulting service curve can be used to evaluate sleep
scheduling implementations in cellular networks, as in Sec. 7.4.2.

To emphasize that this topic has become more important in recent years,
we refer to [10, 15, 27, 32, 79, 101, 103, 105, 140].

Generally, we estimate the service curve of an unknown system by analyz-
ing the arrivals and departures. We distinguish between grey-box [15, 27]
and black-box [103] approaches. A black-box contains no information at
all about the system and usually assumes only linearity and stationarity.
Contrary, a grey-box contains further information, this could be the as-
sumption that the service curve has the shape of a latency-rate function so
that only the two parameters, latency, and rate have to be determined from
measurements.

Further classifications can be undertaken, such as the distinction between
deterministic and time-invariant models as in [10, 15, 26, 27, 79, 101, 121,
139] and stochastic models of stationary systems, see [32, 103, 105, 140].

As an example, in [139], the authors introduced a deterministic and time-
invariant method to estimate a service curve which is similar to a latency
rate function consisting out of a rate and an error term. In this grey-box
the parameters rate and error term are determined for the Guaranteed Rate
(GR) [77] and Packet Scale Rate Guarantee (PSRG) model [22]. For the GR
model, we obtain the j-the departure packet dj by

dj 6 VFTj + Eerror, (3.5)

where Eerror is an error term and VFTj the j-th Virtual Finishing Time
which is defined for j > 1 as

VFTj = max{aj, VFTj−1}+
lj

r
. (3.6)

Here, aj is the arrival time of packet j with the corresponding packet length
lj while the server has a rate r. Note that initially, VFT0 = 0. For a server
with a constant rate of r, the error term Eerror is interpreted as how late the
server is. Knowing the arrivals aj and the departures dj, the rate r is then
computed as the maximum throughput over backlog periods. The error
term Eerror is calculated by Eerror = Θ− Lmin

r , where Θ is the maximum
latency in each burst period and Lmin the minimum packet length.
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Contrary to that, Cetinkaya et al. [32] allocated resources with real-time
performance requirements in a stochastic, black-box model using admission
control criteria at the egress to compute mean service curves.

Besides the service identification in network calculus much research has
been done in a familiar topic named the available bandwidth estimation.
Here, the aim is to find the long-term average of the unused capacity in
networks.

This can be done by passive or active measurements. Passive measure-
ments [32, 101] use the given traffic to observe the departures and find
an estimate. Therefore, all such methods highly depend on a parame-
ter that is not under control. Active measurements has the advantage of
choosing the probe traffic on its own. Typical probes are packet pairs that
measure the gap of the two packets at the ingress and compare it at the
egress [136]. Packet trains, where a sequence of constant bit rate traffic is
send [10, 27, 83, 101, 103, 105, 108, 111], and packet chirps that use one
packet train and increase the rate over time [101, 120]. We will discuss the
question according to the right probing traffic in Chap. 6 and present a
minimal probe, that is the optimal probe under certain conditions.

Anyway, the authors Bredel and Fidler analyzed in [28] the different
types of probing methods and illustrated that in wireless networks rather,
the fair share is measured than the available bandwidth.

For cellular networks, the authors in [132] explained that in, e.g., LTE
networks, the resource allocation is done by the base station where several
data packets can be concatenated or segmented to a transport block size
(TBS) which is determined from the radio signal condition by the eNodeB.
Thereby, the base station computes the TBS in a predefined transmission
time interval (TTI) with a length of 1ms. Hence, the inter-packet gaps highly
depend on the resource allocation at the base station and can be in the order
of magnitude of 10−6 seconds or additionally, the time of one or more TTIs.
As a consequence, the available bandwidth estimation out of packet pairs
by computing the dispersion of the inter-packet gap is inaccurate.

The authors then describe an active measurement method called "train
of packet groups"(TPG), which is based on pathQuick [114]. In pathQuick,
packets are sent in a packet train with a fixed inter-packet gap while
increasing the packet size within this train. The available bandwidth is then
calculated for the first packet size, where the end-to-end delay increases by
using this packet size and dividing it by the inter-packet gap. In [132], the
method is adapted to LTE networks, i.e., several packet groups are sent with
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an inter packet-group gap of TTI. Starting with a low number of packets
and small packet sizes in each group, the end-to-end delay is measured for
the last packet and compared to the first one. If the difference is less than
a TTI, so 1 ms, then the size of the packet group is less than the TBS, and
another packet is added until the maximum number of packets per group
is reached. Then, the packet sizes are successively increased, again, until
the end-to-end delay for the last packet is larger than a TTI in comparison
to the first packet. Finally, the available bandwidth is computed for the first
size of the packet group where the delay criteria is triggered, i.e., adding all
packet sizes in one group together and dividing it by one TTI.

Another method that can handle specific properties in mobile networks
is presented in [110]. Here, the authors describe a passive method that
estimates the maximum capacity that a UE could receive. Similarly, as
in [132], the packets are assigned to certain transport blocks by comparing
the inter-packet gaps. Unlike before, this algorithm averages the transmitted
data over two transmission blocks by carefully chosen the number of packets
and dividing it by the time of the last in comparison to the first packet of
this selected group of packets. At the end, the maximum overall estimation
is taken as the maximum capacity a user can get.

Comparing all these methods, they have in common. They seek to find a
single value for the available bandwidth or the maximum capacity or obtain
an univariate estimate of the form Sε(t− τ). Thus, a time-variant estimate
is clearly not possible.

In order to find a time-variant service description we consider the min-
plus algebra in network calculus, again. Here a service identification tries to
solve D(t) = infτ∈[0,t]{A(τ) + S(τ, t)} for S(τ, t). Because an inverse of the
infimum operator does only exists in special cases [101], but not in general,
it is not trivial to get an adequate solution for S(τ, t). To find time-variant
service curves, we present two known methods, rate scanning (Sec. 3.2.1)
and burst response (Sec. 3.2.2), for a measurement-based estimation of the
system’s service.

We explain the fundamental limitations of these methods to measure
transient effects accurately, which motivates us to build up a new theory and
measurement method to overcome these limitations in the next chapters.
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3.2.1 Rate Scanning

First, we consider the rate scanning method from [101, 105] that fulfills the
definition of the ε-effective service curve (3.4). It is derived in min-plus [104]
and max-plus [103, 105] algebra.

In [104] Luebben, Fidler and Liebeherr extended the rate scanning method
from [101] and formulated it in max-plus algebra. In max-plus algebra, the
sum (or integral in the continuous case) becomes a maximum and the
multiplication a plus sign. More information about the max-plus algebra
can be found in [17, 37, 88, 97]. In comparison to the min-plus formulation
of the rate scanning method, the advantage is that the estimate can directly
be obtained by packets timestamps at the sender and receiver.

From the measurement-based approach, the authors are able to estimate
an ε-effective service curve out of the steady-state delay percentiles of the
used probing traffic. A min-plus formulation of the max-plus ε-effective
service curve from [104] is shown in [105]. Further, the authors proved a
connection from the available bandwidth to the left-over service process
in network calculus. It lays the foundation for a bandwidth estimation or
system identification of networks with random service, e.g., in wireless and
cellular networks.

Here, we will concentrate on the min-plus formulation of the method.
For the system identification it uses constant rate probes A(t) = rt for a
set of rates r ∈ R. We obtain the backlog B(r, t) at time t for the rate r
from the departures D(t), i.e., B(r, t) = rt−D(t). Due to a random service
B(r, t) becomes a random variable, too. Repeating the measurements for
every arrival rate r ∈ R we are able to compute quantiles of the backlog
distribution. Generally, the quantile is defined as

Xξ = inf{x > 0 : P[X 6 x] > 1− ξ}. (3.7)

Hence, we get the backlog quantiles by

Bξ(r, t) = inf{x > 0 : P[B(r, t) 6 x] > 1− ξ} (3.8)

where ξ is the quantile’s violation probability. By letting t→∞ the backlog
for the rate r becomes independent to the time t and tends towards the
steady-state distribution Bξ(r). Finally, the ε-effective service curve from
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the rate scanning method is obtained by taking the maximum out of all
probing rates r ∈ R, such that it holds that

Sεrs(t) = max
r∈R

{rt−Bξ(r)}, (3.9)

where we used the union bound and get the violation probability ε =∑
r∈R ξ. The subscript rs indicates the relation of the ε-effective service

curve to the rate scanning method. Due to the union bound and the sum
of the single violation probability ξ, ε increases by the number of rates.
Therefore, the set of probing rates R has to be selected wisely.

With the help of tests, we find a maximum probing rate as in [101, 105],
the spacing between the rates can be, e.g. linear or geometrical.

Note that Eq. (3.9) has the form of a Legendre-Fenchel transform of the
backlog [101] and has various useful properties, also in the network calcu-
lus [72, 79]. Since the results lead generally towards convex function [123] it
is also known as convex conjugate. The convexity has the property that the
Legendre-Fenchel transform is its own inverse. In contrast, for non-convex
functions a convex hull of the function can be obtained [123].

However, due to the stationarity of the rate scanning method, we are not
able to follow transient effects, because of the same reasons as seen before.
In Sec. 6.1 we adapt the method and extend it to a time-variant description
and show further limitations which are based on the convex form of the
service curve.

3.2.2 Burst Response

Next, we introduce the burst response method. The basic idea, we already
stated in Chap. 2 where we compared the min-plus with the system theory.
We formulated that under min-plus algebra the service curve is the response
of the system and that sending the neutral element δ(t) of min-plus con-
volution results in the service S(t) [96], where δ(t) is defined as in Eq.(2.9),
i.e.,

δ(t) =

0 for t = 0,

∞ for t > 0.
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Sending δ(t) as probe, i.e., A(τ) = δ(t) corresponds to a burst probe and
reveals the service S(0, t) for all t > 0 since

D(t) = inf
τ∈[0,t]

{δ(τ) + S(τ, t)} = S(0, t). (3.10)

Under the assumption of additive service processes as defined in [86, p. 6,7]
and Appendix Def.3 a time-variant service S(τ, t) can be obtained for all
t > τ > 0 as

S(τ, t) = S(0, t) − S(0, τ). (3.11)

The advantage of this method is that we can identify the service S(t) out of
the departures D(t).

Apart from these useful features, the burst probing method has limita-
tions. For certain systems, such as FCFS multiplexer, burst probes cause
non-linear behavior. Further, the burst traffic preempts other traffic, which
leads to an overly optimistic estimate of the service [101]. Moreover, the
intuitive and basic assumption of additive service processes [86], which is
crucial for this method, is not generally justifiable.

Despite these limitations of burst probing, we will carry out further
investigations and present results showing the deviation from additivity. It
can be demonstrated that, e.g., a stationary latency leads to non-additive
services. This is an essential point since a stationary latency can be viewed
as a one-way delay. Because of the fact that every real system has a OWD
larger than zero, we conclude that the estimate from burst probing always
leads to an overestimation of the service.

However, we are able to overcome these problems and present a new
measurement-based estimation method consisting out of two phases in
which burst probes play an important role.
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P R O B L E M S TAT E M E N T

In order to analyze, optimize, and to further develop computer networks,
much research is done. By doing so, a lot of effects occur that influence
the performance. Some of them have a temporary impact. Examples are
the TCP slow-start and, in particular, the choice of the initial congestion
window [109], convergence of routing protocols [75], and the DRX mode in
cellular networks to save battery power of mobile devices [21].

Regarding the DRX mode, the research focuses on topics such as the
optimization of the DRX cycle lengths versus battery drain [23, 119, 144,
156, 157]. To model the DRX states, one way is to use semi-Markov chains to
analyze the stationary mean wake-up times [23, 144, 148, 156, 157]. Further,
it is possible to obtain stationary queuing delays for the DRX by using an
M|G|1 model with vacations [147]. Similar to these examples, many works
assume stationarity to obtain steady-state solutions.

A framework that works without the assumption of stationarity is the
deterministic network calculus [37, 52, 96]. It uses the min-plus theory
from Sec. 2.1. Here, the worst-case scenarios are considered by replacing
time-variant and non-stationary systems with time-invariant linear bounds.
This allows an analysis of transient phases, with the disadvantage that it
stays in the maximum backlog and delay. An extension to time-variant
systems is possible, as presented in Sec. 3.1. It already shows the advantage
of investigating systems in a time-variant way. More precisely, in Fig. 3.1 we
compare time-variant with time-invariant systems. By having deterministic
service curves, we demonstrate that only the time-variant description of the
service curve follows the exact solution, whereas the time-invariant remains
in the worst-case backlog.

Depending on the parameters for the arrivals and service curve, the
difference between these curves may even increase. Fig. 3.2 illustrates this
and shows the impact of, e.g., the arrival rate α on the maximum overshoot
after the wake-up time T and that the relaxation can reach values that are a
magnitude larger than T .

Although these results look promising, in practice, a constant service rate
with deterministic wake-up times is not realistic, e.g., due to the random
nature of wireless channels and random wake-up times [21].

So, the stochastic network calculus takes time-variant systems also into
account, but either assumes stationary random processes or uses station-
ary bounds [46], see Sec 2.2. The extension to time-dependent stochastic
processes is also considered in the current literature where, e.g., end-to-
end delay bounds for wireless multi-node networks and sink tree topolo-
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gies [33, 112, 113] are derived. The progression of the backlog and delay
over time is not considered.

Therefore, we address the problem of:

1.) Analysis of transient phases in systems with random wake-up times and random
services.

To do this we extend the theory from deterministic to stochastic network
calculus and in particular the ε-effective service curve from Sec. 3.1.3 to a
bivariate and therefore time-dependent formulation. Due to the fact that
certain properties of the min-plus algebra, which hold in the univariate case,
are not valid anymore with bivariate functions, such as the commutativity,
makes the derivation and analysis of these systems more complex.

By finding a solution for this challenge, we are able to follow accurately
backlog and delay progressions over time, even in the stochastic case. This
way, we can, e.g., model and simulate non-stationary service characteristics
that help us to investigate DRX wake-up times in cellular networks, which
enables us to find new insights into the behavior of such networks. Knowing
the stochastic features of the service enables us to illustrate the impact of
random wake-up times on the transient overshoot and relaxation times
for backlog and delay. As we will see in section 7.5, the relaxation time
can take several seconds for transmission technologies such as EDGE and
HSPA. Therefore, possible video applications are likely to be lagged, which
reduces the user experience.

Since we cannot assume to have knowledge about the service every time,
we also consider methods that estimate the service curve from measure-
ments out of probe traffic.

On the one hand, we have methods that seek to find the available band-
width [132] or maximum capacity [110] of, e.g., cellular networks. Even
though these methods provide promising results, they are not able to esti-
mate non-stationary service characteristics, since we only get a single value
for the available bandwidth and maximum capacity, respectively.

On the other hand we know methods from network calculus, such as
the rate scanning method that can represents the available bandwidth
as a service curve in network calculus [101] and estimates the unknown
service for systems with random service [103, 105]. Although estimates
over time-intervals are obtained, a major drawback to find a non-stationary
service curve is because of, e.g., the assumption of stationarity and as we
will see in Sec. 5.2.1 transient phases can be analyzed by the non-convex
part of service curves, whereas the rate scanning always provides convex
functions. Similarly, we have the burst response method as in Sec. 3.2.2
that yields time-variant service descriptions but overestimates the service
in case of non-zero OWDs and preempts other traffic. Therefore, we have
that a measurement-based estimation of non-stationary service curves is
not present in the current literature such that we address the problem of:
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2.) Conservative estimate of non-stationary service curve in systems with unknown
service.

To meet this challenge, we have to solve the problem of the overestimation
and find a function that is non-convex by construction. Thereby, we have
to find a suitable probe traffic. Intuitively, a probe that is too small will
provide little information about the service, since the observed departures
are limited by the arrivals. On the other hand, a probe that is too large will
deteriorate the estimate, e.g., in the extreme case of a burst probe [101].

We present our solution by introducing the novel method of minimal
probing. This method consists of two steps. In the first step, a minimal
probe is estimated, which is optimal under certain conditions. In the second
part, we use the minimal probe to estimate a conservative and time-variant
service curve.

We show the advantages in Sec. 7.4, where we perform a first proof-of-
concept study in cellular networks to demonstrate the applicability. We
show maximum overshoots and massive relaxation times of up to several
seconds in these networks. When examining the question of the optimal
traffic to be sent into the network, we come up with the minimal probe that
eliminates the transient effects so that stationary buffers and latencies are
achieved as quickly as possible, taking into account the characteristics of,
e.g., the DRX implementations.
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T H E N O N - S TAT I O N A RY S E RV I C E C U RV E

As seen so far, dealing with time variance is not trivial. Despite the fact that
new results have occasionally been produced in recent years, in stochastic
network computation, time-dependent formulations are usually either re-
placed by stationary envelopes or modeled by random processes including
stationary bounds, see [46].
One example for the use of stationarity we have already seen in Sec. 3.1.3
where we introduced the ε-effective service curve, which uses a univariate
description of the service process.
In the following, we extend the ε-effective service curve to a formulation
that takes transient changes into account. As in [11, 40], we consider time-
variant systems using bivariate instead of univariate functions and obtain
non-stationary characteristics of the service. Based on this, we are able to
model systems with non-deterministic sleep scheduling, such as in cellular
networks with their stochastic wake-up times of UE’s to establish a connec-
tion after entering an idle state, see [21]. Due to this non-stationary service
curve model, we get insights into transient phases and can analyze the
occurring effects. It is an excellent basis to investigate the impact of sleep
scheduling on the service quality, where we are especially interested in
measures such as the transient overshoot and the relaxation time until the
steady-state is approached, see Fig. 3.2.

In this chapter, we introduce regenerative processes and the derivation
of the non-stationary service curve that includes a method of construction.
We introduce an example for systems with random wake-up times and
show results for the delay and backlog. We present a representation of the
service curve that explains how we are able to analyze transient changes. It
allows us later to analyse the effects of sleep scheduling in cellular networks
from measurements. Please note that we present among others results
from [19, 20].

5.1 regenerative service processes

Contrary to the current literature, that makes the assumption of stationary
service processes, we assume throughout this work that the service is a
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regenerative process [126] with regeneration points P = {P0,P1,P2, . . . }
where P0 = 0 and Pi < Pi+1 for all i > 0. We divide the service S(τ, t) into
segments separated by the regeneration points, i.e., for all 0 6 τ 6 t 6

Pi+1 − Pi and i ∈ N0 we have

Si(τ, t) = S(τ+ Pi, t+ Pi). (5.1)

Thus, between the ith and (i+ 1)th regeneration point the service is de-
scribed by Si(τ, t). So, for all i, j, x > 0 and 0 6 τ 6 t 6 min{Pi+1 −
Pi,Pj+1 − Pj} we have that Si(τ, t) are statistical replicas in the sense that

P[Si(τ, t) 6 x] = P[Sj(τ, t) 6 x]. (5.2)

Hereinafter we omit the index i due to Eq. (5.1) where we assume that
t 6 Pi, which means that the next regeneration point is spaced sufficiently
apart.

5.2 non-stationary service curves

Now, we consider S(τ, t) as a non-stationary random service process and
derive a time-variant, i.e., bivariate lower service envelope function Sε(τ, t)
that conforms to

P[S(τ, t) > Sε(τ, t), ∀τ ∈ [0, t]] > 1− ε, (5.3)

for all t > 0, where ε ∈ (0, 1] is a probability of underflow. Here, the
essential difference to the state-of-the-art envelope functions [31], such
as the ε-effective envelope from Eq. (3.4) and the arrival envelope from
Eq. (2.25) is the use of bivariate instead of univariate functions, which is
crucial for modeling transient phases, see Sec. 2.1.2 and 2.2.2.
By adding A(τ) on both sides, we obtain

P[A(τ) + S(τ, t) > A(τ) + Sε(τ, t), ∀τ ∈ [0, t]] > 1− ε, (5.4)

where Eq. (5.4) makes a sample path argument for all τ ∈ [0, t]. Thus, it
holds that

P
[

inf
τ∈[0,t]

{A(τ) + S(τ, t)} > inf
τ∈[0,t]

{A(τ) + Sε(τ, t)}
]
> 1− ε.
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Substituting the definition of the min-plus convolutionD(t) = infτ∈[0,t]{A(τ)+

S(τ, t)} leads to

P[D(t) > A⊗ Sε(t)] > 1− ε, (5.5)

for all t > 0. We refer to Sε(τ, t) as non-stationary service curve. It extends
[31] and has the capability to analyze transient changes over time. Note
that for univariate functions the convolution is commutative, whereas for
bivariate functions the convolution is bivariate , again, but not commutative,
i.e., S1 ⊗ S2(τ, t) 6= S2 ⊗ S1(τ, t).

In order to derive a non-stationary service curve Sε(τ, t) we use similar
steps as for the arrival envelope from Eq. (2.26) and obtain

Sε(τ, t) = −
1

θ(τ, t)
(ln MS(−θ, τ, t) + ρ(t− τ) − ln(ρε)), (5.6)

where θ(τ, t) > 0 and ρ ∈ (0, 1/ε] are free parameters and MS(−θ, τ, t) =
E[e−θS(τ,t)] is the negative MGF, respectively, Laplace transform.

Derivation of Eq. (5.6)

For the derivation of Eq. (5.6) we start with Eq. (5.3) and use the comple-
mentary formulation

ξ := P[∃τ ∈ [0, t] : S(τ, t) < Sε(τ, t)] 6 ε.

We show with basic steps from the stochastic network calculus [47, 98] that
ξ 6 ε, which proves that Sε(τ, t) from (5.6) satisfies Eq. (5.3).

It holds for a set of free parameters θ(τ, t) > 0, that

ξ 6
t−1∑
τ=0

P[S(τ, t) < Sε(τ, t)] 6
t−1∑
τ=0

eθ(τ,t)Sε(τ,t)MS(−θ, τ, t),

where we used the union bound and additionally the Chernoff bound,
i.e., for a random variable X and every θ > 0, it follows that P[X 6 x] 6

eθxMX(−θ). Since we have S(t, t) = 0 and Sε(t, t) 6 0 by definition the case
τ = t is omitted, here. Now, by insertion of Sε(τ, t) from Eq. (5.6) it follows
that

ξ 6 ρε
t−1∑
τ=0

e−ρ(t−τ) = ρε

t∑
υ=1

e−ρυ 6 ρε
∫∞
0

e−ρydy = ε,
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where each summand is bounded by e−ρυ 6
∫υ
υ−1 e

−ρydy since e−ρυ is
decreasing. Finally, letting t → ∞ and solving the integral completes the
proof that ξ 6 ε for all t > 0.

5.2.1 Random Sleep Scheduling

The consideration of the deterministic cases from Chap. 2 and Chap. 3 in
addition to the fact that the amount of time it takes for a UE to leave the
idle state and establish a connection in LTE’s DRX-mode is random [21],
substantiates the need of a time-variant theory with a random wake-up time
T in the network calculus. Note that it is also possible to use Semi-Markov
models as in [23, 144, 148, 156, 157] to analyze mean wake-up delays.

Using the concept of non-stationary service curve, we consider a work-
conserving system with random sleep scheduling and random service
increments Z(t) for t > 0. We get the service process for all t > τ > 0 as
S(τ, t) =

∑t
υ=τ+1 Z(υ). As usual, S(t, t) = 0 for all t > 0.

The system regenerates in the moment it enters a sleep state and wakes
up after a random amount of time T > 0. Hence, it follows for every time
instances t 6 T that Z(t) = 0. For the interval (τ, t] and t > T we have to
distinguish whether τ 6 T or τ > T . Thus, we have to count the number of
usable time-slots after T , leading to

U(τ, t) = [t− max{τ, T }]+.

To get the non-stationary service curve from Eq. (5.6) the MGF of U(τ, t) is
needed. In our case, it consists out of three terms

MU(θ, τ, t) =

eθ(t−τ)P[T 6 τ] +

t∑
υ=τ+1

eθ(t−υ)P[T = υ] + P[T > t], (5.7)

and correspond to the cases described above. Let’s assume iid service
increments Z(t) for t > T with MGF MZ(θ). Then, the MGF of the service
process is

MS(θ, τ, t)=E
[
(MZ(θ))U(τ,t)]=MU(ln MZ(θ), τ, t). (5.8)

In order to present numerical results, we model T as a geometric random
variable with parameter p, where P[T = υ] = p(1− p)υ, and Z(t) for t > T
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Figure 5.1: Non-stationary service curves of random sleep scheduling.

following a basic wireless outage model [73] as iid Bernoulli trials with
parameter q. Due to the memorylessness of the processes, solutions for
this specific case may also be derived, e.g., from a Markov model. We note
that the service curve in Eq. (5.6) is not limited to memoryless processes.
However, it enables us to compute certain reference results in Chap. 6.

Now, consider the three terms in Eq. (5.7). The probability for the first
term follows from the geometric random variable, immediately. So, P[T 6

τ] = 1− (1− p)τ+1. The second one is

t∑
υ=τ+1

eθ(t−υ)P[T = υ] = eθtp

t∑
υ=τ+1

(
e−θ(1− p)

)υ,

where we substitute y = e−θ(1− p) and compute the geometric series as

t∑
υ=τ+1

yυ =
yτ+1 − yt+1

1− y
.

Next, we need the MGF of the Bernoulli service increments, which is
MZ(θ) = qeθ + 1− q. Inserting the terms into Eq. (5.8) yields the MGF for
the service process MS(θ, τ, t). Finally, putting it into Eq. (5.6) results in a
valid representation of a non-stationary service curve.

In the following, we present first results for the non-stationary service
curve. The parameters are p = 0.1 and q = 0.5. Hence, the mean stationary
service rate is E[Z] = q = 0.5 and the mean transient latency is E[T ] =
(1− p)/p = 9. For the service curves we choose ρ = 10−4 and ε = 10−6 as
the probability of underflow, where θ(τ, t) is optimized numerically.
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In Fig. 5.1 Sε(τ, t) is shown to illustrate the effects of sleep scheduling on
the service curve by considering two different perspectives on the repre-
sentation of Sε(τ, t). In Fig. 5.1a, we fix τ and compute the corresponding
service curve. For small τ, we are close to the last regeneration point. There-
fore, the probability that the service has not started yet is immense. For sure,
by increasing the width of the interval t− τ, the service increases, as well.
Moreover, the influence of the transient phase that occurs at the beginning
of each regeneration point decreases with increasing τ. That makes sense
since we extend the distance to the last regeneration point and reduces so
the impact of the wake-up time T . Further, we observe that for large τ, the
service Sε(τ, t) converges towards a stationary service curve. It is marked as
the red curve. It is the same service increment process as before but without
sleep scheduling.

Fig. 5.1b shows the service curve, again. Here, we change the perspective,
i.e., we do not fix τ but t, instead. In this case, τ is variable. A small width
of the intervals means that we increase τ for a fixed t. It corresponds to a
decreasing influence of the transient sleep phase. Interestingly, we observe
a non-negligible part at the beginning of the curve where the service is zero,
e.g., for t = 100 and t = 200. This is due to the outages of the Bernoulli
service increments process. The fact that the stationary service curve has
the same progress confirms the statement.

Besides the outages on the left-hand side of the service curve, we observe
a non-convex shape on the right-hand side, where τ decreases and tends to
zero. It leads to a higher impact of the sleep scheduling and, therefore, of
the transient phase. We emphasize that the non-convex part is essential to
analyze transient phases. Thus, from here on, we prefer the presentation
from Fig. 5.1b to display a non-stationary service curve.

5.2.2 Performance Bounds & improved Arrival Envelopes

Apart from the fact that we are able to show the transient part of the
service curve in Fig. 5.1b, it additionally matches with the way we compute
statistical performance bounds by fixing t and evaluating, e.g., the backlog
for all other τ ∈ [0, t] and taking the maximum out of it, see Eq. (2.27). To
present performance bounds for the non-stationary service curve we choose
the Poisson arrivals from Sec. 2.2.2 and Sec.3.1.

There, we derived an arrival envelope based on the union bound and
Chernoff’s theorem and compared the backlog for time-variant and invari-
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ant services with an exact solution. We observed that only the time-variant
service could follow the progress of the exact solution in Fig. 3.1. Addi-
tionally, we noticed a non-negligible difference between these two curves,
which is due to the use of union and Chernoff bound. To find a better ap-
proximation, we use a technique from [85, 118] applying Doob’s martingale
inequality [61, Theorem 3.2, p. 314]. In particular we have for a martingale,
(see Appendix Def.7) Xn and η > 0 that

P
[

sup
n

Xn > η

]
6 E[X0]η−1. (5.9)

Then, an arrival envelope for processes with iid increments is

Aε(t) =
1

θ
(ln MA(θ, t) − ln ε), (5.10)

where MA(θ, t) = E[eθA(τ,τ+t)] = (MA(θ, 1))t for τ, t > 0 is the MGF of
A(t) and θ > 0 is a free parameter.

Derivation of Eq. (5.10)

Lets take the envelope

Aε(t) = ρAt+ σA.

where ρA > 0 is the rate and σA > 0 the burstiness parameter. In order to
get ρA and σA, we insert Aε(t) into Eq. (2.23) and derive for θ > 0

1−P[A(τ, t) 6 ρA(t− τ) + σA, ∀τ ∈ [0, t]]

=P
[

max
τ∈[0,t−1]

{A(τ, t) − ρA(t− τ)} > σA

]
=P
[

max
τ∈[1,t]

{
eθ(A(t−τ,t)−ρAτ)

}
> eθσA

]
,

where A(t, t) = 0. Now, we consider for fixed t > 0 the process U(τ) =

eθ(A(t−τ,t)−ρAτ), for τ ∈ [0, t]. Then, it follows that

U(τ+ 1) = U(τ)eθ(A(t−τ−1,t−τ)−ρA)

= U(τ)eθA(t−τ−1,t−τ)e−θρA .
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Figure 5.2: Progression of the transient backlog over time. Comparison of the
Poisson arrival process obtained by Chernoff’s vs. Martingale bound
in relation to the (1− ε)-quantile of the exact solution. The Martingale
bound clearly improves the estimate.

By using the property of independence the conditional expectation becomes

E[U(τ+ 1)|U(τ),U(τ− 1), . . . ,U(1)]

=U(τ)E[eθA(t−τ−1,t−τ)]e−θρA .

Moreover, we have for iid increments E[eθA(t−τ−1,t−τ)] = MA(θ, 1), that
E[U(τ+1)|U(τ),U(τ−1), . . . U(1)] = U(τ) is a martingale if eθρA = MA(θ, 1).
Therefore, we get for the parameter ρA = ln MA(θ, 1)/θ such that for t > 0
we have ρAt = ln MA(θ, t)/θ. By using Doob’s martingale inequality from
Eq. (A.2) and the reformulation from [85] it follows for non-negative mar-
tingales U(τ) for τ > 1 that

xP
[

max
τ∈[1,t]

{U(τ} > x

]
6 E[U(1)].

With E[U(1)] = 1 and x = eθσA we have that

P
[

max
τ∈[0,t]

{A(τ, t) − ρA(θ)(t− τ)} > σA

]
6 e−θσA .

Finally, we let ε = e−θσA such that we obtain σA = − ln ε/θ.
For a comparison of the two different arrival envelopes, i.e. the first

envelope which uses the union bound and Chernoff’s theorem and the
second one that is based on Doob’s martingale inequality, we use the same
example as in Sec. 3.1 and Fig. 3.1. More precisely, we have the same Poisson
arrival process, with parameter α = 0.09, β = 0.3 and ε = 10−9 and the
deterministic transient service curve (3.2) with latency T = 100 and a rate
of R = 1.
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As seen from Fig. 5.2, both bounds provide good estimates and follow
the shape of the (1− ε)-quantile for the time-variant service very well. The
deviation to the exact solution is due to the inequalities that are invoked
in the derivation of the envelopes. We observe that the use of Doob’s
martingale inequality is much closer at the exact solution and, therefore,
clearly improves the bound from Chernoff’s theorem.

As a consequence, in the following we use the arrival envelope obtained
from Doob’s inequality rather than Chernoff’s bound.

Performance Bounds

Next, we present performance bounds for non-stationary service curves
Sε(τ, t) and statistical arrival envelopes Aε(t− τ) ∀t > τ > 0. A statistical
backlog bound follows with Eqs. (5.5) and (2.21) as

P
[
B(t) 6 sup

τ∈[0,t]
{Aε(t− τ) − Sε(τ, t)}

]
> 1− 2ε (5.11)

and a first-come-first-served delay bound as

P
[
W(t) 6 inf

{
w>0 : sup

τ∈[0,t]
{Aε(t− τ) − Sε(τ, t+w)} 6 0

}]
> 1− 2ε, (5.12)

where the ε for Aε(t − τ) and Sε(τ, t) is the same, such that we obtain
an error probability of 2ε. Intuitively, the backlog and delay bound are
the maximal vertical and horizontal deviation of Aε(t − τ) and Sε(τ, t),
respectively. To visualize this, we added the Poisson arrivals to Fig. 5.1b.
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Figure 5.3: Transient backlog and delay of random sleep scheduling.
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Now, we choose for the arrival process α = 0.06, β = 0.3, and ε = 10−6.
Then, in Fig. 5.3, we show for different parameters of the service p and q the
backlog and delay for this doubly stochastic system, where the long-term
utilization can be computed as α/(βq). As before, the free parameters θ
and ρ are optimized numerically. First of all, we observe that the transient
overshoot and relaxation time, i.e., the time it takes to reach steady-state, is
immense in comparison to the stationary case, which is the same stochastic
process but without any wake-up time and is marked as the red curve. In
this example the mean transient latency is computed by E[T ] = (1− p)/p

and only depends on p. Since p ∈ (0, 1] E[T ] increases with decreasing p.
Clearly, the higher the transient latency, the longer the relaxation time, i.e.,
the time it takes to reach stationarity.

Now, we take a deeper look into the transient behavior. We choose p = 0.1
and vary only the service rate q, where the mean stationary service rate
is E[Z] = q. In Fig.5.4, we present the results for the backlog and delay.
We observe that for both bounds, the performance becomes worse for a
decreasing service q, while p is constant. Or vice versa if we look at the
delay in Fig. 5.4b, we notice that as q increases, the transient overshoot
becomes smaller and smaller, with the maximum tending to the origin
at t = 0. For the backlog in Fig. 5.4a an increasing value of q leads to
a reduction of the transient overshoot and, therefore, to faster relaxation
times.

The effect of different parameters of p for fixed q = 0.9 is shown in
Fig. 5.5. Here, a higher value of p tends to the stationary progress as in
Fig. 5.3.

As a consequence, both parameters have a high impact on the perfor-
mance bounds.
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Figure 5.4: Transient backlog and delay of random sleep scheduling with parameter
p = 0.1 and q ∈ [0.4, 0.5, . . . , 0.9]. For increasing service rates q the
transient overshoot and relaxation times reduces significantly.
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Figure 5.5: Transient backlog and delay of random sleep scheduling with parameter
q = 0.9 and p ∈ [0.3, 0.4, . . . , 0.9]. For decreasing wake-up times the
transient overshoot and relaxation times reduces significantly.



6
M E A S U R E M E N T- M E T H O D S

In order to analyze the transient behavior of systems with sleep scheduling,
we derived a model-based approach in Sec. 5.2. There, we have full knowl-
edge of the system’s arrivals and services. In real networks, however, this
might not be valid. For example, in cellular networks, we cannot guarantee
to know anything about the system’s internals. Thus, we expect a black-box
and only assume linearity. We already discussed measurement methods
in black-box and grey-box systems in Sec. 3.2. To identify the system’s
service curve, we use the measurement methods from Sec. 3.2, i.e., the rate
scanning and burst probing method where we adapt the first one such
that we can estimate non-stationary service curves for transient phases,
too. We show further limitations of the two methods, which are due to the
non-convex shape and super-additivity of the services. To overcome these
limitations, we design in Sec. 6.4 a new probing method, consisting out of
two steps. In the first step, it determines the shape of a suitable probe. We
prove that this probe is minimal under certain conditions and lead secondly
to a conservative service curve estimate. Please note that we present among
others results from [19, 20].

6.1 rate scanning

We start with the rate scanning method from Sec. 3.2.1 and [101, 105]. We
modify it such that the definition of a non-stationary service curve Eq. (5.5)
is fulfilled. As before, we send constant rate probes A(t) = rt for a set of
rates r ∈ R and calculate the backlog B(t) from B(t) = supτ∈[0,t]{r(t− τ) −

S(τ, t)}. Thus, we also have the lower bound

S(τ, t) > r(t− τ) −B(t) ∀τ ∈ [0, t]. (6.1)

In comparison to the related work we do not use a quantile (3.7) of the
stationary backlog Bξ(r), but instead the transient version Bξ(r, t) at time t,
where Bξ(r) and Bξ(r, t) indicates the dependence to the rate r. Inserting
Bξ(r, t) in Eq.(6.1) yields the form from Eq. (5.3), such that it holds

P[S(τ, t) > r(t− τ) −Bξ(r, t), ∀τ ∈ [0, t]] > 1− ξ.

54



6.1 rate scanning 55

It follows with the union bound ∀t > τ > 0 that

Sεrs(τ, t) = max
r∈R

{r(t− τ) −Bξ(r, t)} (6.2)

is a non-stationary service curve as in Eq. (5.5) with ε =
∑
r∈R ξ. The

subscript rs shows the relation of the service curve to the rate scanning
method.

Next, we evaluate this method. We use the same example of random
sleep scheduling from Sec. 5.2.1 with identical parameters p = 0.1 and
q = 0.5. We select ten uniform distributed rates from 0.05 to 0.5, i.e.,
r ∈ {0.05, 0.1, . . . , 0.5}. We choose 0.5 as maximum rate since the stationary
service rate is 0.5, due to q = 0.5. Hence, a larger rate does not lead to more
information. Because of the union bound in the derivation of the method ε
increases with every rate and thus the error probability. For each rate we
perform 105 repeated experiments and obtain the same amount of backlog
samples. Then, for each rate r we compute a backlog quantile Bξ(r, t) for
ξ = 10−4. Thus, the overflow probability is ε = 10−3 since ε =

∑
r∈R ξ.

For t = 200 Fig. 6.1 shows the ten linear segments obtained by each of
the probing rates r ∈ R (dashed lines). Taking the maximum results in the
estimate Sεrs(τ, t). Also, we added as a reference an analytical upper bound
and an analytical service curve to the figure. If a function overshoots the
upper bound for any τ ∈ [0, t] the definition of the service envelope (5.3)
is violated. We now compute the bound from a Bernoulli service incre-
ment process with parameter q. As before, it starts after a geometrically
distributed time T . For the interval [τ, t] an upper bound of the service is
derived as the (1− ε)-quantile of a binomial distribution with parameters
t− max{τ, T } and q, where the number of trials t− max{τ, T } is a random
variable, too. For comparison, we added a second analytical service curve.
Again, it follows from the binomial distribution but makes a sample-path
argument using the union bound in addition. It can be seen as the lowest
expected progression but without being a provable lower bound.

From Fig. 6.1 it is unambiguous that the estimate of the service curve
from the rate scanning method cannot follow the pattern of the analytical
results. The reason lies in the way the method is constructed. By taking
the maximum overall rates r ∈ R, it cannot recover the non-convex parts
as it is fundamentally limited to a convex hull by construction [101]. In
other words, taking the point-wise maximum out of a set of linear functions
results in a convex function. In summary, we can say that the method is not
suitable for analyzing transient phases.
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Figure 6.1: Service curve estimates compared to analytical results. The estimate
from rate scanning is the maximum of linear rate segments (dashed
lines). By construction it can only recover a convex hull.

6.2 burst response

The second method we want to investigate is the burst response method.
We already introduced it in Sec. 3.2.2. There, we described that sending the
canonical probe for the min-plus theory [96], which is the burst function
δ(t) from Eq. (2.9) yields the service S(0, t). As a reminder, in min-plus
algebra, the burst function takes the role of the Dirac delta function and is
the neutral element of min-plus convolution. Thus, for all t > 0 the service
S(0, t) is obtained by sending a burst probe A(τ) = δ(τ), i.e.,

D(t) = inf
τ∈[0,t]

{δ(τ) + S(τ, t)} = S(0, t). (6.3)

Then, for additive service processes we can compute the service in the
interval (τ, t] immediately from the departures as S(τ, t) = D(t) −D(τ).
Hence, with Eq. (6.3) we have

S(τ, t) = S(0, t) − S(0, τ), (6.4)

for all t > τ > 0, see [86, p. 6].
In order to obtain a stochastic service curve we refer Ω as the set of

all feasible sample-paths Dω(t) for all ω ∈ Ω. Using the assumption of
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additivity (6.4) we obtain for each ω ∈ Ω the service process from the burst
response (6.3) as

Sω(τ, t) = Dω(t) −Dω(τ)

for all τ ∈ [0, t]. Next, we select a subset of the sample-paths Ψt ⊆ Ω where
we fixed t > 0. We discard the worst-case sample-paths as in Eq. (6.6) so it
holds with probability P[Ψt] > 1− ε. Then, we define

Sεbr(τ, t) = inf
ψ∈Ψt

{Sψ(τ, t)}, (6.5)

such that for all τ ∈ [0, t] and all ψ ∈ Ψt it is true that Sψ(τ, t) > Sεbr(τ, t).
Since P[Ψt] > 1− ε the service curve Sεbr(τ, t) satisfies Eq. (5.3) and so is a
non-stationary service curve that conforms to Eq. (5.5).

For sure, in practice, the number of repeated measurements is finite,
and so the number of feasible sample-paths Ω with the corresponding
departures Dω(t) at time t > 0. For a fixed t > 0, we select the minimal
sample-path φ as the one that achieves the minimum

Smin(τ, t) = min
ω∈Ω

{Sω(τ, t)} (6.6)

for τ ∈ [0, t] most frequently. So, let φ = arg maxω∈Ω{Xω}, where

Xω =

t−1∑
τ=0

1Sω(τ,t)=Smin(τ,t),

for all ω ∈ Ω, with indicator function 1(·), which is one if the arguments
is true and zero otherwise. We remove this sample-path φ and obtain the
remaining set Ψt = Ω\φ. Then, we repeat the steps described above as
long as P[Ψt] > 1− ε. In other words, for every τ ∈ [0, t] we choose the
sample-path ω ∈ Ω which has the lowest service in the interval (τ, t]. The
sample-path which attains the minimum the most we remove from the set
Ω. We repeat this procedure depending on how many sample-paths we
want to remove. At the end the non-stationary service curve estimate is
obtained from Eq. (6.5) for all τ ∈ [0, t].

For the example from the previous section and Fig. 6.1 we present a
service curve estimate for burst probing with timestamps t = 200, 300 and
400 in Fig. 6.2. We use the same parameters, i.e. the number of repeated
experiments is 105 with p = 0.1, q = 0.5 and ε = 10−3. Again, with analyti-
cal upper bounds and analytical reference service curves. In comparison to
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Figure 6.2: Service curve estimates compared to analytical results. Burst probing
can estimate non-convex service curves and performs close to the
analytical upper bound.

the rate scanning, the burst probing performs close to the analytical upper
bound and has the same progression. Hence, it estimates the non-convex
part of the service and is therefore suitable to analyze transient effects.

However, as mentioned from the related work section 3.2.2, the burst
probing has some major drawbacks. In particular, one basic and intuitive
assumption for the construction of the method, namely additive service
processes [86], is not guaranteed in general. Basically, Eq. (6.4) would give
us an exact service estimate for additive services. For sub-additive service
processes we would have a conservative service estimate S(τ, t), where
a function f(s, t) is called sub-additive if f(s,u) 6 f(s, t) + f(t,u) for all
u > t > s > 0. Whereas sub-additivity is not an issue we observed, e.g., from
the previous example, that the services are super-additive, i.e., f(s,u) >

f(s, t) + f(t,u) for all u > t > s > 0. Hence, using Eq. (6.4) may result in an
overestimation of the service S(τ, t) since S(τ, t) 6 S(0, t)−S(0, τ). Note that
an additive function is super-additive, as well, but not the other way around.
In order to quantify the difference from additivity for an super-additive
function f(s, t), we define

∆(s,u) := f(s,u) − inf
t∈[s,u]

{f(s, t) + f(t,u)}. (6.7)

as the maximal deviation from additivity.
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Figure 6.3: Service curve estimates of deterministic sleep scheduling. Latency-
rate service curves with a transient latency, with a stationary latency,
and with both are compared. The transient latency equals 20 and the
stationary latency 10. In the case of the transient latency solely, the
latency-rate service curve is additive, and burst probing recovers the
exact result. In contrast, in the case of a stationary latency, the service
curve is super-additive, and burst probing overestimates the service
curve. Minimal probing (see Sec. 6.4) provides a corresponding lower
estimate that matches the service curve exactly in case of additivity.

6.3 super-additive service processes

In the following, we want to explain the impact of super-additive functions
on a deterministic case-study, which has the advantage that additional
effects such as the outages in the Bernoulli increment process as in Fig. 5.1b
do not influence the observations.

For the analysis we choose the deterministic, stationary latency rate
function Sslr(τ, t) from Eq. (2.16) and the transient latency rate function
Stlr(τ, t) from Eq. (3.2), respectively. Note that we used transient latency
services for the stochastic case in Fig. 6.2. For this scenario we have shown
that burst probing provides a good estimate and verifies that these functions
are additive. However, if a stationary latency is added to the service as
in Sslr(τ, t) we can guarantee super-additivity processes but not a strict
additivity, anymore. To see this, let’s compute Sslr(0, τ) + Sslr(τ, t) = R(t−
2T), while Sslr(0, t) = R(t− T) for t > τ+ T and τ > T . Taking the difference
as in Eq. (6.7) yields ∆(τ, t) = RT for t > τ+ 2T .

To visualize our observations, we plot the transient, the stationary latency,
and a combination of both services in Fig. 6.3, which are labeled as analytical
service curve. There, we select a transient latency of T = 20, a stationary one
of T = 10 and a rate R = 1. For all cases, we present the service curves, as in
Fig. 5.1b. Hence, we fix t = 100 and increase the interval t− τ, i.e., reducing
τ. In Fig. 6.3a, we show the effects of deterministic sleep scheduling with
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a transient latency. For large intervals where t− τ > 80, i.e., τ < 20, we
observe a flat end of the curve, which corresponds to no additional service
in this region. This means that the transient latency which occurs for the
first 20 time-slots influences the service. We mark this part with tl in
Fig. 6.3a.

The stationary latency, which is appropriate to model propagation delays,
has an impact on all time-intervals. Thus, for all τ. It has the effect of a
right shift in Fig. 6.3b. We marked that region with sl. Fig. 6.3c shows both
latencies and their corresponding effects, together.

Next, we want to compare the analytical service curves with the estimates
obtained from the burst response method. It can be seen, that in case of a
transient latency as in Fig. 6.3a the two curves fit perfectly together. That
means the burst response yields an exact estimate of the service. Thus,
the service is additive. If, nevertheless, stationary latency occurs, the burst
response overestimates the service, see Fig. 6.3b and similarly in Fig. 6.3c.
This is due to the super-additivity of services with stationary latencies. We
marked that region with ∆. Here, the assumption of additivity from Eq. (6.4)
erroneously allocates the stationary latency only to large intervals t− τ.

As already pre-announced, we will introduce a method that corrects this
overestimation. The method is also included in the figures and labeled as
minimal probing, see Sec. 6.4.

Note that, e.g., in cellular networks, we have, in general, both latencies.
On the one hand, the transient latency can be seen as the wake-up time and
time it takes for a UE to establish a connection to the base station. On the
other hand, the stationary latency is the propagation delay. Due to the fact
that the propagation delay causes the deviation to additivity and is always
greater than zero in production networks, it follows that the burst response
method consistently overestimates the service in practice.

Super-additivity of min and ⊗

In the following, we formalize two lemmas. They show that the ⊗ and
the min operator are super-additive and confirm additivity only in special
cases.
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Lemma 1 (Super-additivity of min).

Given two super-additive bivariate functions f(s, t) and g(s, t) for t > s > 0. The
minimum h(s, t) = min{f(s, t),g(s, t)} is super-additive.

Note that as a special case of lem. 1 is that the minimum of two additive
bivariate functions f(s, t) and g(s, t) for t > s > 0 is super-additive, but
in general not additive. To see this consider the following counterexample
where f(s, t) = t− s and g(s, t) = 2(bt/2c− bs/2c). Apparently f and g are
additive, however, h = min{f,g} is not.

Proof of Lemma 1

By definition of h, we have

h(s, t) + h(t,u)

= min{f(s, t),g(s, t)}+ min{f(t,u),g(t,u)}

6 min{f(s,u),g(s,u), f(s, t) + g(t,u),g(s, t) + f(t,u)}

6 h(s,u).

The super-additivity of f and g is used in the second line, whereas in the
third line we have that min{f(s,u),g(s,u)} = h(s,u) and min{h(s,u), x} 6
h(s,u) for any x.

Lemma 2 (Super-additivity of ⊗). Given two bivariate functions f(s, t) and
g(s, t) for t > s > 0 where f(t, t),g(t, t) = 0 for all t > 0. Define h(s, t) =

f⊗ g(s, t).

i. If f and g are super-additive, then h is super-additive.

ii. If f and g are additive and univariate, then h is additive.

Similarly as for the first lemma, it follows from Lemma 2 that the convo-
lution of two additive bivariate functions f(s, t) and g(s, t) for t > s > 0 is
super-additive, and additivity cannot be assumed in general.

Again, we consider as a counterexample the additive functions f(s, t) =
t− s and g(s, t) = 2(bt/2c− bs/2c), where h(s, t) = f⊗ g(s, t) = 2bt/2c− s
is not additive.

Note that for univariate functions Lemma 2 ii) extends a known result for
min-plus convolution of sub-additive univariate functions in [96, p. 142].
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Proof of Lemma 2

By definition of h, we have

h(s, t) + h(t,u) = f⊗ g(s, t) + f⊗ g(t,u)

= inf
τ∈[s,t]

inf
υ∈[t,u]

{f(s, τ) + f(t,υ) + g(τ, t) + g(υ,u)}. (6.8)

i) Given f and g are super-additive. From Eq. (6.8) we have

h(s, t) + h(t,u)

6 inf
τ∈[s,t]

inf
υ∈[t,u]

{f(s,υ) − f(τ, t) + g(τ, t) + g(υ,u)}

= inf
υ∈[t,u]

{f(s,υ) + g(υ,u)}+ inf
τ∈[s,t]

{g(τ, t) − f(τ, t)}

6 inf
υ∈[t,u]

{f(s,υ) + g(υ,u)}. (6.9)

In the first line, we estimated f(s, τ) + f(τ, t) + f(t,υ) 6 f(s,υ) due to the
super-additivity of f. In the second line, we rearranged the infima, and in
the third line, we estimated infτ∈[s,t]{g(τ, t) − f(τ, t)} 6 g(t, t) − f(t, t) = 0
since f(t, t),g(t, t) = 0 for all t > 0. Similarly, using the super-additivity of
g we derive from Eq. (6.8) that

h(s, t) + h(t,u) 6 inf
τ∈[s,t]

{f(s, τ) + g(τ,u)}. (6.10)

Combining Eq. (6.9) and Eq. (6.10) we obtain

h(s, t) + h(t,u) 6 inf
τ∈[s,u]

{f(s, τ) + g(τ,u)} = h(s,u),

which proves the super-additivity of h.
ii) For the special case of additive univariate functions f(s, t) = f(t− s)

and g(s, t) = g(t− s), that depend only on the difference t− s and not on
the absolute values of s and t, it follows that h(s, t) = f⊗ g(t− s) = h(t− s)
is also univariate. Using the additivity of f and g, Eq. (6.8) yields that

h(t− s) + h(u− t)

= inf
τ∈[s,t]

inf
υ∈[t,u]

{f(τ− s+ υ− t) + g(t− τ+ u− υ)}

= inf
σ∈[s+t,t+u]

{f(σ− s− t) + g(t+ u− σ)}

= inf
σ∈[0,u−s]

{f(σ) + g(u− s− σ)} = h(u− s)
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Figure 6.4: Network of n systems with random sleep scheduling in series. (a)

The network service process deviates from additivity. (b) Minimal
probing achieves small backlogs, corresponding to a high accuracy of
the estimate.

which proves the additivity of h.
Concerning the property of super-additivity these results lead to a second

exception which is noteworthy. It is about the computation of the end-
to-end service process Snet(τ, t) for networks of systems. Here, Snet(τ, t)
is obtained by the min-plus convolution of the individual systems and
their services Si(τ, t) for i = 1, 2, . . . n, see Eq. (2.11). Even though all Si

are additive, we have that Snet is only super-additive as in lemma 2 i).
Strict additivity holds only in special cases. Therefore, we cannot assume
that the service processes for tandem systems are additive. As before,
the burst probing method is too optimistic, since the estimate is com-
puted by Snet(τ, t) = Snet(0, t) − Snet(0, τ) where we only can guarantee
Snet(τ, t) 6 Snet(0, t) − Snet(0, τ).

Let’s connect the theory with an example. We choose the same random
service processes with random sleep scheduling and the same parameters as,
e.g., in Sec. 6.1 for 105 sample-paths. We consider a tandem of n = 1, 2, 3, 4
networks and compute for additive Si(τ, t) the network service process as
Snet(τ, t) = S1 ⊗ . . .⊗ Sn(τ, t). In Fig. 6.4a we show the distribution of the
relative deviation of Snet(0, 400) from additivity, i.e., ∆(τ, t)/Snet(τ, t). We
observe an additive service for n = 1, whereas we confirm a significant
deviation from additivity for n > 1.

6.4 minimal probing

As seen so far, it is not trivial to analyze transient phases for additive, non-
additive and non-convex service processes and find a valid estimate out of
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measurements. To overcome the limitations we have already discovered, we
are developing a new probing method. We will be able to analyze transient
service processes where we do not assume additivity or convexity. The
method consists out of two steps:

1. using the burst response as in Sec. 6.2 we find an upper bound of the
service, which leads us to a minimal probe.

2. the minimal probe is used to estimate a conservative non-stationary
service curve with a defined accuracy.

In addition to that, we show that the minimal probe is the perfect probe for
the system, i.e., any smaller or larger probe estimates only a lower bound
of the service. For an intensified discussion regarding the importance of
probe traffic, see in [101]. Moreover, minimal backlogging techniques for
stationary systems can be found in [140, 111]. Here, the transmission of
each probe packet triggers the generation of a new one.

Estimation using Arbitrary Probes

In order to accurately estimate the system’s service, the question of suitable
probes arises. In general we start with the assumption of arbitrary probes
A(τ) and consider a min-plus linear systems, such that Eq. (2.2) holds with
equality, i.e.,

D(t) = inf
τ∈[0,t]

{A(τ) + S(τ, t)} . (6.11)

Then, we have for all τ ∈ [0, t] that D(t) 6 A(τ)+ S(τ, t). Rearranging yields
for all τ ∈ [0, t]

S(τ, t) > D(t) −A(τ). (6.12)

By taking standard steps in network calculus, Eq. (6.12) can be reformulated
using the backlog B(t) instead of the departures D(t), such that for all
τ ∈ [0, t] it holds that S(τ, t) > A(τ, t) − B(t). Then, similarly as for the
derivation of Eq. (6.2) we use the backlog quantile. Thus,

Sε(τ, t) = A(τ, t) −Bε(t) (6.13)

is a non-stationary service curve as defined by Eq. (5.5), where Sε(τ, t)
has the same form as in Eq. (5.3). The backlog quantile is obtained from
repeated measurements.
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So far, we have not constrained the arrivals. The choice is important. As
an example see Sec. 6.1. Here, we used constant rate traffic, i.e., A(τ, t) =
r(t− τ) that produces a non-stationary service curve but cannot recover
transient changes due to the convex form of the service curve. Hence,
different probe traffic is needed.

Definition of Minimal Probe

To find suitable probe traffic to analyze transient changes over time, we
did not constrain the arrivals so far. The choice is highly non-trivial but
imminent since it affects the shape of the service curve, as seen for the rate
scanning method 6.1. Moreover, if we choose a probe that is too small, only
little information about the system is provided since the arrivals primarily
restrict the departures. The other way around, i.e., we choose a probe that is
too large, the service estimate will be deteriorated, with the same restriction
as in the extreme case of burst probing, see Sec. 6.2.

Now, to obtain the probe traffic that induces the true service of the system
from Eq. (6.12), we state the following lemma and define a necessary and
sufficient condition for a minimal probe.

Lemma 3 (Minimal Probe). Fix t > 0 and define the minimal probe

Amp(τ) = S(0, t) − S(τ, t), (6.14)

for τ ∈ [0, t]. Eq. (6.12) holds with equality if and only if A(τ) = Amp(τ) for all
τ ∈ [0, t].

Proof. In Eq. (6.11) we choose the minimal probe from Eq. (6.14) as arrivals.
Thus, we substitute Eq. (6.14) into Eq. (6.11) and obtain D(t) = S(0, t),
immediately. Then, we show that Eq. (6.14) is sufficient by inserting the
minimal probe into Eq. (6.12). Since D(t) = S(0, t), we get D(t) −Amp(τ) =

S(τ, t) for all τ ∈ [0, t].
In order to see that the probe from Eq. (6.14) is necessary, we change our

view on the probe and consider any other arrivals then the minimal probe by
adding or subtracting something from it. This means, we define the probe as
A(τ) = Amp(τ)± f(τ) where f(0) = 0 and ∃τ ∈ (0, t] : f(τ) 6= 0. It follows by
the same steps that D(t) −A(τ) = S(τ, t) + infυ∈[0,t]{±f(υ)}∓ f(τ) implying
that ∃τ ∈ [0, t] : D(t) −A(τ) < S(τ, t).

The significance of Lemma 3 is tremendous. It answers the question of
which arrivals we have to send into the network to utilize the system’s
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service optimally. However, since the minimal probe Amp(τ) depends on
the unknown departures and service, respectively, it is not possible to
generate it a priori. Therefore, we have to add a step to prise information
about Amp(τ). From scratch, we cannot assume anything about the system
and, in particular, about its service. Thus, sending an arbitrary probe traffic
is somehow gambling, e.g., due to the argumentation above about a too low
and large probe traffic, respectively.

Anyhow, ignoring the limitations of the burst response method, we
obtain information about an unknown system by sending a burst, such
that D(τ) = δ⊗ S(τ) = S(0, τ) and estimate Eq. (6.14) by Ãmp(τ) = S(0, τ)
for τ ∈ [0, t]. Note that tilde is used to make clear that Ãmp(τ) is an
approximation of the minimal probe Amp(τ), where the approximation is
exact in case of an additive service S(τ, t). Using the burst response method
and its stochastic estimate of a non-stationary service curve from Eq. (6.5),
an estimate for the minimal probe follows as

Ãmp(τ) = Sεbr(0, t) − Sεbr(τ, t), (6.15)

for τ ∈ [0, t]. As a remarkable indication, by construction of Sεbr(τ, t) from
Eq. (6.5) additivity cannot be assumed, see Lemma 1. Hence, the question
arises about the accuracy of the estimate, which will be answered hereafter.

Accuracy of the Estimates

So far, we send a burst and get an estimate of Ãmp(τ) for the minimal probe
where we do not know anything about the accuracy.

We start investigations regarding the accuracy with a time-variant and
deterministic system. Remembering Eq. (6.12), we obtain a lower estimate of
the service out of the arrivals A(τ) and departures D(t). Further, we get an
estimate for the minimal probe Ãmp(τ) = S(0, τ) from the burst response,
see Eq. (6.3). In Eq. (6.12) we replace the departures D(t) with the min-plus
convolution from Eq. (6.11). With arrivals Ãmp(τ) we have

S(τ, t) > inf
υ∈[0,t]

{S(0,υ) + S(υ, t)}− S(0, τ),

which is a lower bound of the service.
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Remembering the upper bound of the service for super-additive function
S(τ, t), we have S(τ, t) 6 S(0, t) − S(0, τ). Taking the difference of both
estimates yields that the service is bounded by an interval of width

∆(0, t) = S(0, t) − inf
υ∈[0,t]

{S(0,υ) + S(υ, t)}

Now, with the definition from Eq. (6.7) and substituting the service S(τ, t)
into it we get the maximum deviation from additivity of the service for
S(0, t). Next, we replace S(0, t) = Ãmp(t) and obtain

∆(0, t) = Ãmp(t) −D(t) = B(t). (6.16)

Hence, by sending Ãmp(t) as a minimal probe, the backlog B(t) at the end
of the probe is a measure of accuracy, which is the deviation of a super-
additive service process from additivity. Conversely, if the service S(τ, t)
is additive, then the lower and upper bound for S(τ, t) are equal and the
deviation is ∆(0, t) = 0. Ignoring the trivial case of a system with no service,
this would mean that sending Ãmp(τ) for additive services S(τ, t) ends up
with a backlog B(τ) that is zero during the entire probe. Due to the fact that
in practice the backlog includes all packets in-flight, this would imply that
the propagation delay is zero, which is impossible in real networks. Since
the propagation delay can be interpreted as the stationary latency in our
scenarios, it follows that the stationary latency is never zero. Remembering
that this latency causes the deviation of the service to additivity, we end
up that, apart from the trivial case, the service can never be additive in real
networks.

Next, we extend the investigations to the stochastic case. From Eq. (6.13)
we get a non-stationary service curve out of the arrivals A(τ, t) and a
backlog quantile Bε(t). Substituting the minimal probe from Eq. (6.15) we
have Sεmp(τ, t) = Ãmp(τ, t) −Bε(t). Since

Ãmp(τ, t) = Ãmp(t) − Ãmp(τ)

= Sεbr(0, t) − Sεbr(t, t) − (Sεbr(0, t) − Sεbr(τ, t))

= Sεbr(τ, t) (6.17)

where Sεbr(t, t) = 0, it follows for all τ ∈ [0, t] that

Sεmp(τ, t) = Sεbr(τ, t) −Bε(t). (6.18)
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Note, that the superscript ε in Eq. (6.18) is for Sεmp(τ, t), Sεbr(τ, t) and Bε(t)
is identical and depends on the backlog quantile as in Eq. (6.13). The
subscriptmp indicates that it is the non-stationary service curve, which
results from the procedure of minimal probing.

Thus, we find a conservative service estimate by correcting the possibly
too optimistic service estimate from burst probing by the backlog Bε(t) at
the end of the probe from minimal probing, which has been proven to be a
measure of accuracy. Therefore, we have a lower and an upper bound for
the service, i.e.,

Sεmp(τ, t) 6 S(τ, t) 6 Sεbr(τ, t). (6.19)

Now, we further inspect the backlog Bε(t) and start with the expres-
sion B(t) = supτ∈[0,t]{A(τ, t) − S(τ, t)}. By insertion of the estimate for
the minimal probe from Eq. (6.15) and Eq. (6.17), respectively, it follows
B(t) = supτ∈[0,t]{S

ε
br(τ, t)−S(τ, t)}. From Eq. (6.5) we know that Sεbr(τ, t) =

infψ∈Ψt{Sψ(0, t) − Sψ(0, τ)}. Thus, for any sample-path ϕ ∈ Ψt we get

Bϕ(t) = sup
τ∈[0,t]

{
inf
ψ∈Ψt

{Sψ(0, t) − Sψ(0, τ)}− Sϕ(τ, t)
}

6 sup
τ∈[0,t]

{Sϕ(0, t) − Sϕ(0, τ) − Sϕ(τ, t)}

= Sϕ(0, t) − inf
τ∈[0,t]

{Sϕ(0, τ) + Sϕ(τ, t)} = ∆ϕ(0, t).

Due to the definition of the deviation from additivity in Eq. (6.7) we con-
clude that Bϕ(t) is bounded by the maximal deviation of Sϕ(0, t) from
additivity. It follows with the same arguments as seen above that Bϕ(t) = 0
for all ϕ ∈ Ψt if S(τ, t) is additive. Since P[Ψt] > 1 − ε, it holds that
Bε(t) = 0. Thus, Sεmp(τ, t) is equal to Sεbr(τ, t), which means that in this
case the service estimate from burst probing Sεbr(τ, t) is minimal. The same
applies if S(τ, t) is sub-additive.

As already mentioned, we added the service estimate for minimal probing
in Fig. 6.3. Because additional effects, such as the outages from Sec. 6.3, are
excluded, we choose this deterministic case as our first example for this
method. Again, in Fig. 6.3a, we consider a system that has a service with
transient latency only. Here, the estimate of the minimal probe matches
the estimate of burst probing and an analytical reference, exactly. Thus, the
backlog for the minimal probe is zero, which corresponds to the case that
the service is additive. By adding a stationary latency to the service as in
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Figure 6.5: Service curve estimates of random sleep scheduling plus a stationary
latency. The estimate of minimal probing stays between the analytical
curves, whereas burst probing exceeds the upper bound in case of a
stationary latency.

Fig. 6.3b and 6.3c the estimate from minimal probing varies from the burst
response method. As in Sec. 6.3, the burst response is above the analytical
reference. Hence, burst probing is too optimistic and has to be corrected by
the minimal probing procedure. The correction can be done by sending the
estimate of the minimal probe Ãmp(τ) and measuring the corresponding
backlog at the end of the probe. Here, the backlog at the end of the minimal
probe is B(t) = 10 and is the deviation of the two methods, see Eq. (6.16).
Further, we conclude that the service is super-additive where the maximal
deviation from Eq. (6.7) is ∆(0, t) = RT = B(t).

Generally, the burst response shifts the stationary latency from the begin-
ning of the service curve. We marked this area with sl in Figs. 6.3b and 6.3c,
to the end of the curve. This way, it overestimates the service till the end.
In contrast, minimal probing correctly detects the stationary latency at the
region sl and matches the analytical curve until a region labeled with ∆ in
Figs. 6.3b and 6.3c. In this region, the minimal probe is flat and achieves a
lower bound with an accuracy of ∆(0, t), i.e., the backlog B(t) at the end of
the probe. In case a transient latency is present, the minimal probe correctly
identifies it by emulating the flat area at the end marked with tl.

After having a better understanding of the minimal probing procedure,
we extend our investigation to the stochastic case with random sleep
scheduling, as in Fig. 6.2. We perform the same measurements as in Sec. 6.2
and add the minimal probing, see Fig. 6.5a. For comparison, we added an
analytical upper bound and a lower service guarantee specified by Eq. (5.5).
In this scenario, we consider a transient latency, such that the minimal probe
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matches the burst response, with both methods providing an estimate that
lies between the two references.

Next, we include a stationary latency of 50. The result of the measure-
ments can be seen in Fig. 6.5b. As in the deterministic case, the burst
response has a higher estimate then the minimal probe method. Similarly,
the stationary latency induces a deviation to additivity of the service. The
resulting super-additivity leads for the burst response to an overestimation
of the service, i.e., the analytical upper bound is exceeded. When the min-
imal probing is performed, the overly optimistic estimate is corrected by
the backlog, so that a valid non-stationary service curve is obtained, which
remains between the two analytical references.

Both measurement methods identify the transient latency correctly, repre-
sented by the flat area in the upper right area. Furthermore, all curves have
the same slope. Hence, the underlying methods pinpoint to the correct rate
of the service. However, the burst response falsely assigns the stationary
latency to the upper right part of the curve. A precise representation is only
observed by the minimal probing method, which allocates it to the lower
left of the service curve. Note that besides the stationary latency, which
belongs to the left part, we observe an additional delay. It corresponds to
some outages caused by the Bernoulli increment process with a service of
zero.

Since we investigated that the backlog at the end of minimal probing is a
measure of accuracy for the deviation from additivity for super-additive
services, we look again at the example of super-additive tandem systems
from Sec. 6.3. There, we observed for a system with random sleep scheduling
as in Fig. 6.2 that for n = 1, the service is additive, whereas for n > 1

the relative deviation from additivity is shown in Fig. 6.4a. Howbeit, we
compute the backlog of minimal probing for t = 400 and for n = 1 . . . 4

networks in series with random sleep scheduling and present its distribution
of B(t) for 105 sample-paths. Again, for n = 1 the backlog quantile for
ε = 10−3 is Bε(t) = 0. Thus, the estimate from minimal probing is the same
as for burst probing, and we conclude an additive service. But for n > 1
Bε(t) is greater than zero, and corresponds to a non-additive service with
the deviation shown in Fig. 6.4b. Because we do not know the number
of networks in advance and, therefore, whether the service is additive or
not, estimates from burst probing are not trustworthy, but, we obtain a
conservative estimate with the minimal probe. The estimate has a defined
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accuracy given by Bε(t). Further, we know that the estimate is accurate
because of the small backlog quantile Bε(t).



7
C E L L U L A R N E T W O R K S

The evolution of mobile networking, to 4G in recent decades and 5G in the
near future, has been driven by an ever-increasing growth of mobile data
traffic over the years. Today, the use of mobile devices such as smartphones
and tablets is part of the daily routine for most of us. In 2017 almost 80%
of the Internet users were online through UEs [117] and used applications
such as HTTP web browsing traffic, telephony over VoIP, watching, sending,
and generating video traffic, file transfers such as music downloads and
cloud services, as well as periodic refresh messages, e.g., for news and
messenger applications. A more detailed discussion of different types of
mobile applications can be found in [117].

However, the evolution started in the late 1970s, and at the beginning of
the 1980s, where the first generation (1G) technology, the AMPS standard
was introduced. This standard only could send voice traffic as a service.

By the invention of 2G at the end of the 1980s, it was possible to send
digital voice, short messages, and packetized data. It was the first time
that the public was able to use mobile data traffic in addition to mobile
telephony. The data rates for the different types in the evolution of 2G, e.g.,
GSM, GPRS, and EDGE, were low from today’s perspective. The highest
possible rates are achieved for EDGE with nominal up- and downlink rates
of 220 kbps and 384 kbps, respectively [8]. So, real-time applications and
video-streaming were not possible with 2G.

In the next-generation 3G, the data rates increased to 5.76 Mbps in
the uplink and 42 Mbps in downlink direction for HSDP+. Although the
high latency in 3G systems of the multiple of 100 ms is not tolerable
for voice communications [50], the data rates of 3G and the invention of
smartphones in the 2000s enabled appropriate use of the devices for HTTP
web browsing and other applications. Nevertheless, mobile operators need
two core networks in 3G. One circuit-switched network for voice and one
packet-switched for data.

This and an ever-increasing growth of user demands for higher data
rates initiated a study of the 3GPP [3] on the requirements of the long term
evolution (LTE) of 3G. The main objectives were higher data rates and lower
latencies of the packets. This led to the 4G LTE standard, which reduced

72
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costs for mobile operators as only one core network is required. Thereby,
LTE was designed to reach data rates of 50 Mbps in up- and 100 Mbps in
downlink direction [3]. Later releases for LTE Advanced have the potential
to reach, e.g., downlink rates of 1 Gbps. An overview of the evolution from
cellular technologies can be found in [76, 131].

The need for more efficient technology is evidenced by the fact that
the number of smartphones sold per year has increased from about 122
million in 2007 to a factor of ten, i.e., 1, 244 million in 2014 [64]. Today,
about 1, 500 million smartphones are sold per year. This leads to more than
5 billion smartphone users in 2019, which corresponds to approximately
65% of the world population [155]. Considering the fact that in 2018, nearly
45% of the world population lived in rural areas [1], LTE is also a promising
candidate to overcome the digital divide with the discrepancy in Internet
access between rural and urban areas.

Due to cost efficiency, the providers install fever base stations (eNodeB)
in the countryside. With the increasing distance to the eNodeB, the quality
of the signals from eNodeB to UE and vice versa reduces dramatically.
To analyze the effect of the distance in LTE, a substantial field trial ex-
periment concerning latency, capacity, and throughput performances was
done in [145]. The authors present results for a loaded and unloaded net-
work and for near, middle, and far locations, which differ mainly in there
corresponding signal-to-interference-plus-noise ratio (SINR).

Further LTE throughput studies have been made in [9, 82, 154]. The
authors in [154] consider indoor and outdoor evaluations and the corre-
sponding delay distributions, which are influenced by packet sizes and
inter-packet gaps. Besides the performance leap between the cellular gener-
ations 3G and 4G, it is shown that the emulations in [154] and the field trial
in [145] achieve the theoretical throughput in LTE with a negligible margin.
More comparisons of throughput and packet delays in 3G and LTE systems
are presented in [43, 81, 82, 107].

The factors behind the performance improvement in LTE include a num-
ber of things. A higher bit rate is achieved, e.g., due to OFDM transmission
technology, higher coding and modulation schemes, and multiple antenna
configuration (MIMO) [50]. The lower latency is often associated with the
flat all-IP backhaul network architecture in LTE networks [82, 93, 124, 145].

Another important research topic is the investigation and optimization of
the UEs power management in LTE [24, 142]. Similar power consumption
models for 3G systems based on MAC-layer power-saving techniques are
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given in [130]. To extend the battery life of mobile devices, the 3GPP LTE
standard specifies the discontinuous reception scheme (DRX) to reduce the
power consumption of a UE [2, 4, 5, 7].

If no data is available to send or receive, power-intensive parts such as
the display and radio interface are disabled. In doing so, the UE enters
various types of sleep mode and wakes up by a defined schedule to receive
information in the downlink or in case an uplink transmission is requested.

Recalling Fig. 1.1 illustrates such a DRX sleep schedule process. Here,
the UE is at the beginning in RRC_IDLE. Due to a channel request at P0, the
mobile is awaking and goes to RRC_CONNECTED. The activation or transition
takes T0 units of time. Subsequently, data can be transmitted. After the
data transfer has taken place, the UE returns to sleep mode at P1, i.e.,
RRC_IDLE and wakes up T1 units later. The process is now repeated as often
as required.

We modeled the sleep duration Ti in the previous chapters where we
assumed either deterministic or random wake-up times. Similarly, the
service can be deterministic or stochastic during data transmission, e.g.,
due to outages in wireless transmission. While the mobile is asleep, data is
buffered for later transmission. This results in transient backlog and delays
which are non-negligible, see Sec. 7.4.1. A more detailed view of DRX is
presented in Sec. 7.2.1.

Moreover, the impact of these transient phases has a significant impact
on the performance, since the majority of the flows are short-lived [109].
As an example, we have that nearly 50% of all TCP flows are less than five
seconds [82].

In the following, we describe our settings in Sec. 7.1, with which we
perform all measurements. We present results for the cellular sleep schedul-
ing, i.e., the DRX implementation and other occurring additional latencies,
such as HARQ retransmissions on the MAC layer in LTE. Due to real
measurements, the question arises after a decent probe selection, e.g., for
the selection of a burst in the minimal probing method. We consider that
in Sec. 7.3. In Sec.7.4, transient effects in LTE networks are shown and
analyzed. Further, we present the first results for the minimal probing
method in cellular networks. Besides service curve estimates, we explain
characteristics of cellular services, such as transient delays caused by DRX,
the stationary latency that is comparable to OWDs, service outages by the
radio channel, capacity limits, and the deviation of minimal probing from
additivity. A comparison with other cellular technologies, like HSPA+ and
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Figure 7.1: The measurement setup comprises a cellular data connection from
client (A) to server (D) for estimation, and a separated local control
network.

EDGE, is done in Sec. 7.5. Finally, we analyze diurnal characteristics. Note
among others we present results from [19, 21].

7.1 measurement setup

We perform our measurements for two major German commercial internet
service provider (ISP). We call them ISP1 and ISP2. Thereby, an extensive set
of measurement campaigns is done for ISP1. We also substantiate selected
results by confirming them in the other network.

Fig. 7.1 shows the main components of our measurement setup. The
cellular Internet connections to the ISPs are made via the cellular client (A),
from where we perform all measurements to a wired server (D), which
is connected to the national German research and education network at 1
Gbps.

For both providers, we choose as user equipment a stationary Category
3 Teldat RS232j-4G modem for EDGE and LTE and for HSPA, a Teltonika
HSPA+ RUT500 modem.

As stated by the ISPs, the nominal uplink rates are 220 kbps for EDGE,
5.76 Mbps for HSPA, and 50 Mbps for LTE.

We send UDP packets and use rude&crude1 as traffic generator. For HSPA
and LTE, we choose packets with a size of 1400 bytes, for EDGE, we reduce
the packets to 500 bytes to account for the low uplink data rate. To measure
the probe arrivals A(t) and departures D(t), packet traces are captured
by libpcap at the client and the server, respectively. To compute precise

1 http://rude.sourceforge.net/
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performance bounds and service estimates, we need accurate timestamps.
Therefore, we have a separate local control network for the client and the
server that permits time synchronization in a range of a few milliseconds
using the Network Time Protocol (NTP). In addition, it enables us to operate
at the client and the server remotely without any impact on the cellular
network. Finally, all measurements are performed automatically using the
tool sshlauncher2, that facilitates repeated execution of distributed network
experiments.

7.2 mac - layer

In the following, we investigate specific MAC-layer algorithms that cause
an additional delay on packets. On the one hand, we focus on the DRX
mode, which we consider the equivalent of the previously introduced
random sleep/wake-up times. On the other hand, we introduce the Hybrid
Automatic Repeat reQuest (HARQ) procedure. It is a packet retransmission
on the MAC-layer, which leads to an additional delay of up to 8 ms per
packet retransmission.

7.2.1 DRX

In order to send or receive any data, a mobile device has to be connected
to a base station where it has to listen for and send signaling messages.
Surely, doing this continuously leads to a battery drain. Therefore, the
DRX mode is introduced for energy saving, e.g., for 4G [4, 5, 7]. There,
the UE listens on the Physical Downlink Control Channel (PDCCH) for
incoming paging messages from the eNodeB. A continuous monitoring of
the PDCCH reduces battery power. The DRX mode defines a procedure
where the UE only listens at certain time instances on that channel and
switches off power-intensive parts, such as the radio interface [4, 7]. Clearly,
in between, i.e., during the sleep mode, the UE cannot be paged, potentially
incoming packets have to wait until the UE wakes up, which leads to
additional latencies.

For a better understanding, we describe the procedure of the DRX mode
in LTE, where Fig. 7.2 shows an example of the activity states for a UE. All
the parameters, e.g., when the UE is listening or sleeping, are provided by

2 https://github.com/bozakov/sshlauncher
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Figure 7.2: A sample path of LTE DRX with RRC_CONNECTED and RRC_IDLE states.

the eNodeB. In general, a mobile can be in two different radio resource
control states, i.e., RRC_IDLE or RRC_CONNECTED [7].

If the UE is in RRC_CONNECTED state, the UE receives an inactivity timer
TBS from the eNodeB. As long as the UE sends or receives data, it is
in continuous reception state and the timer TBS is reset. When the data
transmission is finished, an inactivity timer TIN starts. The UE remains in
the continuous reception state according to TIN. The timer is reset in case of
new packet transmissions. Otherwise, the UE monitors the PDCCH until
TIN expires. The timer can be in the range between 1 ms and 2.56 sec [50].
Afterward, the UE enters the short DRX cycle TSC with a length of 2 ms -
640 ms. Thereby, in an interval of length TSC, the UE is listening only for
a duration of the time TON and sleeps otherwise. This can be repeated 1
to 16 times according to a predefined number of short DRX cycles Nsc if
no activity is there. Then, the UE goes to the long DRX cycle TLC of length
10 ms - 2.56 sec, where TSC 6 TLC. The UE remains in the long cycle as
long as no data is available for transmission or until the timer TBS expires at
the eNodeB. Subsequently, to save resources, the eNodeB initiates an RRC
connection release. The eNodeB tears down its data connection to the UE
and moves to the RRC_IDLE state.

In RRC_IDLE the UE is no longer actively connected to the eNodeB [7].
Through the paging mechanism, the eNodeB is still able to keep track
of the UE. In this state, the mobile reduces activities to the eNodeB to a
very low level to save battery power and monitors the PDCCH for paging
information according to a DRX cycle. Again, the default DRX cycle length
in RRC_IDLE is specified by the eNodeB. For the event of data transmission
in up- or downlink direction, the UE must establish a connection to the
eNodeB. It changes to the RRC_CONNECTED state in which 16 to 19 signaling
messages must be exchanged in the mobile network core in uplink or
downlink direction. Data can then be transferred [50].
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The time needed to send or receive data by establishing a connection to
the base station is what we call cellular sleep scheduling.

Similar mechanisms exist in 2G and 3G. Power consumption models
for 3G systems based on MAC layer power-saving techniques are given
in [130]. The occurring effects on battery lifetime and power consumption
are evaluated, e.g., for 2G and 3G in [116], and for 4G in [81]. Due to
the high number of Internet connections we make daily with our mobile
devices, battery drain is a performance indicator that is receiving increasing
attention due to its impact on the user experience [60, 134, 138].

By comparing the power consumption characteristics of 3G and 4G sys-
tems, the authors of [81] conclude that 4G is significantly less power efficient.
As stated by the authors, the reason is the OFDM technology in LTE. Al-
though it enables high bit rates, it suffers from low energy efficiency due to
a high peak-to-average power ratio.

The trade-off between power consumption and delay is obvious [119] and
motivated many researcher to optimize the DRX parameters in 3G [147, 148]
and 4G [23, 144, 156, 157]. The mean wake-up times for the DRX states can
be modeled by semi-Markov chains [23, 144, 148, 156, 157].

Further, Yang [147] used an M|G|1 model with vacations to derive station-
ary delays for DRX. Another work [142] adapts the DRX cycle parameters
to optimize power consumption for certain scenarios while comparing
throughput versus power consumption.

Transient power measurements, on the other hand, have significant chal-
lenges. For example, consider the basic M|M|1 queue. Here, stationary state
distributions are derived from a set of linear balance equations, e.g., in [126].
For transient analysis, we have to solve a set of differential equations which
are mostly solved numerically [153]. Thus, the number of transient solutions
of queuing systems is rare [59, 80, 141].

However, in the following, we present results for the DRX mode for both
ISPs. We send ping messages from client (A) to our server (D) and measure
the round-trip-times (RTT) of each ping. We send the next one according
to a predefined interpacket-gap and repeat it at least 1, 000 times for each
gap. We vary the time between the ping messages with the aim to find
characteristics in the network regarding DRX states.

Fig. 7.3 illustrates for both ISPs the RTTs for a set of interpacket-gaps
in LTE. We choose the complementary cumulative distribution function
(CCDF) for representing since it highlights rare events, i.e., especially high
values.
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Figure 7.3: CCDF of ping RTT for different inter-packet gaps.

In Fig. 7.3a we show the RTTs for ISP1. We conclude that for interpacket-
gaps less than 200 ms, the UE is in continuous reception mode. For higher
gaps, i.e., between 200 ms and 2.5 s, we observe higher RTTs and deduce
that the UE switched to the short DRX mode. A second jump is observed
for time-intervals in a range of 2.5 sec and 10.5 sec, which indicates that the
UE is now in the long DRX mode. After 10.5 sec, the RTTs increased to a
multiple and is almost surely higher than 100 ms, probably because of the
RRC connection establishment, to switch from RRC_IDLE to RRC_CONNECTED.

For ISP2, we observe a different behavior, as presented in Fig.7.3b. Here,
the UE is in continuous reception mode for interpacket-gaps up to 2 sec.
In comparison to ISP1, it is ten times longer in this state and close to the
maximum value of 2.56 sec, see [50]. For sure, this results in a higher battery
drain in the first two seconds for a UE in the network of ISP2. Interestingly,
if we further increase the interpacket-gaps for ISP2, we only can identify
two more states. The first one is in a range from 2 sec to 8 sec and has RTTs
larger than 100 ms in more than 20% of the cases. This might lead to the
assumption to infer this to be the RRC_IDLE state. Since for gaps greater then
8 sec, the RTTs increase further, we deduce these to RRC_IDLE and the first
case to the short DRX mode. Thus, we do not have any long DRX cycles
available. Apart from the fact that a UE for ISP2 goes to sleep state around
2.5 sec earlier than for ISP1 and reduces so the power consumption, it also
saves the battery in short DRX mode in comparison to ISP1. This is due to
the longer cycles and times for monitoring the PDCCH.

An analysis of which of these two DRX implementations is more efficient
regarding, e.g., battery power management, is out of the scope of this
thesis. The various implementations already illustrate that for applications
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Figure 7.4: CCDF of ping RTT for different inter-packet gaps for 3G.

such as messaging, the choice of the DRX cycle can have a significant
impact on battery performance, and perceived delay. A bad choice of the
refreshing period, i.e., just above the inactivity timer of the eNodeB, can
lead to an excessive network congestion, as the transition from RRC_IDLE to
RRC_CONNECTED must be made, which harms the network performance [134].

It becomes even more obvious in 3G. The procedure is simpler than in
4G, i.e., there is one inactivity timer threshold and the DRX cycle. Thus,
we have two states, which are the RRC_IDLE and RRC_CONNECTED state[147].
There, the transition from the idle to the connect state takes more than
1 sec, after an inactivity for at least 4 sec in case of ISP1 and 8 sec of ISP2,
see Fig.7.4a and 7.4b, respectively. The trade-off between signaling load to
power consumption is even more critical in 3G networks[129]. We discuss
the effects on throughput and performance bounds such as backlog, e.g., in
Sec.7.4.

7.2.2 HARQ

Next, we investigate the HARQ procedure that leads to packet retrans-
mission on the MAC-layer [5, 6]. In a nutshell, it combines (Hybrid) the
Automatic Repeat reQuest (ARQ) protocol with a Forward Error Correction
(FEC) code. More precisely, every transmitted data block contains a check-
sum. If a checksum test fails at the receiver, the data block is considered
to be incorrect. A new version of this data block is transmitted to the re-
ceiver. The receiver then combines the newly sent packet with the erroneous
one to increases the probability of correct decoding. In the meantime, cor-
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rectly received out-of-order blocks have to wait in the receiver buffer until
predecessor blocks are transmitted.

In LTE, a HARQ retransmission takes 8 ms [5], where the maximum
number of HARQ- retransmissions is limited to five (maxHARQ-Tx) [90].
An explanation of HARQ and the number of retransmitted packets per
retransmission is evaluated, e.g., in [154].

In [21], we already measured the time it takes to perform an HTTP
handshake to a common web server and plotted the empirical probability
mass function (pmf) where one handshake is the time for sending a SYN
packet and receiving the SYN/ACK reply. We added the figure to the
appendix, see Fig. A.1. We find that most handshakes are done in around
20 ms. Additionally, we find another significant mode 8 ms later, which we
contribute to a HARQ retransmission.

Next, we substantiate this result and perform measurements from our
client (A) to our server (D) in up- and downlink direction. We send constant
bit rate traffic and analyze the interpacket-gaps at the receiver for HARQ
retransmissions in Fig.7.5a. The CCDF shows four regions with an 8 ms
increase, which coincides with the period for HARQ retransmissions. There
is the possibility of a fifth transmission, which is not detectable due to
the low probability. Further, we notice that for less than 1% of the packets,
a HARQ retransmission occurs. Thus, we conclude that we have very
good channel conditions, because LTE has the goal to have around 10% of
HARQ retransmissions. In Fig.7.5b, we performed uplink and downlink
measurements and analyzed how many packets are received before any
HARQ retransmission. In more than 99% of the cases, there are not many
differences in the number of successfully transmitted packets in up- and
downlink, where, e.g., at the 1% quantile, we have nearly 400 successful
transmitted packets before any HARQ retransmission happens. Then, with
lower probability, the uplink performs better, e.g., with a probability of 0.1%
we have around 750 packets, which is about 35% higher than the downlink
case. Whereas the almost linear slope in Fig. 7.5b, i.e. exponential decrease
on the log-scale indicates that the probability of a HARQ retransmission
of a packet is independent of other packets, the CCDF in Fig. 7.5a shows
that this is not true. Otherwise, the square of the probability for one HARQ-
retranmission equals the probability that a packet sees two retransmissions
which is obviously not the case.
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Figure 7.5: HARQ retransmissions

7.3 bursts in practice

In order to estimate transient service curves in cellular networks we follow
the description from Sec. 6.4, i.e., the minimal probing procedure. Thereby,
we send a burst in the first step to find an upper bound of the service. Out
of the departures, we are able to compute the minimal probe, which, unlike
all other traffic, is optimal under certain conditions. Then, this minimal
probe is sent as arrival traffic. Finally, we obtain from the backlog at time t
a lower bound of the service.

However, to get a better understanding of which effects bursts have, we
perform some baseline measurements and present the results in Fig.7.6.
Here, we send in the LTE network of ISP1 CBR traffic for two seconds
in the uplink direction from the client (A) to server (D). We repeat the
measurements for each rate 50 times with a fixed packet size of 1400
bytes. The nominal uplink rate is 50 Mbps. Fig. 7.6a shows boxplot for the
throughput measurements. The center of the box represents the median,
whereas the borders are the 0.25 and 0.75 percentiles, respectively, while
the lower and upper whiskers correspond to the 0.01 and 0.99 percentiles.

Computing the average over two seconds, we find a limiting rate around
44 Mbps. Below this rate, the fluctuations in the data rates are very low.
This is due to the fact that the link capacity is not fully utilized, i.e., the
probe traffic is too small. Generally, if we choose too small probe traffic, the
departures are mostly limited by the arrivals. For rates larger then 44 Mbps,
we are exhausting the link, such that the variations in the data rate increases.
Apart from that, it has further effects, as shown in Fig. 7.6b.
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Figure 7.6: Greedy throughput and delay distributions for different UDP traffic
rates between client (A) and server (D) in uplink direction

There we observe that the OWD for the last packet of each measurement
is almost stable around 26 ms for low rates and increases slightly to 30 ms
at 40 Mbps. Higher rates, e.g., 50 Mbps lead to a significant jump to 110 ms.
For more details about packet delays, loss and network buffers, see [21],
where we also included measurements for the downlink.

In practice, there are many instruments for bandwidth estimation that
seeks to find the sending rate at which the delay increases. For example,
pathload [84], which sends packet trains through the network at a certain
rate and measures the delay. The rate is gradually increased until the delay
increases. A higher delay is then interpreted as network overload, i.e., the
rate exceeds the available bandwidth. The idea of pathchirp [120] is similar.
Here, it is sent only one train, where the rate is varied within this train. An
overview of bandwidth estimation tools can be found in [41].

Likewise, as the pathload and pathchirp methods, we assume for the
moment that sending with a rate above the limiting rate exhausts the
network and is therefore like a burst. In consequence, during connection
establishment packets are buffered to the maximum buffer size, which
leads then to packet loss and higher delays. Of course, large buffers can
handle bursty traffic or bad channel conditions better before a loss occurs.
A drawback is a performance deterioration, e.g., for users who generate a
traffic mix of large file transfers and delay-sensitive live video streaming. In
this scenario, the user will likely experience a lagged video call.

As we will see, the minimum probe sends the traffic so that the rate
is as high as possible before the delay and backlog increase. Further, we
know from network calculus that sending a burst immediately yields the
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service, see Sec. 6.2 where we replaced the arrivals with the burst function
in Eq. (6.3).

Practically, arrivals can not be infinite. Additionally, we do not know
how the service changes over time. Thus, we cannot adjust the arrivals
accordingly. Therefore we do without a variable bitrate as burst and choose
a finite CBR arrival traffic with the rate r, which has the same properties
for all t as δ(t).

An initial guess is to take the accumulated service S(0, t) from Eq. (3.10)
and divide it by the amount of time t, such that we could set r = S(0, t)/t.
The next example clarifies that this gives us only in certain cases a valid
burst rate and might underestimate it otherwise.

We assume to have two cases, each with three service functions Si(0, t)
for i = 1, 2, 3. In the first cases we have no stationary latency, i.e., T = 0 and
individual rates of 0.25 · i for service curve i = 1, 2, 3 and t ∈ [0, 20] where we
fix the rate to 0.5 afterwards. In the second scenario the stationary latency is
T = 10 with the same individual rates up to t = 30 and 0.5 subsequently. A
visual representation is given in Fig. 7.7. We start with T = 0 and compute
for all Si(0, t) with i = 1, 2, 3 the corresponding potential burst rate as
ri = Si(0, t)/t for t = 40. Hence, r1 = 3/8, r2 = 1/2 and r3 = 5/8. Clearly,
r1 · t and r2 · t are always greater or equal than S1(t) and S2(t) for all t.
For S3(t), this does not apply which is due to the fact that for the first
20 time-slots the maximum rate of S3(t) is 0.75 whereas r3 = 5/8. As a
consequence, in this part r3 is not a burst rate such that a possible service
estimate as in Eq. (6.3) is limited by the arrivals from r3 · t.

It becomes even more apparent if we add a stationary latency as in the
second case with T = 10. Here, r1 = 3/10, r2 = 2/5 and r3 = 1/2 for t = 50.
Consequently non of the potential burst rates ri for i = 1, 2, 3 are above
the maximum rate of the corresponding Si(t). Remember that a stationary
latency is comparable to packets OWD. This means for our throughput
measurements from Fig. 7.6a that taking the limiting rate as burst rate could
lead to a lower service estimate.

Next, we try to find a valid burst rate r by computing the maximum
service rate over all τ ∈ [0, t] for a fixed t where S(τ, t) = S(t) − S(τ). In this
sense, we have

r = max
τ∈[0,t]

{S(τ, t)/(t− τ)}. (7.1)

Using this approach we have for the case with T = 10 the following rates
r1 = 1/2, r2 = 1/2 and r3 = 5/8. Hence, we find an acceptable rate r for
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Figure 7.7: Latency rate service curves Si(0, t) for i = 1, 2, 3 with latency T = 0 and
T = 10 and individual rates of 0.25, 0.5 and 0.75 for 20 timeslots after T
and 0.5 afterwards

S1(t) and S2(t) whereas for S3(t) the estimate is still too low, which is
because of the higher rate of 0.75 between t ∈ [10, 30]. As a consequence, in
Eq. (7.1) we have to take the maximum not just over all τ ∈ [0, t], but over
all t as well.

For the practical measurements in 2G, 3G, and 4G networks, we do not
know the rates in advance. Moreover, to find the minimal possible burst
rate r for all networks is complex and takes a lot of effort. Nevertheless, we
know the nominal uplink rates, as stated by the providers, are 220 kbps for
EDGE, 5.76 Mbps for HSPA, and 50 Mbps for LTE. Thus, every rate above
is a valid burst rate.

7.4 transient service of lte

Next, we perform measurements in LTE networks with sleep scheduling, i.e.,
with DRX mode. Results are shown for carrier ISP1 and ISP2. In particular,
we are interested in transient effects on performance bounds such as backlog
and delay, as well as in the estimation of service curves resulting from the
use of the minimum probing method of Sec. 6.4. Thus, we present non-
stationary service curves that provide time-varying performance measures,
such as the transient overshoot and the relaxation time, as introduced in
Sec.3.1 and [141].

The results presented show the influence of DRX on the uplink, whereby
it is guaranteed that the UE is dormant, i.e., that the radio resource control
protocol is in RRC_IDLE state as in Fig. 7.2, which corresponds to the idle
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Figure 7.8: Transient backlog of LTE for CBR traffic.

state in Fig. 1.1. To ensure that the UE enters RRC_IDLE state we have to wait
at least 10.5 sec for ISP1 and 8 sec for ISP2 before each measurement, see
Fig.7.3. We expect that studies for the downlink will provide similar results.
Apart from that, we mention that sleep scheduling is not only done at the
UE but also at the base station, where we speak of green cellular networks
with base station sleeping [137].

7.4.1 Transient Overshoot and Relaxation Time

In Fig. 7.6b, we analyzed the delay of the last packet for different CBR traffic,
where we considered this delay as stationary. To investigate the behavior of
LTE regarding transient overshoot and relaxation times, we plot for ISP1
the mean and 95 percentiles of the backlog progression over time in Fig. 7.8.
Similarly, Fig. 7.9 shows the result for the delay.

For the backlog, we observe that all curves show the transient overshoot
and relaxation times as for the model in Sec. 3.1. In detail, in the beginning,
a connection establishment is performed with the eNodeB. The duration is
marked with the vertical line after 120 ms in Fig. 7.8a. Up to this time, all
data is queued in the buffer at the UE. The buffer fills linearly according to
the sending rate. For 10 Mbps, we have a backlog of 1.2 Mbps. While no
packet loss occurs for 10 Mbps, we observe a deterministical loss for rates
of 20 Mbps and higher as soon as the backlog reaches 2.2 Mb, respectively,
200 packets. Note that we also measured the buffer limit in the UE for
different packet sizes. The experiments substantiate the size of 200 packets,
regardless of which packet size we choose.

An interesting fact is that the backlog continues to increase after the
connection is established, which is due to the way we calculate it, i.e., B(t) =
A(t) −D(t). More precisely, after the successful connection establishment,
the packets from the client’s buffer (A) are sent to the receiver (D) and,
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Figure 7.9: Transient delay of LTE for CBR traffic.

therefore, still in transmission. During this time, new packets are generated
with a specific rate and fill the buffer again. For the mean backlog, this effect
takes as long as the mean stationary delays for low rates in Fig. 7.6b, i.e.,
around 25 ms, whereas the 0.95 quantile is around 50 ms. Afterward, the
backlog depletes, according to a rate that is the difference in the service and
arrival rate. Consequently, for rates close to the limiting rate of 44 Mbps, it
takes significantly longer to relax the transient overshoot for the backlog.
And for an arrival rate that is close or even equal to the limiting rate, the
backlog remains and even increases for higher rates, as in Fig.7.8b. This is
due to the fact that the probability that the buffer is full increases with the
rate. Thus, packets wait longer to be served in the buffer. In comparison to
the mean, the volatility of the backlog for the 0.95-quantile strongly grows
for higher rates. If it reaches stationarity, the value of the backlog is mainly
caused due to the packets in flight and can be approximated by the OWD
times the arrival rate. As an example, we choose the mean OWD of 25 ms
and an arrival rate of 10 Mpbs that leads to 0.25 Mb.

Next, we take a more in-depth look into the behavior of the delay and
present results for the mean and 0.95 quantiles in Fig.7.9. We start with
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the mean delay for CBR arrival traffic and focus our investigations to
the beginning of each curve in Fig.7.9a, where we marked similarly to
the backlog the time up to connection establishment at T = 120 ms with
a vertical line. At the very beginning we notice a behavior of the delay
comparable to the model in Fig.5.4b and Fig. 5.5b. To see this we zoom in
Fig. 7.9b into the early phase of the delay distribution from Fig.7.9a. There
we observe that no or only little transient overshoot is present at low rates.
Thus the delay for the next packets immediately decrease until stationarity
is reached, because the time to the connection establishment also decreases.
For larger rates, we notice a transient overshoot, which is, however, limited
to the buffer in the UE, i.e., after 200 packets, new arrivals are discarded
until the connection establishment is done. The declining dashed line shows
the time needed to fill the buffer for different rates. Theoretically, there is no
packet loss at rates up to about 18.6 Mbps, where 18.6 Mbps is the rate at
which 200 packets are sent in the first 120 ms at a packet size of 1400 Bytes.
Interestingly, after connection establishment, all rates with losses start with
a delay of around 67 ms. If we assume a corresponding declining delay
progression for a sending rate of 18.6 Mpbs as for, e.g., 10 Mpbs, then we
find that it coincides with the delay value we would have sent 18.6 Mpbs,
i.e., the largest possible rate without a deterministic loss.

Back to Fig.7.9a where we sent CBR traffic of 10, 20, 30 and 40 Mbps, i.e.,
below the limiting rate of 44 Mbps. We observe that the delay decreases
according to the difference of service and arrival rate until we obtain the
stationary delay. The stationary delay increases from 27 ms for lower rates
to 36 ms for 40 Mbps. Then, in Fig.7.9c we analyze the delay behavior for
CBR traffic around the limiting rate and choose arrival rates of 40, 45 and
50 Mbps. By sending 45 Mbps, which is almost the limiting rate of 44 Mbps,
the delay remains nearly unchanged and increases slightly by 2 ms to 69 ms
in Fig. 7.9c, since there is scarcely any difference of the service and arrival
rate, wheres for larger rates the delay increases up to 110 ms, see also Fig.7.6
for, e.g., the median of the stationary delays and other quantiles. Last but
not least, Fig. 7.9d shows the 0.95 quantile of the delay. We observe that
the delay is around 80 ms after connection establishment. Moreover, the
delay for lower rates increases a bit in comparison to the mean, where the
stationary delay is now around 35 ms. For 40 Mbps, the delay fluctuates
around 80 ms.

Generally, we observe that the buffer size and time up to connection es-
tablishment influence the backlog and delay performances a lot. Especially
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the clearance of transient overshoot takes several hundreds of milliseconds
and is therefore non-negligible. Even more, knowing the service and adjust-
ing the arrival rate accordingly can make the difference in delay-sensitive
applications such as streaming between a fluent and a lagging stream.

7.4.2 Non-stationary Service Curves

Next, we identify the transient services by non-stationary service curves for
ISP1 and ISP2 and start with their LTE networks. In comparison to the anal-
ysis of the transient backlog and delay where we sent different CBR traffic
to investigate transient behavior, the service curve is a single characteristic
function of the system, providing transient performance measures for each
type of traffic arrival.

We follow the procedure from section 6.4. The method consists out of two
steps. In a first step, we send burst traffic to find an estimate of the minimal
probe Ãmp(τ). Then the second step is to use this Ãmp(τ) as new arrival
traffic to estimate a service curve Sεmp(τ, t). Thereby, we already know that
the backlog quantile at time t Bε(t) is a measure of accuracy for Sεmp(τ, t).

Further, Bε(t) can be used to obtain an upper service curve estimate
Sεbr(τ, t) from the burst response where Sεbr(τ, t) = Sεmp(τ, t) +Bε(t) from
Eq. (6.18).

The choice of a practical burst rate r we already discussed in Sec. 7.3.
In order to avoid that the service is limited by the arrivals, we concluded
that the rate r has to be greater or equal then the service at any time. As
stated by the service providers ISP1 and ISP2, the nominal uplink capacity
is 50 Mbps. Therefore, any rate r that exceeds 50 Mbps emulates a burst.
We particularly mention that the burst does not have to be CBR. However,
it is the most practical choice.

For both providers we choose t = 1 sec. We send 100 bursts and obtain for
each sample path the individual burst response. For ε = 0.05 we compute
Sεbr(τ, t) from Eq. (6.5).

An estimate of the minimal probe Ãmp(τ) immediately follows from
Sεbr(τ, t) by Eq. (6.15). Then, we send the minimal probe 100 times. For
each measurement we take the backlog B(t) at t = 1 sec and compute the
0.95-quantile Bε(t). We get the non-stationary service curve Sεmp(τ, t) by
inserting the minimal probe Ãmp(τ) and the backlog quantile Bε(t) for
ε = 0.05 into Eq. (6.13).
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Figure 7.10: LTE service curve estimate at night for ISP1

We present first results for ISP1 in Fig. 7.10 for measurements during the
night. Here, we show the mean of ten estimates of Sεmp(τ, t) and Sεbr(τ, t)
obtained by minimal probing and the burst response, respectively. Moreover,
we add 0.95-confidence interval of Sεbr(τ, t), depicted as a yellow area. It
confirms stable estimates. Note, that a confidence interval for Sεmp(τ, t)
provides only little more information. Consequently, we omit it in this and
all other figures. We conclude a good accuracy of our estimate Sεmp(τ, t),
since the backlog Bε(t) of the minimal probe is small, i.e., around 2.1 MB. It
separates the too optimistic bound of burst probing Sεbr(τ, t) from the lower
service estimate Sεmp(τ, t), where the backlog is the deviation resulting out
of the super-additivity of the service, see Sec. 6.4. Comparing the service
curve from Fig. 7.10 with the Figs. 6.3c and 6.5b it is noteworthy that the
estimates show the same characteristics. In particular, we have the following
service characteristics S1 - S5:

s1 - service outages: For intervals t− τ 6 8 ms, both service curve es-
timates Sεmp(τ, t) and Sεbr(τ, t) are equal to zero, indicating service
outages on short time-scales, e.g., due to the characteristics of the
radio channel.

s2 - stationary latency: The region marked with sl expresses a station-
ary latency of about 50 ms. As in Fig. 6.3c, Sεmp(τ, t) identifies this
region correctly, whereas Sεbr(τ, t) overestimates the service and at-
tributes the stationary latency to the region marked with ∆. The effect
is due to the super-additivity of the service that is caused by the
stationary latency, see Sec. 6.3.
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Figure 7.11: 0.95-Quantile of backlog and delay for CBR LTE traffic of ISP1 includ-
ing minimal probing

s3 - transient latency: The region marked with tl shows a transient
latency of about 120 ms that is due to sleep scheduling. Comparing to
Fig.7.3a validates this value.

s4 - capacity limit: The upward segment at the center has a slope of 44
Mbps. It denotes the effective capacity limit with respect to ε. The
almost constant slope evidences a stable transmission rate for intervals
of t− τ > 58 ms.

s5 - b
ε(t): The maximal vertical difference of the burst response Sεbr(τ, t)

and minimal probe Sεmp(τ, t) is defined by the accuracy of the method
which is determined by the backlog for the minimal probe Ãmp(τ) at
t = 1, i.e., 2.1 Mb.

In the case of Fig. 7.10, the minimal probe is adapted to the system’s
transient service characteristics. Thereby, the minimal probe sends a single
packet at the beginning of each probe, which acts like a trigger to initiate
the wake-up procedure of the UE. During connection establishment, the
minimal probe does not send any further packets. Then, after the initial
waiting time, the minimal probe has an average rate of 44Mbps and remains
very stable over the time, as we will see in the following, this cannot be
expected, generally. However, it results in a 0.95-backlog quantile of about
2.1 Mb at the end of the probe.

The effects of the minimal probe for the backlog and delay over the time
are shown in Fig. 7.11a and Fig. 7.11b. In both figures, we compare the 0.95-
backlog and delay quantile of 30Mbps and 40Mbps CBR traffic, respectively,
with a representative sample path from the minimal probe. In comparison
to the CBR traffic, the transient overshoot and the following relaxation
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Figure 7.12: Service curve estimates of LTE, for ISP1 and ISP2. Solid lines show
estimates obtained during the night, and dashed lines during the day,
respectively.

time are eliminated. Furthermore, by adapting the minimal probe to the
service characteristics of the network, we have neither a buffer overflow
nor extensive delays over 100 ms for high arrival rates. This is because we
perfectly utilize the network without overloading it.

7.4.3 Diurnal Characteristics of LTE

The results shown in Fig. 7.10 are made for carrier ISP1, where all measure-
ments are done during night time. However, we know, e.g., from our work
in [14], that the throughput is affected by many parameters, such as the
location, SINR, and the day time. We will not investigate all of the different
parameters, refer to [14], and concentrate the investigations on the day time.

In Fig.7.12a, we include the service curve estimates for carrier ISP1 during
the day, plotted as dashed lines. We added a vertical dashed line which
marks the transient latency (tl) and the ∆-region from Fig. 7.10 for the night.
Note, that we will integrate this line for all non-stationary service curve
measurements. In order to maintain clarity, we do not include additional
lines, e.g. those for the day. In comparison to the night, we observe a
reduction of the service. The effect confirms the results from [14] and may
be attributed to the fact that other users follow a diurnal pattern, which
leads to a higher utilization of the network at day times. As a consequence,
the effective capacity limit is reduced from 44 Mbps at night to 38 Mbps
during the day. Further, the backlog quantile Bε(t) increases from 2.1 Mb to
2.7 Mb. We substantiate this pattern by sending CBR traffic at day and night.
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Figure 7.13: Transient 0.95-backlog quantiles of LTE during day and night for ISP1.

The corresponding backlog progressions for chosen rates, i.e., 30 Mbps and
40 Mbps are presented in Fig.7.13. There, we observe only a little difference
between day and night for 30 Mbps and a significant increase in the backlog
for 40 Mbps. Apart from that, the curves in Fig. 7.12a have the same general
shape. In particular, we note that the transient plus stationary latency is
only marginally affected by the time of measurement, see at the flat area in
the upper right of the curves and Table 7.1.

7.4.4 Comparison of ISP1 and ISP2 in LTE

Next, we compare our findings for ISP1 with ISP2. The corresponding non-
stationary service curves for day and night are shown in Fig.7.12b. As for
ISP1, we are able to extract the service characteristics S1 - S5 out of the non-
stationary service curve, see Table 7.1. In detail, the service outages (S1) are
9 ms at night and increase to 12 ms at day time. Thus, slightly higher than
for ISP1. The stationary latency (S2) is during the night very similar as for
ISP1, but increases during the day to 76 ms or by 43%, which is 10 ms more
than for ISP1. The transient latency is, however, better and even decreases
from 100 ms to 90 ms for the day. Due to the higher stationary latency, the
total time for the connection establishment is nevertheless comparable to
the night. A noticeable difference, though, can be seen in the capacity limit.
During the night, it is on top at 26 Mbps and decreases at day to 17 Mbps.
In comparison to ISP1, it is around 20 Mbps lower, which also influences
the mean backlog, i.e., it is reduced to 1.44 Mbps and 1.3 Mbps.

Over all we conclude that ISP1 outperforms ISP2 at least in terms of the
service characteristics S1 - S5.
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ISP1 ISP2
LTE LTE

Day Night Day Night

S1 - Service Outages 9.5 ms 8 ms 12 ms 9 ms

S2 - Stationary Latency 65 ms 50 ms 76 ms 53 ms

S3 - Transient Latency 115 ms 120 ms 90 ms 100 ms

S4 - Capacity Limit 38 Mbps 44 Mbps 17 Mbps 26 Mbps

S5 - Backlog Bε(t) 2.7 Mb 2.1 Mb 1.3 Mb 1.45 Mb

Table 7.1: Service characteristics of LTE for ISP1 and ISP2
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Figure 7.14: Service curve estimates of HSUPA, for ISP1 and ISP2. Solid lines show
estimates obtained during the night, and dashed lines during the day,
respectively.

7.5 comparison with hspa and edge

In the following, we perform the minimal probing method at day and night
to estimate the non-stationary service curve for the preceding technologies
EDGE (2G) and HSUPA (3G). Thereby, we compare the corresponding time-
dependent services for ISP1 and ISP2. Additionally, we show results of the
transient overshoot and relaxation time for ISP1 sending CBR arrival traffic.

To compensate the lower capacity and higher latencies, we reduce the
burst rate and increase the measurement time accordingly.

Due to the same explanations as before, we are able to observe the
service characteristics S1 - S5 for EDGE and HSUPA. An overview for all
technologies and carriers is given in Table 7.2.

We start with measurements for HSUPA in Fig.7.14 where the solid lines
are results for the night and dashed lines for the day, respectively. Fig.7.14a
represents the results for ISP1 and Fig.7.14b for ISP2. For the sake of clarity,
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Figure 7.15: Example for the exhausted delay for ISP2 in a 3G network

we start with the nightly measurements. We choose a measurement duration
of 5 sec for ISP1 and 10 sec for ISP2.

For short time-scales we observe service outages (S1), that occur for ISP1
in intervals t− τ 6 15ms, see Fig.7.14a. Similarly in Fig.7.14b the outages for
ISP2, but with an increase of 50%, i.e. for times-scales t−τ 6 21ms. Next, we
have a transient latency (S3) of 1 sec for both carriers. This can be compared
with the DRX-cycles in Fig. 7.4. We identify 4 Mbps as capacity limit (S4)
for ISP1. In comparison to LTE, the maximum capacity is reached more
slowly. It is represented by the bent segment for time instances between
3 6 t− τ 6 3.9 sec. In this case, we do not have this tendency for ISP2.
Nevertheless, the capacity limit is a bit lower, namely 3.4 Mbps.

However, the biggest difference between the two carriers we have for the
stationary latency (S2). Whereas ISP1 has a moderate OWD of 130 ms, we
identify a stationary latency of 1.2 sec for ISP2. Which is the reason for
the doubled measurement period since the non-convex area at the upper
right in Fig.7.14b is more than 2 sec long, resulting from the high transient
and the stationary latency of 1 sec each. Surely, the larger stationary delays
effects S5 - the backlog Bε(t), since more packets are in flight such that we
have 0.7 Mb for ISP1 and 4.7 Mb for ISP2.

To investigate this effect, we take a closer look at the OWD delays that we
get by performing the minimal probe method for ISP2. In Fig.7.15, we show
the delay we obtain with the burst response method and minimal probe.
For the burst response in Fig.7.15a, we have the typical behavior. For the
first packet, we have the delay for the connection establishment in addition
to the OWD. Then we send further packets although the connection is not
open. Thus, the delay increases until the buffer is full, which is the case for
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238 packets. As a reminder, for HSPA, we use a Teltonika HSPA+ RUT500

modem. After connection establishment, we observe a constant delay of
around 1.75 sec for every burst. In comparison, for the minimal probe, we
only identify the first packet with a delay larger than 2 sec, which is due to
the fact that we need a trigger packet to open the connection to the base
station. Then, the traffic of the minimal probe waits for a second until the
connection between the base station and UE is there to send the carrier
dependent traffic for ISP2. Interestingly, every packet has a delay of around
1.3 sec. So, it is less than for the burst response but still very large. The
reason for this, we find in the current literature. In [42], the authors stated
that the RTT could vary widely according to the distance to the base station,
geographical location, and coverage of the base station. Fabini [65] finds that
the payload of ICMP packets has a high impact on the RTT that increases
up to several hundreds of ms for an ICMP packet. Further, [146] found
out that high-throughput flows have a high impact on the OWD, such that
delays of several seconds are possible. Hence, these results support our
findings.

The results illustrate the advantages of the minimal probe, which pro-
vides estimates of non-stationary - service curve Sεmp(τ, t) according to the
different service characteristics of each carrier, such as the reduced rate at
the beginning of a measurement or the carrier-dependent high latencies for
the corresponding transmission technology.

It becomes even more apparent when we look at the transient effects
that occur when sending CBR traffic, see Fig. 7.16. Here, we present the
0.95-quantiles of the backlog and delay progression for CBR traffic up to
the limiting rate of 4 Mbps for ISP1. For the backlog in Fig.7.16a we observe
the typical transient overshoot after the connection is established.

In contrast to LTE, the backlog for HSPA has a less sharp peak, as can
be seen from the rounded region at 1.5 seconds. This effect is due to the
slow increase in the transmission rate after the connection is established.
The relaxation time then takes, e.g., for 3 Mbps clearly more than 5 seconds
to reach a stationary state and probably does not relax for 4 Mbps at all. In
contrast to that, we also added a backlog sample path for the minimal probe.
Due to the fact that the minimal probe takes the system’s characteristic into
account, it is obvious and remarkable that the backlog reaches the stationary
state without any relaxation time and transient overshoot. Similarly, we
identify large delays at the beginning for all CBR arrivals in Fig.7.16b.
Significant transient overshoot is observed at rates like 2 Mbps and higher.
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Figure 7.16: Transient 0.95-backlog and delay quantiles of HSUPA for CBR traffic
and ISP1 including the results for the minimal probe

Furthermore, the relaxation time at all rates is very long and lasts several
seconds, starting with delays of more than one second, which is not practical
for delay-sensitive applications. Sending the traffic according to the minimal
probe eliminates the transient delays. Hence, an application such as high-
quality up-streaming is more likely.

Note that we also included the non-stationary service curves at day time
for ISP1 and ISP2 in Fig.7.14 in the form of the dashed lines. As before, we
find the service characteristics S1 - S5, see Table 7.2. Generally, we find that
all measurements during the day have the same trend. In comparison to the
night, we observe a service reduction, e.g., a decrease of the capacity limit
(S4) to 3.2 Mbps for ISP1, while the stationary latency (S2) increases to 340
ms. Again, these effects may be linked to higher activities of users during
the day and lead to a reduced accuracy as can be seen from the larger
deviation Bε(t) of the lower estimate Sεmp(τ, t) from the upper estimate
Sεbr(τ, t).

Finally, we estimate the non-stationary service curve Sεmp(τ, t) and service
characteristics S1 - S5 for EDGE with a measurement duration of 5 sec and
a burst rate of 1 Mbps. Due to the low capacity we reduced the packet size
to 500 Bytes. The service curve estimates for ISP1 and ISP2 are presented in
Fig. 7.17.

We start with ISP1 from Fig.7.17a and the night measurements, i.e., the
solid lines. Similarly to the corresponding results for HSPA the estimate of
the service curve has a bend which is even stronger than for HSPA after
connection establishment. It indicates that the parameters S1 - S5 are less
explicit. In particular, we have service outages S1 of t − τ 6 200 ms, a
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Figure 7.18: Transient 0.95-backlog and delay quantiles of EDGE for CBR traffic
and ISP1 including the results of the minimal probe.

stationary latency S2 of 300 ms, a transient latency S3 of 500 ms, a capacity
limit S4 of 70 kbps and a backlog S5 of 256 kb. For daytimes we notice
lower service outages S1 of t− τ 6 120 ms, but also higher stationary S2
and transient S3 latencies of 380 ms and 600 ms, respectively. Additionally,
we observe 51 kbps as capacity limit S4, which is only 73% to the nightly
capacity. It further reduces S5 to 200 kb and increases in this case the
accuracy Bε(t). A possible explanation is because the lower capacity limit
leads to a lower number of packets sent by the minimal probe such that the
number of packets in flight reduces as well.

Note that we also performed measurements for ISP2. For LTE and HSPA
we already investigated lower service characteristics S1 - S5 in compari-
son to ISP1. For EDGE, we even observed the extreme case, i.e., we only
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measured a service in really rare cases with a service of around 10 kbps.
Therefore, the 0.95-quantile lead to a service of 0 kbps. As a result, we
end up with the special case where the service estimate for burst response
Sεbr(τ, t) and minimal probe Sεmp(τ, t) are equal to zero for all t > 0.

Hence, the minimal probing method does not only work for good channel
qualities; it also provides estimates in cases where only low or no service
at all is available. Furthermore, we are able to send arrival traffic in such a
way that it eliminates transient overshoots and the following relaxation time
by taking the system’s specific service into account. This holds for EDGE,
as well, as we can see from the 0.95-quantiles of the backlog and delay for
CBR traffic in an EDGE network of ISP1. As before, we have a noticeable
transient overshoot for the backlog, which is relaxed after several seconds
depending on the rate, whereas the minimal probe in Fig.7.18 reaches the
stationary backlog immediately. This is also valid for the delay progression
of CBR and minimal probe traffic in Fig.7.18b.

Therefore, we conclude that regardless of the network type, the minimum
probing method results in an accurate, non-stationary service curve estimate
that is capable of determining system characteristics while eliminating
transient overshoots and relaxation times because minimum probing takes
into account time-dependent network characteristics such as DRX mode.
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C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we contributed a notion of non-stationary service curve, which
allowed us to analyze transient phases in computer networks such as in
cellular networks. The established theory is integrated into the framework
of stochastic network calculus, where time-variant systems are handled
typically by using stationary random processes or stationary bounds. In
order to model time-variance and therefore changes over time, bivariate
instead of univariate functions were used.

We modeled systems with deterministic sleep scheduling and derived
time-dependent performance bounds for backlog and delay, where the
measures of interests were the transient overshoot and the relaxation time,
which is the time it takes to reach steady-state. Then, with the help of an
exact solution, we illustrated that, on the one hand, only a time-variant
service description could follow the exact progress in the same way. On
the other hand, the time-invariant formulation remained in the worst-case
because of the univariate functions that consider the length of the time-
intervals and not the time instances itself. The importance and benefits
of the extension are illustrated by studying the influence of arrival rate α
and length of sleep cycles T . Depending on the parameters, the maximum
overshoot occurred after T , and the relaxation time was able to reach values
that were a magnitude larger than T . Furthermore, our results showed that
time-invariant performance bounds could easily be many times larger than
the equivalent steady-state time-variant bounds.

Based on regenerative processes and our findings from the time-variant
concepts, we extended the theory from the deterministic to the stochastic
network calculus and derived non-stationary service curves. In this way,
we can model systems with sleep scheduling, which had random wake-up
times and services. Thus, we laid the theoretical foundation to study the
transient and stationary behavior of systems like DRX mode in cellular net-
works such that we obtained new insights into the specific implementation
of sleep scheduling in these networks.

Since we could not expect to know the service in cellular networks
in advance, we generally assumed to have a black-box. Therefore, we
investigated measurement-based methods to identify the characteristics
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and services of an unknown system. More precisely, our goal was to get
along without certain assumptions about the internals of a network, while
estimating a general service model of a linear system with a time-variant,
regenerative service.

In doing so, we refined well-known measurement methods such as the
rate scanning and burst response method to estimate a non-stationary ser-
vice curve. We encountered additional difficulties due to the non-convexity
and super-additivity of the service.

To overcome these limitations, we developed a novel measurement
method to obtain a non-stationary service curve. This is the minimal prob-
ing procedure, which consisted of two steps and also provided a measure
for the accuracy. First, the method estimated a probe that is minimal under
certain conditions. The second step was to use this minimal probe and
estimate a non-stationary service curve with a defined accuracy. In compar-
ison to many tools that estimate, e.g., the available bandwidth as a single
value, our new method showed the network’s actual service progression. It
also provided a wide range of additional information, including transient
delays due to sleep scheduling, stationary OWDs, time-dependent service
rates, service outages due to wireless transmission characteristics, and the
method’s accuracy.

After we showed by simulations that the minimal probe method gave
valid results, we performed a huge measurement campaign in cellular net-
works. The evaluation was the first practical validation of our new method
in several real production networks of EDGE, HSPA, and LTE. We provided
new insights into the corresponding DRX mode and estimated the transient
service characteristics for two providers at day and night. Based on our
estimation of the service curve, we were able to show characteristic features
of the cellular data service that explained the observation of significant tran-
sient overshoots and long relaxation times. Our measurements had shown
that delays in the range of seconds are common with EDGE and HSPA.
For LTE, however, we found an improvement in the order of magnitude.
Generally, we believe that the measurement results provided good evidence
that our model of non-stationary service curves and the method for esti-
mating the shape of the service curve are suitable for characterizing key
aspects of mobile network service, such as stationary and transient delays
and rate limitations. Additionally, we observed that sending the minimal
probe as arrival traffic lead to an elimination of the transient overshoot
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and relaxation times such that steady-state delay and backlog values were
reached as soon as possible with the highest possible rate.

In this way, the minimal probing method provided knowledge about the
system so that video streaming applications could benefit by keeping laten-
cies to a minimum with the best possible video quality. As a future work,
integrating the minimal probing method into video coding systems can lead
to an improvement of the user experience, regarding the observed latencies
versus quality. Apart from this, we are convinced that the non-stationary
service curve model and minimal probing method can be extended to new
cellular technologies such as the upcoming 5G standard and the analysis of
other transient effects such as TCP slow start. For the latter case, the theory
must be adapted by using the max-Plus instead of the min-Plus algebra.



Part II

A P P E N D I X



A
A P P E N D I X

properties in system theory

A right-continuous function is defined as follows:

Definition 2. (Right-continuity) Let f be a function in R. Then is f right-
continuous at x0 iff

f(x+0 ) = f(x0)

where f(x+0 ) = limx↓x0 f(x)

In the classical system theory it is common to consider linear and time-
invariant systems. Therefore, we define linearity and time-invariance in
system theory.

Definition 3. (Linearity) Let V and W be two vector spaces over the same field K.
A function f : V → V is called to be a linear map if for any two vectors u,v ∈ V
and any scalar c ∈ K the following two conditions are satisfied:

1. additivity: f(u+ v) = f(u) + f(v)

2. homogeneity: f(cu) = cf(u)

In our case the field K are the real numbers R. In a time-invariant system
we have the effect that a time-shift in the input signal produces also a
time-shift in the output signal, i.e.,

Definition 4. (Time-Invariance) A system is time-invariant if a time-delay of the
input signal x(t+ δ) that yields to time-delay of the output y(t+ δ) = Π(x(t+ δ))
is equal to the signal y(t) = Π(x(t)) for all δ > 0.

properties in min-plus network calculus

In comparison to the classical system theory we changed the sum (or
integral in the continuous case) with the minimum (infimum) and the
multiplication with the addition. Hence, we have to adapt the definition of
linearity 3 and time-invariance 4.
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Definition 5. (Min-Plus-Linearity) Let A1(t) and A2(t) be two input signals
at time t and D1(t) and D2(t) the corresponding output signals. Then, the ⊗-
operator is linear, iff

1. additivity: inf(D1(t),D2(t)) = Π(inf(A1(t),A2(t)))

2. homogeneity: D1(t) + a = Π(A1(t) + a)

The definition of the time-invariance changes to the following:

Definition 6. (Time-Invariance) Let A(t) be the input at time t that results into
the output D(t) = Π(A(t)), where Π is the underlying operator. If a time-shift
of δ > 0 yields the same but time-shifted output D(δ, t+ δ) = Π(A(δ, t+ δ))
∀δ > 0 then the operator Π has the property of time-invariance.

For the min-operator (∧) and the +-operator we can show that the alge-
braic structures (R∪∞,∧,+) is a commutative semifield with the following
properties:

1. (Associativity) ∀a,b, c ∈ R∪∞
(a+ b) + c = a+ (b+ c)

(a∧ b)∧ c = a∧ (b∧ c)

2. (Commutativity) ∀a,b ∈ R∪∞
a+ b = b+ a

a∧ b = b∧ a

3. (Distributivity) ∀a,b, c ∈ R∪∞
(a∧ b) + c = (a+ c)∧ (b+ c)

Let f(t),g(t) ∈ F0. Then, with the following operations we have a set of
properties:

1. Let ⊗ be the min-plus operator from Eq. (2.2), i.e, for f,g we have
(f⊗ g)(t) = min06s6t{f(s) + g(t− s)}.

2. Let ? be the pointwise minimum of f and g, i.e., (f?g)(t) = min{f(t),g(t)}

Then, we have the following properties:

1. (Associativity) ∀f ∈ F0

(f ? g) ? c = f ? (g ? c)

(f⊗ g)⊗ h = f⊗ (g⊗ h)

2. (Commutativity) ∀f ∈ F0

f ? g = g ? f

f⊗ g = g⊗ f
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3. (Distributivity) ∀f,g,h ∈ F0

(f ? b)⊗ h = (f⊗ h) ? (g⊗ h)

4. (Zero element) ∀f ∈ F0

f⊗ ε = f, where ε is the sequence with ε(t) =∞
5. (Absorbing Zero element)∀f ∈ F0

f ? ε = ε ? f = ε

6. (Identity element) ∀f ∈ F0

f⊗ e = e⊗ f = f, where e is the sequence with e(0) = 0 and e(t) =∞
for all t > 0.

7. (Idempotency of addition) ∀f ∈ F0

f ? f = f

8. (Monotonicity) ∀f, f̃,g, g̃ ∈ F0, if f 6 f̃ and g 6 g̃ then
f ? g 6 f̃ ? g̃ 6 f

f⊗ g 6 f̃⊗ g̃
If g is also in F0, then f ⊗ g 6 f. If both f and g are in F0, then
f ? g > f⊗ g.

chernoff’s theorem

Theorem 1. Chernoff Bound: Let X be a random variable and MX(θ) be the MGF
of X with the free parameter θ > 0. Then it holds that

P[X > x] 6 e−θxMX(θ) (A.1)

martingale

Definition 7. Martingale [62]: The sequence {xn,n > 1} is called a martingale
relative to a filtration {Fn;n > 1} if each xn has an expectation, and if for m < n

the expected value of xn given the past up to time m is Xm, that is

E[xn|Fm] = xm, (A.2)

where a filtration is a finite or infinite increasing sequence of σ-algebras in the
sense that F1 ⊂ F2 ⊂ . . ..
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Figure A.1: PMF of the RTTs for TCP connection establishment handshakes

harq

We use a result from our previous work [21] to illustrate the occurrence
of HARQ retransmissions in LTE networks. To do so, we perform 5× 104

independent HTTP handshakes, where we send HTTP requests from client
(A) to two popular web servers. Here, we are not interested to analyze effects
from DRX implementations. Thus, we make sure to be in RRC_CONNECTED

state and continuous reception mode. Then, a single handshake is the time
between the sending timestamp of a SYN message and receiving timestamp
of the corresponding SYN/ACK reply. We present the empirical pmf in
Fig.A.1, where we observe for both webservers that typically a single
handshake requires 20 ms. In addition to that, we find a characteristic
second mode at about 28 ms. This additional 8 ms coincides with a HARQ
retransmission.
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