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Abstract

Analyzing data becomes an important skill in a more and more digital world. Yet, many
users are facing knowledge barriers preventing them to independently conduct their data
analysis. To tear down some of these barriers, multimodal interaction for visual analysis has
been proposed. Multimodal interaction through speech and touch enables not only experts,
but also novice users to effortlessly interact with such kind of technology. However, current
approaches do not take the user differences into account. In fact, whether visual analysis is

intelligible ultimately depends on the user.

In order to close this research gap, this dissertation explores how multimodal visual analysis
can be personalized. To do so, it takes a holistic view. First, an intelligible task space of
visual analysis tasks is defined by considering personalization potentials. This task space
provides an initial basis for understanding how effective personalization in visual analysis
can be approached. Second, empirical analyses on speech commands in visual analysis as
well as used visualizations from scientific publications further reveal patterns and structures.
These behavior-indicated findings help to better understand expectations towards multimodal
visual analysis. Third, a technical prototype is designed considering the previous findings.
Enriching the visual analysis by a persistent dialogue and a transparency of the underlying
computations, conducted user studies show not only advantages, but address the relevance of
considering the user’s characteristics. Finally, both communications channels — visualizations
and dialogue — are personalized. Leveraging linguistic theory and reinforcement learning,
the results highlight a positive effect of adjusting to the user. Especially when the user’s

knowledge is exceeded, personalizations helps to improve the user experience.

Overall, this dissertations confirms not only the importance of considering the user’s
characteristics in multimodal visual analysis, but also provides insights on how an intelligible
analysis can be achieved. By understanding the use of input modalities, a system can focus
only on the user’s needs. By understanding preferences on the output modalities, the system
can better adapt to the user. Combining both directions improves user experience and

contributes towards an intelligible multimodal visual analysis.
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Zusammenfassung

Daten spielen eine immer wichtigere Rolle. Viele Anwender interessieren sich fiir die
Nutzung ihrer Daten, jedoch fehlt ihnen oft das notige Wissen, um dies zu tun. Dies kreiert
Nutzungsbarrieren fiir den Anwender. Ein Ansatz um Daten zugéinglicher zu machen ist
die Nutzung von Visualisierungen. Ferner werden neue Interaktionsmodalititen untersucht,
die insbesondere durch moderne Technologien einsetzbar werden. Dabei erscheint die
Kombination aus Sprache und Gesten besonders effektiv fiir die visuelle Datenanalyse. Erste
Ergebnisse zeigen vielversprechende Vorteile, es fehlt jedoch der Anwender in Gleichung. Je
nach Anwender ist nimlich eine Analysesituation einfacher oder schwerer verstindlich. Eine

Anpassung an den Anwender ist somit essentiell.

Um diese Forschungsliicke zu schlieBen erforscht die vorliegende Dissertation Methoden
fiir eine verstdndliche, multimodale, visuelle Datenanalyse in Abhéngigkeit vom Anwender.
Dabei nimmt diese Arbeit einen gesamtheitlichen Blick auf den Forschungsgegenstand
ein. Initial diskutiert die Arbeit Personalisierungsmoglichkeiten von typischen Aktionen in
der visuellen Datenanaylse, um herauszufinden an welchen Stellen eine Personalisierung
besonders effektiv sein konnte. Um ferner dem Anwender besser zu unterstiitzen, muss
verstanden werden welchen Mustern Anwendern wahrscheinlich in einer multimodalen,
visuellen Datenanalyse folgen werden. Hierzu exploriert die Arbeit tatsdchlich verwendete
Visualisierung aus wissenschaftlichen Publikationen, als auch die Struktur vor Sprachbefehlen
mit einem potentiellen System. Basierend auf diesen Erkenntnissen zeigt die Arbeit wie ein
technischer Prototyp aussehen kann, um anschlieBend die Hauptkommunikationswege zu
personalisieren. Dabei bedient sich die Arbeit bei linguistischen Grundlagen und neuesten

Ansetzen aus dem maschinellen Lernen.

Insgesamt bestétigt die Dissertation die Annahme, dass Anwender unterschiedliche Bediirfnisse
an eine visuellen Datenanaylse haben. Es zeigt sich wihrend der Arbeit immer wieder, wie
unterschiedlich die Anwender sind und das eine monotone Interaktionsstrategie mit dem
Anwender nicht zielfiithrend ist. So zeigt sich insbesondere die Anpassung an die Sprache
des Anwenders als besonders effektiv. Letztendlich liefert diese Dissertation neue Erkennt-
nisse liber Personalisierungsmoglichkeiten und Rahmenbedingungen fiir eine versténdliche,

multimodale, visuelle Datenanalyse, sodass zukiinftige Arbeiten darauf aufbauen konnen.
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Introduction

In recent years, the effective use of data has become increasingly important. Due to processes
realized through modern information systems, machines with integrated intelligent sensors,
or the daily use of the smartphone, the amount of generated data is constantly increasing. In
the beginning of the century data did not always affect the everyday life. Today data affects

everyone directly, both intentionally or unintentionally.

Making sense of data is an essential element of today’s business (Henke et al., 2016). Not
using the data neglects opportunities to derive new business models and services ideally
adapted to a fast changing world. However, not only companies and the public sector are
interested in the use of data, but also in private life an awareness for the use of data has
arisen. Under the term quantified self', people start using personal data, e.g., fitness data in
order to improve their training. Furthermore, new laws such as the General Data Protection
Regulation (GDPR) of the European Union? foster peoples’ awareness of where data is

collected and how it is used.

While objectives in data certainly differ between business and private life, the methods remain
the same. A central method is the use of data analysis through information visualization,
referred to as visual analysis. Since the human eye is evolutionarily trained for fast
identification of visual structures, visualizations are a powerful tool to quickly generate data
insights. To verify these insights, hypotheses are derived and subsequently statistically tested
against the underlying data. Similar to hypothesis testing, creating effective visualizations
requires of multiple steps (Card et al., 1999; Wilkinson, 2005) including data cleaning and
filtering, transforming, mapping data attributes onto visual variables, and rendering. Each
step involves certain decisions, knowledge, and experience. It can be very complex and
challenging for a user to properly analyze data through applying the individual steps of the
process and their corresponding mathematical methods.

Additionally, users have different characteristics. Capabilities, knowledge, and preferences
vary from one user to the other. Therefore, a user should be viewed from a broader perspective,
in order to effectively serve them in the visual analysis process. Consequently, the behavior,
the preferences, and the current knowledge of the user have to be taken into account. Tukey
and Wilk (1966) appealingly stated:

"https://quantifiedself.com
Zhttps://gdpr-info.eu
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“The science and art of data analysis concerns the process of learning from
quantitative records of experience. By its very nature it exists in relation to people.
Thus, the techniques and the technology of data analysis must be harnessed
to suit human requirements and talents. Some implications for effective data
analysis are: (1) that it is essential to have convenience of interaction of people
and intermediate results and (2) that at all stages of data analysis the nature and
detail of output, both actual and potential, need to be matched to the capabilities
of the people who use it and want it.” (Tukey and Wilk, 1966, p. 697f)

Tukey and Wilk (1966) derive two primary challenges for new designs and technologies in

the data analysis process: convenience of interaction and adaption to the user.

The first challenge of “convenience of interaction” (Tukey and Wilk, 1966) is addressed
through the use of multiple modalities for visual analysis, among other things. Multimodal
visual analysis is an emerging topic. Approaches leverage different modalities for different
tasks in visual analysis. For instance, speech is very effective for generating visualizations
(Grammel et al., 2010) while touch can easily be used for direct manipulation at a visualization.
The combination of speech and touch is especially raising hidden synergies (Cohen etal.,
1989). Consequently interactions become more convenient for a user through these different

modalities because they lower interaction barriers.

Furthermore, some multimodal visual analysis approaches include recommender systems
to automatically generate visualizations. Like other recommender systems such as Google
Search? for news or Netflix* for movies and TV shows, visualization recommender methods
aim for accelerating the process of discovering desired information. These approaches
certainly reduce the complexity of visual analysis, since they protect the users from the

complexity of creating effective visualizations.

In general, visual analysis contains an inherent amount of complexity just like every other
process in accordance with Tesler’s law of conservation of complexity (Saffer, 2006). The
resulting challenge is to find the right level of revealed complexity for a user (Norman,
2010). An effective technology has to both cover complexity in situations in which the user’s
knowledge is exceeded and reveal complexity when the user’s knowledge fits. Otherwise,
the user experience likely suffers as the user is either overstrained or bored (Norman, 2010).

Hence, multimodal visual analysis has to be personalized.

Although it is clearly highlighted that “[...] at all stages of data analysis the nature and detail
of output, both actual and potential, need to be matched to the capabilities of the people who

use it and want it” (Tukey and Wilk, 1966), little knowledge exists in how to achieve either a

Shttps://www.google.de
*https://www.netflix.com
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user-specific multimodal visual analysis or a personalized visualization recommender. With
this aim, this thesis contributes towards a deeper understanding of the challenges, advantages,
and disadvantages of personalizing multimodal visual analysis for structured data through

the use of natural language and gestures.

1.1 Contribution

This thesis takes a holistic view on the personalization of multimodal visual analysis on
structured data to achieve an intelligible user-specific analysis. The following chapters propose
and investigate not only personalization methods for recommendations and conversations, but
also consider the integration of these methods into an overall design and interaction concept
from a usability perspective. The thesis empirically investigates the novel combination of
personalization, recommendations, natural language processing, visualization, and human-
computer interaction for multimodal visual analysis of structured data. The derived insights
and findings collected through various conducted empirical studies help to better understand
the effect of personalization on multimodal visual analysis. This thesis further shows how
knowledge from other domains such as linguistics effectively supports personalization in

order to eventually achieve an intelligible user-specific visual analysis.

1.2 Thesis Outline

Chapter 2 introduces the relevant terms, and definitions. It first introduces fundamental work
concerning the effectiveness of visualizations in terms of appearance as well as in relation to
specific analysis tasks. Additionally, it describes work on recommender systems for visual
analysis. These recommenders generate visualizations by considering knowledge gained
from effectiveness studies. Moreover the knowledge gained from the work on recommender
systems directly influences work on using speech for visual analysis. Lastly, applications of

these tools in practice are highlighted.

Chapter 3 investigates the potential for personalization of abstract visualization tasks. A
review on the understanding of tasks in visual analysis addresses a theoretical task space. In
order to support the design of a personalized intelligible multimodal visual analysis, this task
space is further ranked by both the required knowledge for properly completing a task and

the relevance of the user’s preferences. The chapter addresses the research question (RQ):

RQ 1 How can tasks in visual analysis be systematically structured based on

their potentials for personalization?

1.1 Contribution
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Chapter 4 investigates the behavior in the field by surveying both the use of visualizations
in scientific publications and the underlying structures of text-based commands against a
multimodal visual analysis system. The study results address a narrow visualization space
with a preference-based ranking of the visual variables. Additionally, task-depend wordings

are identified. Accordingly, Chapter 4 focuses on the research questions:

RQ 2 How do text-based commands look like when people generate and

transform visualizations with a prospective visual analysis system?

RQ3 Which visualizations are used in scientific publications for highlighting

insights from structured data?

Based on these insights into the user behavior in the field, Chapter 5 derives a user interface
design and interaction concept focusing on intelligible visual analysis. The corresponding
technical prototype is named Valletto. As the tool needs to understand the user’s commands,
a lightweight methodology for natural language processing in visual analysis is proposed.
Two conducted user studies further show the effectiveness of a multimodal user interface

compared to a classical user interface. This chapter addresses the following research

questions:

RQ 4 What are the differences in completing tasks in a conversational interface
compared to a conventional user interface?

RQ5 What are the differences in the interaction strategies between a conversa-

tional interface and a conventional user interface?

Valletto communicates through the visualizations as well as the dialogue. Since the dialogue
provides important information regarding the user’s current analysis objectives, the content of
statistical tests should be communicated in a user specific manner. Chapter 6 investigates the
personalization of the dialogue component. Based on the linguistic theory of Grice (1975)
concerning how human-human dialogues are fundamentally structured, a two-dimensional
answer space is constructed accordingly. The conducted user studies highlight both diverse
preferences in visual analysis and the effect of (mis)matching the user’s language in visual

analysis. This chapter concisely addresses the research questions:

RQ 6 What are the influencing factors for matching the users language in the

answer space?

RQ7 Can the user’s preferred communication style be accurately predicted by

a probabilistic model?

RQ8 What is the effect of an answer space in a multimodal visual analysis

system during a realistic situation?

RQ9 Is the granularity of the answer space adequate?

Chapter 1 Introduction



While Chapter 4 provide a better understanding of the used visualization space, the ranking of
this visualizations space should ideally consider the user’s preferences. In order to formalize
these preferences, Chapter 7 proposes a reinforcement learning approach to interactively
learn the user’s preferences through a sequence of pairwise comparisons. In order to reduce
the individual learning effort, a divide-and-conquer approach situation is merged with the
dueling bandit (Wu and Liu, 2016). The empirical studies show a positive effect of the
dueling bandit’s predictions as well the acceptance of the learning procedure. Furthermore,
Chapter 7 explores the modelling of prior knowledge for the dueling bandit in order to further

reduce the learning effort for the user. The following research questions are addressed:
RQ 10 Can a divide-and-conquer-based dueling bandit approach effectively
learn individual visualization preferences?

RQ 11 What are the participants’ reactions and feedback concerning the interac-

tive learning procedure?

RQ 12 Can prior knowledge for the dueling bandit be modeled by a machine

learning model?

RQ 13 How does prior knowledge affect the performance of the dueling bandit?

Finally, Chapter 8 summarizes the findings, existing limitations, and avenues for future work

on personalized multimodal visual analysis.

1.2 Thesis Outline






Background

In order to understand the concepts and methods of this thesis, this chapter introduces
fundamental definitions, and terminology. First, the concept of a visualization and its
corresponding generating process are introduced. In the context of visualizations, related
work show how the effectiveness of visualizations is directly influenced by the data, the
task, and the user. Second, the process-related use of visualization is shown. Third, related
work in the area of recommender systems and multimodal approaches for visual analysis
are structured and discussed. Finally, elements of personalization and the application of
visualzations in practice are shown. Based on this analysis, current research gaps are

addressed to further highlight the contributions of this thesis.



8

2.1 Information Visualization

Before introducing relevant terms and concepts, the term visualization needs to be defined.
According to Card (2002), “Visualization can be described as the mapping of data to visual

form that supports human interaction in a workplace for visual sense making”.

There are many forms of visualizations. Literature generally distinguishes between scientific
visualization and information visualization (Levkowitz and Oliveira, 2003). In scientific
visualization, visualizations represent graphical element of real world objects, e.g., realistic
simulations of floods (Cornel etal., 2019). In information visualization, visualizations
express abstract data, e.g., stocks (Ko etal., 2016). This thesis only considers information

visualization. A widely used definition of information visualization is the following:

Definition 1: Information Visualization (Card et al., 1999)

“The use of computer-supported, interactive, visual representations of abstract data to

amplify cognition”.

According to this definition, a visualization is always interactive, and computer-supported.
Furthermore, it only represents abstract data and needs to actually amplify cognition. In
this context, amplifying cognition refers to taking advantage of the human eye’s capabilities
in fast discovering visual patterns. Additionally, Card etal. (1999) not only define what
information visualization is, but also relevant steps from raw data to a visualization in
the context of information visualization. They summarize these steps in the visualization

pipeline, shown in Figure 2.1.

The input of the visualization pipeline is raw data. As the name suggests, raw data is not
necessarily processed, clean, or filtered. It essentially describes extracted data from, e.g.,
sensors, or devices. After transforming the data into the shape data tables, it can be used to
further create a visualization. This transformed data represents a structure as known from
relational data bases, or simple excel files. A data table consists of rows and columns. The
rows represent objects or items while the columns represent the attributes of these objects.
For instance, a text document (raw data) might be transformed into a table by computing
the term frequency (tf) for this document (see Figure 2.2). The corresponding data table
contains two columns and one row for each unique word in the original document. The

columns are: the word, and the tf score.

Regarding raw data, it is hard to define what the values actually represent and how they
are structured. However, this example addresses relevance of the scale of measurements of

the different attributes from the data table. While words are basically strings, the tf score

Chapter 2 Background



Data Visual Form

Visual

Raw Data Data Tables User

Structures

Data Transformations Visual Mappings View Transformation

Y y t

Fig. 2.1: Visualization Pipeline (Card etal., 1999; Jabbari et al., 2018)

is a numerical value. Typically, three different scales of measurements are considered in

information visualization.

— Definition 2: Scale of Measurements (Stevens, 1946) ~

Name Description

Nominal Determination of equality
Ordinal  Determination of greater or less
Interval  Determination of equality of intervals or differences

Ration Determination of equality of ratios

However, in information visualization, the scales interval and ration are merged to quantitative
(Card, 2002). Considering the visualization pipeline, data is still represented as a table
until this step in the pipeline. In order to transform a data table into a visualization, the
components of a visualizations need to be considered. Precisely, the visual structures of
a visualization are taken into account. Bertin (1974) proposes to essentially consider two

elements: marks and visual variables.

Marks are points, lines, areas, and volumes (Card, 2002). Marks are also named types.
While marks describe the general representations of individual objects from table data, the
visual variables describe how these individual elements look like. These visual variables
are position, size, shape, value, colour, orientation, and texture (Bertin, 1974; Card,
2002). Bertin (1974) extracts the visual variables by analyzing the design of geographical
maps. However, these visual variables can also be considered conceptually as the basis for
information visualization (Carpendale, 2003). Consequently, they form the fundamental
elements of each visualization. In order to progress a data table to a visualization, a mapping

is further needed.

Definition 3: Visual mapping

A visual mapping assigns each data attribute a € A to a visual structure v € V.

According to this definition, multiple visual mappings exist between a data table and the

visual structures. Assuming a data table contains the data attributes A and the visual

2.1 Information Visualization
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Raw Data Data Tables Visual Mapping Visualization

lorem ipsum dolor sit amet,
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sed diam nonumy eirmod
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Fig. 2.2: Example of the visualization pipeline implementation for generating a wordcloud out of a
text document.

structures V are available, the number of potential visual mappings from A on V are (Mutlu

etal., 2016):
v
(V] —1AD!

However, a visual mapping should always be considered in the context of the purpose of the

2.1

visualization. Therefore, the visual mapping should only contain data attributes relevant
for achieving this purpose. Consequently, if a user wants to observe the frequency of the
words in a document, merely visualizing the used words makes no sense. Instead, the visual
mapping should also consider the frequency of the words. Visual mappings following this

principle are called expressive.

Definition 4: Expressiveness of a Visual Mapping (Mackinlay, 1986)

“A set of facts is expressible in a language if it contains a sentence that (1) encodes all

the facts in the set, (2) encodes only the facts in the set”.

Although the number of expressive visual mappings is tremendously smaller than the
number of all possible visual mappings, each expressive visual mapping uses different visual
structures. For instance, the frequency of the words might be mapped either on the size or
on the color. Both visual mappings are expressive. Yet, the human eye’s capability to read
the information varies between the visual mappings. Therefore, research investigates the
effect of visual mappings on the effort required by the user to decode the desired information

under the concept of effectiveness:

Definition 5: Effectiveness of a Visual Mapping (Mackinlay, 1986)

“Effectiveness criteria identify which of these graphical languages, in a given situation,
is the most effective at exploiting the capabilities of the output medium and the human

visual system”.

Section 2.2 summarizes work on investigating the effectiveness of visual mappings in detail.
However, the term visual mapping is not a synonym for a visualization. In order to turn a
visual mapping to a visualization, rendering is needed. This rendering uses the objects from

the data table and generates the visualization according to the visual mapping. Furthermore,

Chapter 2 Background



it defines the view port of the visualization. Since a visualization is always interactive, a user
might want to zoom into the data. This action from the user only affects the visualization
itself, but not the visual mapping. Hence, only the rendering of the visualization needs to be

executed again.

Still, the key element of the entire visualization pipeline (Card etal., 1999) is the visual
mapping. Hence, it pretty much determines the effectiveness and expressiveness of a
visualization. Therefore, the visual mapping plays an important role in automatically
generating visualization (Mackinlay, 1986). Section 2.4 will further highlight how this

automatizing can be achieved.

2.2 Effectiveness of Visualizations

As illustrated, expressive visual mappings do not necessarily show similar performance at
extracting desired information. In fact, the effectiveness of the visual mapping typically
varies. Section 2.2.1 introduces the current state of the art on the effectiveness research
focusing on the visual mapping itself. Additionally, Section 2.2.2 adds work exploring the
effect of the data and the task on the effectiveness of a visual mapping.

2.2.1 Effects of the Appearance

Generally, the design of graphics is essentially framed by the Gestalt Principles (Todorovic,
2008). The Gestalt Principles summarize the basic fundamentals of visual perception. For
example, the law of proximity describes the effect that points are considered more closely
related when they are visually close. This law appears particularly relevant for scatter plots.
Hence, the graphical perception plays an important role in determining the effectiveness
of visual mappings (Cleveland and McGill, 1984). However, a visualization internalizes
multiple perceptional aspects. This makes it hard to only consider the Gestalt Principles.
Instead, previous research compared the different visualizations against each other in order

to properly determine the effectiveness of particular visualization.

Eells (1926) conducts one of the first work on analyzing the effectiveness of pie charts
compared to bar charts. He determines a better performance of the pie chart. Spence and
Lewandowsky (1991) compare bar charts, pie charts, and tables. They show an advantage of
both pie and bar charts against the table. However, they do not reveal a significant difference
between the two chart designs. Skau and Kosara (2016) investigate the effect of varying
arcs, angles, and areas on the design of pie and donut charts. A donuts chart is essentially
a pie chart a whole in the middle of the pie. On the one hand, the authors show a similar

performance of pie and donuts charts. The arc length, on the other hand, is identified as the

2.2 Effectiveness of Visualizations
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most important factor. Kosara (2019a) further analyzes different pie chart designs where
the design of the filling area varies. While centered designs reduce the performance of the

participants, other designs perform equivalently well.

While the previous work explored different fully specified visualizations, Mackinlay (1986)
analyzes the effectiveness of the visual variables (Bertin, 1974; Carpendale, 2003). For
each scale of measurement, Mackinlay (1986) ranks the visual variables according to their
effectiveness. Based on these rankings, he proposes to automatize the generation of visual
mappings for a given set of data attributes only by considering the scale of measurements. In
fact, this approach is used in many recommender systems for visualizations (see Section
2.4).

Considering the different visual variables, Simkin and Hastie (1987) analyze judgment
differences between between bar charts, stacked bar charts, and pie charts. The bar chart
encodes the relative position, the stacked bar chart encodes the length, and the pie chart
encodes the angle. The authors highlight the performance of the bar chart over the other

options. Additionally, both bar chart variants perform better than the pie chart.

In addition to comparing aggregated values in simple bar charts, it is important to consider
the distribution of a quantitative data attribute, too. Categories might differ with respect to a
specific measure at first glance. However, considering the entire distribution might actually
reveal no significant difference at all. In order to represent the distribution in a visualization,
additional visual elements such as error bars have been introduced. A bar chart enhanced
by an error bar might prevent invalid conclusions. However, users occasionally struggle
in correctly reading visualizations which encode characteristics of a distribution. Correll
and Gleicher (2014) compare four different visualization designs for illustrating uncertainty.
Users perform better with violin charts or gradient charts. The widely used bar charts with

error bars fall behind, according to the authors.

Since the effectiveness of a visualization is often investigated in two-dimensional settings,
Dimara etal. (2018) explore the differences between parallel coordinates, scatter plot
matrix, and tabular visualization in a multidimenisonal setting. In this setting, the tabular

visualization appears to be slightly better for decision making than the other visualizations.

While previous work explores the performance of users by varying the visualization, Borkin
etal. (2013) explore the memorability of visualizations. Comparing a variety of different
widely used visualizations, the authors show a negative correlation between commonly used

visualizations and their memorability by the user.
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2.2.2 Effects of the Data and Tasks

Previous related work present a wide range of studies on the effectiveness of different

visualizations. These studies mostly focus on the setting of nominal and quantitative data.

Yet, the distribution of the data as well as the analysis task both influence the effectiveness of
visualizations as well. For instance, the number of unique categories of an attribute affects
the effectiveness of visual mappings. Therefore, Cleveland and McGill (1984) propose to the
use of different visualizations for different tasks.

Kosara (2019b) explores whether the effectiveness changes when the distribution of the data
changes. Comparing pie charts, tree maps, bar charts, and stacked bar charts, the author
addresses differences in the response time and the error rate. For instance, the response time
almost remains the same when varying the data distribution, given a bar chart. However, the

tree map performs worse than the pie chart.

In addition to the task-related analysis of the effectiveness of visualizations, work has been
conducted focusing on the effect of the distribution on the effectiveness. Harrison et al. (2014)
investigate the effectiveness of various visualizations by varying the correlation between two
quantitative data attributes. The authors particularly consider the effectiveness under Weber’s
Law. Weber’s Law describes the relation between the perceptional effect and the actual
effect. According to Harrison etal. (2014), the scatter plot overall outperforms the other
visualizations. However, the parallel coordinate plot is the best performing visualization
when the correlation coefficient is low. Typically, low correlation coefficients are harder to

determine by the user.

Additionally, Kay and Heer (2016) investigate how the effectiveness of visualizations
for correlation can be modelled. They propose a Bayesian approach for modelling the
effectiveness. Furthermore, Kay and Heer (2016) form four groups (high precision, medium
precision, low precision, and indistinguishable from chance) of visualizations with equal
performance each. Still, the scatter plot outperforms all other approaches in both negatively

and positively correlated data.

Considering the effectiveness of two-dimensional visualizations, Saket etal. (2018) explore

ten common visualizations on varying analysis tasks proposed by Amar etal. (2005).

According to Saket etal. (2018), line charts perform best for finding correlation, while tables
and pie chart show low performance in this task. Furthermore, scatter plots perform well in
identifying anomalies in the data. Overall, the authors highly recommend to use visualizations
depending on the analysis task, since there is no visualization which outperforms others in

each task.

2.2 Effectiveness of Visualizations
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Taking the work of Saket et al. (2018) further, Kim and Heer (2018) analyze the effect of
distributions and tasks on the effectiveness. The authors conduct a study covering both value
and summary-oriented tasks for three dimensional visualizations on two quantitative and one
nominal data attribute. Depending on the task, the best-performing visualization changes.
For instance, scatter plots perform well for comparing individual objects, but not when data
should be summarized (Kim and Heer, 2018).

As the majority of the conducted studies provide qualitative knowledge about the varying
effectiveness of visualizations, automatically estimating the effectiveness of a visualization
is hard. Therefore, Veras and Collins (2019) introduce the Multi-Scale Structural Similarity
Index (MS-SSIM) as an indicator for automatically determine a visualization effectiveness for
a data set. By comparing the predicted results of MS-SSIM with the user study results of Kim
and Heer (2018), the authors show that MS-SSIM approximates the actual effectiveness.

2.2.3 Effect of User Characteristics

The effectiveness of a visual mapping depends on the data distribution (Harrison etal., 2014;
Kay and Heer, 2016; Kim and Heer, 2018; Kosara, 2019b; Veras and Collins, 2019), the
analysis task (Kim and Heer, 2018; Saket etal., 2018), and the general perception of the
resulting visualization (Dimara etal., 2018; Mackinlay, 1986; Simkin and Hastie, 1987).
However, visualizations eventually serve as a reasoning tool for a user which are generally
considered as being diverse. They differ in multiple dimensions, e.g., educational background,
experiences, perceptional capabilities, and so forth. Hence, the question remains whether
the user’s characteristics also influence the effectiveness of a visual mapping. The following

studies analyze this challenge from multiple perspectives.

Velez etal. (2005) inestigate whether user characteristics influence the interaction with
visualizations. Precisely, the authors explore the effect of the spatial ability on the performance
in visualization tasks. Considering the analysis of three-dimensional visualizations, Velez
etal. (2005) show a correlation between spatial ability and accuracy. Participants with higher

spatial ability perform better with the visualizations in terms of accuracy.

Focusing on information visualization, Conati and Maclaren (2008) explore whether user
characteristics influence the effectiveness of visualizations. The authors do so by comparing
two visualizations for complex system changes. While the majority of the user’s characteristics
have no significant influence on the performance in analysis tasks, the perceptual speed
does. According to Conati and Maclaren (2008), the perceptual speed is the “Speed in
comparing figures or symbols, scanning to find figures or symbols, or carrying out other
very simple tasks involving visual perception”. Toker etal. (2012) explore the differences

between bar charts and radar graphs while considering the results of Conati and Maclaren
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(2008). They also identified a significant influence of the perceptual speed on effectiveness.

Furthermore, user characteristics also influence the preferences and the ease of use regarding

visualizations.

Both Green and Fisher (2010) and Ziemkiewicz et al. (2011) explore how the personality of a
user influences the effectiveness of visualizations. Ziemkiewicz etal. (2011) find correlation
between the locus of control and the performance of visual mappings. Green and Fisher
(2010) further show that locus of control, extraversion, and neuroticism have an effect on the
completion time. Additionally, these personality traits also influence the number of collected
insights from visualization. Conati et al. (2014) further explore the effect of personality traits
on the performance with visualizations. The authors highlight not only different performance
in visualization tasks, but also show an effect of the working memory of the participants on

their performance.

Gajos and Chauncey (2017) find correlation between the need for cognition and a utilization

rate. The authors also show that extraversion negatively correlated with the utilization rate.

Focusing on cognition, Lee etal. (2019) identify a correlation between the user’s ability
to make sense of a visualization and both the user’s cognitive abilities and the need for
cognition, respectively. As personality traits influence effectiveness, Haroz and Whitney
(2012) explore how the limits of attention further affect effectiveness. According to their
study results, a user’s capability of attention has an effect on idenfiying more insights in

visualizations.

Overall, these studies provide empirical evidence that the user’s characteristics, abilities, and
personal traits influence the effectiveness of visualizations. Lee etal. (2017) propose the
term visualization literacy as “the ability and skill to read and interpret visually represented
data in and to extract information from data visualizations” in order to achieve a common

definition.

2.3 Visual Analysis

As previous sections show, visualizations leverage visual structures to reveal patterns in

data. Visual mapping is a crucial step in generating a visualization. It determines whether

a visualization is effective and expressive. However, a variety of visual mappings exist.

Depending on the user, the data, and the task, the effectiveness of visualization varies. Yet, a
visualization supports a user in the data analysis process. Hence, it is important to understand

this process. Generally, data analysis through visualizations is called visual analysis.

2.3 Visual Analysis
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Definition 6: Visual Analysis (Kehrer and Hauser, 2013)

“Visual analysis is the integration of visualizations, interactions, and computational

analysis”.

Basically, this definition summarizes the general use of visualizations on data, but does not
describe the process of finding insights in data. On finding insights in data, Tukey (1977) first

mention the idea of an exploratory data analysis in order to formulate hypotheses in data.

Definition 7: Exploratory Data Analysis (Keim et al., 2006)

“Exploratory data analysis is the process of searching and analyzing databases to find

implicit but potentially useful information”.

Generally, the objective is to find insights through data transformation and hypothesis testing.
Furthermore, visualizations already play an important role in this concept. However, the
main interaction method remains the statistical tests and the data transformation operators.
Readjusting the focus now on visualizations, the process consequently leads to exploratory

visual analysis.

Definition 8: Exploratory Visual Analysis (Battle and Heer, 2019)

“Exploratory visual analysis is a subset of exploratory data analysis, where visualizations

are the primary output medium and input interface for exploration”.

According to this definition, exploratory visual analysis considers multiple approaches for
finding insights. On the one hand, it supports the open exploration of a new data set. In
this process, the user has no hypotheses on the data, but searches for interesting patterns.
However, this process likely results in hypotheses. On the other hand, the definition also

supports a confirmatory analysis whether a set of hypotheses is true or false.

A more advanced concept is visual analytics. Visual analytics adds methods from artificial

intelligence such as clustering, and machine learning approaches to the analysis process.

Definition 9: Visual Analytics (Keim et al., 2010)

“Visual analytics combines automated analysis techniques with interactive visualisations
for an effective understanding, reasoning and decision making on the basis of very large

and complex datasets”.

Hence, visual analytics considers the idea of using complex algorithms together with

interactive visualizations. Following this definition, visual analytics exceeds the use of
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statistical methods for generating insights. It aims to use machine learning models for
generating additional insights. Through an interactive process, visual analytics leverages
the advantage of the computational power of a computer and the visual capability of the

human’s eye.

Although elements of visual analytics play a role in this dissertation, the focus will remain on

visual analysis. The visualizations will remain as the primary input and output for the user.

Furthermore, the visualizations will be further supported by statistical measures conducted
by the system. Hence, the approaches essentially follow the definition of exploratory visual
analysis (Battle and Heer, 2019).

2.4 Visualization Recommender Systems

Creating visualizations is a challenging procedure. Since the effectiveness of a visualization
is important to increase a user’s performance in an analysis task (Harrison etal., 2014; Kay
and Heer, 2016; Kim and Heer, 2018; Saket et al., 2018; Veras and Collins, 2019), a visual
mapping should be carefully constructed. However, many users likely have little knowledge
on the formal effectiveness of visualization. In order to cover the inherent complexity of the

visualization pipeline, visualization recommender systems have been introduced.

Definition 10: Recommender System (Ricci et al., 2010)

“A recommender system is a software tool or a technique providing suggestions for

items to be of use to a user”.

The objective of a recommender system for visualization is two-fold. First, a visualization
recommender automatically generates visualizations for the user (Mackinlay, 1986). This
covers the complexity of deciding on an effective visual mapping for a given set of data
attributes. Second, the analysis process of the user is considerably accelerated due to the
automatic generation of visualizations. A user does not have to invest time into the creation

a visualization, but can focus on the data itself.

The idea of a recommender system for visualizations plays an important role in this
dissertation. Its functionality is essentially needed for covering complexity, but also to
adjust to the user’s needs. Therefore, the following sections introduce current state of the art
work on visualization recommenders. Section 2.4.1 introduces approaches using rule-based
methods for recommending visualizations. These methods mostly rely on the effectiveness
studies introduced in Section 2.2. Additionally, Section 2.4.2 discusses approaches taking

advantage of data-driven methods.

2.4 \Visualization Recommender Systems
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Table 2.1 presents an comprehensive overview about the related concepts discussed in
the following sections. The concepts are classified following the taxonomy of Heer and
Shneiderman (2012). However, the taxonomy is extended by categories especially relevant for

this dissertation such as supported modalities, or whether a visualization is personalized.

2.4.1 Rule-Based Methodologies

Rule-based approaches follow explicit routines for generating visualizations. These explicit
routines and rules often implement knowledge gained from effectiveness studies. However,
the approaches differ not only how they implement these rules, but also in which analysis

process steps they support the user.

Mackinlay (1986) proposes to automatize the generation of visualizations. Based on his
ranking of the visual variables for each scale of measurement, a visualization can be
automatically generated just by considering the given data attributes to be visualized. As a
result, quantitative data attributes are typically mapped to size, if available, while nominal
data attributes are mapped to color. The idea of Mackinlay (1986) is further realized in
ShowMe (Mackinlay et al., 2007). ShowMe is a widget in the software Tableau. A user only
needs to drag and drop the data attributes to be visualized. ShowMe accordingly shows an

overview about potential visualizations.

Stolte etal. (2002) present Polaris for exploring Pivot tables. The authors propose to
add graphical representations to the structure of a pivot table. It is one of the first
approaches to accelerate the exploratory visual analysis through the automatic generation of

visualizations.

For effectively supporting a user in the exploratory data analysis, Wongsuphasawat et al.
(2016) propose Voyager. Voyager recommends multiple visualizations at a time for a breadth-
oriented exploration. However, the authors value data variations more than visualization
variation. Additionally, Voyager computes potentially helpful data attribute combinations by
either applying different transformations on the data attributes (e.g., computing the mean), or
replacing certain data attributes. For each resulting data attribute combination, the authors
follow the automatic generation idea of Mackinlay (1986) by considering the effectiveness
of the visualizations (Cleveland and McGill, 1984).

Using Voyager (Wongsuphasawat etal., 2016) as a starting point, Wongsuphasawat et al.
(2017) developed Voyager2. Unlike the predecessor, Voyager2 allows manual specifications
of the visualizations for more design adjustments by the user. While a user might manually
design a visualizations for data attributes, the system further shows additional visualizations

for both the effect of aggregations and the adding of another data attribute. According to
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the authors, Voyager2 allows a broader exploration due to the trade-off between manual
specification of a visualization and automatically generating visualizations. Still, both

approaches Voyager and Voyager2 show a design gallery (Marks et al., 1997).

Vartak et al. (2015) approaches the challenge of finding interesting visualizations within an
acceptable time frame. With their system SeeDB, the authors use deviation-based metrics
to identify interesting visualizations for a given query. These metrics rank visualizations
according to amount of deviation of the data that is represented in the visualization. Adding
SeeDB on top of a relational database, Vartak etal. (2015) enable a fast exploration of a new

data set.

The previous approaches consider as a main challenge the recommendation of a visualizations.
However, Demiralp etal. (2017) propose to focus on visual insights instead. The authors
argue for finding insights in the data. In order to decide on an insight, Foresights (Demiralp
etal., 2017) computes statistical measures for the data, e.g., Pearson’s correlation coefficient,
outliers, and skew. For each discovered insight, a visualization (bar, scatter, or box plot) is

shown.

Siddiqui etal. (2016) propose a query language for generating visualizations for data
exploration. This language is called ZQL. It consists of a name as an identifier, four elements
describing a visualization (X, Y, Z, vis), and an operator element for processing. The idea is to
have an SQL-like query language to focus on the data while getting consistent visualizations
for the queried data. Zenvisage (Siddiqui et al., 2016) implements ZQL. Siddiqui et al. (2016)
show that users can explore data faster with Zenvisage as well as tend to find more insights

in an unknown data set.

In contrast to other approaches, Vizdom, by Crotty etal. (2015), explores the interactive
construction of machine learning models. A user can select desired data attributes as well
as operations that represent machine learning models. For both the output of the machine
learning model and the data attributes, Vizdom generates visualizations. Hence, the user
can interactively explore how the different machine learning approaches work on the data.
Using touch and pen, Crotty etal. (2015) further consider new modalities for visualization

recommendations.

Yalcin etal. (2018) propose Keshif. A user is able to create a dashboard including multiple
visualizations via drag and drop. Depending on the selected data attributes, the tool
automatically generates visualizations. The scale of measurement of the data attributes
essentially defines the proposed visualization type. Furthermore, all visualizations are linked

to each other.

Chapter 2 Background



A variety of approaches tackle the challenge of accelerating exploratory visual analysis. It
appears especially challenging to support a user in finding interesting insights. However, the
majority of approaches have three things in common. First, they consider primarily relational
data bases or table data. Second, they use insights from effectiveness studies for generating
the visualization. Third, they rely on keyboard and mouse as interaction modalities for the
user, except Vizdom (Crotty etal., 2015).

2.4.2 Machine Learning-Based Methodologies

In addition to the rule-based approaches, others — more recently — consider a data-driven
approach. In these data-driven approaches, the visualizations are recommendated via
machine learning models. Depending how the recommender problem is formulated, these
approaches use machine learning for either ranking (Moritz etal., 2019), direct generation
of visual mappings (Dibia and Demiralp, 2018), or direct generation of fully-specified
visualizations (Hu etal., 2019; Luo etal., 2018; Mutlu etal., 2015).

Moritz etal. (2019), on the one hand, propose a combination of rule-based methods and
machine learning. Based on knowledge gained from effectiveness studies, Moritz et al. (2019)
build a set of constraints on the visual mappings for a given set of data attributes. These
constraints technically formalize the knowledge and insights of those studies. In order to
rank the visualizations, Moritz et al. (2019) use a RankSVM. Generally, a RankSVM learns a
relative ranking of a set of items based on pairwise comparisons (Joachims, 2002). Formally,
it follows the learning-to-rank paradigm (Liu, 2010). In Draco (Moritz etal., 2019), the
RankSVM is trained on data of the effectiveness study by Kim and Heer (2018). Hence, the

visualizations are ranked in accordance with the decisions of the participants of the study.

VizML by Hu etal. (2019), on the other hand, implements an end-to-end machine learning
approach. It uses a deep neural network for recommending visualizations. This neural
network is trained on visualizations from the Plotly library' as well as the corresponding
data sets. Plotly is Python library for data visualizations. Hence, given a data set, the method

recommends a Plotly-based visualization.

Another end-to-end machine learning approach is proposed by Dibia and Demiralp (2018).
Their approach, called Data2Vis, translates JSON-structured data sets into Vega-lite (Satya-
narayan etal., 2017) specifications by using an encoder-decoder approach. An encoder-
decoder approach is originally introduced in the Natural Language Processing (NLP) domain
for solving machine translation. Indeed, Dibia and Demiralp (2018) consider the recommen-

dation of visualization as a machine translation problem. The corresponding languages are

"https://api.plot.1ly/v2
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the data set and the Vega-lite specification. Using the architecture proposed by Britz et al.
(2017), the method is evaluated on the data of Poco and Heer (2017).

An in-between approach is DeepEye by Luo etal. (2018). In order to recommend vi-
sualizations, Luo etal. (2018) approach three challenges: separating “good” from *“bad”
visualizations, recommending visualizations, and selecting visualizations. In order to ap-
proach the first challenge, the authors train a decision tree for binary classification. For the
second challenge, a LambdaMART (Burges et al., 2008) is implemented which is similar
to the RankSVM (Joachims, 2002). Both methods are trained on a crowd-sourced data
set. However, the final recommendation routine sequentially concatenates these different
methods. Hence, the routine first identifies the “good” visualizations from a set of generated

visualizations while sequentially ranking these visualizations afterwards.

VizRec by Mutlu et al. (2015) applies a combination of content-based filtering and collaborative
filtering on rule-based generated visualizations. Collaborative filtering basically leverages
the rating of other users to predict a rating for item for a new user while considering the
similarity between the users (Sarwar etal., 2001). In this case, an item is a visualization.
Mutlu etal. (2015) gather the required ratings through a crowd-sourced method. Initially,
VizRec computes a set of potential visualizations through a rule-based approach. However,

the ranking of these visualizations is a result of their collaborative filtering approach.

All of the discussed approaches from related work approach the challenge of recommending
visualizations from a different perspective. Depending on how the problem is essentially
modelled, the methods differ greatly. Starting from taking advantage of a machine translation
model (Dibia and Demiralp, 2018), other approaches follow a sequence of various machine
learning methods (Luo etal., 2018). Nevertheless, the visualizations are mainly generated
through rule-based approaches, but ranked through machine learning models afterwards
(Luo etal., 2018; Moritz etal., 2019; Mutlu etal., 2015).

However, the machine learning approaches essentially differ in one aspects from the rule-
based approaches, apart from how the visualizations are recommended. The related work
on machine learning concentrates on the recommendation method itself. These approaches
investigate effective methods for data-driven recommendations. However, they do not
consider the use of the recommendation within the visual analysis process. Yet, the user
interactions could serve as a feedback channel. They could directly provide information
whether a recommendation is good or bad. Considering this information, a machine learning
model could improve online. Consequently, the ranking would not only become better, but

also be base more on a user. Hence, it is important to take the user into account.
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2.5 Natural Language in Visual Analysis

While recommender systems help to substantially accelerate visual analysis by automatizing
the generation of visual mappings, they typically rely on classical user interfaces. These
approaches consider input via mouse and keyboard (cf. Table 2.1). However, the use of
visual analysis is changing due to new devices and corresponding interaction techniques
(Roberts etal., 2014). Other modalities such as gestures, and speech are becoming more
popular (Srinivasan and Stasko, 2017). Grammel etal. (2010) empirically reveal lower
barriers for novice users in visual analysis using speech. Indeed, these users can effortlessly
formulate their wishes in visual analysis, even though they lack the knowledge in how to

effectively create appropriate visualizations.

In order to understand the approaches on multimodality in visual analysis better, the following
sections introduce the current state of the art in the context of visual analysis. First, Section
2.5.1 discusses proposed approaches for visual analysis solely relying on speech and text,
respectively, as a modality. Afterwards, Section 2.5.2 shows how natural language based

interfaces can be enhanced by other modalities in order to further support the user.

2.5.1 Natural Language Interfaces in Visual Analysis

Sun etal. (2013) propose a tool called Articulate. With Articulate, users can simply ask
questions about the underlying data to retrieve corresponding visualizations. Using a
dependency diagram, the system infers the user’s wishes and generates a visualization
accordingly. Their results reveal that participants welcome the reduced effort for creating

visualizations.

While querying relational data bases is a challenging procedure (Li and Jagadish, 2014),
Gulwani and Marron (2014) explore how spreadsheets can be queried. Considering Excel
files as a data source, Gulwani and Marron (2014) develop a widget for Excel to query
tables. This widget, named NLyze, enables a user not only to give precise commands,
e.g..“sum X.”, but also allows to formulate questions on the table, e.g., “what are the X”.
The authors combine keyword programming and semantic parsing. However, NLyze focuses
on quantitative results, but not on visualizations for these quantitative results. Although it
does not consider visual analysis as its domain, it certainly represents related work due to

the translation of natural language based commands into queries for data tables.

Based on the idea of querying relational data bases, Dhamdhere etal. (2017) explore the
idea of conversations in data exploration. Analyza (Dhamdhere et al., 2017) establishes a
sequence of multiple steps of transforming a natural language command into an answer.

The authors leverage classical NLP techniques. Semantic parsing plays a central part in

2.5 Natural Language in Visual Analysis
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creating an SQL query, such as in Gulwani and Marron (2014). Furthermore, a user is able to
manually correct a query in case the system detects ambiguous commands. Analyza does not

primarily focus on the visualizations, although the system provides a set of visualizations.

While the previous approaches focus on the visual analysis part, others use natural language
based interactions for analytic tasks. Both John etal. (2017) and Fast etal. (2018) consider
the scenario of machine learning model building and statistical testing. John etal. (2017)
introduce Ava which is a natural language module for Jupyter notebook (Kluyver etal.,
2016). Instead of writing code, a user engages in dialogue with the system. John etal.
(2017) take advantage of the Juypter notebook user interface. Fast etal. (2018) design a new
dialogue-based interface for this scenario instead. Iris (Fast etal., 2018) provides the user
with hints on potential methods for the data. Furthermore, it uses clarification requests to
resolve potential mistakes and ambiguity in the user’s commands. Yet, both approaches
consider experts as the primary users rather than a broad variety of users with diverse

backgrounds and characteristics.

Yu and Silva (2020) introduce FlowSense to enrich a data flow visualization systems. In a
data flow system, a user can connect various elements with each other to implement data
processing. KNIME (Berthold etal., 2007) is a well-known data flow system. Yu and
Silva (2020) propose to use natural language commands to create the data flows. Instead
of connecting elements manually, the user only needs to formulate commands. According
to the authors, the system helps users to speed up their analysis as well as supports their

learning curve with the data flow visualization systems.

In addition to information visualization, infographics are creative static visualizations
enriched by illustrative elements and often referring to real world objects. Harrison etal.
(2015) state “Infographics are an effective means for telling stories about data, as they
capture a readers attention by structuring these stories using principles of graphic design”.
Cui etal. (2019) propose Text-to-Viz. Text-to-Viz generates infographics based on natural
language commands. Considering a predefined design space for infographics, Text-to-Viz
can effectively generate visualizations for proportion-related statistics, e.g, “40 percent of
USA freshwater is for agriculture” (Cui etal., 2019). Cui etal. (2019) show benefits for
opening up the field of infographics to a broader spectrum of prospective users due to the

lower effort for generating visualizations by natural language.

2.5.2 Multimodal Interactions in Visual Analysis

The use of natural language for visual analysis shows significant improvements in making
sense of data (Gao etal., 2015; Setlur etal.,, 2016). However, natural language as a

modalilty has shortcomes. Natural language commands can be ambiguous since words
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are always context-sensitive (Gao etal., 2015; Hoque etal., 2018; Setlur etal., 2016). In
order to overcome these shortcomings, combinations of multiple modalities — referred to as

multimodality — are explored. Table 2.2 summarizes the discussed concepts accordingly.

Bolt (1980) explores one of the first approaches on multimodality for graphical interfaces.
He use a combination of speech and air gestures to move items on a map. Users tend to
use vague command structures. Furthermore, they combine both modalities to interact
with the map. Oviatt (1997) also explores interactions with maps. Oviatt (1997) compares
speech-only, pen-only, and multimodal interactions. In the conducted user study, users tend
to prefer multimodal interactions rather than unimodal interactions. Furthermore, users seem
to have difficulties with spatial commands. Furthermore, Hauptmann (1989) highlights the
use of relatively simple gestures and speech commands for manipulating graphic images.
Conducting a Wizard of Oz experiment, Hauptmann (1989) identifies a strong preference for

using both speech and gestures by the users.

Cohen (1992) investigates the role of natural language in a multimodal interface. He argues
for the use of natural language commands for describing objects as well as temporal relations.
Additionally, he also admits the benefits of direct manipulation when the objective is hard to
describe. While both modalities have their advantages, both also lack performance in certain
tasks. Cohen (1992) recommends to leverage each modality’s benefits when designing the
interactions in multimodal interfaces. Badam etal. (2017) later discuss the effectiveness of

modalities in tasks in visual analysis.

Considering the scenario of exploring domain-specific data through bar charts, Cox et al.
(2001) first propose interactive reasoning through multimodal interactions. Multimodality
is expressed by direct manipulations and natural language queries. While bar charts can
be directly manipulated via classical interactions, the user can additionally query the data.
Including initial knowledge on transforming natural language commands into data base
queries (Hendrix etal., 1978), the authors show advantages of combining direct manipulations
with natural language commands in visual analysis. According to the authors’ observations,
users effectively use the interface after short time, although they are not trained in the system
in the first place. These observations further address the advantages of multimodal interfaces

for visual analysis.

While natural language is very effective in formulating requests on data, interpreting these
commands is subject to ambiguity. The meaning of a word mainly depends on the context,
e.g., a “bank” can be a financial institute but also a protection for flooding. Additionally,
words can also be phonetically identical, e.g., “profit” and “prophet”. Hence, a machine
interprets a user’s commands under uncertainty. In order to cover this ambiguity-caused
uncertainty, Gao etal. (2015) propose a multimodal interface named DataTone for visual

analysis where a user can manually correct the interpretation of the system. If a word is
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potentially misinterpreted, the user can choose a potential replacement from a top down

menu.

Setlur et al. (2016) explores the use of multimodality in the context of reasoning of spatial
data. Considering the exploration of maps, the authors propose commands for analytical
tasks. A user can effectively query the system (Eviza) for gaining insights on data. The
system uses meta information on the data such as geographic information to make sense
of a user’s commands. Setlur etal. (2016) also provide a method for covering ambiguity
in the commands. Furthermore, the authors also implement direct manipulations on the

visualizations.

Evizeon by Hoque et al. (2018) continues the work of Setlur etal. (2016) by implementing
pragmatics. Pragmatics means considering also the context of an utterance when interpreting
its meaning (Kabbara, 2019). For instance, a person formulates a request to create a bar
chart, but requests in the very next utterance “make it blue” then “it” refers to the bar chart.
Hoque et al. (2018) show that pragmatics helps to improve the reasoning in visual analysis,

especially in the domain of geospatial data.

The previous work considers only a few visualizations simultaneously. Articulate? (Aurisano
etal., 2016; Kumar etal., 2017) takes a different approach. It generates each visualization in
a separated window. By doing so, it produces a multi-window interface. As other approaches,
it also leverages natural language and gestures for interacting with the visualizations. A
user can generate a visualization by commands. Since each visualization remains displayed

during the analysis, a user can constantly reflect the conducted analysis at any time.

While the majority of the introduced work considers the analysis of tabular data, Srinivasan
and Stasko (2018) investigates the use of multimodality for analyzing network data. Their
system Orko implements multimodality through gestures and speech on wide screen.
Additionally, the modalities can be used in combination as well as individually. For instance,
a user can ask for a specific entity in the network which is eventually highlighted. However,
the user can also select an entity via touch and ask for additional information on this entity

via speech.

Lastly, Srinivasan etal. (2020) propose InChorus. InChorus implements multimodal
interactions on a tablet device. It supports the modalities speech, touch, and a pen.
Srinivasan et al. (2020) show a preferences for using touch for sorting data. However, their
participants adapt their interactions to using multimodal input. Additionally, Srinivasan et al.
(2020) argue for restricting the NLP routine on keyword-based commands in order to keep

interactions simple. Their results support this design principle, as the error rate decreases.
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2.6 Personalization in Visual Analysis

Section 2.2.3 highlights an effect of user characteristics on the effectiveness of visualizations.
Furthermore, Section 2.4 and Section 2.5 show that recommender systems and multimodal
approaches, respectively, in visual analysis accelerate the visual analysis process by automat-
ically generating visualizations. By doing so, they effectively shrink the gulf of execution
(Norman, 2002). The gulf of execution essentially describes the number of steps required
by the user to achieve a desired objective. Taking effectiveness studies as primary input,
recommender systems do not fully consider the studies on the user’s characteristics on the
effectiveness. Hence, personalization could help to further improve the usability of these
systems (Huang etal., 2015; Lallé and Conati, 2019; Oscar etal., 2017).

Generally, personalization works through user modeling. User modeling describes the
process of creating a formal representation (model) of a user (Fischer, 2001). A user model
can be represented in multiple ways by, e.g., only considering the information about the
user (flat structure), or modelling the relationships between the different variables of the
user (hierarchical) (Fischer, 2001). Generally, user models describe the relationship between
a user-related variables, e.g., education, knowledge, etc. and one or more target variables,
.e.g, ratings of movies. Given a user model, a system can leverage this model to adapt its

reactions to the user (Hurst et al., 2007). Such systems are called adaptive.

Definition 11: Adaptive (Fischer, 2001)

“Dynamic adaptation by the system itself to current task and current user”.

In contrast, a system which allows a user to change its functionality is an adaptable system
(Fischer, 2001). Research investigates differences between static, adaptive, and adaptable
systems in intelligent user interfaces on various levels. For instance, Findlater and McGrenere
(2004) show significant differences in completion time between these different approaches in
the context of menus. Overall, users seem to be faster with a static menu design (Findlater
and McGrenere, 2004).

In the context of visualizations, Toker etal. (2012) and Conati etal. (2015) argue for adaptive
systems. The authors also refer to the differences in user characteristics. An adaptive system
could create visualizations aligned with the user’s characteristics. Furthermore, Ahn and
Brusilovsky (2013) show advantages of interactive visualizations linked to a personalized

search for information retrieval. Personalized search helps users to gain more insights.
Yet, adding additional models to the system increases uncertainty about the given outputs. A

system without a user model produces the same output no matter who is using the system.

A system with a user model produces a user-specific output. However, such models are
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never flawless. They are likely to make mistakes in predicting unsatisfactory outputs to the
user. It is important to keep the gulf of evaluation small. The gulf of evaluation describes
the effort of a user to make sense of the system states, given the user’s input (Norman,
2002). Consequently, it is important that the user can make sense of the system’s behavior,
especially in situation in which the system fails. In order to make a system explainable, it

requires several elements.

First, a system needs to be transparent with respect to its actions. Transparency is a
prerequisite for understanding a system’s reactions. However, even experts struggle in
interpreting complex constructs, e.g., the behavior of deep neural networks (Koh and Liang,
2017). The question remains how transparency can contribute to make complex things
interpretable, since transparency alone does not necessarily help to reduce the gulf of

evaluation.

Definition 12: Interpretability (Gilpin et al., 2018)
“The science of comprehending what a model did or might have done”. }

An example from NLP is highlighting words in a sentence depending on their effect on
the output, e.g., words with a sentiment. Although this highlighting is eventually based
on numbers from different layers of the neural network, it is still possible for a user to
interpret why the system made a certain decision. Highlighting is an simple yet effective
example for interpretability. Still, models are becoming more and more complex. Humans
increasingly struggle in understanding these trained structures. Hence, a model should

further be explainable.

Definition 13: Explainability (Gilpin et al., 2018)

“Models that are able to summarize the reasons for [...] behavior, gain the trust of users,

or produce insights about the causes of their decisions”.

According to Gilpin etal. (2018), interpretability and explainability are not synonyms. In
fact, explainability implies interpretability, but not necessarily the other way around.

Although the system might be transparent, interpretable, and explainable for an expert, it
does not necessarily imply that every user can immediately understand the conducted steps.
Depending on the user, it likely varies whether the chosen communication (e.g., coloring
relevant sentence structures) is intelligible for them. Weld and Bansal (2019) state: “The key
challenge for designing intelligible Al is communicating a complex computational process to
a human”. According to Weld and Bansal (2019), if a user understands a system’s reactions,

it can increase the number of generated insights (Caruana et al., 2015), the trust in the system
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(Sinha and Swearingen, 2002), and many more. Hence, being intelligible is important for a

system supporting a diverse audience.

In this dissertation, intelligibility plays a central role. While the objective is to open up visual
analysis to a broader spectrum of users, a system needs to adjust its communication to each
user individually. This complex information addresses both the system’s responses in the
immediate analysis situation and the system’s computations for generating the corresponding

reactions.

2.7 Applications

Visualizations are used in various fields. Through interactive visual analysis tools, visualiza-
tions help people making better and faster decisions. Additionally, they help to maintain an
overview on huge and volatile data sets. While a variety of applications exists, the following
examples focus on aspects, particularly from the automotive value chain (Sturgeon etal.,
2008).

In manufacturing, visual analysis tools are applied in different steps (Xu etal., 2017). Sun
etal. (2019) consider visual analytics in the context of production planning in smart factories.
Production planning is challenging as multiple complex units have to be integrated. This
leads to a complex optimization problem where visual analytics can actively help a user in
establishing the optimal production planning. Considering one part of the production, Sydow
etal. (2015) show the benefits of visual analysis for scheduling containers in a supply chain.
They further argue for mobile visualizations as people in manufacturing have to occasionally

explore relevant spots in the factory.

In finance, it is crucial to keep track of the current cash flows and portfolios. Hence,
visualizations in finance focus on volume and changes (Ko et al., 2016). Therefore, line charts
are very important as they show changes over time. Merged with a bar chart on the trading
volume, the visualization provides a comprehensive overview on a stock. Furthermore,

finance is one of the areas where modern visualizations are heavily used.

In sales, visualizations are typically used to communicate sales numbers. Considering the
sales numbers of the automotive companies, the primary visualizations are bar charts and
tables. They typically sort the data in accordance with the number of sales per car model
and country, respectively. While these data represent a post perspective on the sales, analysts

use often dashboards for making sense of their current sales.

While all these approaches consider a specific use case, they have certain elements in common.

First, many of these approaches consider classical visualizations instead of designing new
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visualizations. Using familiar visualizations helps decreasing the learning effort for the user
(Borkin etal., 2013). Second, the data follow similar structures. Although the data domains
are very different, the data is often represented in tables, or relational databases. Hence, they
are already structured. However, users in the different use cases are likely diverse in terms
of educational background, preferences, and experience. Hence, personalization on visual
analysis tools for automatic generation of visualizations sounds like a promising approach to

reach a broader spectrum of users.

2.8 Summary

This chapter structures the domain of visual analysis by considering both the creation of
visualizations and the use of visualizations. Furthermore, it discusses relevant concepts
and related work in the domain of visualization recommendations (cf. Section 2.4) using
effectiveness studies (cf. Section 2.2), and multimodal approaches (cf. Section 2.5.2).
Additionally, the potentials of personalization in visual analysis are highlighted (cf. Section
2.2.3 and Section 2.6) along with providing use cases for visual analysis in practice (cf.
Section 2.7). It identifies elements that should be investigated both in this dissertation and in

research in general.

First, knowledge on personalized recommendations of visual mappings both expressive and
effective is scarce. Deciding for a visual mapping essentially is the most crucial step in
visualizing data (Mackinlay, 1986). In order to help a user in this step, many related works
propose rule-based recommendations of visual mappings (Crotty etal., 2015; Demiralp etal.,
2017; Mackinlay, 1986; Mackinlay etal., 2007; Siddiqui etal., 2016; Stolte etal., 2002;
Vartak etal., 2015; Wongsuphasawat et al., 2016; Wongsuphasawat etal., 2017). Based on
knowledge gained from effectiveness studies, a visual mapping certainly depends on data
and task (Harrison et al., 2014; Kay and Heer, 2016; Kim and Heer, 2018; Saket etal., 2018).
Additionally, machine learning approaches try to learn “good” visualizations (Dibia and
Demiralp, 2018; Hu etal., 2019; Luo etal., 2018; Moritz etal., 2019; Mutlu etal., 2015).
However, these approaches do not embed the recommendations in the visual analysis process.
Instead, they consider only the method itself. Still, the insights are valuable for understanding
how to approach data-driven approaches. Yet, research lacks evidence on these approaches

performance in practice, since data-driven approaches typically require data from the user.

Second, multimodal approaches sound promising for empowering a broader spectrum of
users for conducting their own data analysis especially in the combination of speech and
gestures (Aurisano etal., 2016; Cox etal., 2001; Cohen, 1992; Gao etal., 2015; Hoque et al.,
2018; Kumar etal., 2017; Setlur et al., 2016; Srinivasan and Stasko, 2018). However, the
idea of multimodality is not yet fully explored. For instance, a user can speak with the

system, but the system responses to the user only by generating visualizations. However,
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using additional communication means, e.g., a textual dialogue, could likely improve user
experience. It would fosters the idea of having a real conversation. This could improve two
things. First, it can increase the immersion of the user in the visual analysis process. Having
a conversation on the data could be exciting for a user. A conversation between humans
occasionally becomes immersive when both parties enjoy the topic and the direction of the
conversation. Consequently, both parties benefit from the conversation. Second, it structures
paths for additional information that visualizations normally cannot provide. Visualizations
illustrate data structures in a visual manner. However, they lack precise information about
these data structures, e.g., a correlation coefficient. Therefore, this information is sometimes
added to a visualization through text widgets. Since this information is displayed textually

anyway, it could also be embedded in a dialogue.

Third, personalizing multimodal visual analysis is not yet explored. Current approaches
consider homogeneous users, although multimodality has tremendous potentials reaching
a wide range of users (Grammel etal., 2010). However, users of visual analyses are not
homogeneous at all. In fact, the users characteristics have a significant effect on the use of
visual analysis as well as on the effectiveness of visualizations (Conati and Maclaren, 2008;
Conati etal., 2014; Gajos and Chauncey, 2017; Green and Fisher, 2010; Lee etal., 2019;
Toker etal., 2012; Velez etal., 2005; Ziemkiewicz etal., 2011). Taking advantage of the
users characteristics could not only accelerate the visual analysis process, but could also

reach a new level of user experience.
The following chapters of this dissertation are approaching these challenges to better

understand how visual analysis can be opened up to a broader spectrum of prospective users

while serving each user individually.
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Estimating Personalization
Potentials of Tasks

In order to investigate effective ways for achieving an intelligible multimodal visual analysis,
potential areas for personalization have to be addressed. One way to approach this objective
is to estimate the personalization potentials of abstract visualization tasks. This chapter
proposes a method for computing relative personalization potentials of abstract visualization
tasks based on the why-how-what taxonomy of Brehmer and Munzner (2013). The proposed
method leverages a ranking of the granular elements of abstract visualization tasks. This
ranking considers both the approximately required knowledge for completing an element as
well as the user’s preferences regarding an element. While the output contributes towards an
intelligible visual analysis in the context of this thesis, the proposed method further helps

designers to estimate the personalization effort of their systems.
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3.1 Introduction

Visual analysis systems generally support users in achieving certain objectives. However,
objectives can be manifold depending on the domain and the user. An illustrating example is
the investigation of the sales number of cars in the European Union from three different user
perspectives. First, a university student with a major in business administration may have the
objective to estimate the general market development during the recent years. However, this
student does not know the data beforehand. Hence, the visual analysis tools needs to support
the student in exploring the data. Second, an analyst at a car manufacturer has the objective
to investigate the effect of a newly introduced car model. The analyst knows the data set.
Therefore, (s)he can directly apply relevant filters for the desired data attribute combination.
Third, a national sales manager needs to report the sales numbers of the last quarter to the
line management. As the manager knows both the data and the audience, the objective is

now to create information visualizations both comprehensive and fitting to the audience.

As these examples highlight, the data may remains unchanged while the individual objectives
vary. Furthermore, each of these presented examples require a different sequence of actions.
Imagine, a user follows the second objective of investigating the effect of a new car model. A
corresponding sequence of actions may look like: load data, select desired attributes, create
an effective visualization, filter on the desired car model and time frame, compare values,
and so on. These actions or interactions are also named tasks. In visualization research,
however, there are various definitions of what a task actually is. One approach is to classify
tasks based on their level (Brehmer and Munzner, 2013). Selecting data points can be seen
as a low level tasks (Amar etal., 2005) while comparing categories to a certain quantitative

value is more a high level task (Liu and Stasko, 2010).

Nevertheless, the amount of unleashed complexity of a task should likely vary from one user
to the other. Consequently, users require likely different level of assistance depending on a
particular task. A user with experience and knowledge in the creation of effective visual
mappings presumably needs less support than a user unaware of the relevant effectiveness
studies. Additionally, the tasks themselves further vary in a potential effect of a user’s
preferences. Selecting particular values in a visualization requires less personalization effort

than navigating in a visualization (Hornbzk et al., 2002).

Yet, little knowledge exists on the personalization potentials of visual analysis tasks. In
order to identify a task space for the personalization of multimodal visual analysis, Section
3.2 introduces related work and defines relevant terms. Afterwards, Section 3.3.2 analyzes
the currently supported task. Based on these classification results, Section 3.3.2 discusses
task-specific personalization opportunities by considering the task itself, its relationships to

other tasks, and corresponding statistical methods.

Chapter 3 Estimating Personalization Potentials of Tasks



3.2 Related Work

While using a visual analysis system, a user typically has a certain objective in the data, e.g.,
investigating the sales numbers during the last quarter. Generally, an objective is “something
that you aim to do or achieve”, according to the Cambridge dictionary'. In order to reach an
objective, a user further needs to execute a corresponding sequence of actions. These actions
are often called tasks. According to the Cambridge dictionary?, a task is “a piece of work
that needs to be done” as well as “an action done by a computer such as starting a program,

checking email, saving files, etc”.

However, a variety of definitions exists in visualization research on what a task in visual
analysis actually is. A task can refer to direct interactions with a systems, e.g., selecting a set
of points in a scatter plot (Amar etal., 2005; Heer and Shneiderman, 2012; Shneiderman,
1996), but it can also point to mental steps in the analysis process, e.g., formulating a
hypothesis (Amar and Stasko, 2004; Reda et al., 2016). Depending on the granularity of the
analysis, the definition changes. Therefore, the following section summarizes related work to
better understand tasks in visual analysis. It separates the contributions by considering the
user’s role in the tasks, as in Brehmer and Munzner (2013) and Rind et al. (2016).

3.2.1 How People Use Visual Analysis

From an interaction point of view, Shneiderman (1996) presents task taxonomies in
visual analysis as one of the first. Shneiderman (1996) essentially considers the Visual
Information Seeking Mantra in order to derive a Task by Data Type Taxonomy (TTT).
This approach is succinctly summarized in the mantra “Overview first, zoom and filter,
then details-on-demand”. He further defines the corresponding tasks as: Overview, Zoom,
Filter, Details-on-demand, Relate, History, and Extract. All tasks directly address direct

interactions with a visual analysis system.

Yi etal. (2007) further consider the role of interactions in visual analysis. The authors
derive a taxonomy from reviewing existing visual analysis systems and their correspondingly
implemented interactions. Based on their results, the authors propose the tasks: Select, Ex-
plore, Reconfigure, Encode, Abstract/Elaborate, Filter, and Connect. Heer and Shneiderman
(2012) propose a taxonomy for interactive dynamics for visual analysis. This taxonomy
elevates tasks from the Visual Information Seeking Mantra (Shneiderman, 1996) to a higher
level of detail. It differentiates tasks between data and view specifications (visualize, filter,
sort, derive), view manipulations (select, navigate, coordinate, organize), and process and

provenance (record, annotate, share, guide).

"https://dictionary.cambridge.org/us/dictionary/english/objective
“https://dictionary.cambridge.org/us/dictionary/english/task
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While these taxonomies focus on the interaction with visualizations, Amar et al. (2005)
investigate tasks from a data point view. Amar et al. (2005) propose a taxonomy for analytical
tasks, i.e., what kind of actions is a user conducting in order to generate insights from data.
This taxonomy comprises: Retrieve Value, Filter, Compute Derived Value, Find Extremum,
Sort, Determine Range, Characterize Distribution, Find Anomalies, Cluster, and Correlate.
Keim etal. (2006) connect both perspectives. The authors essentially extend Shneiderman’s
Visual Information Seeking Mantra to “Analyze first, show the important, zoom, filter and
analyze further, details on demand.”. This extended version describes the interactions in

visual analytics.

Considering the different steps in visual analysis as a state model is certainly a different
perspective. Chi (2000) proposes a taxonomy of visualization techniques using a data
state reference model. This reference model differs between data stages and transformation
operators. While data stages are values, analytical abstraction, visualization abstraction,
and view, the transformation operators are data transformation, visualization transformation,
and visual mapping transformation. Reda etal. (2016) also model their taxonomy as a state
model. Based on investigating user behavior in exploratory visual analysis, Reda etal. (2016)
create a Markov chain model. The states are either mental states (formulate hypothesis, form
goal, and make observation) or interaction states (brush/link/pan map, and modify layout).
Theoretically, their Markov chain model is a fully connected graph. However, the actual
transition probabilities from one state to the other are derived from an experiment. The
authors show a change in the transition probabilities when varying the device’s display size
of the visual analysis system i.a., on large screens people tend to form new goals with higher

probability.

3.2.2 Why People Use Visual Analysis

The previous related work focus on investigating how people actually use visual analysis
from both perspectives: visualization and analytics. The following approaches investigate

why people use visual analysis and how systems should support a user.

Sprague and Tory (2012) explore how and why people use visualizations in casual contexts. In
order to understand the why component, they investigate user goals and regulated motivations.
According to Sprague and Tory (2012), a goal can be either intrinsic or extrinsic. Furthermore,
an intrinsic goal can refer to learning & understanding, utility, or entertainment. In order to
understand the how component, the authors analyze the use of fully specified visualizations.
They differ the use of visualizations into the categories recognition, short-duration single
use, short-duration repeat use, long-duration single use, long-duration repeat use. The

duration refers to how long a visualization is observed by a user.
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Furthermore, Amar and Stasko (2004) add what they call “analytic gaps” to the process
from data to decisions. In this process, they distinguish worldview tasks from rationale tasks.
However, these tasks are subject to the system not to the user. Worldview tasks are determine
domain parameters, multivariate explanation, and confirm hypotheses. The rationale tasks
are expose uncertainty, concretize outcomes, and formulate cause/effect. All of these tasks
describe potential “analytic gaps” where a system potentially might support the user. Being

aware of these “analytic gaps” potentially helps to design better visual analysis systems.

Finally, Liu and Stasko (2010) take a top-down perspective on visual analysis tasks. While
considering the mental model as a base for their analysis, the authors argue for three purposes
of interactions in visual analysis: external anchoring (projection, locate), information foraging

(restructuring, explore), and cognitive offloading (create, save/load).

3.2.3 Definition of a Task

The use of the term task is quite ambiguous, as shown by the previously discussed related
work. Depending on the perspective and the vocabulary, a task is differently defined. In

order to further structure the term fask, meta studies explore high level definitions.

Instead of separately considering the user’s interactions or the reasons for using visual
analysis, Schulz et al. (2013) define a task as a 5-tuple consisting of the dimensions: Goal,
Means, Characteristics, Target, and Cardinality. A goal describes the user’s type of analysis
(Exploratory analysis, Confirmatory analysis, or Presentation). While Means refers to the
interaction with the visualization (Navigation, (Re-)organization, or Relation), Target address
which part of the data should be focused on (Attribute relations or Structural relations). Lastly,
characteristics define the detail level of the output data (Low-level or High-level), while
cardinality describes the amount of considered data (Single instance, Multiple instances, All
instances). Furthermore, Rind etal. (2016) use a three-dimensional conceptual space of user
tasks in visualization design. This space consists of the dimensions: perspective (objectives

or how), composition (high to low), and perspective (generic, data, domain, or tool).

Finally, Brehmer and Munzner (2013) define an abstract visualization task by the components
why, how, and what. Why hierarchically structures different reasons for using visual analysis,
e.g., consume, search, or query. The how dimension essentially structures interactions
with visualizations, but also addresses the visual mapping. what eventually describes the
underlying data for the task. An abstraction visualization task can further consists of a
sequence of elements in each component, e.g., encode, filter, and select in how. Hence,
this why-how-what taxonomy provides a definition both modular and extensible within a

component.
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As the why-how-what taxonomy (Brehmer and Munzner, 2013) provides a comprehensive and
extensive structure based on previous contributions, this thesis use a definition accordingly.
In the next sections, these taxonomy further forms the base for estimating the personalization

effort for a task.

3.3 An Intelligible Task Space

According to the taxonomy of Brehmer and Munzner (2013), an abstract visualization task is
a combination of one or more elements from the dimensions why, how, and what. In this
thesis’ context, the what dimension can be considered as fix, since the focus is on structured
data. However, the other dimensions remain unchanged. Following this argumentation, a
task space can be considered as the set of all possible combinations of elements from the
dimensions why and how. However, the question remains which tasks require a user-specific
reaction of the system in order to effectively achieve an intelligible multimodal visual

analysis.

RQ 1: How can tasks in visual analysis be systematically structured based on their potentials

for personalization?

3.3.1 Procedure

In order to answer this question, the following sections first classify related work from Section
2.4 as well as Section 2.5 in accordance with to their support of the elements of the how
elements of the why-how-what taxonomy (Brehmer and Munzner, 2013). These elements

are encode, select, navigate, arrange, change, filter, and aggregate.

The elements select and navigate describe direct interactions with a visualization without
changing neither the visualized data nor the visualization itself. filter and aggregate
refer to direct changes of the visualized data. While filter restricts the valid visualized
data points, aggregate condenses entire data attributes to single values e.g. mean, median,
or count. arrange, change, and encode summarize all different steps of visually encoding
data. However, encode creates a new visualization from scratch. In arrange, a user only
rearranges the data attributes in the visualization, e.g., swapping the X and Y axes. Finally,
change refers to using a different representation for an already visualized attribute, e.g.,
using a different coloring schema or using patterns instead of colors. As it is difficult
to quantify user’s reasons for using a visual analysis system just by its functionality, the
related work is not classified by the support of the why elements of why-how-what taxonomy
(Brehmer and Munzner, 2013).
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In a second step, the elements from both why and how are further ranked by their potentially
required knowledge as well as the potential influence of a user’s preferences. Knowledge
in this case refers to both experience and knowledge of methods such as statistics or visual
mappings, but not to data to be examined. The why elements are present, discover, enjoy,

lookup, browse, locate, explore, identify, compare, summarize, and produce.

The elements 1ookup, browse, locate, and explore describe different search strategies.
Depending on whether the target is known to the user as well as whether the location
is known, the user’s objective changes. In lookup both is known. browse refers to an
unknown target but a known location, while 1ocate refers to the opposite. In explore both
is unknown. Identify, compare, and summarize address different amounts of search
targets. Furthermore, enjoy describes the use of visual analysis just for fun. present
requires to show the visualization to a certain audience, while discover addresses the

hypothesis testing.

3.3.2 Supported Task Space

Since the why-how-what taxonomy consists of multiple levels, only the lowest level (e.g.,
select) represents a binary classification of wheather the system presumably supports the
method. In order to estimate the support of the higher-level tasks, the classification results of

the corresponding elements are aggregated.

Table 3.1 shows the classification results regarding the visualization recommenders. Naturally,
all approaches support encoding of data into visualizations. However, they vary in the
number of visualization options (see Section 2.4) as well as whether a user can adjust the
visualizations. Often, a user can manipulate the recommended visualizations. Yet, arrange
and change are at bit less supported. These manipulations are necessary to enable an
exploration of the data. In those approaches, a user cannot easily adjust a shown visualization.
Furthermore, introduce tasks are rarely supported. Approaches instead focus on the
exploration of data sets but less on export the extracted insights or visualizations from the

tool.

Considering the importance of a tasks by the count of supported systems, the following order
results from the visualization recommenders. Creating a visual mapping (encode) is more
important than manipulating an existing visualization (encode) which is more important

than extracting information (introduce).

Furthermore, Table 3.2 shows the classification results regarding the approaches using
at least natural language for visual analysis. The majority of these approaches support

the generation of visualizations (encode). It is the essentially supported method, along
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Tab. 3.1: Classification of related recommender systems according with the how part of the
taxonomy of Brehmer and Munzner (2013). Approaches marked with a (*) rely upon
other visualization technologies to support the other tasks, but do not implement these
tasks themselves.
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with select and filter. In contrast to the visualization recommender approaches, these
approaches implement select and filter not necessarily on the visualization, but through

the conversation.

Generally, the analysis shows a similar picture as shown in Table 3.1. If the importance of
an element is again determined by the count of supported systems, the following order again
results from the visualization recommenders. Creating a visual mapping (encode) is more
important than manipulating an existing visualization (encode) which is more important

than extracting information (introduce).

Hence, the currently supported task space in both approaches primarily comprises the
exploration and reasoning for a single user without a focus on exporting or sharing the
produced results. Therefore, the following analysis only focuses on the encoding and

manipulation elements.

3.3.3 Estimate Personalization Potentials

This thesis considers personalization as a method for achieving intelligibility in visual
analysis. As intelligibility refers to adapting outputs to the user’s capabilities and preferences,
the estimation of potentials for personalization uses the dimensions of presumably required

knowledge as well as potential effects of the user’s preferences.
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Tab. 3.2: Classification of related multimodal approaches by the sow part of the taxonomy of
Brehmer and Munzner (2013).

First, the how elements are considered. Select and navigate require relatively little
knowledge as they describe common interactions in visual analysis. However, how users
eventually navigate in a user interfaces depends on the user him - / herself. (Hornbzk etal.,

2002). Hence, the effect of preferences for navigate can be seen as slightly higher.

Filter and aggregate require more experience and knowledge from the user. On the one
hand, the user should be aware of the amount of filtered data in order to prevent potentially
wrong conclusions. As Zgraggen etal. (2018) show, it is challenging for the user to stay
aware of applied filters during a visual analysis. On the other hand, choosing the right
aggregation method further requires certain knowledge from the user, e.g., knowing the
difference between arithmetic mean and median. However, a user likely prefers aggregations

methods differently, while filter only depends on the analysis objective.

Encode describes the creation process of a visual mapping for given data. It comprises not
only the mapping of data attributes on visual variables, but also the transformation of the data.
As shown in Section 2.2, creating a visual mapping is a crucial step. It directly determines
the effectiveness of a visualization. Creating an effective visualization should always be the
main objective of visually encoding data. However, user characteristics also influence the
effectiveness of a visualization (see Section 2.2.3). Depending on user characteristics (Conati
etal., 2014; Haroz and Whitney, 2012), and personality aspects (Gajos and Chauncey, 2017;
Green and Fisher, 2010), a visualization’s effectiveness varies. Accordingly, the potentials

for personalizing encode can be considered as the highest among the sow tasks.
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Fig. 3.1: Classification of the personalization potentials of the how elements.

Arrange addresses the spatial repositioning of data attributes, while change summarizes
changes of the visual mapping. A user who changes a visual mapping likely disagrees
with a provided mapping for some reasons. These changes may focus on the used coloring
scheme, but can also address different visualization types or completely different visual
mappings. Hence, both tasks require the expressions of the user’s preferences. Assuming
the visualization to be manipulated already represents an effective solution for the given
data, the user’s knowledge arguably plays a smaller role in these tasks. If the effectiveness
would play a relevant role for the user, (s)he would continue using the existing visualization.
However, arrange describes less adjustments on the visual mapping than change, according
to Brehmer and Munzner (2013). Additionally, change addresses less adjustments on the
visual mapping than encode. As there are many opportunities to change a fully specified

visualization, change basically describes the area between arrange and encode.

Based on this argumentation, tasks can be ordered by their personalization potentials (see
Figure 3.1 illustrating a qualitative diagram). The tasks related to changing a visual mapping
have the highest knowledge requirements on the user and simultaneously incorporate the
user’s preferences. Hence, their potentials for personalizations is high. A cluster of moderate
personalization potentials consists of tasks changing the underlying data. While the user’s
preferences play almost no role, the user’s experience in visual analysis surely does. Lastly,

the tasks on interacting with the visualization have little personalization potentials.

Second, the why elements are ranked by their potentials. By nature of visual analysis, the why
elements relate to the how elements. For instance, comparing two categories with respect to a
quantitative attribute requires encoding the data, potentially filtering the data and eventually
aggregating the data. Additionally, the why often requires the use of statistical methods, e.g.,

in discover. These methods provide mathematical bases for drawing valid conclusions and
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making proper decisions. Hence, the personalization potentials of the why elements needs to

be further investigated by considering the corresponding statistical methods.

As lookup, browse, locate, and explore describe different search strategies, they have
different potentials for personalization. Considering the knowledge about a location as
factor for influencing the user’s preferences, those elements where location is known can
be considered as higher in preferences. However, finding properly the location of a target
requires experience and knowledge about how to properly combine data attributes. Especially,
explore refers to the exploration of new data. During the exploration of a new data set,
a user might wonder which data attributes are worth it to investigate. In this situation,
the system might proactively support the user by recommending a list of attributes (also
addressed by Heer and Shneiderman (2012)). These attributes can be worth it to combine
with the currently visualized attribute(s). Kassel and Rohs (2017) highlight the use of the
mutual information for recommender data attribute combinations in visual analysis. While
adding the data attributes was positively seen by the participants, automatically removing

attributes was not welcomed.

Discover, identify, compare, and summarize are closely related to each other. Identify
refers to the characteristics of a single target (e.g., the average miles per hours of sedans),
while compare and summarize address multiple targets at the same time (e.g., the average
miles per hours of multiple car categorizes). Furthermore, the task discover subsequently
focuses on verifying hypotheses drawn from either identify, compare, or summarize.
However, discover especially demands statistical knowledge from the user. Conducting
hypothesis testing properly requires knowledge about the differences between the various
statistical tests, applying these test correctly and eventually interpreting the test results (Zuur

etal., 2010). Hence, these tasks contain a lot of required knowledge.

Furthermore, Zgraggen etal. (2018) show a major issue in hypothesis testing also holds for
visual analysis, namely the multiple comparison problem. The authors identify that users
unconsciously tend to draw wrong conclusions when combining multiple filters. While
alternated bar charts with the standard deviation might help an experienced user to draw
correct conclusions, a novice would likely fail. A personalized interactive system for visual
analysis must find a solution for this challenge, since anx user should be prevented from

making mistakes.

Lastly, present and enjoy directly highlights the relationship to encode. However, enjoy
likely incorporates an additional amount of preferences as it directly describes the user’s
emotions during the visual analysis. However, present requires knowledge about the

audience from the user.

3.3 An Intelligible Task Space
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Fig. 3.2: Illustration of the personalization potentials of the why elements.

Based on this argumentation, the tasks can be again ordered by their personalization potentials
(see Figure 3.2 illustrating a qualitative diagram). While these address mainly the reason why
a user is using the visual analysis, the personalization potentials are less clear. Considering
the tasks from the corresponding mathematical point of view makes it easier to define
personalization potentials. Tasks related to hypothesis testing show the highest potentials,

since required knowledge it not necessarily given (Zgraggen etal., 2018; Zuur etal., 2010).

3.4 Discussion

Section 3.3.2 introduced a set of currently supported tasks in multimodal visual analysis,
while Section 3.3.3 estimated the personalization potentials of these tasks in terms of both
required knowledge and preferences. Essentially, the Figures 3.2 and Figure 3.1 illustrate a
clearer picture on the relative personalizations potentials of why elements and how elements,

respectively.

Implication for designers: The relative ranking of the different elements provides a
method for computing the relative personalization potentials of entire abstract visualization
tasks, since these tasks consists of a combination of elements from the areas of why, how,
and what (Brehmer and Munzner, 2013). The personalization potential pre f(.) of an entire

abstract visualization task 7" can then be computed:

pref(T) = > (e tp) (3.1)

=

where for element ¢, t; and ¢, refer to the rank according to knowledge and preference,

respectively.

Let us consider two exemplary abstract visualization tasks. On the one hand, a system should

support hypothesis testing on the data. As the hypothesis exits either implicitly or explicitly,
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a user initially searches for the known target at the known location (lookup) in order to
apply a hypothesis test (discover). This objective requires to encode the data (encode)
as well as apply filter (filter) and aggregation (aggregate). The corresponding average
rank would be (3, 3) and (4.5, 3) for the how methods and the why methods, respectively.
On the other hand, a system should additionally support the comparison of data categories
against a certain quantitative objective. This task is similar to the previous but instead of
verifying a hypothesis, a user focus on the comparison. Hence, the corresponding average
rank would be (3, 3) and (3.5, 2) for the how methods and the why methods, respectively.
As the task appears somehow similar, however, they have different potentials for supporting

a user on his/her objectives.

Generally, a designer considers a defined set of desired tasks when designing a visual analysis
system. For these tasks, the personalization potentials can be computed accordingly. This
task ranking likely helps to better estimate the challenges of personalization in visual analysis.
Assuming that added personalization functionality increase the user experience in visual

analysis, the method helps to identify the most effective areas for personalization.

Relationship between the elements: The elements from the why and how category have
an inherent relationships with each other, since both need to be determined for an abstract
visualization task. For instance, enjoy requires the encoding of data (encode). Otherwise,
a user would not see any visualization which could be enjoyed. Apparently, almost every why
element has a certain relation to encode. Additionally, lookup directly addresses filter,
since a user presumably directly applies a filter on the data when both target and location are
known. Therefore, the why elements are only ranked by the knowledge and preferences for
inherently required methods, e.g., hypothesis testing for discover, but not by considering the
related visualization effort, e.g., encoding data. Therefore, this circumstance also prevents a

joined ranking of the personalization potentials for all elements of the typology.

Adaptation & automation: Elements in the right bottom corner refer to more required
knowledge from the user. Depending on the user, a system might support more or less in
these tasks. However, they should not be automatized, but individually support the user
instead. For instance, exploring a new data set (explore) is likely a motivating task for
a user. Directly presenting all relevant insights and takeaway messages to the user likely
decreases the user’s motivation in using the system, because it may overwhelm the user
(Norman, 2010). Additionally, discover focus on hypotheses testing, the selection and
execution of the corresponding methods can be done by the system. However, the way how

this information should be then communicated likely requires knowledge about the user.

Furthermore, the top right corner comprises tasks with high potentials in both dimensions.
For instance, creating a proper visual mapping requires both knowledge and consideration of

the user’s preferences. The potential for automation is further demonstrated by the related

3.4 Discussion
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work in Section 2.4. As a visual mapping can be changed at any time step (change and
arrange), potential mistakes in the automatic generation of a visual mapping can be repaired.

Hence, a system should automatically propose a visual mapping, but in a user-specific way.

In either cases, a variety of elements address a certain effect of the user’s preferences. In
order to properly support these tasks, the user’s preferences have to be learned. However,
data on either user behavior or preferences in multimodal visual analysis system is scarce.

Hence, methods for personalizing in these tasks require to learn the user’s preferences.

3.5 Limitations

The ranking is subject to the argumentation as well as previous work on certain elements,
e.g., the effect of user characteristics on the effectiveness of visual mapping (Conati and
Maclaren, 2008). Therefore, the ranking may be different if new empirical evidence about
the user’s preferences for particular elements emerges. Furthermore, the approximation of

the personalization potentials of an abstract visualization task rests on a relative ranking.

Another approach might be to explore a continuous base where potentials of elements are
represented by probability distributions. This method would be able to express uncertainty
in the classification of the potentials. However, achieving this quantitative ranking is very
difficult. Imagine, an experiment requires from a participants to decide how much more and
less, respectively, complex a task is compared to all other tasks. How should a participant be
able to rank the complexity of tasks in visual analysis when this participant is not experienced
in the domain. Although this kind of experiment could be conducted, the question remains
how reliable the results of such experiment are. Therefore, a relative ranking based on
literature appears to fit better to estimate the personalization potentials of visual analysis tasks.

Overall, the ranking expresses the current state of knowledge with sufficient granularity.

3.6 Summary

This chapter investigated the potentials for personalization of visual analysis tasks. Initially,
the term rask was defined by considering related work to the classification of visual analysis
tasks. Based on the multi-level visualization task typology of Brehmer and Munzner
(2013), the related work described in Section 2.4 and Section 2.5 was classified according to
their supported task space. While these classification results provide insights on generally
supported tasks, Section 3.3.3 discussed the potentials for personalization. For each task, its
personalization potential was argumentatively derived by considering the required knowledge
and the effect of the user’s preferences. These elements were further ranked according to

their relative potentials in both dimensions. This resulting task space not only structures
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the following chapter of this thesis by narrowing the focus on the relevant tasks, but also

addresses essential required areas of support and adaptation.
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Investigating the Use of Speech
and Visualizations

In order to further investigate personalization opportunities for multimodal visual analysis,
this chapter explores potential behavior of users with visualizations and text-based interfaces.
The first experiment investigates how people use visualizations in the field by analyzing the
used visualizations (/N = 1669) in scientific publications (N = 544). The analysis shows a
preferred use of classical visualizations for investigating unknown data sets, but also addresses
a potential lack of visualization knowledge. Furthermore, it reveals a narrow visualization
space limited to a handful of visualization types as well as a trend for visualizing aggregated
data. The second experiment (N = 18) investigates how users would orally command a
potential system in visual analysis. While the similarity of the collected commands is high
in tasks for generating visualizations, the commands are more diversely formulated in tasks

focusing on changing a visualization.
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4.1 Introduction

The previous chapter approaches an intelligible multimodal visual analysis by essentially
considering the personalisation potentials of abstract visualization tasks. According to this
theoretical approach, tasks have high potentials for achieving an intelligible visual analysis
which include either encoding of data, discovering of data relationships or exploring of
data. Additionally, current multimodal visual analysis approaches predominantly leverage
a combination of text-based and speech-based interactions, respectively, with touch-based
interactions to further lower barriers for users (Aurisano etal., 2016; Gao etal., 2015; Hoque
etal., 2018; Kumar etal., 2017; Setlur etal., 2016; Srinivasan and Stasko, 2018). Especially,
novice users effectively benefit from using text or speech for generating visualizations for
abstract data (Grammel et al., 2010). Furthermore, this combination of modalities further

raises hidden synergies (Cohen etal., 1989).

However, the users behavior needs to be taken into account as well in order to achieve an
intelligible multimodal visual analysis which adapts to the user. Accordingly, Norman (2010)
states ““we must design for the way people behave” to raise the user experience. Although
Reda et al. (2016) investigate user behavior in visual analysis as well as proposed a Markov
chain model for better understanding the transitions in the behavior, little knowledge exists

in the use of multimodal visual analysis.

The visual mapping, on the one hand, represents a central aspect of any visual analysis system.
Additionally, it further contains a high potential for personalization in both dimensions
knowledge and preference. As knowledge can be automatized by incorporating knowledge
from effectiveness studies (Moritz etal., 2019), one part of the challenge is already covered.
In order to approach the preference dimension, however, the use of visual mappings in the
field needs to be understood. Knowledge on the use of visual mappings likely reveals useful

trails.

The use of natural language based interactions in multimodal visual analysis, on the other
hand, is certainly unclear, although speech and text, respectively, represent the central
interaction modality. Understanding the structure and patterns in the use of speech for visual
analysis in terms of generation and manipulations of visualizations likely contributes to

higher user experience too.

Hence, this chapter’s objective is two-fold. First, Section 4.3 highlights both structures and
patterns in the formulation of commands against a prospective text-based interface of a visual
analysis system through an online survey (N = 18). Second, Section 4.4 collects and analysis
preferences in the design of visualizations through an analysis of visualizations (/N = 1669)
extracted from scientific publications (N = 544). In summary, the results contribute to a

better understanding of both the use of visualizations and text-based interactions in visual
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analysis. Additionally, they substantially form a behavior-based base for the design of

multimodal visual analysis tools, along with the task space from Chapter 3.

4.2 Related Work

This section discusses related work concerning the use of visualizations as well as the use of
text-based interactions. Both fields essentially contribute towards the understanding of user

behavior with multimodal visual analysis systems.

4.2.1 Use of Visualizations

Dasgupta etal. (2015) analyze the use of visualizations within the domain of climate research.
By observing climate researchers designing visualizations, they identify several design
problems, e.g., the incorrect use of visual channels (Carpendale, 2003) or the invalid use of
categorical data in a scatter plot. Recently, Dasgupta et al. (2017) further explore differences
between subjective impression and objective fact and the resulting effect on the judgment of
climate researchers. They found no influence of the degree of familiarity of visualization

types on the judgments, neither in a subjective nor in an objective way.

The use of visualization is closely related to the process of creating visualizations. Grammel
etal. (2010) observe how novices are designing visualizations. Their findings show problems
in creating effective visual mappings. In order to prevent such kind of errors, Heer etal.
(2008) provide helpful guidelines to engage potential new visualizers. Pretorius and Van Wijk
(2009) analyze how professional designers are visualizing data. Apart from insights on how
professional designers create visualizations, Weaver et al. (2006) consider a visualization

design process in which professional designers are guiding novices.

In addition to empirical laboratory user studies (Dasgupta etal., 2015; Dasgupta etal.,
2017), research investigates approaches on automatic extraction of visualizations. ReVision
(Savva etal., 2011) automatically extracts bitmaps out of documents. It further applies
perceptually based design principles to recommend the user alternatives to the initially
designed visualization. Jung etal. (2017) envision ChartSense. The authors assume a certain
amount of poorly designed visualizations in published documents. FigureSeer (Siegel etal.,
2016) and the work by Poco and Heer (2017) aim to improve the extraction of underlying

data of extracted visualizations.

4.2 Related Work
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4.2.2 Interactions through Speech

Although research on speech-based visual analysis systems is a recent topic, there is still
a lack of information concerning interactions with such kind of systems. Srinivasan etal.
(2019b) provide insights on commands in multimodal interfaces through a think-aloud user
study. However, the authors investigate the commands with a photo-editing software, but not
with a visual analysis system. Furthermore, they focus on the discoverability of functionality

while the following experiment investigates structures of the speech interaction.

Setlur etal. (2016) run a web-based online study for collecting statements against a text-
based visual analysis system in the domain of geographic data. Showing a visualization, a
participant should provide statements regarding this visualization. The authors identify 12
different query types, mainly focusing on analytic tasks. However, some query types also
address interactions with or modifications of the shown visualization. In contrast, the study
of this chapter aims to understand textual patterns in the direct interaction in visual analysis

focusing on generating visualizations and modifying visualizations.

4.3 Word Space

This section explores text-based interactions against a prospective visual analysis system.
It is designed as an online survey where participants should formulate potential requests
without any limitations on the support functionality. Hence, the resulting space of requests is
likely wider compared to recorded interactions with an actual technical prototype. Eventually,
the results help to better understand underlying structures and differences in the interaction
in order to achieve a solid NLP routine for a technical prototype. Additionally, the results

highlight common command structures among tasks.

RQ 2: How do text-based commands look like when people generate and transform

visualizations with a prospective visual analysis system?

4.3.1 Procedure

In order to fulfill the objectives of this experiment, an online survey is designed. This survey
consists of 14 different tasks covering potential command categories as discussed in Section
3.3. This tasks further belong to the how element of the why-what-how taxonomy (Brehmer
and Munzner, 2013). In the tasks of category generate, a participant sees a visualization
based on certain data attributes. The task for the participant is then to formulate a command
in order to generate the shown visualization while assuming a system would exist which

properly understands every given command. In each other task category (include, exclude,
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highlight, color, filter, and transform), a participant sees two visualizations. A command is

required to transform the left allocated visualization into the right allocated visualization.

In order to reduce biases in data, each participant gets a randomly assigned sequence of these
14 tasks. Additionally, all used visualizations are based on a car data set (StatLib, 2005;
Donoho and Ramos, 1982) due to make the tasks more reasonable to the user. The link to

this designed online survey has been broadcast within an industry company.

4.3.2 Participants

18 persons participated in this experiment. Overall, they gave 244 complete answers (8
answers were empty). It takes an average of 23.35 minutes for a participant to complete the
sequence. Furthermore, 11 participants report to have a professional background in data
science. Therefore, the majority (11) of the participants create their visualizations with a

scripting language like Python or R, instead of using a professional tool like Tableau.

4.3.3 Results

After both cleaning and filtering the collected answers, 258 properly given commands remain.
5% of these commands are politely formulated. A command is polite when it contains either
the word “please” or is conjunctively formulated. Additionally, some participants rather tend
to formulate questions than commands, e.g., “how does it look when we group by class?”,
while the majority use the imperative. Generally, the participants tend to maintain their way
of formulating commands during the study. Consequently, a participant who, e.g., gives very
detailed commands at the beginning of the study will also give very detailed commands at
the end of the study. As the tasks cover a different level of complexity, the maximum level
of detail a command can get also varies. In order to achieve a comparable ground among the
tasks, for each sentence of each task the degree of covered elements is relatively counted.
Figure 4.1 highlights the distribution of the level of detail (red) as well as the similarity
between the commands (blue) per task. Additionally, Table 4.1 provides the corresponding
statistical indicators.

In the tasks generate, include, and color participants formulate relatively detailed commands
on the imaginary system, yet not all commands achieve the same level for detail. In the
task generate, on the one hand, a command with a moderate level of detail looks like
“show me the distribution of co2 values”. The participants specifies relevant data attribute
(““c02”), the primary action (“show’), and the objective (“distribution””). However, another
participant uses the following formulation for the same task “visualize a 1-D histogram of the
distribution of co2-emissions values and get a continuous model to bins”. In this command,

the participant additionally specifies an overlaying Kernel Density Estimation (KDE) plot

4.3 Word Space
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Fig. 4.1: For each task, the distributions of both the similarity (blue) and the level of detail (red) of
the given commands.

along with the objective (“histogram of the distribution”), primary action (“visualize”), and
the relevant attributes (“‘co2-emissions”). In task color, on the other hand, the formulations
vary from only mentioning the target color “change color to orange” to naming the object

which color should be changed “Change curve color to orange”.

However, the data reveals a different picture in the other tasks. In the tasks transform and
exclude, the commands vary in the level of detail. A transformation task concerns the
change of the visualization type from a point plot to a box plot. One participant gives a
short but precise example for this transform through the following command: “transform to
boxplots”. The same transformation of the visualization can also be described by “Transform
the line plot with standard deviation indications into a box-plot, with outlier whiskers, for
every available year in the original plot” as provided by another participant. Another
transformation task required from a participant to transform a bar plot into a strip plot. This
transformation reveals a more detailed look at the actual distribution of the data attribute. A
participant states “Turn bars into dots”. This command refers to domain knowledge that a

strip plot consists of dots.

In addition to the level of detail, commands also vary whether they contain a negation. For
instance, the formulations “remove N”, “Filter to only Y in Start/Stop Automatic”, and “Only
show the left bar plot” should each filter the data on cars with start / stop automatic. Both
statements “remove N” and “Only show the left bar plot” require context information about

the appearance of the visualization, in contrast to “Filter to only Y in Start/Stop Automatic”.
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Task Similarity ¢4 Similarity 0 Precise Precise ¢ Polite

generate 0.74 0.22 0.76 0.25 0.08
include 0.65 0.25 0.75 0.21 0.11
exclude 0.57 0.16 0.62 0.18 0.06
filter 0.65 0.21 0.69 0.20 0.03
highlight 0.74 0.11 0.67 0.19 0.06
transform 0.69 0.20 0.60 0.28 0.02
color 0.88 0.07 0.74 0.18 0.00

Tab. 4.1: For each task, statistical information on the speech command structure regarding the
similarity, the preciseness, and the politeness.

Additional examples which require context information are “Don’t plot the green cluster”
or “Remove green”. Finally, an example of the difference between positive and negative
formulations is from the highlight task. For instance, participants state “hide in grey category
4 and 5” and “Highlight data labeled cylinders 6.0”. Generally, the commands given mainly
require a certain degree of context information about either the current visualizations or the

visualized data, in all tasks, except for generate.

Additionally, participants use different words for indicating actions for the system. As shown
above, participants use for instance “show” or “visualize” for generating visualizations. This
word is the root element of a sentence. Figure 4.2 reveals these wording differences by
illustrating the task-wise distributions of the root elements in the given commands. In the
task color, almost every command has the same root. In the tasks generate, include, and
filter, a small set describes the root element. For the other tasks, participants use a wider
range of words. This observation also matches with the similarity in the commands between

the tasks, shown in Figure 4.1.

Furthermore, Figure 4.2 exhibits a relationship between tasks and words. One the one hand,
the word “change” is only used in the context of transforming or highlighting certain aspects
of the visualizations. The word “create” only exists in the context of generating a new
visualization. The same holds for “accumulate” for excluding something from a shown

visualizations. On the other hand, the word “show” appears in almost every task.

4.3.4 Discussion

The empirical results reveal insights for the development of a prospective speech-based
visual analysis system as well as show certain behavior of the participants during a potential

interaction.
Finding 1: Text-based interactions in visual analysis follow a task-oriented pattern.

As the results show, the participants predominantly formulate their requests as an imperative.

Additionally, they neglect polite formulations, although they are not forced to by the design
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Fig. 4.2: Distribution of the used root elements for formulating commands on a visual analysis
system depending on the task.
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of the study. Nevertheless, the patterns refer to the classification of Shechtman and Horowitz
(2003). Shechtman and Horowitz (2003) identify three different types of interaction patterns
with a speech and text-based, respectively, interface: task-oriented, communication-oriented,
or relationship-oriented interaction. Both drawn indicators from the study results directly
refer to a task-oriented interaction between the user and the system in which only achieving

the objective is of interest.

Finding 2: The wording comprises the relevant tasks. The root element (primary verb) of
each command provides a good indication for the actual objective or task of the user. While
certain words only appear in small set of tasks, other words are widely used. This insight
helps to design explainable and useful NLP routines in prospective systems. Additionally, it
reveals latent relationships between the tasks which share common words. For instance, the
task include appears to be the opposite of exclude and filter. The task transform covers a wide
range of different words at first glace. However, considering the mentioned words by their
semantic similarities, the space of words collapses. The words “transform”. “transpose”,
“swap”, and “rotate” have a certain common ground. Hence, the task can also be described

by a certain family of words.

Finding 3: A system needs to be robust against a varying level of details. Figure
4.2 shows the distribution of the root element of each command among the tasks. This
distribution could further reduce the search space for a prospective system. Given a new
command and the corresponding root element, a system might take the word’s distribution
to systematically infer the user’s potential objective. This would reduce the search space
for the system. Additionally, the system needs to be robust against a varying level of detail.
Depending on the task, participants partially vary in the used detail level. A potential
approach for handling this varying level of detail would be to focus on the root element and
the existence of data attributes or their synonyms. The missing level of detail could then be

added by another request or by using another modality.

Finding 4: The context of the current analysis state has to be taken into account.
Participants directly take advantage of the current context of the analysis for formulating the
next request. However, this context does not only include the appearance and specification of
the visualizations itself, but also includes the data or data analysis step. Precisely, a resulting
context has to formalize the current step of the user’s data analysis, the existing data set, and

the currently shown visualization including specification and orientation.

4.4 Visualization Space

While the previous section identified patterns in the command structures against a prospective

visual analysis system, this section focuses on identifying patterns in the use of visualizations.
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Feature Values

type table | bar chart | line chart | box plot | scatter plot | pie chart
X nominal | ordinal | quantitative
Y nominal | ordinal | quantitative

colored  True | False
patterned True | False
grouped  True | False

sorted True | False
Tab. 4.2: Features and their corresponding values for the categorization of the extracted visualiza-
tions.

Generally, a variety of visualizations exists. Additionally, new visualization techniques are
frequently proposed to further improve information visualization. However, a visual analysis
system for interactive data analysis might focus on the visualizations which people actually
use. Focusing on these used visualization effectively reduces a potential learning effort for the
user and for a recommender system, respectively. The experiment’s outcome is a visualization
space for a recommender system. A clearly described visualization space of actually used
visualizations effectively supports a personalized multimodal visual analysis, since it reduces
the computational effort as well as allows a ranking on a defined set. Additionally, another
objective is to find potential shortcomings and issues in the design of visualizations for

structured data.

RQ 3: Which visualizations are used in scientific publications for highlighting insights

from structured data?

441 Procedure

The publications (full and short paper) from the CHI ’16: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (2016) form the data base for this
experiment. These documents are chosen for two reasons. First, publications in the area of
Human-Computer Interaction (HCI) research usually contain user studies which produce
structured data. Since data in the majority of business processes is structured as well, these
documents represent an accessible resource for analyzing how people design visualizations.
Second, scientific publications — especially the papers at the CHI — are usually of high quality
and get reviewed by multiple experienced people. Hence, the designed visualizations are

likely well readable and interpretable.

All visualizations are manually extracted from the collected documents. Afterwards, the
extracted visualizations are manually classified according with the features shown in Table
4.2. This method provides both a structured way to investigate common visualization

approaches and a knowledge base for a visual analysis system, later on.
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Fig. 4.3: Distribution of the used visualization types.

442 Results

Overall, the CHI ’16: Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (2016) contains 544 paper. From these 544 papers, 1669 visualizations are
manually extracted and classified. These 1669 visualizations base on 85 unique visualization
specifications. On average, each document contains 3.07 (o = 2.91) visualizations. The
majority of these visualizations use the visualization type table followed by bar, line, box,
scatter, and pie charts in descending order (see Figure 4.3). Furthermore, Figure 4.4 highlights
the Entropy based on the different visualization types used per document. The authors seem

to prefer a certain visualization specification within their documents.

Depending on the actually visualized data attribute, the most used visualizations change. Table
4.3 shows the top-5 most used visualizations for illustrating a categorical and a quantitative
data attribute. Overall, 473 (28%) visualizations illustrate this attribute combination. On
the one hand, the predominant favorite is a vertical bar chart with additional color encoding.
This visualization specification represents 43% of all used visualizations with respect to
this attribute combination. The identical horizontal specification is less preferred by the
authors. On the other hand, the box plot occurs only 24 times, although it reveals more
insights on the actual distribution of the numerical attribute. In four out of five cases, the
authors enrich visualizations with a coloring in order to encode categories. Additionally, 6%

of these visualizations are sorted by the quantitative attribute.

When authors encode an ordinal and a quantitative attribute, they prefer a vertical oriented
visualization (see Table 4.4). In contrast to the situation of a categorical and a quantitative
attribute, both bar and line charts are almost equally preferred by the authors. However,
these two specifications only differ in the visualization type while the other dimensions are

identical.

In case of two quantitative attributes, authors prefer a line chart followed by a scatter plot.
The line chart likely shows a trend or a linear relationship between the attributes while
the scatter plot reveals the actual underlying data points. The line chart often encodes an

additional categorical attribute likely to compare the different groups. However, the two bar
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Fig. 4.4: Distribution of the Entropy of the used visualization types per document. Only documents
are considered which used more than one visualization.

Type X-axis Y-axis Colored Patterned Count Share (%)
bar categorical quantitative  True False 205 43
bar categorical quantitative  False False 72 | 15

bar  quantitative categorical True False 47 | 10
line  categorical quantitative  True False 31 I 7
box  categorical quantitative  True False 24 1 5

Tab. 4.3: Top-5 visualization specification for categorical and quantitative data.

chart specifications refer to histograms for showing the distribution of a single quantitative

attribute. In equal amount, the histogram is used for single and multiple groups.

All these most preferred visualization specifications reveal a certain tendency to simulta-
neously encode more than two data attributes within one visualization. While in 6% of
the created visualizations a coloring is alternated by an overlaying pattern or structure, a
pattern or structure is in 57% supported by a coloring. However, the amount of additionally
encoded categories varies among the different visualization types. Through either a pattern
or a coloring, a scatter plot encodes = 4.72 (o0 = 9.79) categories, a bar plot u = 2.92
1.49), a line plot ¢ = 3.12 (¢ = 1.86), and a box plot ¢ = 2.39 (¢ = 1.60),

respectively.

(0 =

Furthermore, only a very small amount of visualizations implement a redundant visual
mapping of the data attributes. Generally, redundancy can help to highlight certain aspects

of the visualization, but it also sacrifices space for additional information.

Type X-axis Y-axis Colored Patterned Count Share (%)
bar  ordinal quantitative  True False 58 [ | 40
line ordinal quantitative  True False 45 | 31
bar  ordinal quantitative  False False 13 | 9
line ordinal quantitative  False False 6 I 4
box ordinal quantitative  True False 6 I 4

Tab. 4.4: Top-5 visualization specification for ordinal and quantitative data.
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Type X-axis Y-axis Colored Patterned Count Share (%)

line quantitative quantitative  True False 123 1l 42
scatter quantitative quantitative  False False 33 1 11
line quantitative quantitative  False False 27 | 9
bar quantitative quantitative  True False 22 | 7
bar quantitative quantitative  False False 22 | 7

Tab. 4.5: Top-5 visualization specification for two quantitative data attributes.

4.4.3 Discussion

The empirical results highlight a certain visualization space for recommending personalized

visualizations and patterns in the design of visualizations for structured data.

Finding 1: Narrow set of used visualizations. Generally, the set of used visualizations is
small. The collected data contains a set of only 85 unique visualizations out of 1669 used
visualizations. While these 1669 visualizations from the documents certainly differ in their
eventual appearance, they are similar in their specifications. Furthermore, only four different
visualization types are practically used, since pie charts do not really occur and tables are
actually not a visualization in the context of this thesis. Although libraries as seaborn!, or
ggplot2? offer a wide range of potential visualization types, the “classical” visualizations are
still preferred.

Furthermore, the analysis also reveals some potentially misleading visualization specifications.
On the one hand, some visualizations represent a sorted quantitative attribute. In this case,
the message of the authors might be clearer communicated, but it also can distract the reader.
One the other hand, the line charts are occasionally used in combination with an ordinal
data attribute. While proven through practice, it is actually not applicable, since the space
between adjacent elements is empty on an ordinal scale. However, the line chart draws as a

line between all adjacent points.

Finding 2: Reuse of visualizations. In addition to the narrow visualization space, the
analysis further shows a tendency of sticking to a certain visualization type. Figure 4.4
illustrates little variance in the used visualization types within one document. The authors
seem to follow a certain visualization specification either purposefully or accidentally.
However, a paper often represents only one data set, e.g., the results of a user study. Since
these data sets often consist of only a few different data attributes, it might be reasonable to
follow a certain visualization design. Nonetheless, it shows preferences of the creators for

the visualizations.

"https://seaborn.pydata.org
Zhttps://ggplot2.tidyverse.org
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Finding 3: Coloring is predominantly used. When it comes to encoding additional data
attributes, the authors tend to encode them using a coloring. Furthermore, a coloring is
occasionally combined with pattern. Both visual mapping options serve the categorical data.
However, the authors predominately prefer a coloring to a pattern. This fact further aligns
with the findings of Mackinlay (1986). He show that a color-encoded categorical attribute is

more effective than a pattern-encoded one.

Additionally, the authors tend to prefer the X axis to the Y axis. Based on the data shown in
Table 4.5, a histogram is primarily vertically drawn. Hence, the authors choose the X axis
when only one data attribute should be illustrated. However, the coloring or patterns are
essentially used when the X axis and the Y axis are already allocated with one data attribute
each. Eventually, these results address a preference-based ranking of the visual encoding

opportunities, namely X > Y > coloring > pattern.

Finding 4: Trend for aggregated visualizations. The analysis shows a trend for aggregated
visualizations. The authors tend to prefer bar and line charts. Those visualization types
reduce the actual distribution of the quantitative data attribute to a primary statistical indicator,
e.g., mean. This reduction helps to see differences between groups by directly visualizing
the differences. However, only seeing the mean can also be misleading, as the standard
deviation might be large. Though, scatter plots and box plots are typically harder to read.
The scatter plot suffers under the unclear representation of the actual relationship. It often
requires an additional correlation coefficient value to be sure about the relationship. The box

plot requires from the read certain knowledge about the different areas of the box.

4.5 Summary

This chapter focused on identifying both potential behavior patterns in text-based visual
analysis and in the use of visualizations. Through the conducted analyses, research question
2 and 3 have been answered. All in all, this chapter provides two essential elements for

achieving an intelligible visual analysis:

1. A visualization space through a structured analysis of used visualizations in scientific
publications. The analysis reveals a narrow use of visualization types, implicit prefer-
ences on the visual variables, and certain preferences for aggregated visualizations.

2. A word space through an online survey. The experiment highlight task-specific
wordings in the commands against a prospective text-based visual analysis system.

Additionally, it highlighted useful patterns in the formulations.

All analyses follow the idea of understanding trails which can be used to identify person-

alization avenues in multimodal visual analysis. Based on these findings, the next chapter
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explores how the different spaces effectively support the design of a technical prototype for

an intelligible multimodal visual analysis.

4.5 Summary
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Valletto: A Multimodal Visual
Analysis System

This chapter introduces a design for multimodal visual analysis system considering findings
from previous chapters. The objective is to increase intelligibility of multimodal visual
analysis. While speech and touch represent the modalities for the user, the system answers
through visualizations and text. A persistent dialogue fosters the conversation with the user.
This dialogue contains both a user’s utterances and dialogue acts on data facts. Regarding
the utterances of a user, the design further highlights the system’s computations in order
to increase interpretability. The available visualization space comprises the identified
visualization space from Chapter 4. The design is implemented by a prototype named
Valletto!. Valletto is evaluated through tow user studies. First, an expert review (N = 4)
focuses on design and interaction mistakes. Afterwards, a controlled experiment (N = 13)
compares Valletto with Tableau. The results reveal better and faster decisions with Valletto.
Especially the dialogue helps to improve the decision making. Generally, this chapter
provides further the testbed for the subsequent chapters of this thesis.

Disclaimer: The content of the following chapter is partly published in the article: Jan-
Frederik Kassel and Michael Rohs (2018). “Valletto: A Multimodal Interface for Ubiquitous
Visual Analytics”. In: Extended Abstracts of the 2018 CHI Conference on Human Factors
in Computing Systems. CHI EA *18. Montreal QC, Canada: ACM, LBW005:1-LBW005:6.
ISBN: 978-1-4503-5621-3. DOI: 10.1145/3170427 .3188445

The Ttalian term Valletto is a historic name for the assistant of a king / duke / count. It appears to be an
appropriate name for a tool which unconditionally serves the user in the challenging process of visual
analysis.
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5.1 Introduction

The previous chapters provide insights on command structures and the use of visualizations
in the field. Additionally, these chapters address tasks in which a system should adapt to
the user. However, the question remains how these insights can be used to derive a proper
design for a multimodal system. This chapter merges these different parts together. It shows
how the information directly influence the design. The main design idea is to consider the

entire visual analysis process through the lens of a conversational interface.

Generally, conversational interfaces are already part of the everyday life. Voice-based digital
assistants (e.g., Apples Siri?) are supporting users by accelerating knowledge access. These
assistants have an advantage over conventional interfaces in terms of interaction effort and
user experience in ubiquitous and casual interaction scenarios (Cohen and Oviatt, 1995). A
central aspect is the interactive conversation with the user consisting of “adjacency pairs” of
call and response (Schegloff, 2007). The dialogue is the main communication channel. It
fosters the engagement with the user (Moore et al., 2017). Furthermore, the conversation
presumably improves the users reasoning process as well as could guide the user (Yankelovich
etal., 1995).

Approaches of conversational interfaces for visual analysis essentially focus on the com-
munication through visualizations in a stationary scenario (cf. Table 2.2). They adjust or
generate visualizations according to a users utterances. The communication takes place on
two one-way channels. In order to elaborate the idea of having an actual conversation, a
persistent dialogue can likely help. This dialogue should facilitate the experience during the
visual analysis as well as help the user to make sense of the visualized data. Apart from a
lack of transparency of the available functionality, the behavior of conversational interfaces
is often hard to interpret for a user (Chen and Wang, 2018). Increasing the interpretability of

the system’s behavior likely supports an intelligible visual analysis.

P1 data-agnostic: From a user point of view, the tool should be able to analyze the current
data of interest. However, the importance of a data set is changing due to the required task
and context of the user. From a business point of view, the data sets along the value chain
differ with respect to the content, but not to the structure. Typical process-related data is

multivariate and structured by a relational data base.

P2 supportive: The tool should effectively maintain the user’s analysis flow. Sensing of
intents as well as selectioning visualizations need to be in according with the user’s current

position in the exploration process. If P2 is not fulfilled, the performance of the user might

Zhttps://www.apple.com/siri
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be reduced due to incorrect predictions by the system. Furthermore, the user should be able

to switch back and forth through the analysis.

P3 transparent: The user should be aware of what the system understood. Intelligent
systems predict situations based on user interactions. In order to trust those systems,
transparency and interpretability in on the computational process is an important aspect (cf.
Section 2.6).

P4 intelligible: Complexity is a key factor to make things interesting for the user (Norman,
2010). Additionally, “every application has an inherent amount of irreducible complexity”
(Saffer, 2006). However, some parts can be encapsulated without reducing the engagement
of the user. In data analysis, the valuable part is on finding meaningful insight within the
data. In contrast, the creation of appropriate visualizations as well as the technical execution
of statistical test is presumably less interesting for many users. However, both techniques
are essential to eventually find desired insights. Hence, purposefully encapsulating the
given complexity should focus rather on automatically executing suitable techniques than on

searching insights.

5.2 Related Work

This chapter’s related work is two-fold. First, recommender systems for visualizations play a
central role. However, Section 2.4 discusses primary work on automatically generating visual
mappings. Second, Section 2.5 introduces relevant related concepts for natural language
based interactions in visual analysis. Yet, there is additional related work on the use of

natural language in similar domains such as machine learning.

Iris (Fast etal., 2018) and Ava (John etal., 2017) both consider machine learning and
statistical testing as a domain. Ava (John etal., 2017) essentially enables a language-based
interaction with Juypter notebook (Kluyver etal., 2016). Instead of writing code, a user can
type what (s)he wants and Ava generates the corresponding code. Iris (Fast etal., 2018), on
the other hand, is a dialogue-based user interfaces. The authors show an advantage of Iris
over classical machine learning model construction with scikit-learn (Pedregosa etal., 2011).
Hence, both system empirically address the advantages of language-based interactions in

complex domains.

Furthermore, Voder (Srinivasan et al., 2019a) adds data facts to visualizations. Typically, a
data fact addresses an insight in the data. Srinivasan etal. (2019a) describe a data fact as
“any textual descriptions of data accompanying visualizations” (Srinivasan etal., 2019a). It
explicitly adds additional information on the visualized data. The data fact is attached a the

side of the visualization. Additionally, the visualization and the data facts are linked with
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each other. A user can hover over the data fact and Voder highlights the corresponding part

in the visualization.

Hearst and Tory (2019) integrate visualizations (bar and line charts) directly in a dialogue-
based user interface. A user can ask questions on the data. As an answer, the user receives a
dialogue act as well as a visualization. According to Hearst and Tory (2019), only 60% of

the participants would like to see visualizations within the dialogue component.

Understanding command structures in visual analysis is essential for designing effective user
interfaces. Tory and Setlur (2019) conduct a Wizard-of-Oz study to understand how an
intent and context-related utterances have to be handled by a system. The authors identify
two major challenges. First, users tend to underspecify their utterances. Consequently,
an utterances lacks certain words, e.g., how a visualization should look like. Second,
the users consider the context for their utterances. For instance, they refer to the already
shown visualization. Approaching underspecified utterances, Setlur etal. (2019) investigate
methods for inference. Underspecifications regarding analytical expressions and visualization
types, the system handles both by considering the data attributes’ scale of measurement.
Furthermore, the system can also handle underspecification in both inter-sentences and
intra-sentences, i.e., referring to elements from a previous utterances or what is already

shown in the visualization.

Considering multimodal interfaces, Srinivasan et al. (2019b) explore the command structures
as well. While originally investigated using a photo-editing tool, the authors propose
to provide context-related examples for commands to the user. A framework produces
the relevant examples considering how, when, and where an example command should
be provided. As natural language interfaces naturally suffer discoverability of available
functionality, the authors show that the system’s feedback help to overcome these barriers.
Furthermore, Saktheeswaran et al. (2020) show the benefits of using multimodal interfaces
for visual analysis. The authors see the main advantage in “the complementary nature of
speech and touch”. Additionally, the participant welcome the opportunity to express their

wishes in natural language while using touch for other actions.

In contrast to the related work, this chapter proposes a multimodal user interface design
separating the dialogue from the visualization. Unlike Hearst and Tory (2019), the visual-
ization is a central and permanent aspect in the user interface while the dialogue contains
additional information on the data. This additional information addresses data facts similar
to Srinivasan etal. (2019a). Furthermore, the design also incorporates an idea of increasing
the interpretability of NLP.
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5.3 Concept

Both Chapter 3 and Chapter 4 examine potentials for a user-specific intelligible multimodal
visual analysis by both speech and touch. Considering these results, this section discusses a

coherent design for the user interface.

5.3.1 Design & Interactions

The use of speech and touch as main modalities allows to think differently about the design
for a multimodal visual analysis. Speech and touch are typically used in situations where
interactions with keyboard and mouse are not handy. Especially in the context of mobile
devices, both are the main modalities. Additionally, visual analysis is used beyond the desktop
(Roberts etal., 2014), as a technology-supported workplace becomes mobile. Considering

both factors, the design of this section approaches a mobile design.

However, a major challenge in designing for a mobile device is essentially the small display
size compared to a high resolution desktop PC. A multi-window strategy, such as in Aurisano
etal. (2016) and Sun et al. (2010), is not applicable due to the challenges of either readability

or interaction. The readability suffers due to the down scaling of the visualizations. The

interaction with the visualizations suffers when visualizations overlap (Sun etal., 2010).

However, a single window is also not sufficient, because useful information probably will not
fit on a mobile screen such as summaries (Srinivasan and Stasko, 2018), details (Srinivasan
and Stasko, 2018), or an overview about the data set (Gao etal., 2015). Furthermore, a user
should focus on the visual analysis itself. The visualizations should take a central position in

the user interface design while supported through curated information.

In order to properly organize the information, the design implements a two-tab strategy
for the visual analysis. In the first tab, detailed information about the data attributes are
individually shown. A second tab focuses on the interactive analysis of the data. This
strategy further supports the rudimentary information seeking mantra (Keim etal., 2006;
Shneiderman, 1996).

The data tab serves as a start (see Figure 5.1). Assuming an established connection to a
structured data source, all available attributes are shown in a scrollable list. When the
user selects one attribute, its distribution is visualized through a histogram for a numeric
attributes and a bar chart for a categorical attributes, respectively. Furthermore, related
statistical measures are provided. For numerical attributes, corresponding measures describe
the distribution (mean, standard deviation, quartiles, etc.). For categorical attributes, the
measures focus on frequencies and unique values. The visualization predominately shows

the data while the subjacent panel helps to better understand the data. For instance, it
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Fig. 5.1: User interface design of the data tab.

accelerates the identifications of how many different categories are shown in the visualization.
This tab supports the first stage of a user’s visual analysis. The focus is on examining
existing data attributes and their corresponding statistical values. In terms of the why-how-
what taxonomy (Brehmer and Munzner, 2013), this design essentially supports identify,

lookup, present, and select / filter.

All actions related to two or more data attributes are supported by the analysis tab, shown in
Figure 5.2. This tab essentially supports a user in the other tasks. Especially it supports the
user in discovering and exploring data through encoding and manipulating visualizations.
However, the various modalities have different effectiveness in supporting these elements
(Badam etal., 2017). Speech is very effective for actions related to the underlying data
of the analysis (Grammel etal., 2010), whereas visual mapping changes are effectively
supported by gestures (Badam et al., 2017). This implies a mapping of the modalities on
the actions in visual analysis where all data-related actions are supported by speech and all

visualization-related actions are supported by gesture.

Using speech further enables a kind of conversation between the user and the system.
Assuming a user talks to a system in order to generate visualizations, (s)he likely uses
speech to alternate the data attributes. Hence, the system needs to understand changes of the
underlying data as well when the user talks with it. However, in terms of the why-how-what

taxonomy (Brehmer and Munzner, 2013), speech supports both encode and filter.

Chapter 5 Valletto: A Multimodal Visual Analysis System



Visualization Answer

Conversation 5.5k

r of Records
. A 5 5.0k
filter the visualized data for

you, and add or remove data 4.5k
attributes from the N s 2
visualization. Just tell me what 4.0k — A ! :
you like to do. Furthermore, ’ LA '
you might swipe or rotate over 3.5k
the visualization to manipulate
its appearence.

OK then please visualize the
displacement against the weight

of the car 1.5k
5:09 PM

The correlation coefficient
(spearman) is about 0.946 . 0.5k

0 100 200 300 400 500
Displacement

| have recognized

GENERATE ADD REMOVE FILTER
Q Touch to Speak
Namé MPG cylinders [P ";"‘yf”“‘ Horse-po " yeight Origin

Fig. 5.2: User interface design of the analysis tab.

In order to further foster the idea of having a conversation between the user and the system,
the analysis tab contains a back and forth dialogue. This dialogue contains both the user’s
utterance (a live preview of the utterance recording while speaking is shown above the speech
button) and a situation-dependent textual answer of the system. Section 5.3.3 discusses
these situation-dependent textual answers in detail. However, they should increase the
intelligibility of the visual analysis, as they address hidden challenges and provide additional

information.

Additionally, the dialogue contains all answers and requests. Hence, it empowers a user to
constantly track the progress. In order to go fast back to a previous analysis situations, a user
can directly touch on the corresponding request in the dialogue. This interaction changes the
visualization to the last shown visualization for this request. Hence, the system supports the

user in browse and lookup, as in both actions the user knows the location in the data.

However, direct text input via typing is not supported by the system for two reasons. First,
using a visual keyboard on a mobile device cost space in the moment of the request. By
this, the visualization is partly covered by the keyboard which should be avoided (Sadana
and Stasko, 2016). Without the keyboard, the user can talk to the system, while constantly
observing the visualization. Hence, a user does not get disturbed in the analysis. Second,
Ruan etal. (2018) show that speech input is faster than text input.
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Fig. 5.3: Arrangement of the visualization space in the navigation panel. The red square marks the
visualization first shown to the user.

As modern touch displays have multitouch, gestures enable visual adjustment located directly
on the visualization. The manipulation of the visualization works as follow. First, a user
can use one-finger swipe gestures for changing the visualization shown (change) in terms
of both visualization type and visual mapping (see Figure 5.3). Sadana and Stasko (2016)
recommend them as easily executable gestures in the visualization context. In the vertical
swipe gestures change the visualization type, while horizontal swipe gestures change the
visual mapping but keep the visualization type. This kind of navigation in a visualization
space has been further investigated in Kassel and Rohs (2017). The metaphor of picture
sliders next to the visualization indicates how many different visualizations are available for
the currently visualized data attributes. This metaphor should be known by almost every
user who uses a mobile device frequently. Second, two-finger gestures can be used for
zooming (navigate) as well as for rotating the visualization (arrange). However, how this

visualizations are generated are discussed in Section 5.3.2.

Considering the how elements of the why-how-what taxonomy, speech supports the encoding
(encode) of data as well as data-related elements (filter), where gestures should be used

for changing the encoding (arrange and change).

In order to increase the transparency of the computations in the background (Sinha and
Swearingen, 2002), a reasoning panel (see Figure 5.2) is included. This panel highlights the
systems interpretation regarding the user’s last utterance by adjusting the colors (see Section
5.3.4). For each text field, its color turns reddish if the system beliefs that it is part of the

user’s utterance. This is an approach for increasing the user’s trust in the system (Setlur et al.,
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Fig. 5.4: The set of relevant visualizations is determined by the set of used visualizations and the
set of visualizations supported by the data set.

2016). Additionally, it should empower the user to develop alternative interaction strategies
in case a request fails. Essentially, this reasoning panel addresses the gulf of evaluation small
(Norman, 2002).

Generally, the design of both tabs follows a consistent visual design (Sadana and Stasko,
2016) via a FLUID interface (Drucker etal., 2013). The design essential consists of a
dominant visualization, a guidance element (either scrollable list or a dialogue) on the
left, and a panel of supplementary information (either statistical measure or a reasoning
panel) below the visualization. Hence, the user has likely fewer orientation problems when
switching between the tabs back and forth. Furthermore, the underlying analysis state model
is consistent among the tabs, i.e., applied interactions such as filters and selection in the

analysis tab hold in the overview tab too.

5.3.2 Visualization Recommendation

Showing visualizations for a set of data attributes is the key element of any visual analysis
systems. Usually, a user creates new visualizations in conventional visual analysis systems
step by step. Since speech appears to be very effective for generating visualizations (Badam
etal., 2017; Grammel et al., 2010), a user now needs to only specify what (s)he wants to see.

Hence, the system needs to recommend a visualization for a set of data attributes.

Essentially, the challenge of recommending visualization is a two-step approach. In the
first step, a system needs to generate a set of visualization candidates. In a second step,
the systems ranks all candidates from the set according to some objective function. This
objective function could be for instance the effectiveness of a visualization based on the

studies shown in Section 2.2.

Considering all visual variables (Bertin, 1974), the set of all corresponding visualizations V;
is huge. Ranking all of these visualization would be time consuming. Hence, the objective
is to reduce the search space. In order to effectively prune the set of candidates, Valletto
approaches the problem from two perspectives. First, it considers those visualizations which

can be used for the underlying data set of the visual analysis Vg4,. For instance, a map makes
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no sense when no data attribute contains information about geolocation e.g., cities. Second,
it further considers the set of visualization used in the field V,,s.4 by taking advantage of the
knowledge about the use of visualizations from Section 4.4. This knowledge additionally
reduces the set of candidates, since only the visualization types of bar, line, and scatter are
essentially used. Figure 5.4 illustrates the pruning of the visualization space. While both
Viata and Vi seq are each a subset of Vi, Vet = Vigara N Viuseq €ventually describes the set

of candidates for the ranking.

However, not all visualizations from V,..; have to be ranked. In fact, only those visualizations
related to a user’s utterance need to be considered for the ranking. V4, describes this set
of visualizations (see Figure 5.5). Valletto generates Vs, by creating all mappings of the
mentioned data attributes from the user’s utterance to the supported visual variables. Each

visualization from V4, is further ranked by considering Mackinlay (1986).

As Valletto’s user interface design provides space for only one visualization at a time (cf.
Section 5.3.1), the ranking needs to align with the implemented navigation opportunities for
the user. Figure 5.6 illustrates the alignment of the ranking with the navigation opportunities.
Initially, the most effective visualization is shown to the user. Other visualizations are
ordered in the background by their ranking. Consequently, if a user swipes either to the right
or to the left in order to change the visualization, the next shown visualizations represented
the second most effective visualizations for the corresponding visualization type. If a user
changes the visualization type by swiping either up or down, the next shown visualization
represents the most effective visual mapping for the corresponding visualization type. This
method not only provides the user a direct access to the most effective visualization, but also

offers options to effortlessly change the visualization.

5.3.3 Dialogue Design

While the previous sections discuss the overall design of the concept including the dialogue
component, this section discusses the dialogue design in visual analysis. Generally, the
dialogue is the central aspect of conversational interfaces (Cohen and Oviatt, 1995). The

purpose of the dialogue is to help a user in fulfilling the desired tasks by controlling the
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Fig. 5.6: Illustrating the alignment of the ranking with the navigation options. In this example, the
user navigated to the second ranked line chart.

information flow as well as by giving guidance if needed (Yankelovich etal., 1995). The
dialogue design is one of the biggest challenges as it directly influences the user experience
(Moore etal., 2017).

A dialogue essentially consists of sequences of dialogue acts. Each sequence follows a
certain objective e.g., a user wants to analyze the relationship between the fuel consumption

and the car model. All utterances related to this objective belong to the same dialogue

sequence. Furthermore, a sequence is structured through “adjacency pairs” (Schegloft, 2007).

An “adjacency pairs” (Schegloff, 2007) summarizes two dialogue acts which refer on each

other. For instance:

User: “Hello System, how can you help me in my visual analysis”’

System: “Hello User, I can generate visualizations for you as well as provide additional

information which might help you to make better sense of the data.”

Considering the dialogue in visual analysis, the user likely treats the system as a “virtual
butler” (Payr, 2013). Additionally, the results of Section 4.3 reveal potential structure of
utterances in visual analysis. A conversation likely follows goal-oriented scenario (Shechtman
and Horowitz, 2003). Hence, a user essentially wants to be rather supported in the objective

than to have a decent conversation with the system.
Based on the previous sections, a system needs to answer on dialogue acts for encoding

data as well as filtering data. However, utterances for encoding data also refer to changes
of the visualized data attributes. Depending on the user’s intent, the system should answer
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differently. Considering Brehmer and Munzner (2013) and Section 3.3.3, a user could be
supported in discovering useful insights in the data as well as exploring the data. Discover
further refers to compare, since e.g., comparing two categories which each other likely raises
a wish to clearly know the exact circumstances. Generally, a visualization abstracts from the
underlying data. Depending on the particular visual mapping (cf. Section 2.2) as well as the
level of abstraction through aggregation, a visualization could lack a detailed view on the
data. Furthermore, visualizations could be used to divert the user from certain circumstances,
also referred to as the “lie factor” (Tufte, 1986). Hence, a dialogue act should tell the user
something about the data what is not already highlighted in visualization. Otherwise, a
system would not add information for the user. In terms of discover and explore, this means

to provide the user direct access to the output of statistical measures.

Additionally, a system should further provide dialogue acts for maintaining the dialogue
flow itself. This comprises the support when a user needs clarity about the supported
functionality as well as a dialogue acts when the system is uncertain about the user’s intent.
The following discusses the different dialogue acts of Valletto as well as express how they

could be integrated into a user’s analysis flow.

Dependencies

Combining attributes is particular relevant under the objective of finding certain relationships
within the data (Roth and Mattis, 1990). In other words, a system should support the user
in identifying dependencies between data attributes. Depending on the data attributes’
characteristics, however, the method for discovering the dependency changes. The major

determining factor is the scale of measurement.

Given two quantitative data attributes, a typical method is to compute the correlation
coefficient between the data attributes. This correlation coefficient describes essentially
two things. First, it decides whether a relationship exists based on the p-value. Second, it
further describes whether the existing relationship is positive or negative. However, various
correlation coefficient measures exist. They basically differ in their assumption of the
underlying distribution of data. The widely used Pearson’s coefficient assumes normally
distributed data. In practice, however, this assumption likely does not hold. A reason is that
data from processes and other sources often follow other distributions e.g., the number of
visits in a workshop follows a Poisson distribution. Additionally, the data is often discrete
instead of continues. Hence, Pearson appears to be less useful in an automated system where
the user should only plugin the data.

An alternative method is the Spearman’s correlation coefficient (p). It does not assume any

specific distribution of the data. It computes the correlation between the rank variables
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of each data attribute. However, it only describes that two data attributes have certain
relationship, but it cannot determine the structure of this relationship unlike the Pearson. A

corresponding adjacency pair looks like:
System: “Your data attributes have a correlation coefficient of: <Number>."

If two categorical attributes are investigated, a method to determine the relationship is the
Chi-squared (x?) test. It provides insights whether two data attributes significantly influence
each other. If the test is positive, a certain relationship is likely give. However, as the
Chi-squared test is a statistical method and uses the p-value as the main indicator, a chance

for a wrong conclusion exists:
System: “<String> and <String> are not independent”

In case both data attributes are of a different type, still the relationship can be determined. In

this case, the Mutual Information is computed.
I(X,Y) = H(X) + H(Y) — H(X|Y) (5.1)

The mutual information consists essentially of the Entropy H(X) and the Conditional
Entropy H(X|Y') of the data attributes.

H(X) =~ p(x)logp(z) (52)
rxeX
L ) log PLEY)
H(X|Y) = xe;,y:eyp( )log = s (5.3)

Generally, the Entropy describes the information content of a random variables. In case all
values of a random variable are the same, the information content is 0. The information
content is maximal if and only if the random variable is unified distributed. Now, the mutual
information of two data attributes is O if and only if the attribute combinations from both
data attributes are always the same and both attributes follow the same distribution. A

corresponding adjacency pair looks like:

System: “The attributes <String> and <String> are sharing information.”

Comparison

In addition to identifying potential relationships and discovering new insights, users are
likely to encounter common statistical errors (Zuur etal., 2010). Especially when a user

compares multiple categories or groups which each other. This could be due to clusters,
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categories, or similar. The primary objective is often to see how the different groups differ
in regarding a specific measure. This comparison can be made visually by observing and
interacting with visualizations. Additionally, statistical test might be applied for determine

the differences.

Zgraggen etal. (2018) show that one major issue in statistical analysis also holds for visual
analysis, namely the multiple comparison problem. The authors identify that user tend to
draw wrong conclusions when combining multiple filters. While bar charts alternated by a
standard deviation help an experienced user to draw correct conclusion, a novice user would
likely fail. A personalized interactive system for visual analysis must find a solution for
this challenge, since all user should be prevented from making mistakes. A corresponding

adjacency pair looks like:

System: “In this case, be careful with your conclusions. There might be no significant

differences, although the visualization may to imply this.”

Exploration

For exploring data, a user might stuck in the exploration. By increasing the dimensions of
the data set in terms of data attributes, it becomes more difficult for the user to effectively
explore a data set. A user might wonder which attributes are worth it to combine, given the
current analysis step. Hence, a system could help the user in highlighting useful avenues
for data attribute combination. As the data attributes differ in the scale of measurement,
the mutual information likely helps again. Given that higher mutual information implies a
stronger relationship between the attributes, a system might provide a list of attributes with

strong relationships to the user. A corresponding adjacency pair looks like:

System: “<String>, ... likely explain <String> better.”

Filtering

In addition to understanding the inherent relationships within the data, being aware of
how many data is actually visualized is relevant as well. By filtering certain aspects of
the visualized data, the amount of shown data can be tremendously change. For deriving
substantial conclusions, however, the user should always know the percentage of actually

visualized data. A corresponding adjacency pair looks like:

System: “You excluded <Number> % of your data.”
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Greeting

In order to directly engage with the user right from the beginning, the system greets the user
and introduces itself. Since the conversation in visual data analysis is likely goal-oriented
(Shechtman and Horowitz, 2003), the dialogue opening is similar to a telephone call opening
where the callee (in this case the system) always initiates the speaking (Schegloff, 1968). A

corresponding adjacency pair looks like:

System: “Hi <String>. My name is Valletto and I'm gonna help you to visually analyze

your data”

Unknown Command

Due to using speech as central modality, there is room for misunderstanding a user on
multiple levels. On the lowest level, a speech recognition engine might not be able to
correctly parse the users utterance. On a higher level, a user’s utterance might be to complex
formulated for the system. In any case, the system design should be able to handle such
situations (Moore et al., 2016). One approach is to apologize and ask the user for rephrasing

the last utterance. A corresponding adjacency pair looks like:

System: “Can you please repeat your request?”

Help

A user’s lack of knowledge about the available functionality is another reason why conversa-
tional interfaces fail. Hence, a user might just ask for help when (s)he does not know what

the system can actually do (Cox etal., 2001). A corresponding adjacency pair looks like:

User: “Hey Valletto, what can you do for me?”’

System: “Good question. You can ask me to: Visualize the data attributes you want to
analyze, filter the visualized data for you, and add or remove data attributes to or
from the visualization. Just tell me what you would like to do. Furthermore, you can

swipe or rotate across the visualization to manipulate its appearance.”
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Confirmation

Although the above described dialogue acts already cover a variety of different analysis
situations and provide corresponding answers, not all dialogue situations can be fully covered.
In order to be able to give always a reaction to any user’s utterance, however, Valletto has a
confirmatory dialogue act. In this act, Valletto answers with a short answer and questions

whether the user is satisfied with the reaction. A corresponding adjacency pair looks like:

System: “Is this what you wanted?”

5.3.4 Natural Language Understanding

The modality speech supports generating new visualizations, adding or removing data
attributes to and from a visualization, and filtering on data attribute values. These four
functions define the classifiable intents for a Natural Language Understanding (NLU) routine.
However, predicting a user’s intent is challenging. Interpreting a user’s utterances underlies
a given uncertainty due to speech recognition errors (Young etal., 2013). Additionally, it

depends on the state of the analysis.

The intent classification underlies two constraints. First, the transparency panel of the user
interface requires a value greater or equal to O for each intent as well as for each data attribute
(see Figure 5.2). Therefore, the output of the classification has to be probabilistic. Second,
the amount of example requests is too little for applying a end-to-end learning approach.
Hence, a classical approach appears to be appropriate. The following algorithm predicts the

intents within three steps.

The first step cleans and structures the user’s utterance. Text data is unstructured, especially
when the data source is the spoken word. In almost every NLP approach, a sequence of
tokenization, and lemmatization is applied. Tokenization splits the text into its part, i.e.,
words, punctuation etc., are now separated. For each identified word, lemmatization maps
this word on its bases, e.g., “visualizing” will be transformed into “visualize” by using, e.g.,

lexicon.

In addition to the structuring of the utterance, the syntax of the utterance is parsed (see Figure
5.7). A dependency parser finds the relationships between words and their grammatical
purpose within the utterance. The root element plays an important part in the algorithm for

identifying the user’s intent.

The root element of a sentence typically represents the main verb. As conversations in

visual analysis are arguably goal-oriented (Shechtman and Horowitz, 2003), the main
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Fig. 5.7: Dependency tree for an exemplary utterances on the relationship between horsepower,
miles per gallon, and the origin.

verb potentially serves as a primary input for the intent classification. This hypothesis is
further supported by the empirical results of Section 4.3. Consequently, the algorithm
computes the semantic similarity between the root element  and synonyms of the intents
(see Figure 5.8). For each supported intent, a list of synonyms .St is manually created prior
the system’s initialization. Eventually, the algorithm averages the sum of the computed

semantic similarities:

s(r) = . Z sim(r, s) (5.4)

However, a variety of semantic similarity measures exists. Patwardhan and Pedersen
(2006) investigate the correlation between these different semantic similarity measures and
the human’s concept of semantic similarity. The authors show that Jiang and Conraths
measure represents the human understanding of semantic similarity between words quite
well. Therefore, the algorithm uses Jiang and Conrath as well. As a result, a vector v exists

which stores the average semantic similarity score for each intent.

A similar approach is applied for finding the relevant data attributes within the utterance.

Assuming each data attribute has a reasonable name — which is not necessarily fulfilled
in practice — the name likely refers to a noun. As the dependency parses further returns
all nouns of the utterance, the algorithm computes the semantic similarity between all
nouns and all data attribute synonyms. However, P1 requires the algorithm to generate the
lists of synonyms for the data attributes on the fly. All synonyms are collected during the
initialization of the system. In contrast to the decision on the intent, the algorithm does not
compute the average semantic similarity for each data attribute, but searches for the best

matching pair.

Depending on the identified attributes and filters, the algorithms further refines v. For
example, if no attributes are discovered, but a filter should be applied, then the filter intent is
rated higher. This might happen in case only certain attribute values are mentioned. Finally,
the probability vector v is computed by normalizing v. The reasoning panels represents the
values of v/. The element with the highest probability is lastly classified as the visualization

intent.
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Show me the interactions between horsepower and MPG according to the origin.
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Fig. 5.8: Similarity computation between the root element and the synonyms for the intents. In this
illustration, the color saturation of the similarity vector encodes the values.

5.3.5 Usage Example

Figure 5.9 illustrates an exemplary usage of Valletto. Imagine a user wants to explore a
car data set (Donoho and Ramos, 1982; StatLib, 2005). This data set contains information
about different car models from the late 90th. The user starts in the analysis tab of Valletto
(ctf. Figure 5.2) by exploring the dependency between acceleration and the horsepower of
the cars. Initially, Valletto generates a scatter plot, as it is the effective visualization for
two quantitative attributes. Additionally, Valletto tells the user that those data attribute are
negatively correlated. However, the user swipes up for changing the visualization type to a

line chart. Furthermore, the user rotates the visualization.

In order to further analyze the individual data attributes, the user switches to the data tab (cf.
Figure 5.1). In this tab, the user investigates the distributions of the data attributes. While
acceleration follows a normal distribution, horsepower does not. Consequently, the user also

explores the origins of the cars.

In order to find out how a car’s acceleration depends on the country where the car has been
build, the user formulates a corresponding request. Valletto generates a bar chart accordingly.
Since this visualization likely suffers under the multiple comparison problem in this case,
Valletto provides an additional dialogue act in order to warn the user. As the bar chart shows

aggregated data, the user swipes up to see the raw data through a scatter (strip) plot.

5.4 Technical Implementation

The technical prototype implements a client-server-architecture. Since Valletto supports
a diverse set of devices, the entire “intelligence” of the system is realized in the backend.
The client only takes care of the user interaction handling and the representation of the
information through both dialogue and visualization rendering. This architecture offers
flexibility in order to handle multiple devices and additionally provides enough computational

power for the predictive models.

Chapter 5 Valletto: A Multimodal Visual Analysis System



Visualization Responses

Your data attributes have a

power

Acceleration

L P

lof Horsepower

o s £ %
Acceleration

M,

\éa of Acceleration

-~ correlation coefficient (Spearman) of  -—{}-|
658

Utterances Gestures
Show me the horsepower and :
acceleration of the cars. H
>
S
L
---------------------------- - swipe up E
i
iy
Sy
———————————————————————————— 4 swipe right :

——
o' s ' 120 ' 160 ' 200 240
Horsepower (binned)

;M |II
1o 12 13 16 18 20 22 2526

Acceleration (binned)

1o In this case, be careful with your
<-- conclusions. There might be no
s significant differences, although the
Mea ftion visualization may to imply this.
o
st
Origin
-
usn
EurddR™"
Grigin

Fig. 5.9: Exemplary usage of Valletto.

____________________________ 4 touch on :
horsepower :
o)
SN
____________________________ 4 touch on 10
acceleration Ry
>
———————————————————————————— 4 touch on origin !

Plot the acceleration against the

country

qej sisAjeuy

____________________________ 4 swipe up

5.4 Technical Implementation



84

The client is implemented in React (Facebook Inc, 2013). React is a JavaScript library
for creating WebApps. A object-oriented programming paradigm structures a React App
into components. However, it strictly separates between dump and smart components.
While dump components only focus on representation of forwarded information, the smart
components handle the communication, and necessary computations. Additionally, the
concept of React uses states and propositions. The propositions are used for forwarding

information.

On the other hand, the backend implements a Representational State Transfer (REST) service
through Flask (Dwyer etal., 2017). The backend infers on the user’s utterance in order
to predict the user’s intent. All intent-related computations base on Spacy (Explosion Al,
2018), a Python library for NLP. Spacy implements by default all needed algorithms for the
intent prediction (cf. Section 5.3.4).

For generating visualizations, the visualization grammar Vega-lite (Satyanarayan etal.,
2017) is used. Vega-lite is designed for automatic visualization generation. However,
Altair (VanderPlas etal., 2018) is used for generating the visualizations, as the backend
is implemented in Python. Altair provides a Python interface for generating Vega-lite

objects.

5.5 Experiment 1: Exploring the Design

The objective of this experiment is to explore potential issues in the design of the user
interface as well as the integration of the interactions. Therefore, it is designed as an expert

review.

5.5.1 Procedure

In order to not only find potential issues, but also classify them, a hybrid expert review design
is selected. This approach consists of a combination of Cognitive Walkthrough (CW) with a
Heuristic Evaluation (HE). While the CW directs the expert through stereotypical interaction

sequences, the HE provides a format for classifying potentially identified issues.

For the CW a set of tasks and the corresponding interaction sequences is defined. This set
covers Valletto’s supported features. Additionally, the tasks are meant to be as realistic as
possible in order to simulate a typical visual analysis process. An expert should answer
four questions on the integration of the interactions after each interaction with the system,

according to Wharton etal. (1994). The CW reveals usability issues immediately.
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The HE requires a previously provided heuristic. However, a huge variety of heuristics
exists (Nielsen, 2005). For analyzing dialogue-based user interfaces, Weinschenk and Barker
(2000) constructed a 20-item long heuristic which is used for this experiment. The HE
allows to find usability issues beyond the pure interaction with the system. Finally, on all

potentially identified issues a 5-point severity rating has been performed.

The experiment is conducted as a 1-on-1 situation with a participant with no time constraints
in a quiet room. Each participant get equipped with the technical prototype running on a 10

inch iPad as well as a sheet of paper for each the predefined tasks, and the heuristic.

5.5.2 Participants

Four experts are recruited for this experiment. They have a background in either computer
science or engineering. They have 4 years of working experience on average in both industry
and academia as software engineers and HCI researchers, respectively. Due to their work as
software developers for both Web and mobile, they are aware of the importance of usability

as well as have passing knowledge in multimodality.

5.5.3 Results

In summary, the experts discover 14 potential usability issues of the current implementation
of Valletto. However, the majority of these potential issues are mostly voted as minor

usability problems according to the severity rating scale.

One central usability issue is the lack of transparency on the available functionality of
Valletto. The experts mentioned that a user likely does not know what kind of functions
are supported by for both speech and gestures. These facts imply additional effort for the
user to explore the individual modalities before the visual analysis can start. One expert
suggests to add an initial guided tour for the user. In this guide, the system would introduce
its functionality on its own. Another expert proposes to have a redundant implementation of

the functionality. Consequently, both modalities support similar functions.

Furthermore, some experts identify the reasoning panel design as a source for potential
usability issues. A user might assume that the text fields are buttons to click on, although
they are not. Apparently, the differently colored frames around the text fields produce this
assumption. However, the experts also see potential benefits of using speech as the primer
modality for visual analysis. They explicitly refer to scenarios in which the user is in a shaky

environment e.g., sitting in the back of a car.
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5.5.4 Implications on the Design

The results reveal not only unknown usability issues for both user interface design and

interaction design, but also address some suggestions on how to cover them.

On the one hand, the reasoning panel design has to be improved. As it creates an impression
of being touchable, the design needs to change. As the reasoning panel visually represents the
system’s interpretation of the user’s recent utterance, a design interaction needs to conserve
this idea. A potential solution might be to remove the frames as they create the assumption
of a button. In order to still visualize the probabilities, the text fields could be colored

instead.

On the other hand, the lack of transparency of available functionality is addressed. Generally,
this is a known issue of FLUID user interfaces (Drucker etal., 2013). In classical Window,
Icon, Menu, and Pointer (WIMP) user interface, every function is represented by a visual
element (e.g., buttons). Given the fact that users are still highly trained to use WIMP instead
of FLUID interfaces, this usability issue is surely relevant for the design improvements of
Valletto. In order to cover this usability issue, a guided tour is implemented as suggested by
an expert. This guided tour is realized through overlays on the individual tabs in the moment
of the first opening. Finally, smaller addressed usability issues are fixed as well. This updated

version of the Valletto serves now as technical prototype for the next experiment.

5.6 Experiment 2: Decisions and Obstacles

The objective of this experiment is to evaluate the performance of Valletto in supporting
a user in visual analysis as well as to find potential interaction obstacles. Therefore, a

within-subject user study is conducted. The experiment focuses on the research questions:

RQ 4: What are the differences in completing tasks in a conversational interface compared

to a conventional user interface?

RQ 5: What are the differences in the interaction strategies between a conversational

interface and a conventional user interface?

The experiment consists of three phases: an initial introduction to the systems, an interactive
phase on executing various visual analysis tasks, and a questionnaire. Similar to the evaluation

of Eviza (Gao etal., 2015), Valletto is evaluated against Tableau®. Currently, Tableau is one

Shttps://www.tableau.com
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of the common tools for visualizing data via classical drag and drop interactions. Its features

in terms of supported visualizations and analytics are a superset of Vallettos features.

5.6.1 Procedure

Prior to the start of the experiment, both systems are prepared with an e-commerce data set.

This multivariate data set consists of quantitative, ordinal, and categorical data attributes.

Furthermore, each participant gets a standardized introduction to each system. During this

introduction, a participant has time to get familiar with the particular user interface.

The experiment’s interactive phase consists of 11 visual analysis tasks (see Table 5.1). 10 of
these 11 tasks are about verifying a given statement on the data. Each participant should
check whether the given statement is true. In case a participant is uncertain whether the
statement is true or false, they can also state “undecided” as an answer, without specifying
any reasons. In order to be able to check on the statements correctness, a participant has to

first decide on the required data attributes and second create visualizations.

Since no additional constraints are given, a participant can take advantage of the entire
functionality of each system. The tasks vary in complexity. Furthermore, the statements are
formulated in way that a participant cannot simple read out lout the statement and Valletto
immediately delivers the answer. For the verification-oriented tasks, the time needed to
complete the task is manually measured. Precisely, the trask completion time is the time
between a participant’s first interaction after reading the corresponding statement and the

moment of the participant’s decision.

In addition to these verification-oriented tasks, a 5 min long open exploration task exists. In
visual analysis research, an open exploration task serves well to analyze interaction behaviour
with the system as well as potentially delivers insights on the user’s analysis flow. Setlur
etal. (2016) use a similar approach for evaluating Eviza. Each participant should mention
as many as possible identified facts about the data. After the study, these statements are

checked on correctness.

In order to reduce the biases in the data, the starting system is alternating as well as each
participant gets a randomly assigned sequence of the 10 verification-oriented tasks. The

open exploration task is in any case the last task for each participant.

After these interactive phase, each participant answers a questionnaire. It contains questions
on the perceived user experience, feedback to the system in general, and demographic

information. Similar as the first experiment (cf. Section 5.5.1), this experiment is conducted

5.6 Experiment 2: Decisions and Obstacles
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Task ID  Data  Situation Objective

1 C x Q LOCATE Verification
2 Q x Q DEPENDENCIES-numeric Verification
3 C x @ COMPARISON Verification
4 C x Q@ LOCATE Verification
5 C x Q COMPARISON Verification
6 C x @ COMPARISON Verification
7 Q x Q@ DEPENDENCIES-numeric Verification
8 C x @ COMPARISON Verification
9 C x @ LOCATE Verification
10 C x Q COMPARISON Verification
11 - EXPLORE the Market Exploration

Tab. 5.1: List of given tasks to the participants for the within-subject study.

as 1-on-1 set up in a quiet room. Overall, the experiment is designed to take approximately

75 min.

5.6.2 Participants

13 persons participated in this experiment — a comparable number of participants as in both
DataTone (Gao etal., 2015) and Eviza (Setlur et al., 2016) — where one person was a native
English speaker. The participants are between 24 and 40 years old (¢ = 30, 0 = 5) and have
several years of working experience in industry (¢ = 4.2, 0 = 3.7). From an educational
point of view, the participants’ academic background is in computer science, nature science,

business, and engineering.

In terms of visualization experience, the participants stated to generally have moderate
experience. For creating visualizations, they rely on either MS Excel or scripting languages
like R or Python by using dedicated visualization libraries. The majority (8 participants)

further states to have no experience in using Tableau.

5.6.3 Results

The results empirically highlight differences in the decisions made in the systems as well as
address obstacles related to interactions. Overall, Valletto receives a System Usability Score
(SUS) (Brooke, 1996) score of pn = 81.1 (0 = 8.6) and the participants rate the usability

between “good” and “excellent”.
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Fig. 5.10: Amount of correct decisions made by the participants per system and task.

Decision Quality

In the following, the term decision quality of a participant describes the number of correctly
made decisions. Overall, a conducted paired samples t-test reveals a statistically significant
(t(12) = 2.99, p = 0.01) higher decision quality with Valletto (1 = 80, 0 = 7.5) than with
Tableau (¢ = 73, 0 = 7.5) with a medium effect (pooled Cohen’s d = 0.86). Additionally,
Figure 5.10) illustrates the differences for each task. While using Tableau, the participants
made better decisions in the tasks 4 and 5. However, they performed better in the tasks 2, 6,
7, 8, and 9 while using Valletto. A conducted x? test further shows statistically significant
differences in the decisions in task 6 (x%(2, 26) = 14.36, p < .001) and 7 (x2(2, 26) = 4.72,
p < .01).

Task Completion Time

The task completion time of the participants is statistically significant different in the tasks
IDs 1, 2, 6, 7, and 10 between Tableau and Valletto, as illustrated by Figure 5.11. Table
5.2 further summarizes the corresponding statistical values for each task. These values
reveal a large effect (Task IDs 1, 2, 7, and 10) and medium effect (Task ID 6), respectively.
Furthermore, participants decide faster with Valletto (u = 444, o = 93) than with Tableau
(u =609, o = 123), according to a conducted paired samples t-test on the accumulated task
completion time over all tasks (¢(12) = —5.75, p < 0.01). This difference is additionally
supported by a large effect (Cohen’s d = 1.6).

Considering the task completion time by the participants’ self-reported experience level,
Figure 5.12 shows no differences between these experience levels. However, some participants

mention that it subjectively felt longer to complete a task with Valletto than with Tableau.

Finally, Figure 5.13 highlights the learning effect considering the task completion time by
the relative task position. According to a paired samples t-test (¢£(12) = 2.28, p < .05), the
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Task ID UValletto  HTableau t-statistic p d

56.00 54.46 0.17 865 -
62.07 109.30 -3.11 008 .90

Tab. 5.2: For each task, the results of the conducted paired samples t-tests: means (in seconds),
t-statistic, p-values, and effect sizes (Cohen’s d pooled).

1 26.61 50.38 -2.80 015 81
2 41.38 77.46 -3.16 008 91
3 45.69 41.53 0.39 699 -
4 46.00 42.69 0.39 02 -
5 48.92 53.38 -0.92 373 -
6 43.92 60.23 -2.20 047 .63
7 39.84 72.69 -2.98 011 .86
8 37.33 47.58 -1.86 088 -
9

10

= 120
p @ Valletto @ Tableau *
E 100
5 80 ¢
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Fig. 5.11: Participants task completion time by task ID as well as overall.

participant make statistically significant faster decisions with Tableau (A, = 24). However,
this was not the case with Valletto (A, = 3).

Observations on the Interactions

Informative subjective ratings by the participants reveal a positive impression on both the
dialogue design (see Figure 5.14) and the reasoning panel (see Figure 5.15). Regarding the
dialogue design, participants consider the dialogue as supportive for the decision making.
Additionally, they feel reminded on what was already asked. In terms of the reasoning panel,

the participants welcome the increased transparency on the system’s behavior.

Moreover, the participants essentially use one of two different strategies for both visualizing
data and choosing a preferred visual encoding, independent of the system. One group of
participants first decide which data attributes to take and then apply potential filters on the
attributes, if needed. The other group take the opposite order. Furthermore, participants tend
to design summary-oriented visualizations like bar or line charts for the decision making,
although a variety of alternatives exists. This observation on the visualization selection

holds for both Valletto and Tableau. While using Valletto, however, participants occasionally
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Fig. 5.12: Participants task completion time as well as the amount of correct decisions ordered by

the participants’ self-reported visualization experience.
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Fig. 5.13: Participants task completion time (mean and 50% confidence interval) by the relative

position in the task sequence.

mmm Strongly Disagree WS Disagree W Neither Agree nor Disagree MBI Agree  WEE Strongly Agree

I did not read the chat | .
I consider Valletto's answers as helpful [
The dialogue helps me to remember what | already asked NI

0 2 4 6 8 10 12

Fig. 5.14: Participants’ ratings on given statements regarding the dialogue design.

mmm Strongly Disagree WM Disagree MWW Neither Agree nor Disagree MMM Agree WM Strongly Agree

I think it is helpful to better understand the system. { I ——
I need such information for using the system. I e —
I found the feedback too unspecific. |  NEEE—

0 2 4 6 8 10 12

Fig. 5.15: Participants’ ratings on given statements regarding the reasoning panel design.
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change the visual mappings. Nevertheless, they work with the initially shown visualization
most of the time. This visualization is the most effective visualization from a perception

point of view (cf. section 5.3.2).

While using Valletto, some participants try to get a result by directly telling the system the
tasks claim e.g., People in X tend to buy more Y than the others (where X and Y are concrete
values and not data attributes). Yet, these participants quickly notice that the system does
not understand them and adjusted their speech interaction tactic accordingly. They typically
give precise information about the data they would like to see instead. A different tactic is to

formulate small simple sentences to build up the visualization.

Open Exploration

Participants approach the open exploration by analyzing a sequence of single data attributes
while using Valletto. Precisely, they start in the analysis tab for applying the desired filter on
the data, but immediately jumped back to the overview tab. This behavior leads to more
mentioned data statements focusing on single attributes while using Valletto in contrast
to Tableau. In Tableau, these observations are not made. Instead the participants directly
combine multiple data attributes. Additionally, the most experienced participants in visual
analysis decide to generate maps to distinguish between countries. Overall, the participants

tend to slightly find more observations with Valletto than with Tableau.

5.6.4 Discussion

The results of both conducted experiments reveal two things. First, the design elements of
Valletto influence the participant’s decision making in a positive sens. Second, the modality

of speech triggers obstacles for the user interaction though.

The overall design of Valletto is perceived to be very good, according to the SUS score of
81.1. As the open exploration task further shows, the participants became familiar to the
systems design after completing the first 10 tasks. They interact with the two different tabs
naturally. Nevertheless, the observations of how participants directly talk with Valletto reveal

room for further investigations, as discussed in the following.

Finding 1: Better decisions in Valletto. The two design elements of Valletto — the dialogue
and the reasoning panel — arguably improve a participant’s decision making. The positive
ratings by the participants explicitly support this assumption (see Figure 5.14 as well as
Figure 5.15). Additionally, both the improved task completion time (see Table 5.2) and

the decision quality (see Figure 5.10) supports this assumption. In tasks with data-related
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dialogue acts given, a significant time advantage emerges. This effect further seems to be
present not only for inexperienced participants, but also for experienced participants (see
Figure 5.12). Dialogue acts on data facts likely trigger a positive effect on the decision
making in visual analysis. Hence, a broader spectrum of users potentially benefits from such

kind of dialogues.

Furthermore, the reasoning panel is considered as helpful and supportive for better under-
standing the systems computations. However, an alternative design might be to directly
include the highlighting of relevant words in the dialogue. Relevant parts of the users

utterance could be labeled in the categories of intent, attribute, and filter.

Finding 2: Unified communication works, but not for everyone. In the current status of
Valletto, each user gets the same set of answers depending on both the user’s utterance and the
data characteristics (see. Section 5.3.2). But users are diverse in many ways, e.g., experienced
vs. inexperienced in visual analysis, data scientist vs. casual user, or with an interest in a
broad overview vs. detailed aspects. For instance, an experienced participant asked Valletto
for the corresponding p-value of the computed Spearman’s correlation coefficient. This
indicates that some participants are potentially not fully convinced by the given dialogue act,
otherwise they would not have asked for the relevant statistical parameter. Srinivasan et al.
(2019a) also reveal similar results in their experiment. Hence, adding these information to
the dialogue acts might further improve the decision making, if the user understands the

concept of the p-value.

Finding 3: Visualization types appear more important than mappings. In the current
version of Valletto, the most effective visualization is always shown first. Although a user
can freely navigate through the set of offered visualizations, the participants did not fully use
this functionality. As observations showed, the visualization type was more of interesting
than changing the visual mapping. However, an objective should be showing a desired
visualization in the first place. The analysis process can certainly speed up when the first

shown visualization fits substantially the users preferences.

Finding 4: Marginal learning effects in Valletto. As Figure 5.13 illustrates, there is not
visible learning effect while using Valletto, although it exists for Tableau. Consequently, a
user familiar with Valletto is not necessarily faster in the visual analysis than an unfamiliar
user. As the familiar user might know which functions are available after a while, the system
still has to transform the utterance into an appropriate response for the user, consisting
of generating a visualization, and providing a dialogue act. This further means that an
additional speed up of the visual analysis with Valletto likely depends on improvements of

the technical side.

5.6 Experiment 2: Decisions and Obstacles
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Interestingly, some participants’ perceived duration for the performed tasks is longer with
Valletto, although the overall objective task completion time was shorter. This phenomenon
might be summarized under the term of temporal illusion. It presumably refers to Vierordt’s
law, which states that people tend to overestimate “short” time intervals and underestimate
“long” time intervals with an “indifference point” in between (Lejeune and Wearden, 2009).
One reason might be a short but noticeable time (1-2s) between sending an utterance
and receiving an answer. Additionally, participants do not actively specify details of a
visualizations, but delegate this to an agent. This echos the finding of Tory and Setlur
(2019) and Setlur et al. (2019). Consequently, a user’s interaction sequence for achieving an
objective contains gaps between the interactions. In each gap, a user needs to observe the

interfaces without actively interacting with it.

5.7 Limitations

Using speech for visual analysis feels strange for some participants. Furthermore, the NLP
routine occasionally fails, e.g., the recognizer confused “profit” with “prophet”. Participants
for which the speech recognition failed are quickly less motivated in interacting with Valletto.
Since the concept does not provide direct text input like other approaches, participants are
not able to immediately resolve this situation. This limiting circumstance affects not only
the task completion time, but also user experience. Additionally, some participants tend
to hyperarticulation. However, participants are able to adjust their interaction strategies in

those challenging situations by using the reasoning panel.

Although the design is primary envisioned for mobile use, the design is not evaluated in a
mobile context. Especially, the ambient noise is most likely higher than in our study scenario
and will eventually affect the performance of these systems. However, comparing the design
to a conventional user interface design, advantages of the dialogue and the reasoning panel

are identified.

5.8 Summary

Using natural language for generating and manipulating visualizations can reduce barriers
both interaction and knowledge (Grammel et al., 2010). This chapter proposes a multimodal
interfaces design for visual analysis through touch and speech. This design considers the
conversation with the user as an essential aspect in a multimodal interface. Through the
conversation, the user becomes more aware of the underlying data and the system’s actions.
In addition to the user’s utterances, the dialogue contains dialogue acts on data facts as
well as dialogue acts for maintaining a conversation. Additionally, an adjacent reasoning

panel reveals the system’s computations. Considering Chapter 4, the system restricts the
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recommended visualizations by the used visualizations. Furthermore, a dedicated NLP

routine considered the command structures.

Through two user studies, the following implications for future approaches in the area of

conversational interfaces for visual analysis can be made:

* Dialogue: A persistent dialogue containing the user’s utterances as well as the
system’s textual responses of additional information with respect to the visualization
helps the user to make more reliable decisions. Therefore, it would be worth it to
investigate further complex visual analysis tasks to see how they can be integrated
into conversational interfaces for visual analysis. Finally, the system should talk in a

personalized way with the user.

» Speech: Speech input should be directly used instead of text input due to limited
display sizes and recent improvements in speech recognition technologies. However,

evaluating these systems in the field is directly connected with using speech.

» Engagement: Conversational interfaces for visual analysis should stay engaged with
the user while computing the user’s utterance, otherwise the user’s user experience
will suffer. Hence, further designs should be discussed which go beyond the classical

loading spinner.

However, the intelligibility of visual analysis can be further increased. While the reasoning
panel already provides transparent and interpretable information on the system’s behavior,
the dialogue acts still follow a unified communication style. The next chapter faces this
challenge. Furthermore, the visualizations recommendations also assume a standard user.

However, Chapter 7 explores the personalization of this aspect in detail.

5.8 Summary






Investigating Dialogue
Preferences

As shown, users appear to have different requirements concerning the communication of data
facts. In order to approach this challenge, this chapter proposes a linguistically motivated
answer space by considering the cooperative principle by Grice (1975). This answer space
varies in two dimensions: information level and support level. First, a conducted online survey
(IN = 76) shows diverse preferences in the answer space. While the self-report knowledge of
the participants significantly influences the preferences, other factors such as trust influence
the preferences too. A controlled experiment (/N = 10) further highlights effects of the

answer space on user experience. Answers not aligned with the user’s preferences trigger

negative reactions, while answers following the user’s preferences produce positive reactions.

Overalla, this chapter shows how the conversation in visual analysis becomes intelligible.

Disclaimer: The following chapter is essentially based on the published article: Jan-Frederik
Kassel and Michael Rohs (2019b). “Talk to Me Intelligibly: Investigating An Answer Space
to Match the User’s Language in Visual Analysis”. In: Proceedings of the 2019 on Designing

Interactive Systems Conference. DIS *19. San Diego, CA, USA: ACM, pp. 1517-1529.

ISBN: 978-1-4503-5850-7. DOI: 10.1145/3322276.3322282
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6.1 Introduction

Valletto realizes a substantial dialogue between the user and the system, as previously
introduced. This dialogue on data facts actually helps a user to make sense of data. However,
the previous experiment highlights a diverse perception of the dialogue. While many users
directly took advantage of the given information for making better decisions on the visual
analysis tasks, some — more experienced — users question the given answers. Srinivasan et al.
(2019a) observe a similar effect when textual information on data facts are attached to a
visualization. More experienced users would likely see a proof of the statements given, e.g.,
relevant statistical methods and parameters. The lack of the trust in the system likely affects

the user interaction and the produced results.

Hence, the system needs to somehow adjust to the user’s language. Molich and Nielsen
(1990) argue for matching the user’s language as one of the essential usability challenges of
conversational interfaces. Still, matching the user’s language does not only mean to literally
speak the same language as the user, e.g., English, but also to use “words, phrases, and
concepts familiar to the user”’(Molich and Nielsen, 1990). Following this argumentation,
it further aligns with the essence of dialogue between human beings. In a human-human
dialogue, a person adjusts to their interlocutor’s language unconsciously (Gallois and Giles,
2015; Grice, 1975). Typically, the one with either more versed language skills or more
knowledge about the dialogue topic adjusts more. Imagine a class room situation on learning
derivation of a function in high school as well as at a university. While in both situations the
objective of understanding the concept of a derivation is identical, the audience’s backgrounds
essentially differ. So, the chosen educational approach must be different. Therefore, a teacher

needs to adapt to the audience and so should an intelligent system.

However, little knowledge exists on methods and effects of automatically adjusting to a user
in multimodal visual analysis. This chapter investigates a way for personalizing textual
descriptions on data facts according to the user’s characteristics. First, an answer space
is created based on linguistic fundamentals of Grice (1975). Second, an online survey
investigates the diverse preferences in this answer space. It empirically reveals significant user
characteristics for describing this preferences. This study data is further used to train and test
a machine learning model for incorporating the answer space into an actual conversational
interface. A succeeding experiment analyzes the effect of a personalized dialogue on the

usability and acceptance of conversational interface for visual analysis.

Chapter 6 Investigating Dialogue Preferences



6.2 Related Work

While Section 2.5 discusses related work on multimodal interfaces for visual analysis, this
section introduces additional concepts from linguistic theory. Additionally, it discusses
related work on general conversations with intelligent assistants as well as user-specific

differences in the use of conversational interfaces.

However, the essential difference to the related work from Section 2.5 is the objective of
achieving a user-specific conversation in visual analysis. All previous approaches propose
a generalized conversation strategy with the user. Consequently, no matter how skilled
or unskilled a user is, the system will not change its responses. Yet, matching the user’s
language is not only important in the general domain (Molich and Nielsen, 1990), but likely

also in visual analysis, as addressed in Section 5.6 as well as by Srinivasan etal. (2019a).

6.2.1 Linguistic Theory

Generally, a system should match the user’s language as well as support a user in achieving
the objectives. Considering these circumstances from a linguistic perspective, coopera-
tive principles by Grice (1975) are immediately relevant. Grice (1975) pleads for ideal

communication between two persons where both are cooperating. He states:

“Make your conversational contribution such as is required, at the stage at which
it occurs, by the accepted purpose or direction of the talk exchange in which

you are engaged.” (Grice, 1975, p. 18f)

His cooperative principle further comprises four maxims (Grice, 1975). First, the Maxim
of Quality requires that every contribution to the dialogue is true. Second, the Maxim
of Quantity describes the information content of the dialogue act. According to Grice, a
statement needs to contain as much information as required, but not more than this. Third,
the Maxim of Manner prescribes to be orderly and to avoid ambiguity in the conversational
contribution. Fourth and last, the Maxim of Relation addresses the relevancy of the statement.
Only relevant statements should be made with respect to the objective of the cooperation.
Furthermore, Grice defines a violation of any of these maxims as an implicature. Implicatures

are considered to be harmful for the cooperation.

In addition to Grice (1975), the Communication Accommodation Theory (CAT) (Gallois
and Giles, 2015) also describes likely relevant aspects for an user-specific conversation
in visual analysis. CAT is theory of how people adjust their conversation styles to their
interlocutors. In a nutshell, it consists of the four phases. First, the sociohistorical context

describes the general basis for the conversation of two people. Second initial orientation
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focuses on how people initially estimate the conversational skill of their interlocutor. Third,
the psychological accommodation essentially summarizes how an action for accommodation
is made. Finally in evaluations, a person evaluates how the conversational contribution is

perceived by their interlocutor.

Both theories appear to be immediately useful for personalizing the conversation in visual
analysis. Both consider the involved parties as well as the corresponding objective for the
conversation. Furthermore, related work do not consider the conversation under either

concept.

6.2.2 Conversation Style

As in human-human dialogues, the design of conversational interfaces can be express multiple
perspective. Especially chatbots require a design according to the user’s objective (Chaves
and Gerosa, 2019). These systems often support the user in information retrieval tasks, e.g.,

finding information regarding a point of interest.

However, Shechtman and Horowitz (2003) identify additional conversation styles beyond
the simple interactions with a chatbot. According to Shechtman and Horowitz (2003), there
are three different styles: task-oriented, communication-oriented, or relationship-oriented
interactions. Shamekhi et al. (2016) show that matching the conversation style of the user

likely accelerates the user experience with a conversational interface.

Hoegen etal. (2019) propose an end-to-end conversational agent in an multi-turn dialogue
for an open domain. This agent aims for automatically matching the conversational style
of the user. Hoegen etal. (2019) report an effect of potentials for increasing the trust in a

conversational agent when the conversational style of the user is matched by the agent.

Furthermore, Branigan etal. (2011) investigate how people adjust their conversation style
when they believe to talk with a computer. The authors show a tendency of the participants
to align more with a computer than with a human. Additionally, they also show an effect
that people tend to even more align with a simple computer than with a powerful computer.
These results directly refer to the CAT. It further shows the general effect of belief on the

interaction with conversational systems.

6.2.3 User-specific Conversational Interfaces

While the user’s belief in the system’s capabilities (Branigan etal., 2011) as well as

the preferred conversational style (Hoegen etal., 2019; Shechtman and Horowitz, 2003)
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influences the interactions with an intelligent system, user characteristics influence the

interactions as well.

Luger and Sellen (2016) explore the relationship between user expectations and experience of
conversational agents. Their results show a lack of trust in the systems by experienced users.
Regular users of conversational interfaces focus rather on simple tasks than on complex tasks
(e.g., writing an email). These users assume that a system will likely fail in executing the

desired tasks. Cowan etal. (2017) confirm these findings for inexperienced users.

Chen and Wang (2018) compare interactions between inexperienced users and experienced
users. Considering failures in conversational interface, the authors highlight a difference
between these two user groups. The more experienced a user is, the more (s)he thinks about
why a system has failed. These users are likely more effective in adjusting their interaction

behavior in order to avoid prospective failures.

In summary, one of the major issues in the interactions with conversational interfaces is a
lack of trust of the user (Hoegen et al., 2019; Luger and Sellen, 2016; Srinivasan et al., 2019a).
Adjusting to the user likely helps to increase trust (Branigan etal., 2011). Furthermore,
communicating in a personalized way further helps to cover and unleash, respectively, the

complexity of visual analysis.

6.3 Structuring Communication

The essence of Valletto’s design is the idea of establishing a conversation in visual analysis
(cf. Section 5.3.1). This conversation is fostered through a persistent dialogue between
the user and the system. Along with the user’s utterances for pursuing in visual analysis,
this dialogue contains dialogue acts on data facts (cf. Section 5.3.3). Depending on the
given analysis situation and data attribute combination, these dialogue acts are differently

expressed.

However, users differ in the use of these dialogue acts, according to the results of the
conducted experiment in Section 5.6. While less experienced users tend to just consume
the provided information, experienced users question the dialogue acts from time to time.
This fact highlights that intelligible visual analysis also requires an adjustment to the user in
terms of how data facts could be communicated. Although experienced users raised these
points of lacking information, inexperienced users might struggle with certain dialogue acts
too. For instance, a user with little knowledge about correlation might be overwhelmed by
reported numbers from a correlation coefficient. The question remains how a personalized

conversation in visual analysis can be structured by focusing on intelligibility.

6.3 Structuring Communication
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6.3.1 Answer Space

Considering Grice’s cooperative principle (Grice, 1975), an intelligible communication of
data facts can potentially be achieved. First, Grice’s maxim of quantity requires from a
contribution to the dialogue to always contain the right amount of information, otherwise
an implicature would be created. In the context of data facts in visual analysis, this “right
amount of information” could be interpreted as the amount of information revealed to the

user. In other words, how much complexity is revealed to the user.

Imagine, two attributes X and Y are positively correlated. Valletto could say: “X and Y
are positively correlated”, as it currently does (cf. Section 5.3.3). Yet, Valletto could also
say: “X and Y are positively correlated according to Pearson’s p = 0.5 and p < 0.05”. The
difference is not only in numerical values, but also in the choice of statistical method and
metric and supplementary parameters. Although both statements are entirely true, it depends

primarily on the user whether a statement is intelligible.

This example illustrates different ways of communicating the same data fact. However,
varying the information content is likely not the only factor influencing the intelligibility of a
dialogue act. The formulation of uncertainty is another factor. Multiple research studies
reveal preference difference in communication of uncertainty (Dhami et al., 2015; Renooij
and Witteman, 1999; Wallsten et al., 1993). People tend to prefer either numerics or words
for describing uncertainty (Barnes, 2016; Budescu etal., 1988), e.g., “the chance of rain is

by 5% tomorrow” compare to “there is a little chance of rain tomorrow”.

Furthermore, the use of relevant statistical terms such as “correlation” likely influences the
intelligibility as well, since a user needs to know this term otherwise the meaning of the
dialogue acts gets lost. Losing the meaning leads further to likely wrong conclusions. Hence,
a system should explain either the term or its implication, if needed. Yet, explaining the
implication of a term such as correlation requires careful considerations. A typical mistake
in data analysis is to automatically assume correlation implies causality. However, deciding
for causality requires solid domain knowledge. As many concepts — such as this thesis —
follow a domain-agnostic approach, the system should focus on explaining what correlation
effectively means instead. Recall the example above, the statement “X and Y are positively
correlated” could also be equivalently communicated as “When X increases then Y increase
on average as well”. These kind of formulations supposedly help users to make sense of the

data when they are unaware of the term usually used.

According to this argumentation, a dialogue act on data facts could be communicated along
two dimensions. On the one hand, the information content of a dialogue acts can vary
following Grice’s maxim of quantity. On the other hand, dialogue acts might contain the

related statistical term or explain its meaning instead. In combination, these dimensions
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Fig. 6.1: The two-dimensional answer space varies in the dimensions of information and support.
While in the upper left corner the answer space contains descriptive answers with little
information on the used methods, the lower right corner contains explanatory answers
with detailed information on the used methods.

consequently form an answer space for increasing intelligibility in a user-specific way,
shown in Figure 6.1. Precisely, the dimensions called information level and support level.
This answer space enables a system to communicate a data fact in four different ways in
order to adjust to the user. The four different ways are to describe a data fact with low
information (LC), to describe a data fact with high information (HC), to explain a data fact
low information (LE), and to explain a data fact with high information (HE). All fours ways
are both valid and equivalent. While a novice user in visual analysis would presumably
prefer a dialogue acts following LE, an experienced user would likely go for HC when (s)he
lacks of trust in the system, otherwise (s)he would prefer HE. However, matching the user’s
language (Molich and Nielsen, 1990) in visual analysis is essential, otherwise implicatures
(Grice, 1975) would likely lead to a bad user experience and an unintelligible visual analysis.
Imagine, a novice user is most likely overwhelmed by the results of a correlation coefficient,
although this user does not know neither what correlation means nor what the coefficient

describes.

6.3.2 Relevant Dialogue Acts

As the answer space provides a theoretical structure for communicating dialogue acts on data
facts in a user-specific way, it does not define how the concrete implementation looks like.
Furthermore, not all supported dialogue acts likely require a use of the answer space. In fact,
only the dialogue acts related to data would likely benefit from the answer space. Hence,
the relevant dialogue acts are DEPENDENCIES-numeric, DEPENDENCIES-categorical,
DEPENDENCIES-arbitrary, COMPARISON, EXPLORATION, and FILTER.

Considering a dialogue acts DEPENDENCIES-numeric on X and Y, the corresponding

implementation of the answer space could look like:

6.3 Structuring Communication
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LC X and Y are positively correlated.

LE X and Y are positively correlated, according to Pearson’s p = 0.5 and
p < 0.05.

HC When X increases then on average Y also increases.

HE When X increases then on average Y also increases, according to

Pearson’s p = 0.5 and p < 0.05.

As DEPENDENCIES-numeric is still a quite handy implementation of the answer space,
other dialogue acts are much harder to implement. In order to make sure that the answer
space is correctly implemented for each dialogue act, all possible answers for each dialogue

act have been checked on correctness by an experienced data scientist.

6.4 Experiment 1: Preferences and Differences

As the answer space is set up, the question remains whether people have actually different
preferences in this answer space. And if so, what are the influencing factors describing these

preferences.

RQ 6: What are the influencing factors for matching the users language in the answer

space?

6.4.1 Procedure

In order to investigate these questions, an online survey is set up. This survey essentially
consists of two phases. In the first phase, each participant conducts a randomly assigned
sequence of 12 concrete visual analysis tasks. These 12 tasks cover the support visual
analysis situations by the answer space where each situation is represented by two tasks (see
Table 6.1). For instance, the analysis of two quantitative data attributes is covered by one

task on positively correlated data as well as one task on negatively correlated data.

Each task shows an effective visualization (bar, line, or scatter plot) and two initial options
from the answer space. These two initial options are selected based on a randomly chosen
dimension for the answer space. For instance, if the dimension of low information is
randomly chosen, the two initial answers are: one for describing this information (LC) and
one for explaining it (LE). The objective of the participant is to select the most preferred
answer space option for making sense of the visual analysis situation. Once a participant
decides for a preferred option, again two options are shown from the answer space while the
visualization stays the same. Now the answers are selected based on the participant selection.

For instance, if the participant decided for the descriptive answer with low information
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Dialogue Act Condition

FILTER one filter applied

FILTER two filter applied
DEPENDENCIES-categorical independent attributes
DEPENDENCIES-categorical dependent attributes
DEPENDENCIES-numeric positively correlated attributes
DEPENDENCIES-numeric negatively correlated attributes
DEPENDENCIES-arbitrary low mutual information
DEPENDENCIES-arbitrary high mutual information

COMPARISON significant difference between the groups
COMPARISON no significant difference between the groups
EXPLORATION from a categorical attribute
EXPLORATION from a quantitative attribute

Tab. 6.1: Dialogue acts and corresponding conditions of the 12 tasks of the experiment.
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Fig. 6.2: Illustration on how the selection of the first randomly shown answers determines the
subsequent answers in each analysis task.

instead for the explaining answer, then, the answers shown next are a descriptive answer
for low information (LC) and a descriptive answer with high information (HC). Again the
participant should decide for the most preferred answer. Figure 6.2 visually elaborates this

study procedure.

This experiment design has two advantages. First, the participant is likely not overwhelmed
by selecting an option from all four answer space options. Second, more detailed information
on the participant’s preferences are collected, as a participant makes two greedy decisions in

each task.

After completing the sequence of the visual analysis tasks, a questionnaire follows. This
questionnaire is on the participant’s experience in visual analysis, statistics, and in the
use of conversational interfaces (e.g., chatbots). Furthermore, the participant should also
provide feedback on their conversation preferences. In order to select only reliable answers,

a “honeypot” questions is included (Paolacci etal., 2010).

6.4 Experiment 1: Preferences and Differences
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6.4.2 Participants

Covering the wide range of expert levels from novice to expert user is important for this
experiment. In order to receive answers from experienced people, people are recurred with
a major either in computer science or mathematics from a university as well as from a
data science department at an industry company. For collecting answers from likely less
experienced people, the survey link was broadcast at Amazon’s Mechanical Turk (MTurk).
However, only people with a US bachelor’s degree could participated, directly ensured by
MTurk. This restrictions presumably leads to a choice of participants likely aware of the

possibilities of data.

Generally, MTurk serves in many research areas as a basis for getting study results both
reliable and fast (Buhrmester et al., 2011; Kittur etal., 2008). Casler etal. (2013) highlight
the quality of MTurk results compared to face-to-face testing. Furthermore, Heer and Bostock
(2010) show comparable quality of study results from MTurk in the domain of visual analysis

too.

Overall, 87 people participate in this experiment. After cleaning and reliability checks, 76
participants remain. From these 76 participants, 23 are from industry or university and 53
from MTurk, respectively. According to the questionnaire, the majority of the participants is
generally aware of the used statistical methods. However, only 49% of the participants know
the Bonferroni correction. Considering the participants’ self-reported statistical knowledge
level, 38% novices, 15% advanced beginners, 25% competent users, and 22% experts

participate in this experiment.

Furthermore, 77% of the participants would prefer to be guided by an intelligent digital
assistant. Additionally, 75% would value recommendations of useful attribute combinations
while exploring a new data set. Finally, 73% of the participants state that at least one of the

provided answer space options fitted their preferences in each situation.

6.4.3 Results

The following analysis primarily uses the final decision of each participant in each situation.
Furthermore, the results are aggregated on dialogue act level, since each dialogue acts was
covered by two tasks. This aggregation is valid due to a conducted McNemar’s test showing

no significant differences between the two tasks supporting each dialogue act.

First analysis focus is on the influence of the user’s self-reported knowledge on the user’s
preferences. According to a series of conducted x? tests (see Table 6.2), knowledge has

a statistically significant influence on decisions for a preferred response in almost every
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Dialogue Act x2(9) P Cramer's V

FILTER 26.64 < 0.01 0.24
DEPENDENCIES-categorical ~ 8.92 0.44 -

DEPENDENCIES-numeric 18.11 < 0.05 0.20
DEPENDENCIES-arbitrary 2230 < 0.01 0.22
COMPARISON 1741 < 0.05 0.20
EXPLORATION 21.57 < 0.05 0.22

Tab. 6.2: Results of individually conducted x? tests.

situation, except when the dependencies between two categorical attributes have been
investigated (DEPENDENCIES-categorical). However, a more detailed pattern reveals
when considering the different dialogue acts individually. Figure 6.3 explicitly illustrates
the distributions of the participants’ preferences in the answer space depending on both

self-reported knowledge and dialogue act.

Considering the exploration of a potential relationship between two attributes of unequal
level of measurement (DEPENDENCIES-arbitrary), participants with less self-reported
knowledge prefer a response with low information content (either LC or LE) while participants
with higher self-reported knowledge simultaneously prefer response with a higher information
content (either HC or HE). Both results are statistically significant according to a Sidak-
corrected x? test with x2(3) = 18.76,p < 0.012. Additionally, an identical result holds
when the participants filtered data (Siddk-corrected x? test with 2 (3) = 15.78,p < 0.012).
However, the corresponding statistical effect is high in first situation (V' = 0.35) while in the

second situation only a medium effect is persistent (V' = 0.32).

Furthermore, participants statistically prefer with a medium effect (V' = 0.31) rather an
explanatory to a descriptive response when comparing multiple categories, according to
another Sidék-corrected 2 test, x> (3) = 14.38,p < 0.012. Precisely, they prefer by factor
3.25 an explanatory response, as a sequentially conducted Fisher’s exact test reveals with
p < 0.012.

Not only the self-reported knowledge influences a participant’s preferences in the answer
space, but also particular knowledge in the statistical methods used for the dialogue acts
partly determines the preferences. A large (V' = 0.31) statistical effect exists when analyzing
dependencies between two quantitative attributes, following the results of a conducted
Siddk-corrected x? test with x2(3) = 13.62,p < 0.012. The participants tend to prefer

response with higher information when they also know the Spearman’s p.

Besides the participants’ self-reported knowledge, there are additional factors influencing
the participants’ preferences. On the one hand, the participants’ desire to be guided in visual
analysis statistically significantly relates to the preferences in the answer space, based on
the results of a x? test with x?(12) = 25.62,p < 0.05 and V' = 0.10. Furthermore, the

6.4 Experiment 1: Preferences and Differences
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Fig. 6.3: Distribution of the participants’ preferred answers from the answer space ordered by the
self-reported knowledge level and the different supported situations.
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Fig. 6.4: Distribution of the Entropy of the participants’ preferences in the answer space. For each
participant, the Entropy is individually computed based on the selected response category
(LC, LE, HC, or HE) from the answer space.

participants’ curiosity on the used statistical method for giving the corresponding response is
relevant. According to a conducted y? test with x2(12) = 30.74,p < 0.01 and V = 0.11, it
statistically significantly influences the preferences. However, participants — both novice users
and component users — statistically significantly (y?(4) = 13.50,p < 0.01,V = 0.20 and
x2(4) = 14.52,p < 0.01, V = 0.25, respectively) choose responses with lower information
(either LC or LE) when they are less interested in the background computations of the

system.

On the other hand, participants who want to be in control of the entire visual analysis process
prefer responses with a higher information content (either HC or HE). For both novice users
and expert users, this effect is statistically significant by x?(4) = 24.52,p < 0.001,V = .28
and x2(4) = 15.47,p < 0.01,V = .29, respectively.

Generally, the participants’ preferences in the answer space differ very much. First, the
overall average pairwise Hamming distance is 0.72 with ¢ = 0.14. This shows large
differences in the preferences between the participants. Second, the individual preferences
of the participants further vary along the study. Computing the Entropy on the chosen
responses from the answer space for each participant, Figure 6.4 shows varying preferences

depending on the situation.

6.4.4 Discussion

The results of this experiment reveal not only different preferences in the answer space,
but also address relevant factors for describing a user’s preferences in the answer space.
Hence, the results further answer the corresponding research questions 6 and improve the

understanding of preferences in dialogue acts on data facts in visual analysis.

In general, the analysis results contradict the assumptions of Section 6.3. Assigning the
different categories of the answer space to a user is not straight forward, as the knowledge is
just one factor of many. Furthermore, these results further empirically support the output of

Chapter 3 on the potentials for personalization of visual analysis tasks. The corresponding

6.4 Experiment 1: Preferences and Differences
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structuring assumes that not only the knowledge influences the personalization potentials,

but also the user’s preferences.

Finding 1: It is not only about the knowledge. The analysis highlights the self-reported
knowledge as a prime factor for explaining a user’s preferences in the answer space.
Participants with little statistical knowledge prefer more often a response with less information
explaining the data fact. Although it generally helps to distinguish the preferences, a clear
tendency in the preferences does not hold for the other self-reported knowledge levels.

Instead, a participant’s preferences on both the transparency of the used method for providing
the corresponding data fact and a guidance in a particular analysis situation influence
the preferences significantly too. Participants with higher need for transparency choose
responses with higher information, likely because of a clear naming of the used method and
the corresponding parameters. This information potentially supports the increase of trust in
the system for those participants. However, participants with a higher acceptance of digital
assistants prefer an explanatory answer precisely because they trust this type of approach.

Maybe, these participants already use digital assistants in their daily life.

Finding 2: Changing preferences depending on the situation. Along with the user’s
characteristics describing the user’s preferences in the answer space, it seems that the
particular data analysis situation further defines the selected response. Since the individual
Entropy is high (see Figure 6.4), the participants vary in their response category from one

situation to the other.

On the one hand, a reason could be the lack knowledge of the used methods for the particular
tasks. While the y? is likely familiar to many participants, many users are likely unfamiliar
with the Spearman’s correlation coefficient. On the other hand, it could depend directly
on the task itself. Correlation could be easier to read from the visualization wherefore the
participants maybe put less weight in the corresponding dialogue acts. Therefore, participants

likely rate a dialog act higher, if the visualization cannot illustrate the data facts alone.

Finding 3: No clear separation between novice and expert users. As the empirical
analysis shows no clear separation of the preferences in the answer space only based on
the self-reported knowledge. In fact, the distribution of the preferences varies between the
self-reported knowledge levels. Hence, a differentiation between novice users and expert
users will likely fail for personalization. Instead, the responses have to be individually
adjusted to the user’s characteristics. Simple rules such as experts prefer high information
will not work. A user-specific adjustment for a response retrieval could be achieved through

a data-driven approach.
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Fig. 6.5: Schema of the prediction problem.

6.5 Implementing the Answer Space

The previous experiment shows diverse preferences in the answer space. According to
the results, responses for data facts should be personalized considering not only the user’s
knowledge, but multiple factors. This circumstance requires an intelligent implementation of

the answer space into a system, since a unified communication strategy would likely fail.

In order to achieve a user-specific communication in an actual system, two challenges
essentially arise. First, a system must be able to accurately predict a user’s preferred response.
If a system wrongly predicts the user’s preferences it immediately creates implicatures. In a
task-oriented dialogue (Shechtman and Horowitz, 2003), however, implicatures should be
avoided to both safe time and prevent confusion. Second, this predicted response must align
with the user’s current analysis objective. This challenge directly addresses the Maxim of

Relation of Grice (1975). Generally, the question is

RQ 7: Can the user’s preferred communication style be accurately predicted?

6.5.1 Predicting a Preferred Answer

Predicting a preferred answer is an elementary part of integrating the answer space into an
actual system. This challenge of predicting an answer aligned with the user’s preferences
can be formulated as a classification problem (see Figure 6.5). Formally, the input features
for this classification problem are both the user’s characteristics and the analysis situation.
Accordingly, the classes to be predicted are the different categories in the answer space (LC,
LE, HC, and HE). In order to properly predict these classes, a corresponding model needs to

be investigated.

However, any model approaching this challenge eventually needs to be trained and evaluated
on the data from the online survey. This data set comprises 912 data points. Hence, the
set of potential models shrinks to the classical approaches such as logistic regression, since

modern approaches like neural networks require far more data.

6.5 Implementing the Answer Space
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Classifier reduced entire

Naive Bayes 0.331 £0.02 0.328 +£0.02
multi. Logistic Regression 0.305 £0.03 0.335£0.02
Naive Bayes + Tree Embedding 0.629 £0.02 0.590 + 0.02

multi. Logistic Regression + Tree Embedding 0.697 +0.02 0.706 £ 0.01

Tab. 6.3: Accuracy scores of the different model approaches with and without feature selection.

As the target comprises four classes, two different models are initially explored: a multinomial
Naive Bayes and a multinomial logistic regression. Both models generally perform well on
small data. However, the approaches differ in the learning paradigm. While the Naive Bayes
models the joint distribution of the input features (user’s characteristics and the analysis
state) and the output (answer space categories), the logistic regression tries to reduce the
error for mapping the input on the output. Furthermore, the Naive Bayes assumes that all
input feature are independent, while the logistic regression can handle the dependencies to a

certain extend.

Initial results reveal a poor performance of both models. The Naive Bayes and the logistic
regression achieve an accuracy score of y = 0.328,0 = 0.02 and p = 0.335,0 = 0.02,
respectively. These results require to investigate potential feature engineering. Generally,
feature engineering can be approached through either reducing the feature space via a, e.g.,
Principal Component Analysis (PCA) or feature selection via a, e.g., random forest. As
the feature space is already quite small, the feature selection likely helps more. Feature
selection through a random forest creates a new binary feature space serving as the input for
the models. These new binary features enable to vary the importance of the features for the
different classes. Concatenating the feature selection with each model leads to much better
performance. Now, the Naive Bayes and the logistic regression achieve an accuracy score of
u=0.590,0 = 0.02 and . = 0.706, o = 0.01, respectively.

However, these results base on all features which essentially represent the questions at the
end of the online survey. Considering this fact from a user point of view, a new user has to
answer these questions again before a model can predict a probably preferred answer. This
circumstance implies a certain burden for the user. In order to reduce this burden for the
user, the feature space is reduced to the questions which reveal a significant effect on the
user’s preferences (see Section 6.4.3). Applying this reduced features space on the different
approaches, the logistic regression with feature selection still performs better. Table 6.3

shows the accuracy scores of the different model architectures.

The performance of the logistic regression with feature selection only drops by 1% on the
reduced feature space compared to the entire feature space. Furthermore, Figure 6.6 shows
the confusion matrix for the different classes. The classification result essentially shows

two insights. First, the model can predict each class equally well. Second, the model can
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Fig. 6.6: Confusion matrix of the multinomial logistic regression with a tree embedding.

relatively well distinguish between the classes. These results further answer the research

question. The preferred answers of the users can be predicted under certain conditions.

6.5.2 Get to know the user

The predictive model requires knowledge about the user. Formally, the input features of the
model need to be set according to the user’s characteristics. While Hurst etal. (2007) detect
novice and skilled users based on their interaction data, this thesis’ approach leverages the

idea of having a conversation with the user.

Considering this challenge from a conversational perspective, it is somehow similar to a
situation in which two people meet for the first time. Typically, people perform a mutual
introduction by telling, e.g., their names, where they come from, or what they are doing for a
living. This mutual introduction can be further considered as part of the accommodative
orientation of two persons described under the CAT (Gallois etal., 2005). The “initial
orientation” (Gallois et al., 2005) helps the interlocutors to better understand each other and

initially adjust their language style.

As Valletto already implements some element of a mutual introduction (cf. Section 5.3.3),
this principle from the CAT can be conveniently added. Figure 6.7 shows a part of the
corresponding dialogue sequence for collecting the required information from the user.
While Valletto initially explains what it can do for the user, Valletto further asks the user
the relevant questions. This questions are identically formulated as in the online survey of
Section 6.4.

However, the system assumes that the user’s knowledge and other preferences are static
during the sessions, since the mutual introduction only happens at the beginning of the
analysis. If a user does not want to answer the initial questions, the system takes the average
scores for the corresponding features, otherwise the system would not be able to predict an

answer during the analysis.

6.5 Implementing the Answer Space
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Sequence A Sequence B

Before we start with the analysis, let me
briefly ask you seven questions regarding
your data analysis experiences. These
help me to get to know you. Are you fine

with that?
Sure, what do want to know. No, definitely not.
That is okay for me. Let us directly start

with the analysis.

Perfect.

How would you describe your knowledge
in statistics on a scale from novice too

expert.
| consider myself as an advanced beginner.

On a scale from strongly disagree too
strongly agree, would you liked to be
guided in your data analysis?

On a scale from strongly disagree too
strongly agree, is it mandatory to know
what the system computes in the

background?
Disagree. This is not mandatory for me.

Fig. 6.7: Part of the mutual introduction. The particular dialogue sequence changes depending
whether the user wants to answer some initial questions.
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6.5.3 Predicting in a Live System

While the required information of the user is collected through a mutual introduction, the
relevant analysis state still needs to be infused in the model. Determining the correct analysis
state directly refers to Grice’s Maximim of Relation (Grice, 1975). It prescribes to always
contribute only relevant information towards the direction of the conversation. Additionally,
the CAT summarizes a similar prerequisite under the term of “goals and addressee focus”
of the immediate situation (Gallois et al., 2005). However, the analysis states are already

predicted by the routine of Section 5.3.4.

Nevertheless, predictive models can also predict wrongly. As long as a predictive model
achieves not a performance of 100% accuracy, failures likely happen during the usage. Hence,
a user should be empowered to ask for a differently formulated answer when the initially
predicted answers does not match the user’s language. As an example, an inexperienced
user might receive a descriptive answer with high information during a multiple comparison.
This user is likely confused by the answer and presumably says something like “I really don’t
understand what you’re implying”. Adjusting a once given answer again is further supported
by the “goals and addressee focus” (Gallois and Giles, 2015). In order to change a preferred

answer, a user can tell the system to change accordingly.

6.6 Experiment 2: Reactions and Acceptance

According to previous analyses and investigations, people have diverse preferences concerning
the design of a response. However, the effect of the answer space in an actual setting is still
vague. Therefore, this experiment aims at qualitative results concerning the reactions of

people to online predicted responses. The corresponding research question is:

RQ 8: What is the effect of an answer space in a multimodal visual analysis system during

a realistic situation?

Furthermore, the previous online survey explore preferences on given options from the
answer space, but provide no opportunities for the participants to formulate alternative
responses. For instance, a user may want to receive an answers in DEPENDENCIES-numeric
containing only the correlation coefficient, but not the p-value. Therefore, this experiment

explores whether granularity of the answer space is suitable for the participants.

RQ 9: Is the granularity of the answer space adequate?

6.6 Experiment 2: Reactions and Acceptance
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Okay. That's it. Let us start
analyzing data. What would
you like to see first?

Show me the effect of the week
day on the phone call duration

A Kruskal test with a post-hoc 20
Bonferroni correction reveals that
only significant differences exist

between Monday and Tuesday, e
and Tuesday and Friday, resp. 10

Explain me this. J.

A Kruskal test with a Bonferroni
correction shows that the phone

280

260

240

calls are significantly longer on “
Tuesdays than on Mondays and 2
Fridays, resp. All other days are 0

not significantly different.

| Type in |

Fig. 6.8: In essence, the design of the technical prototype for the study follows the design of Valletto.

6.6.1 Procedure

The experiment starts with a standardized introduction on the procedure, the underlying
data set (Dua and Graff, 2017; Moro etal., 2014), and the prototype itself (see Figure 6.8).
After this introduction, the participant interacts with the prototype by completing the mutual
introduction first. Afterwards, each participant completes a randomly assigned sequence of
six tasks. These six tasks cover visual analysis situations supported by the answer space.
In each task, a participant tries to make sense of the data visualized. After completing a
task, a participant evaluates on a 5-point Likert scale the satisfaction with the visualization
shown as well as with the last answer given. If no provided answer eventually matches
the a participant’s preferences, (s)he gets a chance to provide an alternative formulation.
Additionally, each participant is asked to think-aloud during the interaction with the system.

After completing the randomly assigned task sequence, each participant fills out a ques-
tionnaire focusing on the participant’s feedback on the overall conversation as well as

demographic information.

6.6.2 Participants

In this experiment, 10 people in the age of 25 to 40 participated. On average, these
participants work in industry for four years. Additionally, they have an academic background
either in natural science, computer science, or economics. All participants state to be familiar
with using conversational interfaces such as Siri or Alex, prior the study.
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Fig. 6.9: For each supported analysis situation, ratings of both given response and given rating.

6.6.3 Results

According to the participants’ ratings, the system’s responses and visualizations are helpful
or very helpful. Figure 6.9 illustrates these assessments. It shows high scores for both
responses and corresponding visualizations in all tasks. Furthermore, there are no significant

differences in the scores between the tasks.

As shown in the analysis before, the predictive model has a chance to create implicatures
(cf. Section 6.5). In order to repair these situations, the participants can ask for a different
response. However, the first predicted responses already satisfy the participants in 59% of
all cases, the second predicted responses satisfy the participants in 30% of all cases, and
only in 11% of the analysis situations, a third response needs to be given. Figure 6.10
shows a detailed perspective on these changes. Overall, the analysis tasks focusing on

DEPENDENCIES-numeric trigger the highest number of requests for a reformulation.

Figure 6.11 highlights the performance of the predictive model. In DEPENDENCIES-numeric
and DEPENDENCIES-arbitrary, the participants tend to increase the information content of
the responses by asking for reformulations. The opposite is evident in COMPARISON. The
participant tend to decrease the information content. In the other analysis tasks, the first
given answers are already matching the participants’ preferences. However, the option to ask
for a reformulation is positively perceived by the participants. For example, one participant

state “I liked that the tool changed the formulation when I requested it”.

Taking a closer look at the participants reactions to the given responses. On the one hand,
participants’ reactions are negative when a potential implicature is given. One participant
mentions “I do not understand what the bot is saying”, when the system provides detailed
information on the Spearman’s correlation coefficient. However, this participant positively
responds after receiving an explanatory response with little information by saying “...now I
understand”. Potentially, this participant’s knowledge is exceeded in this particular analysis
situation. Furthermore, a participant state “the first answer was too sketchy, but the second

was much better”. For this participant, the system likely reveals too little transparency on the
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Fig. 6.10: Transition probabilities from one answer space element to the others according to the
reformulation requests by the participants.

computations in the background. Another participant faces a similar challenge. The system
responds with a descriptive answer with little information. Accordingly, the participant state
“Well, I have to decode this first. (S)he takes some time to decode the answer correctly, but

reacts positively after finally receiving an explanatory answer.

On the other hand, the participants react immediately positive when a language matching
response was initially provided. A participant casually mention “I really like the answers”.
Another participant welcomes a response “I liked the simple and short answers”. This partic-
ipant primarily receives answers with little information content. Furthermore, explanatory
answers of the system are especially welcomed in certain analysis situations. One participant

states “the bot tried to explain things, that was good”.

Moreover, the participants also put trust in the system and its computations, as the system
needs to compute certain statistical methods. Given a descriptive response with little
information, a participant responses “I assume the system used the right tests”. This
participants likely estimates the situation correctly due to certain experience in data analysis.
However, (s)he rely on the system’s computations. Furthermore, an experienced participant

states “I trust the answer, because I had the same notion”.

As the system needs to initially collect information from the participants, the mutual
introduction is implemented. The participants essentially perceive the mutual introduction
as positive. Yet, the mutual information creates an effort for the participants. For instance,
one participant states “oh my good, seven questions” in the moment when the system asked
whether it is okay to ask seven questions. This participants further states that these questions
are “...not too much, but only okay for the first use” as well as that (s)he does want to
answer more initial questions (“not more questions”). However, other participants react
differently. They welcome the idea of the mutual introduction of the system. In this context,

one participant explicitly states “I like that it tried to evaluate me in the beginning”.

Figure 6.12 further highlights the participants’ estimation of both a potential lack of

information and the potential benefits of the system. Overall, the majority of participants
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by the system and the eventually accepted answers by the participants.
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Fig. 6.12: Using a 5-point scale, the participants estimated both how the system’s responses helped
to increase their understanding in the analysis situation and how they perceive a risk on
lacking important information.

assume that they have received all the information they need from the system. Consequently,
they do not lack information. Additionally, the participants self-reportedly benefit from the

given responses in order to complete the analysis tasks.

Finally, the participants provide only a few alternative formulations for responses. These
alternatives concern the wording of the answers, but not the information content or the way

this information is conveyed. For instance, one participant states “I would not use reliable
in the dialogue act on COMPARISON.

6.6.4 Discussion

This experiment answers research question 8 and research question 9. Both address an
influence of the answer space on a user’s visual analysis. Generally, the answer space has an
positive influence on the visual analysis according to the participants’ reactions. It appears
that the answer space is a lightweight yet effective framework to personalize dialogue acts in
visual analysis. Hence, the answer space enables a visual analysis system to dynamically

unleash and cover, respectively, complexity to the user.

Finding 1: Matching the user’s language affects the visual analysis. Initially, the online
survey reveals a diverse perspective on the users’ preferences in the answer space, as shown in
Figure 6.3. Considering now the results from this experiment, matching the user’s language
in visual analysis is important. While responses aligned with the user’s preferences provoke
positive reactions, the opposite is persistent when potential implicatures are triggered. The
participants reactions clearly support this hypothesis. The effect is especially demonstrative

when a response aligned with the user’s preferences follows an implicature.

However, the answer space also affects the usability. As a system supports a user in fulfilling
an objective, time is an important factor. Since mismatching the user’s language in visual
analysis triggers an implicature, a user needs to deal with the provided response. The study
results show that participants have to either decode the response or ask for a reformulation
of the response. In either case, it takes time. Hence, a system mismatching the language
slows down a user in achieving the objectives. Consequently, matching the user’s language

improves usability partly.
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Furthermore, the answer space appears to be especially effective when the user’s knowledge
is exceeded. The most positive reactions are collected during the analysis of the multiple
comparison. This analysis requires deep knowledge from the participants, although it is
a common challenge. However, many participants welcome the responses of the system.
The number of reformulations as well as the direction of the reformulations support this
hypothesis. In the comparison situation, many participants prefer an explanatory response
with lower information. In analyzing the dependencies between two quantitative attributes,

however, many participants tend to ask for responses with more information.

Finding 2: Matching the user’s language increases trust. As shown in the results of
Section 5.6 as well as addressed by Srinivasan etal. (2019a), experienced users tend to lack
trust in provided data facts with missing parameters. The results of this experiment highlight
a positive effect in that direction. According to statements of experienced participants,
matching the user’s language likely supports to gain trust in the system. These experienced
participants are positively surprised by the system when they see what kind of methods have
been used. In case this method is reasonable, they likely put more trust in the system’s
responses. Again, it requires the answer space to provide that kind of communication, since

an inexperienced user would likely be overwhelmed by receiving this detailed information.

Additionally, the option to ask for a reformulation of the given response supports trust, while
a system without this functionality cannot recover from making a wrong prediction. The
participants use of this functionality further shows it usefulness for adjusting the language in
visual analysis. These corrections of the given responses likely support to eventually increase

the performance of the predictive model as well.

Finding 3: A mutual introduction can help to conveniently learn about the user.
Through the implementation of the answer space via a predictive model, the user’s information
has to be somehow collected. The design element of the mutual introduction is added to the
Valletto prototype. Although the mutual introduction is motivated from a communication
point of view, it was unclear how the participant would react. Generally, the participant
accept a mutual introduction when they receive a benefit from it. However, the participants
also address that the number of questions is already an effort for them. Hence, the questions

asked by the system need to be carefully selected.

Finding 4: The granularity of the answer space is sufficient. Research question 9
addresses the granularity of the answer space. Initially, both dimensions of the answer
space have only two values each. However, the participants provided only a few alternative
response focusing on the wording but not on the answer space dimensions. Due to these

results, the granularity of the answer space is sufficient for communicating dialogue acts.
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6.7 Limitations

Both conducted experiments highlight advantages of the answer space for visual analysis.
While the preferences in the answer strongly depend on the user, adapting to the user helps

to improve user experience. However, there are certain limitations.

First, the predictive model partly lacks performance. In order to dynamically adjust to a
user during the use, the answer space needs to be implemented through a machine learning
model. However, this machine learning model — a multinominal logistic regression with
a tree embedding — is lacking performance, although it is the best performing evaluated
architecture. As the model not always predicts the correct element from the answer space,
users have to asked for a reformulation. This additional effort reduces user experience and
certainly increases the analysis time of the user. However, the opportunity to ask for a

reformulation is well accepted by the participants.

Second, the investigated situations leverage only one statistical method each. However, there
are different methods deciding on a data fact. For instance, the correlation of two quantitative
methods can be computed by at least two methods: the Spearman’s rank correlations
coefficient and the Pearson’s correlation coefficient. Since Spearman does not assume
normally distributed data, it better serves in a setting of domain-agnostic data analysis (cf.
Section 5.3.3). Yet, Spearman is likely less known than Pearson. In terms of less known
methods, the participants tend to prefer answers with lower information content, as seen in
the COMPARISON situation. Hence, the preferences in the answer space would likely differ
using Pearson. This would further imply that the preferences are even more depended on
the user’s knowledge. However, there is currently no empirical support for these arguments,

although it is likely the case.

Third, an effect of the visualization on the preferences in the answer space is unknown.
The participants are unable to change the visualizations to their liking. Furthermore, it is
unclear whether a visualization has a statistically significant effect on the user’s preferences
in the answer space. For instance, the preferences might be different when a scatter plot is
used compared to a regression plot while analyzing two quantitative data attributes. The
conducted experiments cannot provide further insights regarding the effect of visualizations,

as it would have added a bias to the study results.
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6.8 Summary

Initially shown in Section 5.6 as well as by Srinivasan et al. (2019a), users likely have different
preferences in how data facts are communicated. This preferences appear to have an impact

on the trust in the system.

In order to approach this challenge, Section 6.3 introduces a two-dimensional answer space
motivated by the use of linguistic theory. Particularly, the cooperative principle by Grice
(1975) forms the base for the answer space. Based on this theoretic answer space, Section
6.4 explores the users’ preferences in this answer space. The results reveal a statistically
significant effect of the self-reported knowledge on the preferences. However, the results
further show that the self-reported knowledge alone is not enough to determine preferences

accurately.

As this experiment highlight the differences in the answer space, Section 6.6 explores how the
users react in a live situations on personalized data facts. In order to enable the experiment
of Section 6.6, Section 6.5 first implements the answer space through a machine learning
model. The final model is selected by comparing different architectures in terms of their
predictive performance. The second experiment highlights the usefulness of the answer
space in practice. While implicatures trigger negative reactions, preference-aligned answers

trigger positive reactions.

Considering the overall structure of this thesis, the answer space further accelerates an
intelligible multimodal visual analysis. The answer space can be easily integrated in the
existing framework of this thesis. Furthermore, the results provide the following design

implications for any system using data facts in visual analysis:
1. Design multiple dialogue acts for communicating data facts, since the preferences in
how the dialogue acts are formulated mainly depend on the user’s characteristics.

2. Do not only rely on the users knowledge as a basis for the conversation design, since
the knowledge of the user only partly explains the preferences in how data facts should

be communicated.

3. Realize a mutual introduction, since it conveniently enables a structure for informing

the user about the supported functionality as well as allowing to get to know the user.
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Investigating Visualization
Preferences

This chapter approaches a personalized visualization recommendation. Up to now, Valletto
invariably recommends the most effective visualization at first glance. However, as individual
preferences substantially affect the effectiveness of visualizations as well as the performance in
visual analysis in general, user preferences should to be taken into account. A computational
concept is proposed which combines a dueling bandit with the divide-and-conquer paradigm,
in order to adjust the visualization recommendations to the user. The results of a conducted
user study (/V = 15) support the use of dueling bandits for learning visualization preferences.
The bandit predicts satisfying visualizations as well as the learning procedure is not considered
as a burden by the participants. Furthermore, the learned preferences can serve as prior
knowledge for prospective users. A second experiment (N = 63) reveals indications for an
effect of prior knowledge on the learning effort. Depending on the prior knowledge, the

learning could be reduced which positively affects the usability.
Disclaimer: The content of the following chapter is partly published in the article:

Jan-Frederik Kassel and Michael Rohs (2019a). “Online Learning of Visualization Prefer-
ences through Dueling Bandits for Enhancing Visualization Recommendations”. In: EuroVis
2019 - Short Papers. Ed. by Jimmy Johansson etal. Porto, Portugal: The Eurographics
Association. ISBN: 978-3-03868-090-1. DOI: 10.2312/evs.20191175
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7.1 Introduction

Considering the visualization recommendation engine (see Section 5.3.2), the recommenda-
tion routine is not yet personalized. It essentially ranks the set of available visualization by
the effectiveness. The user’s preferences, characteristics, or wishes do not yet take part in the

recommendation.

However, the effectiveness of visualizations depends not only on the data (Mackinlay, 1986),
the visual analysis task (Harrison etal., 2014; Kay and Heer, 2016; Kim and Heer, 2018;
Saket etal., 2018), or general perception constraints (Bertin, 1974; Kosara, 2019b; Skau and
Kosara, 2016), but also on the user’s diverse characteristics Conati and Maclaren (2008) and
Ziemkiewicz etal. (2012). Conati etal. (2014) highlight a connection between the user’s
preferences for a set of specific visual mappings and the decision quality. While the visual
mapping serves the user’s preferences, a user decides better. Additionally, Green and Fisher
(2010) reveal an effect of the user’s personality (e.g. extraversion) on the user’s performance
in visual analysis. Hence, a user presumably achieves better results when the visual mapping

serves a user’s preferences.

As a user’s preferences are important for facilitating the user’s performance in visual
analysis, the question remains how to integrate the user’s visualization preferences into the
visualization recommendation routine. In order to answer this question, two challenges have

to be approached.

First, the visualization preferences have to be learned by the system. In the past, approaches
used offline learning methodologies, e.g., RankSVMs (Moritz etal., 2019). These method-
ologies require previously collected data for their training. However, such kind of data
sets of preference scores on visualizations is not really given in visual analysis. In fact,
it is likely hard for the user to state how well a visualizations might fit the visualization
preferences. Dueling bandits can likely help in this challenge. Dueling bandits essentially
learn preferences by pairwise comparisons. Hence, this group of algorithms only need
the user’s input for approximating the preferences instead of a previously collected data
set. The effectiveness of dueling bandits has been already shown in other domains, e.g., in

human-robot interaction (Schneider and Kummert, 2017).

Second, the learned preferences have to be formalized and stored, as they can likely be used
for supporting prospective users. As the dueling bandit approximates a user’s preferences
interactively, the length of the learning depends on the bandit’s prior knowledge about the
user. This prior knowledge could be computed by using other users’ preferences. However,

how this prior knowledge is actually computed needs to be investigated.
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This chapter proposes a dueling bandit algorithm with a divide-and-conquer learning strategy
for learning visualization preferences. Both experiments and analyses empirically reveal the
effectiveness of this dueling bandit. Furthermore, machine learning methods are investigated
to compute prior knowledge for the dueling bandit in order to further reduce the effort of the
user. The needed information about a user are then added to the user model of Valletto as

well as included into the mutual introduction, introduced in Section 6.5.3.

7.2 Related Work

In the following, the relevant concepts for learning visualization preferences are introduced.
Comparing these concepts highlights advantages of using dueling bandits for learning
visualization preferences. Furthermore, differences are highlighted to previous work on

incorporating visualization preferences into recommender systems.

7.2.1 Learning User Preferences

Generally, learning preferences is a topic approached from various perspectives. On the
one hand, the conventional approach takes advantage of supervised machine learning
algorithms, e.g., RankSVM, or logistic regression. On the other hand, recent approaches use

reinforcement learning methodologies.

Supervised machine learning requires previously collected and labeled data in accordance
with users’ preferences. For instance, the ratings of movies (Maas etal., 2011) or restaurants
(Cui, 2015). Given this kind of data, supervised machine learning algorithms achieve
quite well the objective of personalized recommendation. Especially the collaborative
filtering algorithm is one of the preferred options for recommending items (Chen etal.,
2018), although the algorithm suffers under the cold start problem. The cold start problem
describes essentially the lack of performance when the data is sparse i.e., missing ratings for
certain items. A way of reducing this problem is by applying active learning to the learning
procedure (Zhao etal., 2013). In active learning, the algorithm includes the user into the
prediction process (Elahi etal., 2016). While the algorithm first predicts the preferences for
each item, it asks the user for feedback for those predictions with the highest uncertainty
(Settles, 2009). Nevertheless, these approaches require still labeled data. Since this data is
not existing, supervised machine learning cannot be applied to solve the recommendation

challenge.

In order to overcome the obstacle of lacking labeled data, reinforcement learning methodolo-
gies have been investigated. Considering the domain of learning visualization preferences,

in reinforcement learning, the user is taken into the learning loop of the algorithm. In
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an interactive manner, the agent makes a prediction based on his current knowledge and
observes the user’s corresponding reactions. Based on the user’s provided feedback, the
agent updates the prediction policy and continues by predicting the next item (Wilson et al.,
2012). Given this learning approach, the agent interactively learns the user’s preferences.
Because of this interactive learning procedure, the term of online learning is commonly used.

But the question still remains how the user’s feedback should look like.

One implementations of the reinforcement learning paradigms is the multi-armed bandit
(Bouneffouf and Rish, 2019). A multi-armed bandit has a set of k different items. At each
time step, a multi-armed bandit predicts one of those items. However, the essential challenge
for the bandit is to select the item from which he learns the most. Formally, this challenge is

described as the exploration exploitation dilemma:

“It has to find a reasonable compromise between playing the arms that produced
high rewards in the past (exploitation) and trying other, possibly even better
arms the (expected) reward of which is not precisely known so far (exploration).”
(Busa-Fekete etal., 2018)

Nevertheless, a multi-armed bandit requires quantitative feedback for the predicted item
from the user. Consequently, a user should specify how good the visualizations fits the

preferences, e.g., by using a 5 star rating scale.

As providing quantitative feedback might be challenging for the user, dueling bandits have
been proposed. A dueling bandit is a special case of the multi-armed bandits (Yue etal.,
2012). While a dueling bandit owns a set of different actions to choose from as well,
the feedback for updating the policy looks different. A dueling bandit gets only binary
feedback either O or 1 on in accordance with whether the chosen action is good, since it
always offers two actions for the given situation. These two options are approaching the
exploration-exploitation dilemma. One option represents the exploration and the other
represents the exploitation option. Based on the user’s selection for a preferred action,
the feedback for the selected action is 1 and for the other action it is 0. For the user, it is
much easier to make a decision while comparing two options than to solely describe how
good an offered action is. Hence, dueling bandits generally serve well in online learning of

preferences (Busa-Fekete etal., 2018).

Another variant is co-active learning. In co-active learning (Shivaswamy and Joachims, 2012),
the agent proposes a solution for a given problem, e.g., a fully specified visualization for a
set of given data attributes. Now, the user needs to adjust this visualization in accordance
with the user’s visualization preferences. Based on these adjustments, the agent learns
how a visualization should ideally look like by accordingly updating the prediction policy.

Through a sequence of multiple iteration and adjustments by the user, the agent eventually
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approximates the user’s preferences. Co-active learning requires detailed feedback. While an
expert is likely able to properly adjust a visualization, a novice user likely is not (Grammel
etal., 2010).

While reinforcement learning has advantages, the effort for the user is surely higher compared
to supervised learning approaches. Still, the issue is a lack of labeled data on the user
preferences in visual analysis. Well-labeled data sets containing both user information and
their ratings for different visualization simply do not exit or are at least not available. In fact,
using reinforcement learning instead of supervised machine learning might even increase
the level of personalization in visual analysis, as the system only considers the individual
feedback of the user.

7.2.2 Application of Dueling Bandits

Yue etal. (2012) propose a dueling bandit approach for improving the results of search
engines. In each learning step, two rankings of links are shown for a given query. Based
on the decisions for a preferred ranking, the bandit interactively learns how a user-specific

ranking should look like.

Schneider and Kummert (2017) explore the potentials of a dueling bandit to learn preferences
in Human-Robot interaction. The authors leverage the Double Thompson Sampling (D-TS)
algorithm by Wu and Liu (2016) to learn the preferences. Based on their analysis, the dueling

bandit algorithm helps to adjust the behavior of robots according to given preferences.

In massive open online courses (MOOC:s), a lot of assignments have to be reviewed. In order
to be more efficient in terms of budget, Chan etal. (2016) propose a dueling bandit algorithm
for ranking the assignments according to the reliability of the students. The authors take

advantage of the dueling bandit ranking algorithm of Busa-Fekete et al. (2014).

Sui and Burdick (2017) develop a correlational dueling bandit for clinical treatment. The
application is about “clinical research for recovering motor function after severe spinal cord
injury”’(Sui and Burdick, 2017). The objective is to setup a treatment personalized to the
patient. In this application, the items (individual electrical stimulation pattern) to chose from
are correlated which each other. Hence, the authors propose on dueling bandit algorithm for

handling these depending arms.

In the domain of NLP, Sokolov et al. (2016) investigate potentials of dueling bandits. Due to
the ambiguity of speech and text, it might be hard to say how good an output actually is from

a machine translation, sequence labeling, text classification service. Sokolov etal. (2016)
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show that a dueling bandit can be used to further improve a statistical machine translation

service.

7.2.3 Learning Preferences in Visualization
Recommendation

As discussed in Section 2.4, the majority of the visualization recommender approaches uses
the visualization knowledge extracted from various effectiveness studies. However, some

approaches conceptually take the user’s preferences into account.

VizDeck (Key etal., 2012) organizes the ranked visualization through the metaphor of a card
desk. By flipping through this desk of visualizations, the user votes for specific fully-specified
visualization. VizDeck uses these votes to predict the preferences by considering the data

sets statistics, e.g., number of distinct values from a categorical data attribute.

Mutlu et al. (2015) collect rankings of visualizations through a user study on MTurk. Based on
these collected data set, the authors implement a collaborative filtering-based recommender,
named VizRec. As previously discussed, collaborative filtering requires a large data set in
order to achieve good results. Furthermore, it suffers under the cold start problem. However,

the collaborative filtering becomes certainly effective the longer it is used.

Moritz etal. (2019) use data from effectiveness studies of Kim and Heer (2018) and Saket
etal. (2018). They train a RankSVM (Joachims, 2002) on these data sets in order to learn the
preferences of the user. However, their system, called Draco, learns the overall preferences
of the populations of the user studies, but not the preferences of a specific user. Hence, two
different users will still get the same ranking of visualizations, although the ranking does not

only bases on the objective knowledge, anymore.

VizML (Hu etal., 2019) learns general visualization preferences as well, as it trains on
published visualizations. By considering these set of visualizations and the corresponding data

sets, VizML implicitly adapts its ranking to the users which created these visualizations.

In summary, this chapter’s approach differs in two dimensions. First, the used learning
paradigm is different. While related work consider offline learning methodologies for approx-
imating the visualization preference, the dueling bandit is an online learning methodology.
Hence, this approach does not require additional resources such as previously collected
ratings on visualizations. Second, it likely achieves a better coverage of the user’s preferences
as the dueling bandit only takes the input from the user. In fact, it actually learns these
preferences while others learn the preferences of an entire group of users (Hu etal., 2019;

Moritz etal., 2019). However, the effort for the user is actually higher.
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7.3 Approximating Visualization Preferences

The current recommendation procedure (see Section 5.3.2) essentially ranks the available
visualizations according to effectiveness studies (Mackinlay, 1986). This ranking needs to
be adjusted by the user’s visualization preferences, as the preferences play an important role

in visual analysis. Hence, the adjusted recommendations should eventually look like:

Uy = VUrule—based * Pu (71)

with vpy1e—baseq the ranking only based on the effectiveness studies and P, the user’s

visualization preferences. P, is further defined as:

Py = [pili<ij<r = pli = ) (7.2)

where p(i > j) describes the probability that the user u prefers visualization ¢ to visualization
7. However, the challenge is to effectively approximate these probabilities. Dueling bandits
are one approach to learn preferences both interactively and effectively, as previously

discussed.

Generally, a dueling bandit tries to approximate the preferences by selecting two items from
a set of k different items (Yue et al., 2012). Based on these two items shown, the user needs
to make a decision on which item is the most preferred one in this moment. Conducting a
sequence of these pairwise comparisons eventually leads to a situation in which the user’s
preferences are well understood by the dueling bandit. In order to practically learn the
preferences, different learning strategies are proposed over the years (Busa-Fekete etal.,
2018). However, independent from the chosen learning strategy, the length of the sequence
of needed comparisons highly depends on the set of items. In this thesis, the number of
different items are the number of unique visualization. Precisely, this is |v;ye—pased|- Hence,

the number of unique pairwise comparisons is:

<|Urule;based) (7.3)

Depending on the number of available visualizations, the number of unique comparisons

tremendously increases. Imagine, only five different visualizations should be recommended.

This would lead to 10 unique comparisons. For 10 visualization it would be 45 and for 40 it

would be 780. Furthermore, the dueling bandit needs to see item pairs multiple times in
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order to actually learn the preference. If the bandit would only see each item pair once, it

would be similar to flipping a coin.

This circumstance raises a serious usability issue for applying dueling bandits for recom-
mending visualizations. A user likely does not want to conduct an endless sequence of
decisions to eventually get preference-aligned visualizations. Hence, the number of needed
comparisons for approximating the preferences needs to be as low as possible. Therefore,
the following section discuss a trade off on how the usability can be maintained while the

dueling bandit is still able to learn the user’s preferences.

7.3.1 Learning Preferences by Divide-and-Conquer

In order to reduce the number of needed comparisons while simultaneously empower the
bandit to approximate the user’s preference, a divide and conquer algorithm design paradigm

is applied.

Learning

Currently, the recommendation procedure ranks fully specified visualizations. However,
each visualization is described by various visualization features, e.g., visual mapping or
visualization type. The set of available visualizations depends on both the number of
different visualization features as well as the number of different visualization feature
values. Conceptually, a fully specified visualization can be essentially seen as a kind
of linear combination of their different feature values. Since the number of different
values is tremendously lower for each individual visualization feature than for fully specified
visualizations, the number of needed comparisons can be decreased by learning the preferences

not on fully specified visualizations, but on features:

‘U'rule—based| |F1’ ‘Fn’
< 5 >><2>+...+(2> (7.4)

with the visualization features { F1, . .., F},} and |F}| the number of different features values
of feature ¢. Hence, the dueling bandit learns one preference matrix for each feature, instead

of one preference matrix for the available visualizations.

The objective remains to individually learn a preference matrix for each feature. This
basically leads to a three step algorithm (see Figure 7.1). In the first, the bandit selects a

feature for the iteration. Second, a pair of two feature values are selected. Third, and finally,
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two fully specified visualizations needs to be chosen which respectively represent the two

selected feature values.

As the bandit can only evaluate one pair per iteration, the bandit needs to select one feature
per iteration. However, the cardinality among the features varies. Considering the dueling
bandit as a processing unit and the preference matrices as processes, the selection of a feature
to play is similar as the scheduling algorithm of a Central Processing Unit (CPU). The CPU
works under the challenge to provide every process the amount of time it needs. Hence,

similar algorithms are also applicable in this context.

Given a selected feature for the next iteration, the dueling bandit chooses two feature values
from this selected feature. How these feature values are selected highly depending on the
algorithms learning strategy (Busa-Fekete etal., 2018). The preferred learning strategy is
discussed in the Section 7.3.2. Nevertheless, the proposed divide and conquer approach
serves every dueling bandit algorithm, as it focuses on the overall structure and abstracts

from the actual pair selection process.

Imagine, two feature values f, and f; are selected from the feature F; by the dueling bandit
as promising candidates for the next iteration. The objective is now to choose two maximally
similar fully specified visualizations. These visualization should be identical except in the
selected feature F;. A fully specified visualization is defined as a vector in which the value
at the first index represents the value of feature F} and so on. Given this definition, two sets

of visualizations are constructed:

Vo={vjo=(..,Fi=fd,..)} (7.5)

%:{U‘U:(an:fby)} (76)

Hence, V, contains all visualization which incorporate the feature value f,;, while V4 contains
all visualization which incorporate the feature value f,. Furthermore, these two sets are
disjoint: V, N'V;, = (. In the next step, all candidate pairs are generated. The elements
of these pairs have to be maximally similar. The highest similarity score is determined by

computing the similarity between all possible pairs:

Smaz = vie‘r/rali);e%{szm(vi, vj)} (7.7)

Afterwards, the set of potentially candidates is finally computed:
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Fig. 7.1: Illustration of the divide and conquer design for the online learning of the visualization
preferences.

134 Chapter 7 Investigating Visualization Preferences



V= {(viavj)‘(smax = Sim(v’ia Uj)} (78)

However, the cardinality of V' might be greater than one. Hence, the pair for the duel is

chosen by sampling from this set while assuming that each pair is equally useful:

(a,0") ~UV') (7.9)

This algorithm defines a framework for learning the user’s preferences on visualization feature
level. However, it does not prescribe the learning strategy for selecting duel candidates, the
similarity measure between the visualizations nor a scheduling algorithm for selecting a

visualization feature for the next iteration.

Prediction

In the learning phase of the dueling bandit, the algorithm always has to select two options
for the comparisons. However, in the prediction phase, this is not the case. Instead, the
algorithm needs to select only one value for each feature individually. These values have to
be selected in accordance with the user’s previously learned preferences. Hence, for each
feature, the bandits chooses the values in the same manners as it selects the first value for the

comparison (exploitation).

However, not all feature value combinations are valid visualizations. Imagine, the selected
visual mapping prescribes to visualize a categorical attribute through a coloring. The coloring
schema needs to be effective for this attribute. Hence, a diverging or sequential coloring

schema has to be selected, all other options are not effective.

As this example demonstrates restrictions on the feature values, predicting a fully specified
visualization requires to sequentially select the feature values. To do so, the visualization
features are sorted by their assumed importance for the users. This sorting results in the
following order: First, the likely preferred visual mapping is selected by the bandit, followed
by the visualization type, and finally the coloring schema.

The prediction algorithm handles the caused restrictions on the coloring schema by only
considering a submatrix of the learned preferences. Only the valid feature values (coloring
schemes) are compared with each other in order to select the likely most preferred coloring

schema for the to be predicted visualization.

7.3 Approximating Visualization Preferences
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Finally, the algorithm returns a fully specified visualization to the user. This prediction
procedure represents a kind of greedy behavior, since the sequential feature value selection
process potentially causes combinations which do not have to be necessarily the overall most

preferred option.

7.3.2 Configuration

According to the previously defined algorithm, three elements needs to be precisely selected:
the scheduling process for the visualization feature selection, the actual dueling bandit

algorithm, and the similarity measure between the fully specified visualizations.

As a scheduling process, the round robin scheduling is selected. In round robin, each
visualization feature gets the same about of iterations. As round robin treats every feature
equal, it also has some disadvantages. Given the different cardinality of the visualization
features, the dueling bandit algorithm might need less comparisons for actually approximating
the preferences on this feature. Hence, scheduling algorithms which consider either the

cardinality of a visualization feature or its importance to the user might also serve well.

Regarding the selection of a dueling bandit algorithm, two constraints have to be considered.
First, the learning strategy needs to be very efficient. A user likely wants to keep the effort
low for teaching the system on what a preferred visualization is. Second, there is presumably
no overall preferred visualization, but likely a set of equally preferred visualizations. In fact,

it likely depends on the user whether a total order of visualizations exists.

According to the analysis of Busa-Fekete etal. (2018), learning strategies of dueling bandits
can be generally separated in two groups. One group of algorithms follows a Coherent
winner strategy (Busa-Fekete etal., 2018). This strategy assumes a total order of all items
according to the preferences. Hence, if item ¢ is preferred to item j and item j is preferred to
item k than the user prefers ¢ to j as well. The other group of algorithm does not assume a
total order of all items. This strategy is called Copeland winner (Zoghi etal., 2015) where a

set of items can be equally preferred.

Both constraints are fulfilled by the D-TS algorithm developed by Wu and Liu (2016). The
D-TS algorithm counts for each item pair (7, j) how often item ¢ was preferred to item j and

stores this information in a counting matrix:

B = by jl1<ij<k = #(i = J) (7.10)
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These counts form the base for selecting two items for the comparison. The D-TS chooses two
items for the comparisons by sampling twice from Beta distributions (Thompson sampling

(Thompson, 1933)) which base on the counting matrix:

0;,; ~ Beta(bij,bj:),i < j (7.11)

where ); ; represents the probability that ¢ is preferred to j while §;; = 1 — 6; ;. Due to the
nature of the Beta distribution, the more often ¢ was preferred to j in the previous comparisons,
a high probability that ¢ wins in the next comparison is more likely. Additionally, the more
comparisons are generally made between ¢ and j irrespective of which items was preferred,
the expected value of the corresponding Beta distribution becomes more stable. Hence,
the D-TS algorithm eventually achieves a status in which the user’s preferences are well

approximated.

For selecting the first items for the comparison, the D-TS algorithm computes the Copeland
winner based on the samples 6. Consequently, the item is selected which probably is preferred
to the most other items. Let assume this item is named c. In a second step, the D-TS
algorithm samples again from the Beta distributions but limited to the 6. ;s. However, the
algorithm only considers uncertain pairs for the actual selection of the second item. Hence,
the first item for the comparison represents the exploitation option while the second item
represents the exploration option. Wu and Liu (2016) show that their D-TS algorithm needs
significantly less comparisons than other dueling bandit algorithms in order to approximate

the preferences.

Finally, the Hamming similarity is selected as a similarity measure between fully specified
visualizations. This similarity measure should effectively work for two reasons. First, the
Hamming similarity primarily punishes inequality between the compared elements. Since
the objective of the divide and conquer learning algorithm is to selected maximally similar
visualizations for the comparisons, the Hamming similarity sounds like an effective fit.

Second, it works for categorical features which the visualization features are.

7.4 Experiment 1: Effectiveness and Acceptance

The experiment investigates potential effects of the dueling bandit as well as the acceptance

of the participants. Precisely, the primary research questions are to investigate:

RQ 10: Can adivide-and-conquer-based dueling bandit approach effectively learn individual

visualization preferences?

7.4 Experiment 1: Effectiveness and Acceptance

137



138

RQ 11: What are the participants’ reactions and feedback concerning the interactive

learning procedure?

7.4.1 Apparatus

In order to adequately investigate the objectives, a technical prototype is created (see Figure
7.2). Essentially, this prototype implements a similar architecture as well as uses a similar
technology stack as Valletto (see Section 5.4). Consequently, the frontend uses React
(Facebook Inc, 2013) and the visualizations base on Vega-lite (VanderPlas etal., 2018;
Satyanarayan etal., 2017).

The dueling bandit algorithm follows the same setup of parameter configurations as used
by Wu and Liu (2016) and Zoghi etal. (2015). Additionally, no prior knowledge about
a participant’s visualization preferences is added. Hence, all visualizations are equally

preferred and mathematically represented by B;—o = 0%F.

7.4.2 Procedure

The experiment consists of three phases. The first two phases base on the car data set
(Donoho and Ramos, 1982; StatLib, 2005) limited to the data attributes “horsepower”,
“miles per gallon”, and “origin”. The third phase uses a weather data set. This differentiation
allows to potentially derive further insights on the generalizability of the learning preferences.
Since all visualizations are automatically generated, the available visual mapping options
are limited. Precisely, the visual channels x, y, and color can be used. For coloring, two
schemes for both categorical and quantitative exists. In addition to these options, three
different mark types exist. Overall, this setup results in a visualization space of 36 different

visualizations.

Initially, each participant receives a standardized introduction to the procedure’s structure.
Afterwards, the first phase of the study starts. Within this phase, each participant completes a
sequence of 21 pairwise comparisons. Each comparisons shows two visualizations generated
by the bandit (see Figure 7.2a). The display order is randomized in order to reduce biases
in the data, although the display order should not affect the bandit’s learning performance
from a mathematical point of view (Wu and Liu, 2016). In each comparison, a participant

eventually decides which visualization is subjectively more preferred.

After each 21 comparisons, the second phase starts. Now, the bandit predicts only one
visualization in according to the participant’s previous decisions. According to the satisfaction
with this predicted visualization, the participant selects a rating on a 11-point scale from

“very unsatisfying” till “very satisfying” (see Figure 7.2b). After the participant rated the
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Fig. 7.2: Design of the technical prototype for the study.

visualization, the first phase starts again. Overall, each participants makes 210 pairwise

decisions as well as rates 10 predicted visualizations in this experiment.

The third phase consists of a sequence of four pairwise comparisons. Each comparison
further bases on a different set of three data attributes. While in the first phase each
comparisons shows two visualizations selected by the bandit, these comparisons now consist
of one visualization predicted by the bandit and one created according to the effectiveness
study of Kim and Heer (2018) (named as “rule-based approach” in the following). However,
a participant should decide again which visualization is more preferred while the display

order is again randomized.

The experiment closes with a set of questions on the demographics, as well as experience in
information visualization and statistics. Furthermore, the NASA Task Load Index (NASA-
TLX) (Hart and Staveland, 1988) is included to further quantify the perceived effort for the

participants.

7.4.3 Participants

15 persons with an average age of 26.4 (o = 3.2) years participated in this experiment. They
are either from academia or from industry. The participants are differently well educated
in both information visualization and statistics, according to the self-reported knowledge
statements. Furthermore, they create visualizations by using either professional tools, MS

Excel, or a scripting language like Python or R.
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Fig. 7.3: The NASA-TLX in general as well as the individual parts.
Category weight (u)  weight (o)
Mental demand .24 .08
Physical demand .02 .04
Temporal demand A8 10
Performance .20 .08
Effort .20 .07
Frustration .14 13

Tab. 7.1: Weights of the NASA Task Load Index’s categories according to the participants’ decisions
in the pairwise comparisons of these different categories.

7.4.4 Results

The results are categorized into three areas: participants feedback on the overall procedure,
analyses related to the pairwise comparisons, and analyses related to predicted visualizations.
Overall, the participants need 4.4 seconds on average for making a decision. Furthermore,
14 participant have a subjective impression that the bandit actually learned their individual

visualization preferences.

In addition, the overall NASA-TLX scores of 24.26 on average (o = 9.64) reveals a little
demanding learning procedure. Figure 7.3 illustrates a detailed look at the results of
the NASA-TLX. The category “mental demand” has the highest scores of all categories.
Furthermore, this category has the biggest stake in the overall scores, according to the weights
shown in Table 7.1. Hence, the participants perceive the mental load as the most important
factor for determining the work load. Figure 7.3 also shows that the participants’ frustration

as well as the perceived effort is low in the sequence of pairwise comparisons.
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Fig. 7.4: Tllustration how often the participants chose either the greedy option (blue) or the
exploration option (magenta) during the learning phase.

Learning Visualization Preferences

Considering the entire learning procedure, the dueling bandit becomes more certain about
the user’s visualization preferences. Figure 7.4 shows these circumstance on a more detailed
level. The blue line represents the exploitation option i.e., the visualization which is currently
the best to choose, while the red line shows the exploration option i.e., a visualization which
is likely more preferred but the bandit is uncertain. In the beginning of the study, both options
are more or less equally chosen. However, this changes during the study. This means that
the participants predominately selected these visualizations for which the bandit assumed a

high preference coverage.

Additionally, Figure 7.5 and Figure 7.6 exemplary illustrate how the bandit actually approxi-
mates the visualization preferences of a participant. These illustrations show the Cumulative
Distribution Function (CDF) for each visual mappings pair in the moment before the
bandit predicts a visualization. On the one hand, the visual mappings (x: Horsepower,
y: MPG, color: Origin) and (x: Horsepower, y: Origin, color: MPG)
(cells (1,2) and (2, 1), respectively) are equally preferred during the entire study. On the
other hand, the visual mappings (x: MPG, y: Horsepower, color: Origin) and
(x: Origin, y: MPG, color: Horsepower) (cells (3,5) and (5, 3), respectively)
are unequally preferred by the participant. Prior the first prediction, the bandit has not chosen
both elements for comparison, otherwise the CDF would not look like a unified distribu-
tion. In the following, however, the participant tend to prefer visual mapping (x: MPG,
y: Horsepower, color: Origin) more and so the CDFs change. Nevertheless, the
preferences are learned on feature level, but the participants only see two fully specified

visualizations.
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Fig. 7.5: Exemplary approximation of a participant’s preferences on the visual mapping during
the first five predictions. The shown cumulative distribution functions are based on the
participant’s decisions.
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Fig. 7.6: Exemplary approximation of a participant’s preferences on the visual mapping during

the last five predictions. The shown cumulative distribution functions are based on the
participant’s decisions.
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Fig. 7.7: While the learning continues, the predicted visualizations are getting higher satisfaction
scores from the participants.

Finally, the participants’ feedback on this learning procedure is also positive, although
it appears to be a dull procedure. 11 participants would conduct such kind of learning
procedure and comparison sequence, respectively, in a real system. However, they further
stated to only conduct these procedure when they receive preference-aligned visualizations

afterwards.

Predicting based on Visualization Preferences

Considering the participants’ satisfaction ratings on the predicted visualizations reveals a
similar situation as previously shown in the learning phase. Figure 7.7 highlights these

ratings made by the participants. It shows the bandit’s improvements overtime.

In the beginning, the bandit does not much know about a participant’s visualization
preferences. Hence, the ratings of the participants are relatively low. While more and more
pairwise comparisons are made by the participants, the ratings of the predicted visualization
increase. A conducted Wilcoxon Signed-Rank test further reveals statistically significant
improvements (Z = 92.0, p = 0.002) in these satisfaction ratings between the first three
predicted visualizations (u = 7.2, 0 = 2.22) and the last three predicted visualizations
(n = 8.29, 0 = 1.69). Additionally, not only the overall ratings increase, but also the ratings

become more stable.

Furthermore, not every possible visualization is eventually predicted. Given the set of
36 unique visualizations, the bandit selected 23 of them for the predictions. Figure 7.8
shows for these 23 different visualization both in which prediction step and to how many
participants they were shown. The visualization represented by ID 7 seems to fit many

participant’s preferences. Other visualizations are rarely predicted, e.g., 2, 10, and 16. At the
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Fig. 7.8: Illustration how many participants have seen which visualization during the predictions.
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Fig. 7.9: Heatmap on the decisions during the comparisons between the dueling bandit and the
rule-based approach.

last prediction step, 10 different visualizations are predicted (see Figure 7.8). The overall

pairwise Hamming distance between these 10 predicted visualizations is p = .57, ¢ = .39.

This distance value reveals that the participants preferences are quite diverse under the
assumption that the last predicted visualizations are best approximating the participants’
preferences. Considering all prediction steps, each participant sees on average 3.4 (o = 0.87)

different visualizations.

Comparison to the Rule-based Approach

Compared to the rule-based approach — the visualizations recommended by the effectiveness
study results of Kim and Heer (2018) — the bandit is in 91% of all cases preferred by the
participants. As each comparison further represents a different data attribute set, Figure 7.9
reveals the preferred approach in each comparison. However, the visualization predicted by

the bandit share a similar visual mapping in 20% of the comparisons.
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7.4.5 Discussion

The results provide empirical insights on the learning behavior of the dueling bandit and
on the participants interaction with the bandit. They show the effectiveness of the dueling
bandit to actually learn the visualization preference of a user. As the objectives of this
experiment further refer to eventually enrich the recommendation routine by a personalized
component, the results support the use of dueling bandits for personalizing visualization

recommendations.

Finding 1: The training time can be reduced. Prior to this experiment, it was unclear how
many comparisons are actually needed in order to properly approximate the user’s visualization
preferences. The results empirically exhibit potentials for significantly reducing these needed
comparisons. On the one hand, the participants’ satisfaction with the predicted visualizations
veritably stabilizes after the fourth prediction (cf. Figure 7.7). This circumstances arguably
supports the hypothesis of well-learned visualization preferences after half of the planed

comparisons.

On the other hand, the participants tend to select the exploitation option after approximately
100 comparisons (cf. Figure 7.4). Hence, the bandit already covers the preferred visualization
feature values after 100 comparisons. Both indicators provide evidence to further reduce the
needed comparisons for approximating visualization preferences. Hence, the effort for the

user further decreases.

Finding 2: Factorization affects the learning. An initial design decision for keeping the
effort low for the user is to learn visualization preferences on feature level. However, the
participants eventually decide on fully specified visualizations. Although the method is
designed to maximally reduce the differences between the two shown visualizations in
the comparisons (cf. Section 7.3.1), potential risks in learning the wrong visualization
preferences cannot be completely ruled out. For instance, a specific mark type of the
visualization might be the most preferred option but only in combination with a certain
coloring schema, and not in general. This potential situation would corrupt the learning
procedure, since the participant decide not only on the bases of the difference in the mark
type, but by considering additional factors. However, the participants satisfaction with the
predicted visualization is high. Hence, there are empirical arguments which support the idea
of learning the visualization preferences on feature level in order to reduce the effort for the

USEr.

Finding 3: Preferences can be generalized. The training time reduction reduces the
burden for the user to actually achieve preference-aligned visualizations. Additionally, the
effort for the user can be further reduced, as the preferences are potentially generalizable.

Generalizable means in this context to transfer the learned visualization preferences from one
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to another data set. The participants’ decisions in the comparisons between the bandit and
the rule-based approach provide support for this hypothesis. The visualization preferences
are learned on the car data set, but reused for the weather data set. These data set share the
structure as both are real world data set with quantitative and categorical attributes, but they
differ in the context. Hence, potentials for reusing the learned visualization preferences for a

new data exist, when they share same characteristics from a data point of view.

Finding 4: Similarities in the visualization preferences exist. In the conducted experi-
ment, the dueling bandit algorithm has no prior knowledge on a participant’s preferences.
For each participant, hence, the dueling bandit learns the preferences from scratch. As
previously discussed, the dueling bandit is effectively able to approximate the participants’
preferences during the experiment even without prior knowledge. However, the results
show certain similarities in the learned preferences (cf. Figure 7.8), although the learned
preferences are generally quite diverse. Nevertheless, certain participants prefer similar sets

of visualizations.

Like in other recommendation approaches, these common preferences should be systemati-
cally used. Unlike other recommendation approaches, however, the similarities should not be
used to directly recommend visualizations (items), but to use the approximated preferences
as prior knowledge for the dueling bandit algorithm. This method has two advantages. First,
it further reduces the effort for the user and increase the usability of the dueling bandit
learning procedure, respectively. Second, it is still flexible enough to allow adjustment to the
actual users preferences. However, the questions remains on finding an effective method for

systematically describing the learned preferences.

7.5 Modelling Prior Knowledge

The objective of this section is to investigate an effective way for modeling prior knowledge
for the dueling bandit in order to further reduce the effort for new users. Overall, the use
of other users information is a common approach to compute recommendations, either
implicitly by the system itself (Chen etal., 2018) or explicitly with stereotypes (Rich, 1998).

The corresponding underlying assumption is that similar users have similar preferences ().

However, the focus is not on directly recommending visualizations, but on approximating the
preferences itself. Hence, the modeling of the preferences does not response in a probability
vector of the different visualizations, but in a matrix added to the dueling bandit, referred as

prior knowledge B,,. Generally, the research question is:

RQ 12: Can prior knowledge for the dueling bandit be modeled by a machine learning

model?

7.5 Modelling Prior Knowledge

147



148

7.5.1 Data

As prior knowledge for a prospective user should be modelled, the data from the previous
experiment serves the analysis. The data consists of the participant information collected in
the questionnaire, but without the answers to the NASA-TLX as well as the rating of different
feature importance. These filtered attributes partly overlap with the information gathered for
predicting preferred answers of the answer space. This restriction further contributes to the
usability and acceptance of the mutual introduction, as the participant mentioned a certain

burden of this introduction.

7.5.2 Methodologies

In the following, two methods are investigated for modelling the prior knowledge. First,
clustering on the users represents an unsupervised learning approach. The clustering is
externally evaluated considering both intra and inter cluster distances of the users’ preferences.
Second, a multi-task lasso regression represents a supervised learning approach. This method
is evaluated based on how well it models the relations within the preference matrix. However,

both approach assume that similar users have similar preferences.

In order to effectively use the user’s characteristics, corresponding questions are added to
the mutual introduction. As the user model already stores informative user characteristics
describing preferences in the answer space (cf. Section 6.5.3), it will be extended by relevant

factors of this section.

Clustering

In the clustering approach, users are clustered based on their features (e.g., statistical
knowledge), but not on their preferences. This is because the system initially receives the
user’s characteristics through a mutual introduction, but does not know the preferences
beforehand.

While a variety of clustering algorithms exists, the K-Means++ and the Affinity Propagation
are chosen. K-Means++ represents a bottom-up approach where the number of clusters
needs to be manually determine. Affinity Propagation represents a top-down approach
which automatically determines the number of clusters. Additionally, a common approach
is to combine a clustering with a decomposition analysis. This decomposition reduces the
feature space (in this case the information about the users) by transforming the features into

a low dimensional space. Conducting a clustering on a low dimensional feature space likely
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improves the clustering results. Especially when the data is sparse, it can be the case that the

data points are widely distributed in the feature space.

As the clustering describes relevant known users by predicting a cluster for a user given, the

prior knowledge for this new user is:

B, = Z B, (7.12)

, where ¢(u) is the clustering resulting in set of similar users. B,, represents the preferences

of a similar user v.

As it is generally unclear whether a performed clustering actually points to a useful result,
a quality measure has to be selected. This quality measure should focus on the actually
objective for which the clustering is applied. It represents an external evaluation of the
clustering. In this thesis, the objective is to cluster users together which are similar in their

learned preferences.

The Copeland scores essentially describe these preferences. As previously discussed, the
D-TS algorithm uses the Copeland scores for selecting the items for the comparison. For
each matrix, the Copeland scores can be easily computed by counting how often each item
potentially wins against the other items. For each matrix, a vector of Copeland scores exists.
As these vectors are another representation of the learned preferences, two users are likely
similar in their Copeland scores when they are also similar in their preferences. Hence, the

Copeland scores serve the external evaluation of a clustering.

In order to compute the similarity between two users, the cosine distance measure fits the
best. The cosine distance bases on the cosine of the angle between two vectors. As the angle
is only relevant, the length of the vectors does not matter. This advantage makes the measure
especially applicable for this scenario, since the represented preferences of two users do have

necessarily the same length.

Evaluation of the Clustering

The data of the previous experiment shows a continuously improving dueling bandit. Each
participant evaluated 10 predicted visualizations during the study. Consequently, the
clustering is evaluated on exactly these steps. Additionally, for each participant three

preferences matrices exist due to the divide and conquer method of the framework. Hence,
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Fig. 7.10: The intra cluster distance at each step for both clustering methods.
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Fig. 7.11: The inter cluster distance of both the clustering methods at each step.

for each participant three Copeland score vectors exist. In order to have a single representation

for each participant, these three vectors are concatenated into one single vector.

The evaluation of the various combinations of clustering with and without PCA address one
configurations head of the others for each clustering approach. Both configurations use the
transformed feature space of an PCA for four dimensions. The best performing K-Means++
is on three clusters, while the Affinity Propagation produces four clusters. However, only

produced clustering are taken into account containing no cluster of size one.

As Figure 7.10 shows, both clustering approaches are improving overtime. The intra-cluster
cosine distance between the preferences of the clustered participants is decreasing overtime.
Still, the Affinity Propagation produces a more homogeneous clustering than the K-Means++,

according to the higher inter cluster distance 7.11.

Furthermore, Figure 7.12 provides additional insights on the potential effect of ¢(.). The
baseline (grey) actually represents a solution without any clustering. Compared to the
baseline, both clustering approaches perform better. However, the Affinity Propagation
performs better than the K-Means++. For further comparisons, two methods are added. The
top-3 and top-5 dynamically computes for a given user the average similarity of the Copeland

scores to the three and five, respectively, most similar users. All methods (clustering and
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Fig. 7.12: The average preference similarity of clustering as well as baseline method at each step.

Method 1 2 3 4 5 6 7 8 9 10
top-3 1.0 30 40 60 50 6.0 50 60 50 5.0
top-5 10 -00 1.0 20 20 3.0 3.0 3.0 3.0 3.0
Affinity Propagation | -20 4.0 50 90 9.0 10.0 9.0 9.0 8.0 8.0
K-Means++ -0.0 00 1.0 40 3.0 40 30 40 3.0 20

Tab. 7.2: Differences in the average preference similarities of each method regarding the baseline.

top-n) essentially determine the set of relevant users for a given user. Table 7.2) contains the

precise deltas to the baseline.

Regression

In contrast to the unsupervised learning approaches, the preference matrix can be learned
through supervised learning as well. A potential method is a regression. Generally, a
regression models a quantitative value given a set of features by solving a linear equation.
While a linear equation can only describe one value of the preference matrix, an approach
is needed which solves multiple equations in parallel as well as maintain the dependencies
within the matrix. A multi-task lasso is one of those methods (Lozano and Swirszcz,
2012). This methods inherently performs feature selection. Hence, the regression directly
approximates a preference matrix while the unsupervised learning method requires a two

step approach to produce the prior knowledge.

Likely, the regression is not able to approximate the entire matrix correctly, as the training data
is sparse. Yet, the regressed preferences should only serve as prior knowledge. Therefore, the
relations between the visualizations are only relevant, but not the actual values. Considering
item 1 is preferred over item j. A good regression produces y;; > y;; when b;; > bj; should
hold. In order to achieve this situations, the following function transforms each regressed

value in to the desired format:

7.5 Modelling Prior Knowledge
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Fig. 7.13: Effect of the parameter setup on the Beta distribution. The normalized parameters (blue)
approximate better the actual distribution (grey) while providing more uncertainty than
the binarized parameters (red).

Yij

_— (7.13)
Yij + Yji

bij =

Figure 7.13 shows the difference in the resulting Beta distributions of normalized parameters,
binarized parameters (if y;; > y;; than y;; = 1 and yj; = 0, and vice versa), and the
actual parameters. Especially in the case where both items are almost equally preferred, the
normalized parameters mimic more accurate the actual relationship. Hence, they likely serve

better as prior knowledge than the binarized version.

Evaluation of the Regression

In scikit-learn (Pedregosa et al., 2011), two different multi-task regressions exist: the multi-
task lasso and the multi-task ElasticNet. In essence, both approach differ in the optimization
objective function. The ElasticNet likely handles better situations in which the input features

are correlated.

In order to evaluate the regression models, a similar approach is chosen as for the clustering
evaluation. Each predicted preference matrix is transformed into a Copeland score vector. As
three matrices exist per user, the three corresponding Copeland vectors are again concatenated
into one vector. Now, the cosine similarity between the predicted vector and the actual vector
are again computed. However, both regressions are multiple times trained by a randomized
70-30 split of the input data. Figure 7.14 shows the average similarity in the predicted
Copeland scores compared to the actual Copeland scores. The multi-task ElasticNet performs

slightly better at each learning block.
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Fig. 7.14: The quality of the predicted preference matrices by the regression models.

7.5.3 Discussion

As the results show, the Affinity Propagation approach together with the PCA seems to be
a good unsupervised learning perspective for computing prior knowledge. The algorithm
creates more homogeneous clusters. Furthermore, the multi-task ElasticNet slightly performs
better in the supervised learning perspective, as the user’s characteristics are presumably

slightly correlated.

However, the question remains how much prior knowledge should be used for a new user. In
case too much prior knowledge would be added, the dueling bandit might stuck in a local
optimum or even worse do not approximate the user’s preferences at all. In case too little
prior knowledge is added, the dueling bandit likely needs more comparisons to effectively
approximate the user’s preferences. Both circumstances would result in an unwanted higher

effort for the user.

The regression focuses on maintaining the relations within the preference matrices. Therefore,
the prior knowledge is represented by the relations for each item pair. However, the clustering
can directly take advantage of the known preferences. In this case, an adjusting factor is

needed to reduce the matrices on a potentially fitting level.

The previous experiment provides indications for a potential amount of prior knowledge.
In this experiment, the highest variability in the satisfactions scores of the predicted
visualizations was at the second and third step, respectively (cf. Figure 7.7). At this stage,
the dueling bandit already received a time consuming amount of decisions by a participant
for a preferred visualization. Additionally, the relation between the exploitation option and
the exploration option is still close at this stage. Both results imply a high uncertainty in
the approximated visualization preferences. Furthermore, the dueling bandits predictions
stabilize after the fourth prediction in the relation between exploration and exploitation

decisions as well as in the satisfaction scores of the predicted visualizations.

7.5 Modelling Prior Knowledge
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Nevertheless, it is still unclear whether the prior knowledge actually reduces the effort for the
user while simultaneously leads to satisfying visualizations. In order to answer this question,

the following experiment is conducted.

7.6 Experiment 2: Effect of Prior Knowledge

Generally, Rashid et al. (2002) propose the dimension user effort and accuracy to evaluate
how well a recommender system can handle new users. Therefore, this experiment’s objective
is two-fold. The primary focus is on investigating whether added prior knowledge to the
dueling bandit can further decrease the effort for the user while the user still gets satisfying
visualizations. The second objective considers which learning paradigms performs better.

The corresponding research question is
RQ 13: How does prior knowledge affect the performance of the dueling bandit?

In order to properly approach both research questions, the apparatus of the previous

experiment is reused without modification of the user interface design (cf. Figure 7.2).

7.6.1 Procedure

The experiment starts with a consent. This consent includes information on the study’s
purpose, the approximated duration of the user study, and general information on the user
study setup. After a participant agrees to the consent, five questions are shown. These five
questions are identical to the questions used in the previous experiment. Hence, the answers

can be directly used for classifying a participant.

Subsequently, each participant conducts a sequence of 30 comparisons. As in the previous
experiment, the display order of the two visualizations is randomized in each comparison.
In order to investigate the effect overtime, each participant rates a visualizations predicted
after each 3 comparisons. For each predicted visualization, a participant rates further
the satisfaction with the visualization shown. After the 30 comparisons as well as the
10 predictions, the experiment closes with a second questionnaire on the participant’s
impressions regarding the system’s performance, the length of the conducted comparison

sequence, and a potential implementation of the comparison sequence in an actual system.

This experiment is a between-subject study consisting of three groups. The first group gets
no prior knowledge. The second group gets prior knowledge computed by the clustering,
while the third group gets prior knowledge computed by the regression. Each participant

is randomly assigned to one of these groups. Still, each participant performs the same
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experiment procedure. Consequently, participants from the first group have to complete the

initial questionnaire as well.

7.6.2 Participants

After data cleaning, 63 reliable people participated in this experiment. They are recruited
from MTurk. As in the experiment in Section 6.4, only people with a US bachelor’s degree
could participated. On average, a participant completes the experiments in 5.55 minutes
(o = 2.21). Participates state to mainly create visualizations with MS Excel. Only a minority
(8) uses a scripting language for visualization design. However, the knowledge in creating
visualizations is moderate among the participants, while machine learning knowledge is

scarce.

Due to the between-subject design, participants are randomly assigned to one of the following
groups: no prior knowledge (N = 22), prior knowledge via clustering (N = 21), or
prior knowledge via regression (N = 20). However, conducted Kruskal-Wallis tests with
Bonferroni correction show no statistically significant differences between these three groups
regarding the classification relevant characteristics (cf. Section 7.5). Additionally, a one-way
ANOVA shows no statistically significant differences in the completion time between the

groups.

Overall, conducted Kruskal-Wallis tests show statistically significant differences between this
experiment’s sample and the sample of the previous experiment regarding machine learning
knowledge (p < 0.05), visualization knowledge (p < 0.05), the use of commercial tools
(p < 0.05), and the use of MS excel (p < 0.01).

7.6.3 Results

All approaches gradually learn the participant’s preferences overtime. Figure 7.15 shows the
ratio of how often the participants selected the visualization for which the bandit excepted
the higher preferences. However, the approach with prior knowledge via clustering seems
to have an initial advantage. In the beginning, it assumes more often the preferred option
correctly. However, there are no statistically significant differences between the three groups,

according to a conducted Bonferroni-corrected Kruskal-Wallis test

A similar picture shows Figure 7.16. While the trend is slightly positive, there is overall
a high variance in the participants’ ratings for the predicted visualizations. However, the
approach of clustering has the lowest variance (02 = 4.25) in the first prediction compared
to no prior knowledge (02 = 7.74) and prior knowledge via regression (02 = 7.10). In the

last prediction, the variance is more similar among the groups. Additionally, the same holds

7.6 Experiment 2: Effect of Prior Knowledge
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Fig. 7.15: Ratio of correctly assumed preferred visualizations during the learning for each approach.

for the mean of the ratings (no prior: 5.86, clustering: 6.57, regression: 5.50). However, the
predictions ratings are not statistically significant between the groups, according to conducted

Bonferroni-corrected Kruskal-Wallis tests.

Although the interactive learning sequence could be dull, the participants are not annoyed by
the interactive learning approach in either group. Additionally, the participants would accept
a sequence of comparisons of size 20 on average (¢ = 8). Furthermore, the participants
confirm that their preferences are learned and the visualizations fit their preferences. Lastly,
there are no statistically significant differences in the participants’ feedback between the

groups.

7.6.4 Discussion

The results show two things. First, the results of the first experiment are confirmed. Second,

prior knowledge seems to have an effect on the learning of visualization preferences.

Finding 1: The results confirm the results of the first experiment. The results confirm
the insights from the first experiment and support the use of dueling bandits for learning
visualization preferences. Although the participants of this experiment significantly differ
from the participants of the first experiment, the results show a similar picture. In both
learning behavior and prediction ratings, the data reveals a similar trend as in the first
experiment. Additionally, the participants’ feedback further supports the claim. In both

experiments, the participants have the feeling that the approaches learn their preferences.
Finding 2: Prior knowledge seems to have an effect. Both Figure 7.15 and Figure 7.16

show differences between the approaches. However, conducted statistical tests reveal no

significant differences. Yet, the rating scores vary among the groups. On the one hand,
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Fig. 7.16: The participants’ ratings for the predicted visualizations for the three different approaches.

the approach with prior knowledge through clustering achieves the highest initial scores as
well as has the lowest variance in the scores. It seems that it approximates the participants’
preferences better. On the other hand, the approach with prior knowledge through the
regression performs worse. The variance is high and the scores a lower. Using no prior

knowledge allocates between these approaches.

In terms of RQ 13, prior knowledge seems to have an effect of the dueling bandit. This
effect can be either positive or negative. Considering the significant differences between
the two experiments, errors in predicting prior knowledge likely affects the performance.
If a participants gets wrong prior knowledge, the dueling bandit has initial problems to
approximate the actual preferences of this participant. This likely affects the scores in the
beginning of the experiment. Hence, the effect of prior knowledge could be presumably

higher if the both samples would be more similar.

7.7 Limitations

Both experiments support the use of a dueling bandit for learning the user’s preferences.

However, both experiments also raise some limitations on the methodology.

First, this chapters considers only one dueling bandit algorithm for learning the visualization
preferences. However, a variety of different algorithms for this particular problem exists
(Bouneffouf and Rish, 2019). Although the results support the chosen algorithm, another

algorithm could achieve better results. This chapter lacks a comparisons of these algorithms.

However, a comparison through an actual user study would be time consuming and expensive.

Therefore, it is reasonable to consider the results of the benchmarks for dueling bandit

algorithms as a decision bases.

7.7 Limitations
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Second, the modelling of prior knowledge uses the results of the first experiment. However,
the participants of the first experiment might not represent the overall population of users.
This fact further makes a prediction in a live system difficult. The results of the second
experiment somehow address this lack of diversity in the data. Yet, covering the entire user
spectrum in a relatively huge data set is hard. Especially the periphery of the user spectrum
is hard to cover. Experts in visual analysis are scarce as well as people who never used

visualizations before.

However, the findings of this chapter are valid. They answer the addressed research questions
as well as reveal novel insights on dueling bandits in the domain of visualizations. Still,
future work should elaborate a more detailed look on dueling bandit for learning visualization

preferences.

7.8 Summary

This chapter approaches the challenge of online learning of visualization preferences. These
preferences are needed in order to achieve a personalized visualization recommendation
engine. However, knowledge on visualization preferences are scarce. Unlike other domains
such as movies, a data base of users and corresponding visualization preferences does not

exist.

In order to overcome this obstacle, a dueling bandit approach is evaluated in the context of
visualizations. The D-TS of Wu and Liu (2016) is selected as it is one of the most efficient
algorithms (Bouneffouf and Rish, 2019). Based on a sequence of pairwise comparisons,
the bandit interactively learns the visualization preferences of a user. However, Section 7.3
propose to learn the visualization preferences by the divide and conquer paradigm in order to

further reduce the effort for the user.

Two conducted experiments (Section 7.4 and Section 7.6) support the use of this dueling
bandit approach for learning visualizations preferences. Participants confirm a positive
effect of the bandit in learning the visualization preferences. Furthermore, the effort for
the user could be further reduced due to modelling prior knowledge. It reduces the needed

comparisons of the bandit.

The dueling bandit could be integrated into the overall concept of Chapter 5 by using an
overlay during the mutual introduction. Hence, the new recommendation engine consists of
an online learning component for adjusting to the user, but also an offline learning component
for modelling the prior knowledge for the online algorithm. Hence, the overall algorithm is a

kind of hybrid approach motivated by improving the usability.
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Conclusion

Data analysis is becoming one of the main skills for today. In business and private life, users
should be able to understand the means of data analysis. Hence, a broader spectrum of
prospective users will likely engage. However, conducting visual analysis is still challenging.
Achieving an effective visualization requires certain knowledge from a user. In order to lower
barriers in visual analysis, multimodal approaches using speech have been proposed. This

dissertation explores intelligible multimodal visual analysis by taking a holistic perspective.

In order to identify relevant elements in visual analysis for personalization, Chapter 3 proposes
a method for estimating the personalization potentials of visual analysis tasks. Considering
the state-of-the-art knowledge, the elements of visual analysis tasks, e.g., encoding of data,

can be ranked. This ranking focuses on the dimensions of knowledge and preferences.

However, the behavior of the users also needed to be taken into account. Therefore, Chapter 4
explores how people use visualizations in the field and how they would formulate commands
on a natural language-based user interface for visual analysis. The results reveal a narrow use
of visualizations primarily considering classical visualization types (bar, line, and scatter)
with mainly coloring. Furthermore, users followed a task-oriented patterns in interacting

with visualizations while using a task-related dictionary.

Chapter 5 proposes a design for an intelligible multimodal visual analysis tool considering
results of both Chapter 3 and Chapter 4. Using the modalities speech and touch, the design
implements a communication with the user through visualizations, a textual dialogue, and a
panel concerning the system’s computations. The results show better and faster decisions by
the participants compared to a conventional user interface. Additionally, the dialogue likely

helps participants to make better sense of the underlying data along with the visualization.

However, using dialogue acts in a unified way occasionally triggers distrust in users. Hence,
the design of dialogue acts likely depends on the user. In order to understand better how
dialogue acts should be designed, Chapter 6 argues for an answer space based on linguistic
theory for adjusting dialogue acts on data facts to the user. As visual analysis includes also
statistics, these methods require certain knowledge from a user. Indeed, the results exhibit
significant differences concerning the design of dialogue acts (Section 6.4). According

to the results, matching the user’s language further improves both decision making and
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Fig. 8.1: Illustration of the relationship of the individual chapters’ contributions to each other and
to the system.

user experience. Users especially benefit in analysis situations in which their knowledge is
exceeded (Section 6.6).

Chapter 2 discusses related work on the effect of the user’s characteristics on the effectiveness
of visualizations. While Chapter 3 also considers high personalization potentials for visual
encoding of data, Chapter 7 consequently investigates how visualization recommendations
can be effectively personalized. As it is important to align with the user, Chapter 7 uses a
dueling bandit algorithm for interactive online learning of a user’s individual preferences.
Applying a divide and conquer approach on top of the dueling bandit, the results reveal an
effective personalization of visualization recommendations without prior knowledge (Section
7.4). While the effort for the user is high, yet acceptable, using prior knowledge can likely
decrease the effort (Section 7.6) further.

In a nutshell, this dissertation advocates intelligible multimodal visual analysis through
personalization. Personalizing the output modalities of a system — visualizations and text —
through dedicated machine learning methods shows benefits. Leveraging the behavior of
users regarding input modalities — speech and touch — supports the design of multimodal
visual analysis systems. This dissertation considers intelligible multimodal visual analysis
from a holistic perspective (see Figure 8.1). It provides a solid empirical basis for future

work in this area.
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8.1 Limitations

While each chapter already addresses limitations to the particular methods, there are also

limitations regarding this dissertation in general.

No evaluation of a fully integrated concept: This thesis explores a holistic perspective
on achieving intelligible multimodal visual analysis. During this thesis, relevant aspects
haven been investigated. These aspects comprise the range from estimating personalization
potentially of visual analysis tasks through literature to applying online learning for per-
sonalizing visualization recommendations. Each chapter sequentially considers knowledge
gained from preceding chapters. However, this thesis lacks an evaluation of a fully integrated
prototype, although the technology-oriented Chapters 6 and 7 individually use the prototype
Valletto (see Chapters 5) as an apparatus in their user studies. The question remains how an

integrated prototype containing the answer space, and the dueling bandit would perform.

In terms of qualitative results, it would be interesting to see how the user’s perceive the
mutual introduction containing both the answers and the pairwise comparison sequence.
Both elements represent a certain effort for the user. The participants’ reactions could
provide further insights on how this mutual introduction could be improved. However, both
answer space and dueling bandit individually show acceptance by the participants. According
to the results, participants would invest effort in such an initial routine when they get benefits

afterwards.

In terms of quantitative results, it would be interesting to see how a fully integrated concept
performs against a classical approaches. However, a corresponding evaluation constitutes
high effort. A direct comparison with a classical approaches would contain multiple side
effect, as there is not just one independent variable. Instead, the experiment must additionally
consider each variant of the prototype individually. This would lead to at least four different
variants (with/without answer space times with/without dueling bandit). Hence, five different
systems have to be evaluated against each other. Furthermore, it should preferably be
a between-subject study due to the effort for the participants. Yet, such an experiment
would likely help to further show the potential advantages of intelligible multimodal visual

analysis.

Nevertheless, each proposed method empirically shows its benefits towards personalized
multimodal visual analysis. The results of Section 6.6 and Section 7.4, respectively, reveal
empirical advantages for both concepts. Additionally, each method embeds its functionality
to the overall concept. As the work also addresses the benefits of a personalized concept,
a fully integrated prototype would likely perform well compared to a generic approach.
However, this thesis cannot provide empirical evidence on advantages or disadvantages of

such an fully integrated prototype.

8.1 Limitations
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Holistic exploration rather than in-depth analysis: As this thesis explores a holistic
perspective on intelligible multimodal visual analysis, it lacks a truly in-depth analysis of one
topic. While each chapter contributes to a better understanding of intelligible multimodal
visual analysis, each chapter could also represent the topic of an entire thesis. Especially
three areas provide room for in-depth analysis: the use of modalities (see Chapter 5), the

answer space (see Chapter 6), and the online learning (see Chapter 7).

Considering the input modalities, this thesis leverages the predominately used modality
combination of speech and touch (Cox etal., 2001; Gao etal., 2015; Hoque etal., 2018;
Setlur etal., 2016; Srinivasan and Stasko, 2018; Srinivasan et al., 2020). Speech and touch
together reveal synergies in interactions (Cohen etal., 1989). However, there are a variety
of other modalities such as gaze, or haptics. Although Badam etal. (2017) show varying
effectiveness of modalites for visual analysis tasks, there is still a lack of knowledge. Valletto
could also incorporate other modalities for interaction. Especially gaze could potentially

help to further personalize visual analysis, e.g., (Lalle etal., 2019).

Considering the answer space, other dimensions might be relevant. The answer space consists
of the dimensions of information and support. Initially, these dimensions are chosen based
on literature reviews and leveraging linguistic theory. However, a data-driven approach
could lead to a different answer space. An exploratory user study could provide a basis for
deriving a new answer space. Instead of letting the user choose a preferred answer given
a visualization, the user could also propose a formulation how (s)he would describe the
data fact shown in the visualization. Given these formulation, new dimensions might be

revealed.

Considering the personalization of the visualization recommendations, other algorithms may
perform well too. This thesis shows both advantages of interactively learning the user’s
preferences and how preferences can be learned for each feature individually. To do so, it
leverages the D-TS (Wu and Liu, 2016). However, a variety of dueling bandit algorithms
exists (Bouneffouf and Rish, 2019). Especially the areas of adversarial bandits and contextual
bandit contain potentials for improvements. On the one hand, adversarial bandits can learn
shifts in the preferences over time (Zhou, 2015). A user’s preferences can change during the
user of a system with increasing knowledge. An adversarial bandit can handles this. On the
other hand, a contextual bandit directly incorporates the user’s characteristics for its decision
for an arm (Zhou, 2015). A contextual bandit could be a decent comparison for the current
approach of learning prior knowledge and sequentially using the D-TS (Wu and Liu, 2016).

In general, the field of online algorithms should be explored.

However, each of these aspects could also be the topic of an entire thesis. Furthermore, the
novelty of this thesis lies in the idea of achieving an intelligible multimodal visual analysis.

As current approaches do not consider the individual user differences, this thesis provides an
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empirical basis for future work by identifying avenues for personalization. In fact, future

work should explore these aspects in detail based on the results of this thesis.

8.2 Future Work

In addition to cover the limitations of this thesis, future work could directly build up the
methods of this thesis.

Personalizing the input modalities, not only the output modalities: Both user and system
use different modalities for interaction. In this thesis, the user can use speech and touch
for communicating with the system. However, the system communicates through visual
elements (visualizations) and text. In order to explore intelligible multimodal visual analysis,
this thesis proposes to personalize the communication channels of the system. Hence, the
system adapts its responses to the user. A next step now would be to personalize the input

channels.

Using speech reveals information about the user. Users talk differently. They use different
phrases, have an accents, or follow a specific grammar. All these information help to learn
about the user. Yet, systems typically have a one-fits-all model for NLP. Although the models
become more and more robust, they fail from time to time (cf. Section 6.5). An approach
could investigate how to fine tune a model to a user in visual analysis. Fine tuning is one of
the current approaches in NLP. Transformer models such as BERT (Vaswani etal., 2017)
achieve top scores in the main NLP tasks. These transformer models are trained for a general
purpose on a huge data set. However, they can be successfully fine tuned towards a specific
domain by only little data. Having such a model could help to adapt to the user over time. It
further could help to enrich the user model without asking the user explicitly. Hence, the

effort for the user would be reduced.

Touch could be personalized as well. Adaptable touch gestures are already common in
practice. For instance, OS X allows a user to specify the available gestures on the touch pad.
Furthermore, works such as Findlater and McGrenere (2004) show the effect of enabling

adaptable and adaptive interactions.

However, both cases should be explored in future work in the domain of multimodal visual

analysis. Both could help to achieve an even more personalized approach.

Educating the user through the dialogue: The answer space of Chapter 6 enables the
user-specific communication of data facts. As predicting a preferred answer can fail, a user
is able to ask for a reformulation of the given answer. Depending on how the user asks, the

system knows how to adapt the answer. Given a descriptive answer with high information, if

8.2 Future Work
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the user asks for “explanation of the statement” it could indicate that the answer exceeds the

user’s knowledge. In this moment, the system could try to educate the user.

An educational session could be a personalized sequence of dialogue acts. This sequence
could start with a dialogue act regarding whether the user wants to learn more about the given
answer. Depending on the user’s experience, the system could explain different elements.
Starting with describing what the output parameters indicate, the system could explain the

mathematical concept itself including its constraints.

Having such an educational session could to improve the knowledge of the user in data
analysis. Novice users would turn into more experienced users after a certain time. This
would generally lead to a situation in which people will be less likely to be misled by

visualizations.

Explore co-active learning for information visualization: Chapter 7 explores the concept
of dueling bandits for learning visualization preferences. However, there are multiple
approaches on this topic. One approach learns from the user’s adjustment given a predicted
visualization. Depending on how a user adjusts a visualization, the system learns the

preferences. This procedure is called co-active learning.

Although adjusting a visualization requires a specific knowledge from the user, however,
it requires less knowledge than creating a visualization from scratch (cf. Section 3.3.3).
Considering this methodology in more detail could help to further learn the user’s preferences.
For instance, a system initially learns the user’s preferences through a dueling bandit. During
the use, the system may learn the user’s preferences by observing the changes. Future work
could explore how effective this learning paradigm as well as how much more knowledge the

system is able to generate through the co-active learning.

Achieving truly ubiquitous visual analysis: Chapter 5 additionally discusses an idea of
achieving an ubiquitous visual analysis. Speech as a main modality actually empowers
a system to consider other contexts than the desktop. In fact, the desktop becomes less
important in future workplaces (Roberts etal., 2014). Technology enriched workplaces allow
people to work wherever they want, e.g., on the terrace, or on the couch. Consequently,
different modalities should be supported depending on the context. Furthermore, Weiser
(1999) projected that the computer of the 21st century will not have only one form, but
many. Today, computers of different shapes exist. Hence, visual analysis does not necessarily
happen at the desktop (Roberts etal., 2014).

Imagine, a data scientist moves around the building and can work wherever (s)he wants. In
the morning the user might start at the desktop using mouse and keyboard. Later, the user

has a meeting with colleagues. Together, they explore project related data. This situation
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essentially represents a co-located collaborative working situation. Every participant of this
meeting could contribute by explaining their findings through visualizations. Using gestures
— either through touch or in the air — would be the preferred modality as the participants
likely talk with each other to make their points. Later the day, the user has a presentation in
front of the management. Using the created visualizations from the morning, the user shows
these visualization at a big screen. However, (s)he uses a smart watch for interacting with
the visualizations as (s)he wants to talk to the audience, but not to the screen. This would

naturally embed the visual analysis into a common presentation style.

The desktop scenario as well as the mobile scenario are addressed by this thesis. However,
other scenarios require further investigations regarding the design of user interface for
visualizations. Especially for collaboration, interactive surfaces help (Isenberg etal., 2013).
Furthermore, Horak etal. (2018) highlights the potentials of the combinations of smart

watches and large screens.

However, new contexts require new evaluations. Each context has its own inherent challenges,
e.g., ambient noise in the mobile context, or handling multiple users in a meeting room at
the same time. Additionally, little knowledge on transitions from one scenario to another
exists in visual analysis. For this reasons, it seems promising to investigate in ubiquitous

visual analysis.

8.2 Future Work
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Acronyms

CAT Communication Accommodation Theory.

CDF Cumulative Distribution Function.

Cl Conversational Interface.

CPU Central Processing Unit.

CW Cognitive Walkthrough.

D-TS Double Thompson Sampling.

EDA Exploratory Data Analysis.

GUI Graphical User Interface.

H Entropy.

HCI Human-Computer Interaction.

HE Heuristic Evaluation.

| Mutual Information.

KDE Kernel Density Estimation.

MAB Multi-armed Bandit.
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MS-SSIM Multi-Scale Structural Similarity Index.

MTurk Amazon’s Mechanical Turk.

NASA-TLX NASA Task Load Index.

nl Normalized Mutual Information.

NLG Natural Language Generation.

NLI Natural Language Interfaces.

NLP Natural Language Processing.

NLU Natural Language Understanding.

PCA Principal Component Analysis.

POMDP Partially observable Markov decision process.

REST Representational State Transfer.

SDS Spoken Dialogue System.

SNS Subjective Numeracy Score.

SUS System Usability Score.

UCI University of California, Irvine.

Ul User Interface.

UX User Experience.

WIMP Window, Icon, Menu, and Pointer.
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