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ABSTRACT: 
 
Many countries were the target of air strikes during the Second World War. The aftermath of such attacks is felt until today, as 
numerous unexploded bombs or duds still exist in the ground. Typically, such areas are documented in so-called impact maps, which 
are based on detected bomb craters. This paper proposes a stochastic approach to automatically detect bomb craters in aerial wartime 
images that were taken during World War II. In this work, one aspect we investigate is the type of object model for the crater: we 
compare circles with ellipses. The respective models are embedded in the probabilistic framework of marked point processes. By 
means of stochastic sampling the most likely configuration of objects within the scene is determined. Each configuration is evaluated 
using an energy function which describes the conformity with a predefined model. High gradient magnitudes along the border of the 
object are favoured and overlapping objects are penalized. In addition, a term that requires the grey values inside the object to be 
homogeneous is investigated. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides 
the global optimum of the energy function. Afterwards, a probability map is generated from the automatic detections via kernel density 
estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively, 
which results in an impact map. Our results, based on 22 aerial wartime images, show the general potential of the method for the 
automated detection of bomb craters and the subsequent automatic generation of an impact map. 
 
 

1. INTRODUCTION 

1.1 Motivation 

Although the last combat operations of the Second World War 
took place more than 70 years ago, their aftermath is still present 
today. Unexploded ordnance, such as grenades or bombs, remain 
hidden in the ground. Bombs that were dropped by planes are 
particularly dangerous due to their high explosive force. Experts 
of Lower Saxony's explosive ordnance disposal service assume 
that approx. 10 % - 15 % of all bombs did not detonate. During 
construction works there is still a real danger today that these 
duds explode, and there have also been incidents without external 
influence. Typically, surveillance flights were carried out shortly 
after an air strike. The resulting images are being used today to 
find potentially dangerous sites. In Germany, manual 
interpretation of these images is carried out by the explosive 
ordnance disposal services of the respective federal states. In this 
context, a central task is the identification of duds in the images. 
Usually, such investigations are restricted to particularly 
endangered or otherwise relevant areas. Nevertheless, the 
processing effort is still immense. For many applications, it is 
sufficient to have comprehensive information on the basic 
occurrence of warlike impacts in the form of "impact maps". An 
impact map indicates whether areas are likely to be contaminated 
or not. In this context, contaminated areas are expected to contain 
one or more duds with a high degree of certainty, whereas 
uncontaminated areas should not contain any dud. The automatic 
creation of such a map could accelerate the manual evaluation 
process and thus save time and money. To do so, an automatic 
detection of indications of bombing in aerial wartime images, 
especially of bomb craters, is essential. 
                                                             
*  Corresponding author 
 

The problem we intend to solve is the automatic detection of 
duds. In order to deduce a probability for their occurrence, bomb 
craters in aerial wartime images are used as they indicate the 
areas where unexploded bombs may be located. Hence, this 
probability can be used to identify contaminated areas to be 
represented an impact map. The paper focuses on a scenario in 
which the correctness of the results is important: we are interested 
in detecting areas that have a very high likelihood of containing 
a dud so that it makes sense to send a team of experts to that area 
to probe it, i.e. to visit the site and take measurements using 
geophysical detectors. As this is expensive, false detections have 
to be minimised. The main benefit for the explosive ordnance 
disposal service is that in these areas the aerial images would then 
no longer have to be inspected manually. 
 
For object detection from images, models are increasingly being 
used in a probabilistic framework, in which prior knowledge is 
integrated in the form of probabilities. Well-known approaches 
are Markov Random Fields (Geman and Geman, 1984) and 
Conditional Random Fields (Kumar and Hebert, 2006). By 
modelling context, knowledge about the objects can be integrated 
into the image. For example, similar classes for pixels in a local 
neighbourhood can be favoured in this way (Geman and Geman, 
1984). However, it is difficult to integrate more global constraints 
about the objects, for example regarding their shape. This is 
where marked point processes (MPPs; Descombes and Zerubia, 
2002; Daley and Vere-Jones, 2003) come into play. A MPP is a 
random process whose realizations are configurations of objects. 
This stochastic approach uses a strong object model which offers 
a considerable flexibility in integrating knowledge about the 
objects and their relationship to other objects. Sampling provides 
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the globally optimal configuration for objects of a certain type. 
Thus, knowledge about the objects can be integrated beyond 
pixel-based relations. The number of objects in the scene during 
sampling is variable. MPPs have shown to achieve good results 
in various object detection problems (e.g. Lafarge et al., 2010; 
Börcs and Benedek, 2015; Benedek, 2017; Schmidt et al., 2017). 
 
The detection probability of individual bomb craters is often 
rather low and their individual representation is not very 
descriptive to indicate areas that probably contain duds. 
Therefore, we are interested to deduce area-based statements 
about the occurrence of warlike impacts that are based on 
statistical modelling, e.g. by modelling the probability density 
function for a dud to occur. In general, parametric approaches 
may be used, where an analytical model for the probability 
density function is assumed, and training data provide the 
parameters of the function. On the other hand, nonparametric 
approaches estimate the density function directly from the data, 
which avoids having to select a model for the distribution and to 
estimate its parameters (Bishop, 2006). Kernel density estimation 
(Parzen, 1962) is a quite popular nonparametric density 
estimation technique (e.g. Ruan, 2010; Scott, 2015) and is also 
employed in our work. 
 
In this work, we use MPPs to detect bomb craters in aerial 
wartime images, building on (Kruse et al., 2018), where craters 
were represented as ellipses; the results showed the potential of 
the method. During sampling, high magnitudes of the grey value 
gradients at the ellipse borders are favoured and an overlap of 
ellipses is penalized. In this paper, an additional term that 
requires the grey values inside the object to be homogeneous is 
analysed. Homogeneity is measured by the standard deviation of 
the grey values within the object. Another goal of this paper is to 
investigate how the use of a circle as an object model instead of 
an ellipse affects the results, because we think that a model with 
fewer parameters might be more stable. Finally, besides the 
general goal in this work to achieve results with a high quality, in 
our last investigations we want to tune the algorithm’s parameters 
with regard to the proposed application scenario, i.e. the results 
should have the highest possible correctness, as long as 
completeness does not suffer too much. As in our previous work, 
we create a probability map based on the automatically detected 
bomb craters by kernel density estimation. By applying a 
threshold, areas around the detections are classified as 
contaminated or uncontaminated sites, respectively, which 
results in an impact map. 
 
The remainder of this paper is structured as follows. First, related 
work on object detection tasks, mainly in connection with MPPs, 
is given (Section 1.2). The mathematical basics of MPPs and 
kernel density estimation are described in Section 2. In Section 3, 
we present the extended model we use for the detection of bomb 
craters and of the impact map. Experiments and results based on 
aerial wartime images are presented in Section 4. Finally, a 
summary and outlook for future work is given in Section 5. 
 
1.2 Related Work 

Here, we focus on applications of MPPs and methods for 
detecting craters, also including planetary craters, because they 
have a similar appearance as bomb craters. 
 
In the context of MPPs, model knowledge can be integrated in 
different ways. Typically, simple geometric primitives, which 
can be described by a small number of parameters, are used to 
represent the objects to be detected. The extraction of buildings 
or other man-made objects in the scene is often accomplished 

with rectangles (Tournaire et al., 2010; Chai et al., 2012; Brédif 
et al., 2013). In these papers, the input data are digital surface 
models. For a rectangle to be included in the object configuration 
during sampling, high gradient magnitudes of the heights at the 
rectangle border must be present. Furthermore, rectangles 
overlapping with each other are penalized. Rectangles were also 
used to interpret facades of buildings based on rectified images 
(Wenzel and Förstner, 2016), where statistics of typical 
configurations of facade objects (windows, entrances) were 
learned from training data. In addition to rectangles, ellipses, e.g. 
for the detection of flamingos (Descamps et al., 2008) and seed 
products (Dubosclard et al., 2014), or circles, e.g. to detect tree 
crowns (Zhang et al., 2013), are used. Benedek (2017) proposed 
a method for extracting complex hierarchical object structures 
from digital images using different types of objects, namely 
ellipses, rectangles and isosceles triangles, thus considering 
multiple object models. Inside this MPP framework object-
subobject ensembles in parent-child relationship are admitted and 
corresponding objects may form coherent object groups. Bomb 
craters have no object-subobject relationships, so complex 
hierarchical object structures are not necessary in our case. MPPs 
are also applied to biomedical imagery. Kowal and Korbicz 
(2018) proposed a method for the detection of cell nuclei in 
microscopic images. In a Bayesian framework, regions with 
intensity distributions characteristic for nuclei are detected and 
approximated by circles. The process of circle generation can be 
viewed as a MPP that also penalizes an overlap of objects. 
Descombes (2017) uses a flexible approach based on MPPs to 
handle biological variabilities in the images. We have another 
application domain and the structure of the images is different. 
Cedilnik et al. (2018) propose a method to detect objects (small 
particles) that are only a few pixels wide by a dictionary of 
shapes. However, bomb craters are not only a few pixels wide 
and cannot easily be described by such a dictionary due to their 
partly variable shape. 
 
In the context of planetary crater detection, we are aware of two 
contributions dealing with MPPs (Troglio et al., 2010; Solarna et 
al., 2017). To reduce the computational effort in the optimization 
process, Solarna et al. (2017) create a birth map from the 
available contour map via generalized Hough transform and 
Gaussian filtering. Other approaches, such as unsupervised (e.g. 
Meng et al., 2009) and supervised (e.g. Wetzler et al., 2005; 
Urbach and Stepinski, 2009) algorithms, have also been 
proposed. In the former case, common edge filters are applied to 
highlight the edges in the image. Afterwards, the Hough trans-
form is used to reconstruct the circular shape of the craters. How-
ever, an expert is needed to choose the best filters and the 
procedure is not very robust to noise. Supervised methods used 
for crater detection include boosting (Bandeira et al., 2012) and 
Convolutional Neural Networks (Cohen et al., 2016). To the best 
of our knowledge, only three papers deal with the detection of 
bomb craters in aerial wartime images. Jensen et al. (2010) use a 
two-step approach. First, candidates are searched via cross corre-
lation with representative crater-templates. Afterwards, the 
candidates are classified by linear discriminant analysis. Merler 
et al. (2005) use different boosting approaches for the classifi-
cation of image sections, which requires a high computational 
effort. Their result is a map of the spatial density of craters, an 
indicator for the risk of finding duds. Brenner et al. (2018) 
proposed a method based on Convolutional Neural Networks. 
Algorithms based on machine learning need a large set of training 
data to be functional. However, there is currently not enough data 
available to use such approaches in an appropriate way. 
 
The cited articles and our previous work (Kruse et al., 2018) 
show the potential of stochastic methods based on MPPs in 
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different fields. In addition to its applicability for heterogeneous 
image contents (e.g. varying crater sizes), the discussion of the 
related work shows that MPPs allow a flexible integration of 
knowledge about the objects, too. That is why we suppose the 
procedure of MPPs is suitable for our application scenario as it 
can be well adapted to our needs. Hence, this paper proposes a 
special type of MPPs based on another object model (circle) and 
an enhanced energy function compared to our previous work. In 
contrast to images of planetary surfaces, objects such as trees or 
houses make correct detections more challenging in our case. 
Apart from our previous work, this kind of detecting bomb 
craters with MPPs and the subsequent inclusion of the results in 
an impact map are not yet available in the literature. 
 
 

2. MATHEMATICAL BASICS 

2.1 Marked point processes 

Marked point processes (Daley and Vere-Jones, 2003; 
Descombes, 2013) are stochastic processes describing a random 
configuration of objects of a certain type in a bounded region ܨ, 
here a digital image. An object ݑ௜ is characterized by its position          
௜݌ = ௜ݔ)  ௜) and a vector ݉௜ (mark) of parameters of an objectݕ,
model. There are different types of point processes. The 
homogeneous Poisson point process assumes a purely random 
distribution of objects ݑ௜ = ௜݌) ,݉௜) in space that are not related 
to each other. In a Poisson point process the probability ఒܲ(݊) for 
the number of objects ݊ follows a discrete Poisson distribution. 
The intensity parameter ߣ describes the expected number of 
objects within ܨ. The object positions are uniformly distributed. 
In practice, the assumption of complete randomness often does 
not apply, because there are dependencies between the objects. 
Models that are more complex are required to measure the quality 
of the object configuration. To achieve this goal, a probability 
density ℎ(. ) of the MPP can be formulated with respect to a 
reference point process, which is usually defined as the Poisson 
point process. We define ℎ(. ) by a Gibbs energy ܷ (. ) in the form 
of ℎ ∝ ݌ݔ݁ −ܷ(. ). The Gibbs energy consists of two parts, a 
data energy ܷ஽(. ) and a prior energy ܷ௉(. ). The relative 
influence is weighted by a parameter ߚ ∈ [0, 1]. 
 

ܷ(. ) = ߚ ∙ ܷ஽(. ) + (1− (ߚ ∙ ܷ௉(. ). 
 
The conformity of the object configuration with the input data is 
measured by ܷ஽(. ), while interactions between the objects are 
taken into account by ܷ௉(. ). The optimal object configuration 
∗ݑ = ,ଵݑ} …  ௡} can be determined by maximizing theݑ,
probability density ℎ(. ), i.e. ݑ∗ = .)ℎݔܽ݉݃ݎܽ ), which is 
equivalent to minimizing the Gibbs energy ܷ(. ), i.e. ݑ∗ =
.)ܷ݊݅݉݃ݎܽ ). The probability density ℎ(. ) is usually multi-
modal and is defined in a configuration space with a variable 
dimension, because the number of objects can change.  
 
2.2 Reversible Jump Markov Chain Monte Carlo sampling 

Markov chains (e.g. Andrieu et al., 2003) can be used to model 
random state changes of a system. The chains exhibit the Markov 
property, which implies that in a sequence of states, each sample 
ܺ௧ has a probability distribution that depends only on the 
previous sample ܺ௧ିଵ. Markov Chain Monte Carlo (MCMC) 
methods (Metropolis et al., 1953; Hastings, 1970) cannot deal 
with state spaces of different dimensions. However, Reversible 
Jump MCMC (RJMCMC) methods can model scenes with an 
unknown number of objects. This was first proposed by Green 
(1995) and is achieved by defining a set of changes (jumps) of 
the current configuration that are reversible. Reversibility means 

that one can always return to a previous state. In each iteration ݐ, 
the sampler proposes a change of the current object configuration 
from the predefined set of jumps. For each type of change, there 
is a density function ܳ௠ (called a kernel). This kernel ܳ௠ leads 
from an object configuration ܺ௧ to a new configuration ܺ௧ାଵ 
according to a probability ܳ௠( ௧ܺ →  ܺ௧ାଵ). The new 
configuration is accepted with a certain acceptance probability ߙ 
depending on the energy difference of states ܺ௧ and ܺ௧ାଵ 
 

ߙ = min ൭1,
ܳ௠( ௧ܺାଵ →  ௧ܺ)
ܳ௠( ௧ܺ →  ௧ܺାଵ) ∙ ݌ݔ݁ − ቆ

ܷ( ௧ܺାଵ) − ܷ( ௧ܺ)
௧ܶ

ቇ൱. 

 
In (2), the kernel ratio ܳ௠(ܺ௧ାଵ →  ܺ௧) ܳ௠(ܺ௧ →  ܺ௧ାଵ)⁄  
describes the ratio of probabilities for changing the configuration 
from ܺ௧ାଵ to ܺ௧ and vice versa. The Gibbs energies (1) of the 
new and current object configuration are represented by ܷ(ܺ௧ାଵ) 
and ܷ(ܺ௧), respectively; ௧ܶ is the temperature used in simulated 
annealing at iteration ݐ. To find the optimum of the energy, we 
combine the RJMCMC procedure with simulated annealing 
(Metropolis et al., 1953; Kirkpatrick et al., 1983). The sequence 
of temperatures ௧ܶ tends towards zero while ݐ →  ∞. A 
logarithmic cooling schedule guarantees convergence to the 
global optimum for any initial configuration ܺ଴. As this leads to 
high computation times, a faster cooling scheme based on a 
geometric sequence is typically used instead. It provides an 
approximate result, which is usually close to the optimum (Van 
Laarhoven and Aarts, 1987). 
 
2.3 Kernel Density Estimation 

In order to estimate the probability density function (pdf) of a 
random variable, kernel density estimation (e.g. Parzen, 1962) 
can be used. This nonparametric approach estimates the pdf 
directly from the data (Scott, 2015). Given a sample 
൫ݔଵ,ݔଶ, … ,  ௡൯ drawn from a distribution with an unknownݔ
density ݌, an estimate ̂݌ of this density can be calculated via 
 

(ݔ)̂݌ =
1
݊ℎ෍ܭ

௡

௜ୀଵ

ቀ
ݔ − ௜ݔ
ℎ ቁ. 

 
Here, ℎ is the bandwidth parameter and ܭ is a kernel function. 
Note that this definition of the term kernel is not to be confused 
with the kernels used for RJMCMC sampling from Section 2.2. 
The kernel function ܭ(݇) has to be a non-negative function 
(݇)ܭ) ≥ 0) that integrates to one (∫ݐ݀ (݇)ܭ = 1). Equation (3) 
can be thought of as an estimate of the pdf by averaging the effect 
of a set of kernel functions centred on each data point. Often, the 
Gaussian kernel is considered as a good choice for the Kernel 
function, but other functions (e.g. triangular) can also be used. 
 
 

3. METHODOLOGY 

We use MPPs in combination with RJMCMC sampling and 
simulated annealing to find the optimal configuration of objects 
in the scene. Bomb craters are modelled as ellipses or circles, 
respectively (Section 3.1). During sampling, the object 
configuration changes continuously and a global energy function 
is minimized. The possible types of change are described in 
Section 3.2. In the optimization process, we evaluate the object 
configuration in each iteration. Here, high gradient magnitudes 
along the objects border are favoured and overlapping objects are 
penalized. Moreover, we penalize higher standard deviations of 
the grey values within the object (Section 3.3). Section 3.4 
describes how we limit the search space; image pre-processing is 
described in Section 3.5. On the basis of the final object 
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(7) 

(4) 

(6) 

(8) 

configuration, a probability map is created by kernel density 
estimation which allows to differentiate between potentially 
contaminated and uncontaminated areas (Section 3.6). Parts of 
the methodology presented in this paper are based on (Kruse et 
al., 2018), which provides more information about some topics. 
 
3.1 Object model 

In Kruse et al. (2018) the object model used for bomb craters is 
based on an ellipse. In this paper, an alternative object model is 
tested. As Zhang et al. (2013), we model the bomb craters as 
circles. Each circle is described by its position ܲ(ݕ,ݔ) and one 
mark (ݎ)ܯ. The resulting 3-tuple (ݕ,ݔ,  takes the following (ݎ
values in state space ܼ 
 

ܼ = ܯ ݔ ܲ =  [0, ݔ [ܺ  [0, ௠ݎ] ݔ [ܻ , ெݎ ]. 
 
Here, (ݕ,ݔ) are the coordinates of the circle centre, ܺ and ܻ 
represent the width and height of the image. The minimum and 
maximum value of the radius is limited by [ݎ௠,  ெ]. If notݎ
otherwise mentioned, the term “object” is used in the following 
to refer to both object models. 
 
3.2 Changes in the object configuration 

In each iteration of the sampling process, the object configuration 
is changed according to a kernel ܳ௠ with associated proposition 
probability ݌ொ೘. In total, four types of change (kernels) exist, 
namely birth (ܳ஻), death (ܳ஽), translation (்ܳ) and mark-
variation (ܳெ) kernels. The related proposition probabilities are 
ொಳ݌ ொ೅݌,ொವ݌,  ொಾ. On the one hand, an object can be added to the݌,
current object configuration by ܳ஻. The position of a new object 
is sampled from likely positions for bomb craters detected in the 
way described in Section 3.4. This procedure provides informa-
tion about the size of the associated crater, which is used for the 
initialization of the circles radius or the two semi-axes of the 
ellipse (the ellipse orientation is drawn randomly from a uniform 
distribution), respectively. On the other hand, ܳ஽ removes a 
randomly selected object from the current object configuration. 
The kernel ratio, described in equation (2), considers the 
probability of changing the configuration from ܺ௧ to ܺ௧ାଵ and 
vice versa. Similar to our previous work, we model the kernel 
ratio of the birth event by 
 

ܳ஻( ௧ܺାଵ →  ܺ௧)
ܳ஽( ௧ܺ →  ܺ௧ାଵ) =

ொವ݌
ொಳ݌

∙
ߣ
݊ . 

 
Here, the Poisson parameter ߣ describes the expected number of 
objects while ݊ represents the actual number of objects in the 
scene. For the death event, the kernel ratio corresponds to the 
inverse birth rate. For changing the position of an object by ்ܳ, 
a randomly chosen object is shifted from its current position by a 
random (local) displacement vector. The movement is realized in 
a given interval based on a uniform distribution. The kernel ratio 
is set to one. Finally, ܳ ெ allows to change the marks of the object. 
An ellipse of the current configuration is randomly selected, from 
which the new semi-minor and semi-major axis as well as the 
orientation are drawn from a uniform distribution within 
predefined intervals. Analogous changes are applied to a circle 
and its radius. The kernel ratio is also set to one in both cases. 
 
3.3 Energy function 

To evaluate each object configuration, we use the Gibbs energy 
(1) which describes the consistency of the configuration with our 
bomb crater model and is minimized during sampling. 
 
 

3.3.1 Data energy: The data energy ܷ஽( ௧ܺ) from (1) checks 
the consistency of the object configuration with the input data. 
Bomb craters are characterized by locally darker grey values in 
comparison to the surrounding area due to the shadow cast by the 
sun. Its shape is often circular within the bomb craters. 
Consequently, bomb craters are assumed to have high gradient 
magnitudes in the transition region from dark to bright and more 
or less homogenous grey values inside (Fig. 1b). We adopt the 
data term ܷீ(ܺ௧) of our previous work (Kruse et al. 2018) and 
add a new term ܷு( ௧ܺ). Thus, the data energy is modelled by  
 

ܷ஽( ௧ܺ) = ܷீ( ௧ܺ) + ܷு(ܺ௧). 
 
Gradient magnitudes: According to the assumptions made 
earlier, a newly created or modified object leads to a reduction of 
the data energy if high gradient magnitudes occur along the edges 
of the object, i.e. the shape of the circle respectively ellipse fits 
to the border of the shadow. We determine the gradients along 
the edge of the object and model the corresponding data term by 
 

ܷீ( ௧ܺ) = ݂ீ ∙ ෍ ቌܿ −
1
݊௕
෍∇ூெீ೛ೕ

⦝

௡್

௝ୀଵ

ቍ .
௢ೕ∈௑೟

 

 
In (7), ∇ூெீ೛ೕ

⦝  is the component of the grey value gradient at the 
border pixel ݌௝ in the direction of the normal vector of the object 
 ௝ pointing outside. To calculate the sum of the gradients along݋
the border of the object, ݊௕ pixels ݌௝ are used. The edge of the 
object is approximated by a polygon with a constant number of 
݊௣ vertices (set to ݊௣ = 32 in our experiments). The term is 
weighted by a factor ݂ீ  and the constant ܿ ≥ 0 ensures that the 
energy only decreases if the sum in (7) is larger than ܿ. Without 
the introduction of ܿ , objects with very small gradient magnitudes 
at the object border would already reduce the energy, so that the 
optimal configuration would consist of an extremely large 
number of (mostly false positive) objects. 
 
Homogeneous grey values: This term requires the grey values 
inside the object to be homogeneous. Homogeneity is measured 
by the grey value standard deviation ߪ within the object. It is 
assumed that ߪ is higher for a false positive (FP) object than 
within a bomb crater (Fig. 1b-d). A modified or newly created 
object ݋௝ increases the data energy if ߪ௝ is higher than a 
predefined threshold ܪ௧, which results in  
 

ܷு( ௧ܺ) =  ு݂ ∙ ෍ max ൫0,ߪ௝ .௧൯ܪ−
௢ೕ∈௑೟

 

 
The energy term is weighted by ு݂. For the computation of ߪ௝ we 
consider the grey values of all pixels inside the object ݋௝. In 
addition, a certain number of pixels around the border of the 
object can be excluded from the calculation of ߪ௝, because the 
shapes bomb craters may deviate slightly from the geometrical 
model. This possibility is controlled via a parameter ܪ௘ (Fig. 1a) 
describing the width of the area that is excluded. 
 
3.3.2 Prior energy: Using this energy, certain object 
configurations can be favoured based on prior knowledge. To 
avoid the accumulation of objects in regions with low data 
energy, configurations with overlapping objects are penalized. 
As in (Kruse et al., 2018), we consider all possible combinations 
of overlapping object pairs ݋௜ ,  ௜௝ ofܣ ௝. The overlapping areas݋
the objects ݋௜ and ݋௝ as well as the respective relative overlapping 
areas ܣ௜௝ ⁄(௜݋)௜ܣ  and ܣ௜௝ ⁄(௝݋)௝ܣ  are calculated. Here, ܣ௜(݋௜) and 
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 ௝, respectively. The݋ ௜ and݋ are the areas of the objects (௝݋)௝ܣ
prior energy with penalization weight ௉݂ becomes 
 

ܷ௉( ௧ܺ) = ௉݂ ∙ ෍ maxቆ
௜௝ܣ

(௜݋)௜ܣ
,
௜௝ܣ

௝൯݋௝൫ܣ
ቇ

௢೔ ,௢ೕ

 . 

 

  
 

Figure 1: Homogeneity of an object ݋௝ is measured by the grey 
value standard deviation in the red area; pixels in ܪ௘ 
(yellow) are excluded (a). Bomb craters with a circular 
(b) and not quite circular shape (c); (d) shows a FP with 
a high standard deviation within the object. 

 
3.4 Limitation of the search space 

To reduce the computational effort for sampling, we restrict the 
search space for the MPPs in the image. For that purpose, we use 
the blob detector described in (Mallick, 2015) and implemented 
in OpenCV. A blob is a group of connected pixels that share 
common properties (e.g. similar grey values). The aim of the blob 
detection is to find and mark these pixel regions in the image. 
Subsequently, in the sampling process these blob locations are 
used to restrict the search space by only allowing the birth of an 
object at such a position. In order not to miss any craters, the 
parameters of the blob detector are selected appropriately 
(Section 4.1.2). This is important because other image locations 
are no longer taken into account. 
 
In the first step of blob detection, the image is converted into 
several binary images by applying different thresholds. 
Beginning with a minimum threshold ்ܤ_௠௜௡ this threshold is 
increased by ்ܤ_௦௧௘௣ (parameter for the step size) until a 
maximum threshold ்ܤ_௠௔௫ is reached. Subsequently, connected 
components are extracted from each binary image and their 
centres are calculated. The centres are grouped according to their 
coordinates, with neighbouring centres forming a group that 
corresponds to one blob. In this context, the procedure requires 
another parameter ܤ஽ which ensures that blobs located closer 
than ܤ஽ are merged. The algorithm also provides filter options 
(circularity, convexity, inertia ratio and size ܤே) and allows to 
detect only dark blobs, bright blobs or both types of blobs. 
 
3.5 Preprocessing 

The quality of the images differs considerably due to their age as 
well as the circumstances during the acquisition. A central aspect 
is that sometimes areas of the image are underexposed, whereas 
others are overexposed. To counteract this, a Contrast Limited 
Adaptive Histogram Equalization (CLAHE; Pizer et al., 1987 – 
we use the OpenCV implementation) is applied to each image as 
a pre-processing step. First, the image is divided into small blocks 
with a size of ܥ௕ and each block is histogram equalized. To avoid 
the amplification of noise, contrast limiting is applied before the 

equalization: pixels with a histogram bin above the specified 
contrast limit ܥ௟ are distributed uniformly to other bins. Finally, 
bilinear interpolation is applied in the borders of the blocks.  
 
In order to make use of the full radiometric resolution in the 
sampling process, the grey values are normalized locally to the 
interval [0, 255] in a window centred over the object centre with 
the size of the object’s largest expansion (radius or semi-major 
axis) and an additional ݊௣ pixels in each direction. We observed 
empirically that these image processing operations are 
reasonable, especially regarding the investigations in Section 4.4. 
 
There are objects that have a similar appearance as bomb craters. 
Among others, shadow casts by houses and trees can lead to false 
detections. If stereoscopic imagery is available, one way of 
counteracting these limitations is to integrate height information 
to find and subsequently exclude such areas from further 
processing. Similar to our previous work, we instead manually 
masked out high stationary objects (trees, houses, others) 
including their shadows. Pixels inside such masked areas are 
considered neither for the detection nor for the evaluation. We 
run our experiments (Section 4) on both, the masked and non-
masked images to investigate the general influence of the 
masking procedure. 
 
3.6 Impact map 

We use the detected bomb craters to derive a probability for each 
location that there are duds nearby. Kernel density estimation 
with the kernel function ܭ(݇) =  (1− |݇|) is performed to 
generate the associated probability map from the centres of the 
detected craters. In this context, the bandwidth ℎ in equation (3) 
indicates how large the area of influence of a detection is. Using 
the probability map, the entire scene is classified into potentially 
contaminated and uncontaminated areas. For that purpose, a 
threshold ݌ is applied to the probabilities resulting in an impact 
map. This threshold specifies from which probability within the 
probability map an area is classified as contaminated. 
 
We are interested in detecting areas that have a very high 
likelihood of containing a dud so that it makes sense to send a 
team of experts to that area to probe it. In general, probing is 
recommended for areas of bomb craters as well as clusters of 
craters. Thus, the focus of our work is on avoiding false 
detections, because these cause high unnecessary costs, i.e. areas 
classified as contaminated should in fact be contaminated. 
 
 

4. EXPERIMENTS 

Our method is evaluated on a total of 22 panchromatic aerial 
wartime images (Section 4.1.1) for which we empirically set the 
parameters in our approach (Section 4.1.2). The evaluation of the 
results is carried out pixel-based (Section 4.1.3). The aims of our 
experiments are as follows. First, we check whether the circle as 
an object model leads to similar or even better results compared 
to the ellipse used in our previous work (Section 4.2). Second, we 
want to validate the extended data energy by analysing the 
influence of the newly presented data term on the existing 
procedure (Section 4.3). Both, in Sections 4.2 and 4.3, the goal is 
to achieve results with a high quality. In contrast, in Section 4.4, 
we tune the algorithm with regard to the proposed application 
scenario, i.e. the results should have a high correctness. For this 
purpose, the parameter ܿ (equation 7) of the first data term ܷீ is 
considered while the parameters of the second data term ܷு are 
kept constant (Section 4.4). 

FP 
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4.1 Test data and test setup 

4.1.1 Data: We evaluate our method based on 22 aerial 
images of scale 1:6000 to 1:10500, acquired by the Allied forces 
during the Second World War over Lower Saxony, Northern 
Germany, and scanned with 1200 dpi with 8 bit radiometric 
resolution, resulting in ground sampling distances (GSD) of 
approx. 0.13 m to 0.22 m. The images cover areas of about 2 km² 
to 6 km² each and consist of about 10.0002 pixels. Experts of 
Lower Saxony's explosive ordnance disposal service generated 
the area-based reference by manual annotation, i.e. for each 
reference crater we know its position and radius. The degree of 
impact, i.e. the number of bomb craters in each image, varies 
between zero and almost 1000. The focus of the investigations 
and developments is on rural sites. In densely built-up areas, it is 
not possible to clearly identify craters in the images because they 
are covered by the rubble of destroyed buildings. Furthermore, 
the investigated images are representative for certain cases (e.g. 
different lightning situations and variable image content). 
 
4.1.2 Parameter settings: In our experiments, we set the free 
parameters to values that were determined empirically. If not 
specifically indicated, the parameters for all images and tests 
were set to identical values. Compared to (Kruse et al., 2018), 
among some other less relevant parameter changes, we chose the 
same value for ܿ (equation 7) in all images, and except for two 
images, we did not change the minimal blob size ܤே_௠ (Section 
3.4). Thus, there are almost no varied parameters, which makes 
the procedure more relevant for a potential use case. 
 
We select the parameters of the blob detector (Section 3.4) as 
௠௜௡_்ܤ = ௠௔௫_்ܤ ,10 = ௦௧௘௣_்ܤ ,245 = 2 and ܤ஽ = 5. As bomb 
craters or their shadows, respectively, are generally characterized 
by darker grey values than those in their surroundings, the 
procedure should only detect dark blobs. The parameters for 
filtering are set in a loose way, which allows craters to deviate 
from a circle. Similarly, the selection of ܤே in the interval [ܤே_௠, 
 ே_ெ] makes it possible to detect bomb craters with a differentܤ
number of pixels and, thus, different sizes. Depending on the 
GSD of the respective image, we set ܤே_௠ and ܤே_ெ in a way 
that blobs in-between diameters of 5 m and 15 m can be detected. 
For two images with comparably small craters, the lower 
boundary was reduced to 3 m. Although selecting such loose 
filter restrictions results in many false detections, experiments 
have shown that a more restrictive choice excludes the detection 
of many bomb craters in advance. On the other hand, it is also 
important that the minimum blob size ܤே_௠ is not set too small. 
 
For CLAHE, we set the parameters for the block size to ܥ௕ =
௕ܥ and the contrast limit to ݏ݈݁ݔ݅݌ 60ݔ60 = 2. Here, the 
selection was performed based on visual inspection in a way that 
underexposed and overexposed areas, respectively, are removed 
appropriately. The parameter ݊௣, which refers to the extended 
size of the window in which the normalization is performed, is 
set to ݊௣ =  to make sure that the complete part of the ݏ݈݁ݔ݅݌ 20
inside of the crater as well as some surrounding pixels are 
contained in the window. 
 
We weight the data and prior energy of the marked point 
processes equally, i.e. ߚ from equation (1) is set to ߚ = 0.5. 
Simulated annealing uses a geometric cooling scheme by 
reducing the temperature ܶ ௧ from (2) using a factor ݂ ் in the form 
௧ܶ = ଴ܶ ∙ ்݂௧. Here, we set the start temperature ଴ܶ = 100 and 
்݂ = 0.9994. The lower and upper limits of the semi-major (ܽ௠, 
ܽெ) and semi-minor (ܾ௠ ,ܾெ) axes (ellipse) or radius (circle), 
respectively (Section 3.1), are derived from the minimum and 

maximum blob radius ܤ௥ ∈ ൛ܤ௥_௠௜௡ ,  ௥_௠௔௫ൟ occurring in theܤ 
image after blob detection. This results in ܤ௥_௠௜௡ = ܽ௠ = ܾ௠ =
௥_௠௔௫ܤ ௠ andݎ = ܽெ = ܾெ =  ெ. We set the propositionݎ
probabilities of the kernels (Section 3.2) to ݌ொಳ = ொವ݌ ,0.4 = 0.4 
and ݌ொ೅ = ொಾ݌  = 0.1. The probabilities for the translation and 
mark-variation event are comparatively low, since the objects, in 
particular the circle, no longer have to be significantly shifted or 
changed due to the size information provided by the blob 
detector. In order to avoid manual intervention, ߣ from equation 
(5) is set to ߣ =  is the number of ݏܾ݋݈ܾ# where ,20/ݏܾ݋݈ܾ#
blobs. The parameter ܿ of the first data term (ܷ஽(ܺ௧), equation 
7) is set to 1100 and the weight of that term is set to ݂ீ = 1. The 
parameters of the second term ܷு( ௧ܺ) of the data energy in 
equation 8 are set as ு݂ = 5 and ܪ௧ = 15. Due to the fact that 
craters are not always round (e.g. Fig. 1c), we set ܪ௘ = 6. The 
weight ு݂ is set to a relatively low value, because otherwise 
objects could be generated in homogeneous non-crater areas. 
Finally, in connection with the prior energy (9), minor overlap of 
objects is possible with ݂ ௉ = 10000. The initial configuration for 
the sampling procedure is an empty set of objects. 
 
In connection with the kernel density estimation, we derive an 
impact map with a radius of 20 m. For this purpose, the 
bandwidth ℎ from equation (3) is varied based on the image scale 
and an appropriate threshold ݌ for the probabilities is set in a way 
that the area around the centre of an object is always classified as 
contaminated within a radius of 20 m for single detections. As 
areas of bomb craters and their immediate surroundings are likely 
to contain duds, the radius of 20 m is set relatively small in order 
to detect those areas that probably need to be probed by experts. 
 
4.1.3 Evaluation criteria: The pixel-based evaluation of the 
results is based on the impact map (Section 3.6) generated from 
the automatically detected bomb craters. The reference centres of 
the bomb craters are used for the generation of the reference 
impact map (same parameter setting as for the generation of the 
impact map from the object centres). The corresponding impact 
maps from the reference and the automatic detection are 
compared and each pixel is classified as being either a True 
Positive (TP), False Negative (FN), False Positive (FP) or True 
Negative (TN). A TP is a pixel that was correctly classified as 
contaminated in both, the reference and automatic detection. FN 
pixels have been classified as uncontaminated by the automatic 
detection although they are in fact contaminated. FP pixels were 
falsely classified as contaminated. Finally, a TN pixel was 
correctly classified as uncontaminated in both cases. The 
completeness is the percentage of the actually contaminated area 
found by our method, i.e. TP / (TP + FN). The correctness is the 
percentage of areas from the automatic detection that lie in areas 
which are actually contaminated, i.e. TP / (TP + FP). The quality 
considers both types of errors, FN and FP (Heipke et al., 1997). 
 
4.2 Comparison of two object models 

The numerical values of completeness (CP), correctness (CR) 
and quality (Q) for the comparison of the object models ellipse 
and circle can be found in Table 1. Here, the quality measures for 
the total area based on all 22 images, non-masked (TA non-m) 
and masked (TA m), are shown (more detailed information, e.g. 
the results for every image, is presented in Table 2, Section 4.3). 
Our results show that if a circle instead of an ellipse is used as an 
object model, the quality of the results remains almost the same. 
The completeness decreases on average by about 1 %, while the 
correctness increases by about 2 %. Strongly elliptical craters can 
lead to FNs, whereas FPs that appear similar to elliptical bomb 
craters in the image are also somewhat reduced. Consequently, 
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the circle should be preferred as object model, because a model 
with fewer parameters is considered to be more stable. Thus, in 
the following experiments the circle is used as object model. 
 

 
ellipse circle 

CP 
[%] 

CR 
[%] 

Q 
[%] 

CP 
[%] 

CR 
[%] 

Q 
[%] 

TA non-m 56.5 69.5 45.3 56.0 71.2 45.6 
TA m 56.2 76.7 48.0 55.3 78.3 48.0 

 

Table 1: Evaluation results for the models ellipse and circle. 
 
4.3 Validation of the expanded data energy 

Analogously to Table 1, Table 2 shows in addition to the total 
areas (non-masked and masked) the quality measures for each of 
the 22 investigated non-masked images (IMG non-m; details for 
the masked images are not shown) with the respective number of 
bomb craters (NC). Note that the abbreviations are the same as 
the ones in Table 1. The results considering only the first data 
term (GRAD) are compared to those additionally taking into 
account the second data term (GRAD + HOM). As mentioned in 
the previous section, the used object model is a circle. 
 

IMG 
non-m NC 

GRAD GRAD + HOM 
CP 
[%] 

CR 
[%] 

Q 
[%] 

CP 
[%] 

CR 
[%] 

Q 
[%] 

I 0 N/D 0 0 N/D 0 0 
II 0 N/D 0 0 N/D 0 0 
III 0 N/D 0 0 N/D 0 0 
IV 0 N/D 0 0 N/D 0 0 
V 9 11 6 4 11 7 4 
VI 16 19 18 10 19 20 11 
VII 17 23 7 5 17 6 5 
VIII 18 31 15 11 30 22 14 
IX 24 12 9 5 12 12 6 
X 24 19 12 8 19 14 9 
XI 33 36 35 22 36 48 26 
XII 47 41 55 31 39 62 31 
XIII 56 46 36 25 42 41 26 
XIV 130 47 45 30 46 51 32 
XV 168 35 43 24 35 48 25 
XVI 236 59 58 41 56 63 42 
XVII 331 36 70 31 35 71 30 
XVIII 373 29 71 26 29 75 27 
XIX 396 75 93 71 75 96 73 
XX 475 66 64 48 59 74 49 
XXI 554 76 91 71 75 93 71 
XXII 925 78 75 62 72 85 64 

TA non-m 59 65 44 56 71 46 
TA m 58 73 47 55 78 48 

 

Table 2: Evaluation results for the first data term (ܷீ) and the 
combination of both, the first and second data term 
(ܷீ +ܷு); (N/D: not defined). 

 
The results from Table 2 show that an average completeness and 
correctness of 56 % and 71 %, respectively, can be achieved by 
considering both data terms (TA non-m, columns 6-8). Compared 
to the results only based on the first data term (TA non-m, 
columns 3-5) with a completeness and correctness of 59 % and 
65 %, respectively, the quality increases from 44 % to 46 %. In 
many cases, the correctness increases by several percent while 
the completeness remains (almost) the same (e.g. VIII, XI, XIV, 
XV and XVIII). On the other hand, due to the additional data 
term, (almost) the same number of TPs as FPs are apparently 

removed from the object configuration during sampling, which 
has a larger negative effect on the completeness (e.g. XVI, XX 
and XXII). This elimination of bomb craters occurs because they 
do not always have homogeneous dark grey values inside, are not 
exactly convex, or have an elliptic shape, which can also lead to 
higher standard deviations. Thus, the assumption that the 
standard deviation of the grey values for a bomb crater is smaller 
than for a FP is only partly correct. When using a larger weight 
and a more restrictive parameter setting (e.g. ு݂ = ்ܪ ,40 = 10, 
௘ܪ = 6; equation 8) the completeness decreases to 43 % while 
the correctness increases to 84 % (TA non-m). 
 
4.4 Focus on correctness 

In general, the quality measures shown in the previous section are 
too low to integrate the results into the workflow of the explosive 
ordnance disposal service (Table 2). With an average correctness 
of 65 % (using only the first data term) or 71 % (using both data 
terms) for the non-masked images (Table 2, underlined), too 
many areas would be unnecessarily probed, resulting in 
enormous costs. That is why we vary the parameters of the 
algorithm in a way that the results have a higher correctness at 
the expense of completeness. To achieve this aim, it is for 
example possible to vary the parameter ܿ of the data energy ܷீ. 
Increasing ܿ will result in more and more objects with smaller 
gradients at the object border being removed from the object 
configuration. Similarly, the parameters of the second data term 
ܷு could be varied, but this term has more free parameters. This 
is why we increase the parameter ܿ starting with ܿ = 1100 and 
keep the parameters of the second data term ܷு constant as 
described in Section 4.1.2 (Fig. 2). Again, the completeness and 
correctness are based on the total area of all 22 images. 

 
 

Figure 2: Completeness and correctness as a function of 
parameter ܿ for the total area of all 22 images. 

 
Figure 2 shows the dependence of completeness and correctness 
on parameter ܿ of the first data term. It can be seen that the 
completeness decreases more or less linearly until approx. ܿ =
1900, while the correctness is similar to a root function, i.e. 
initially it increases comparatively more strongly and from 
approx. ܿ = 1300 the loss in completeness is higher than the gain 
in correctness. However, having in mind the proposed scenario, 
e.g. for ܿ = 1400 a correctness of almost 90 % (non-masked) or 
90 % (masked) can be achieved with a remaining completeness 
of 40 %. From approx. ܿ = 2100 onwards, the correctness lies at 
about 97 %, whereas the completeness still decreases. 
Furthermore, it should be noted that the curves for completeness 
(non-masked and masked) overlap (as was to be expected) and 
the curves for correctness converge with increasing ܿ. The latter 
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is of interest if it is not possible to automatically derive height 
information. Finally, Figure 3a shows an example for the 
resultant optimal object configuration after the sampling 
procedure for a part of image XXI. Here, there are five false 
detections (Fig. 3a, cyan circles), and comparably few bomb 
craters are not detected (Fig. 3a, red arrows). This observation 
can also be seen in Figure 3b in which the two impact maps 
generated from the reference centres and the centres of the 
automatic detection (Fig. 3a) are superimposed. Here, ܿ was set 
to ܿ = 1100. Mainly one larger area that consists of the three 
undetected craters was falsely classified as uncontaminated (Fig. 
3b, red). By increasing ܿ from ܿ = 1100 to ܿ = 1500 (Fig. 3c) 
to ܿ = 1900 (Fig. 3d), the areas that were wrongly classified as 
contaminated almost vanish (Fig. 3b-d, pale blue). However, the 
number of pixels falsely not detected as contaminated increases 
as well (Fig. 3b-d, red). Consequently, for the proposed scenario, 
the procedure provides very good results for ܿ = 1900 in this 
example: almost all areas classified as contaminated (Fig. 3d, 
dark green / pale blue) actually have to be probed. 
 

    
 

    
 

Figure 3: Subset of image XXI with the final object configuration 
for the MPP of circles for ܿ = 1100 (a). Correct 
detections are shown in yellow, false detections in cyan 
and missing detections are tagged by red arrows. (b) 
superimposition of the corresponding impact map and 
its evaluation with TP-areas in dark green, FN-areas in 
red, FP-areas in pale blue and TN-areas in lime green. 
(c) and (d) show the impact maps and the evaluation 
resulting from ܿ = 1500 and ܿ = 1900, respectively. 

 
 

5. CONCLUSION AND OUTLOOK 

In this work, we present a stochastic approach based on marked 
point processes for the automatic detection of bomb craters in 

aerial wartime images. The detections are used to generate an 
impact map that provides a quick overview of contaminated areas 
for detecting areas that have a very high likelihood of containing 
a dud so that it makes sense to have them probed by a team of 
experts. The approach was evaluated on a total of 22 
panchromatic images. Experts of Lower Saxony's explosive 
ordnance disposal service generated the area-based reference by 
manual annotation. We could show that using a circle instead of 
an ellipse as object model does not affect the results significantly; 
the quality stays almost the same. The analysis of the additional 
data term revealed that the assumption that the standard deviation 
of the grey values for a bomb crater is smaller than for an FP is 
often fulfilled. In some cases, it is possible to reduce the number 
of FPs while maintaining the same level of completeness; in 
others, TPs are also eliminated. The quality could be slightly 
increased from 44 % to 46 % by the second data term. In general, 
the results with a correctness of approx. 65 % (only considering 
the first data term) or 71 % (considering both data terms) for the 
non-masked images are not good enough for an integration into 
the workflow of the explosive ordnance disposal service, because 
too many areas would have to be probed unnecessarily, resulting 
in enormous costs. In this context, our final set of experiments 
shows that the correctness can be increased at the expense of 
completeness by varying only one parameter of the data energy. 
Thus, the procedure is more attractive for the proposed use case. 
On the basis of the investigated images, e.g. a correctness of 
about 90 % with a remaining completeness of approx. 40 % can 
be achieved. Furthermore, additional height information would 
increase the correctness, especially for lower values of the 
parameter mentioned before. 
 
A problem in connection with false detections arises from objects 
that appear like bomb craters in the image (e.g. shadows of 
houses or trees, image errors, others). The former could be 
tackled by height information (we simulated it). Thus, the 
integration of height will be considered in the future. FPs 
stemming from image errors, shadows of non-stationary objects 
with a certain height or other objects are often partly different 
from typical craters, especially with regard to their shape. Thus, 
future experiments, based on the idea behind the second data 
term, will include investigations regarding the shape of a 
detection. In this context, we do not consider grey values but 
determine the deviations from a given shape, e.g. a circle. To 
achieve this, first, we will determine the contour of a detection 
and then find a shape which best represents the contour. 
Deviations should indicate to what extent the detection is actually 
of the given shape. This could be integrated into another data 
term in the way that larger deviations increase the energy. 
Another idea to increase the correctness of the results is to 
classify an area as contaminated only after several detections 
(and not already for individual ones). For this purpose, the 
threshold ݌ (Section 3.6) applied to the probability map created 
with kernel density estimation (Section 2.3) could be adapted. 
This, obviously, would reduce the completeness as well (except 
in strongly bombed areas). Finally, we will consider information 
from multiple overlapping images for the generation of the 
impact maps. 
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