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ABSTRACT

With the advent of Web 2.0 and the rapid technological advances, there is a plethora of
data in every field; however, more data does not necessarily imply more information, rather
the quality of data (veracity aspect) plays a key role. Data quality is a major issue, since
machine learning algorithms are solely based on historical data to derive novel hypotheses.
Data may contain noise, outliers, missing values and/or class labels, and skewed data distri-
butions. The latter case, the so-called class-imbalance problem, is quite old and still affects
dramatically machine learning algorithms. Class-imbalance causes classification models to
learn effectively one particular class (majority) while ignoring other classes (minority). In
extend to this issue, machine learning models that are applied in domains of high soci-
etal impact have become biased towards groups of people or individuals who are not well
represented within the data. Direct and indirect discriminatory behavior is prohibited by
international laws; thus, there is an urgency of mitigating discriminatory outcomes from
machine learning algorithms.

In this thesis, we address the aforementioned issues and propose methods that tackle
class imbalance, and mitigate discriminatory outcomes in machine learning algorithms. As
part of this thesis, we make the following contributions:

o Tuackling class-imbalance in semi-supervised learning — The class-imbalance problem
is very often encountered in classification. There is a variety of methods that tackle
this problem; however, there is a lack of methods that deal with class-imbalance in
the semi-supervised learning. We address this problem by employing data augmen-
tation in semi-supervised learning process in order to equalize class distributions.
We show that semi-supervised learning coupled with data augmentation methods
can overcome class-imbalance propagation and significantly outperform the standard
semi-supervised annotation process.

o Mitigating unfairness in supervised models — Fairness in supervised learning has re-
ceived a lot of attention over the last years. A growing body of pre-, in- and post-
processing approaches has been proposed to mitigate algorithmic bias; however, these
methods consider error rate as the performance measure of the machine learning algo-
rithm, which causes high error rates on the under-represented class. To deal with this
problem, we propose approaches that operate in pre-, in- and post-processing layers
while accounting for all classes. Our proposed methods outperform state-of-the-art
methods in terms of performance while being able to mitigate unfair outcomes.

Keywords: class-imbalance, fairness-aware learning, semi-supervised learning, supervised
learning



ZUSAMMENFASSUNG

Mit dem Aufkommen des Web 2.0 und den rasanten technologischen Fortschritten gibt es in
jedem Bereich eine Fiille von Daten; mehr Daten bedeuten jedoch nicht unbedingt mehr In-
formationen, vielmehr spielt die Qualitat der Daten (Aspekt der Wahrhaftigkeit) eine Schliis-
selrolle. Die Datenqualitédt ist ein wichtiges Thema, da die Algorithmen des maschinellen
Lernens ausschlieSSlich auf historischen Daten basieren, um neue Hypothesen abzuleiten.
Die Daten konnen Rauschen, AusreiSSer, fehlende Werte und/oder Klassenbezeichnungen
sowie schiefe Datenverteilungen enthalten. Der letztgenannte Fall, das so genannte Klasse-
nungleichgewichtsproblem, ist ziemlich alt und wirkt sich immer noch dramatisch auf die
Algorithmen des maschinellen Lernens aus. Das Klassenungleichgewicht fithrt dazu, dass
Klassifikationsmodelle eine bestimmte Klasse (Mehrheit) effektiv lernen, wahrend andere
Klassen (Minderheit) ignoriert werden. Was diese Frage betrifft, so sind die Modelle des
maschinellen Lernens, die in Bereichen mit hoher gesellschaftlicher Wirkung angewandt wer-
den, inzwischen gegeniiber Personengruppen oder Einzelpersonen, die in den Daten nicht gut
reprasentiert sind, verzerrt. Direktes und indirektes diskriminierendes Verhalten ist nach in-
ternationalem Recht verboten; daher besteht die Dringlichkeit, diskriminierende Ergebnisse
von Algorithmen des maschinellen Lernens abzuschwéchen.

In dieser Arbeit befassen wir uns mit den oben genannten Fragen und schlagen Metho-
den vor, die das Klassenungleichgewicht angehen und diskriminierende Ergebnisse in Algo-
rithmen des maschinellen Lernens mildern. Als Teil dieser Arbeit leisten wir die folgenden
Beitrage:

o Bewdltigung des Klassenungleichgewichts beim halbiiberwachten Lernen — Das Prob-
lem des Klassenungleichgewichts tritt sehr hdufig bei der Klassifizierung auf. Es gibt
eine Vielzahl von Methoden, mit denen dieses Problem angegangen werden kann;
es mangelt jedoch an Methoden, die sich mit dem Klassenungleichgewicht beim
teiliiberwachten Lernen befassen. Wir gehen dieses Problem an, indem wir beim
halbiiberwachten Lernprozess eine Datenanreicherung einsetzen, um die Klassen-
verteilungen auszugleichen. Wir zeigen, dass halbiiberwachtes Lernen in Verbindung
mit DatenvergroSSerungsmethoden die Ausbreitung von Klassenungleichgewichten
iiberwinden und den standardméSSigen halbiiberwachten Annotationsprozess deut-
lich dbertreffen kann.

o Milderung von Ungerechtigkeiten in beaufsichtigten Modellen — Der Fairness beim
betreuten Lernen wurde in den letzten Jahren viel Aufmerksamkeit geschenkt. Es
wurde eine wachsende Zahl von Vor-, Ein- und Nachbearbeitungsansétzen vorgeschla-
gen, um die algorithmische Verzerrung abzuschwéchen; diese Methoden betrachten
jedoch die Fehlerquote als LeistungsmaSS des Algorithmus des maschinellen Lernens,
was zu hohen Fehlerquoten in der unterreprasentierten Klasse fithrt. Um dieses Prob-
lem zu 16sen, schlagen wir Ansétze vor, die in Pre-, In- und Post-Processing-Schichten
arbeiten und dabei alle Klassen berticksichtigen. Die von uns vorgeschlagenen Metho-
den tibertreffen den Stand der Technik in Bezug auf die Leistung und sind gleichzeitig
in der Lage, unfaire Ergebnisse abzuschwéchen.

Schlagworter: Klassenungleichgewicht, Fairness-bewusstes Lernen, halbiiberwachtes Ler-
nen, tberwachtes Lernen
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Introduction

1.1 Motivation

The rise of Web 2.0 and the rapid technological advances have caused a data explosion
which is beneficial for decision support systems. Such systems rely on historical data
in order to derive novel hypotheses to fit the data without being explicitly coded; thus,
making such systems applicable in a wide variety of fields. Decision support systems
benefit from large amounts of data, which makes the data availability extremely
valuable. Nonetheless, more data does not necessarily imply more information, rather
the quality of data plays a key role. In many real-world problems, data are incomplete,
contain noise and/or outliers, have encoded biases and/or skewed class distributions
(class-imbalance), and so on and so forth. It is crucial to deal with such problems,
since machine learning algorithms, which are trained on real-world data, are prone to
amplify existing errors (garbage in, garbage out) [Parl4].

The problem of class-imbalance [HM13] is quite old, and it is frequently observed
in all volume ranges of data. Class-imbalance refers to uneven class distributions
i.e., when one class (majority) is exceeding by far the other classes (minority classes)
w.r.t number of instances. This issue can lead to disproportional error-rates among
different classes. Conventional machine learning algorithms do not take this issue
into consideration, and propagate it to their outcomes. Another problem which lies
in imbalanced datasets, is the problem of rare cases [Stel3] (an example of rare cases
can be seen in Figure 1.1). Rare cases (also called within-class imbalance or group-
imbalance) are often treated as outliers or noise since they are not very similar to the
majority of the instances within a class e.g., a medical dataset which contains healthy
and sick patients may contain sick patients that suffer from a very rare disease.

Another common problem with data, is that they are often unlabeled. To obtain
qualitative labels for the data, one has to rely on human annotators; however, the
task of human annotation is time-consuming and expensive. In addition, nowadays
data velocity has surpassed petabytes per day (velocity refers to data generation rates)

1



2 Chapter 1 Introduction

Class -
Class +

Rare cases Minority class

Figure 1.1: Example of rare cases in class-imbalanced data

which makes it impossible to annotate all these data by relying on human annotation.
In many fields the labeled data are limited, and the unlabeled data are disproportion-
ately more than the labeled (an example can be seen in Figure 1.2). A whole field
of research in machine learning, called semi-supervised learning [CSZ09], focuses on
combining the labeled and unlabeled data to estimate labels for the unlabeled data,
which can be used afterwards by conventional decision support systems. Figure 1.2 is
an example that demonstrates how the unlabeled data can help to estimate efficiently
the decision boundary.

Tackling class-imbalance in semi-supervised learning. The first aspect of this
thesis is to focus on the problem of class-imbalance propagation in the semi-supervised
setting. Semi-supervised methods do not take into consideration the uneven class
distributions; thus, they are prone to propagate class imbalanced outcomes which
can deteriorate the overall performance. By equalizing class distributions, we force
these methods to effectively learn all classes to avoid such deterioration.

Finally, in areas of high societal impact, data and machine learning usage raise con-
cerns regarding privacy, fairness, legal and ethical guidelines [otPP14]. Over the past
few years, many cases have been reported, in which machine learning algorithms pro-
duced discriminatory outcomes [DARW119, ASB*19, VHLY 15, IS16, EL14, DTD15].
In Amazon’s case [IS16], the decision support system was deciding which regions of
New York City would receive prime services and which would not. Although Ama-
zon’s system did not use the protected attribute race, it excluded areas such as Bronx,
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Class A Class A Unlabeled O
Class Class

Figure 1.2: Example of labeled and unlabeled data. The decision boundary can
change significantly with the use of unlabeled data.

which were predominantly African-American ZIP codes.

Data often contain proxy-attributes to other attributes such as race or gender
attributes (also called protected attributes), which can lead a decision support system
to produce discriminatory outcomes. Moreover, data reflect societal biases, and are
not representative of the whole population (sample bias). In addition, system bias
might lead to generation of biased data causing models that further reinforce such
discriminatory policies like in predictive policing [LI16]. Finally, machine learning
models come with their own assumptions and biases (model bias), which clearly affect
their generalization performance. Due to the complexity of big data and machine
learning algorithms, and their complex interactions, integrating fairness-enhancing
interventions into the learning process is essential [FSV*19].

Multiple bias sources can cause machine learning algorithms to discriminate namely:
class imbalance, rare cases, and class overlap. A demonstration of these issues is
shown via the toy example of Figure 1.3: the protected and non-protected groups
w.r.t. some protected attribute are depicted using different symbols, the class assign-
ments are color-coded.

i) rare cases defined w.r.t. some protected attribute(s): the protected group (e, )
is much smaller than the non-protected (e, ¢). As a real example, women in the
STEM workforce are considerably less than men (28% vs 72% in USA?').

ii) class imbalance: the negative class (e,¢)) dominates the positive class (e,#)), which

Thttps:/ /ngeproject.org/sites/default /files/ngep_ the state of girls and women_ in_stem
2018a.pdf
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Figure 1.3: Original classifier (left) vs fair classifier (right)

corresponds to granting a benefit (also known as target class), and

iii) class overlap, esp. for the minority class: the positive instances of the protected
group (e) have similar values (or are closer in the feature space) with the negative
instances of the non-protected group (e). This is related to the societal biases
mentioned before e.g., parental leave is typically longer for mothers compared to

fathers.

In the same figure, the decision boundaries of a traditional and a fairness-aware linear
classifier are depicted. A traditional learner (left, solid line) optimizes for predictive
accuracy - where nearly all protected instances are predicted as negative. A fair-
learner (right, dashed line) apart from accuracy, it also considers fairness - where
both groups are represented in both classes. It is clear from this example, that a
decision support system has to tackle the aforementioned learning challenges.

Mitigating class-imbalance and unfairness in supervised models: The second
aspect of this thesis is to focus on the combined problem of class-imbalance and
discriminatory outcomes in supervised learning. Although there is a plethora of works
which aim to mitigate discriminatory outcomes from supervised models, they do not
take into consideration the problem of class-imbalance; thus, these methods reject the
vast majority of qualified instances which belong to the minority class due to their
inability to learn effectively the minority class.

1.2 Overview of Contributions

Tackling class-imbalance in semi-supervised learning: Semi-supervised meth-
ods are widely used to enhance classification performance by leveraging large amounts
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of unlabeled data. However, these methods are prone to propagate class-imbalance
in case that the data they use, have skewed class distributions.

In this thesis, we extensively evaluate semi-supervised methods such as Co-Training,
Expectation Maximization, and Self-Learning on the task of sentiment analysis. We
show the impact of the unlabeled data to the overall predictions as well as the impact
of different confidence thresholds. In addition, we compare the batch annotation, in
which all the data are available in advance, with the stream annotation where data
are becoming available over the course of the stream.

Furthermore, we use semi-supervised methods to annotate a large scale corpus
of opinionated short texts, called T'Sentiment15, and make it publicly available? to
the community. T'Sentiment15 consists of more than 200 million English short texts;
thus making it the very first large scale dataset of opinionated short texts. We also
provide crowdsource evaluation which was performed on a sample of TSentiment15.

To deal with the class-imbalance propagation, we combine semi-supervised meth-
ods with augmentation techniques such as over-sampling, under-sampling, distortion,
and semantic-similarity. We show the impact of each method in the overall predic-
tions, and analyze the advantages and disadvantages of each method. Our experi-
ments indicate that coupling semi-supervised and augmentation methods significantly
outperform default semi-supervised methods.

Mitigating class-imbalance and unfairness in supervised models: Direct and
indirect discrimination is prohibited by international laws [DIR98], which raises the
urgency of mitigating unfair machine learning outcomes. There is a variety of reasons
which cause machine learning algorithms to become discriminatory e.g., data might
encode societal biases, data can contain feedback loops, data can contain different
data distributions for different segments, and so on and so forth.

In this thesis, we mitigate unfair behavior from supervised machine learning mod-
els by making pre-, in- and post-processing interventions. In particular, we study
how class- and within-class imbalance affect the decisions of a model. We propose a
fairness-aware ensemble framework, called FAE, which tackles class- and within-class
imbalance to mitigate unfair outcomes. FAE performs two fairness-aware interven-
tions: i) the pre-processing step, in which data are partitioned and re-balanced to
tackle class- and within-class imbalance and ii) the post-processing step, where the
decision boundary of the ensemble is shifted to mitigate unfair outcomes. Our ex-
periments show that models which are trained upon data containing disproportional
distributions for each segment, are highly discriminatory, in contrast to our approach.

Furthermore, we study fairness in sequential models such as AdaBoost [Sch99].
We propose the cumulative fairness notion which is employed by sequential models
to mitigate unfair outcomes by modifying the data distributions w.r.t fairness. In
addition, our method optimizes for balanced error rate by selecting a sequence of
models which minimizes a loss function that combines the balanced error rate and

Zhttps://www.13s.de/~iosifidis/ T'Sentiment 15/
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discriminatory behavior. The cumulative fairness notion assesses the fairness behavior
of a sequential model from the beginning up to the current round. We show that by
assigning fairness related weights to misclassified instances based on our cumulative
fairness notion, the induced model is able to produce fair outcomes. Our proposed
model, called AdaFair, is able to mitigate discrimination as well as tackle the problem
of class imbalance, and outperform recent state-of-the-art fairness-aware approaches.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we introduce the technical
background which is necessary to understand the work of this thesis.

In Chapter 3, we explore the problem of limited labels in big data. Furthermore,
we investigate how semi-supervised methods can be coupled with augmentation tech-
niques. We show that default semi-supervised methods are prone to propagate class-
imbalance in each iteration, and we provide a mechanism that tackles this issue. The
work presented in this chapter is contained in the following publications:

o [IN17] Iosifidis, V. and Ntoutsi, E., 2017, August. Large scale sentiment learning
with limited labels. In Proceedings of the 23rd ACM SIGKDD international

conference on knowledge discovery and data mining (pp. 1823-1832).

o [IN19b] Iosifidis, V. and Ntoutsi, E., 2019. Sentiment analysis on big sparse data
streams with limited labels. Knowledge and Information Systems, pp.1-40.

In Chapters 4 and 5, we investigate the combined problem of unfair outcomes and
class imbalance in supervised models. More analytically, in Chapter 4 we study the
impact of class- and within-class imbalance w.r.t discriminatory outcomes. We show
that when the data suffer from severe class- and within-class imbalance, the induced
machine learning model is producing highly discriminatory outcomes. We present a
fairness aware ensemble, called FAE, which combines pre- and post-processing fairness
aware interventions to handle class imbalance and unfair outcomes. In Chapter 5, we
investigate fairness in sequential models such as AdaBoost [Sch99], and introduce the
cumulative fairness notion. We show that by assigning fairness related costs in each
boosting round based on the cumulative fairness notion, the model is able to produce
a strong learner which is able to mitigate discriminatory outcomes.

The works presented in these chapters are contained in the following publications:

o [IFN19] losifidis, V., Fetahu, B. and Ntoutsi, E., 2019, December. FAE: A
Fairness-Aware Ensemble Framework. In 2019 IEEE International Conference
on Big Data (Big Data) (pp. 1375-1380). IEEE.
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o [IN19a] losifidis, V. and Ntoutsi, E., 2019, November. AdaFair: Cumulative
Fairness Adaptive Boosting. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (pp. 781-790).

Finally, in Chapter 6 we conclude our work, summarize the main contributions,
and discuss about future directions.






Technical Background

In this chapter, we introduce all the necessary technical background in order to un-
derstand the following chapters of the thesis. We begin with introducing the task
of supervised learning and all the employed methods in this work. Also, we give a
brief overview of ensemble learning which is part of supervised learning, and mention
two well-known methods in this category. Afterwards, we highlight two clustering
techniques that have been employed in our work. We continue with semi-supervised
learning and its two main methods. In addition, we define the problem of class-
imbalance. Finally, we provide an overview of the fairness-aware learning task.

2.1 Supervised Learning

In this section, we introduce the task of supervised learning as well as the employed
algorithms in this thesis.

We assume a set of historical data X = ((x1, 1), (22, y2)...(Tn, Yn)), that consist of
n ii.d. examples drawn from a joint distribution P(A,Y"). For the ease of simplicity,
we consider the binary classification scenario, where y € {—1,1} are the class labels,
and A = {Ay, ..., A} being the feature space. The goal of supervised classification
is to find a map function f(X) — y to predict the class labels of unseen instances.

2.1.1 Decision Trees

Decision tree learning [Utg89] is a very popular method, which is used for supervised
learning tasks. A decision tree consists of three main components: the root node, the
internal nodes and finally the leaf nodes (Figure 2.1). Given a labeled set of historical
data, the decision tree splits the instances, based on a splitting criterion, into different
leaves. The internal nodes contain the decisions of each split. The expansion of the
decision tree is affected by two factors: i) the split criterion, and ii) the stop criterion.

9
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Root
node Layer 1
Internal Leaf
node node Layer 2
Leaf Leaf
node node Layer 3

Figure 2.1: Tree structure

The splitting criterion can be defined using a specific measure. The most fa-
mous ones are ging impurity, information gain, chi-square and variance reduction. In
this work, we employ the information gain measure which is used by ID3 [Qui86],
C4.5 [Quil4] and C5.0 [KKJ13] decision trees. Information gain is an entropy-based
measure. By splitting the nodes based on a feature, decision trees try to decrease the
entropy on the node. Entropy is defined as:

==Y p(X)logp(X (2.1)

where p(X) is a fraction of instances in a given class. Information gain is defined
below as:

IG(Y,X) = H(Y) — H(Y|X) (2.2)

where H(Y|X) is the conditional entropy of class Y given X.

Regarding the stopping criterion, a simple but efficient method is to stop the node
splitting as soon as the a minimum threshold of instances inside a leaf is reached.
Other methods, called pruning methods, have also been proposed and are applied
after the construction of the tree. They are bottom-up methods, that cut or merge
nodes to simplify the tree and make it more generalizable.

In order to make a prediction, decision trees insert a new instance, which does
not contain a class label, into their structure. The instance traverses the tree based
on the attribute splits (assuming no missing values, otherwise imputations methods
are employed [Twa09]) and ends up in a leaf node m. The estimated probability of
the instance to belong to a class k is:
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Pr = NL Z 1-Iy; = k] (2.3)

m zi€leafm

where N, is the number of instances inside leaf m, pr € Y, and I is the identity
function which results in 1 if the argument is true, else 0. The predicted class label
of an instance is based on the class which dominates inside the leaf.

2.1.2 Naive Bayes

Naive Bayes [Mar61] is a probabilistic classifier which relies on Bayes theorem; how-
ever, it uses a rather naive assumption that the features of an instance, within a given
class, are conditionally independent of each other w.r.t the class labels. Naive Bayes
classifier is particularly popular since it can be constructed very efficiently, it is highly
scalable and it produces probabilistic predictions.

Bayes theorem can be described as:

P(Ay, ... A, [Y)P(Y

(2.4)

However the assumption of Naive Bayes assumes that the features are condition-
ally independent w.r.t the class label; therefore, it can be reformulated as:

P(Y|Ay, ..., Ay) = P(A”?z;f,(.%iif)ﬂg(w

P(Y Ay, ..., Ap) o< PONITT P(A]Y) (2.5)

Naive Bayes classifier performs optimally when the assumption of independence
holds. On the other hand, if the assumption of independence does not hold, which
may happen in many real-world problems, then the method under-performs.

2.1.3 Ensembles

Ensemble learning combines multiple classifiers (also called weak learners, whose per-
formance is barely better than random guessing) of the same type (homogeneous
ensemble) or different types (heterogeneous ensemble) to derive a better hypothesis.
Bootstrap aggregating [Bre96] (Bagging) and Adaptive Boosting [Sch99] are two very
well-known methods in this category.

Bootstrap aggregating

Bootstrap aggregating (Bagging) ensemble [Bre96] is a method which splits the data
into multiple different versions (bags), each of which is used to train a weak learner and
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afterwards combines these weak learners for an aggregated prediction. The ensemble
combines the weak learners by using either majority vote, weighted majority vote, or
averaging the estimated probabilities. For the splitting part, the ensemble generates a
set of M bags, given that the original training set of size n, each of which has the same
size ' (n’ < m). Data from the original training set are sampled with replacement
and uniformly. Bagging method is illustrated in Figure 2.2.

Bagging’s main advantage is that it reduces the variance; thus, prevents the final
model from overfitting. On the other hand, due to the combination of different and
independent weak learners, the model is not easy to interpret.

Original

J g Learner 1 ¥ Learner M

Aggregation

Figure 2.2: Bootstrap aggregating method

Adaptive Boosting

Adaptive Boosting (AdaBoost) [Sch99], is an ensemble of weak learners, where each
weak learner is trained upon the errors of its predecessor (Figure 2.3). The idea
of AdaBoost is to focus more on the hard-to-learn instances which are misclassified
more often than others, by assigning higher weights to them. After each iteration,
misclassified instances receive higher weights so that on the next iteration (boosting
round), the weak learner will be forced to focus on the hard-to-learn instances. This
iterative learning process will result in a strong learner which will use a weighted
majority vote for prediction tasks. The pseudo-code of AdaBoost is shown in Alg. 1.

More analytically, the error rate of weak learner h; in the t* boosting round, is
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Figure 2.3: Boosting method

measured as follows:
N

erre =~ 3 Iy # hu(w:) (2.6)
N

i=1
where [ is the identity function which returns 1 if the condition within is true, other-
wise 0. The error rate of each weak learner can be better or worse but never equal to
random guessing, i.e., 50% error rate. For the re-weighting, a special parameter o is

used: . .
o0 = 5in (—_) 2.7)

erry

and the new instance weights for the next round ¢ 4 1, are calculated as:
wit = wl exp(auyihy () (2.8)

In the extreme case that err = 50% then o = 0, which means that the data
distributions will not change in the following boosting rounds.

AdaBoost improves the overall accuracy by combining many weak learners that
produce a strong learner. It has been proved based on the margin theory that Ad-
aBoost does not overfit [SS99]. However, AdaBoost is sensitive to noise and outliers,
since it tries to fit all the data.

2.2 Clustering Methods

In this section, we introduce the employed clustering methods which will be used in
this work.

Clustering is the task of separating instances into groups based on their similar-
ity. Clustering methods are used in a wide variety of areas e.g., marketing, fraud
detection, bio-medical, and so on. Clustering methods can be classified into different
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Algorithm 1: AdaBoost
Input: D = (z;, )Y, T
Output: Ensemble H

1. Initialize w; = 1/N fori =1,2,...,N
2. Forj=1to T:

a) Train a classifier h; to the training data using weights w;.
J
S I(yi#h ()
Zévzl Wi

1—err]~)
err;

(b) Compute the error rate err; =

(¢) Compute the weight a; = 5 - In(

(d) Update the distribution as
w] -exp(—a;yih;(z;)) /
Zj

i1 . ..
wg+ — / Zj is normalization factor

3. Output H(z) = 25:1 a;hj(x)

categories: i) density-based methods, ii) hierarchical based methods, iii) distribution-
based methods, iv) grid-based methods, and v) centroid based methods.

In this work, we employ k-Means (centroid-based) and Expectation-Maximization
(distribution-based) methods that are described below.

2.2.1 k-Means

K-Means [M167] is a very popular centroid-based clustering method. The algorithm
tries to partition the data by iteratively minimizing the sum of squared distances of
the instances inside a cluster.

K-means takes in the parameter k£ which defines the number of clusters to be
estimated. It begins by assigning random points to the centroids of each cluster
(Figure 2.4). Afterwards, it assigns instances to the clusters based on a distance
function e.g., euclidean, manhattan, etc. The sum of squared distance among the
instances and the centroids of the clusters is minimized in each iteration. The less
variation a cluster has, the more homogeneous are the instances inside that cluster.
More formally, k-Means’ goal is:

k
arg minz Z |2 — il (2.9)

=1 z€K;

where p; is the mean of instances x in cluster K.
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Figure 2.4: K-means example, where k£ = 3 (Xs symbolize the centroids)

K-means is a well-known clustering method, since it is a simple, efficient, and easy
to interpret; however, it comes with some limitations. It is sensitive to outliers and
k is a user parameter which has to be selected carefully. There are methods that can
help with parameter selection, such as elbow, silhouette, and gap statistic methods.

2.2.2 Expectation-Maximization

Expectation-Maximization (EM) [DLR77] is similar to K-means. EM assigns in-
stances to clusters by computing the probabilities of the instances to belong to a
cluster, based on probability distributions (Figure 2.5). K-means’ objective is to min-
imize the sum of square distances, while EM’s goal is to maximize the likelihood of
the data.

EM has two basic operations: i) expectation step (E) in which it generates an
expectation of the log-likelihood of the data which is evaluated by the current esti-
mate of the parameters, and ii) maximization step (M) in which the parameters that
maximize the expected log-likelihood are calculated. These two steps are repeated
until the log-likelihood of the data has converged, or a maximum number of iterations
has been reached. More formally, the objective of EM is to maximize data likelihood
as follows:

p(X10) => p(X, Z|0) (2.10)
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Figure 2.5: Expectation maximization method

where © are the unknown parameters which are calculated in each iteration, and
Z is a set of unobserved latent variables.

EM is a powerful clustering method. One of its main advantages is that the data
likelihood is guaranteed to increase in each iteration. However, it can fall into the
pitfall of a local maximum. To avoid that, EM can be initialized multiple times with
different initial points. Finally, EM may converge slowly.

2.3 Semi-Supervised Learning

In this section, we introduce the task of semi-supervised learning as well as the em-
ployed methods in this work, namely Co-Training and Self-Learning.

Nowadays, data are generated at tremendous speeds; however, these data suffer
from label scarcity. In order to obtain labels, human annotation process has to take
place; however, the human annotation process is expensive and slow, thus it is pro-
hibitively expensive. Semi-supervised learning aims to solve this issue by combining
a few labeled data with large amounts of unlabeled data during the learning process.
Semi-supervised methods assume that instances which are in the same neighborhood
(close to each other) probably have the same class label. Such methods can increase
classification performance by exploiting the structure of unlabeled data and incorpo-
rate them into the classification process. By propagating class labels to the unlabeled
data, semi-supervised methods improve their hypotheses.
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Semi-supervised methods can be separated into three different categories: i) gen-
erative models, ii)) low-density separation, and iii) graph-based models. We briefly
review works in each of these categories below.

Generative models: These methods try to estimate the data distribution of points
that correspond to each class i.e., P(X|Y'). They assume that the data distributions
can be expressed as P(X|Y,#), where 6 is a vector of parameters which they try
to estimate. If this assumption holds, the unlabeled data can improve the perfor-
mance [RV95]. To estimate 6, the models try to maximize the log-likelihood of the
labeled and unlabeled data:

arg max (Z log(P(xily:, 0) P(yil0)) + Z > Plylz}, 0)log(P(x, y|9)P(y!9))>

(2.11)

Popular works in this category are [NMTMO00] in which authors used expectation-
maximization combined with Naive Bayes to classify textual data, [MLH04] that used
two classifiers (Self-Learning) to classify textual data with binary labels, [BM98] that
employed two models (Co-Training) to classify website domains and so on.

Low-density separation: Low-density separation methods try to set boundaries
in regions using limited amounts of data. A very popular method is the transductive
SVM (TSVM), which tries to maximize the margin over all data by labeling the
unlabeled data. For the maximization of the margin on both labeled and unlabeled
points, TSVM minimizes the function below:

; 2 . ) ! / !
min w + CZ L(y;(wz; + b)) + C Z L'(wz; +b) (2.12)

where w is the regularizer, L and L’ are the loss functions for labeled and unlabeled
data. TSVM was introduced in [Vap99] and has been investigated and extended by
a plethora of works e.g., [Joa99, BD99, DB01, FM01, CZ05], and so on.

Graph-based methods: These type of methods are based on graph representa-
tions of the data, where each node depicts a labeled or unlabeled data point. The
graph can be generated using instance similarity or domain knowledge. A very com-
mon method to generate the graph is the nearest neighbor weighted graph, which
aims to minimize the function below:

DD Wislfla) = f(x;))? (2.13)
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Popular works in this category are [ZCP05] in which authors constructed graphs
by tweaking or removing edges, [BLRR04] where authors used random noise to the
weights of the edges for regularization to perturbate the graph, [PL04] in which they
used the mincut method to improved textual classification under the assumption that
instances close to each other have the same class and so on.

2.3.1 Self-Learning

Self-Learning [Fra67| is the earliest semi-supervised method. It works iteratively by
labeling the unlabeled data which uses afterwards to enhance its confidence (Fig-
ure 2.6). This method usually employs a threshold that is used as a confidence level
for the unlabeled predictions. In the beginning, a supervised classifier is trained upon
the small training set. Afterwards, the classifier is applied to the unlabeled data to
generate labels. Predictions which exceed the threshold are selected to expand the
training set, and this process is repeated until all the unlabeled data are labeled, or
a number of iterations is reached.

Self-Learning is a simple and efficient method to leverage the unlabeled data;
however, it has a serious flaw. If the unlabeled data contain noise or outliers, the
method will learn and propagate errors to the upcoming iterations, which can corrupt
the overall predictions.

/'_'._._ \
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Figure 2.6: Self-Learning method

2.3.2 Co-Training

Co-Training [BM98] has been proposed to tackle the problem of error propagation
that takes place in Self-Learning. This method relies on the assumption that the data
can be described by two different and conditionally independent sets of features (also
called views).
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Based on these two different views, this method trains a supervised classifier on
each view, and uses them to train each other (Figure 2.7). Iteratively, Co-Training
trains these two classifiers on the different views, and the most confident predictions of
the unlabeled data will be used to train the opposite classifier. Hence, each classifier
will not amplify its own errors; rather, each classifier trains the other classifier. In
order for this method to work efficiently, the two views have to describe the data
adequately.
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Figure 2.7: Co-Training method

2.4 Class-Imbalance

In this section, we introduce the problem of class imbalance, and categorize the related
literature.

The problem of class imbalance is quite challenging and affects a wide variety of
fields which rely on machine learning tasks. Class imbalance [HM13] refers to the
skewed label distributions within data (between-classes), where one class, called ma-
jority class, dominates the other classes, called minority classes, w.r.t the amount
of instances. For ease of simplicity, we assume the binary classification setting. The
class-imbalance problem affects classification models by making them learn effectively
one class (majority) while under-perform on the other class (minority) e.g., given a
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dataset that contains 95 negative (majority class) and 5 positive (minority class) in-
stances, a classifier predicts all the instances as part of the majority class, and achieves
95% accuracy; however, it is not able to identify not even one positive instance.

There exists also another type of class-imbalance, called within-class imbalance,
which refers to the existence of rare cases. Rare cases can correspond to sub-concepts,
which can reside in any class (majority or minority) e.g., in a medical dataset that
contains healthy and ill patients, an ill patient may suffer from a rare disease. Rare
cases are hard to learn, while they correspond to sub-concepts, which are far less than
the common concept of a class. An example of rare cases can be seen in Figure 1.1.

According to [HM13], literature can be separated into three broad categories: i)
data level methods, ii) model-based methods, and iii) cost-sensitive methods. For a
detailed analysis of each category, the reader is encouraged to see [HM13].

2.4.1 Data level methods

Data augmentation methods operate on the data level i.e., they modify the data dis-
tribution before the training phase of a model; thus, making these methods useful
for skew-insensitive classifiers. In [JS02], authors investigate the problem of class-
imbalance and the impact of re-sampling methods under the inter-dependencies of 1)
class distribution skewness ii) data’ complexities iii) data’ volume and iv) classifica-
tion models. In [LL98], authors propose a combination of standard under-sampling
and over-sampling to equalize class distributions, and measure the model’s perfor-
mance using lift analysis. In [IN19b], authors investigate a variety of augmentation
methods, for textual data, such as distortion and semantic-similarity to augment mi-
nority class. The distortion method, in this scenario, refers to adding noise to the text
by removing terms (words), and the semantic-similarity method refers to swapping
terms with terms which are closer in a vector space projection. In [DHT03], au-
thors examine the impact of over-sampling and under-sampling under the cost curve
performance metrics and come to the conclusion that under-sampling is significantly
more effective than over-sampling in case of decision tree classifiers. In [CBHKO02],
authors proposed SMOTE method, which augments the minority class by taking into
consideration the instances’ neighborhood, using the k-NN algorithm. SMOTE first
locates neighborhoods of minority instances, and then it generates pseudo-instances
by combining the attribute values of the neighborhood; thus, pseudo-instances are
similar to the instances in the neighborhood.

A different class of approaches which operates on the data level are the generative
adversarial networks (GANs). GANs use two neural networks, the generative network
and the discriminative network. The generative network generates data by learning a
mapping function from a latent space to the target data distribution and the discrim-
inative network evaluates the generated data w.r.t the original data. A large body
of work has been proposed over the recent years for applications like image classi-
fication [FAKAT18, Inol8, STR*18], speech recognition [KPP*17, CGK15, SG15],
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ete.

2.4.2 Model-based methods

Such methods aim to tackle class-imbalance during training, by employing a mecha-
nism which aims to identify rare patterns. In [CLHBO03|, authors introduce SMOTE-
Boost which combines SMOTE and AdaBoost [Sch99] to deal with class-imbalance
by augmenting the minority class instances which are misclassified in each boosting
round. In a similar line of work [SKVHNO09], authors present RUSBoost which com-
bines AdaBoost and random under-sampling of the majority class instances which are
correctly classified in each boosting round. In [GV04], authors introduce DataBoost-
IM, which locates the hard-to-learn examples from both positive and negative classes
during the training phase of AdaBoost, and based on these instances it generates
synthetic data at the end of each boosting round. In [Qui9l], authors tweak the deci-
sion boundary of a decision tree by adjusting the probabilistic estimates of the tree’s
leaves, while in [ZEO01], they propose a class-imbalance sensitive pruning method for
decision trees. In [WCO03], authors tweak the decision boundary of an SVM based on
kernel-alignment ideal. Finally, a class posterior re-balancing framework is proposed
in [KSXPK17] to reduce imbalance while retaining classification certainty.

2.4.3 Cost-sensitive methods

These methods do not optimize for standard accuracy, rather try to minimize the
overall misclassification costs which have been assigned beforehand. For the cost
estimation, a grid search has to be performed w.r.t a given metric such as gmean,
f1-score, balanced accuracy, etc. The misclassification cost of minority class is higher
than that of the majority class. This category of algorithms is divided into three
sub-categories [SKWWO7|: i) weighting the data space, ii) making a specific clas-
sifier cost-sensitive, and iii) using the Bayes risk theory to assign each instance to
a class with the lowest risk. The first sub-category of algorithms aim to alter the
data distributions w.r.t a misclassification cost matrix so that the data distribution
is biased towards the minority class. The very first method in this line of work
is AdaCost [FSZC99]. Afterwards many other variations of AdaCost have been in-
troduced over the years such as CSBI [Tin00], CSB2 [Tin00], RareBoost [JKAO1],
AdaC1 [SKWWO07], AdaC2 [SKWWO07], and AdaC3 [SKWWO07]. These methods dif-
fer in three main parts: i) error estimation, ii) instance weight assignment, and iii)
decision voting schema. An overview of these methods can be seen in Table 2.1. Ex-
cept for the RareBoost, all the aforementioned methods in this category require a user
parameter for the misclassification costs. The second sub-category of algorithms aims
to make a specific classifier cost-sensitive. In [NEK*16], authors propose AdaMEC,
a boosting classifier that uses the misclassification costs only to set thresholds to
the decision boundary of AdaBoost, in contrast to the previous methods which use
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Table 2.1: Cost Sensitive Boosting Variations

the misclassification costs to change the data distribution in each boosting round.
In [QWZZ13], authors introduce a cost-sensitive k-NN classifier, which aims to tackle
clags-imbalance by using a modified distance function which takes into consideration
the misclassification cost matrix. In [LYWZ04], authors use the misclassification cost
matrix to define a cost-sensitive splitting criterion in decision trees, while in [BKK 98]
they take into account the misclassification costs to determine the pruning criterion
of a decision tree. The third sub-category uses the Bayes risk theory to assign each
instance to a class with the lowest risk. Few works have been proposed in this di-
rection e.g., in [Dom] the authors swap the class labels of the leaves to minimize the
misclassification cost.

2.5 Fairness-Aware Supervised Machine Learning

In this section, we introduce the task of fairness-aware learning and also the most
frequently used fairness notions.

We begin by giving the definition of discrimination. Discrimination [Wik] is treat-
ment or consideration of, or making a distinction towards, a person based on a pro-
tected attribute to which the person is perceived to belong. Protected attributes
considered by the law include: age, disability, race, religion, sex, sexual orientation,
etc.

In recent years, it has been observed that machine learning models produce dis-
criminatory outcomes towards individuals or groups of people who share specific char-
acteristics. The task of fairness-aware supervised machine learning extends the su-
pervised learning task by not only considering to find a map function f(-) — y that
minimizes the error rate, but also mitigates discriminatory outcomes.

Same as in Section 2.1 we consider binary classification with Y = {4, —} and
A = {Ao, ..., A} the feature space. We also assume a set of historical data X =
((x1,91), (z2,y2)...(Tn, yn)), that consist of n i.i.d examples drawn from a joint distri-
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bution P(A,Y). Let S € A be a binary protected feature S = {Z, z}, where z is the
non-protected group and z is the protected group e.g., S = gender, Z = male, and
z = female. We refer to the positive class as the target class e.g., loan approval. We
want to find a map function f(X) — vy, as well as mitigate unfair outcomes at the
same time.

A plethora of fairness notions has been proposed to measure discriminatory out-
comes. In this work, we present the most frequently used notions of fairness (the
interested reader is referred to [RR14, VR18| for a detailed description of the pro-
posed fairness notions).

One of the earliest fairness notions is the Statistical Parity (also called demo-
graphic parity) [KC09]. It can be formalized as:

SP = P(+|z) — P(+|2) (2.14)

Statistical parity measures the difference between the percentages of non-protected
and protected group w.r.t the target class. However, this notion may allow instances
from the protected group that may not be qualified to be labeled as positive and reject
instances from the non-protected group that may be qualified in order to minimize this
difference [DHP*12]. Another fairness notion, called Equal Opportunity [HPS™*16],
has been introduced to overcome this issue, described as follows:

Eq.Op. = P(+|Z,+) — P(+|z,+) (2.15)

Equal opportunity tries to balance the classified difference of the non-protected
and protected groups w.r.t the target class. Both statistical parity and equal op-
portunity focus solely on the target (positive) class. Another fairness notion called
Equalized Odds (or disparate mistreatment) [HPST16, ZVGRG17] extends equal op-
portunity by also forcing equal classification percentages w.r.t the negative class:

dTPR = P(+|z,+) — P(+]z,+)
STNR = P(—|z,—) — P(+|z,—) (2.16)

During the last decade, a variety of fairness-aware supervised and unsupervised
methods have been proposed. These methods can be separated into four main cate-
gories: 1) pre-processing, ii) in-processing, iii) post-processing, and iv) fair represen-
tations. We describe each of these categories below.

Pre-processing methods. Methods in this category [RPT10, LRT11, CWV*17,
KC09, CKP09, IN18, KC12], work under the assumption that in order to learn a fair
classifier, the training data should be discrimination-free. To this end, they try to i)
balance the representation of the different segments in the population, and/or ii) re-
move encoded societal biases which may exist inside the data. Population segments re-
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fer to protected positive/negative and non-protected positive/negative groups. Meth-
ods that are balancing the population segments force the model to learn all segments
effectively while methods which remove the encoded biases try to eliminate exist-
ing discriminatory patterns which occur within a dataset, thus making the model
learn non-discriminatory patterns. Among the most popular pre-processing methods
are class-label swapping (called massaging), instance re-weighting, and preferential
sampling that are employed to achieve statistical parity [KC12]. Massaging locates
instances which reside near the decision boundary of a classifier, and swaps their class
label in order to shift the decision boundary towards a fairer boundary. Re-weighting,
on the other hand, generates a fair weight distribution associated to the instances
in order to give more weight to population segments which are under-represented.
Finally, preferential sampling performs under-sampling and over-sampling to the
instances in different population segments based on their distance to the decision
boundary of a classifier. Similarly, [IN18] propose augmenting the protected group
via semi-synthetically generated instances which reside near the decision boundary of
a classifier. In [LRT11], authors propose a k-NN approach which locates and removes
instances which have been treated significantly different among their neighborhood
instances. Finally, the probabilistic framework of [CWV™17] modifies the instance
values such that the instance label is less dependent on the protected attribute(s).

In-processing methods. In-processing methods modify the learning algorithm to
eliminate discriminatory behavior. These interventions are typically learner-specific.
For instance, [ZVGRG17| add fairness-related constraints in the objective function
of a logistic regression model to account for fairness. Their fairness measure aims at
minimizing the group differences w.r.t. FPR (false positive rate), FNR (false nega-
tive rate), or both. In [KXPK18], authors consider the problem of biased class labels,
and assume the existence of an unbiased latent distribution. To learn its param-
eters, they propose an iterative training approach that re-adjusts instance weights
in order to minimize discrimination. In [KCP10], authors propose a discrimination-
aware decision tree model by tweaking the splitting attribute criterion to consider not
only information gain w.r.t the class attribute but also heterogeneity w.r.t sensitive
attribute. The model is optimized for statistical parity w.r.t. ground truth labels.
In [DIKL18], authors include sensitive attributes in the learning process by utilizing
a joint loss function that makes an explicit trade-off between fairness and accuracy.

Post-processing fairness-aware methods Post-processing methods either mod-
ify the results of a trained classifier to ensure the chosen fairness criterion is met, or
alter the decision boundary of a classifier to mitigate unfair outcomes. In [KCP10],
authors investigate how to force a decision tree to make fair predictions by modifying
the leaf labels of the tree to opt for statistical parity. In [PRT09a], authors change
the confidence values of CPAR classification rules, while in [CV10] authors alter the
probabilities in Naive Bayes models to account for fairness. In [FKL16] authors inves-
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tigate fair outcomes in ensemble classifiers such as boosting by shifting the decision
boundary of a trained AdaBoost learner until the statistical parity fairness criterion
is fulfilled. In [HPS*16], authors set thresholds to predicted outcomes of a classifier
in order to achieve same error rates for protected and non-protected group. An ex-
tension of this work [PRWT17], analyzes how to obtain calibrated classifiers under
the same error rates among groups. Finally, in [ABD"18] they build a fair classifier
out of the predictions of another black-box classifier.

Fair representation methods. Fair representation methods try to approximate
a transformation function, which transforms the data into a lower fair dimensional
space. This fair dimensional space may satisfy one or more of the following constrains:
i) the correlation between the protected attribute and the non-protected attributes
is minimized, ii) the correlation of the protected attribute and the class labels is
minimized, and iii) the reconstruction error between the protected and non-protected
group is minimized. In [STMT18|, authors extend standard PCA and propose the
Fair-PCA, which forces the reconstruction error among protected and non-protected
groups to be similar. In [LSLT16], authors propose non-linear fair transformations
through a variational autoencoder combined with maximum mean discrepancy reg-
ularizer to mitigate dependencies between sensitive attributes and latent representa-
tions. A holistic approach is presented in [ES16], where the authors combine the fair
representations of an adversarial neural network, formulated as a minimax problem,
with a neural network to mitigate unfair outcomes. The purpose of the adversarial
neural network is to eliminate the dependencies of sensitive attributes to the latent
space while the classifier is trained to mitigate unfair outcomes w.r.t statistical parity.
These two parts are trained together under a combined loss function. An extension of
this work is proposed in [MCPZ18], where the authors obtain fair representations by
combining an autoencoder with an adversary, while training a neural network to be
fair under a joint loss function, for various fairness notions such as statistical parity,
equal opportunity, and equalized odds.






Tackling Class-Imbalance in Semi-Supervised
Learning

In this chapter, we investigate the problem of class-imbalance in semi-supervised
learning. Semi-supervised methods are essential when data suffer from label scarcity
since standard supervised learning methods won’t work upon such sort of data due
to lack of labels and the impracticality of (human) labeling (for large scale datasets).

For the purpose of this study, we focus on a popular task, namely sentiment
analysis, that aims to gain insights into opinionated textual data. More analytically,
we employ textual data from Twitter since huge amounts of unlabeled textual data
are generated on a daily basis. We present the insights from our annotation process
regarding the effect of different semi-supervised learning approaches, namely Self-
Learning, Co-Training, and Expectation-Maximization (EM).

Although semi-supervised methods are the most appropriate ones to handle data
with limited labels, as described in this chapter, they are prone to propagate class-
imbalanced predictions. To tackle this aggravation by the semi-supervised learning
methods, we combine data augmentation such as sampling methods, distortion, and
semantic-similarity in the semi-supervised learning process in order to equalize the
class distribution. Our results show that semi-supervised learning, coupled with data
augmentation, significantly outperforms the default semi-supervised annotation pro-
cess.

3.1 Introduction

A huge amount of opinions is generated on a daily basis in social media like Twit-
ter and Facebook referring to essentially every entity - products, persons, brands,
events or topics. Opinions are valuable for not only consumers, who benefit from
the experiences of other consumers, in order to make better buying decisions but
also for vendors, who can get insights on what customers like and dislike about their

27
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products [LYAH13].

Such sort of data are freely available nowadays; however, due to their amount
and complexity, a proper analysis is required in order to gain insights. The analysis
of such sort of data are investigated in the areas of sentiment analysis and opinion
mining [PL1T08, SNZ16]. Sentiment analysis aims at characterizing the sentiment
content of a text as either positive or negative (some approaches also consider the
neutral class).

Traditionally, sentiment analysis is investigated in the fully-supervised learning
setting, assuming that a fully labeled training set is available, e.g., [PT10, MGLO09,
PNS*10, PL05, PLV02, YZL09]. However, despite its volume, the amount of labeled
data are limited and acquiring (human) labels for all instances at this scale is imprac-
tical. Therefore, standard supervised learning methods are not applicable and new
methods are required that can exploit both (few) labeled and (huge) unlabeled data
for learning a supervised model.

Semi-supervised learning addresses this problem by leveraging unlabeled data,
together with the labeled ones, to learn a supervised model. In this work, we employ
three well known semi-supervised learning approaches, Self-Learning, Co-Training
and Expectation-Maximization (EM), in order to annotate a huge collection of tweets
covering the whole year 2015. However, semi-supervised learning does not consider
class imbalance, which is a very common problem in many applications [HM13]. In our
learning setup, there is a strong imbalance towards the positive sentiment class. The
problem of class imbalance in the original dataset is further aggravated via the semi-
supervised learning process. To this end, we propose to integrate data augmentation
techniques in the semi-supervised learning process to re-balance the classes, and we
investigate different forms of data augmentation that are applicable to this domain.

We summarize our findings from the annotation process which cover a variety
of interesting aspects, and we make our annotations available to the community in
an attempt to provide more complex datasets with temporal characteristics that can
facilitate further research in the areas of sentiment analysis and data stream mining,
in general. Our contributions are summarized below:

o We label a big Twitter stream dataset with limited labels consisting of 228M
tweets without retweets and 275M tweets with retweets; the collection spans
the whole year 2015 and is therefore also appropriate for temporal analysis. We
make our labels available to the community to facilitate the development of new
methods for sentiment analysis and stream mining in general and for evaluation
purposes.

o We extensively evaluate the performance of different semi-supervised learning
approaches, namely, Self-Learning, Co-Training and EM, and how it is affected
by the amount of labeled data, the amount of unlabeled data and the classifier’s
confidence threshold.
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o We employ data-augmentation with semi-supervised learning in order to tackle
the problem of class imbalance that exists in the original dataset, and it is
further aggravated by the iterative semi-supervised learning approaches. We
show that augmentation can help in tackling the class imbalance problem.

« We report on the impact of data redundancy (via retweets) in the performance
of the different models. As retweets can be considered as a natural form of data
augmentation, we also report on their impact on class imbalance.

« We process the data in two different modes: i) as a batch, where labeled and
unlabeled data are available to the algorithm from the beginning and ii) as a
stream, where both labeled and unlabeled data are gradually available to the
algorithm as the stream progresses. We show that the latter approach with a
sliding window of three months achieves a comparable to the batch approach
accuracy while being more efficient.

« We provide a qualitative evaluation of our labeling process via crowd-sourcing.

This chapter is an extension of our previous work [IN17]. The major changes
include i) including EM in the evaluation as an example of semi-supervised learning
method with soft-assignments; ii) tackling the problem of class imbalance in the semi-
supervised learning process via data augmentation, iii) qualitative evaluation of the
derived labels via crowd-sourcing, and iv) comparison of our annotations to state-of-
the-art sentiment annotation tools.

The rest of the chapter is organized as follows: Related work is presented in Sec-
tion 3.2. In Section 3.3, we describe our dataset and how we derived the ground truth
for learning. The semi-supervised learning approaches are described in Section 3.4.
In Section 3.5, we describe the augmentation process to handle class imbalance. Our
experiments for batch and stream annotation, crowd-source evaluation and compari-
son to state-of-the-art methods are described in Section 3.6. Finally, conclusions and
outlook are presented in Section 3.7.

3.2 Related Work

Our related work comes from the areas of sentiment-analysis, semi-supervised learning
and large scale annotations.

3.2.1 Sentiment analysis

Due to the abundance of opinionated texts, there is a lot of research on sentiment
analysis regarding the effect of different learners, building domain-specific learners
and transferring across different domains. For example, [PLV02] examines the effec-
tiveness of machine learning algorithms such as Naive Bayes classifiers, Maximum
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Entropy models and Support Vector Machines to the problem of sentiment classifica-
tion. In a follow-up work [PL05], the authors investigate the rating-inference problem
for which instead of classifying reviews as positive or negative they try to determine
the score w.r.t a multi-point scale. [MGLO09] propose a framework for domain spe-
cific sentiment classification that employs lexical information with a model trained
upon a given corpus. A similar approach is proposed by [MCIT18] but for tem-
poral collections. [YZLO09] classify reviews from travel blogs using Naive Bayes and
SVMs combined with a character based N-gram model. [PT10] employ weighting
schemes from information retrieval such as tf-idf to improve the classification accu-
racy on sentiment classification tasks. [PNS*10] investigate sentiment classification
across different domains by combining domain-specific words from different domains.
Additionally, [HF19] propose an approach that determines phrasing bias, which de-
tect the use of subjective language towards specific events or other entities in terms
of words or phrases that are either one sided or inflammatory.

More recently, there is also a lot of work on sentiment analysis over temporal
data and data streams. For example, [[ON17] propose a classification framework for
opinionated streams which adapts to concept drifts that are detected as vocabulary
changes over a sliding window. [MSN18] consider the problem of sentiment classi-
fication under feature drifts, where different features might undergo different types
of temporal drifts and propose an ensemble of different experts, each specialized to
capture a particular trend. [UBM 18] propose learning entity-specific models, instead
of a global model to facilitate detecting local changes that are not always reflecting
in the global stream.

3.2.2 Semi-supervised learning

Semi-supervised learning addresses this problem by leveraging unlabeled data, to-
gether with the labeled data, to learn classification models. [NMTMO00, NMMO6]
propose an algorithm for learning from labeled and unlabeled documents based on
Expectation - Maximization and Multinomial Naive Bayes (MNB). The algorithm
first trains a classifier using the available labeled data, and probabilistically labels
the unlabeled ones. It then trains a new classifier using the labels of all documents.
The process is repeated until convergence. This basic algorithm was improved by two
extensions: by employing a weighting factor to modulate the contribution of unla-
beled data and by using multiple mixture components per class, instead of a single
one. [SSM11] propose a semi-supervised extension of MNB, called SFE, that uses
the estimates of word probabilities obtained from unlabeled data and class condi-
tional word probabilities learned from the labeled data, to learn the parameters of an
MNB classifier. [LD13] introduced MNB-FM a method that extends MNB to leverage
marginal probabilities of the words, computed over the unlabeled data. The marginal
probabilities are used as constraints to improve the class conditional probability es-
timates for the positive and negative classes. [ZHY*16] proposed MNB-WSC, which
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preserves reliable word estimates, as extracted from a sufficient amount of labeled
data. We also use MNB as our base model. Despite its class-conditional feature
independence assumption, MNB is known to perform moderately and in some cases,
it has been reported that its performance for short texts is equal or superior to more
complex models [WM12].

A comprehensive survey of semi-supervised learning approaches for Twitter is
provided in this recent survey [SCH16]. Similarly to us, they found that Co-Training
performed better with limited labels, whereas Self-Learning is the best choice when a
significant amount of labeled tweets is available. In contrast to the existing small scale
datasets they used for evaluation, we report on a huge collection covering the whole
year 2015. [DN09] experimented with a large variety of algorithms for semi-supervised
sentiment classification, including active learning, spectral clustering and ensemble
learning. Cross-domain sentiment classification is proposed in [AGO05], where the
authors exploit a small number of labeled and a huge amount of unlabeled data using
EM.

Self-Learning is categorized as a form of semi-supervised learning [Fra67]. The
central idea behind Self-Learning is that we can expand the training set by using the
most confident predictions of the classifier. Self-Learning might cause error propaga-
tion as the predictions of the classifier are then used for its training [HZ11, ZNS14].
To deal with these issues, Co-Training was introduced in [BM98] that combines two
different views of the data in two classifiers, which are then used together for the
expansion of the training set. The intuition behind this approach is that different
classifiers will make different errors and therefore one classifier can learn from the
other instead of just learning by itself as in Self-Learning. In [LWZL11] the authors
study class imbalance for semi-supervised classification. They use under-sampling
in order to generate multiple balanced training sets and during the iterations of the
semi-supervised process they dynamically change the classifiers by varying the fea-
ture space. [XWDL15] use negations and antonyms to generate an opposite view of
the training data; the original and the opposite view are exploited afterwards via
Co-Training.

3.2.3 Large scale annotation

TSentiment [GBHO09] is a dataset of 1.6 million tweets covering the period from April
6, 2009 to June 25, 2009, which are annotated as positive or negative through dis-
tant supervision. The training set consists of tweets with emoticons, which serve as
noisy labels. To the best of our knowledge this is the largest Twitter dataset for
sentiment analysis and is used extensively also in stream mining due its temporal
aspects [BF10, WZNS15]. TweetsKB [FIND18] is another interesting dataset, which
contains entity-related annotations such as co-entities, popularity and also includes
sentiment annotations via SentiStrength tool [KCWF12]. The dataset can be ex-
ploited to analyze social media archives e.g., [FISN18]. Finally, HSpam14 [SS15] is
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a dataset of 14 million tweets in English which are annotated with spam and ham
(or, non-spam) labels. The annotation process consists of four steps: a heuristic-
based selection of tweets that are more likely to be spam, a cluster-based manual
annotation, a reliable ham tweet detection and finally, EM-based label prediction for
the remaining unlabeled tweets. Our dataset covers a larger period, of one year and
therefore is more appropriate for such tasks.

3.3 Dataset description

The dataset and the different preprocessing steps as well as their effect on the dataset
are described in Section 3.3.1. In Section 3.3.2, we describe how we derive the training
set, i.e., labeled instances for the classification task. In Section 3.3.3 we provide an
exploratory analysis of the dataset with a focus on its temporal characteristics.

3.3.1 Data collection and preprocessing

The dataset has been collected! from the 2015 Twitter stream using its public stream-
ing API?, which provides a random selection of tweets (about 1% of all tweets). In
total, 1.9 billion tweets were crawled, in all different languages (English, Japanese,
Spanish, Greek, etc.). We selected only the English tweets which were not re-tweets
(as flagged by the API); the filtered dataset consists of 384 millions tweets (20%),
which generate 269 million distinct words.

We applied several preprocessing steps that are described below:

o Slang words replacement: We mapped slang words to normal expressions using a
slang word dictionary®. For example, “lol" was mapped into “laughing out loud'.
This resulted in a slight increase of the words.

o Links and mentions: Links and mentions, e.g., “https://example.com’, “@bbc",
were removed.

e Negation handling: We consider negations on verbs and adjectives. For the former,
we concatenated to a single verb, e.g., “don’t work" — “not_work'. For the
latter, we replaced the negation with its antonym, e.g., “not bad"— “good", using
WordNet list*.

e Special character removal: We removed punctuation and numbers. We removed
the symbol ‘4’ from hashtags and we treated them as normal words. We replaced

!The Twitter crawling collection project is part of the L3S research center initiative.
Zhttps://dev.twitter.com/streaming/overview

3www.noslang.com

“https://wordnet.princeton.edu/
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Figure 3.1: Preprocessing effects

repeated letters occurring more than two times in a row with two letters; e.g.,
“huuuungry” — “huungry”.

e Removal of emoticons: We also removed the emoticons from the training data,
aiming at classifiers that can learn from the word features. In general, we removed
all non-ASCII characters most of which were special types of emoticons. But, we
use the emoticons to derive the labels for the training set (c.f., Section 3.3.2).

e Stopword removal: We removed stopwords using Weka’s stopwords list .
o Stemming: We applied Porter stemmer.

e Removal of rare words: We removed rare words from the corpus, using a frequency
of 10 as the cut-off value.

o Remowal of short tweets: Finally, we removed tweets with less than four (< 4)
words after the aforementioned steps, similarly to [TV14].

The pre-processing resulted in a reduction of the corpus and of the vocabulary
(i.e., distinct words), c.f., Figure 3.1. In particular, the corpus was reduced by 41%
(from 384M to 228M tweets) and the vocabulary was reduced by 99,5% (from 269M
to 1,17M distinct words). Figure 3.2 shows the frequency distribution of the unique
words in the corpus, a total of 1.6B words. As we see, the majority of unique words
has less than 100 occurrences (almost 1M words). Around 150K unique words are

Shttp://weka.sourceforge.net/doc.dev/weka/core/stopwords/Rainbow.html
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Figure 3.2: Frequency distribution of unique words

occurring from 100 to 1K times, while only 18K unique words are occurring more
than 1K times.

3.3.2 Building the ground truth for learning

In the absence of human labels, we derive our ground truth for learning by combining
two approaches/experts: i) an emoticon-based approach and a sentiment lexicon ap-
proach (using SentiWordNet%). Our idea is to consider as ground truth those tweets
for which both experts agree in their labellings.

Deriving labels from emoticons Using a list of positive” and negative® emoticons
we identify tweets with clear sentiment; those are tweets with only positive or only
negative emoticons, which we then classify accordingly. This approach is similar to

[GBHO9].

In our 220M tweets dataset, only 10,1M (4.4%) contain emoticons. Out of 10.1M
tweets with emoticons, 3,8M (37%) were classified as clear positive (those with only
positive emoticons), 1,5M (15%) as clear negative (those with only negative emoti-
cons), 4,8M (48%) as mixed cases (both positive and negative emoticons). Only
tweets with clear emoticon-based sentiment, a total of 5.3M (=3.8M+1.5M) tweets,
were used for building the ground truth.

Shttp://sentiwordnet.isti.cnr.it/
TPositive emoticons : ¢) =] :] :} ;> :>) ) : D =) ;) :
8Negative emoticons : —c: [: {:<:—(:/:—[:c:—
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SWN. Pos. SWN. Neg. SentiW. Neutral
Emot. Pos. | 2,211,091 840,787 807,887
Emot. Neg. | 1,032,536 316,662 157,322

Table 3.1: Emoticon-vs SentiWordNet-based labellings. Agreements marked in bold-
face.

Deriving labels from SentiWordNet SentiWordNet [BES10] is a dictionary of
words and their associated sentiment. The words might appear multiple times as
different part of the speech (POS). Therefore, we first find the POS of each word in
a tweet using Stanford’s POS tagger [TKMS03| and considering the whole tweet to
derive the context. Then, we calculate for each tweet its overall score by aggregating
the scores of its component words from SentiWordNet; for the aggregation, each word
is weighted with a harmonic series [GGT16]. A word’s sense is associated to a score
that is calculated by computing a weighted average of the differences between the
positivity and negativity scores assigned to the various senses of the word. Same
as in [BESS13], we employ Harmonic mean function (3.1) to aggregate the different
senses of a given word since the senses are sorted according to frequency in descending
order [GGT16].

n
H= - (3.1)
— ==
Ty X9 Tn

Building the ground truth The results of juxtaposing the emoticons- and SentiWordNet-
based labels are presented in Table 3.1. We considered as our ground truth the true
positives, i.e., tweets where both emoticon-based and SentiWordNet-based labeling

agree. SentiWordNet supports also neutral class as shown in Table 3.1, however due

to the inability of emoticon-based approach to distinguish efficiently the neutral class,

we employ only the positive and negative class tweets hereafter. Our final ground

truth dataset consists of 2,527,753 tweets. From these roughly 2,5M tweets, 87.47%

are positive (2,211,091 tweets) and the rest 12.52% (316,662 tweets) are negative.

An interesting observation from Table 3.1 is the disagreement between the two
labeling experts: distant supervision using emoticons and SentiWordNet. A profound
reason is the existence of the extra neutral class in case of SentiWordNet. However the
sources of disagreement extend beyond this; in particular, SentiWordNet is a static
database which has been generated upon WordNet Gloss Corpus’, a corpus of man-
ually annotated WordNet synset definitions. Such a database does not capture the
large variability of words in a social stream (due to e.g., the creation of new medium-
specific words like hashtags), in fact the coverage is pretty narrow [MCIT18]. On the
other side, SentiWordNet contains high quality sentiment annotations comparing to

9http://wordnetcode.princeton.edu/glosstag.shtml
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Figure 3.3: Dataset distribution on a monthly basis

the distant supervision approach that relies on emoticons as proxies for sentiment
and therefore it is prone to errors.

3.3.3 Temporal characteristics

The temporal distribution of our dataset is depicted in Figure 3.3 including both
ground-truth tweets (c.f., Section 3.3.2) and unlabeled ones. As we can see, the
amount of unlabeled tweets is vast compared to the amount of labeled ones and this
holds across the timeline. On monthly average, the unlabeled set is 82 times larger
than the labeled set. For the labeled tweets, the negative class is miss-represented
comparing to the positive class; the average ratio of positive to negative tweets per
month is 3. Finally, there are no gaps in the monitoring period, i.e., we have both
labeled and unlabeled tweets for each month.

3.3.4 Comparing ground truth to SentiStrength and Tree-
Bank

For our derived ground truth, we also provide a comparison with state-of-the-art
sentiment analysis methods such as SentiStrength [KCWF12] and Sentiment Tree-
Bank [SPWT13].

SentiStrength [KCWF12] has been trained on social web data and can predict
the sentiment (positive/negative) of short texts. In details, SentiStrength has been
trained upon 2,600 human-classified comments from the social network website “mys-
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Ground truth

Positive  Negative
Positive  81.18 % 22.43 %
SentiStrength | Negative 1.39 %  53.97 %
Neutral 1744 % 23.61 %

Table 3.2: SentiStrength vs Ground Truth labellings. Agreements marked in boldface.

Ground truth

Positive Negative
Positive  28.26% 5.69%
TreeBank | Negative 45.70%  75.48%
Neutral  26.04%  18.83%

Table 3.3: TreeBank vs Ground Truth labellings. Agreements marked in boldface.

pace.com”; which were extracted in December 2008. This method assigns both pos-
itive and negative scores in the range +1 to +5 for the positive class and —1 to —5
for the negative class. For our comparison, we consider as neutral those tweets where
both positive and negative scores are the same (in absolute values).

Sentiment TreeBank [SPW™13] has been trained upon 11,855 sentences which were
extracted from movie reviews in 2005 from the “rottentomatoes.com” website [PL05].
TreeBank is able to classify sentences of arbitrary lengths into five classes: “nega-
tive”, “somewhat negative”, “neutral”, “positive” and “somewhat positive”. For our
comparison, we merge “negative” and “somewhat negative” classes into the negative

class as well as “positive” and “somewhat positive” classes into the positive class.

In Tables 3.2 and 3.3, we compare SentiStrength and TreeBank to our ground
truth. SentiStrength has a higher agreement w.r.t the positive class (81.18%) - the
agreement w.r.t. the negative class is much smaller (53.97%) though it still comprises
the majority agreement class. For TreeBank, the situation is inverse; the agreement
on the negative class is the strongest (75.48%), whereas the agreement in the positive
class is much smaller (28,26%) and even worse; most of the positive ground truth was
labeled as negative in TreeBank.

As we can see, both methods exhibit high disagreement w.r.t our ground truth
labels. This is caused due to the different training data employed by the state-of-
the-art methods, the different media/application domains from which the data are
collected as well as the different spanning periods of each dataset. Moreover, we do
not consider the neutral class, in contrast to TreeBank and SentiStrength.
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3.4 Sentiment learning with limited labels

In our learning setup, we have a small number of labeled instances, denoted by L,
and a huge number of unlabeled instances, denoted by U. This is a typical set-up in
many real life applications as despite the huge amounts of data nowadays, only a small
fraction of these data are labeled and can be therefore directly used for (supervised)
learning. To deal with this issue, semi-supervised learning approaches exploit both
labeled and unlabeled data for training - the underlying assumption is that having
access also to the unlabeled data allow us to better understand the underlying class
distribution [ZGBDO09]. In this work, we investigate three popular semi-supervised
learning approaches: Self-Learning, Co-Training and EM described hereafter.

3.4.1 Self-Learning

The main idea of Self-Learning [Fra67] is to use the labeled set L to build an initial
classifier, then iteratively apply the model to the unlabeled corpus U and in each
iteration, expand the training set L with instances from the unlabeled corpus which
were predicted with high confidence by the classifier; the confidence is evaluated ac-
cording to a user-defined threshold . The pseudocode of the Self-Learning algorithm
is shown in Algorithm 2.

The initial training set 7" is the labeled set L (line 1). In each iteration, the
training set is expanded by including confident predictions from U (lines 5-8); the
expanded training set is used for building a new classifier (line 3). The procedure
continues until the stopping criterion is met e.g., when U is empty or after a certain
number of iterations or, if no further expansion is possible due to the threshold §.

Algorithm 2: Pseudocode of Self-Learning
Input: L: labeled set, U: unlabeled set, d: confidence threshold
Result: T': labeled set
T +— L
while (stopping criterion) do
® +— train classifier on T
for i=1 to |U| do
if (confidence of ®.classify(U;) > 0) then
T +— T U U;, where U; is the ¢-th instance in U
L Mark U; as labeled;

| Update U by removing labeled instances;

return 717

The intuition behind Self-Learning is that we can use the confident decisions of
the classifier to expand the training set, in some sort of exploitation of what the
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classifier already knows sufficiently well. However, since some of the these predictions
might be erroneous, Self-Learning might cause error propagation as at the end the
training set is a mix of original labels and predictions which are taken equally into
account for learning [HZ11, ZNS14]. Moreover, since the classifier mainly exploits
what it already knows and expands the training set through similar instances, it is
more difficult to learn new concepts.

3.4.2 Co-Training

Co-Training [BM98] assumes that the feature space, lets denote it by X, can be split
into two parts, X = (X!, X?), the so-called “views". The Co-Training algorithm trains
two classifiers ®!, ®2, each working exclusively on one view, X!, X?, respectively.
Initially, both classifiers are trained over the initial labeled set L, but each on its own
view, X;,i € {1,2}. In the original co-training approach [BM98], the unlabeled data
are used to expand the joint training set as follows: At each iteration, ®! classifies
a few unlabeled instances for which it is more confident about and appends them to
the joint training set. Similarly for ®2. The updated training set is then used for
building the two new classifiers, again, each classifier is trained on its own view.

We follow a slightly different version, c.f., Algorithm 3, by maintaining a different
training set for each classifier. We initialize Co-Training as above, with ®!, ®? clas-
sifiers built upon the initial labeled set L but each exclusively on one view, X!, X2,
respectively. At each iteration of Co-Training, the most confident predictions of each
classifier are used for the expansion of the training set of the other classifier. That
is, the most confident predictions of ®! are used to expand the training set of ®2 and
vice versa. Therefore, although both classifiers start with the same training set L
and unlabeled set U (lines 1-2), over the iterations and as one learns from the other,
the training sets of the two classifiers are different (lines 20-22). The procedure stops
when the stopping criterion is met e.g., when U! or U? are empty or after a certain
number of iterations or, if no further expansion is possible due to the threshold J.

The intuition behind Co-Training is that each classifier provides labeled data
to the other classifier, which the latter can use for learning. In contrast to Self-
Learning, in Co-Training a classifier does not learn by its predictions rather by the
confident predictions of the other learner (the first classifier might be non-confident
for those predictions). Thus, the two views (classifiers) working together manage to
progress learning while preventing each classifier to propagate its own error, as in
Self-Learning. Two assumptions are proposed for Co-Training to work well: first,
that each view (classifier) is able to learn the target concept given enough data, that
is, each view is sufficient for learning and second, that the views are conditionally
independent, that is the two views are independent given the class. Theoretical
results have shown that if the sufficiency and independence assumptions are satisfied,
co-training is guaranteed to work, however verifying that these assumptions hold in
real datasets is not straightforward [DLZ11]. Luckily, however, Co-Training has been
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Algorithm 3: Pseudocode of Co-Training

Input: L: labeled set, X', X?: the two feature views, U: unlabeled set, §:

confidence threshold

Result: T7,75: labeled sets
Tl,Tg — L,

Ul

U? «— U;

while (stopping criterion) do

®; <— train classifier on T} (using X; view);
®, «— train classifier on T, (using X, view);

TempSet, = 0;

TempSety = 0;

for i=1 to |U'| do

if (confidence of ®,.classify(U}) > §) then
TempSet; +— TempSet; U U}, where U} is the i-th instance in U*
L Mark U} as labeled

for i=1 to |U? do
if (confidence of ®.classify(U?) > §) then

TempSety +— TempSety U UZ, where U? is the i-th instance in U?
L Mark U? as labeled

Update U! and U? by removing labeled instances;
Ty «— T7 UTempSety;
Ty «— To U TempSety;

return 17, T5;
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successful in many real-world tasks even if the aforementioned conditions could not
be ensured, e.g.,[NGO0].

3.4.3 Expectation-Maximization (EM)

Expectation-Maximization (EM) belongs to a class of algorithms that iteratively es-
timate the maximum a posteriori probabilities in statistical models by exploiting the
structure of the data (labeled and unlabeled) [DLR77]. The algorithms consist of two
steps: the Expectation- or E-step and the Maximization- or M-step. EM starts by
initializing model’s parameters based on the labeled data (expected distribution, E-
step). Afterwards, new instances are revealed to the model for which it tries to fit the
current probability distribution to include the new data (M-step). These two steps
are repeated until the stopping criterion is met e.g., maximum number of iterations
is achieved or the current distribution does not change from the E-step to the M-step
(convergence).

The EM pseudocode is shown in Algorithm 4. A classifier is trained upon the
initial labeled data L (line 2). Afterwards, the classifier is employed to assign
probabilistically-weighted class labels to the unlabeled data U (lines 4-7). Then,
the classifier is rebuilt upon the labeled data and the unlabeled data which have been
labeled by the previous classifier (line 8). The procedure is repeated until the stop-
ping criterion is met (lines 3-9). The final classifier ® is used for final labeling of the
unlabeled data U (lines 10-12).

Algorithm 4: Pseudocode of EM

Input: L: labeled set, U: unlabeled set

Result: T': labeled set

T =0;

® +— train classifier on L;

while (stopping criterion) do
for i=1 to |U| do

®.classify(U;), where U; is the i-th instance in U

L Mark U; as labeled;

| @ «— train classifier on LU U;
for i=1 to |U| do
d classify (U;);
B T+—TU Ui;
return 77

The algorithm guarantees improvement of a parameter’s estimation through each
iteration if the mixture model assumption holds [DLR77]. If the model is wrong
though, the unlabeled data may actually hurt the performance [CCCO03]. Moreover,
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EM is prone to local maxima and if a local maximum is far from the global maximum,
unlabeled data might again hurt the performance of the learner [Nig01].

3.4.4 Discussion

We employ three well known semi-supervised methods to exploit the unlabeled data
U together with the labeled data L in order to obtain more accurate predictions.
All methods use unlabeled data to modify hypotheses obtained from labeled data
alone. However each method comes with its own advantages and limitations. Self-
Learning is an easy-to-use algorithm but it can propagate errors in the predictions
which affect the next iterations and eventually the final result. Co-Training can
overcome to some extent this problem by relying on two different learners that train
each other by providing confident predicted labels. However, Co-Training works well
under the sufficiency and independence assumption which do not always hold for
real-world datasets. Finally, EM with generative mixture models tries to maximize
the likelihood estimates of a model’s parameters based on the data. However, it
may perform poorly if the assumption on the correlation between classes and model
components is violated and it might get stack to some local maximum. Moreover,
EM can be extremely slow when data are multi-dimensional. Finally, both Self-
Learning and Co-Training make hard assignments, whereas EM is the only method
that probabilistically assigns an instance to all classes (soft assignment).

3.5 Overcoming class imbalance via data augmen-
tation

Except for label scarcity, our learning setup is also characterized by class imbalance.
In particular, the positive class is constantly overrepresented over the stream compar-
ing to the negative sentiment class (c.f., Figure 3.3). Models trained upon imbalanced
data learn mainly the majority class while ignoring the minority [HM13]. In our case,
the problem is aggravated due to the propagation of the predicted labels in the next
rounds of the semi-supervised learning process. As a result, the tendency of the mod-
els towards the majority class is much higher in the final models, as we also show in
our experiments (c.f., Section 3.6.6).

Traditionally, class imbalance is handled through oversampling (from the minority
class) and/or undersampling (from the majority class). Both approaches, however,
come with limitations [DH*03, EJJ04]; in undersampling, one cannot control what
information about the majority class is thrown away, whereas in oversampling, no
new information is added to the training set, rather some instances from the minority
class are replicated thus having a stronger effect on the classifier. In this work, except
for oversampling and undersampling, we also employ data-augmentation techniques
for generating plausible pseudo-instances for the minority class in order to correct for
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Figure 3.4: Augmentation-assisted semi-supervised learning

the class imbalance.

Augmentation is integrated into the semi-supervised learning process in an at-
tempt to control the class imbalance problem over the training iterations. An overview
of our approach is depicted in Figure 3.4. The training set is re-balanced using data
augmentation (Section 3.5.1) and the semi-supervised learning process takes place as
before but over the balanced data. We consider the labeled set balanced when the
difference between positive (P,) and negative (P_) instances is smaller than a user
defined class-balance threshold € (in our experiments we set € = 20%).

3.5.1 The Data Augmentation Process

Given an original binary classification dataset D with class imbalance (without loss
of generality, let us assume that the negative class is the minority, i.e., |P_| << |P,|
for which |P_| is the amount of negative instances and |P,| the amount of positive
instances), our goal is to build a balanced dataset D’ via data augmentation, i.e., to
generate new instances out of the original instances by applying domain-specific, label-
preserving transformations. We refer to the generated instances as pseudo-instances
and to D’ as augmented dataset. Note that D C D'.

We propose two augmentation techniques: semantic augmentation (Section 3.5.1)
and blankout corruption (Section 3.5.1) for balancing the classes, beyond the well-
known under-sampling and over-sampling approaches (Section 3.5.1). The former
employs semantic similarity between words (via word-embeddings) in order to create
semantically similar instances out of the original instances. The latter corrupts the
training instances by removing information (words) from the original instances and
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thus, creates corrupted versions of the original instances. Both techniques are feature
transformation techniques, i.e., they change the individual features/words. In order
to ensure that the augmented instances will preserve their labels, we “transform” only
non-sentimental words.

The words with a score higher than zero are considered as sentimental words, the
rest as non-sentimental. For our dataset 38,222 words were found to be sentimental
while the remaining terms (1,132,729) were filtered out.

Data augmentation via semantic similarity

To generate pseudo-instances of the same class, we employ the semantic similarity
of words as captured through word embeddings [MSC*13]. Our idea is to generate
pseudo-instances by replacing words in the original document with semantic similar
words. In particular, for a selected word w occurring in an original document d, we
generate its similar words based on their embedding vectors and we select randomly
one of the top-k similar words w’ to replace the original w in the pseudo-instance d'.
We only consider words which are sentimental. As an example, the text “I love this
car very much" could generate “I like this car very much".

There exist different word-embedding versions based on the data used for their
training. In this work, we employ Glove word embeddings [PSM14] which have been
generated by 2B tweets. For each sentimental word in our corpus we generate the
top-k most similar words based on Glove embeddings (in our experiments, we set
k = 10). A list of top-k similar words, called similarity-list, is generated from the
aforementioned process which contains 33,037 terms (the remaining 5 thousand words
were not included in Glove embeddings).

Given an instance d, the procedure for generating a pseudo-instance d’ out of it is
as follows: for the sentimental words w € d, check if w exist in the similarity-list. If
not, ignore w. Otherwise, replace w with a randomly selected similar word from its
top-k semantic similar words according to Glove.

Data augmentation via corruption

Corruption of images via noise is a common transformation in the image domain and
aims at building more robust machine learning models [GR06]. We follow a similar
idea for text: we generate pseudo-instances by deleting a (randomly selected) word
from the original document. To ensure that the class label is preserved, we do not
remove negations or sentimental words (c.f. Section 3.5.1 on sentimental words).

To ensure that the resulting document is still plausible, we apply corruption to
sufficiently long documents, namely to documents of at least four words as suggested
by [TV14]. As an example, the text “I don’t like the morning traffic" could be
transformed into “I don’t like the traffic'. Since our target is class imbalance, we
generate pseudo-instances only for the minority class.
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Oversampling and Undersampling

Oversampling (shortly, Over.) and undersampling (shortly, Under.) do not operate on
the feature level but rather on the instance level. Oversampling is repeatedly applied
on the minority instances, by randomly duplicating instances, until the difference
between positive and negative instances is less or equal to the class-balance user
defined threshold e. Undersampling is applied on the majority class by randomly
removing instances from the majority class until the threshold € is met.

Moreover, we used a combination of (random) oversampling and undersampling
(shortly, Over. & Under.) that works as follows: (i) first undersampling is applied by
removing half of the majority’s instances (b) if there is still class imbalance (according
to the user defined class-balance threshold), oversampling is applied on the minority
instances until the threshold is met, otherwise the process terminates.

Discussion

Augmentation techniques like semantic similarity and corruption have a similar goal
to oversampling /undersampling, namely to balance the population of the two classes.
There are however fundamental differences between the different approaches and each
one comes with its own assumptions and limitations. On the one hand, oversampling
does not add any new information to the process and can also amplify existing noise by
duplicating noisy instances. On the other hand, undersampling may result in remov-
ing valuable information from the dataset which can degrade the overall performance
of the model. Semantic augmentation depends on the quality of the pre-trained word
embeddings. If the employed word embeddings come from a different corpus than the
applied then the dictionary intersection between word embeddings and the corpus
will be limited. In addition, polysemous words may totally change the context of a
sentence; for example, “I like apple products" which refers to the famous company
can be converted to “I like vegetable products". Corruption can also change the sen-
timent of a sentence; for example, “I support banning smoking in public areas" can
be converted to “I support smoking in public areas". Finally, a common pitfall in all
augmentation methods is that by augmenting already noisy and/or biased instances
the reinforcement of noise and mistakes is inevitable and therefore the overall data
quality is degraded.

3.6 Experiments

We report on the Twitter dataset introduced in Section 3.3. We employ Multinomial
Naive Bayes (MNB) as our basic classifier for Self-Learning, Co-Training and EM. We
choose Naive Bayes as our base learner due to its ability to handle huge amounts of fea-
tures, while being tolerant to irrelevant features. Moreover, due to its simplicity, it can
be trained upon vast amounts of training data extremely fast [NMTMO00, NMMOG6],



46 Chapter 3 Tackling Class-Imbalance in Semi-Supervised Learning

compared to e.g., neural networks such as [SPWT13] require up to 5h for training
for small scale datasets (less than 10K instances). Finally, it can cope with dynamic
feature spaces and errorless model update, both important properties for our stream
evaluation. For the implementation!®, we have used Spark’s distributed environment
(version 1.6) and its Machine Learning library MLIlib [MBY"16].

Co-Training requires two different feature spaces. Therefore, except for the uni-
grams we also experimented with two different feature sets: (i) bigrams: the feature
space was extracted from the pre-processed text, as described in Section 3.3, (ii) lan-
guage features: we extracted also POS tags using Stanford’s POS tagger [TKMS03]
as well as syntactic features like number of words in capital, words with repeated
characters, links and mentions. Moreover, we employed a dictionary which contained
sentimental hashtags [MKZ13] and counted the occurrences of positive and negative
hashtags in our tweets, if any (the extraction was done over the original tweets, not
the preprocessed ones). We refer to this feature space as “SpecialF".

Therefore we have two alternative feature setups for Co-Training;:

. . 1

° Co-Tralmng [unigrams-bigrams]
. . 2

¢ CO—TI'alIlng [unigrams-SpecialF]

These views are not conditionally independent. Nonetheless, recent works indicate
that relaxation of the independence criteria does not have much impact on the per-
formance [BCM*13, LZX*13, ZTZX14, BBY05]. For the EM and Self-Learning ap-
proaches, we used unigrams (after pre-processing).

Our evaluation examines the performance of the different semi-supervised learning
approaches w.r.t. the following aspects:

 batch vs stream annotation setup (Section 3.6.1, 3.6.2, respectively)
o effect of augmentation on class imbalance (Section 3.5)
o effect of redundancy (re-tweets) on performance (Section 3.6.5)

 a qualitative evaluation of the derived labels based on crowd-sourcing (Sec-
tion 3.6.3).

3.6.1 Performance of batch annotation

We split our ground truth (2.5 million tweets) in 10 folds, 1 of which is used for
testing and the rest, together with unlabeled data predictions, are used for training.
In each iteration of the 10-cross-validation process, the test set is fixed, the training set

Source code and data are available at: https://iosifidisvasileios.github.io/Semi-Supervised-
Learning/
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however is expanded through the addition of (unlabeled) tweets that were predicted
with high confidence by the classifier. We report the averaged results of 10-fold cross-
validation in terms of classification accuracy for Self-Learning and Co-Training, under
different confidence thresholds ¢ that determines which of the classifier predictions
are incorporated in the training set. For EM, we do not set any threshold since it is
the algorithm’s property to maximize the data likelihood based on the predictions.

Self-Learning-based batch annotation

In Figure 3.5 (top) we display the accuracy of the Self-Learning approach under
different confidence thresholds 4, in the range [65%-100%] and how, the accuracy
changes as the algorithm iterates through the remaining unlabeled tweets. We stop
at b iterations as the algorithm manages to annotate almost all unlabeled tweets
within those iterations. We also show the accuracy in the initial training set, i.e.,
before expansion.

The accuracy of Self-Learning drops comparing to the accuracy of the initial
model (trained in the initial labeled set L); this is to be expected as the training set
is expanded through predictions. The drop is more drastic in the first iteration. The
reason is that the 1st iteration results in the largest expansion of the training set as
a large number of predicted instances is added to the training set therefore affecting
the extracted models. The expansion depends on the threshold ¢, as higher values are
more selective and therefore result in smaller expansion. The training set expansion
under different ¢ thresholds and over the iterations is shown in Figure 3.5 (bottom).
At 6=65%, for example, the expanded training set is about 8,100% larger than the
original training set L.

The accuracy drops with . The decrease is directly related to the amount of
expansion of the training set. For the low ¢ values, the decrease is very small after
the first two iterations; the reason is that the bulk of predictions was already added
to the training set in the first two iterations and therefore the addition of the ne
predictions does not influence the classifiers. For larger ¢ values (90%-95%) though,
the accuracy drops faster as the corresponding training set expands more gradually.
The only exception is § = 100%; the accuracy does not change because the training
set is hardly influenced, as this threshold is very selective and therefore only a few
predictions can satisfy it.

The annotated dataset is depicted in Table 3.4: for different § we report the
amount of positive, negative and unlabeled tweets, i.e., tweets that remained unla-
beled after the fifth iteration. As we can see the more selective § is the more tweets
remain unlabeled, with the extreme case of 6 = 100% where almost all tweets (99.71%)
remained unlabeled. We report the percentage of positive and negative annotations
over the labeled set and not over the complete dataset, in order to highlight the
class distribution of the predicted labels. In the last row of the table we also report
the class distribution in the original training set, i.e., before expansion. The major-
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Figure 3.5: Batch annotation with Self-Learning: accuracy and labeled set growth
under different ¢ values while the algorithm iterates through the remaining unlabeled
tweets.

ity of the predictions refers to the positive class, on average 88% of the predictions
are positive and 11% negative. As the confidence threshold increases, the positive
class percentage in the predictions also increases. The higher percentage of positive
class predictions (99,86%) is manifested with a threshold of 100%), implying that the
classifier is more confident about the positive class and therefore the training set is
expanded with more examples of the positive class.

Co-Training-based batch annotation

Figure 3.6 demonstrates the accuracy of Co-Training for two confidence levels (§ =
65% and § = 95%) and how the accuracy changes as the algorithm iterates through
the remaining unlabeled tweets set. We stopped at four iterations since after the 3rd
iteration the number of unlabeled tweets is very small.

The best performance is achieved when we learn from unigrams (1st classifier) and
bigrams (2nd classifier), i.e., by the Co—Trainingl[unigrams_bigrams} model. Hereafter, we
use this classifier for the comparison, and we refer to it as Co-Training. We show the
accuracy of this model under different thresholds ¢ in Table 3.5. We also show the
accuracy of the initial model, i.e., before the training set expansion; the expansion
results in accuracy loss (around 2%). As we increase 0, there is a small improvement
for values in the range 65%-80%, but the performance slightly drops with higher
values in the range 85%-95%. The only exception (which outperforms the initial
model) is § = 100% which is not affected that much as the training set is not much
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) positive predictions  negative predictions unlabeled
65% 201,860,127 (88.46%) 26,315,605 (11.53%) 1.13%
70% 200,212,418 (88.49%) 26,033,446 (11.50%) 1.97%
75% 198,296,101 (88.59%) 25,525,791 (11.40%) 3.02%
80% 196,017,401 (88.78%) 24,757,934 (11.21%) 4.34%
85% 193,134,363 (89.06%) 23,720,362 (10.93%) 6.03%
90% 189,271,805 (89.49%) 22,217,878 (10.50%) 8.36%
95% 183,012,328 (90.21%) 19,843,802 (9.78%) 12.10%
100% 650,450 (99.86%) 877 (0.13%) 99.71%

Initial Model ~ 2.211.091 (87,47%)  316.662(12,52%)

Table 3.4: Batch annotations with Self-Learning: Annotated results per class for
different confidence values 0.
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Figure 3.6: Batch annotation with Co-Training: accuracy for 6 = 65%, 6 = 95%
while the algorithm iterates through the remaining unlabeled tweets. The accuracy
is displayed for each Co-Training classifier-member.
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) Unigrams Bigrams

65% 90.65%  90.71%
70% 90.76%  90.66%
75% 90.81%  90.57%
80% 90.82%  90.51%
85% 90.78%  90.41%
90% 90.69%  90.28%
95% 90.50%  90.02%
100% 93.16%  89.03%
Initial Model ~ 93.07%  88.52%

Table 3.5: Average accuracy of Co—Trainingl[unigrams_bigrams] members under different

J.

) positive predictions  negative predictions unlabeled
65% 175,704,567 (76.64%) 53,547,361 (23.35%) 0.66%
70% 178,361,861 (78.26%) 49,544,295 (21.73%) 1.25%
75% 180,646,395 (79.90%) 45,419,649 (20.09%) 2.04%
80% 182,180,488 (81.52%) 41,287,186 (18.47%) 3.17%
85% 182,758,504 (83.04%) 37,300,375 (16.95%) 4.65%
90% 182,707,849 (85.06%) 32,069,200 (14.93%) 6.93%
95% 179,527,239 (87.43%) 25,810,993 (12.56%)  11.02%
100% 1,281,748 (99.60%) 5,116 (0.39%) 99.44%

Initial Model ~ 2.211.091 (87,47%)  316.662(12,52%)

Table 3.6: Batch annotation with Co-Training: Annotated results per class for dif-
ferent confidence values 9.

expanded due to the very selective J.

How the performance varies over the different iterations and for different thresh-
olds 0 and what degree of original training set expansion is achieved is shown in
Figure 3.7 (top). The picture is similar to Self-Learning, the first two iterations
produce the largest amount of confident predictions, especially for lower § values.

The annotated dataset is depicted in Table 3.6. Similarly to what we have ob-
served for Self-Learning, the more selective § is the more tweets remain unlabeled, at
d = 100% almost all tweets (99.44%) remained unlabeled. Moreover, the amount of
unlabeled tweets is smaller comparing to the Self-Learning in Table 3.4. Regarding
the class distribution of the predictions, the positive class is still predicted more often.
However and on the contrary to Self-Learning, the negative class is better represented
in this setting. The explanation lies on the fact that in Co-Training classifiers learn
from each other, rather than only from their predictions.
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Figure 3.7: Batch annotation with Co-Training: accuracy and labeled set growth
under different ¢ values while the algorithm iterates through the remaining unlabeled
tweets.

EM-based batch annotation

In Table 3.7 we report the accuracy of EM per iteration. We stop at 5 iterations as
after that the log likelihood does not change too much. The accuracy of EM drops
significantly as the number of iterations increases. In particular, starting with a good
initial model (93.52% in the first iteration trained on only labeled data) it drops to
83.53% in the fifth iteration trained upon all data. A possible reason is that the
unlabeled data alter the model in a way that hurts the overall performance. Note
here that in contrast to Self-Learning and Co-Training we do not use only qualified
instances for the dataset expansion (based on some threshold 0), rather we accept all
instances.

We also observe that the classifier predictions become more balanced over the
iterations with the amount of predicted negative instances growing by 210K from the
first to second iteration and by 860K instances from second to third iteraton.

Comparison of EM, Self-Learning and Co-Training

In Table 3.8 we report the average (over all iterations) accuracy of Co-Training and
Self-Learning for different ¢ values (for the Co-Training, we report here on the per-
formance of the best classifier member, i.e., the one built upon unigrams). As we
can see, Self-Learning accuracy decreases (in absolute numbers) with ¢ much faster
than the accuracy of Co-Training. As we can see from Tables 3.4, 3.6, Co-Training
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Iter. Accuracy (%) positive predictions  negative predictions

1 93.52 177,770,034 (77.03%) 53,023,155 (22.97%)
2 90.87 177,559,316 (76.93%) 53,233,873 (23.07%)
3 87.83 176,702,013 (76.56%) 54,091,176 (23.44%)
4 85.31 175,936,532 (76.23%) 54,856,657 (23.77%)
5 83.53 175,162,259 (75.90%) 55,630,930 (24.10%)

Table 3.7: Batch annotation with EM: annotated results per class over the iterations

o Self-Learning Co-Training (Unigrams)
65% 91.30% 90.65%
70% 91.11% 90.76%
75% 90.93% 90.81%
80% 90.75% 90.82%
85% 90.49% 90.78%
90% 90.31% 90.69%
95% 90.03% 90.50%
100% 93.38% 93.16%
Initial Model 93.07% 93.07%

Table 3.8: Batch: Self-Learning vs Co-Training, average accuracy for different ¢

produces more labels than Self-Learning and results in better class balance.

By comparing Tables 3.4, 3.6 and 3.7, we observe that Self Learning produces
more imbalanced outcomes as ¢ increases compared to Co-Training and EM. Since
the initial ground truth is already highly imbalanced, Self Learning propagates this
behavior stronger than Co-Training and EM, as it is the most sensitive to its own
errors method. As ¢ increases, Self Learning trains progressively upon its most confi-
dent predictions, which in the majority are positive instances. As we show in a later
section (c.f., Section 3.6.6), Self Learning propagates more positive errors compared
to Co-Training, as ¢ increases. Co-Training also produces imbalanced outcomes as o
increases, however at a much lower rate compared to Self Learning. In Co-Training,
the models may not propagate their own errors, however they are still subject to
errors; in our case, such errors might occur due to e.g., the fact that unigrams and bi-
grams do not provide completely independent feature spaces and therefore they might
fall in the same pitfall, as Self Learning, for high ¢ values. EM on the other hand, is
not bound to threshold (J) scores (in this scenario), thus it maintains a similar class
ratio to the initial ground truth dataset.

Thus far we expand the training set based on the confidence threshold 9, which
however results on an uncontrolled expansion (in terms of number of annotated in-
stances) of the training set. To evaluate the effect of the magnitude of dataset expan-
sion, we performed a controlled experiment where we gradually expand the training
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Figure 3.8: Batch: Effect of predicted instances used for dataset expansion (left) and
effect of labeled set (right) using Co-Training and Self-Learning, per iteration

set by adding classifier predictions. In particular, we built an initial model in the
original training set which we then used to annotate the unlabeled set. From the
annotated set we randomly select [10%-100%)] predictions/instances which we then
use for dataset expansion. The results are depicted in Figure 3.8a. As we can see
the accuracy drops as we further expand the dataset, for both Co-Training and Self-
Learning. As the ratio of annotated instances increases, Co-Training (bigram’s model)
experiences a faster drop in its performance.

Same behavior is exhibited by EM, in Figure 3.9a. As the unlabeled amount of
instances is increasing we observe that the accuracy is declining, faster for iterations
four and five. When the unlabeled set reaches 50% of its original volume size then EM
algorithm starts making more and more errors which indicates noise in the unlabeled
data. Note that such a drop is observed also when adding 10% of unlabeled data;
at 10% however, the unlabeled data are still around 10 times larger than the labeled
ones.

We also evaluated the effect of labeled data, by varying the amount of labeled data
and using a 10% sample of the unlabeled set for predictions (which scores the best
performance in Figure 3.8a). The results are depicted in Figure 3.8b. As we can see,
when the number of labels is small Co-Training performs better than Self-Learning.
With 40% of labels or more Self-Learning is marginally better.

The results of EM for the same experiment are depicted in Figure 3.9b. 10%
of the unlabeled data are employed by EM to find the maximum likelihood. One
interesting observation is that the first three iterations are improving and the training
set expands, while in the last two iterations accuracy declines. When the whole labeled
set is used, only the first iteration is improving while all the rest are decreasing.

Due to the bad performance of EM in the batch case and for efficiency reasons
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Figure 3.9: Batch: Effect of predicted instances used for dataset expansion (left) and
effect of labeled set (right) using EM, per iteration

(EM was significantly slower than the other two methods), we report hereafter only on
Self-Learning and Co-Training. We plan to further investigate the EM performance
in future research.

3.6.2 Performance of stream annotation

For the stream approach we process the data on a monthly basis, and we evaluate
how the temporal processing affects our methods. Let L; be the labeled data (ground
truth) for month ¢ and let U; be the corresponding unlabeled set. Our complete
dataset therefore is a sequence of the form: ((Ly,U), (Lo, Us), - - - (L12, Ua)) covering
the whole year 2015.

We evaluate two variants:

o without history: we learn our models (Self-Learning, Co-Training) on each
month ¢ based on the labeled data of that month L; and also by including
confident model predictions from the corresponding unlabeled dataset U;. We
evaluate those models with the ground truth for the next month L;,;.

o with history: for a month i, the labeled set upon which we build our model
consists of all labeled instances up to month ¢, i.e., Y ;| L;. Similarly, for the
expansion we consider all unlabeled instances up to month 1, i.e., 22:1 U;, and
we add to the training set those that were predicted with high confidence by
the model.

That is, we differentiate on whether we use historical data from the stream to build
our models, or we just use data from the current time point (month).
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Figure 3.10: Stream comparison between Co-Training and Self-Learning

In the above scenario all labeled data are used for training and testing, as each
month is tested with the labeled data of the next month. We refer to this as prequential
evaluation. We also consider a holdout evaluation: we split the original dataset into
a training and a testing set spanning the whole period. The evaluation procedure
is similar to prequential evaluation, the only difference is that we use for training
(testing) only data from the training (testing, accordingly) set of the given month(s).
That is not all labeled data are used for training/testing, rather a sample of them
according to the initial split.

Self-Learning vs Co-Training

The holdout evaluation is depicted in Figure 3.10a, the prequential in Figure 3.10b;
the performance is similar for both evaluations. For both Co-Training and Self-
Learning, history improves the performance. For the models with history, Co-Training
is better in the beginning but as the history grows its performance decreases and Self-
Learning results in the best performance. So Co-Training is more effective with fewer
labels; this is also evident in the non-history models, where we see that Co-Training
outperforms Self-Learning for almost all months.

From the above experiment it is clear that history improves performance. To
evaluate the effect of history’s length, we run the same experiment with a sliding
window of three months; in particular, we used the labeled instances of months [1-3]
for building an initial model, we expand the training set including predictions for
unlabeled instances in months [1-3] and we use the derived model to score the next
month i.e., month 4. The results are depicted in Figure 3.11. As we can see, Self-
Learning is better for almost all months. Again, we denote that Co-Training works
better with limited labels.
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Figure 3.11: Stream: Sliding (3 months)

Comparing to the full-history case, in the sliding window approach we have a small
decrease in the performance (less than 2.0%) but on the other hand much lighter
models and therefore better efficiency (time, memory). The amount of data for each
approach is depicted in Figure 3.12: labeled set is the original labeled data, training
set is the expanded dataset of labeled instances and confident classifier predictions
that was used for training.

As we can see, when we consider historical data, the amount of labeled and training
instances is increasing over time, whereas for the non-history version these amounts
are not changing that much over time. A similar behavior occurs for the sliding
window version.

The class distribution of the predictions is shown in Figure 3.13, for all different
window models: without history, with full history and with a sliding history of 3
months. For all window models, most of the predictions for both Co-Training and
Self-Learning refer to the positive class. Co-Training produces on average less positive
instances than Self-Learning. This is evident in the with-history and sliding-window
approach: Self-Learning produces more positive predictions than Co-Training. This
is due to the fact that Self-Learning is biased towards what it knows best (the positive
class in this case). On the contrary, Co-Training is less biased as the two classifiers
learn by each other.

To conclude the stream approach, Co-Training achieves the best performance
with limited labels; as the amount of labeled data increase, Self-Learning surpasses
its performance. Self-Learning is more biased to its own predictions comparing to
Co-Training and therefore it results in more positive predictions.
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Figure 3.14: Evaluation using Crowdflower platform

3.6.3 Crowd-Sourcing Evaluation

Except for the quantitative evaluation, we have also performed a qualitative evalu-
ation of the derived labels by crowdsourcing. There is a plethora of crowd-sourcing
platforms such as MTurk, CrowdFlower, CloudCrowd, ShortTask, MicroWorkers and
so on [VL13]. We chose CrowdFlower!!, a platform in which annotators work on
tasks such as data research tasks, transcription, categorization, text production for
product descriptions, etc. Almost 5 million contributors have completed more than
1 billion tasks so far.

In total 6,000 tweets were annotated by the crowd, selected as follows: we ran-
domly extracted 1,000 tweets from each corpus: GroundTruth with retweets, GroundTruth
without retweets, Self-Learning with retweets, Self-Learning without retweets, Co-
Training with retweets and Co-Training without retweets. We requested three votes
per tweet and filtered tweets which their average confidence score was less than 80%.
The average label confidence is computed based on the confidence score given by each
worker (in the range of [0,100]). After the filtering, we ended up with 3,928 crowd
annotated tweets. Figure 3.14 depicts the evaluation over our datasets.

Datasets which do not contain retweets have better accuracy than datasets with
retweets. We make these human-annotated tweets (3,928) available to the community
by providing the tweet id and the human-annotated label.

Uhttp: / /www.crowdflower.com/
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No Retweets Retweets
Self-Learning Self-Learning
Positive  Negative | Positive Negative
S Positive | 37.84% 15.25% | 43.72% 16.47%
% g Negative | 11.00%  48.96% | 8.00% 31.69%
N 01 Neutral | 51.16%  35.79% | 48.29%  51.85%

Table 3.9: SentiStrength vs Self-Learning. Agreements among predictions marked in
boldface.

Unigrams Bigrams
No Retweets Retweets No Retweets Retweets
CoTraining CoTraining CoTraining CoTraining
Positive Negative | Positive Negative | Positive Negative | Positive Negative
s Positive | 39.37%  21.04% | 42.30% 21.72% | 38.09% 13.62% | 44.37% 16.47%
g g Negative | 10.93% 30.62% | 9.86% 25.79% | 10.91% 48.89% | 7.78%  31.10%
n 2 Neutral | 49.70%  48.35% | 47.84%  52.49% | 51.00%  37.49% | 47.85%  52.43%

Table 3.10: SentiStrength vs Co-Training. Agreements among predictions marked in
boldface.

3.6.4 Comparing Self-Learnig and Co-Training to SentiStrength
and TreeBank

In this section, we compare our predictions to those of SentiStrength and TreeBank.

In Table 3.9, we compare SentiStrength to Self-Learning for each corpus: with
retweets and without retweets. We see that for the corpus which does not contain
retweets the negative percentage agreement is higher while the positive percentage
agreement is lower in contrast to the corpus which contains retweets. The same
behavior is observed in Table 3.10, where we compare SentiStrength to Co-Training.
In both comparisons and in contrast to TreeBank (Self-Learning and Co-Training
versus SentiStrength), we observe that SentiStrength tends to classify more tweets

No Retweets Retweets
Self-Learning Self-Learning
Positive Negative | Positive Negative
., Positive | 15.95%  4.40% | 18.32%  4.60%
€ 2 Negative | 40.50% 175.95% | 37.42%  60.64%
= A Neutral | 43.55%  19.66% | 44.26%  34.76%

Table 3.11: TreeBank vs Self-Learning. Agreements among predictions marked in

boldface.
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Unigrams Bigrams
No Retweets Retweets No Retweets Retweets
CoTraining CoTraining CoTraining CoTraining
Positive Negative | Positive Negative | Positive Negative | Positive Negative
Positive | 16.37%  6.10% | 18.00% 6.73% | 15.41%  3.64% | 18.66%  4.55%
Negative | 38.77% 62.41% | 37.33% 57.44% | 41.51% 65.41% | 36.95% 61.07%
Neutral | 44.86%  31.49% | 44.67%  35.83% | 43.07%  30.95% | 44.39%  34.38%

Tree
Bank

Table 3.12: TreeBank vs Co-Training. Agreements among predictions marked in
boldface.

as neutral. This occurs due to our SentiStrength setup, in which we consider as
neutral instances tweets that have same positive and negative score (absolute values).
In many cases, positive and negative scores are equally high, however SentiStrength
cannot determine which sentiment is stronger than the other.

For Sentiment TreeBank, we observe the same behavior as in SentiStrength com-
parisons, where positive agreement increases and negative agreement decreases be-
tween the corpus without retweets and corpus with retweets (Tables 3.11 and 3.12).
Negative agreement in both comparisons is much higher than positive agreement.
Moreover, we observe that the positive agreement, in both Self-Learning and Co-
Training comparisons, is much lower than SentiStrength while the negative agreement
is higher.

For the positively annotated tweets (by Self-Learning or Co-Training), TreeBank
classifies most of them as negative compared to SentiStrength e.g., SentiStrength
compared to Self-Learning has 11% disagreement, in the corpus without retweets,
while TreeBank has 40% disagreement.

In conclusion, comparing the performance of methods trained upon different
datasets is not easy, as already discussed in Section 3.3.4 regarding the ground truth
comparison. Tweets are far different from comments or reviews due to the char-
acter limitations, therefore the structure of a tweet can vary significantly [KK10]
compared to other texts. Moreover, the different spanning periods may lead to
feature drifts, i.e., changes in the features/words or their relevance to the different
classes [MSN18, HLJ16].

3.6.5 Performance under Redundancy (retweets)

Thus far, we reported on English tweets without redundancy (retweets). To evaluate
the impact of redundancy on the aforementioned methods we repeat all our experi-
ments with retweets. We perform holdout evaluation (67% training and 33% testing
split) and report here on the most interesting findings. In Table 3.13, same setup as
Table 3.8, we report on the performance of the redundant dataset. As we can see, the
accuracy values are lower comparing to the non-retweets case. Moreover, the drop in
the performance as ¢ increases is higher.



62 Chapter 3 Tackling Class-Imbalance in Semi-Supervised Learning

o Self-Learning Co-Training (Unigrams)
65% 87.09% 87.24%
70% 86.73% 87.09%
75% 86.42% 86.91%
80% 86.09% 86.68%
85% 85.75% 86.39%
90% 85.31% 86.04%
95% 84.71% 85.43%
100% 92.79% 91.25%
Initial Model 92.92% 92.92%

Table 3.13: Batch: Self-Learning vs Co-Training, average accuracy for different ¢
(Retweets version)

5 Self-Learning Co-Training Self-Learning Co-Training
RT. RT. ‘th RT. ‘th RT:

65% 1:8 1:4 1:2 1:2
70% 1:8 1:4 1:2 1:3
75% 1:8 1:4 1:2 1:2
80% 1:8 1:4 1:2 1:2
85% 1:8 1:5 1:2 1:2
90% 1:9 1:6 1:2 1:2
95% 1:9 1:7 1:2 1:2
100% 1:741 1:248 1:2 1:14

Table 3.14: Class Ratio (negative:positive) of the predictions for different datasets
and methods

The effect of redundancy on the class imbalance of the predicted labels is shown in
Table 3.14, where we display the negative: positive class ratio for different § values, for
Self-Learning and Co-Training for the dataset with retweets and the dataset without
retweets. It is clear that the class imbalance is significantly affected by duplicates.
For both methods, the predictions are more balanced for the dataset with retweets.
A possible explanation is that by eliminating the retweets, the negative class which
was already a minority (75%-25% in the dataset with retweets) became even more
underrepresented (87%-13% in the dataset without retweets). In the retweets version,
on the other hand, the redundancy acted to some extent as over-sampling (though
in our case, retweets come from both classes) and this helped the classifier to make
more balanced predictions.
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Figure 3.15: Self-Learning original

3.6.6 Performance of augmentation techniques

The performance of Co-Training and Self-Learning is evaluated using the area under
precision-recall curve (AU-PRC) which better reflects classifier’s performance, com-
paring to e.g., accuracy, in case of class imbalance [SR15] and also provides more
informative representations than AUC [HG09]. We perform holdout evaluation (67%
training and 33% testing split) and report AU-PRC and the number of predicted
instances per iteration. In addition, we show the ratio of the annotated corpus (in-
cluding ground truth while in Table 3.14 we show only the ratio of final predictions).

Self-Learning-based augmented batch annotation

Figure 3.15, demonstrates the performance of the original unmodified data same as in
Section 3.6.1. We observe the same behavior as before, e.g., performance is degrading
while ¢ is increased, however for § = 100% performance is maximized while the labeled
instances are significantly reduced compared to other thresholds.

On the other hand, undersampling, oversampling, their combination and blank-
out methods have better performance for low ¢ values (Figures 3.16, 3.17, 3.18 and
3.19). Moreover, by comparing these methods to the original Self-Learning procedure
in Figure 3.15, we observe that the performance is better when augmentation is em-
ployed. Also, the class imbalance problem is tackled as in each iteration the minority
(negative) class receives more instances compared to the original Self-Learning.

However, word embeddings do not perform equally good as the other augmenta-
tion methods. In Figure 3.20, we see that word embeddings have same behavior as
original Self-Learning. Also, the negative instances are fewer in all the other methods.
A probable reason of this behavior could be that the augmentation process generates
pseudo-instances of the opposite class. Swapping terms with other semantically sim-
ilar terms does not guarantee that the sentimentality of the terms will be the same.
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Figure 3.17: Self-Learning combined with over-sampling
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Figure 3.18: Self-Learning combined with under-sampling and over-sampling
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Figure 3.20: Self-Learning combined with word embeddings

) Original Blankout Glove Over. Under. Over.& Under.

65% 1:9 1:2 1:16 1:1 1:1 1:2
70% 1:9 1:1 1:18 1:1 1:1 1:2
5% 1:9 1:1 1:21 1:1 1:1 1:2
80% 1:9 1:1  1:24 1:1 1:1 1:2
85% 1:9 1:1 1:29 1:1 1:1 1:2
90% 1:10 1:1 1:36 1:1 1:1 1:2
95% 1:11 1:1  1:52 1:1 1:1 1:2
100% 1:10 1.7 1:11 1:7 1:7 1:7

Table 3.15: Self-Learning: Class Ratio (negative:positive) of the predictions for dif-
ferent methods

Even though we employ SentiWordNet to tackle this problem, it is not enough due
to the grammatical and syntactical structure of a tweet, therefore the performance is
degrading.

In Table 3.15, we show the ratio of negative, positive predicted instances per
method. In contrast to Table 3.14, this table includes the ground truth while the
latter shows the overall predicted instances, thus when 0 = 100% the difference is
significantly reduced. Blankout, oversampling (Over.), undersampling (Under.) and
the combination of the last two (Over. & Under.) methods tackle the problem of
class imbalance. Word embeddings on the other hand, are enhancing the gap between
the two classes.

Furthermore, we have performed two significant tests: paired t-test and McNe-
mar’s test, to compare original Self-Learning with the other augmentation methods.
For every method, we obtained highly significant results in both tests (for o = 0.01).
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Figure 3.21: Original Co-Training
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Figure 3.22: Co-Training combined with oversampling

Co-Training-based augmented batch annotation

For Co-Training, we report on both models: bigrams and unigrams in Figures 3.21,
3.22, 3.23, 3.24, 3.25 and 3.26. In Figure 3.21, the original Co-Training method is
shown for which unigrams are slightly better than bigrams. Nonetheless, by com-
paring the class labels and performance of original Co-Training with the augmented
methods, we observe significant differences. However, same as in Self-Learning the
word embeddings do not exhibit good performance compared to the other augmen-
tation methods.

Nonetheless, by comparing Tables 3.16 and 3.17, we see that word embeddings
reduce the gap between the two classes in the unigram model while the opposite
is happening in the bigrams model. The latter model however is trained based on
the predictions of the first model which implies that unigrams as feature space are
affected more than bigrams. Other augmentation methods such as oversampling and
undersampling deal with class imbalance efficiently by balancing the two classes while
maintaining high performance. In addition, same as in Self-Learning we performed
the two significant tests, namely McNemar and pair t-test for which we compared the
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Figure 3.23: Co-Training combined with undersampling
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Figure 3.24: Co-Training combined with over and under sampling
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Figure 3.26: Co-Training combined with embeddings

) Original Blankout Glove Over. Under. Over.& Under.

65% 1:4 1:2 1:3 1:2 1:1 1:1
70% 1:4 1:2 1:3 1:2 1:1 1:1
5% 1:4 1:2 1:3 1:2 1:1 1:2
80% 1:5 1:2 1:3 1:2 1:1 1:2
85% 1:6 1:2 1:4 1:2 1:1 1:2
90% 1:7 1:2 1:5 1:2 1:1 1:2
95% 1:9 1:2 1:6 1:2 1:1 1:2
100% 1:12 1:10 1:13 1:10 1:7 1:10

Table 3.16: Co-Training Unigrams: Class Ratio (negative:positive) of the predictions
for different methods

) Original Blankout Glove Over. Under. Over.& Under.

65% 1:8 1:1  1:14 1:1 1:1 1:1
70% 1:9 1:2 1:14 1:1 1:1 1:1
5% 1:9 1:2 1:15 1:1 1:1 1:1
80% 1:9 1:2  1:16 1:1 1:1 1:2
85% 1:9 1:2 1:19 1:1 1:1 1:2
90% 1:9 1:2 1:21 1:1 1:1 1:2
95% 1:9 1:2 1:26 1:2 1:1 1:2
100% 1:9 1:8 1:11 1:8 1:7 1:8

Table 3.17: Co-Training Bigrams: Class Ratio (negative:positive) of the predictions
for different methods
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augmentation methods with the original Co-Training. For all the methods and the §
values we obtained highly significant results (for 7 = 0.01).

3.7 Chapter Summary

In this chapter, we presented how to annotate large textual collections with sentiment
labels using distant supervision and semi-supervised learning. Our case study is
TSentiment15, a 228 million tweets dataset with no retweets and 275 million tweets
with retweets, spanning the whole year 2015. The motivation for this work is the lack
of large scale labeled datasets that span large periods of time, especially important
for stream mining research [SNZ16].

Except for the annotated datasets (with and without retweets) which we make
available to the community, our analysis resulted in interesting insights:
Co-Training performs better than Self-Learning with limited labels. Although both
Self-Learning and Co-Training benefit from more labeled data, after a certain point
(40% labeled data, c.f., Figure 3.8b) Self-Learning improves faster than Co-Training.
Both approaches result in more positive predictions (c.f., Tables 3.4 and 3.6), thus
favoring the majority class. Self-Learning moreover propagates the original class
imbalance to the successive iterations (c.f., Table 3.4). This is not the case for Co-
Training (c.f., Table 3.6). Surprisingly the performance of EM does not improve over
the iterations, probably due to huge volume of unlabeled data (|U]| is almost 91 times
larger than |L|) affecting the learner. A possible solution would be to select only
instances that are labeled with a high probability for some class for the expansion;
we leave this as part of future research. However, the predictions of the EM algorithm
over the iterations became more balanced.

For streaming, (full) history helps with the performance (c.f., Figures 3.10a and
3.10b). However, comparing to a sliding window approach, a sliding window of three
months history (c.f., Figure 3.11) performs almost equally well, while employing fewer
data, thus offering a good trade-off. The batch approach is better than streaming in
terms of accuracy, however the latter is much more efficient.

In our learning setup we deal, except for the label scarcity problem, also with class
imbalance with the positive sentiment class being highly over-represented comparing
to the negative class. To tackle the imbalance, we exploited data augmentation,
namely semantic augmentation through word-embeddings and corruption, as well as
traditional over-sampling and under-sampling techniques. The goal of the augmen-
tation process was to create more training data out of the existing training data
by adding variation through domain-meaningful and sound transformation. In both
cases, it was our intention to preserve the class labels while keeping the tweets plau-
sible; of course, this is not guaranteed as discussed already in the text and therefore,
augmentation might cause further degradation of the data quality. Based on the ex-
periments in Section 3.6.6, we see that augmentation techniques tackle the problem
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of class imbalance while maintaining very high performance. Compared to original
Self-Learning and Co-Training, methods achieved highly significant difference when
equipped with augmentation methods (according to paired test and McNemar test).

In the augmentation direction, we also investigated the impact of dataset redun-
dancy on performance. In particular, Twitter is characterized by high redundancy
through retweets. Having such a redundant training set helped class-imbalance as, to
some extent, it resembles over-sampling (though in our case, retweets come from both
classes). By comparing the two versions (c.f., Tables 3.8 and 3.13), we observe that
the retweet version has lower performance compared to the version which does not
contain retweets. However, there is a huge difference w.r.t class imbalance between
these two versions which can be observed in Table 3.14. We carefully removed dupli-
cates from the test set to ensure that our evaluation is not affected by the redundancy
(a similar effect has been studied for recommendation systems in [BNZ17]).

In our future work, we will investigate further data augmentation techniques as
a tool for expanding a training set in meaningful ways and tackling problems like
class imbalance. In particular, we want to focus on how to identify meaningful aug-
mentations for a given domain and also on what parts of the population should be
augmented to avoid noise generation and degradation of data quality.

Moreover, augmentation typically refers to label-preserving transformations; how-
ever, in certain applications including text, instances of the “opposite” class could be
generated. In text, for example one can turn a positive text into a negative one using
negations e.g., like “I like summer” — “I dont like summer” or “clever” — “stupid”.
Finally, we will investigate the impact of refined word-embeddings w.r.t the sentiment
task [YWLZ17] for our semantic augmentation procedure.






Dealing with Class- and Within-Class Imbalance to
Prevent Unfair Outcomes

Automated decision making based on big data and machine learning (ML) algorithms
can result in discriminatory decisions against certain sensitive groups defined upon
personal data like gender, race, sexual orientation, etc. Such algorithms designed to
discover patterns in big data might not only pick up any encoded societal biases in the
training data but even worse, they might reinforce such biases resulting in more severe
discrimination. The majority of thus far proposed fairness-aware machine learning
approaches focus solely on the pre-, in- or post-processing steps of the machine learn-
ing process to remove the encoded societal biases or prevent their propagation from
the induced models.

However, the fairness problem cannot be isolated to a single step of the ML
process. Rather, discrimination is often an artefact of complex interactions between
big complex data and algorithms, and therefore, a more holistic approach is required.
As we show in this chapter, both class- and within-class (rare cases) imbalance have an
impact on the discriminatory behavior of a classifier. To this end, we propose FAE
(Fairness-Aware Ensemble) framework that combines fairness-related interventions
at both pre- and post-processing steps. At the pre-processing step, we tackle the
problem of under-representation of the sensitive group, referred to as group imbalance
hereafter, as well as the problem of class-imbalance with the target class being the
minority class. At the post-processing step, we tackle the problem of class overlap in
the feature space by tweaking the decision boundary in the direction of fairness.

4.1 Introduction

Machine Learning powered by big data offers incredible opportunities for effective
decision making and automation. However, several recent incidents have raised con-
cerns about the implications of such systems in terms of fairness [otPP14]. Amazon’s
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models, to name but one example, that decide which regions of a city are eligible for
the prime service, excluded predominantly black ZIP codes in several US cities, like
Bronx [IS16]. According to Amazon, the protected attribute race was not used as a
predictor. Nonetheless, there might exist prozy-attributes to race which lead to dis-
criminatory decisions. Protected attributes and proxies are not the only causes of the
problem [CZ13]. Training data often reflect societal biases and are not representative
of the population (sample bias). Moreover, system bias might lead into generation of
biased data which result into biased models that further reinforce such discriminatory
policies, like in predictive policing [LI16].

Despite extensive research work in the area of fairness-aware learning, most of the
approaches isolate the problem and its solutions to a single step of the ML process,
namely, input data, algorithms or resulting models. While, we share the view on the
importance of working on the main source of bias, i.e., the training data as pointed
out by recent work, e.g., [ZVGRG17, CWV*17, KXPKI18], we believe that this in
itself is insufficient, and that in- and post-processing adjustments are necessary to
deal with discrimination. In addition, previous methods do not consider the class-
imbalance problem i.e., these approaches aim to minimize standard error error while
mitigating discriminatory outcomes. However, they end up rejecting more instances
from the minority class due to their inability to learn effectively the minority class.

To this end, we propose the Fairness-Aware Ensemble (FAE) framework, a holis-
tic approach that combines pre- and post-processing fairness-enhancing interventions
to deal with different bias factors and real-world data complexities, namely group
imbalance, class imbalance and class overlap. At pre-processing, we learn an en-
semble of ensembles through a combination of bagging and boosting; the bags are
carefully selected via stratified cluster sampling to ensure a balanced group- and
class-representation, whereas boosting on each bag forces the classifier to focus on the
hard-to-classify examples. At post-processing, the decision boundary of the learner
is shifted so that the target fairness criterion is fulfilled. Our experiments show that
such a joint consideration ensures better fairness- and predictive-performance.

4.2 Related Work

Pre-processing methods aim to tackle discrimination by “correcting” the training data
to eliminate any biases. Bias can be inherited from the input data, e.g., there might
exist proxies to sensitive attributes, or under-represented groups or biased class labels.
Among the most popular methods in this category are class-label swapping, instance
re-weighting, sampling, and instance transformation [KC12, IN18, CWV*17]. In-
processing methods modify the learning algorithm to eliminate discriminatory behav-
ior. These interventions are typically learner-specific [ZVGRG17, KXPK18, KCP10,
DIKL18, IN19a]. For instance, Zafar et al. [ZVGRG17] add fairness-related con-
straints in the objective function of a logistic regression model to account for fairness.
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Post-processing methods try to modify the model’s predictions or decision bound-
ary in order to ensure fairness [FKL16, KCP10, PRT09a]. Kamiran et al. [KCP10]
propose a fair decision tree learner that combines a fairness-aware splitting crite-
rion with post-processing leaf-relabeling. Fish et al. [FKL16] adjust the decision
boundary of a boosting model based on the confidence scores of the misclassified
instances. Finally, class-imbalance methods aim to deal with skewed class distri-
butions. Over the years, many methods have been proposed such as over-sampling
[EJJ04], under-sampling [DH"03], synthetic data generation like SMOTE [HBGLOS]
and boosting [LWZ09].

4.3 Basic concepts

We consider binary classification with A = {A;,..., A,,} being the attribute space
and Y = {y*,y "} the class attribute. Let dom(A;) be the domain of A;, and y™ is the
target class, for example, “receive a benefit”. Let SA € A be a protected attribute with
dom(SA) = {s,5}; s is the discriminated group (referred to as protected group), and
§ is the non-discriminated group (referred to as non-protected group). For instance,
SA =‘gender’ could be the protected attribute with s =‘female’ being the protected
group and 5 =‘male’ the non-protected. By combining sensitive attribute SA and
class Y values, we define four sub-groups: s, s7,57,5"; e.g., s~ denotes the protected
negative group, 57 denotes the non-protected positive group etc. We assume the
following learning challenges: class imbalance, that is |sT| + |57 < [s7| 4|57 |; group
imbalance, that is |sT| + [s7| < |$+ | 4+ |57| as well as class overlap, i.e, the positive
class y* overlaps with the negative class y~.

The goal of a fairness-aware classifier is to learn a function f(-) : dom(A4;) x

<o X dom(A,,) = Y, st. f(-) can generalize well to unseen instances and does not
discriminate against the protected group for the target class y™.

Discrimination measure: We adopt the equal opportunity measure (EQOP) [HPST16]
that compares the probability of being predicted as positive while belonging to the
positive class (TPR) between protected s and non-protected s groups:

EQOP: P(f(d) =y"[s*) — P(f(d) = y*5") (4.1)

EQOP € [—1,1]: a value close to 0 means fair outcomes, and is desirable, whereas
a value close to 1 indicates discriminatory behavior towards the protected group. A
value close to -1 indicates reverse discrimination towards the non-protected group. A
classifier f(-) is said to not discriminate if: | EQOP |< e. The user-defined threshold

€ controls how much discrepancy between the two groups is tolerated.

Predictive performance measure: The vast majority of existing works min-
imize the standard error rate, e.g., [ZVGRG17, KC12, CWV*17, KCP10, FKLI16],
which is not useful in case of class-imbalance as it mainly reflects the performance of
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the model in the majority class. Moreover, EQOP measure, (c.f., Equation4.1) which
relies on the TPR difference, is oblivious to the problem of class imbalance. As an
extreme case, if a classifier totally rejects the minority (positive) class and correctly
classifies the majority (negative) class then, based on EQOP, the classifier is both fair
(in terms of EQOP) and accurate (in terms of error rate). Recent methods fall in
this pitfall and their low reported discrimination scores are mainly due to low TPR
values (c.f., Section 4.6). Hence, we use balanced accuracy [BOSB10]:

TP N TN )_(TPRJrTNR) (42)
TP+ FN TN+ FP’ 2 '

B.ACC:%.(

Our approach resembles the EasyEnsemble approach [LWZ09], which we adapt
for group as well as class imbalance. Specifically, we combine bagging and boosting;
thus, the final model is an ensemble of ensembles. Bagging reduces model variance
by generating multiple models from bootstrap samples drawn from the training data.
Boosting reduces both (model) bias and variance by combining many weak learners,
each focusing on missclassified examples from previous learners [Sch99).

4.4 FAE - A Fairness-Aware Ensemble Framework

.Pre-processing _Post-progessin w Unseen *
Bagging. Boosting \ Instances
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Figure 4.1: An overview of our holistic pre- and post-processing FAE framework
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Figure 4.1 shows an overview of FAE, from training (left side) to prediction of
new instances (right side). FAE combines pre- and post-processing fairness-related
interventions, as follows:

o Fairness-aware ensemble learning
In pre-processing, we tackle the problems of group- and class-imbalance. In
particular, we employ bagging to balance the groups in each bag by taking into
account the protected positive group, and a representative sample from the
other groups (Section 4.4.1). Afterwards, boosting [Sch99] is employed on each
bag, so at the end, an ensemble of ensembles is learned.

o Fairness-aware decision boundary shift
In the post-processing, we shift the decision boundary of the learner in the
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direction of fairness based on a tunable parameter 0, until the EQOP score
satisfies the user-defined threshold € (Section 4.4.2).

o Selecting the shortest hypothesis Finally, we select the optimal number of
boosting models u € [k, 2k] that exhibits the best performance in terms of both
fairness and balanced error (Section 4.4.3).

4.4.1 Learning equal representations

In the pre-processing step, we tackle discrimination in the training data caused by
group and class imbalance ensuring that the protected positive group will also be
learned by the model. For that, we propose a fair and representative sample genera-
tion process. Each sample is created s.t it contains the whole protected positive group
st and a representative equisized sample from each of the other groups (i.e., from
sT,5T,57).

Algorithm 5 shows the different steps in the ensemble’s training phase. Clustering
is applied in the beginning for each group s~,57,5" (line 2). We employ stratified
sampling to ensure a balanced representation, where the strata correspond to clusters'
extracted through some clustering algorithm from the other groups s—,5%,5 . The
bags are created (lines 6-7) by combining s™ and a stratified sample from the generated
clusters for each group. In each bag, an AdaBoost classifier is trained (line 8) and
added to the ensemble (line 9). The output model is an ensemble of ensembles F

(line 12):
B(z)=Y (Z <ai,jhi,j(x))) (4.3)

i=1 N j=1

where k is the number of bags (c.f., Eq. 4.4), z the number of boosting rounds and
a;; is the weight of the weak learner h;; (e and h are obtained through AdaBoost).

Stratified sampling

The goal is to generate the different bags s, 5,5 from the majority groups
s~,5%, 57, respectively, such that: |s*| = |s~'| = |§¥'| = |7'|. To ensure repre-
sentative samples from each group, we cluster each group (i.e., each of s7,5%,57)
and use the resulting clusters for bag generation. Note that clusters are generated
only once in the beginning of the training process (line 2, Algorithm 5) and re-used

afterwards.

IClustering better approximates the underlying data distributions, accounting for sub-groups,
and thus ensuring representative samples from each group.
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Algorithm 5: Pre-processing step

Input: Training set D, target class y*, SA, k
Output: Ensemble E

Extract groups s*,s™,5",5 based on y* and SA from D:;
Generate clusterings Cy-, Cs+, Cs- from s, 57,57, respectively;
Ensemble E < {0};
14 1;
For i =1: 2k do;
Stratified sample si_,, §Z7L/, Ei_, from C,-, Cy+, Cs—;
Bag B; = st Us; UsH U5, ;
Train an AdaBoost classifier H; upon B;;
141+ 1;
: EndFor
: return ensemble E

— = =

Estimating the initial number of bags

The number of bags k£ must be sufficient to overcome the drawback of potential loss
of useful information due to under-sampling (i.e., each bag is a sample of the training
data). We overcome this drawback by estimating the number of bags k s.t. we insure
that the clustered instances are at least in one of the bags. We calculate the number
of bags k as following:

. {mm{B_"Eﬂ’Eﬂ . 4)

E

In other words, k provides an estimation that an instance from the most populated
group will be at least in one bag, thus, avoiding the under-sampling drawback. In
practice, we train the ensemble with twice the amount of bags (2k bags); at the post-
processing step, we select the best set of learners for the ensemble (Section 4.4.3).

4.4.2 Fairness-aware decision boundary tuning

Despite the pre-processing interventions, the resulting model £ might not fulfill the
discrimination threshold e. In FAE, if EQOP > ¢, a post-processing procedure is
invoked that shifts the decision boundary based on a parameter 6 s.t. EQOP <'e.

As we show in Section 4.6, by employing only the pre-processing step, the dis-
crimination is significantly reduced. However, a post-processing step is necessary
given that discrimination can stem from other factors including class overlap and the
accuracy-oriented objective function of Adaboost.
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Parameter tuning. For a SA (e.g. SA =‘gender’) our goal is to find the optimal
threshold parameter 65 or 05 (for the different attribute values dom(SA) = {s,s})
to minimize FQOP. Furthermore, at any given time our ensemble learner E can
discriminate against only one of the group s or s.

Algorithm 6 shows the detailed steps for tuning the optimal 6 and #;. To begin
with, we compute the EQOP score, which represents the difference between true
positive ratios between s and § (line 6). Next, we sort the misclassified instances
from s* and §T groups (lines 7 — 8) in a descending order (w.r.t the target class)
based on their ensemble classification score from Equation 4.3. In case EQOP score
is below the discrimination threshold e, then 6; = 6, = 0.5 (lines 9 — 10). Setting
the threshold parameter to 0.5 has no implication in classifying test instances in
Equation 4.7. For |[EQOP| > €, we distinguish between discrimination and reverse
discrimination (lines 11 — 17). That is, for FQOP > 0 the model discriminates
against instances with SA = s, otherwise against instances with SA = 5. The
threshold parameter 05 or 5 represents the F(d) score of the last instance from the
topr necessary instances from MCy or MCs+ (lines 12 and 15) that need to be
classified correctly to fulfill the criteria |[EQOP| < e. The top, instances needed for
minimizing the discrimination are obtained as following:

top + TP, _ TP, [TR(IP,+FN,)
TP.+ FN, TP.+FN. P~ |7 TP fFN,

— TP, (4.5)

where TP and F'N stand for true positive and false negative instances of protected
and non-protected group respectively.

4.4.3 Hypothesis selection for class-imbalance

Out of the 2k learners, we select the shortest hypothesis (in terms of number of bags)
that optimizes the following objective function:

argmin (B.ERR,+2-|EQOP,|) (4.6)

where B.ERR is the balanced error rate and u € [k, 2k] is a set of AdaBoost models
(each AdaBoost is trained upon a different bag). The objective function is applied
after the decision boundary adjustment i.e., Algorithm 6 is taking place after the
pre-processing step, and afterwards the set of learners that minimize Equation 4.6 is
selected. Since class imbalance is tackled in the pre-processing step, more emphasis
is given to the ensemble’s fairness in the objective function. The final model (FAE)

: E(x) = i (i <ai,jhi,j($)>)

i=1  j=1
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Algorithm 6: Post-processing step

Input: D, E, s,5, €
Output: 6,,0;

0, =0;=0.5
MCS+, MO§+ < {@}
True positive rate TPR, and TPR; for s and §
CCy+ = Fcorrectly classified instances in s
CCg+ = #correctly classified instances in 5
EQOP =TPR; — TPR,
Misclassified instances MCy+ and MCs+ for s™ and 5
Sort MCy+, MCs+ in descending order based on F(d)
IF |[EQOP| <€ // no discrimination
0, =0;=0.5
: ELSE IF EQOP > 0 // discrimination
topy, = c|*50++ st = CCy+
0s = MCly+[topg]
: ELSE IF EQOP < 0 // reverse discrimination
topr, = Clscjr 5T — CCy+
0s = MCys+[topy]
: ENDIF

: return 6, 0;

— =
= O

H
N
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4.4.4 FAE Classification

In classifying instances with FAE, we distinguish two cases. If |[EFQOP| < ¢, the classi-
fication is done solely through the majority voting scheme in F(d) (c.f., Equation 4.3).
This is the case, where no post-processing tuning is required, rather pre-processing
interventions are adequate in fulfilling the FQOP threshold. For FQOP < 0 and
|EQOP| > ¢, our model discriminates against SA = s in the training set, hence,
instances will be classified based on Equation 4.7.

Fd) = {gﬁ if d(SA) = 5 and E*+(d) > 0, wn

E(d) otherwise.

where E™ is the probability of d assigned to y*. Similar is the case for EQOP > 0
and |[EQOP| > ¢; in this case, Equation 4.7 is altered by replacing d(SA) = § to
d(SA) = s and 65 to ;.
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4.5 Experimental Setup

Our framework? has been instantiated with Logistic Regression as base learners. Each
dataset is randomly split into train (2/3) and test set (1/3) (holdout evaluation,
similar to [ZVGRG17]). We report on the average of 10 random splits. We set
e = 0 as a threshold for EQOP (no discrimination). For AdaBoost, the maximum
number of boosting rounds z is set to 25. We evaluate the following aspects: (i)
classification performance based on balanced accuracy (B.ACC, Equation 4.2) and
(ii) discriminative performance based on FQOP (Equation 4.1) .

4.5.1 Datasets

We evaluate our approach with two well known datasets: Adult census income and
Bank. Adult census income dataset [BL13] contains demographic data from the
U.S. The task is to determine if a person receives more than 50K dollars annually.
We use as the target (positive) class, people who receive more than 50K per year.
We remove duplicate instances and instances containing missing values which re-
sults to 45,175 instances. The class ratio of adult census dataset is 1 : 3 (posi-
tive:negative). We consider as protected attribute SA = Gender with s = female.
Bank dataset [BL13] is related to direct marketing campaigns of a Portuguese bank-
ing institution and contains 40,004 instances. The task is to determine if a person
subscribes to the product (bank term deposit). As target (positive) class we consider
people who subscribed to a term deposit. The class ratio of bank dataset is 1 : 2
(positive:negative). We consider as SA = maritial status with s = married.

4.5.2 Baselines and FAE Ablations

Baselines

Shifted Decision Boundary (SDB) [FKL16]: SDB uses a set of base classifiers in

an AdaBoost classifier. Instead of majority voting (i.e., .., azh;(x)), SDB employs

i aihi(z)
Yoy ai )

confidence scores (i.e., for predictions. The best threshold value for a

specific protected group is ‘established to minimize statistical parity. The shift in
the boundary takes place after the training phase, thus, making it a post-processing
method and suitable for comparison. To have a fair comparison, we find the best
threshold estimation of SDB for EQOP, instead of statistical parity as in the original
paper.

Disparate Mistreatment (DM): Zafar et al. [ZVGRG17] formulate the fairness
problem as a set of constraints, for which they optimize a logistic regression (LR)

Zhttps:/ /iosifidisvasileios.github.io/Fairness- Aware- Ensemble- Framework /
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model. They consider three sets of constrains: (i) minimize difference in FPR (false
positive rate), (ii) minimize difference in FNR (false negative rate), and (iii) a com-
bination of both. For our comparison, we employ only (ii) since TPR = 1 — FNR.
We employ the method’s default parameters.

AdaBoost: here we consider an ensemble learner (equipped with LR as a weak
learner) without any pre- or post-processing fairness-related interventions. The goal
is to show the ability of these ensembles to classify under group and class imbalance
and its impact on discrimination scores like EQOP.

EasyEnsemble: EasyEnsemble [LWZ09] is an ensemble that employs bagging and
AdaBoost to tackle class imbalance, with LR as a weak learner. We employ EasyEnsem-
ble to compare our approach with a method that directly tackles class imbalance. We
set as number of bags to N = 20.

FAE Model Ablation

FAE is a joint framework of pre-and post-processing interventions. We con-
sider the following ablations, to evaluate the individual effect of the pre- and post-
processing interventions:

Only Bagging (OB) is the pre-processing step in FAE (c.f. Section 4.4.1). We use
OB to show the behavior of the ensemble that is trained upon fair and representative
groups, without further tuning its decision boundary.

Simple Majority Threshold (SMT) refers to the post-processing part in FAE (c.f.
Section 4.4.2). This method is similar to SDB [FKL16], however, instead of using
confidence scores, we use the default majority vote of an AdaBoost classifier. That
is, after training, we compute the best parameter 6 for a specific protected group to
minimize EQOP (Algorithm 6). We use SMT to show how individual post-processing
tuning affects the performance of the models.

We use EM and K-means clustering algorithms to compare the impact of clustering
in the bagging step in FAE and its pre-processing step OB, which we indicate with
FAE (EM) and OB (EM), and FAE (K-means) and OB (K-means), respectively. For
EM, the optimal number of clusters for each group is estimated via cross validation
(100 iterations) while for K-means we use the elbow metric (least squares), where the
number of clusters ranges in [2, 25].

4.6 Evaluation Results and Discussion

We report on: (i) classification performance w.r.t B.ACC and (ii) fairness perfor-
mance w.r.t. EQOP.

Table 4.1 shows the scores for the B.ACC metric for both datasets and approaches
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Adult Cen. Bank

Approach B.ACC. (%) EQOP (%) B.ACC. (%) EQOP (%)
AdaBoost 76.56 11.92 66.32 -6.25
EasyEnsemble 80.58 15.72 83.24 -4.52
DM 70.96 -11.83 65.69 -0.97
SDB 77.02 -2.72 66.23 -5.88
SMT 76.86 -2.99 73.26 30.58
OB (EM) 80.91 -4.31 83.10 2.21
OB (K-means) 80.92 -4.70 83.10 1.89
FAE (EM) 81.09 1.52 83.29 -0.12
FAE (K-means) 81.01 1.67 83.24 0.24

Table 4.1: Evaluation results for B.ACC. and EQOP. EQOP is in the range of [-1,1],
in this case we show the percentage points. The best results are marked in boldface.

under comparison. Our approach FAE achieves some of the highest B.ACC' scores,
with an average score of B.ACC = 82.19% across all datasets for FAE (EM). Sim-
ilar is the score of EasyEnsemble with B.ACC = 81.91%. Yet, in terms of EQOP
EasyEnsemble produces highly discriminatory results, since it focuses solely on pre-
dictive performance.

A detailed inspection across the competing approaches reveals that the differences
between non-bagging and non-ensemble approaches are highly significant. An even
representation of all groups is important for classification performance. For models
like AdaBoost, SMT, SDB, DM that do not account for the group imbalance, we see
a huge drop in B.ACC scores. FAE (EM) has a 20% relative increase when compared
against DM, and 15% relative increase against the other models.

Ensemble Learners: The case of AdaBoost shows that using solely ensemble learn-
ers is not sufficient to ensure a non-discriminatory classification. It has the second
lowest performance with B.ACC = 71.44%. EasyEnsemble which focus on class
imbalance has very good predictive performance with B.ACC = 81.91%; however,
this is not sufficient to tackle discrimination. Same behavior can be observed for
OB. This confirms our assumption, that such discriminatory behaviors are a result of
other factors such as class overlap.

Bagging: Bagging ensures even representations of the different groups, thus, it en-
ables models that achieve better B.ACC. Models that employ bagging achieve similar
B.ACC scores. Comparing against other non-bagging approaches, such as AdaBoost,
DM and SMT, we note a significant drop in terms of B.ACC. However, it is important
to note that a high B.ACC score is not sufficient for non-discriminatory classification
behavior because, discrimination is often manifested in terms of uneven probabilities
for granting a benefit to different groups (c.f. Section 4.3).

Regarding discrimination, we observe that high B.ACC scores do not necessarily
correlate with low EQOP scores, that is, discrimination free classification behavior.
In our choice of competitors, it is evident that such strategies are often insufficient in
minimize discrimination.
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From the competitors, only AdaBoost and EasyEnsemble have low EQOP scores.
EasyEnsemble is particularly interesting; its B.ACC score is on average close to FAE
(EM), however, it exhibits a high discrimination score with EQOP = 10.12%. This
highlights that optimizing only for classification performance is subject to pitfalls of
uneven distributions of groups. Whereas our models, the pre-processing stage OB,
and FAE, achieve the lowest discrimination results. FAE (EM) has the lowest score
with FQOP = 0.82% with nearly an ideal EQOP score.

Contrary, for models that optimize for discrimination free classification, we note a
significant decrease of EQOP scores compared to AdaBoost and EasyEnsemble. For
example, DM in its optimization function minimizes for the EQOP score, leading to
EQOP = 8.18%. Yet, its B.ACC score is severely impacted. This is mostly due to
the fact that it learns a logistic regression model under high group imbalance.

An important comparison is between FAE and DM. FAE provides a high relative
decrease of 90% in terms of EQOP. This shows, that despite the fact that DM opti-
mizes the training objective to reduce discrimination, the impact of fair and balanced
representations of all groups in training supervised models is highly important.

4.7 Chapter Summary

In this chapter, we addressed the problem of discrimination against marginal groups
in classification models caused by group imbalance, class imbalance and societal en-
coded biases manifested as class overlap esp. for the protected group. We presented
the FAE framework, a holistic approach to fairness-aware classification that combines
pre-processing balancing strategies with post-processing decision boundary adjust-
ment. The pre-processing stage, which computes the number of bags and determines
the different groups and clusters to ensure fair representation allows the models to
learn representative classifiers that significantly increase the performance and at the
same time reduce the discrimination. Due to the encoded societal biases (class over-
lap) in the data, even representations among groups are insufficient in addressing
discrimination. Hence, we shift the decision boundary and additionally select hy-
potheses from the ensemble learners for nearly ideal EQOP scores. Such steps ensure
that a reduction in terms of EQOP does not come at the cost of the ability of the
model to correctly classify instances into their corresponding classes.

Our experiments show that discrimination free models are feasible, and for a
given feature space, we can achieve maximal classification performance, and account
for important factors like discrimination for a given target measure, e.g., EQOP. In
our current version of FAE, we employ pre- and post-processing fairness-enhancing
interventions. Furthermore, improvements are possible by including in-processing
interventions at the algorithm level, thus targeting the whole ML process from data
to algorithms and models.



Tackling Class-Imbalance and Unfair Outcomes in
Boosting

The widespread use of ML-based decision making in domains with high societal im-
pact such as recidivism, job hiring, and loan credit has raised a lot of concerns regard-
ing potential discrimination. In particular, in certain cases, it has been observed that
ML algorithms can provide different decisions based on sensitive attributes such as
gender or race and, therefore, can lead to discrimination. Although, several fairness-
aware ML approaches have been proposed, their focus has been largely on preserving
the overall classification accuracy while improving fairness in predictions for both pro-
tected and non-protected groups (defined based on the sensitive attribute(s)). The
overall accuracy however is not a good indicator of performance in case of class im-
balance, as it is biased towards the majority class. As we will see in our experiments,
many of the fairness-related datasets suffer from class imbalance, and therefore, tack-
ling fairness requires also tackling the imbalance problem.

In this chapter, we propose AdaFair, a fairness-aware classifier based on AdaBoost
that further updates the weights of the instances in each boosting round taking into
account a cumulative notion of fairness based upon all current ensemble members,
while explicitly tackling class-imbalance by optimizing the number of ensemble mem-
bers for balanced classification error.

5.1 Introduction

Al-based decision making systems are employed nowadays in an ever growing num-
ber of application areas such as finance industry, autonomous driving, health-care,
risk assessment, etc. The impressive performance of such systems - in several tasks,
has reached or even outperformed human performance - leads to anticipation about
automating human tasks by AI in the foreseeable future [GSD*18]. Such a demand
for automation is also driven by the ever growing amount and complexity of data.

85
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However, in parallel to the growing demand for automation using Al, an increased
number of concerns regarding accountability, fairness and transparency of such sys-
tems, esp. for domains of high societal impact, has been raised over the recent
years [otPP14]. There is already a plethora of observed incidents regarding discrim-
ination caused by Al-based decision making systems [[S16, DTD15, EL14, Swel3,
LMKA16]. In Amazon’s Prime case [IS16], for example, in which Al algorithm’s task
was to decide which areas of a city are eligible to advanced services, areas mostly
inhabited by black people were ignored (racial-bias), even though the algorithm did
not consider race as a feature. In another case, it was discovered that Google’s Ad-
Fisher tool displayed significantly more advertisements of highly paid jobs to men
than women [DTD15] (gender-bias). Such incidents point out the urge to consider
fairness in Al algorithms in order to exploit the amazing potential of the technology
for societal advance.

A growing body of works has been proposed over the last year to address the prob-
lem of fairness and algorithmic discrimination. Such methods can be broadly catego-
rized into pre-, in- and post-processing approaches based on whether they “correct”
for fairness at the input training data, at the algorithm itself or at the output model.
To the best of our knowledge, the vast majority of these methods, e.g., [KXPKIS,
ZVGRG17, CKP09, CWVT'17, KC12, HPST16, FKL16, KC09, KCP10], focus on
optimizing for fairness while maintaining an overall high classification performance.
Considering overall classification error is problematic in case of class-imbalance as
the performance of the model on the minority class is typically ignored and therefore,
such methods end up with low TPR and high TNR rates. Such approaches might
achieve fairness, as typically fairness is evaluated in terms of performance parity be-
tween the protected and non-protected groups, however the predictive performance of
the model on the minority group is insufficient (low TPRs). Recent state-of-the-art
approaches do not consider this problem, as we show in Section 5.5; these methods
achieve fairness by lowering TPRs for both groups.

Class-imbalance is an inherited problem of fairness - as we will see in our
experiments, many of the datasets exhibit high class imbalance (c.f., Table 5.1) and
therefore, tackling fairness requires also tackling imbalance[GFB™12]. Our proposed
approach, AdaFair , overcomes this issue and achieves fairness while preserving high
TPRs and high TNRs for both groups. AdaFair is based on AdaBoost and extends its
instance weighting strategy for each round based on the thus far observed ensemble
fairness. This way, in each round, the weak learner focuses on both hard classification
examples (as in traditional boosting) and on the discriminated group per class. The
discriminated group, per class, is identified dynamically at each boosting round and
its effect on the instance weighting is evaluated based on a cumulative notion of
fairness that considers the fairness behavior of the thus far built ensemble model in
the particular round. We further prioritize the instances for training, by taking into
account not only the error of the weak learner but also its confidence in the predictions
per instance so that harder instances that lie further away from the boundary, are
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further boosted. Finally, at the end of the training phase, we select the best sequence
of weak learners which achieves high performance and fairness.

Our contributions are summarized as follows: i) we propose AdaFair, a fairness-
aware boosting method that achieves parity between the two groups (thus achieving
fairness) while maintaining high TPRs and TNRs (thus tackling class imbalance). ii)
We define the notion of cumulative fairness for the ensemble and a dynamic group
weighting schema for the per round discriminated group. iii) AdaFair outperforms
current state-of-the-art methods in terms of performance in a value range from 8%
to 25% (depending on the severity of class-imbalance). iv) We show the superiority
of our cumulative notion of fairness vs a non-cumulative alternative. v) We show
that including confidence in the weighting, results in more confident predictions for
AdaFair.

The rest of the chapter is organized as follows: in Section 2, we review the related
work. In Section 3, we define the problem and describe basic concepts. Our AdaFair is
presented in Section 4, whereas the experimental evaluation is described in Section
5. Conclusions and outlook are summarized in Section 6.

5.2 Related Work

Fairness notions. A growing body of fairness notions have been proposed over the
recent years. Up to now, more than twenty fairness notions exist for fairness in clas-
sification [RR14, VR18|, however there is no specific arrangement on which fairness
notion is universally suitable. One of the earliest measures of discrimination, the
so-called statistical or demographic parity [KC09, KC12], measures the percentage
difference between non-protected and protected group which are assigned to a tar-
get class i.e., grant a loan application, etc. However, this definition only requires a
balanced representation of both groups to a target class without controlling if the se-
lected instances are qualified or not [DHP*12]. On the other hand, a recent measure,
called equal opportunity [HPST16, VR18], eliviates this pitfall by measuring per-
centage difference between true positive percentages of two groups. Although equal
opportunity has potential, it does not capture the full picture therefore equalized
odds [HPS™16] (also called disparate mistreatment [ZVGRG17]) has been proposed.
Equalized odds extends equal opportunity by considering the difference of true clas-
sified instances between protected and non-protected group in all classes. Although
a plethora of fairness notions exist, in this work we employ equalized odds since it
seems the most promising notion and also has been adopted by recent state-of-the-art

methods [ZVGRG17, HPST16, KXPK18, PRW*17].

Pre-processing approaches. One of the most common causes of machine learn-
ing discrimination is arising from discrimination which resides in historical data.
Pre-processing methods aim to deal with this issue by performing data transforma-
tions, perturbations or augmentation to eliminate underlying discrimination. These
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methods are typically model-agnostic and therefore, any classifier is applicable af-
ter the pre-processing phase. Massaging [KC09], re-weighting [CKP09], uniform- or
preferential-sampling [KC12] and data augmentation [IN18] are pre-processing meth-
ods which change data distributions directly; they aim to restore balance among pro-
tected and non-protected group within data by changing instance labels, assigning
different weights, under- or over-sampling instances, and generating pseudo-instances,
respectively. Massaging and re-weighting have also been extended for stream classi-
fication [ITN19]. Another interesting approach by [CWV*17], performs data trans-
formations to eliminate existing dependence of instances’ labels.

In-processing approaches. Approaches which operate during learner’s training
phase aim to mitigate discrimination as part of the objective function by employing
set of constraints or using regularization. In [KCP10, ZN19], for example, they embed
the statistical parity fairness notion into the splitting criterion of a decision tree. A
regularization approach [KAAS12] scales down the correlation (mutual information)
of the sensitive features and the class label in order to avoid outcomes based on these
features. [DHP*12] introduced the notion of “individual fairness-constraint" where
similar instances should be treated similarly and then minimize a loss function subject
to this notion. In [ZVGRG17], they insert a set of convex-concave constraints, which
aim to minimize equalized odds, into logistic regression classifiers. Finally, [KXPK18|
assume that data do not contain robust and fair labels and proceed to estimate the

true labels by re-adjusting iteratively the instance weights while minimizing equalized
odds.

Post-processing approaches. Post-processing approaches can be divided into two
sub categories: the ones that change the decision boundary of a model (white-box
approaches) and the ones that directly change the prediction labels (black-box ap-
proaches). In the first category, for example [FKL16] shift the decision boundary of
AdaBoost to minimize discrimination while [PRT09b] alter the confidence of CPAR
classification rules and in [CV10] authors change Naive Bayes probabilities w.r.t. fair-
ness. Approaches in the latter category consider only the outcome of a classifier. For
example, [HPST16] set thresholds to predictions in order to achieve same error rates
for protected and non-protected group. An extension of this work [PRW™17] analyze
how to obtain calibrated classifiers under same error rates among groups. Finally,
in [ABD"18] they build a fair classifier out of the predictions of another black-box
classifier.

Since our approach can be considered as in-processing approach, we select methods
from this category as competitors. We do not consider [KCP10, KAAS12, DHP*12]
as competitors, while they are built upon fairness notions which seem incomplete or
outdated and alternating them to optimize for another fairness notion may degrade
their performance. Therefore, we select [ZVGRG17, KXPK18] as our competitors
while equalized odds is our common fairness measure. In contrast to our approach,
our competitors only consider error rate in their loss function which fails to tackle
the problem of class-imbalance.
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5.3 Basic concepts and definitions

We assume a dataset D consisting of n i.i.d. samples drawn from a joint distribution
P(F,S,y): S denotes sensitive attributes such as gender and race, F' denotes other
non-sensitive attributes and y is the class label. For simplicity, we consider that the
classification problem is binary, that is, y € {4+, —} and that there exist a single
sensitive attribute S, also binary. That is, S € {s,s} with s and § denoting the
protected and non-protected group, respectively. We use the notation s, (s_), 54
(5_) to denote the protected and non-protected group for the positive (negative,
respectively) class. The goal of classification is to find a mapping function f : (F,S) —
y to predict the class labels of future unseen instance.

Fairness definition: As already discussed in Section 5.2, we adopt Equalized
Odds (shortly Eq.Odds) [HPST16] as our fairness measure. Eq.Odds, measures the
difference in prediction errors between the protected and non-protected group. In
particular, let 0F'PR (§F NR) be the difference in false positive rates (false negative
rates, respectively) between the protected and non-protected group, defined as follows
(g denotes the predicted label):

SFPR=P(y #§l5.) — Py # jls_)

SFNR = Py # l5:) = Ply # ils.) (5.1)

The goal is to minimize both differences, the so-called Eq.Odds:
Eq.Odds = |0FPR|+ |0FNR)| (5.2)

The value range for each of |[§FPR)|, [{FNR| is [0,1], where 0 stands for no dis-
crimination and 1 stands for maximum discrimination. Eq.Odds values lie in [0-2]
range.

The goal of fairness-aware classification is finding a mapping function f(-) that
minimizes Eq.Odds discrimination while maintaining good predictive performance.
Typically, the predictive performance in the context of fairness is evaluated in terms
of the error rate, e.g., [KXPK18, ZVGRG17, CKP09, CWV*17, KC12, HPS*16,
FKL16, KC09, KCP10], defined as:

B FN+ FP
 TP+TN+FN+ FP

ER (5.3)

However, optimizing for error rate is problematic in cases of class imbalance. A
possible outcome in such a case is that the classifier will misclassify most (in the
extreme case all) of the minority instances while correctly classifying the majority
- the error rate ER will still be low despite the poor performance in the minority
class. W.r.t. fairness such a classifier might still be fair, i.e., Fq.Odds ~ 0, as the
difference between the FPRs, FNRs for each group will be low (c.f., Equations 5.3,5.2).
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However, the non-discriminative behavior of the classifier would be achieved by just
reducing drastically the correct predictions for the minority class, with the extreme
case of misclassifying everything from the minority. Our goal in this work is to
achieve Eq.Odds while maintaining low FPRs (equivalently, high TNRs) and low
FNRs (equivalently, high TPRs) for both groups.

To this end, we propose (c.f., Section 5.4.3) to replace the error rate (which is not
a good performance indicator in case of imbalance, as we also show in Section 5.5)
with the balanced error rate defined as follows [BOSB10]:

1 TP TN 1
BER=1-3 (zp—p~+7npp) =~ 5 ([PE+TNR) (5.4)

AdaBoost: Boosting is an ensemble technique that combines weak learners to
create a strong learner. AdaBoost [Sch99] calls a weak learner iteratively by adjust-
ing the instance weights in each iteration (boosting round) based on misclassified
instances. We believe boosting is a promising technique for fairness-aware classifica-
tion as it divides the learning problem into multiple sub-problems and then combines
their solutions (sub-models) into an overall (global) model. Intuitively, it is easier to
tackle the fairness problem in the simpler sub-models rather than in a global com-
plex model. In order to apply AdaBoost for fairness one has to carefully change
the underlying data distribution between consecutive rounds so that both predictive
performance aspects and fairness-related aspects are considered (Section 5.4).

5.4 Cumulative Fairness Adaptive Boosting

In this work, we tailor AdaBoost for fairness by adjusting its re-weighting process. In
particular: i) we directly consider the fairness behavior of the model in the weighting
process by introducing the notion of cumulative fairness that assesses the Fq.Odds
related behavior of the model up to the current boosting round (c.f., Equation 5.4.1).
Moreover, differently from vanilla AdaBoost, ii) we employ confidence scores in the
re-weighting process to allow for differentiation in instance weighting based on how
confident is the model regarding their class. The fairness-aware adjustments in the re-
weighting process are described in Section 5.4.2. Finally, we optimize the number of
weak learners in the final ensemble by taking into account the balanced error rate and
thus directly considering class imbalance in the best model selection (Section 5.4.3).

5.4.1 Cumulative boosting fairness and fairness costs

Let j € [1,T] be the current boosting round, where T is a user defined parameter in-

dicating the number of boosting rounds. Let Hy.;(x) = S7_, a;h;(x) be the ensemble

model up to round j.
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The cumulative boosting fairness of the model Hy.j(x) at round j is defined in
terms of |0F'PR|, |§F N R| for both protected and non-protected groups, as follows:

spy gl i LIS anhs() # i S 1 I0 axhe(7) # ui

|54 ] |54 |

spppty — o LIS arhe(el) Ayl 3 IS avhe(af) # i

|5-] 5]

(5.5)

where function I(-) returns 1 iff the expression within is true, otherwise 0. In other
words, the cumulative fairness at round j evaluates current ensemble’s parity among
protected and non-protected groups for both positive and negative class.

If there is no parity, we change the weights of the instances so that discriminated
groups are boosted extra in the next round j+ 1. Note that vanilla AdaBoost already
boosts misclassified instances for the next round. Our weighting therefore aims at
achieving parity across the groups and the classes. To avoid confusion we use the term
costs for our fairness-related extra weights. The fairness related costs are dynamically
estimated in each round. In particular, the fairness related cost u; for an instance z;
in the boosting round j is computed as follows:

SFNRY|, if I((y; # hy(z:) A SENRY| > ¢),2; € s4,6FNRY > 0
|OFNRY|, if I((y; # hj(x;)) AN|SFNRY| > €),2; € 54,6 FNR* <0

u; =S |6FPRY|, if I((y; # hj(z;)) ANOFPRY| > €),x; € s_,6FPR" >0 (5.6)
|6FPRY|, if 1((y; # hj(xi)) A|SFPRY| > €),x; € 5,6 FPRY <0

0, otherwise

where u; € [0, 1] and parameter € € R reflects the tolerance to fairness and is typically
set to zero or to a very small value.

At each round, instances which belong to groups that are treated unfairly, receive
fairness-related cost. E.g., if in round j group s, is discriminated, which means
SFNRY > 0 and 6 FNRY > ¢, then misclassified instances in this group will receive
fairness related costs for the next round. The signs (+/-) of SFNR'Y and §F N R
denote which group will receive the costs in each class (only one group per class may
receive fairness related costs), while € is a condition for the necessity of fairness-related
costs in the upcoming round j 4+ 1. Note that costs u are global, i.e., all instances of
a group and class combination will receive the same cost in a round j.

Confidence scores: AdaBoost weighting a; relies on the classification error of the
weak learner h; built in round j. This is a global weighting, so all instances are
weighted with the same a;. Moreover, this weighting does not take into account
how reliable the decision of the classifier was. To this end, we propose to also use the
confidence of the predictions ﬁj (x) so that misclassified instances for which the learner
is confident in its predictions receive more weight comparing to other instances. This
differentiation in the weighting allows the classifier to focus on harder cases.
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Algorithm 7: Training phase

Input: D = (z;,9)Y, T, ¢
Output: Ensemble H

1. Initialize w; = 1/N and u; =0, for i =1,2,..., N
2. Forj=1to T:

(a) Train a classifier h; to the training data using weights w;.

SN wil (yi#hy(z:))
Zi\le Wy

1—err]~)

(b) Compute the error rate err; =

Compute the weight a; = 3 - In(

C
err

()
(d) Compute fairness-related §F N R'
(e)

Compute fairness-related § FPR'J
(f) Compute fairness-related costs u;
)

Update the distribution as
W5 — Zi]wz . eaj'h]'(m)'ﬂ(yi#hj(mi)) . (1 + UZ)

// Zj is normalization factor; h; is the confidence score

(g

3. Output H(z) = erzl a;hj(x)

5.4.2 The AdaFair Algorithm

Algorithm 7 shows AdaFair’s training phase. In the beginning, instance weights w
and costs u are initialized (line 1). Next, a weak learner is trained upon a given weight
distribution (line 2a) while the error rate, a;, §JF'NRY, §F PR and u; are computed
for the current round (lines 2b, 2¢, 2d, 2e and 2f, respectively). After u is computed,
instance weights are estimated and normalized by a factor Z (line 2g). In contrast
to original AdaBoost, we employ the confidence score (line 2g, ﬁ) to contribute to
the re-weighting process. Based on the confidence score, we assign higher weights
to misclassified instances which are harder to learn compared to instances which are
near the decision boundary. The algorithm converges in 3 cases: a) error = 0.5, b)
Eq.0dds < € and balanced error # 0.5 or ¢) maximum number of rounds is reached.

5.4.3 Optimizing for class-imbalance and unfair outcomes

AdaBoost requires as input the number of training rounds 7. We propose to select
the optimal number of weak learners 1...60,6 < T that minimizes the error of the
model. We propose to optimize for the balanced error rate (Equation 5.4) instead
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of the error rate ER (Equation 5.3) in order to tackle the imbalance problem and
thus select a model that depicts good performance in both classes, i.e., high TPRs,
high TNRs. In case of balanced data, BER corresponds to ER. To allow for different
combinations of ER and BER in the # computation, we consider both ER and BER
in the objective function as follows:

argmin (¢- BERy+ (1 —c¢) - ERy + Eq.Oddsy) (5.7)
0

The parameter ¢ controls the impact of BER and ER in the computation. A detailed
evaluation of its impact in the performance of AdaFair is presented in Section 5.5.5.
As our analysis show, AdaFair achieves fairness (i.e., Eq.Odds = 0) for all different
values of ¢, i.e., for all different combinations of ER and BER. However with ¢ = 1,
that is when optimizing for BER, our method achieves the highest TPRs and only
slight decreases in TNRs for both groups. Therefore, we recommend to use our
method optimized for BER, that is, with ¢ = 1. The result of this optimization step
is a final ensemble model with Eq.Odds fairness: H(x) = Zle a;hi(x).

5.5 Evaluation

The first goal of our experiments is to evaluate the predictive performance and fairness
behavior of AdaFair vs other related approaches (Section 5.5.2). Regarding predictive
behavior, we report on both accuracy and balanced accuracy (Equation 5.4), whereas
for fairness we report on Eq.Odds (c.f., Section 5.3). Since Eq.Odds (Equation 5.2) is
an aggregated measure, we also report on TPR and TNR values for both protected
and non-protected groups to shed more light on methods’ performance. The second
goal of our experiments is to understand the behavior of AdaFair . To this end, we
investigate the effect of cumulative vs non-cumulative fairness (Section 5.5.3) and
the impact of adopting balanced error rate vs error rate (Section 5.5.5). Moreover,
we compare the cumulative distribution of margins to demonstrate the impact of
confidence scores in the instance weight estimation (Section 5.5.4). Details on the
datasets, baselines, parameter selection and evaluation are provided in Section 5.5.1.

5.5.1 Experimental setup
Datasets

We evaluate our approach on four real-world datasets whose characteristics are sum-
marized in Table 5.1. As we can see, they vary w.r.t. cardinality, dimensionality and
class imbalance and therefore provide an interesting benchmark for evaluation.

Adult census income [BL13] dataset contains demographic data from the U.S. and
the task is to predict whether the annual income of a person will exceed 50K dollars.
The sensitive attribute is S = Gender with s = female being the protected group;
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Adult Census Bank Compass KDD Census
#Instances 45,175 40,004 5,278 299,285
# Attributes 14 16 9 41
Sen.Attr. Gender Marit. Status  Gender Gender
Class ratio (+:—) 1:3.03 1:7.57 1:1.12 1:15.11
Positive class >50K subscription  recidivism >50K

Table 5.1: An overview of the datasets.

the positive class is people receiving more than 50K. We remove duplicate instances
and instances containing missing values. The positive to negative class ratio is 1:3
(exact ratio 24%:76%).

Bank dataset [BL13] is related to direct marketing campaigns of a Portuguese bank-
ing institution. The task is to determine if a person subscribes to the product (bank
term deposit). As positive class we consider people who subscribed to a term deposit.
We consider as S = maritial status with s = married being the protected group.
The dataset suffers from severe class imbalance, with a positive to negative ratio of
1:8 (exact ratio 11%:89%).

Compass dataset [LMKA16] contains information on prisoners in Broward County
such as the number of juvenile felonies. The task is to determine if a person will
be re-arrested within two years (recidivism). We consider recidivism as the positive
class and S = Gender with s = female as the protected group. For this dataset, we
followed the pre-processing steps of [ZVGRG17]. The dataset is almost balanced, the
exact positive to negative ratio is 46%:54%.

KDD census income [BL13] has the same prediction task as the adult census
dataset. However in KDD census “the class labels were drawn from the total person
income field rather than the adjusted gross income” [BL13]. We consider S = Gender
with s = female as the protected group, and as positive class people receiving more
than 50K annually. This is the most skewed dataset in our benchmark with a positive
to negative ratio of 1:15 (exact ratio 6%:94%).

Baselines

We evaluate our approach against recently proposed state-of-the-art in-processing ap-
proaches that also aim to minimize Fq.Odds, namely the methods of Krasanakis et
al. and Zafar et al. In addition, we compare against two fairness-agnostic boosting
versions: vanilla AdaBoost [Sch99] and SMOTEBoost [CLHB03] (an AdaBoost ap-
proach that tackles class-imbalance). Finally, to study the behavior of our approach
we also compare AdaFair against different variations described hereafter:

Zafar et al.[ZVGRGL17]: The authors formulate the fairness problem as a set of
convex-concave constraints to minimize Fq.Odds, for which they optimize a logistic
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regression model.

Krasanakis et al. [KXPK18]: The authors assume the existence of latent fair
classes and propose an iterative training approach towards those classes which alters
in-training the instance weights. Fairness is assessed via Fq.Odds.

AdaBoost [Sch99]: This is the vanilla AdaBoost that does not consider fairness nor
confidence scores.

SMOTEBoost [CLHBO03]: This is an extension of AdaBoost for imbalanced data.
At each boosting round, new synthetic instances of the minority class are generated
via SMOTE [CBHKO02], to compensate for the imbalance. SMOTEBoost does not
consider fairness nor confidence scores. The goal of this baseline is to see whether by
only tackling imbalance the fairness problem can be addressed.

AdaFair: Our proposed approach that combines cumulative fairness, balanced error
rate and confidence scores.

AdaFair NoCumul: Similar to AdaFair , however the Fq.Odds is computed per
round rather than over all previous rounds, therefore impacting the instance weight-
ing. The goal of this baseline is to help clarifying the impact of cumulative vs non-
cumulative fairness (Section 5.5.3).

AdaFair NoConf: Similar to AdaFair , but is does not employ confidence scores for
weight estimation. We employ this baseline to depict the impact of confidence scores
in the cumulative distribution of margins of the training instances (Section 5.5.4).

Parameter selection and evaluation

We follow the same evaluation setup as in [ZVGRG17, KXPK18] by splitting each
dataset randomly into train (50%) and test set (50%) and report on the average
of 10 random splits. We set ¢ = 0 as a threshold for Fq.Odds, which means zero
tolerance to discrimination. Moreover, we set the number of boosting rounds for
AdaFair to T' = 200 (same for the other ensemble approaches, c.f., Section 5.5.1).
For Krasanakis et al. and Zafar et al. methods, we employ their default parameters.
For SMOTEBoost, we set N (the number of synthetic instances generated per round)
to 2, 100, 100 and 500 for datasets compass, adult census, bank and kdd census,
respectively. Furthermore, for experiments in Section 5.5.2, 5.5.3 and 5.5.4, we set
parameter ¢ = 1 (c.f., Equation 5.7), that is the proposed AdaFair optimized for
balanced error rate; the effect of ¢ is studied in Section 5.5.5.

Our method! has been instantiated with Decision Stumps as weak learners.

Thttps://iosifidisvasileios.github.io/AdaFair
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5.5.2 Predictive and fairness performance
Adult census income

In Figure 5.1, we show the performance of the different approaches on Adult census
dataset. Regarding predictive performance, we report on accuracy and balanced
accuracy (Bal.Acc. for short) whereas regarding fairness, we report on Fq.Odds and
TPR, TNR values for both protected and non-protected groups (Prot. and Non —
Prot., respectively for short).
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Figure 5.1: Adult census: Predictive and fairness performance - higher values are
better; for Eq.Odds, lower values are better.

The best balanced accuracy is achieved by SMOTEBoost followed by AdaFair (2% J);
both methods target class imbalance, the latter however also considers fairness. Ad-
aBoost, Krasanakis et al. and Zafar et al. that do not consider class imbalance have

a 5%, 8%] and 8%/, respectively drop in their balanced accuracy comparing to
AdaFair .

Regarding Fq.0Odds, as expected AdaBoost and SMOTEBoost perform worse as
they do not consider fairness. The best overall Fq.Odds score is achieved by the
method of Krasanakis et al., followed by our AdaFair (3% 1, recall that lower val-
ues are better). A closer look, however, at the actual TPRs and TNRs values per
group shows that our method achieves the highest TPRs values for both protected
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and non-protected groups compared to the other two fairness aware approaches. In
particular, for the protected (non-protected) group our TPR is 29%1 (22%71, respec-
tively) higher that of the second best method of Krasanakis et al. So, it seems that
the methods of Krasanakis et al. and Zafar et al. produce low TPRs and high TNRs,
i.e., these methods “reject” more instances of the positive class in order to minimize
Eq.Odds (this explains their high TNRs, low TPRs values). On the contrary, our
AdaFair achieves good performance for both classes (high TPRs, high TNRs) while
maintaining a good Eq.Odds (i.e., low difference in TPRs, TNRs for both protected
and non-protected group).

Bank

The results are shown in Figure 5.2. All approaches, except for AdaBoost and
SMOTEBoost, achieve low Eq.Odds. Interestingly, AdaFair achieves better balanced
accuracy than SMOTEBoost, while it outperforms the other approaches.
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Figure 5.2: Bank: Predictive and fairness performance - higher values are better; for
Eq.Odds, lower values are better.

A closer look at Fq.Odds and namely at TPRs and TNRs shows significant dif-
ferences between the approaches. Namely, w.r.t. TPRs our method outperforms the
second best (Zafar et al.) by almost 33%71 for each group. Interestingly, AdaBoost
and SMOTEBoost maintain higher TPRs than the methods of Krasanakis et al. and
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Zafar et al., even though they do not consider fairness. The methods of Krasanakis
et al. and Zafar et al. have very similar behavior and it seems that both of them
focus on the majority class (therefore high TNRs, low TPRs). Regarding TNRs, our
method has a small drop of 6%] and 7%/ drop for the protected and non-protected
group compared to the second best approach of Zafar et al.; this is expected as we
optimize for balanced error rather than overall error.

Compass

The results are shown in Figure 5.3. Regarding balanced accuracy, AdaBoost performs
best and Zafar et al worse. However, the differences between the approaches are not
that high. The similar performance of the different approaches is to be expected as
the dataset is balanced (c.f., Table 5.1) and therefore, imbalance treatment has no
strong effect.
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Figure 5.3: Compass: Predictive and fairness performance - higher values are better;
for Eq.Odds, lower values are better.

Regarding fairness, the method of Krasanakis et al. achieves slightly better per-
formance in terms of Fq.Odds (0.6%J) and balanced accuracy (0.2%7) compared to
the second best AdaFair . Zafar et al. has the worst Fq.Odds (almost twice the value
of Krasanakis et al.), recall that its Bal.Acc. was the worse among the approaches.
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By examining the TPRs and TNRs of both protected and non-protected groups,
we observe that the performance of Krasanakis et al. is not stable (highest standard
deviation among the methods). Our AdaFair has better TPR values for both groups.
Our TNRs are the lowest among the approaches (61% — 65%) as we optimize for
balanced error and the negative class represents 54% of the population.

KDD census income

The dataset suffers from extremely high class imbalance, with a ratio of 1:15 (c.f.,
Table 5.1). Zafar et al. approach could not be applied to this dataset due to its
inability to estimate the optimal parameters, therefore we omit it.
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Figure 5.4: KDD census: Predictive and fairness performance - higher values are
better; for Eq.Odds, lower values are better.

The results of KDD census dataset are presented in Figure 5.4. In terms of bal-
anced accuracy AdaFair performs 25%7 than Krasanakis et al., 18%7 than AdaBoost
and 8%1 than SMOTEBoost. AdaBoost and Krasanakis et al. classify almost per-
fectly the negative class (i.e., TNRs close to 100%), which comprises 94% of the pop-
ulation. SMOTEBoost has 2%/ to 4%] drop in TNRs of protected and non-protected
group respectively, compared to AdaBoost. In terms of TPR, AdaFair achieves the
highest TPR scores for both groups (above 80%) while the method of Krasanakis
et al. results in values below 20%. Both fairness-aware approaches, AdaFair and
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Krasanakis et al., minimize discrimination to 2% while AdaBoost and SMOTEBoost
result in 28% and 36% Eq.Odds, respectively.

Conclusion: To conclude, our AdaFair is able to achieve high balanced accuracy
and low discrimination by maintaining high TPRs and only slightly worse TNRs for
both groups. On the contrary, the other fairness-aware approaches, namely Zafar
et al. and Krasanakis et al, eliminate discrimination by reducing TPRs, that is by
rejecting more instances of the positive class to achieve parity among the protected
and non-protected groups. Zafar et al. is unable to handle multi-dimensional datasets
while it can not estimate the optimal parameters. Furthermore, we perform paired
t-test between AdaFair and each baseline for all datasets. The results show highly
significant difference (p < 0.001) for all datasets between AdaFair and each baseline
(it is also visible from the reported TPRs and TNRs of each dataset).

5.5.3 Cumulative vs non-cumulative fairness

The notion of cumulative fairness (c.f. Equation 5.4.1), is crucial for AdaFair * ability
to mitigate discrimination. To investigate its impact we compare our AdaFair (with
cumulative fairness of models 1 : j, where j is the current boosting round) with a
version that considers only the fairness of the individual weak learner at round j
(refereed to as AdaFair NoCumul).

Their predictive and fairness performance for the different datasets is shown in
Figure 5.5. Overall, AdaFair NoCumul method results in poor fairness performance
with very high Fq.Odds values compared to AdaFair . In particular, we observe an
increase of 52%7 for the adult dataset, an increase of 15%7 for bank and compass
datasets and an increase of 45%7 for the kdd census dataset. A closer look at the
individual TPR, TNR scores shows that regarding TPR, the scores of the protected
group are lower whereas w.r.t. TNR, the scores of the protected group are higher.
That is, more protected instances are rejected (low TPR, high TNR). Moreover,
standard deviation for the non-cumulative version is higher than AdaFair , indicating
AdaFair NoCumul is not stable. It appears that a cumulative notion of fairness based
on the current ensemble composition is better than a non-cumulative approach that
considers solely the fairness behavior of the current/last weak learner.

Except for the overall ensemble behavior, we also show the behavior per round.
In particular, in Figure 5.6 we compare the per round 0 FFNRs and 6 FPRs of the
two approaches. Recall that JFNR and dF PR define the extra weighting/cost u
related to fairness that affects the weighting of the instances for the next round
(see Section 5.4.2). Costs of AdaFair NoCumul exhibit a high fluctuation. On the
contrary, the costs for our AdaFair are smoother and converge after a sufficient number
of rounds to a certain range [—0.05,0.05]. That means that our method mitigates
discrimination over the early rounds. This results further confirms that the cumulative
definition of fairness is superior to a non-cumulative approach.
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Figure 5.5: Effect of cumulative fairness: AdaFair vs AdaFair NoCumul
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5.5.4 The effect of confidence scores

Our AdaFair utilizes confidence scores in the instance weight estimation (c.f., Sec-
tion 5.4.2) in contrast to vanilla AdaBoost. To demonstrate the impact of confidence
scores, we compare AdaFair to a variation that does not use confidence scores (Algo-
rithm 7 line 2g, confidence score h is removed); we refer to this as AdaFair NoConf,
hereafter. We also include vanilla AdaBoost in the comparison. We evaluate the
three approaches w.r.t. their cumulative margins. Comparing to accuracy and bal-
anced accuracy that rely only on correctly and incorrectly classifications, the margins
also reveal information about how confident are the predictions of the different meth-
ods [Sch13]. The cumulative distribution of margins for each dataset and per class
is provided in Figure 5.7. The margin values lie in the [—1, 1] range; values close to
—1 indicate misclassifications with high confidence whereas values close to 1 indicate
correct classifications with high confidence. The bulk of the distribution is located
where the curve increases abruptly.

Based on the results, we observe that for the positive class our AdaFair is more
confident comparing to the other approaches (its curve is shifted to the right) and
this holds for all datasets except for compass where there is no clear winner between
AdaFair and AdaFair NoConf - recall that this dataset is balanced. Also, we can
observe that AdaFair has the lowest errors in the positive class and the misclassifi-
cations in this class have lower confidence values comparing to the other methods.
Regarding the negative class, we can observe that AdaBoost achieves the best perfor-
mance compared to AdaFair and AdaFair NoConf, since it focuses solely on overall
accuracy, thus it learns better the majority class.

The differences in the performances of the different methods increase with the
dataset imbalance; for example for the Bank dataset, AdaFair has significantly less
misclassifications in the positive class comparing to AdaFair NoConf (15% J) and Ad-
aBoost (36% /), and only small increase in the misclassifications of the negative class,
5% | and 7% |, respectively. Similarly, for the KDD dataset, our AdaFair has 23% |
and 46% J less misclassifications than AdaFair NoConf and AdaBoost, respectively,
while the increase in error at the negative class is 12% | and 14% |, respectively. In
this case, AdaBoost classifies correctly almost all the negative (majority) instances,
but its performance on the minority class is the worst (it has the leftmost curve).

To conclude, considering confidence scores for instance weight estimation, the en-
semble’s margins increase especially in case of class imbalance. Instead of “boosting”
all misclassified instances equally, this approach differentiates based on the confi-
dence score of the misclassification, s.t. misclassified instances close to the decision
boundary are weighted less than those that are further away.
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Figure 5.7: Effect of confidence scores per dataset

5.5.5 The effect of balanced error

Our AdaFair is able to achieve parity even when it does not optimize for balanced
error rate because of the cumulative fairness and confidence scores that alter the data
distribution during training in the direction of fairness. In this section, we show that
varying parameter ¢, which alternates the objective goal (Equation 5.7), has a strong
positive effect on TPRs while only slightly affecting TNRs.



5.5 Evaluation

105

0.6 0.6 -
---- Accuracy - Accuracy
04l —+~— Balanced Accuracy 04 —+~— Balanced Accuracy
' —v— Equalized Odds ' —v— Equalized Odds
—»— TPR Prot. —»— TPR Prot.
021 —e— TPR Non-Prot. 021 —e— TPR Non-Prot.
—4— TNR Prot. —4— TNR Prot.
,/v—-ﬂwt'_—' 1 —<— TNR Non-Prot.
0.0 4 [ (I — | i I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
C C
(a) Adult census
0719 o o o o ]
0.6 % —a ~ ~ 1
0.5 -
0.6
0.4 ---- Accuracy ---- Accuracy
—~— Balanced Accuracy 0.4 1 —+— Balanced Accuracy
0.3+ —¥— Equalized Odds —¥— Equalized Odds
—»— TPR Prot. —»— TPR Prot.
0.2 1 —o— TPR Non-Prot. 0.2 1 —e— TPR Non-Prot.
—4— TNR Prot. —4— TNR Prot.
0.1 —<— TNR Non-Prot. —<— TNR Non-Prot.
¥ ¥ ¥ ¥ ¥ Y 004 F——F y ¥ az —Y
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
C

C

(c) Compass

(d) KDD census

Figure 5.8: The effect of balanced error (here we report on accuracy and balanced

accuracy instead)
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In particular, in Figure 5.8, we plot accuracy and fairness related measures for
different values of ¢ € [0, 1]. For ¢ = 1, the balanced error is optimized (our proposed
AdaFair ). For ¢ = 0, the error rate is optimized. Values in-between (we use a step
of 0.2 for ¢) correspond to different combinations of balanced error and error rate.
Values are averaged over 10 random splits. Note that different values of ¢ result into
different AdaFair sizes, i.e., the sub-sequence of weak learners in the ensemble varies
with c.

As we can see, for all imbalanced datasets (adult census, bank, kdd census) the
balanced accuracy increases with ¢. For ¢ = 0 (only error rate is considered) the
TPRs for both groups are very low. The TPRs increase with ¢, reaching their best
values at ¢ = 1, i.e., when balanced accuracy is considered. TNRs decrease with c,
though their decrease is lower than the increase of TPRs. This again supports our
previous findings that AdaFair achieves parity between the two groups for both TPRs
and TNRs while achieving high TPRs, on the contrary to Zafar et al. and Krasanakis
et al. (c.f., Section 5.5). For Compass, accuracy and balanced accuracy are very close
and therefore no significant differences are observed by varying c.

More precisely, a comparison of the results for ¢ = 0 (error rate) and ¢ = 1
(balanced error rate) shows i) for the adult dataset, 18%71 and 15%7 increase in TPRs
(for s, § groups respectively) and only 5%] reduction in TNRs (for both groups); ii)
for the bank dataset, 56%7 increase in TPRs (for both groups) and only 8%] and
9% decrease in TNRs (for s and s,respectively)and iii) for the kdd dataset, 20%71
growth in TPR (for both groups) and only 5% and 6%/ reduction in TNRs (for s
and S, respectively).

To conclude, directly tackling the imbalance via the balanced error is more effec-
tive for fairness-aware classification.

5.6 Chapter Summary

In this chapter, we have proposed AdaFair , a fairness-aware boosting approach that
adapts AdaBoost to fairness by changing the data distribution at each round based
on the notion of cumulative fairness that evaluates per round the fairness-related
behavior of the thus far built ensemble and adjusts accordingly the weight/cost of
the per round discriminated group.

Our experiments, on four real-world datasets, show a substantial difference in
TPRs compared to current fairness aware state-of-the-art approaches. We have seen,
in cases of severe and extreme class-imbalance, that AdaFair can achieve parity among
protected and non-protected group and at the same time maintain significantly bet-
ter classification performance compared to other approaches. Moreover, in cases of
extreme class-imbalance, AdaFair is able to outperform methods which focus solely
on class-imbalance. In cases of class-balanced datasets, such as compass, AdaFair
achieves parity similar to other fairness aware methods.
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Moreover, AdaFair is able to achieve parity even when it does not optimize for
balanced error, however this impacts its performance in terms of balanced error rate
i.e., low TPRs, high TNRs and low Eq.Odds. In addition, from our comparisons of
cumulative versus non-cumulative fairness, we come to the conclusion that cumulative
fairness is without doubt superior to non-cumulative fairness. Furthermore, adapting
confidence scores in the weight estimation process makes AdaFair more confident
compared to vanilla AdaBoost.

A possible extension of our method is the online selection of the optimal number
of rounds 6 for the ensemble, to replace our post-training search for the optimal 6
parameter. Moreover, we plan to work on the theoretical aspects of our method, in
particular regarding its convergence properties.






Conclusions and Future Work

In this thesis, we have focused on class-imbalance and its implications into two pop-
ular areas: i) semi-supervised learning, where label scarcity exists, and ii) fairness-
aware learning, where population segments are treated unequally. In this section, we
conclude our main findings and discuss future directions for each chapter.

In Chapter 3, we have explored semi-supervised methods, such as Co-Training
and Self-Learning, under the prism of class-imbalance. We have shown that semi-
supervised methods propagate errors and class-imbalance in each iteration. To deal
with class-imbalance, we have coupled semi-supervised methods with various aug-
mentation methods such as: over-sampling, under-sampling, distortion, and semantic-
similarity (via word-embeddings). By employing augmentation methods, we have cre-
ated more training data, and also added more variation through domain-meaningful
and sound transformations. Our experiments indicate that such a combination of
methods (semi-supervised with augmentation methods) tackle the class-imbalance
propagation. In addition, we have annotated large amounts of unlabeled textual
data. Our large scale dataset, called T'Sentiment15, contains more than 200 million
English short texts, and is publicly available to the community.

Future work: Although augmentation methods are essential to effectively deal with
class-imbalance, they can amplify existing errors if they are not used with caution.
When coupled with semi-supervised methods, these errors are propagated to the over-
all predictions, which makes the combination of such methods not trivial. A filtering
mechanism should be studied in order to filter pseudo-instances which are not se-
mantically similar to the original instances (for the task of sentiment classification).
In addition, for the semantic-similarity augmentation, the impact of standard ver-
sus refined word-embeddings [YWLZ17] should be explored since in [YWLZ17] they
construct domain-specific (sentiment analysis) word-embedding projections.

In Chapter 4, we have studied the problem of unfair outcomes in supervised
learning models through the prism of class- and within-class imbalance. We have
shown that skewed data distributions affect the supervised models w.r.t discrimina-

109
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tory behaviour. We have seen that within class-imbalance (group-imbalance) forces
the models to misclassify minority segments disproportionately compared to other
segments since they are not able to learn all population segments effectively. We pre-
sented a fairness-aware ensemble framework (FAE) which mitigates unfair outcomes
and deals with class-imbalance at the same time. FAE combines pre-processing and
post-processing fairness-aware interventions to deal with class- and within-class im-
balance, as well as efficiently mitigate unfair outcomes. Our experiments show that
our approach significantly outperforms state-of-the-art methods, and show that class-
and within-class imbalance have an impact in a model’s discriminatory behavior.

Future work: In the chapter, we have shown that jointly pre- and post-processing
fairness enhancing interventions are able to tackle class-imbalance as well as mitigate
unfair outcomes. A future direction for FAE, is to study the selection of the boosting
models since we applied a grid search to select the appropriate boosting models. A
heuristic selection may lead to better performance and non-discriminatory behavior.
Another interesting direction would be to reduce the computational complexity of our
approach by removing the post-processing step and embed it into the training phase.

Finally, in Chapter 5, we have studied fairness-aware learning in sequential mod-
els such as AdaBoost, and we also introduced the notion of cumulative fairness. Our
approach, called AdaFair, is equipped with an objective function that minimizes the
balanced error as well as unfair outcomes. We have shown that cumulative fairness,
combined with the AdaBoost, can efficiently mitigate discriminatory outcomes. By
assigning fairness related weights to the misclassified instances during the training
phase based on cumulative fairness, our model is able to obtain a sequence of weak
learners which are able to produce fair outcomes. Therefore, AdaFair is able to tackle
class-imbalance and mitigate unfair outcomes at the same time. Our experiments
show that our model outperforms state-of-the-art methods in terms of performance
and fairness i.e., AdaFair minimizes unfair outcomes, and at the same time, pre-
serves high TPR scores for protected and non-protected group, in contrast to recent
state-of-the-art methods that produce low TPR scores.

Future work: A natural avenue for future work is to incorporate balanced error
during the weight assignment of the training phase to avoid the grid search of §. An
initial investigation in this direction, in which we have converted AdaFair into cost-
sensitive boosting method, showed that by assigning fixed misclassification costs to
the training procedure makes the model unable to mitigate unfair outcomes. There-
fore, misclassification costs and fairness-related costs should not be independent of
each other, rather properly combined to deal with the joint problem of class-imbalance
and unfair outcomes. Another solution to this problem, which is in the same line of
thought as [DHPT12], would be to introduce a new fairness notion which accounts
not only for parity across groups but also across classes and incorporate into train-
ing phase. Furthermore, the theoretical properties of AdaFair should be extensively
studied, such as bounding the upper training error.

In this thesis, we have studied the impact of class-imbalance in two different
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areas, such as semi-supervised learning and fairness-aware learning; however, class-
imbalance affects various fields in machine learning. Although standard class-imbalance
techniques are powerful methods to deal with the standalone class-imbalance prob-
lem (e.g., classification performance), they may become ineffective when facing a joint
problem. Therefore, domain-specific or heuristic approaches are necessary in order to
tackle combined problems.
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