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Abstract 

Uncertainty quantification (UQ) has been widely recognized as one of the most important, yet 

challenging task in both structural engineering and system engineering, and the current 

researches are mainly on the proper treatment of different types of uncertainties, resulting from 

either natural randomness or lack of information, in all related sub-problems of UQ such as 

uncertainty characterization, uncertainty propagation, sensitivity analysis, model updating, 

model validation, risk and reliability analysis, etc. It has been widely accepted that those 

uncertainties can be grouped as either aleatory uncertainty or epistemic uncertainty, depending 

on whether they are reducible or not. For dealing with the above challenge, many non-traditional 

uncertainty characterization models have been developed, and those models can be grouped as 

either imprecise probability models (e.g., probability-box model, evidence theory, second-order 

probability model and fuzzy probability model) or non-probabilistic models (e.g., 

interval/convex model and fuzzy set theory). 

This thesis concerns the efficient numerical propagation of the three kinds of uncertainty 

characterization models, and for simplicity, the precise probability model, the distribution 

probability-box model, and the interval model are taken as examples. The target is to develop 

efficient numerical algorithms for learning the functional behavior of the probabilistic responses 

(e.g., response moments and failure probability) with respect to the epistemic parameters of 

model inputs, which is especially useful for making reliable decisions even when the available 

information on model inputs is imperfect.  

To achieve the above target, my thesis presents three main developments for improving the 

Non-intrusive Imprecise Stochastic Simulation (NISS), which is a general methodology 

framework for propagating the imprecise probability models with only one stochastic simulation. 

The first development is on generalizing the NISS methods to the problems with inputs 
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including both imprecise probability models and non-probability models. The algorithm is 

established by combining Bayes rule and kernel density estimation. The sensitivity indices of the 

epistemic parameters are produced as by-products. The NASA Langley UQ challenge is then 

successfully solved by using the generalized NISS method. The second development is to inject 

the classical line sampling to the NISS framework so as to substantially improve the efficiency of 

the algorithm for rare failure event analysis, and two strategies, based on different 

interpretations of line sampling, are developed. The first strategy is based on the hyperplane 

approximations, while the second-strategy is derived based on the one-dimensional integrals. 

Both strategies can be regarded as post-processing of the classical line sampling, while the 

results show that their resultant NISS estimators have different performance. The third 

development aims at further substantially improving the efficiency and suitability to highly 

nonlinear problems of line sampling, for complex structures and systems where one deterministic 

simulation may take hours. For doing this, the active learning strategy based on Gaussian 

process regression is embedded into the line sampling procedure for accurately estimating the 

interaction point for each sample line, with only a small number of deterministic simulations.   

The above three developments have largely improved the suitability and efficiency of the 

NISS methods, especially for real-world engineering applications. The efficiency and 

effectiveness of those developments are clearly interpreted with toy examples and sufficiently 

demonstrated by real-world test examples in system engineering, civil engineering, and 

mechanical engineering. 

Keywords: Uncertainty quantification; Imprecise probabilities; Non-probabilistic; Line sampling; 

Active Learning; Gaussian process regression; Bayes rule    
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Kurzfassung 

Unsicherheitsquantifizierung (UQ) ist weithin als eine der wichtigsten, aber auch 

herausforderndsten Aufgaben sowohl im konstruktiven Ingenieurbau als auch im 

System-Engineering anerkannt. In allen mit der UQ verwandten Teilbereichen wie z.B. 

Unsicherheitscharakterisierung, Unsicherheitsausbreitung, Sensitivitätsanalyse, Modellaktua- 

lisierung, Modellvalidierung, Risiko- und Zuverlässigkeitsanalyse usw., befasst sich die aktuelle 

Forschung hauptsächlich mit der richtigen Handhabung verschiedener Arten von Unsicherheiten, 

die sich entweder aus natürlicher Zufälligkeit oder aus Informationsmangel ergeben. Es ist 

allgemein anerkannt, dass diese Unsicherheiten als aleatorische bzw. epistemische Unsicher- 

heiten gruppiert werden können, je nachdem, ob sie reduzierbar sind oder nicht. Zur Bewälti- 

gung der obigen Herausforderung wurden bereits viele nicht-traditionelle Modelle zur Charak- 

terisierung der Unsicherheit entwickelt. Diese Modelle können entweder als unpräzise Wahrsch- 

einlichkeitsmodelle (z.B. Wahrscheinlichkeits-Box-Modell, Evidenztheorie, Wahrscheinlichkeits- 

modell zweiter Ordnung und Fuzzy-Wahrscheinlichkeitsmodell) oder als nicht-probabilistische 

Modelle (z.B. Intervall/konvexes Modell und Fuzzy-Mengen-Theorie) gruppiert werden. 

Die vorliegende Arbeit befasst sich mit der effizienten numerischen Propagierung von drei 

Arten von Modellen zur Charakterisierung der Unsicherheit. Der Einfachheit halber werden das 

präzise Wahrscheinlichkeitsmodell, das Verteilungswahrscheinlichkeits-Box-Modell und die 

Intervallmodelle als Beispiele herangezogen. Ziel ist es, effiziente numerische Algorithmen zum 
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Lernen des funktionalen Verhaltens der probabilistischen Antworten (z.B. Antwortmomente und 

Ausfallwahrscheinlichkeit) in Bezug auf die epistemischen Parameter der Modelleingaben zu 

entwickeln, was insbesondere nützlich ist, um zuverlässige Entscheidungen zu treffen, auch wenn 

die verfügbaren Informationen über Modelleingaben unvollkommen sind. 

Um das oben motivierte Ziel zu erreichen, stellt meine Arbeit drei Hauptentwicklungen zur 

Verbesserung der Non-intrusive Imprecise Stochastic Simulation (NISS) vor, bei der es sich um 

einen allgemeinen methodischen Ansatz handelt, um unpräzise Wahrscheinlichkeitsmodelle mit 

nur einer stochastischen Simulation propagieren zu können. Die erste Entwicklung besteht in der 

Verallgemeinerung der NISS-Methoden auf Probleme mit Inputs, die sowohl unpräzise 

probabilistische Modelle als auch nicht-probabilistische Modelle umfassen. Der Algorithmus 

wird durch die Kombination von Bayes-Regel und Kernel-Dichte-Schätzung erstellt. Die 

Sensitivitätsindizes der epistemischen Parameter werden dabei als Nebenprodukte erzeugt. Das 

NASA Langley Uncertainty Quantification Challenge wird anschließend mit der 

verallgemeinerten NISS-Methode erfolgreich gelöst. Die zweite Entwicklung besteht darin, die 

klassische Line-Sampling-Methode in das NISS-Framework einzufügen, um die Effizienz des 

Algorithmus für die Analyse seltener Fehlerereignisse wesentlich zu verbessern. Es werden zwei 

Strategien entwickelt, die auf unterschiedlichen Interpretationen der Line-Sampling-Methode 

basieren. Die erste Strategie basiert auf den Hyperebenen-Approximationen, während die zweite 

Strategie aus eindimensionalen Integralen abgeleitet wird. Beide Strategien können als 

Postprocessing des klassischen Line Samplings betrachtet werden, die Ergebnisse zeigen 

allerdings, dass ihre resultierenden NISS-Schätzer eine unterschiedliche Performanz aufweisen. 

Die dritte Entwicklung zielt darauf ab, die Effizienz und Eignung der Line-Sampling-Technik für 
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hochgradig nichtlineare Probleme bei komplexen Strukturen und Systemen, bei denen selbst eine 

einzige deterministische Simulation Stunden dauern kann, weiter wesentlich zu verbessern. Zu 

diesem Zweck wird das aktive Lernen auf der Grundlage der Gaußschen Prozessregression in das 

Line-Sampling-Verfahren, zur genauen Schätzung des Interaktionspunktes für jede Linie mit nur 

wenigen deterministischen Simulationen, eingebettet. 

Die oben genannten drei Entwicklungen haben die Anwendbarkeit und Effizienz der 

NISS-Methoden, insbesondere für reale technische Anwendungen, maßgeblich verbessert. Die 

Effizienz und Effektivität dieser Entwicklungen sind eindeutig anhand von Musterbeispielen 

dargestellt und durch reale Testbeispiele in den Bereichen Systemtechnik, Bauingenieurwesen 

und Maschinenbau hinreichend belegt. 

Schlüsselwörter: Unsicherheitsquantifizierung; Unpräzise Wahrscheinlichkeiten; Nicht-probabi- 

listisch; Line sampling; Aktives Lernen; Gaußsche Prozessregression; Bayes-Regel 
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Introduction 

1. Research Background 

In structural and system reliability engineering, the proper treatment of different sources of 

uncertainties has proven to be extremely important nowadays. However, due to the complexities 

of structures and systems, analytically deriving the system behavior is intractable, and 

numerical techniques such as computer simulators, have to be developed for filling this gap, 

which makes the treatment of uncertainty tremendously difficult. The uncertainty quantification 

(UQ) aims at properly characterizing and analyzing all kinds of uncertainties during the 

modeling process, with the target to properly quantifying the uncertainty of model responses 

which simulating the behavior of structural systems subjected to environmental excitations. 

This treatment also provides necessary information for assessing the reliability of the structural 

systems under consideration.  

The tasks in UQ and reliability analysis are summarized in Figure 1, with also the focus on 

the logical flow of implementing these tasks. Given a structural system under consideration, the 

physics laws (e.g., the principle of minimum potential energy) are commonly developed for model 

abstraction, so as to create a mathematical model (e.g., partial differential equations (PDEs)) for 

representing the response of structural systems to specific environment excitations. Then, 

numerical solution (e.g., the finite difference method) is implemented for solving the 

mathematical model so as to develop a numerical computer simulator (e.g., finite element model 

(FEM)) that can be easily implemented with computer codes. In this step, the model verification 

commonly needs to be implemented to identify whether the mathematical model is correctly 

solved, and code verification is required to test whether the numerical solution is correctly 

implemented by the computer codes without bugs in any cases. The above procedure produces 

http://www.youdao.com/w/principle%20of%20minimum%20potential%20energy/#keyfrom=E2Ctranslation
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deterministic computer simulators for simulating the behavior of structural systems. By saying 

“deterministic” it mean that, given deterministic structural parameters, boundary/initial 

conditions, and environment excitations, the computer simulator produces deterministic model 

responses.  

 

Figure 1 Structural UQ and reliability analysis framework 

However, in practical engineering applications, the structural parameters are not 

deterministic, suffering from different sources of uncertainties. Thus, another key task, named as 

uncertainty characterization, needs to be implemented so as to characterize these uncertainties 

with proper mathematical models. Given the uncertainty characterization models as the inputs 

of the computer simulators, one more key task, named as model validation, is required for 

validating the consistency between the responses of the simulator and those of the structural 

systems under consideration. A very famous quote related to this task is given by the British 

mathematician George E. P. Box as “All models are wrong, but some are useful” (Box et al., 

2005). This quote is not only true for statistic inference models, but also definitely true for 

computer simulators, and it means that there is no model that can simulate the behavior of a 
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real-world system precisely. As long as a simulator can predict the responses of the system 

subjected to any environmental excitations correctly within pre-specified error bounds, it is 

useful. If not, then another key procedure, termed as model updating, should be implemented, 

based on experimental measurements of system responses, so as to update the input uncertainty 

characterization models, and also to quantify the bias of the simulator. During this procedure, 

the sensitivity analysis may serve as a useful tool for identifying the important input parameters 

to be calibrated in the model updating. If the simulator prediction accuracy is acceptable, then 

the input uncertainty characterization models and the simulator can be utilized for engineering 

application tasks such as reliability analysis, reliability-based design optimization (known as 

RBO), and structural health monitoring (SHM).  

In the above framework, different sources and different categories of uncertainties need to be 

carefully treated in each procedure, and next, I provide a brief view of the uncertainties affecting 

the simulator prediction and also the related analysis results in applications.      

1.1. Categorization and Sources of uncertainties 

Nowadays, the research community has already reached an agreement on the categorization 

of uncertainties, and the most widely accepted one is to group the presented uncertainty as 

either aleatory uncertainty or epistemic uncertainty (see, e.g. Der Kiureghian and Ditlevsen, 

2009). The aleatory uncertainty, also called objective uncertainty and type I uncertainty, is 

caused by the random nature of things, and cannot be reduced by collecting more information; 

whereas, the epistemic uncertainty, also named as subjective uncertainty and type II uncertainty, 

is due to the lack of knowledge or the poor quality of information, thus can be further reduced by, 

e.g., collecting more information or improving the quality of available information. The coin 

flipping is a good example to explain the above concepts. The result we concern is the side which 

is showing. Before throwing the coin, the only prediction we can make, depending on our 

experience, is that the probability of seeing each side is 50%, but it is impossible to predict which 

side will be definitely showing, and this kind of uncertainty is aleatory uncertainty since it 

cannot be reduced. However, if someone has already thrown the coin, and ask you which side is 
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showing. You are not sure about the result, but you can always learn it, by, e.g., observation. 

This kind of being unknown can be reduced by collecting more information, thus it should be 

grouped into epistemic uncertainty. In the framework shown in Figure 1, these two kinds of 

uncertainties are ubiquitous but may come from different sources in each task.  

Any mathematical model for simulating a system should be developed based on proper 

assumption, which is one of the core steps in model abstraction. Those assumptions are helpful 

for developing practical models, and also result in model bias, which is a kind of uncertainty 

represented by the difference between the mathematical model predictions and the real-world 

system responses. This kind of uncertainty should be classified into epistemic uncertainty.  

The uncertainty to be coupled within the numerical solution and the model verification is 

mostly numerical errors due to, e.g., discretization of the fields, and should be treated as 

epistemic uncertainty. The code verification mainly deals with the incorrectness and bug in the 

computer implementation of the numerical algorithms, which should be regarded as epistemic 

uncertainty, and should be avoided or at least limited to a certain degree.   

The uncertainties presented in uncertainty characterization can be quite universal and 

diverse. The uncertainty characterization models are commonly generated by statistical 

inference based on available information, which may come from measurements, expert opinions, 

observations, etc. The available information may turn out to be random, scarce, incomplete (e.g., 

due to sensor failure), imprecise (e.g., due to measurement error), abstract (e.g., with only 

sample mean), vague (e.g., linguistic description), etc. All the above sources of uncertainties in 

the available information can be categorized either as aleatory uncertainty or epistemic 

uncertainty, depending on whether it is reducible. For example, for an existing structure, the 

dimension sizes and material properties should be deterministic, and the available information 

may only involve epistemic uncertainty due to, e.g., measurement error, which can be reduced by 

using better measurement devices; for the future structure, both the dimension sizes and 

material properties also involve aleatory uncertainty due to their intrinsic randomness caused by, 

e.g., manufacturing errors. The uncertainty due to scarcity, incompleteness, imprecision, 

vagueness, and abstraction can be reduced by collecting more information or improving the 
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quality of information, thus is reducible, and should be grouped into epistemic uncertainty. 

Besides, for developing the uncertainty characterization models from those data, some 

assumptions, such as distribution type, need to be made in advance, which may also introduce 

another source of epistemic uncertainty, that is, the model bias. 

During the task of model updating, the sensitivity analysis is commonly implemented as a 

pre-analysis to cope with the epistemic uncertainty, so as to reduce the number of parameters to 

be calibrated based on the relative contribution of their epistemic uncertainty to the model 

response. The model updating deals with the epistemic uncertainty involved in simulator 

parameters and the bias of the simulator, and nowadays, the Bayesian updating has been widely 

investigated and accepted as the most potential technique for this task.  

Even in the case that the computer simulator and the input uncertainty characterization 

have been validated to be accurate enough for the application, both aleatory and epistemic 

uncertainties may be involved in both objects, and need to be carefully treated in the model 

applications such as reliability analysis, RBO, and SHM.    

Nowadays, researchers have almost reached an agreement that the aleatory uncertainty and 

epistemic uncertainty should be properly distinguished and separated, not only in philosophy, 

but also in the uncertainty characterization models and the whole analysis, design, and 

decision-making processes, because these two kinds of uncertainties come from definitely 

different sources and also have definitely different effects on our analysis. Take the structural 

reliability analysis as an example, where the probability of failure of the structural system is of 

great importance, and the presence of aleatory uncertainty results in the random failure, which 

is an intrinsic property of the structure system. The epistemic uncertainty, however, does not 

affect the true value of probability of failure, but only prevents us from correctly learning this 

value. With the reduction of the epistemic uncertainty, our knowledge of the failure probability 

can be improved. Based on the above fact, the two kinds of uncertainties should undoubtedly be 

distinguished properly and separated from the very beginning of the analysis.   

In this thesis, I only consider the aleatory and epistemic uncertainties presented in input 

uncertainty characterization models, but not the epistemic uncertainty caused by model bias. In 
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the next subsection, the uncertainty characterization models established for characterizing the 

aleatory and epistemic uncertainty will be briefly reviewed.  

1.2. Uncertainty characterization models 

The available uncertainty characterization models can generally be grouped into three 

groups, based on the probabilistic and/or non-probabilistic information delivered. They are 

precise probability models, non-probabilistic models and imprecise probability models, as shown 

in Figure 2.  

 

Figure 2 Categorization of uncertainty characterization models 

Probability models, compared with imprecise probability models, termed as precise 

probability models, have been regarded as the most appealing models for characterizing 

uncertainty due to the simplicity and perfectness of probability theory. A probability model is 

uniquely characterized by a probability space , where  is termed as sample space, 

which is a set of all possible outcomes, the -algebra  is a collection of events with each 

component being a set of containing zero or more outcomes and  is a deterministic function 

from events to probabilities reflecting the probability assigned to each event included in . The 

probability model can be utilized for characterizing either the aleatory uncertainty or epistemic 
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uncertainty, but not both of them in a separable scheme. When it is utilized for characterizing 

the aleatory uncertainty, it can be termed as objective probability, and the probability measure 

 reflects the objective probability that each event in  happens. Otherwise, if it is used for 

characterizing the epistemic uncertainty, it is commonly named as subjective probability, the 

probability measure  reflects someone’s personal belief (measured by probability) on this 

event, but not the actual probability that this event happens. For example, in the classical 

Bayesian model updating scheme (Kennedy and O'Hagan, 2001), the prior information on the 

parameters to be calibrated is always assumed to be a probability model, and by multiplying 

with the likelihood function derived from experiment data, a posterior probability distribution 

with, e.g., smaller support, can be obtained. In the above procedure, it is implicitly assumed that 

the prior probability model (partly) characterizes the epistemic uncertainty since it can be 

reduced by Bayesian inference with more data. The above difference between objective 

probability and subjective probability also reflects the different philosophies between 

frequentists and Bayesians. We don’t go further on these topics as it involves an endless debate 

in which no one wins and no one loses.  

The non-probabilistic models (Faes and Moens, 2019) can be especially useful for 

characterizing the uncertainty due to imprecision, vagueness, scarcity, etc. Commonly used 

non-probabilistic models include the convex model, fuzzy set model, and the induced possibility 

theory, etc. (Helton et al., 2014). Those models do not include any probability information. A 

simple two-dimensional convex model is schematically illustrated in Figure 3, where three 

different cases of dependency between the two variables are shown. In Figure 3 (a), the two 

variables are assumed to be independent, thus the marginal models of both variables are simple 

intervals , and their joint model is a rectangle or hyper-rectangle (for higher dimensions). 

In Figure 3 (b), the two variables are linearly dependent or correlated, the marginal 

characterization models are still intervals, but the joint model is characterized by a convex model 

with the bounds of support modeling by an ellipse or a hyper-ellipsoid (for higher dimensions). 

However, as the two variables are nonlinearly dependent, the bounds of their joint 
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characterization model may be any arbitrary convex set, as shown in Figure 3 (c). The convex 

model has also been extended for time-variant/spatial variables, where the induced models are 

commonly named as interval process or interval field (Verhaeghe et al., 2013; Jiang et al., 2016). 

One important issue in these models is to characterize the spatial dependencies at different 

locations.    

 

Figure 3 Illustration of convex models. 

The fuzzy set model can be regarded as a convex model with soft bounds (Helton et al., 

2014). Two very important elements of a univariate fuzzy set model are the support  

and the membership function , as illustrated in Figure 4. Given a membership level , an 

-cut set can be derived from the membership function as , and it commonly 

holds that . The membership level reflects the analyst’s risk that he would like to take 

for determining the hard support of the variable. Larger membership value implies higher risk, 

meanwhile indicates that narrower -cut set will be induced. Take the measurement as an 

example, when a device is utilized for measuring a deterministic quantity, he may give the 

measured result as , where  reflects the measurement error. In many 

cases,  is not precisely known, and then a varying  with respect to the membership level 

 can be attributed, where  reflects the risk he would like to take. In this way, the 

membership function is derived. If he doesn’t want to take any risk, then a large bound  with 

high confidence is derived; otherwise, while he is willing to take a certain degree of risk, narrower 

bounds with less confidence can be derived. The above feature makes the fuzzy set theory, 

although more complex than the convex model, more informative for decision-making. 

https://www.sciencedirect.com/science/article/pii/S0045782513000807#!
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The possibility theory is derived from fuzzy set model, and the two very important concepts 

are the possibility measure and the necessity measure. Given a subset , the possibility 

measure, denoted as , and the necessity measure, denoted by  are defined by 

(Helton, et al., 2010): 

  (1) 

and 

  (2) 

where  indicates the complementary set of . The possibility measure  quantifies 

the possibility of the event that the subset  contains the true value of , while the necessity 

measure  quantifies the non-possibility of the event that the subset  does contain the 

true value of . These two measures satisfy . Generally, the possibility 

measure overestimates the probability that the appropriate value of  is included in , while 

the necessity measure underestimates this probability.  

 

Figure 4 Illustration of a univariate fuzzy set model 

The above-mentioned non-probabilistic models are mostly utilized for characterizing only 

the epistemic uncertainty, but there are also researchers who suggest using the non-probabilistic 

models as long as the available information is bad, without separating the aleatory and epistemic 

uncertainty (Jiang et al., 2013). In this thesis, I follow the philosophy that those two kinds of 

uncertainties must be separated from the very beginning when one model these uncertainties 

from data. Therefore, throughout this thesis, it is assumed that non-probabilistic models are 
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only used for characterizing the epistemic uncertainty.  

The imprecise probability models are a set of hierarchical mathematical models combining 

the precise probability model and the non-probabilistic models, and are especially useful for 

characterizing the variables with both aleatory and epistemic uncertainties (or called 

polymorphic uncertainty) in a separable framework (Beer et al., 2013). The well-established 

imprecise probability models include evidence theory (Sentz and Ferson, 2002), probability-box 

(p-box) model (Ferson et al., 2015), second-order probability models (Sankararaman and 

Mahadevan, 2011), fuzzy probability model (Stein et al., 2013), etc.  

The evidence theory, also named as Dempster-Shafer (D-S) theory (Sentz and Ferson, 2002), 

is rooted in the classical probability theory. For a univariate variable , the uncertainties are 

characterized by a triplet , where  is called sample space, and it indicates the 

support of  which consists of all possible values of ; one subset  of  is named as a focal 

element, and  is the countable collection of all focal elements of ;  is called the Basic 

Probability Assignment (BPA) of the focal element , which satisfies: (i) ; (ii) 

; (iii) if , then , else . Compared with the 

probability space , the definition of sample space  is the same, but the definitions 

for  and  are different. For probability theory,  is required to be a -algebra, while for 

evidence theory, there is no such a requirement. For probability theory,  measures the 

probability that one sample of  is contained in , while for evidence theory, such kind of 

probability is measured by two new concepts named as Belief Function  and Plausibility 

Function , which are defined as (Helton et al., 2010): 

  (3) 

and 

  (4) 

Thus, it holds that , indicating that the real value of the 

probability  is bounded by  and , and the gap length of this bounds 
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reflects the magnitude of the epistemic uncertainty on the probability . The statistical 

inference of an evidence theory model from a given set of evidence can be found in Sentz and 

Ferson (2002), and we don’t give more details for simplicity. 

The p-box model can be regarded as a combination of the precise probability model and the 

convex model. The aleatory uncertainty is characterized by the inner-loop probability model, 

while the epistemic uncertainty is characterized by the outer-loop convex model. The p-box 

model is an extension of the precise probability model. Given a probability space , for 

precise probability model, the probability measure  of any given event  is a precise 

value, and it represents the aleatory uncertainty of the variable; while for p-box model, this 

probability measure is no longer deterministic, but a non-deterministic value characterized by an 

interval/convex model, which represents the epistemic uncertainty related to this variable. The 

p-box models can be divided into distributional and distribution-free models, depending on 

whether the distribution type is assumed. For the distributional p-box model, the distribution 

type is exactly known, but the exact values of the distribution parameters are non-deterministic 

and characterized by interval-convex model, due to lack of information. An example of the 

distributional p-box is shown in Figure 5 (a), where the distribution type is exactly known as 

normal, but the mean parameter and standard deviation parameter are bounded by  and 

 respectively. The possible cumulative distribution function (CDF) can only be realized as 

a normal CDF with distribution parameters determined in the above two intervals. Figure 5 (a) 

shows one hundred of those possible CDFs. For the distribution-free p-box model, the 

distribution type is unknown, and the probability distribution function is bounded. Figure 5 (b) 

shows such an example, where the p-box model is bounded by the CDFs of the two probability 

distribution  and , and the CDF can be any possible CDF between these 

two CDFs as long as it satisfies the property of a CDF. Based on the above interpretation, one 

can easily find the difference between the distributional and distribution-free p-box models. In 

this thesis, only the distributional p-box model will be considered. In practical applications, the 

distributional p-box model can be inferred from data by, e.g., confidence interval estimation.  
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The second-order probability model can also be grouped as distributional model or 

distribution-free model, depending on whether the distribution type is known or not 

(Sankararaman and Mahadevan, 2013). Taking the distributional model as an example: The  

 

Figure 5 Illustration of distributional and distribution-free p-box models 

 

Figure 6 Illustration of the distributional second-order probability model 

distribution type is exactly known, but the distribution parameters are not known, and their 

uncertainty is characterized by the (subjective) probability model. This subjective probability 

model of the distribution parameters characterizes the epistemic uncertainty related to this 
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variable. As an example, the distributional second-order probability model  with 

 is shown in Figure 6. The left plot shows the density  of the mean 

parameter , and its five realizations. The right plot shows the CDFs  of  

corresponding to these five realizations of . Given sparse data and specified distribution type, 

the probability distribution of the distribution parameters can be inferred from Bayesian 

inference, and one can refer to Sankararaman and Mahadevan (2013) for more details.  

The fuzzy probability model provides a different way of modeling the epistemic uncertainty. 

For distributional model, the epistemic uncertainty is characterized by the fuzzy set model of the 

distribution parameters, instead of the subjective probability model as used in the second-order 

probability model. The membership functions of these distribution parameters can also be 

inferred by, e.g., Bayesian inference (see, e.g., Stein et al., 2013).  

The above three groups of uncertainty characterization models are widely used in many 

research areas, although slightly different interpretations can be given for each kind of model. In 

this thesis, we only consider the precise probability model, the interval model, and the 

distributional p-box model, but all the developments can also be extended for the other models. 

We assume that the precise probability model is only used for characterizing the aleatory 

uncertainty, the interval model is only utilized for modeling the epistemic uncertainty, and the 

p-box model is presented for modeling the mixed uncertainties with the epistemic uncertainty 

being characterized by the interval models of the distribution parameters. The above setting and 

assumption are consistent with most research and engineering practices, e.g., the NASA Langley 

UQ challenge (Patelli et al., 2014). In this challenging problem, a total number of twenty-one 

input variables are concerned, where four of them are characterized by precise probability 

models, another four are characterized by interval model, and the remaining thirteen variables 

are characterized by distributional p-box models. We will go into the details of this challenging 

problem in the next chapter. Given the above three kinds of uncertainty characterization models, 

the next task is how to propagate them through the computer simulators so as to quantify the 

mixed uncertainty of the model responses and to assess the (imprecise) reliability of the 

structures.    
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1.3. Uncertainty propagation and structural reliability  

Uncertainty propagation aims at propagating the uncertainty from the input variables  

to the output variable , through the computer simulator , so as to properly 

quantifying the uncertainty of output variables . One should note that the output variable is 

not always univariate and time-invariant. However, in this thesis, we take such an assumption for 

ease of description. The reliability analysis concerns the estimation of the probability that an 

undesired failure event happens, where the failure event is commonly characterized by . 

For example, given the stress function  and strength function , the failure happens 

when . The sensitivity analysis aims at quantifying the contributions 

of the uncertainties in each input variable to those of output variables. The sensitivity indices 

can be used for ranking the importance of input variables, identifying the most important 

sources of epistemic uncertainty, and also learning the behavior of model response function 

. The scope of this paper is mainly on the reliability and sensitivity analysis of structures 

when the input variables are characterized by precise probability models, interval models, and 

imprecise probability models.  

For reliability analysis with inputs characterized by only precise probability models, many 

numerical methods have been developed, and those methods can generally be grouped into four 

categories, i.e., (i) approximate analytical methods, (ii) stochastic simulation methods, (iii) 

probability conservation methods, and (iv) surrogate model methods. The approximate 

analytical methods (see e.g., Zhao and Ono, 1999), such as first-order reliability method (FORM) 

and second-order reliability method (SORM), aim at analytical deriving the failure probability 

based on the statistical moments of model responses, which are analytically computed based on, 

e.g., the Taylor series expansion of the model response function around the most probable point 

(MPP). The MPP is defined as the failure point of input variables with the largest probability 

density value, thus the areas around this point commonly account for the most probability mass 

for the failure probability. Those methods are extremely efficient as only derivatives need to be 

computed at the MPP, however, those methods are only accurate when the model response 
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function shows low nonlinearity around the MPP.  

The stochastic simulation methods are a set of numerical integration methods based on 

random sampling, and the convergence of the estimators is promised by the Law of Large 

Number and the Central Limit Theorem. The simplest stochastic simulation technique is the 

Monte Carlo simulation (MCS), which involves first creating a set of random samples following 

the probability distribution of input variables, and then estimate the failure probability by the 

rate of samples contained in the failure domain. This procedure is simple and of wide 

applicability, but it is less efficient especially when the failure probability is low (e.g., less than 

10-3) and the structure simulator is expensive to estimate. For improving efficiency, plenty of 

advanced MCS techniques, such as the importance sampling (IS), subset simulation (SS), line 

sampling (LS) and directional sampling (DS), have been developed. The IS technique improves 

the convergence by generating random samples with man-made quasi-optimal density functions, 

and then estimating the failure probability by a weighting scheme (Au and Beck, 1999). The SS 

technique aims at introducing a set of intermediate failure surface so as to efficiently approach 

the real failure surface, and then estimating the failure probability based conditional probability 

formula (Au and Beck, 2001). The LS technique aims at searching the failure surface with a set 

of lines, which are all parallel to the important direction, and then estimating the probability of 

failure along each line by numerical interpolation, and further generating the final estimate of 

the failure probability by averaging the estimates across all lines (Pradlwarter et al., 2007). The 

performance of this method is highly dependent on the pre-specified important direction. In this 

thesis, the LS technique will be improved so as to substantially reduce the computational cost, 

especially for highly nonlinear problems, and also be extended to the situations of imprecise 

probabilities. The DS is also a line searching technique that aims at searching the failure domain 

along each line uniformly distributed in the polar coordinate system (Bjerager, 1988). There are 

also many works aiming at improving the above stochastic simulation techniques, but we don’t 

review them for simplicity. 

The probability conservation methods, such as the probability density evolution method (Li 

and Chen, 2004) and the direct probability integral method (Chen and Yang, 2019), aims at 
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propagating the probability distributions of the inputs to the outputs based on the law of 

probability conservation. The numerical implementations of those methods require the proper 

design of experiments in the input space such that the probability can be propagated 

numerically through a set of cells.  

The surrogate model methods, especially those coupled with active learning and stochastic 

simulation, have received the most attention among the past decade. The most well-known 

method in this group is the so-called AK-MCS method (Echard et al., 2011), which combines the 

Active learning Kriging surrogate model and the MCS. The most appealing character of this 

procedure is that the optimal training points can be adaptively identified by the trained Kriging 

surrogate model so as to improve the accuracy rare of predicting the failure/functioning state for 

each MCS sample in the most efficient way. Many works have been published on improving the 

performance of AK-MCS for rare event analysis, e.g., by combining with advanced MCS 

procedures such as those based on IS or adaptive IS (see e.g., Dubourg et al, 2013; Balesdent et 

al., 2013) and SS (Wei et al., 2019c). In this thesis, the LS will be combined with AK-MCS so as 

to substantially improve the efficiency of rare failure event analysis.  

For non-probabilistic models such as the convex model, the model responses are also 

characterized by the same type of non-probabilistic models, and commonly interval analysis 

based on, e.g., numerical optimization, is required for propagating the uncertainty models. 

Besides, some of the reliability analysis methods for precise probability models, such as FORM 

and SORM (Jiang et al., 2013) as well as AK-MCS (Yang et al., 2015), have been extended for 

propagating the non-probabilistic models, and numerically estimating the reliability of 

structures.  

The uncertainty propagation and reliability analysis based on imprecise probability models 

have also received extensive attention among the past decade. The most straightforward way to 

solve this problem is to develop double-loop strategies based on those classical stochastic 

simulation techniques for precise probability models.  

Two double-loop strategies can be developed. Take the distributional (or parameterized) 

p-box models as an example, the first strategy involves doing optimization in the outer loop by 
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setting the input distribution parameters as design variables, and then for each iteration, doing 

stochastic simulation in the inner loop so as to estimate the failure probability corresponding to 

the deterministic distribution parameters. There are many methods have been developed based 

on this strategy. For example, de Angelis et al. (2015) have developed an adaptive LS algorithm 

for improving the performance of the classical LS, then extended this development to the 

propagation of p-box models, by reusing the samples of input variables for specifying the 

important direction and estimation in each inner-loop iteration. This strategy has been applied 

to the NASA Langley UQ challenge (see e.g., Pedroni and Zio, 2015).  

The second strategy is based on doing sampling in the outer loop so as to draw a set of 

interval samples for the input variables, and then in the inner loop, for each interval sample, 

estimating the bounds of the model response function by, e.g., intrusive finite element analysis or 

optimization, with which the bounds of failure probability can be estimated. There are a lot of 

methods that have been developed based on this strategy. For example, Zhang et al. (2013) 

developed the interval MCS (IMCS) method, which is based on MCS sampling in the outer loop; 

Alvarez et al. (2018) introduces the SS to deal with the sampling problem in this strategy so to 

propagate a plenty kinds of imprecise probability models; Crespo et al. (2013) studied the 

reliability analysis problem for polynomial systems based on the interval propagation in the 

inner loop. This strategy has also been applied to the NASA Langley UQ challenge (see, e.g., 

Patelli et al., 2015). Besides, the multi-level surrogate model methods have also been developed 

by using a double-loop strategy (Schöbi and Sudret, 2017). 

Besides the above double-loop strategies, single-loop strategies by reusing the stochastic 

simulation samples with a weighting scheme have also been developed. This strategy, termed as 

“Extended Monte Carlo Simulation (EMCS)” has been developed in 2014 by the author and 

other co-authors (Wei et al., 2014) and then been also reported by Zhang and Shields (2018) 

with the focus of deriving the optimal density for sampling. This strategy is extremely efficient 

for propagating the distributional imprecise probability models since only one stochastic 

simulation is required, however, for the high-dimensional problem with many non-deterministic 

distribution parameters of inputs, the algorithm can be less effective due to the large variation of 
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the weight functions. To fill this gap, and largely improve the potential advantages, the author 

and the other co-authors have developed the Non-intrusive Imprecise Stochastic Simulation 

(NISS) methodology framework (Wei et al, 2019(a), 2019(b)), which lays the foundation of this 

thesis. Thus, for the readers to get easier to follow the main contents of this thesis, we briefly 

review the details of this methodology by taking the model response expectation  as an 

example. 

Assume that the input variables  are independent, and are characterized 

by p-box models, with density , where  is the marginal 

density of  with nondeterministic distribution parameters . Let  

 indicates the vector of all non-deterministic distribution parameters of the 

input variables with assumed auxiliary density . Then, the model 

response expectation  is no longer constant value, but a function with respect to .  

With high-dimensional model representation (HDMR) decomposition, the response 

expectation function can be decomposed as: 

  (5) 

where . There are two kinds of HDMR decomposition, i.e., the cut-HDMR and RS 

(Random Sampling)- HDMR. If the cut-HDMR decomposition is utilized, the induced NISS 

method is called local NISS, while the RS-HDMR if used, it is called global NISS. With 

cut-HDMR decomposition, the functional components on the right side of Eq. (5) are formulated 

as: 

  (6) 

where  denotes any fixed point of  in its support,  refers to the vector of all 

components of  except , and  indicates the vector of all elements of  except .  

If the RS-HDMR decomposition is applied in Eq. (5), the functional components are 
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formulated by: 

  (7) 

where  and  indicate the conditional expectation operator. 

The basic idea of the NISS method is to first conduct a stochastic simulation for estimating 

the constant component  (or ), and then with the same set of samples, to 

estimate the higher-order component functions , (or , 

), et al. In most cases, the first two order component functions are accurate enough 

for approximating the response expectation function. Basically, any kind of stochastic simulation 

techniques can be used for the above framework. For example, in Wei et al. (2019(b)), the SS 

procedure is utilized for reliability analysis in both local and global NISS methods. Besides, the 

sensitivity indices have also been introduced for the above framework. For example, for global 

NISS, the sensitivity indices for the first-order and second-order component functions are 

defined as (Wei et al, 2019(a)): 

  (8) 

and 

  (9) 

The above sensitivity indices are nothing but the classical Sobol’ sensitivity indices (see, e.g., 

Wei et al., 2015), and can be served for three purposes. First, the sensitivity indices measure the 

relative contribution of each epistemic distribution parameter to the epistemic uncertainty 

(measured by variance) of the probabilistic responses (e.g., model response expectation), thus 

can be especially useful for directing the future data collection. Second, the sensitivity indices 

can be used for identifying the non-influential component functions which can be neglected when 

they are utilized for synthesizing the estimation of the probabilistic response function (e.g., 
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). Third, the sensitivity indices can serve as a measure of truncation error when, e.g., one 

takes a second-order HDMR truncation for approximating the probabilistic response function. 

For more details on sensitivity analysis, the reader can read our review paper (Wei et al., 2015). 

Given the above theoretical framework, the left key component of NISS is the numerical 

implementation. We take the MCS as an example to illustrate the numerical implementation of 

both local and global NISS. For local NISS, given a set of samples ( ) can be 

drawn from the precise density  ①, and by calling the black-box simulator , 

a set of response samples  can be generated, and then the estimators for the constant, 

first-order and second-order cut-HDMR component functions are formulated as: 

  (10) 

The above estimators are all unbiased, and their variances can be easily derived. One can refer to 

Wei et al. (2019(a)) for details. 

For the global NISS method, a set of joint samples  can be drawn by the joint 

density  ②, and the response samples can be computed by . Then, 

the RS-HDMR component functions in Eq. (7) can be estimated by: 

  (11) 

The above NISS methodology provides a general framework for propagating the precise and 

                                           
① For the determination of the fixed value , one can refer to Wei et al. (2014) and Wei et al. (2019a).  

② For the auxiliary distribution , one can refer to Wei et al. (2019a) for details. 
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imprecise probability models, and theoretically, any stochastic simulation methods developed for 

precise probability models can be injected into this framework to meet specific requirements. 

However, it is not applicable when all the three groups of uncertainty characterization models 

are presented in the inputs, just as that in the NASA Langley UQ challenge. Besides, the 

performance of NISS for rare event analysis still needs to be improved.   

2. Aims and Objectives 

The aim of this thesis is on the efficient propagation of the three groups of uncertainty 

characterization models and the related reliability analysis problems, and the focus will be on 

precise probability model (Category I), interval model (Category II), and distributional p-box 

model (Category III). I assume that the precise probability model is only utilized for modeling 

the aleatory uncertainty, the interval model is only used for characterizing the epistemic 

uncertainty, and the p-box model is applied for modeling the mixed uncertainty, with the 

inner-loop probability distribution modeling and the aleatory uncertainty and the outer-loop 

interval models of distribution parameters characterizing the epistemic uncertainty.   

The objective of this thesis is to further improve the NISS methodology so as to extend the 

scope of application, and to improve the performance when utilized for rare event analysis. There 

are three specific objectives.  

i. Generalize the NISS framework to deal with uncertainty propagation when all three 

categories of uncertainty characterization models are presented; 

ii. Inject the LS into the NISS framework improve its performance for rare event analysis;  

iii. Improve the LS method with active learning so as to make it efficient enough for 

real-world engineering applications especially when the time-consuming simulators are 

involved. 

3. Original Contributions 

The contributions of this thesis are mainly on the development of efficient numerical 

algorithms for reliability analysis when the input variables are characterized by the three 
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categories of models, i.e., the precise probability model, the interval model, and the 

distributional p-box models. The three main contributions are described as follows. 

First, the global NISS method is generalized for propagating the three categories of 

uncertainty characterization models, by combining with the Bayes rule. All the advantages of 

the classical NISS method are reserved in this generalization, and both the statistical errors and 

truncation errors are properly addressed. The sensitivity indices are computed as by-products of 

the NISS method, which are shown to be especially useful for learning the relative contribution 

of the input epistemic uncertainty to that of failure probability or other probabilistic responses. 

By utilizing this development, the reliability analysis sub-problem in the NASA Langley 

challenge, which involves twenty-one input variables of three categories and eight failure modes, 

is successfully solved. 

Then two strategies are developed for injecting the LS method to the local NISS framework 

so as to deal with the rare event analysis with input variables characterized by distribution p-box 

models. The first strategy is derived from the set of hyperplanes introduced in the classical LS 

method, while the second strategy is based on the one-dimensional integral along each line. Both 

strategies can be regarded as post-processing of the classical LS method, thus the computational 

cost is the same as the classical LS method. The developed methods are both shown to be 

suitable for problems with moderate nonlinear limit state function and small failure probability. 

Three engineering problems with input dimensions up to 160 are used for demonstrating the 

effectiveness of the two developed methods. 

At last, an active learning algorithm, which combines the Gaussian Process regression 

(GPR) and LS, is developed for rare failure event analysis. The algorithm can automatically find 

the optimal training points by adding which the accuracy of LS estimation can be improved the 

most. Both toy and engineering examples are introduced for demonstrating the advantages of 

this algorithm. It is shown that the algorithm makes the best use of the high efficiency of 

one-dimensional search of the LS method, and the spatial correlation information revealed by 

the GPR model, thus it is extremely efficient for rare event analysis with even highly nonlinear 

limit state function.  
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The above three original contributions have largely improved the efficiency and engineering 

applicability of the classical NISS and LS methods for mixed uncertainty propagation and 

reliability analysis, thus are of significance for uncertainty quantification as well as risk and 

reliability analysis when the available information is imperfect.  

4. Structure of the Thesis 

This dissertation is composed of three journal articles. Each article deals with a different 

aspect of the uncertainty propagation and reliability analysis, and is tightly related to each 

other.  

The first research article develops the generalized NISS method for dealing with the 

propagation of the three categories of uncertainty characterization models (i.e., the precise 

probability model, the interval model and the distributional p-box model) simultaneously in a 

unified framework, and for solving the related reliability analysis problem. The NASA Langley 

UQ challenge is also solved by the developed method in this article. 

In the second article, two strategies are developed to improve the suitability of the NISS 

methodology for rare vent analysis. Two different interpretations are firstly introduced for the 

classical LS algorithm, then based on these two interpretations, two strategies are developed for 

injecting the LS method into the NISS framework. The effectiveness of these two algorithms for 

solving engineering problems is also demonstrated in this article. 

To further improve the efficiency of LS method for rare event analysis involving 

computationally expensive computer simulators, the third article presents an active learning 

algorithm combining the advantages of both GPR model and LS method. This algorithm allows 

estimating the extremely small failure probability at a very low cost.   
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Research article 1: Generalization of non- 

intrusive imprecise stochastic simulation for 

mixed uncertain variables 

This is the first phase of this thesis, which aims at generalizing the Non-intrusive Imprecise 

Stochastic Simulation (NISS) for the general uncertainty propagation problems with all three 

categories of uncertainty characterization models, i.e., the precise probability model (category I), 

the non-probabilistic interval model (category II) and the imprecise probability models 

(category III). As has been mentioned in the Introduction part of this thesis, the NISS 

framework is originally developed for propagating the category I and category III, where both 

are used for modeling the random input variables, except that the category III models also 

incorporates the epistemic uncertainty. In practical engineering applications, the computer 

simulators may also include deterministic-but-unknown inputs, and it is natural to use the 

non-probabilistic models such as convex/interval models and fuzzy set model. Thus, to improve 

the wide applicability of the NISS methods, it is necessary to extend it to the cases with all the 

three categories of input uncertainty characterization models. A direct example of this 

engineering scenario is the NASA Langley uncertainty quantification (UQ) challenge to be 

solved in this chapter. In this challenge, a total number of tween-one input variables are involved, 

where four inputs are characterized by category I model, four other inputs are characterized by 

category II model, and the remaining thirteen inputs are characterized by category III models. 

The computer simulator of this system consists of five fixed disciplinary black-box simulators 

and eight cross-disciplinary black-box simulators, thus the involved uncertainty propagation 

problem can be quite computationally challenging. We take this challenge as a motivation to 

develop the generalized NISS method. In accordance with this challenge, we only consider the 
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interval model as an example of the category II models, and the distributional p-box model as an 

example of the category III models.  

With the above setting, the epistemic uncertainty is characterized by the interval models of 

category II inputs, and the interval models of the distribution parameters of the category III 

inputs. We then take the failure probability estimation as an example to illustrate the developed 

NISS method. This method involves three ingredients. First, for the epistemic parameters 

(category II inputs and the distribution parameters of category III inputs), auxiliary probability 

distribution needs to be assumed in advance, and with the toy example, we illustrate the 

influence by assuming different types of auxiliary distribution. Second, Bayes rule is introduced 

to formulate the failure probability function with respect to the category II as the ratio of the 

conditional and unconditional density function. Third, the kernel density function is utilized for 

estimating the conditional density function. Similar to the original NISS, the truncation error 

due to HDMR truncation is measured by the sensitivity indices, and the statistical errors are 

quantified by the coefficient of variation of the NISS estimators. At last, a toy example and the 

NASA challenge are used for demonstrating the proposed method.  

Although we only consider the estimation of the failure probability, it can be easily 

extended for estimating the other quantities of interest, such as the bounds of the cumulative 

distribution function of the model response. With the above development, the NISS framework 

is largely enriched, thus can be more applicable to real-world engineering problems.  
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Abstract: Non-intrusive Imprecise Stochastic Simulation (NISS) is a recently developed general 

methodological framework for efficiently propagating the imprecise probability models and for 

estimating the resultant failure probability functions and bounds. Due to the simplicity, high 

efficiency, stability and good convergence, it has been proved to be one of the most appealing 

forward uncertainty quantification methods. However, the current version of NISS is only 

applicable for model with input variables characterized by precise and imprecise probability 

models. In real-world applications, the uncertainties of model inputs may also be characterized 

by non-probabilistic models such as interval model due to the extreme scarcity or imprecise 
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information. In this paper, the NISS method is generalized for models with three kinds of mixed 

inputs characterized by precise probability model, non-probabilistic models and imprecise 

probability models respectively, and specifically, the interval model and distributional p-box 

model are exemplified. This generalization is realized by combining Bayes rule and the global 

NISS method, and is shown to conserve all the advantages of the classical NISS method. With 

this generalization, the three kinds of inputs can be propagated with only one set of function 

evaluations in a pure simulation manner, and two kinds of potential estimation errors are 

properly addressed by sensitivity indices and bootstrap. A numerical test example and the 

NASA uncertainty quantification challenging problem are solved to demonstrate the 

effectiveness of the generalized NISS procedure.  

Keywords: Non-intrusive imprecise stochastic simulation; Uncertainty quantification; 

Non-probabilistic; Imprecise probability; Sensitivity; Bayes rule; Interval model; Bootstrap 

1. Introduction 

Uncertainty quantification (UQ) has been widely accepted as an important task in a variety 

of research and engineering fields. For example, in the analysis and design of large civil 

engineering systems, the uncertainties presented in system excitations (e.g., caused by natural 

disasters such as earthquake and flood), material properties, degradation process modeling, etc., 

are quite substantial and have to be carefully treated. Commonly, there are two kinds of 

uncertainties, i.e., aleatory uncertainty and epistemic uncertainty [1], while the former one is due 

to the intrinsic random property of parameters or events, thus cannot be reduced by collecting 

more information, and the later one is caused by the incompleteness of knowledge, and can be 

reduced by further collecting information. The above two kinds of uncertainties may appear 

alone, but in most real-world applications, may occur simultaneously. Characterization of the 

above two kinds of uncertainties with mathematical models is the first key problem of UQ.  

Generally, three groups of uncertainty characterization models have been developed, i.e., 

the precise probability model, the non-probabilistic models [2][3], and the imprecise probability 

models [4]. The precise probability model (Category I) is the most classical uncertainty model, 
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and is commonly used for characterizing the aleatory uncertainty, which usually requires a large 

number of data of good quality. The non-probabilistic models (Category II), including 

interval/convex model, fuzzy set theory, etc., can be especially useful for characterizing the 

imprecision of constant-but-unknown variables or for situations that the available data for 

random variables is extremely scarce/incomplete/imprecise [3]. As the level of knowledge 

increases, the interval model will degrade into its true value. The imprecise probability models 

(Category III), such as probability-box (p-box), evidence theory and fuzzy probability model, 

can be regarded as the combination of the former two kinds of models, and can be especially 

useful for separately characterizing the two kinds of uncertainty in a unified model framework [4]. 

As the volume of available information increases, the category III model will shrink to the true 

cumulative distribution function (CDF). The roles of three categories of characterization models 

are shown in Figure 1.  

 

Figure 1 The roles of the three categories of characterization models in UQ. 

The second key problem is the propagation of the characterization models through the 

computational models so as to quantify the uncertainties of the model responses, and to assess 

the reliability of the systems. This has been a quite big challenge especially when all the three 

categories of characterization models are present as model inputs. For example, in the NASA 

multidisciplinary Langley UQ challenge [5], the subproblem of uncertainty propagations involves 
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21 inputs variables characterized by the three categories of models. Propagation of the category 

I model has been widely studied, and a plenty of methods, such as probability density evaluation 

[6], importance sampling [7], subset simulation [8], line sampling [9] and active learning based 

surrogate model methods [10], have been developed, and shown to be effective for real-world 

applications. The propagation of Category II models has also been studied, and the current 

methods are mainly driven by optimization algorithms [2][3], which are commonly 

computationally expensive especially for problems with non-convex response functions and 

high-dimensional inputs.  

The propagation of category III models is generally a double-loop process, and several 

strategies have been developed. The simplest procedure is to perform optimization for 

distribution parameters in the outer loop and then propagate the degraded category I model in 

the inner loop with, e.g., precise stochastic simulation method [11]. This strategy has been 

applied to the NASA Langley challenge with the utilization of genetic algorithm for outer loop 

optimization and Monte Carlo simulation for the inner loop analysis [12]. The second strategy is 

based on sampling in the outer loop so as to generate a set of interval samples for input variables, 

and then propagate each interval sample in the inner loop by, e.g., interval finite element 

analysis or optimization algorithms [13]-[15]. This strategy has been recently extended to 

problems with spatial/time-variant inputs [16]-[18]. The third strategy involves generating a set 

of samples for input variables, and then estimating the performance values (e.g., failure 

probability) w.r.t. different values of the distribution parameters of category III models based on 

a weighting scheme. This strategy, termed as “Extended Monte Carlo simulation”, was originally 

developed in Ref. [19], and was strengthened in Ref. [20]. Although being efficient, it does not 

perform well for problems with high-dimensional inputs. To overcome the above shortcoming, a 

new methodology framework, termed as “Non-intrusive Imprecise Stochastic Simulation 

(NISS)”, has been developed in a set of companion paper [21][22], and two groups of methods, 

i.e., the local NISS methods and the global NISS methods, have been presented. The NISS 

framework owns many advantages. It is applicable for high-dimensional problems with numerical 

estimation errors being properly addressed, and meanwhile, provides good balance for local and 
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global performances. Any precise stochastic simulation such as subset simulation and line 

sampling can be injected into this framework so as to properly address different types of 

problems, and the sensitivity information of the epistemic uncertainty is generated as a 

byproduct. Besides, the NISS framework avoids performing optimization on the model response 

functions, thus can properly address problems with even non-convex response functions. 

However, the current version of NISS is only applicable for problems with inputs characterized 

by category I and category III models. 

The aim of this paper is to generalize NISS to the situation where all the three categories of 

characterization models are involved, and specifically, the interval model in category II and the 

distributional p-box model in category III are concerned. The generalization is realized based on 

Bayes rule and the global NISS method, and is shown to own all the advantages of the original 

NISS method．The truncation errors as well as the influential component functions are identified 

by the Sobol’ sensitivity indices, and the statistical errors are quantified by bootstrap scheme. 

The proposed method is demonstrated by a toy test example, and is then applied to solve the 

reliability analysis subproblem of the NASA Langley UQ challenge.  

The rest of this paper is organized as follows. Section 2 gives briefly reviews the NISS 

method, followed by the generalization of NISS in section 3. In section 4, the toy test example 

and the NASA Langley UQ challenge are introduced to demonstrate the proposed method. 

Section 5 gives conclusions and useful discussions.    

2. Brief review of NISS 

In this section, we briefly review the classical NISS method for propagating imprecise 

probability models, and specifically, for distributional p-box model. Let  

denote the n-dimensional vector of random input variables with joint probability density 

function (PDF) , where  refers to the d-dimensional vector of 

non-deterministic distribution parameters, each  of which is assumed to be an interval 

parameter with support . Let  and . With 

this p-box model, the aleatory uncertainty of  is characterized by its joint PDF, while the 
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epistemic uncertainty subjected to incomplete knowledge is represented by the 

hyper-rectangle support of . In real-world applications, the support of  can be estimated by 

confidence interval estimation procedure, and as the data volume of x increases, the support of 

 will shrink, indicating the reduction of epistemic uncertainty. With enough data, the support 

of  shrinks into a fixed point, and then the p-box model degrades into a precise probability 

model characterizing only aleatory uncertainty. Without loss of generality, we assume that the 

input variables are independent, and their joint PDF can be expressed as 

, where  implies the marginal PDF of , and 

 indicates the -dimensional vector of the distribution parameters of . 

For performing the global NISS procedure, an auxiliary PDF  should be introduced. In 

this paper, we assume that each  follows independent uniform distribution within its 

respective support , and the marginal PDF is denoted as . 

Let  indicate the model response function (also called limit state function for 

reliability analysis, or simply g-function) of the computational model. In this paper, only 

one-dimensional response is exemplified for illustrating the proposed method. We define a 

sub-domain of input space as , and then the indicator function 

corresponding to this sub-domain can be defined as  if ; else . 

For reliability analysis, we assume that the failure happens when the model response is less than 

zero. Then the failure domain can be defined as , and the corresponding indicator 

function of F is defined as  if ; else . Based on the above definition, 

the CDF of the model response w.r.t  can be formulated as: 

  (1) 

, where  indicates the expectation operator w.r.t. x. The failure probability function can 

then be derived as . 

The NISS methods are developed based on high-dimensional model representation (HDMR) 

decomposition of  w.r.t. , where the local NISS methods are based on cut-HDMR 
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decomposition and the global ones are devised from random sampling (RS)-HDMR 

decomposition [23]. Here only the simplest global NISS method is reviewed since only this 

method will be generalized. The RS-HDMR decomposition of  reads: 

  (2) 

, where , and the constant component as well as the first two order component 

functions are formulated as: 

  (3) 

In Eq. (3),  indicates the expectation operator w.r.t. ,  is the expectation 

operator w.r.t. the -dimensional vector  consisting of all the elements of  but , 

and  refers to the expectation operator w.r.t. , which consists of all the components 

of  but . The expectation of each component other than  equals to zero, and are 

mutually orthogonal.  

Given a set of joint samples  following , the NISS 

estimators of the RS-HDMR components are given as: 

  (4) 

, where 

  (5) 

The above estimators are all unbiased, and their variances can be easily derived, as shown 

in Ref. [21]. One should note that the ratio function in Eq. (5) are derived based on the 
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assumption that the auxiliary distributions of  are all uniform. If non-uniform distribution is 

assumed, the ratio functions are still made of density functions, but the formulations will be 

different.  

The accuracy of NISS may also be affected by the RS-HDMR truncation, and as indicated 

in Refs. [21] and [24], the truncation errors can be subtly assessed by the Sobol’ sensitivity 

indices. Due to the orthogonality of the RS-HDMR component functions, taking variance to 

both side of Eq. (2) yields [24][25]: 

 (6) 

Based on the above variance decomposition, the Sobol’ sensitivity index can be defined for each 

component function. For the first- and second-order component functions, the Sobol’ indices are 

defined as [25][26]: 

  (7) 

and 

  (8) 

The Sobol’ indices for higher order component functions can be similarly defined. These 

sensitivity indices can be easily computed by numerically integrating the NISS estimators in Eq. 

(4). In the classical global NISS procedure, the Sobol’ indices are served for three purposes. As 

the Sobol’ indices measure the relative importance of each RS-HDMR component function, the 

component functions with very small values of Sobol’ indices can be neglected while synthesizing 

the estimate of failure probability function. Based on the interpretation of Sobol’ indices, the 

first-order index  measures the contribution of the epistemic uncertainty of  to the 

epistemic uncertainty of response CDF, and the second-order index  measures the 

second-order interaction contribution between  and . Thereof, the Sobol’ indices can also 

be used for identifying the main sources of epistemic uncertainty present in model response CDF, 
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thus can be especially useful for further collecting information and for specifying the important 

parameters to be calibrated in inverse uncertainty quantification. Besides, 

 measures the truncation error of the second-order RS-HDMR 

decomposition. If this value is less than a pre-specified threshold (say 0.03), it is asserted that 

the truncation error is small. 

For reliability and rare event analysis, the subset simulation as well as active learning 

procedure have both been injected into the NISS framework, and shown to be effective and of 

wide applicability [22]. The main drawback of the above NISS method is the inapplicability to 

category II models. In the next section, we discuss the necessity of the generalization of NISS for 

mixed uncertain variables, and then develop a simple but effective strategy for realizing the 

generalization.  

3. Generalization of NISS 

3.1 Discussions on non-probabilistic models 

Aside for the precise and imprecise probability models, several non-probabilistic models, 

such as interval/convex models [2][3], fuzzy set theory [2][27], and possibility theory derived from 

fuzzy sets [27], have also been developed for characterizing uncertainty. In this paper, we take 

the independent interval model of category II as an example. The non-probabilistic models are 

important complements to the precise and imprecise probability models in the following two 

situations. 

 Situation 1: constant-but-unknown variable. In this situation, we know that the variable 

under consideration is a constant, but due to measurement error, ambiguity, subjective 

of expert opinion, etc., we don’t know the exact value of this constant. The available 

information is a collection of intervals. Based on this assumption, the variable has only 

epistemic uncertainty, which should be characterized by the intersection of this 

collection of intervals under the assumption that each interval includes the true value of 

the variable. A typical example of this situation is the reliability analysis of existing 

structures. The dimension and material property parameters of an existing structure are 

http://www.youdao.com/w/ambiguity/#keyfrom=E2Ctranslation
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unquestionably deterministic, but due to measurement errors, these parameters should 

be modeled as interval variables.   

 Situation 2: random variable subjected to extreme lack of information. In this situation, 

the variable under consideration is a random variable, but due to the extreme lack of 

information, we cannot generate a proper imprecise probability model with confidence. 

In this situation, both aleatory and epistemic uncertainties are present, but as the 

epistemic uncertainty is dominant, it is better to model the variable with 

non-probabilistic models such as interval model. This situation often occurs in the 

design of future structures when new materials are utilized, and we have only small 

number of inaccurate experimental data (modeled by intervals) on the material 

property parameters. We can simply model the uncertainty of the parameter by the 

union of the collected intervals. 

Otherwise, if the amount and quality of the available data for a random variable allow us to 

model its aleatory and epistemic uncertainties with imprecise probability models, we’d better 

use the imprecise probability models since they are more informative. The above two situations 

are schematically illustrated in Figure 1. 

In practical applications, the three categories of input variables, i.e., the non-probabilistic 

variables, the imprecise random variables and the precise random variables, may exist 

simultaneously in the same analysis task, and it is necessary to extend the NISS method to such 

situation. In the next subsection, we present the generalization. 

3.2 The developed method 

Let the m-dimensional independent interval variables denote by  with 

hyper-rectangular support , where  indicates the Cartesian product, 

 is the support of  with ,  is the vector of the lower 

bounds, and  is the vector of upper bounds. Then, the model response 

function is written as , and the indicator function  and  can be 

similarly defined. In this section, we take the failure probability function  as an 
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example to discuss the generalization of NISS. By definition, the failure probability function is 

formulated as: 

  (9) 

With the above setting, the epistemic uncertainties of model inputs are characterized by the 

hyper-rectangles  and . Similarly, for implementing the global NISS 

method, we need to attribute an auxiliary distribution for each . Without loss of generality, we 

assume that each  follows independent uniform distribution, and denote the corresponding 

marginal PDF as  , and the joint PDF as . The effects of the 

auxiliary distribution will be discussed later.  

With RS-HDMR, the failure probability function  can be decomposed as: 

  (10) 

where 

  (11) 

, and  indicates the expectation operator w.r.t. both  and ,  refers to the 

expectation taken w.r.t.  and y, etc.  

For estimating the RS-HDMR component functions in Eq. (11), we need first to generate a 

joint sample set  following joint PDF . As 

is independent of y, their samples can be generated independently, and the procedure is 

given as follows. 

 Generation of joint samples for . Generate a sample matrix 
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 with  rows and  columns by, e.g., Latin 

hypercube sampling, each column of which follows independent uniform distribution 

between 0 and 1; Then, generate the sample  for each  by , 

where  indicates the inverse CDF of ; At last, create the sample 

, where  is the inverse CDF of  with its distribution 

parameters fixed at  

 Generation of samples for . Generate a sample matrix , each 

column of which is independently and uniformly distributed between 0 and 1; Then, 

compute the sample for each  by , where  is the inverse 

CDF of . 

The NISS estimators of the component functions ,  and  in Eq. (11) 

are similar to those in Eq. (4), and are formulated as: 

  (12) 

The NISS estimators of ,  and  cannot be established in 

the similarly way since each  is an interval input variable other than the distribution 

parameter of a potential category III model.  

By definition,  can be regarded as a conditional failure probability with 

the condition that  is fixed, and  is the corresponding unconditional probability. Thus, 

based on Bayes’ rule, the component function  can be derived as: 

  (13) 

, where , and  indicates PDF of  conditional on the 

failure domain . The conditional probability density function  

is, in general, not known analytically. Hence, it can be estimated by any density estimation 
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method, e.g., kernel density estimation, based on the failure samples of . In other words, this 

conditional probability density is approximated as , where  

denotes the estimated density, which is deduced based on the sample set . Then, the NISS 

estimator for  can be derived as: 

  (14) 

where . Similarly, the NISS estimator of  can be 

derived as: 

  (15) 

where , and 

 is the conditional joint PDF of  estimated from the sample set , which will 

be discussed in the next subsection.  

Next we derive the NISS estimators for the second-order component function . 

By definition,  can also be regarded as the conditional failure probability with 

the condition that  is fixed, and based on the Bayes rule, it can be further derived as:  

  (16) 

Thus,  is derived as: 

  (17) 

, and its NISS estimator can be derived as: 

  (18) 

Till now, we have got the NISS estimators for all the first- and second-order component 

functions based on only one set of joint samples as well as their response values. Thus, the total 

number of required g-function calls is . Naturally, the above generalized NISS procedure owns 

all the advantages of the classical global NISS procedure. The utilization of Bayes rule for the 
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above generalization is partly inspired by Ref. [28], in which the Bayes rule was utilized for 

estimating the global reliability sensitivity indices developed by the first author in Ref. [29]. 

Similarly, the idea of applying Bayes rule for deducing the dependence of the failure probability 

with respect to a parameter has been explored in Refs. [30] and [31]. 

The truncation errors as well as the relative importance of each component can be assessed 

by the Sobol’ indices computed from the NISS estimators of the respective component functions, 

and we don’t repeat it for simplicity. It is important to note that the Sobol’ indices associated 

with the uncertain parameters of category II actually stem from the auxiliary probability 

distributions and hence, are interpreted as representative of the overall impact of those uncertain 

parameters on the response of interest. Such clarification is important from a theoretical point of 

view, as Sobol’ indices are defined for random variables (and not uncertain parameters of 

category II). The statistical error of each NISS estimator can be assessed by deriving their 

respective variance, and the details can be found in Refs. [21] and [22]. In this paper, we 

implement the NISS method with bootstrap scheme so that the variance of each estimator can 

be computed in a different way. The procedure of performing the Bootstrap for NISS is given as 

follows. 

Step 1: Generate a joint sample set  of size , and compute the 

corresponding response values . 

Step 2: Randomly generate a new sample set of size  from  

with replacement, and estimate all the component functions as well as their respective 

Sobol’ indices based on this new sample set. 

Step 3: Repeat Step 2 for (e.g., 50) times so that we can obtain  estimates for each 

component function and each Sobol’ index, and then compute the mean values and 

variances for each component function and the corresponding Sobol’ index based on their 

 estimates.  

With the mean value and variance of each component function, we can easily compute the 

standard deviation (STD) and confidence interval of each component function and sensitivity 
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index, based on the fact that each estimator following Gaussian distribution.  

With the above procedure, we can synthesize the failure probability function by adding all 

the influential component functions, and also estimate the confidence bounds of   

based on the STDs. Third and higher order component functions as well as their corresponding 

sensitivity indices can be similarly estimated without calling the g-function any more. Based on 

the synthesized failure probability function  or the confidence interval of , one 

can estimate the bounds of the failure probability. While the mean estimate  is used, 

the bounds may be either underestimated or overestimated due to the statistical error of 

. However, the effects of the statistical errors on the bounds can be easily assessed since 

the statistical error of   at any fixed location of  can be computed. Besides, we can 

also estimate the lower bound of  based on the lower bound of the confidence interval of 

, and use the upper bound of the confidence interval to estimate the upper bound of . 

With this strategy, the generated bounds include the real bounds with specific level of confidence. 

For both strategies, the bounds are estimated by numerical optimization procedure. If  

is proven by the Sobol’ indices to be additive, then only one-dimensional optimization problems 

need to be solved; while  is also governed by low order interaction terms, then 

commonly only low-dimensional optimization problems need to be solved. This feature can 

largely improve the global convergence for estimating bounds.   

The auxiliary distribution is one of the key setting for implementing NISS. Theoretically, we 

can use any types of probability distribution, and this will not affect the formulation of the 

failure probability function as well as the failure probability bounds, but they do affect the 

RS-HDMR decomposition in Eq. (10) as well as the distribution of Monte Carlo samples. For 

reliability analysis, it also affects the number of samples included in the failure domain. We will 

discuss carefully in the first test example the influence of the different types of auxiliary 

distribution.      

The detailed procedure of NISS is then summarized in Figure 2. In this diagram, the 

statistical error for the estimate of each component function is assessed by STD in the 
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“Estimation” step, and the truncation error of the synthesized estimation of  is 

measured by sensitivity indices in the “Products” step.    

 

Figure 2 Diagram of the generalized NISS procedure 

Although the above NISS procedure needs only one set of g-function calls, it is still 

computational expensive for rare event analysis. However, the computational burden can be 

largely relieved by injecting subset simulation and/or active learning procedure into the NISS 

framework, and by implementing it in a parallel scheme. One can refer to Ref. [22] for the details 

of injection of subset simulation into the NISS framework for estimating the component 

functions of . This strategy can also be extended for estimating the component functions of , 

as well as their interaction component functions with . This extension involves performing 

subset simulation, in the joint space of , for estimating , and then estimate the 

conditional density  based on the failure samples generated with Markov Chain Monte 

Carlo (MCMC), so as to estimate the component function  by Eq. (13). Further, the 

active learning procedure can be injected into the above Monte Carlo simulation or subset 

simulation based NISS framework, and with this improvement, the computational cost can be 
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largely reduced (see Ref. [22] for details).  

One should also note that NISS in its current form is not applicable for interval analysis. In 

traditional interval analysis, only category II inputs are involved, and the target is to estimate 

the bounds of model response. However, for implementing NISS, it is required at least one 

category I or category III input is involved, that is, the model inputs must deliver probability 

distribution information, and the target is to estimate the bounds of probabilistic responses (e.g., 

failure probability and response distribution function), instead of the bounds of model response.   

3.3 Conditional density estimations 

As can be seen from Eq. (14) and Eq. (15), for interval variables, the performance of the 

estimators of the corresponding component functions depends on the estimation of the 

conditional PDFs  and . Thus, in this subsection, we give some useful 

discussion on the estimations of these two conditional PDF. As has been interpreted in 

subsection 3.2, both conditional PDFs are estimated based on the failure sample of the interval 

variables. For univariate PDF , many non-parametric density estimation procedures 

have been developed, and in this paper, we suggest using the kernel density estimation (KDE) in 

Ref. [32] or the function ‘ksdensity’ in Matlab.  

For bivariate joint PDF , we can still use the 2-dimensional KDE developed in 

Ref. [32] to implement the method. Besides, in many situation of practical applications, the 

conditional samples of two interval variables may be independent with each other, thus before 

estimating , we can also perform a hypothesis test on the dependence based on the 

failure samples of  and . In section 7 of our review paper [25], several hypothesis test 

techniques on variable dependencies have been introduced, and one can refer to this review for 

more details. If  and  are independent, then , and the ratio 

function in Eq. (15) can be further derived as , indicating that 

the second-order component function of  and  can be derived based on their respective 

first-order component functions. If the samples of   and  are not independent, one can also 

use the Copula transformation which reads [33]: 
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  (19) 

to estimate the joint PDF , where  is the Copula density function of  and 

, which can be estimated by parametric Copula (e.g., Clayton, Frank, or Gumbel) combined 

with any distribution parameter estimation procedures, based on the failure samples of  and 

. 

4. Test examples and applications 

4.1 A toy test example 

Consider a toy example with the following limit state function: 

  (20) 

where  is an interval variable with support ;  is a Gaussian random variable 

characterized by a p-box model, of which the support of the mean parameter  is , and 

the support of STD  is ;  is a standard Gaussian random variable with zero 

mean and unit STD. With the above assumption, the epistemic uncertainties of input variables 

are characterized by the intervals ,  and , while the 

aleatory uncertainties are characterized by the probability distributions of  and . The 

purpose of analysis is to estimate the failure probability function w.r.t. the three epistemic 

parameters ,  and . 

For implementing NISS, we need first to specify the auxiliary probability distribution. 

Theoretically, the type of auxiliary distribution will not affect the failure probability function 

 and the bounds of failure probability, however, it may affect the formulation of each 

component function. As illustrated in subsection 3.2, we can simply assume that  follows 

uniform distribution between 0 and 1. However, it is found that, with this assumption, the end 

regions are not sufficiently well represented, especially the left one of the first-order component 

function . This is due to the lack of samples in the left end region. Here three kinds of 

auxiliary distribution are introduced for , each of which has support . The first 

one is uniform distribution, and it is abbreviated as “Unif”. The second one is truncated normal 

distribution with mean 0.5 and STD 0.35, and is denoted by “Trun-Norm”. The third one is 
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U-quadratic distribution with density function: 

  

The density functions of three auxiliary distributions are shown in Figure 3. The auxiliary 

distribution of  and  are both set to be uniform. Then we set  and , and 

generate the joint sample set using Latin hypercube sampling.   

 

Figure 3 Density functions of the three auxiliary distributions of  

The NISS procedure is implemented with Bootstrap scheme, and the results of the constant 

HDMR component as well as the first- and second- order Sobol’ indices corresponding to each of 

the three auxiliary distribution are displayed in Table 1, together with the STDs for indicating 

the convergence of the estimates. As can be seen, for each of the three auxiliary distributions, the 

relative contribution of each component function is quite similar, and the interaction effects of 

the three epistemic parameters are quite small. This indicates that the first-order HDMR 

decomposition provides good approximation for the failure probability function. It can also be 

seen that, among the three epistemic parameters,  is the most important one, and then  

and , indicating that reducing the epistemic uncertainty of  leads to the most reduction of 

the epistemic uncertainty of failure probability. This information is quite important for further 

collecting information on input variables.  

The first-order component functions for each kind of auxiliary distribution are estimated by 

the NISS estimators and the Bootstrap procedure, and the estimations as well as the 95.45% 
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confidence intervals are shown in Figure 4, together with the reference solutions computed by 

double-loop crude MCS procedure with 105 samples in each iteration. For the three auxiliary 

distributions, the resulted first-order component of  shows very small difference. It is also seen 

that the estimates of all the three component functions computed by the NISS procedure match 

well with their reference solutions, and all the three confidence intervals are tight enough. Thus, 

all the three first-order component functions are effectively estimated by NISS. It is also shown 

in the first line of Figure 4 that, comparably, around the point , the estimation error of 

 is a little bit larger for each kind of auxiliary distribution. This can be improved by setting 

the lower bound of the auxiliary distribution of  a smaller value, say -0.5. Such results are not 

shown here for the sake of brevity.  

 

Figure 4 First-order component functions generated based on the three kinds of auxiliary 

distributions. 
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Table 1 NISS results of the toy example, where the superscripts indicates the STDs of estimates. 

Distribu- 

tion type 
       

Bounds  

of  

Unif .071(8.8e-4) .695(1.9e-2) .2072(1.4e-2) .0793(5.1e-3) .0068(2e-4) .0026(1e-4) .0091(7e-4) [.039, .113] 

Trun-Norm .075(8.7e-4) .689(1.6e-2) .1983(1.1e-2) .0746(5.2e-3) .0351(1e-3) .0002(1e-6) .0033(2e-4) [.036, .109] 

U-quad .070(7.0e-4) .711(2.0e-2) .179(1.2e-2) .0655(4.9e-3) .0109(8e-4) .0072(3e-4) .0014(1e-4) [.037, .102] 

 

 

Figure 5 Second-order component functions of the toy example, where the in-between the 

surfaces indicate the mean estimates, and the other two surfaces indicate the 95.45% confidence 

intervals. 

Although the second-order component functions are not very influential, we still display 

their estimates as well as the 95.45% confidence intervals in Figure 5. As can be seen, all the 

three component functions are accurately estimated, and for each kind of auxiliary distribution, 

the second-order component functions are quite similar. One can also find that the ranges of the 

variations of the three second-order component functions are smaller than those of the first-order 
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component functions. Based on the synthesized mean estimate of , the bounds of 

failure probability is computed by genetic algorithm for each auxiliary distribution, and the 

results are listed in the last column of Table 1. As can be seen, the bounds generated by the three 

auxiliary distributions match well. 

4.2 The NASA Langley multidisciplinary UQ challenge 

The NASA Langley UQ challenge, released in 2014, describes a real-world aeronautics 

application. The simulation model aims at simulating the dynamics of remotely operated 

twin-jet aircraft called Generic Transport Model. One can refer to Ref. [5] for more details on the 

description of the simulation model. This challenge has been dealt with by many researchers (e.g., 

see Ref. [12][34][35] for details). The challenge consists of five subproblems, where the 

uncertainty propagation and reliability analysis are both important parts. The problem 

statement of the multidisciplinary reliability analysis is described in Figure 6. The problem is 

divided into three parts. The first part comprises five fixed discipline analysis, where each of the 

former four discipline analysis is characterized by a simulation model  with five input 

variables, and for the fifth discipline analysis, the response equals the univariate input variable. 

The response of each discipline analysis is independent with that of the other discipline analysis. 

The second part is the cross-discipline analysis. This analysis involves eight failure modes, each 

of which is characterized by a limit state function  with the five response variables of the 

fixed discipline analysis as inputs. Thus, the responses of the eight limit state functions are not 

independent. The third part is the reliability analysis. The eight failure modes are in series, 

which means that the failure of any mode results in the failure of the whole system. Thus, a 

composite limit state function  is defined as the maximum of the eight limit state 

functions. In Figure 6, the vector  indicates the design variable in the fifth challenge (robust 

design), and in the reliability analysis setting, it is fixed at a pre-specified point . Thus, 

the failure probability is defined as the probability of  being larger than zero. 
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Figure 6 Description of the NASA multidisciplinary UQ challenge and the related reliability 

analysis sub-problem 

Based on the above description, the inputs variables are in fact the 21 input variables 

 of the fixed discipline analysis, and their settings are listed in Table 2. In the first 

released version of the problem, these 21 inputs variables are grouped into three categories 

depending on their characterization models. Category I indicates the precise random variables 

with only aleatory uncertainty. Category II represents the interval variables with only epistemic 

uncertainty. Category III implies the imprecise random variables with mixed aleatory and 

epistemic uncertainties. In this paper, there are two main differences of the variable setting with 

the initial released version. The first difference is on the five inputs of the first discipline analysis. 

In the initial setting, the categories of the five input variables are the same as those set in Table 

2, but the bounds of epistemic intervals are much larger. In the first released version, the first 

discipline analysis is used for the subproblem of “model updating”, and it is required that the 

other subproblems should be solved based on the results of this subproblem. Thus, instead of 

using the initial setting, we use the results of model updating in Ref. [34], for the first five input 

variables, as shown in Table 2.  The second difference is on the support of the three interval 

variables ,  and . In the initial setting, the support of each variable is , however, 

this paper, it is changed to , as shown in Table 2. The reason is that, the simulation 

models don’t allow the value of each input variable to exceed the bounds , however, as 
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indicated by the toy example, the support of auxiliary distribution of each interval variable 

should better be larger than its real support so that better convergence can be obtained around 

the end point of real bound. One should note that this modification is not due the limitation of 

the NISS method, but is due to the limit of the setting of this problem. In other real-world 

applications, the physically allowed interval of one interval variable is commonly wider than the 

uncertainty support, making it possible to set the support of the auxiliary distribution wider 

than the uncertainty support. As shown in Table 2, with the above setting, we have 31 epistemic 

parameters, and they are denoted as , and then the system failure probability will be a 

function on these 31 parameters, and the purpose of this example is to estimate this failure 

probability function as well as the related failure probability bounds. It should be noted that for 

the sake of compactness, all epistemic parameters in Table 2 are labeled as ; 

nonetheless, parameters , ,  and  should have been actually labeled as , ,  

and , respectively. 

With the simple random sampling, we generate 5×104 joint samples for 

, and compute the response value of limit state function  for 

each joint sample, to implement the NISS procedure in a bootstrap manner. The number of 

bootstrap replication is set to be 30. Thus the total number of function calls is 5×104. With these 

samples, the constant RS-HDMR component of the failure probability is computed as 0.2319 

with the STD being 0.0017. 

With the same set of samples, the non-normalized first-order Sobol’ indices are computed, 

and the results are shown in Figure 7, together with the STD of each estimate. As can be seen, 

all the sensitivity indices are robustly estimated. The results show that, among the 31 epistemic 

parameters, only a small number of them are influential, and the six most influential components 

are those of  and . The summation of the sensitivity indices of the other 25 

first-order component functions is smaller than one percent of the summation of the sensitivity 

indices of these six most influential components. Thus, we need only to consider the six most 

influential first-order component functions. The sensitivity indices also reveals that, among the 
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31 epistemic parameters, the epistemic uncertainty of  (i.e., ) contributes the most to the 

epistemic uncertainty of failure probability. Thus, for reducing the bounds of the failure 

probability, one should collect more information on . Based on the same set of samples, the 

six first-order components are estimated, and the estimates with the 95.45% confidence intervals 

are shown in Figure 8. It is shown that the confidence interval of each component function is 

narrow enough, indicating that each component function is accurately estimated by NISS. 

Table 2 Uncertain parameters of the NASA UQ challenge, where  indicates the 

epistemic parameters.  

Input variables Category Uncertainty model 

  III Unimodal Beta, ,  

  II Interval,  

  I Uniform, [0, 1] 

  III Normal, , , 

, , 

 

  II Interval,  

  III Beta, ,  

  III Beta, ,  

  I Uniform, [0, 1] 

  III Beta, ,  

  I Uniform, [0, 1] 

  II Interval,  

  III Beta, ,  

  III Beta, ,  

  III Beta, ,  

  II Interval,  

  III Beta, ,  

  III Beta, ,  

  I Uniform, [0, 1] 

  III Beta, ,  

  III Beta, ,  
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Figure 7 The first-order normalized sensitivity indices computed by NISS procedure 

 

Figure 8 The first-order component functions of the NASA UQ challenge 

Next, we go into the second-order component functions. As has been discussed in subsection 

3.3, for the second-order component function of two interval input variables, we need to estimate 

their joint PDF based on their samples belonging to the failure domain. We randomly select 103 

sample points for each pair of interval variables from their failure samples, and transform these 

data into copula scale by using the function ‘ksdensity’ in Matlab, and then plot the samples in 

pair in Figure 9. As can be seen, for each pair of interval variables, the sample points are  
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Figure 9 Pairwise scatter and histogram plots of the failure data of the four interval variables , 

,  and  in copula scale (unit square), where the transformation to copula scale is 

realized by the “ksdensity” function.   

uniformly distributed in the unit square space , indicating that each pair of interval 

variables are independent in the failure domain. Then, based on the discussion in subsection 3.3, 

the second-order component functions of each pair of interval variables can be easily estimated 

by their first-order component functions, and we don’t need to estimate the joint PDF. The six 

most influential second-order component functions are then estimated with the same set of 
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samples, and the estimates as well as the 95.45% confidence intervals are displayed in Figure 10. 

As can be seen, compared with the first-order component functions, all the second-order 

component functions can be neglected.  

 

Figure 10 The six most influential second-order component functions 

Based on mean estimate of the failure probability function synthesized with the six 

influential first-order component functions and the two most influential second-order component 

functions, the bounds of failure probability are estimated to be [0.1221, 0.3121]. Since the 

settings of the interval variables are different to the original ones, and the results of model 

updating of the first discipline vary from paper to paper, thus it is not possible to compare the 

results with the published results in, e.g., Refs. [11] and [35]. To demonstrate the correctness of 

our result, we also estimate the failure probability bounds by the interval Monte Carlo 

simulation (IMCS) developed in Ref. [13], which has also been utilized in Ref. [35] for estimating 

the failure probability bounds of the NASA challenge. This method involves a double-loop 

procedure. In the outer loop, the interval samples are generated for the input variables, while in 

the inner loop, the interval analysis is performed for generating the bounds of limit state 

function for each interval sample. The failure probability bounds are then estimated based on 

the samples of response bounds. Due to the large computational cost, this procedure is 
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implemented in a parallel scheme on a 48-core computer station. One should note that, the 

bounds estimated by IMCS in this example are more conservative since in this method, the 

parameterized p-box model is by default replaced by a non-parameterized p-box model with the 

bounds as the parameterized ones. This simplification is necessary in IMCS for generating 

interval samples in the outer loop. Similar to Ref. [35], 1000 interval samples are generated in the 

outer loop, and the genetic algorithm is utilized in the inner loop, to implement the IMCS 

method. The reference bounds are estimated to be [0.055, 0.337], which exactly include the 

bounds generated by NISS. Based on the above analysis, it should be believed that the bounds 

computed by NISS are correct.  

5. Conclusions and discussions 

This paper has developed a strategy for generalizing the NISS method, recently developed 

for efficiently propagating the imprecise probability models, to the general case where three 

categories of characterization models (i.e., precise probability models, non-probabilistic models, 

and imprecise probability models) are all involved, and specifically, the estimation of failure 

probability function and bounds are exemplified. The truncation errors of estimates are 

quantified by Sobol’ sensitivity indices, which are also found to be useful for measuring the 

relative importance of the component functions as well as each epistemic parameter. Both the 

toy test example and the NASA Langley challenge have demonstrated the effectiveness of the 

proposed method.  

The NISS method owns many advantages, and the most appealing one is that only one set 

of function calls are needed for implementing the whole analysis, and both types of estimation 

errors are properly addressed without extra computational cost. Being a pure stochastic 

simulation procedure, it is easy to implement it in a parallel scheme, making it more efficient for 

large-scale real-world applications. The only limitation of the generalization of the NISS 

reported here is that, for the component functions of interval variables, there is a need to do 

non-parametric density estimation, which, for first-order component functions, can be addressed 

with kernel density estimation, but for higher order component functions, may face challenge. 
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However, the estimation of bivariate density functions can be properly addressed by statistic 

dependence or parameterized Copula, as has been shown in subsection 3.3 and 4.2. 

The success of NISS for high-dimensional problems is supported by the following facts. For 

most real physic processes, the model behavior is mainly governed by a low-dimensional 

manifold, and this manifold is mostly governed by individual and/or low-order interaction effects. 

The introduction of the RS-HDMR decomposition as well as the Sobol’ sensitivity indices 

enables to identify this manifold and the influential effects without extra computational cost. 

Further, the RS-HDMR decomposition makes it possible to derive NISS estimators for the 

component functions of the epistemic parameters presented in both category II and category III 

models.  

Open problems still exist. For example, the distribution-free category III models such as 

non-parametric p-box model are also widely used when the distribution type is not known due to 

lack of knowledge; the multivariate dependence may exist in category II model due to the 

natural constraints of model parameters; time-variant and spatial inputs are also commonly in 

real-world applications. There is a need to extend the method to the above situations. Besides, 

the uncertainty-based design optimization problem, e.g., the robust optimization subproblem in 

the NASA Langley UQ challenge [11], and the sensitivity analysis under mixed uncertain 

environment [36], can also be addressed by the NISS method, which will be presented in the 

future work. 
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Research article 2: Non-intrusive imprecise sto- 

chastic simulation by line sampling 

This article concerns another specific area of applying NISS, which is the rare event 

analysis. For simplicity, we assume that the input variables of the structures are 

characterized by either the precise probability mode (category I) or the distributional p-box 

model (category III). In risk and reliability, the analysis of rare events is of great importance. 

Although the probability of these events is extremely small (typically less than 10-3), once 

happen, it commonly results in huge commercial consequences and/or serious casualties.    

In the classical NISS framework, the subset simulation has already been injected for 

tackling this type of problem, but it is still computationally challenging due to the low 

efficiency of the Markov Chain Monte Carlo simulation. The advantage of the subset 

simulation driven NISS is that it is applicable for highly nonlinear problems. In practical 

application, the nonlinearity of the model response functions may show linear or weak 

nonlinear behavior, and for this type of problem, the efficiency of NISS can be further 

improved by, e.g., injecting the stochastic simulation methods, which is more efficient for 

linear or weakly nonlinear problems, into the NISS framework, and this is the focus of this 

article.  

For the classical rare event analysis with input variables characterized by only precise 

probability models, the line sampling (LS) is also a popular stochastic simulation technique, 

which has been shown to be especially efficient for high-dimensional problems with low 

nonlinearity. The LS method involves first generating an importance direction pointing to 

the failure point with (approximately) highest probability mass from the origin, then 



 

62 

 

performing random sampling in on the hyperplane which is vertical to the important 

direction, and for each random sample perform one dimensional integral along the 

importance direction, and this way to estimate the failure probability. Owing to the high 

efficiency of one-dimensional search, the LS is extremely efficient for the rare failure event 

analysis. There are two different philosophies for understanding the LS method, and based 

on which, this article will develop two strategies for injecting the classical LS method to the 

NISS framework. 

First, by regarding the LS estimator as the combination of repeated first-order 

reliability analysis, a hyperplane-based strategy for injecting the LS to the local NISS 

method is proposed, it can estimate the cut-HDMR component functions of failure 

probability function with respect to the input epistemic parameters. Second, by 

understanding the LS method as the combination of a Monte Carlo simulation in an 

(n-1)-dimensional subspace, and a one-dimensional integral along each line, a weighting 

scheme is developed for deriving the LS estimators of the cut-HDMR components of the 

failure probability function. Both the above two schemes require implementing the LS 

analysis for the constant cut-HDMR component for only one time, thus the computational 

cost keeps the same level as the classical LS method for precise reliability analysis.  

In this article, we only consider the local NISS method, but the two developed two 

schemes are also applicable to global NISS. Considering the LS method can still be 

computationally expensive, and is not suitable for highly nonlinear problems, in the next 

article, an active learning scheme will be developed for further improvements of the LS 

method.  
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Abstract: The non-intrusive imprecise stochastic simulation (NISS) is a general framework for 

the propagation of imprecise probability models and analysis of reliability. The most appealing 

character of this methodology framework is that, being a pure simulation method, only one 

precise stochastic simulation is needed for implementing the method, and the requirement of 

performing optimization analysis on the response functions can be elegantly avoided. However, 

for rare failure events, the current NISS methods are still computationally expensive. In this 

paper, the classical line sampling developed for precise stochastic simulation is injected into the 

NISS framework, and two different imprecise line sampling (ILS) methods are developed based 

on two different interpretations of the classical line sampling procedure. The first strategy is 

devised based on the set of hyperplanes introduced by the line sampling analysis, while the 

second strategy is developed based on an integral along each individual line. The truncation 

errors of both methods are measured by sensitivity indices, and the variances of all estimators 

are derived for indicating the statistical errors. A test example and three engineering problems of 

different types are introduced for comparing and demonstrating the effectiveness of the two ILS 
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methods.  

Keywords: Uncertainty quantification; Imprecise probability models; Line sampling; Sensitivity 

analysis; Aleatory uncertainty; Epistemic Uncertainty  

1. Introduction 

Uncertainty quantification (UQ) is the process of quantitatively characterizing the 

uncertainty of any non-deterministic quantities of interest in numerical simulation. Generally, 

two kinds of UQ tasks are concerned. The first task is forward UQ (also called uncertainty 

propagation), which aims at propagating the uncertainty characterization models from model 

inputs to outputs, so as to properly characterizing the uncertainties of model outputs, and 

further to perform risk and reliability analysis. The second task is backward UQ (also called 

model updating), which focuses on inferring and updating the uncertainty characterization 

models of model inputs based on experimental measurements of responses [1]. To implement the 

above UQ tasks, three groups of uncertainty characterization models have been developed, i.e., 

the precise probability model, the non-probabilistic models and the imprecise probability 

models.  

Forward UQ based on precise probability models has been widely studied, and a plenty of 

numerical methods, such as the analytical methods based on Taylor series [2], the spectral 

representations [3], the stochastic simulation methods [4], and the probability density evolution 

method [5], have been developed, and shown to be effective for both response uncertainty 

characterization and reliability analysis. However, for generating precise probability models, 

plenty of accurate data is commonly required, which is almost impossible in real-world 

applications. To deal with this challenge, several kinds of non-probabilistic models, such as the 

interval/convex models and the fuzzy set theory, have been proposed, and numerical methods, 

such as the intrusive interval finite element analysis as well as the non-intrusive optimization 

methods [6]. The non-probabilistic models are simple but can be especially useful when the 

available data is extremely scarce and/or imprecise. The criticisms of non-probabilistic models 

are commonly twofold. Firstly, in terms of forward UQ, the intrusive methods are commonly 
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problem-dependent and can be of limited application, while the non-intrusive 

optimization-based methods may be computationally expensive and perhaps impractical, 

especially when the limit state functions (LSF) are not convex [6]. Secondly, due to scarcity, 

incompleteness, imprecision of available data, two kinds of uncertainties, termed as aleatory 

uncertainty and epistemic uncertainty, are commonly present for each model parameter, and 

plenty of studies have shown that it is necessary to distinguish between these two kinds of 

uncertainties [7], however, non-probabilistic models commonly fail to realize this.  

To fill the above-mentioned gap, the imprecise probability models such as the 

probability-box (p-box) model, evidence theory, and fuzzy probability model, have been devised 

[8], and shown to be able to separately and correctly characterize the two kinds of uncertainties 

in a unified model framework, thus attracting substantial attention. The numerical methods 

which have been developed for propagating imprecise probability models can also be divided into 

two groups depending on whether they are intrusive or non-intrusive. The most well-known 

intrusive method is the interval Monte Carlo simulation (MCS) [9], which is based on firstly 

generating interval samples, and then estimating the bounds of model responses for each interval 

sample based on, e.g., interval finite element analysis. The non-intrusive optimization-based 

methods have also been developed. For example, in Ref. [10], the subset simulation combined 

with optimization has been extended for estimating the failure probability bound; in Ref. [11], 

the first-order and second-order reliability methods combined with an optimization procedure 

have been extended to reliability analysis associated with evidence theory. All these methods 

need to perform double-loop optimization solver on model response function, thus compared 

with the propagation of precise probability models, they are computationally much more 

expensive, and sometimes the global convergence cannot be achieved especially when the LSFs 

are non-convex and/or non-differentiable.  

The non-intrusive imprecise stochastic simulation (NISS) is a non-intrusive methodology 

framework for efficiently propagating the imprecise probability models [12][13], which has been 

recently developed based on the extended Monte Carlo simulation [14] and high-dimensional 

model representation (HDMR) [15][16]. Two groups of NISS methods, i.e., the local NISS and 
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the global NISS, have been developed, and the subset simulation has been injected into both 

methods so as to perform reliability analysis subjected to rare failure events [13]. The NISS owns 

several advantages. Firstly, the computational cost is the same as the one involved in precise 

stochastic simulation, thus is much lower than the above-mentioned methods. Secondly, two 

kinds of potential estimation errors are properly assessed. Thirdly, there is no need to perform 

optimization on LSF. Thus, the NISS is an appealing method for forward UQ of imprecise 

probability models.  

The aim of this work is to inject the line sampling [18][19], originally proposed as a 

generalization of axis-parallel importance sampling method for reliability analysis in precise 

probability models [20][21], to the local NISS framework, so as to efficiently estimate the failure 

probability functions associated with rare failure events. Based on the different interpretations of 

the classical line sampling, we developed two imprecise line sampling (ILS) procedures to achieve 

this target. The first strategy is motivated by the rationale that the line sampling can be 

regarded as repeated first-order reliability analysis, and the developed method is termed as 

hyperplane-based ILS. The second strategy is based on the interpretation that a line sampling 

analysis can be regarded as the combination of a Monte Carlo simulation in an (n-1)-dimensional 

space and a one-dimensional integral along each line, and the corresponding proposed method is 

called Weighted-integral ILS. The two developed ILS methods are presented in detail and 

compared with both analytical and real-world engineering examples. Results show that both 

methods are highly efficient when the LSF is weakly or mildly non-linear.  

The rest of this paper is organized as follows. Section 2 briefly reviews the backgrounds of 

imprecise stochastic simulation and line sampling, followed by the developments of the two ILS 

methods in section 3. A numerical test example and three real-world civil engineering examples 

are introduced in section 4 for demonstrating and comparing the proposed methods. Section 5 

gives conclusions. 
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2. Background of imprecise stochastic simulation and line sampling 

2.1 Problem statement 

The performance function of the structure of interest is denoted by  with 

 being the n -dimensional input variables. For reliability analysis, the failure 

domain is defined as , and the failure indicator function  is defined by 

 if ; else, . Let  denote the joint probability density function 

(PDF) of , and  refers to the vector of distribution parameters. 

In classical reliability analysis,  is precisely determined as constant values, and the failure 

probability  can be formulated by the n-dimensional integral . For 

imprecise probability models, the distribution parameters are uncertain, and their uncertainty 

representing the epistemic uncertainty (lack of knowledge) on  can be characterized, for 

example, by intervals. In this situation, the failure probability will be a function of , which is 

called failure probability function with the following expression 

   (1) 

For simplification, suppose the input variables  are characterized by parameterized p-box, 

then  will be characterized by interval variables (usually obtained with interval estimation 

method). Note that the above assumption doesn’t imply that the proposed methods are 

restricted to p-box. In fact, they are applicable for any parameterized imprecise probability 

models. In this paper, all the input variables are assumed to be independent, and the joint PDF 

is expressed as , where  refers to the vector of the distribution 

parameters of . Note that the independence assumption is not crucial for the implementation 

of our proposed methods. they are also applicable cases with dependent inputs, which will be 

discussed later. 

2.2 Imprecise stochastic simulation 

The NISS developed in Refs. [12][13] is a non-intrusive simulation methodology framework 

for propagating any parameterized imprecise probability model. This framework consists of two 
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groups of methods, where the first group of methods is termed as local NISS, and are developed 

based on the cut-HDMR decomposition and extended MCS procedure, while the second group of 

methods are global methods, and are developed based on random sampling (RS)-HDMR and a 

global version of extended MCS procedure. This paper is restricted to local methods.  

Motivated by importance sampling, the extended MCS is based on formulating the failure 

probability function as [14] 

   (2) 

where  is the sampling PDF with the distribution parameters being fixed in a 

pre-specified point . One can refer to Ref. [14] and [22] for the specification of . Based on 

Eq.(2), the failure probability function can be estimated with only one set of g-function calls. 

For improving the performance of Eq.(2) in high dimensional space and reducing the 

estimation errors, the HDMR is utilized to decompose the failure probability function as the sum 

of a series of component functions. The general HDMR formula of  is as follows 

   (3) 

By using cut-HDMR method [15] to expand  at the fixed point , the component 

probability functions on the right side of Eq.(3) can be specified as 

   (4) 

where  is the aforementioned fixed point chosen within the support domain ,  denotes 

the  dimensional vector containing all elements in  except , and  refers to the 

 dimensional vector containing all elements in  except  and . Based on our 

study, in many applications, the higher-order effects of distribution parameters are commonly 

not as important as the first few order effects [17][23], and representing  up to 

second-order can usually provide a satisfactory estimation, i.e. 

   (5) 

It is obvious that the components above can be directly estimated with classical MCS method 

which is actually a double-loop procedure with a heavy computational burden. NISS method [12] 
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enables to estimate the component functions in Eq.(5) with only one set of g-function 

evaluations, such estimation procedure is briefly described below. 
 

Generate  sample points  from  and 

evaluate the corresponding values of . Then, the unbiased estimators for 

the first-order and second-order component functions are as follows 

   (6) 

where   and  are weight coefficients of density, and are defined 

as 

   (7) 

Based on Eq.(3), the estimator  is the sum of all the components in Eq.(6). In fact, 

higher-order component functions can also be estimated with the same set g-function evaluations 

if needed.  

The above procedure introduces two types of errors, truncation error due to cut-HDMR 

truncation (e.g., Eq.(5)) and statistical error due to MCS. The statistical error, which is also a 

function of , can be estimated by computing the variances of estimators in Eq.(6) using the 

following expressions 

                  (8) 

On the other hand, HDMR can be used to measure the relative importance of component 

functions, also called sensitivity analysis [24]. Ref. [17] shows the definition of sensitivity index 

 of component functions for measuring the effect of uncertainties in distribution 
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parameters on failure probability,  

     (9) 

where  refers to the highest order under consideration,  denotes the 

instrumental joint PDF for , for p-box case,  is uniform type of PDF defined 

with the upper and lower bound of . In our previous developments, both local and global 

NISS methods have been developed, and in the global NISS, the Sobol’ indices are used, while in 

the local NISS, the sensitivity indices as shown in this paper were used since it is derived based 

on cut-HDMR decomposition. While cut-HDMR decomposition is utilized, the sensitivity 

indices utilized in this paper in fact measure the average L2 distance of component functions to 

the expansion points, and the larger this distance is, the more important is this component. If 

the sensitivity index equals zero, then it implies that the corresponding component function 

always takes zero value, thus of course has no effect on the failure probability function, thus it 

can be eliminated in searching for the extreme values of failure probability.   

Although the above procedure enables to estimate failure probability function with only one 

set of samples, it is still computationally intensive, especially when estimating probabilities 

associated with rare failure events. In Ref. [13], the subset simulation has been extended for 

solving this problem. However, for problems involving moderately nonlinear performance 

functions, line sampling can be more efficient than subset simulation from a numerical viewpoint. 

This motivates us to inject the line sampling into the NISS framework so that the computational 

cost for mildly nonlinear problems can be further reduced. 

2.3 Line sampling  

In precise probability framework of structural reliability analysis (epistemic uncertainty is 

not yet involved), line sampling is an efficient simulation method especially developed for solving 

a wide range applications with high-dimensional inputs and rare failure events [25]. It formulates 

a reliability problem as a number of conditional one-dimensional reliability problems which are 
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analyzed in standard normal space [18]. In line sampling procedure, the important direction, 

which is usually defined as the negative of the steepest descent direction of LSF, must be firstly 

approximated. This assumption arouses one limitation that line sampling is not suitable for 

strong nonlinear performance functions, especially when the important direction cannot be 

easily estimated [26]. 

As mentioned above, the original space of random variables  must be transformed to 

standard normal space where the new variables are denoted by , similarly, the 

LSF  is then transformed to . The probability integral transformation (PIT) formula 

from original random space to standard normal space is expressed as 

   (10) 

where  is the cumulative density function (CDF) of ,  is the inverse CDF of 

standard normal distribution. For simplification, denote the transformation as  and 

the inverse transformation as . Let  denote the optimal important direction, and 

the normalized important direction  (which is a unit vector) is defined as follows 

   (11) 

Once  is determined, the standard normal space is orthogonally decomposed to a 

1-dimensional and  dimensional space [27], and vector  can be written as 

   (12) 

where  is parallel to , and  is orthogonal to , expressed as 

   (13) 

where  is the symbol of inner product. Since the standard Gaussian PDF is isotropic [27], 

the scalar  and vector  are also standard normally distributed.  

The direct MCS is carried out by generating  samples 

 from its joint PDF , then the  dimensional sample vector  

can be derived with the formula . Figure 1 provides the rationale of 

line sampling procedure for the th sample in 2-dimensional standard normal space. As shown 
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in Figure 1, the conditional failure probabilities are determined where  varies 

randomly along the line . The failure probability corresponding to  can be 

computed by 

   (14) 

where  is the reliability index which is actually the value of  at intersection point between 

the LSF  and the line . Different methods can be used for this 

one-dimensional reliability analysis task [28]. One popular way is to consider three specific values 

, ,  of  so as that three points ,  and 

 are evaluated. Then  can be easily determined by fitting them with 

second-order polynomial and determine the point [29]. According to 

the theory of advanced first order second moment method (AFOSM) [26], in standard normal 

space, the reliability index  is in fact the minimum distance between the origin point and the 

failure boundary approximated by a hyperplane. 

By collecting all the values of , the MCS estimator of failure probability is 

   (15) 

And the variance of the above estimator is 

   (16) 

Note that LSF is evaluated only when searching the value of  along each line. To sum up, 

line sampling is an efficient simulation method based on a series of conditional one-dimensional 

reliability analysis, and each one-dimensional reliability analysis is implemented on MC samples 

from  dimensional standard normal space orthogonal to . From the geometric point of 

view, line sampling can also be regarded as carrying out  times of AFOSM reliability analysis 

and taking the mean of all the AFOSM results. Although the estimator of failure probability is 

unbiased independent from the choice of important direction, its quality (measured in terms of 

its variance) strongly depends on the selection of an appropriate important direction. Since the 
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determination of important direction is not the focus of this paper, it is assumed to be known in 

the following part.  

Further advances has been made in recent years for improving the efficiency of line sampling, 

such as advanced line sampling [30] to adaptively searching the important direction, and the use 

of surrogate model [31] to approximate the original LSF.   
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Figure 1 Rationale of Line sampling procedure in standard normal space. 

3. Imprecise line sampling method  

In this section, we develop two different strategies for injecting the line sampling into the 

NISS framework for estimating the failure probability function. The first strategy is devised 

based on the geometric interpretation of the reliability index , and is denoted as hyperplane- 

approximation based imprecise line sampling (HA-ILS), while the second one is developed based 

on the mathematical interpretation of the probability computed by integration along each line, 

and is called weighted-integral based imprecise line sampling (WI-ILS).  

3.1 Hyperplane-approximation based imprecise line sampling 

As mentioned in subsection 2.1,  is a fixed point chosen from the support domain of . 

In this strategy, the important direction is determined by fixing  at , and will be kept 
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unchanged during the whole analysis process. This utilizes the merit of line sampling that it is 

unbiased, independent of the choice of important direction. As for choosing , we propose to 

use the same concept in Ref.[14], i.e., the support domain of  determined by the optimal  

should be the same with  at the whole range of . In fact,  can also be specified at the 

point around any value of interest, as it is expected that the proposed method always performs 

well close to . 
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Figure 2 Sketch of the concept of hyperplane-approximation method. 

Figure 2 shows the general concept of the proposed HA-ILS method. First of all, classical 

line sampling method is applied with  being fixed at , shown as the upper blue box. Note 

that,  is the LSF transformed by  from the original physical model, which 

keeps unchanged as long as the formula  is fixed. There are two key concepts of the 

proposed method, as shown in the lower red box in Figure 2. One is to introduce auxiliary 

hyperplane  to approximate the LSF, which can be established based on the 

reliability index  and the important direction (a detailed procedure for establishing 

 will be discussed later). The other is to renew (update) the probability distribution of 

 when the distribution parameters of  changes from  to  but the input variables  

remains being transformed by the same formula . For example, when  follows a 

normal distribution such that ,  follows standard normal distribution. 
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If the distribution of  changes to , then  no longer follows standard 

normal distribution, but a new distribution such that . As a consequence of the 

renewal (update) of the probability distribution,  and  are guaranteed to be consistently 

transformed by the same formula  and can be used for the following reliability analysis. 

When the analytical formula of the auxiliary LSF as well as the new probability distribution of 

 w.r.t.  are precisely known, the failure probability value at  corresponding to the th 

sample can be easily computed. 

Actually, an analytical formula of  can be easily derived based on the 

hyperplane equation. In -dimensional space of , the equation of a hyperplane is determined 

by , where  refers to the normalized unit vector orthogonal to the 

hyperplane, and  refers to the distance from the origin point to the hyperplane. Hence, when 

the normalized unit vector and the distance are known, the hyperplane can be uniquely 

determined. In the classical line sampling, the reliability index  indicates the distance  

and the unit important direction  represents the normalized unit vector . As shown in 

Figure 3, for each sample , the corresponding hyperplane is orthogonal to the important 

direction , and contains the intersection point . Based on the rationale of the 

first-order reliability method, the failure probability of Eq.(14) actually equals to the probability 

mass of the failure domain specified by the auxiliary hyperplane. As a consequence, the original 

failure domain  can be approximated by a series of hyperplanes orthogonal to 

the important direction. Thus for the th line sample, the analytical formula of auxiliary 

hyperplane is expressed as 

    (17) 

As mentioned above, the model structure  stays unchanged since the transformation 

 is fixed, and the model structure itself has no relation to the uncertainty 

characterization of model inputs from a theoretical point of view. In fact, the probability mass of 

failure domain determined by the established hyperplane will change w.r.t. . Hence the  
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Figure 3 Interpretation of the auxiliary hyperplane for each line sample in standard normal 

space. 

approximated formula  can be utilized for estimating failure probability function  

by averaging the failure probability function  across all hyperplanes.  can be 

estimated by using reliability index, for imprecise variables, the new reliability index becomes a 

function of , denoted by . If  follows Gaussian distribution, the definition of 

reliability index can be expressed as 

               (18) 

where  is the th element in ,  and  refer to the renewed mean and 

standard deviation of  corresponding to the new value  (the derivation of renewed mean 

and standard variation will be discussed later). Specifically, when , ,  and 

. Then the estimator of  is as follows 

                (19) 

, and the variance of the estimator is  
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   (20) 

In the above procedure, we only need to call the LSF when establishing each auxiliary 

hyperplane, thus the computational cost is the same as that of the classical line sampling. Note 

that the estimator in Eq.(19) is biased due to the approximation of limit state function through 

auxiliary hyperplane, the closer  is to , the less biased the estimator will be. 

Based on the rationale of NISS reviewed in subsection 2.1, Eq.(19) can be further 

decomposed with the cut-HDMR, and the estimators of the first two order components are 

derived as 

            (21) 

where  and  indicate the first-order and second-order reliability 

index functions, respectively. Note that those reliability index functions can be easily derived by 

Eq.(18), therefore, the component functions can also analytically derived with no additional 

limit function evaluations. The statistical error due to Monte Carlo simulation, which is also a 

function of , can be estimated by the variances of the estimators derived as 

     (22) 

With those explicit component functions, parametric sensitivity analysis can be applied based on 

the definition in Eq.(9). The above procedure solves imprecise reliability problems by the 

auxiliary hyperplane approximation of failure boundary, thus is denoted by 

hyperplane-approximation based approach. 
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Note that the accuracy of reliability index function given in Eq.(18) depends on the 

distribution type of input variables. For normal and lognormal distributions,  follows the 

Gaussian distribution, then the definition in Eq.(18) is accurate. However, for other distribution 

types, a change of  may result to a non-Gaussian distribution of , then this definition 

is not accurate anymore. A more detailed discussion about this is given below with normal, 

lognormal and general cases, separately. 

(1) Normal distribution 

First, we discuss the analytical formulation of the renewed mean function  and 

variance function  utilized in Eq.(18). For normal variable , the chosen distribution 

parameters  are specified as  and , the varying parameters  are specified as  

and , the transformation formula is then specified as . 

Then  is regarded as a linear transformation of , it is obvious that  still follows normal 

distribution with mean parameter and standard deviation 

parameter , where  and  represent the expectation 

and variance operators respectively.  

When all input variables follow normal distribution, the analytical expression of first-order 

reliability indices  w.r.t.  and  in Eq.(21) can be derived as 

   (23) 

The second-order reliability index  in Eq.(21) is expressed as  

               (24) 

The estimators of the component failure probability functions are then accordingly specified. For 
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example, .  

(2) Lognormal distribution  

For lognormal distribution , the PDF of  is known as 

   (25) 

where  and  are the expected value and standard deviation of the normal distribution 

associated with . The mean value and variance of  are calculated as , 

and , respectively. The transformation formula is specified as 

.  can be regarded as a linear transformation of , 

and as  is following normal distribution , then  also follows normal 

distribution with its mean and standard variance as  and 

, respectively. The formulas of renewed mean and standard variance are 

actually the same with the case of normal distribution type. As a consequence, the subsequent 

procedure of estimating failure probability function is also the same. Since the approximated 

LSF  is a linear combination of , thus it follows a Gaussian distribution for normal and 

lognormal input variables. 

(3) General case 

When  follows general distribution types with the PDF , the translation 

formula is . For general case,  might be non-Gaussian 

distribution, we propose to do classical Monte Carlo simulation to estimate  instead 

of using reliability index. For any value of , generating  samples  

, then evaluating the corresponding samples   by 

using transformation formula. Then failure probability can be easily estimated by 

                        (26) 

Although it requires resampling for each  value, but it will not require additional evaluation of 

real LSF since the formula  is analytically known. And the following steps for estimating 
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 are the same as those with the case of normal distribution. Note that for dependent 

input variables, it is also necessary to firstly transform the input variables from correlated 

distribution space into standard Gaussian space, then the residual procedures will be almost the 

same with the independent case. 

3.2 Weighted-integral based imprecise line sampling 

In this subsection, we develop another strategy based on the formula of line sampling 

integral, denoted as weighted-integral ILS (WI-ILS), for injecting the line sampling into the 

NISS framework.  

Like HA-ILS method, the first step of WI-ILS is also to perform the classical line sampling 

method for the constant cut-HDMR component with the distribution parameters  being fixed 

at , and all the following discussions and developments are based on the standard normal 

space obtained by the fixed transformation . By differentiating both sides of 

, one can obtain . Thus the integral of failure 

probability function in Eq.(2) can be rewritten as  

       (27) 

Based on the rationale of line sampling, decomposing  as  can reshape the 

n-dimensional integral of Eq.(27) orthogonally into a double-loop integral, where the outer loop 

is a (n-1)-dimensional integral in the space of , and the inner loop is a one-dimensional 

integral in the space of , thus  can be expressed as  

                        (28) 

where  denotes the PDF weight, and is expressed as  

                                  (29) 

With the set of samples of  following (n-1)-dimensional PDF , the 

estimator of  is derived as 
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                    (30) 

Note that the one-dimensional failure domain defined by  is 

actually the same failure domain along the line  which has been discussed in section 

2.2. Hence, the integral boundary can be replaced by , where  corresponds to the 

intersection point between the line and limit state boundary. Let  denote the integral in 

Eq.(30) as 

                  (31) 

Specifically, when ,  and . Thus the estimator of failure 

probability function can be represented as 

                          (32) 

Similar with the HA-ILS method in subsection 3.1 (see Eq.(20)-(22)), the variance of the 

above estimator, the estimator of cut-HDMR component functions as well as the variance of 

each component can be easily derived, which is omitted here. Actually, the computation of 

Eq.(31) does not require any additional performance function evaluations, thus making it 

possible that the computational cost of line sampling for the estimation of  is the same 

with . Note that, all the expressions above can be easily evaluated through 

one-dimensional numerical integration and do not involve any other approximations.  

Now the main problem is to estimate the value of integral , which can be derived 

analytically for some specific distribution types, and a detailed discussion is given below.  

(1) Normal distribution 

For the th variable, , and  can be specified as 

   (33) 

Then the PDF weight in Eq.(29) can be derived analytically as 

(34) 
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Then substituting Eq.(34) into Eq.(31) analytically, the integral is expressed as 

   (35) 

One can refer to Appendix A for detailed definition of parameters , , , , as well as 

the derivations of the analytical formula in Eq.(35). After that, the estimator of failure 

probability function and the corresponding variance of estimator can be derived accordingly.  

Furtherly, the first-order and second-order failure probability functions can be derived with 

cut-HDMR decomposition, and the integral functions in  and  are 

denoted by , , , , , respectively. The 

corresponding self-defined parameters , , ,  within integral functions are given in 

Table 1. 

Table 1 Analytical expressions of parameters , , ,  in component integral functions. 

Integrals     

 1 0   

  
   

 

1 0 
 

 

 
  

  

    
 

 
   

 

(2) Lognormal distribution 

For the lognormal type of distribution, the transformation formula is specified as 

, decomposing  with , the relation 
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between  and  can be expressed as 

   (36) 

Then the PDF weight  has the following expression 

            (37) 

Replacing  with , we can find that the analytical expression of  

turns out to be completely the same as in Eq.(34), obviously, the following procedure for 

estimating integral function  as well as the failure probability functions is also the same 

as normal distribution type. 

(3) General case 

When  follows general distribution with the PDF , the relationship between 

 and  becomes , then PDF weight is  

                  (38) 

And the integral  is generally expressed as 

         (39)  

The accuracy of the above one-dimensional integral depends on the specific formula of PDF and 

CDF, of course, the best way is to derive analytically as normal and lognormal. The following 

steps for estimating  are all the same with the former cases. 

4. Case studies 

4.1 Analytical example 

Consider a simple analytical example where the LSF is a parabola. The expression for the 

performance function is 

                          (40) 

, where , . The constant  controls the failure probability level 

and  controls the degree of nonlinearity of performance function. The failure probability 



Research article 2: Non-intrusive imprecise stochastic simulation by line sampling 

84 

 

function can be calculated analytically by solving numerically the following one dimensional 

integral (see Appendix B). 

   (41) 

Let  and  such that the failure is a rare event and the failure surface is mildly 

nonlinear. The imprecisions of distribution parameters are defined by intervals , 

, , .  

The fixed distribution parameters  are chosen to be . For 

this case, it is straightforward to locate the important direction as . Figure 4 shows 

the plot of the first-order component functions estimated by HA-ILS and WI-ILS methods, 

together with the analytical results (dented as ANA) for comparison, where 100 lines with a 

total of 300 times of performance function evaluations are used in both ILS procedures. Figure 4 

shows that first-order component functions of  and  are accurately estimated by both 

methods, however, for the component of  and , the results generated by WI-ILS is in good 

agreement with the analytical solutions, but those generated by HA-ILS show some differences. 

Thus, WI-ILS shows a better performance than HA-ILS in this case. However, it is important to 

recall that  with the second element equals to zero, indicating that  may not be 

important for reliability analysis. According to Eq.(17),  is not involved in hyperplane 

formula, then the parameter change associated with  will not be detected. However, one 

should note that this does not mean HA-ILS method is not applicable for this case. In Figure 4, 

the orders of magnitude of  and  are much smaller than those of  and , thus it does 

not affect considerably the result of the final synthesized estimation of the failure probability 

function if it fails to capture the non-influential behavior. The sensitivity indices shown in Table 

2 can also validate this conclusion. 

The first- and second-order sensitivity indices computed by the HA-ILS and WI-ILS 

methods are listed in Table 2, together with their standard deviations (SDs) computed by on 

Eq.(22) as well as the analytical results for comparison. It is shown that the results generated by 

both HA-ILS and WI-ILS methods have good consistency with the analytical results, illustrating 
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the effectiveness of the proposed two methods. All sensitivity indices associated with  are 

close to zero, indicating the parameters of  are non-influential to failure probability. As a 

result, the parameters of  can be fixed at any point in the imprecise intervals for subsequent 

reliability design and optimization. One should note that all the first- and second-order 

component functions are estimated with one set of samples, and higher- order components can 

also be estimated by this set of samples. 

 

Figure 4 The plot of first-order component functions in the analytical example. 

Table 2 The sensitivity indices of the parabolic LSF in the analytical example.  

Methods HA-ILS WI-ILS ANA 

Ncall 300 300 / 

 1.4585e-4(7.5e-6) 1.4585e-4(7.5e-6) 1.4584e-4 

 

 0.5033(0.0012) 0.4866(0.0011) 0.5008 

 0.0000(0.0000) 0.0002(4e-5) 0.0002 

 0.1339(0.0003) 0.1295(0.0003) 0.1332 

 0.00000(0.0000) 0.0009(1e-5) 0.0010 

 

 0.0000(0.0001) 0.0005(0.0001) 0.0005 

 0.0000(0.0000) 0.0007(1e-5) 0.0007 

 0.3628(0.0008) 0.3790(0.0008) 0.3609 

 0.0000(0.0000) 0.0024(4e-5) 0.0025 

 0.0000(0.0000) 0.0001(3e-5) 0.0001 

 0.0000(0.0000) 0.0000(0.0000) 0.0000 

 



Research article 2: Non-intrusive imprecise stochastic simulation by line sampling 

86 

 

Next, we slightly modify the setting of the test example. The parabola is rotated 45 degrees 

anticlockwise and the g-function becomes 

   (42) 

The uncertainty characterization of each input variable as well as the fixed parameters  

remain the same. The important direction then is calculated to be . In 

this case, the reference results are all calculated by double-loop Monte Carlo method (denoted as 

DL) with the sample size of each inner loop being 107.  

Table 3 The sensitivity indices after rotation of the parabola LSF in the analytical example. 

Methods HA-ILS WI-ILS DL 

Ncall 300 300 / 

 1.7457e-4(6.1e-6) 1.7457e-4(6.1e-6) 1.7450e-4 

 

 0.2012(0.0002) 0.1742(0.0003) 0.1912 

 0.2012(0.0002) 0.1842(0.0003) 0.1898 

 0.1102(0.0000) 0.1086(0.0001) 0.1148 

 0.0556(0.0000) 0.0557(0.0001) 0.0573 

 

 0.1425(0.0001) 0.1414(0.0002) 0.1486 

 0.0263(0.0000) 0.0295(0.0001) 0.0308 

 0.0905(0.0001) 0.1040(0.0002) 0.0860 

 0.0410(0.0000) 0.0437(0.0001) 0.0469 

 0.0905(0.0001) 0.0965(0.0001) 0.0999 

 0.0410(0.0000) 0.0610(0.0002) 0.0347 

For this case, the sensitivity indices are displayed in Table 3 and the results of the proposed 

two methods match well with the reference solutions. Figure 5 displays the plot of first-order 

component functions. Compared with Figure 4 of the previous case, HA-ILS behaves much 

better in Figure 5 because the two components in important direction  become equal. 

Besides, the plot of HA-ILS w.r.t  and  show a small deviation from the reference results 

when  is far from , although the corresponding SDs are already smaller than WI-ILS. It 

indicates HA-ILS converges faster but may go to a biased result because of the approximation of 

LSF. The component functions always equal to zero at the expansion point  due to the 
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definition of cut-HDMR components. All the first-order component functions are monotonically 

increasing w.r.t the respective parameters, then all the maximum and minimum values of the 

first-order component functions locate at the upper and lower bound of imprecise parameters, 

respectively.  

 

Figure 5 The plot of first-order component functions after rotation of the parabola LSF in the 

analytical example. 

4.2 A shallow foundation model 

To illustrate the effectiveness of the proposed method to engineering applications, a shallow 

foundation resting over elastic soil is considered [32], and a finite element model considering of 

320 quadrilateral elements is established for simulating the structure [3]. The schematic 

representation is shown in Figure 6. The elastic soil is composed of two layers. The first layer is 

a sand layer of 9 [m] thickness while the second is a gravel layer of 21 [m] thickness resting over 

a rock bed which is assumed as infinitely rigid.  
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Figure 6 The schematic representation of elastic soil layer of shallow foundation model. 

The Young’s modulus of the sand and gravel layers are characterized by random variables 

obeying lognormal distribution, denoted as  and , respectively. The shallow foundation of 

10 [m] width applies a distributed load  of over the elastic soil layer. The load intensity  is 

characterized by means of a lognormal variable as well. The mean value (denoted by ,  

and ) of the three random variables are imprecisely known varying within intervals, and the 

COV (coefficient of variance) are all assumed to be 0.1, as given in Table 4, thus three mean 

value are modeled as imprecise parameters. The performance function is defined as the threshold 

level b=0.055 [m] minus the vertical displacement at the center of the shallow foundation.  

Table 4 Distribution parameters of input variables for shallow foundation model. 

Variables Description Distribution type Mean COV 

[kPa] Young’s modulus of sand layer Lognormal [27000,33000] 10% 

[kPa] Young’s modulus of gravel layer Lognormal [90000,110000] 10% 

 [kPa] Load density Lognormal [90,110] 10% 

The expansion point  are chosen to be , the 

important direction is  by implementing AFOSM method 

in standard normal space with 42 times of model evaluation. We firstly plot the components for 

the failure probability function with the proposed HA-ILS and WI-ILS procedure in which 100 

lines with a total of 342 times of model evaluations are involved, as shown in Figure 7. Since the 

finite element model of shallow foundation is not very cost-demanding, DL method is also 
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plotted as reference results with  for each failure probability evaluation. It shows that 

the results of both HA-ILS and WI-ILS match well with DL method except that the plot of  

by WI-ILS has a slight difference with the reference results. The plots of HA-ILS keep quite close 

to the reference plots within the whole range of parameters, showing that not too much bias is 

introduced by LSF approximations when the values of parameters move away from the 

expansion point. This indicates that the real LSF of the shallow foundation model may be 

approximately linear. The plot of SDs shows HA-ILS converges much faster than WI-ILS; 

specifically, when the value of  is close to the lower bound 27000, the SD of WI-ILS increases 

sharply while SD of HA-ILS stays at a low value, that means when the values of parameters are 

far away from the expansion point, HA-ILS shows a much better performance. On the other 

hand, all the component values vary monotonous with the corresponding parameters, furtherly, 

it is incremental for  and diminishing for  and .  

The sensitivity indices estimated by HA-ILS and WI-ILS are listed in Table 5, as well as the 

value of constant component . Among the first-order components,  and  are 

much more influential than , and among all orders of components,  is the most 

influential one, indicating that the interaction effect of and  contributes most to failure 

probability of shallow foundation model. Note that the third-order index is also estimated in 

Table 5 with the value less than 0.02, that means the third-order component in non-influential in 

estimating , so truncation up to second order will not introduce significant errors. Figure 

8 shows the 3D plot of the most influential second-order component function  as 

well as its SDs by the proposed two methods. In Figure 8 the second-order plots by both 

methods match well with each other, and the SDs show that WI-ILS converges slower than 

HA-ILS especially in those points far away from . The maximum value of  

locates in , which is also the maximum point of the corresponding first-order 

plot shown in Figure 7.  
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Figure 7 The plot of first-order component functions for shallow foundation model. 

Table 5 Sensitivity indices for shallow foundation model. 

Methods HA-ILS WI-ILS 

Ncall 342 342 

 7.6609e-4(2.4e-6) 7.6609e-4(2.4e-6) 

 

 0.1732(1e-6) 0.1815(0.0006) 

 0.0028(2e-7) 0.0025(0.0001) 

 0.2341(1e-6) 0.2173(0.0005) 

 

 0.0101(5e-8) 0.0094(0.0010) 

 0.5489(2e-6) 0.5558(0.0005) 

 0.0133(6e-8) 0.0162(0.0008) 

  0.0175(2e-8) 0.0173(0.0014). 
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HA-ILS

WI-ILS

Figure 8 The plot of the most influential second-order component function with both HA-ILS 

and WI-ILS for shallow foundation model. 

4.3 Confined seepage model 

Consider a steady state of confined seepage below a dam discussed in Ref. [33], the elevation 

of the dam is shown in Figure 9. The dam rests over soil composed of two permeable layers and 

one impermeable layer, and a cutoff wall is designed in the bottom of the dam for preventing 

excessive seepage. The water height in the upstream side of the dam is denoted by (m) which 

is modeled as a random variable following uniform distribution of . The 

hydraulic head  over the segment  with respect to the impermeable layer is equal to 

. The water flows through two permeable soil layers towards the downstream 

side of the dam (see segment CD in Figure 9). It is assumed that there is no water flow on any 

of the boundaries excepted the segments AB and CD. The first permeable layer is silty sand, 

Wh

Upstream side

Downstream side

 

Figure 9 The elevation of the dam in confined seepage model. 
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while the second one is composed of silty gravel. The permeability of them are modeled as 

anisotropic and characterized by lognormal random variables, the mean (denoted by , i.e., 

) and COV of the horizontal (denoted by ) and vertical permeability (denoted by ) 

of the two soil layers are provided in Table 6. Note that the COV associated with each 

permeability is equal to 100%, indicating a high degree of uncertainty when estimating the 

parameters in engineering applications. The governing partial differential equation of the 

seepage problem is 

   (43) 

    The boundary conditions are the hydraulic head over segments AB and CD. A finite element 

mesh comprising 3413 nodes and 1628 quadratic triangular elements is established for solving the 

above equation. And the seepage  at the downstream side is measured in volume over time 

(hour) over distance (meter), i.e., the units of  is , it can be calculated by 

   (44) 

    The failure event of interest is defined when seepage  exceeds a prescribed threshold 33

. Summarily, the permeability of the permeable layers are modeled as imprecise random 

variables, while water height  is modeled as a precise uniform random variable, and LSF is 

. 

Table 6 Distribution parameters of input variables for confined seepage model. 

Inputs Description Distribution type Means COV Bounds 

 [10-7m/s] 
Horizontal permeability  

of sand soil layer 
Lognormal [4.5,5.5] 100% / 

[10-7m/s] 
Vertical permeability  

of sand soil layer 
Lognormal [1.8,2.2] 100% / 

[10-6m/s] 
Horizontal permeability  

of gravel soil layer 
Lognormal [4.5,5.5] 100% / 

[10-6m/s] 
Vertical permeability  

of gravel soil layer 
Lognormal [1.8,2.2] 100% / 

 [m] 
water height in upstream  

side of dam 
Uniform / / [7,10] 
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First, we set the fixed point  as [10-7m/s] and 

implementing AFOSM method after transforming into standard normal space, the important 

direction is corresponding to the five 

variables in Table 6 by using 152 times of model evaluations. The proposed HA-ILS and WI-ILS 

are implemented by sampling 100 lines in which the total number of model evaluation is 452. The 

computational results of first-order component functions are plotted in Figure 10. It is shown 

that the results of both methods match well with each other and there is a clear trend of linear 

increase among all the first-order functions. The SDs in Figure 10 vary in the magnitude of 10−6 

which is two orders of magnitude smaller than the corresponding component functions, revealing 

that all the first-order estimators are robustly estimated. Since WI-ILS does not involve 

approximations, so its plot is a relatively more accurate result, and the small deviation in the 

third subplot of  confirms the bias in HA-ILS method. Additionally, the plots of SDs 

also show a slower convergence speed away from , this indicates that the utilized important 

direction is suboptimal for estimating the actual values of the components as the distance 

between  and  increases. 

The first- and second-order parametric sensitivity indices as well as their SDs and constant 

component  are provided in Table 7. Comparing the values of indices one can find that 

 is the most influential parameter among all the indices, and first-order indices are much 

larger than second-order indices, indicating that the four parameters have a weak interaction 

effect on failure probability. Figure 11 shows the 3D plot of  and the 

corresponding SDs for illustrating the trend of second-order components with the proposed two 

methods. By comparing it with Figure 8 in shallow foundation model, there exist two maximum 

points in Figure 11 while there is only one in Figure 8. Overall, the plot of first-order and 

second-order component functions provide a deeper insight into the relationship between failure 

probability and distribution parameters. 
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Figure 10 Plots of first-order component functions for confined seepage model. 

Table 7 The first- and second-order sensitivity indices for confined seepage model. 

Methods HA-ILS WI-ILS 

Ncall 452 452 

 8.088e-4(1.8e-5) 8.088e-4(1.8e-5) 

 

 0.6796(0.0003) 0.6714(0.0004) 

 0.1618(0.0001) 0.1812(0.0002) 

 0.0831(3e-5) 0.0612(0.0003) 

 0.0646(2e-5) 0.0735(0.0002) 

 

 0.0050(2e-6) 0.0060(9e-5) 

 0.0026(1e-6) 0.0018(1e-5) 

 0.0020(8e-7) 0.0024(8e-6) 

 0.0006(2e-7) 0.0006(4e-6) 

 0.0005(2e-7) 0.0007(4e-6) 

 0.0002(9e-8) 0.0002(3e-6) 
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Figure 11 Plots of the two most influential second-order component function with both HA-ILS and 

WI-ILS method for confined seepage model. 

4.4 Transmission tower 

A model partially based on the example in Ref.[34] is considered, which comprises a 

considerable number of uncertain parameters. It consists of a truss structure with 80 bars 

representing a transmission tower (see Figure 12) that behaves within the linear elastic range, 

and it withstands four static loads in its top nodes. The four loads are applied in direction 

 and are characterized as deterministic with magnitude F=200 [kN]. 

Each of the 80 bars contains two random variables, Young's modulus, and the cross-section area, 

so the total number of random variables is 160. The Young's modulus in each bar is modeled by 

a lognormal distribution, denoted by . The cross-section area is also modeled 

considering a lognormal distribution, the area for the corner bars is denoted by , 

while the cross-section area for the rest 60 bars is denoted by .  

The COV of 10% is considered for all the 160 lognormal random variables, the mean value 

of both Young’s modulus and cross-section area of corner bars are modeled as 40 imprecise 

parameters (denoted by  and ), while the mean value of the rest 

random variables are precisely known. All the parameters of the random variables are listed in 

Table 8. The response of interest is the displacement of node A located at the top of the 

transmission tower, which should not exceed a prescribed threshold of 0.06 [m]. 
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Figure 12 Sketch of transmission tower. 

Table 8 Distribution parameters of 160 imprecise random variables in transmission tower model. 

Variable Description Distribution  Mean COV 

 Young’s modulus of bars 1~20 Lognormal 
[1.89,2.31]×1011 

[Pa] 
10% 

 Young’s modulus of bars 21~80 Lognormal 2.1×1011 [Pa] 10% 

 Cross-section area of 20 corner bars Lognormal [6700,8200][ ] 10% 

 Cross-section area of the rest 60 bars Lognormal 4350 [ ] 10%. 

The expansion points  of the 40 imprecise parameters are all set at the middle value of 

the intervals. Both methods are implemented with the same set 5000 lines with the total number 

of g-function calls being 15056. Note that line sampling is implemented considering a relatively 

high number of lines; such number is selected in order to verify and compare the behavior of the 

proposed two methods with crude MCS. The constant HDMR component is estimated by both 

methods as 0.0016 with SD being 8.085e-5, and the reference result computed by crude MCS is 

0.0015 with SD computed to be 7.145e-5, indicating that the results computed by LS are accurate 

and robust. With the same set of samples, the first-order sensitivity indices as well as the 

corresponding plots of component functions are reported in Figure 13 and Figure 14, respectively. 
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The sensitivity indices are normalized by the summation of the first two order non-normalized 

sensitivity indices.  

As can be seen from Figure 13, the first-order sensitivity indices computed by HA-ILS and 

WI-ILS methods show some differences, which is caused by the failure of computing the indices 

of the two less important components of  and  by HA-ILS. The first-order influential 

components computed by DL are also reported in Figure 14 for comparison. It is shown that all 

the first-order influential components are accurately estimated by the WI-ILS method. However, 

while HA-ILS is utilized, the estimates of the two most influential components of  and  

are accurate, but those of the two less important components of  and  are not. The 

reason has been reported in the analytical example, which is due to the inability of identifying 

these two less influential dimensions in the important direction. However, this can be improved 

by utilizing some other advanced method for searching another more accurate MPP, instead of 

the AFOSM method which does not identify all the influential dimensions in this 

implementation with high accuracy. This indicates that the performance of HA-ILS is highly 

dependent on the identified important direction, to which WI-ILS is much less sensitive.  

16E 17E 18E 11E
19E 12E

17Ac16Ac
18Ac 11Ac 6Ac 1Ac

Figure 13 Barplot of the influential first-order sensitivity indices for transmission tower model. 

The six most important second-order component functions computed by WI-ILS method 

with the same set of samples are then reported in Figure 15. The SDs of all estimates are very 

small and are not reported here. The sensitivity indices of all the influential components 
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reported in Figure 13 and Figure 15 sum up to 0.86, indicating that it is accurate to approximate 

the failure probability function with these components. For higher accuracy, the residual less 

influential components can be added, and we don’t give more details for simplicity.  

 

Figure 14 Plots of the four most influential first-order component functions for transmission 

tower model. 
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Figure 15 Plots of the six most influential second-order component functions by WI-ILS for transmission 

tower model. 
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5. Conclusions 

The present study was designed to develop efficient simulation methods for reliability 

analysis subjected to rare failure events when the model input variables are characterized by 

imprecise probabilities due to the imperfect knowledge. It is realized by developing two strategies 

for injecting the classical line sampling into the newly developed NISS framework. The first 

strategy, denoted as HA-ILS, is based on establishing a series of auxiliary hyperplanes for 

approximating the real LSF with the input distribution parameters being fixed, and then 

evaluating the probability mass of the failure domain specified by each hyperplane when the 

distribution parameters vary. The second strategy, abbreviated as WI-ILS, is developed based on 

the combination of the simulation in (n-1)-dimensional subspace and the one-dimensional 

integral along each line. Analytical formulas of failure probability component functions 

associated with the proposed two methods are discussed in detail when the distribution of model 

inputs are specified as normal or lognormal independent distributions.  

An analytical example and three engineering examples are introduced for demonstrating the 

two proposed methods, and the main conclusions are as follows. Firstly, the results estimated by 

HA-ILS and WI-ILS all match well with the reference results by sharing only one small set of 

samples, indicating that both methods are effective and highly efficient for real applications. 

Secondly, for weakly or mildly non-linear models with small parameter ranges, HA-ILS has 

generally a faster convergence speed than WI-ILS, but in the meantime, it may produce a biased 

result caused by LSF approximations. Thirdly, as  is far away from , the hyperplane 

approximation of LSF used in HA-ILS might become worse especially for non-linear models. As 

for WI-ILS, although it doesn’t involve approximations, but the utilized important direction will 

become more and more suboptimal which will undoubtedly lead to a slower convergence speed of 

the estimators (that is, larger variance). Besides, our method can also evaluate the high-order 

component functions based on the same set of LS samples, and their relative importance is 

measured by the sensitivity indices. Thus, in our development, it really doesn’t matter whether 

the higher-order effects are influential or not. The only difference is that, for higher-order 
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component functions, the statistical errors (measured by variances of estimators) can be larger. 

But for linear or moderately nonlinear problems, the statistical errors increases slowly w.r.t to 

the orders of components. 

Results of the transmission tower show that, for high-dimensional problems with a small 

number of dimensions being influential, the WI-ILS method is still efficient and accurate for all 

cut-HDMR components, whereas, the HA-ILS may be ineffective for estimating the less 

influential components due to the inability of including these dimensions in the important 

directions. This indicates that, the HA-ILS method is highly dependent on the identified 

directions, while WI-ILS is not. 

Future extensions of the two approaches reported herein, that is HA-ILS and WI-ILS, 

involve two main aspects. The first one is the analysis of problems involving several failure 

criteria, which in turn may demand identifying several important directions. Such issue has not 

been fully addressed in the literature, even when applying Line Sampling to purely aleatoric 

reliability problems. The second one is addressing the loss of precision (that is, increased 

variability) of the cut-HDMR estimators when evaluating probabilities for values of the 

parameter vector  that are far away from the reference value . It is envisioned that such 

problems could be addressed by performing a more exhaustive exploration of the uncertain 

parameter space, by switching from a local NISS to its global counterpart.  
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Appendix A : Derivation of failure probability function for Eq.(35)  

The PDF weight  in Eq.(34) can be further expressed by 
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   (A.1) 

Let  denote the first term above 

                              (A.2) 

As for the second term, it can be derived further as  

        (A.3) 

Let , ,  denote the above three terms, respectively, i.e., 

                              (A.4) 

Note that , , ,  are all functions of distribution parameters  and , and 

. Additionally, ,  vary according to the value of sample . Then the PDF 

weight is simplified as 

               (A.5) 

Taking it into Eq.(31) one derives 

                                    (A.6) 

The integral  can furtherly derived with an analytical solution 
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               (A.7) 

Let , where , the above 

integral can be derived as 

            (A.8) 

Then the analytical expression of the integral is finally derived as 

            (A.9)  

Appendix B：Derivation of analytical failure probability function of Eq.(41) 

In standard normal space, the performance function in Eq.(40) is expressed as

. The boundary of LSF  can be drawn 

as shown in Figure B1. Assume that  is a realization of , then search the value of  that 

satisfies the equation , i.e.,  

                       (B.1) 

From the view of line sampling, the reliability index associated with  is actually the distance 

 shown in Figure B1, and its value equals to . As a consequence, the failure probability can 

be expressed analytically with the following one-dimensional integral, 
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           (B.2) 

 

Figure B1 Geometric sketch for deriving analytical solution of failure probability 

References 

[1]. Faes, M., Broggi, M., Patelli, E., Govers, Y., Mottershead, J., Beer, M., & Moens, D. (2019). 

A multivariate interval approach for inverse uncertainty quantification with limited 

experimental data. Mechanical Systems and Signal Processing, 118, 534-548.  

[2]. Hohenbichler, M., Gollwitzer, S., Kruse, W., & Rackwitz, R. (1987). New light on first-and 

second-order reliability methods. Structural safety, 4(4), 267-284.  

[3]. Ghanem, R. G., Spanos, P. D. (2003). Stochastic finite elements: a spectral approach. 

Courier Corporation. 

[4]. Au, S. K. & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions 

by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-277. 

[5]. Li, J., Chen, J. (2008). The principle of preservation of probability and the generalized 

density evolution equation. Structural Safety, 30(1), 65-77. 

[6]. Faes, M. & Moens, D. (2019). Recent Trends in the Modeling and Quantification of 

Non-probabilistic Uncertainty. Archives of Computational Methods in Engineering, 1-39. 

[7]. Der Kiureghian, A. & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter?. 

Structural Safety, 31(2), 105-112.  

[8]. Beer, M., Ferson, S. & Kreinovich, V. (2013). Imprecise probabilities in engineering 

analyses. Mechanical systems and signal processing, 37(1-2), 4-29.  



Research article 2: Non-intrusive imprecise stochastic simulation by line sampling 

104 

 

[9]. Zhang, H., Mullen, R. L. & Muhanna, R. L. (2010). Interval Monte Carlo methods for 

structural reliability. Structural Safety, 32(3), 183-190. 

[10]. Alvarez, D. A., Uribe, F. & Hurtado, J. E. (2018). Estimation of the lower and upper 

bounds on the probability of failure using subset simulation and random set theory. 

Mechanical Systems and Signal Processing, 100, 782-801. 

[11]. Zhang, Z., Jiang, C., Wang, G. G., & Han, X. (2015). First and second order approximate 

reliability analysis methods using evidence theory. Reliability Engineering & System Safety, 

137, 40-49. 

[12]. Wei, P., Song, J., Bi, S., Broggi, M., Beer, M., Lu, Z., & Yue, Z. (2019). Non-intrusive 

stochastic analysis with parameterized imprecise probability models: I. Performance 

estimation. Mechanical Systems and Signal Processing, 124, 349-368. 

[13]. Wei, P., Song, J., Bi, S., Broggi, M., Beer, M., Lu, Z., & Yue, Z. (2019). Non-intrusive 

stochastic analysis with parameterized imprecise probability models: II. Reliability and rare 

events analysis. Mechanical Systems and Signal Processing, 126, 227-247.  

[14]. Wei, P., Lu, Z. & Song, J. (2014). Extended Monte Carlo simulation for parametric global 

sensitivity analysis and optimization. AIAA Journal, 52(4), 867-878. 

[15]. Li, G., Wang, S. W., Rosenthal, C., & Rabitz, H. (2001). High dimensional model 

representations generated from low dimensional data samples. I. mp-Cut-HDMR. Journal 

of Mathematical Chemistry, 30(1), 1-30.  

[16]. Li, G., & Rabitz, H. (2012). General formulation of HDMR component functions with 

independent and correlated variables. Journal of Mathematical Chemistry, 50(1), 99-130.  

[17]. Kaya, H., Kaplan, M., & Saygın, H. (2004). A recursive algorithm for finding HDMR terms 

for sensitivity analysis. Computer Physics Communications, 158(2), 106-112. 

[18]. Schuëller, G. I., Pradlwarter, H. J. & Koutsourelakis, P. S. (2004). A critical appraisal of 

reliability estimation procedures for high dimensions. Probabilistic engineering mechanics, 

19(4), 463-474. 

[19]. Koutsourelakis, P. S., Pradlwarter, H. J. & Schuëller, G. I. (2004). Reliability of structures 

in high dimensions, part I: algorithms and applications. Probabilistic Engineering 



Research article 2: Non-intrusive imprecise stochastic simulation by line sampling 

105 

 

Mechanics, 19(4), 409-417. 

[20]. Hohenbichler, M. & Rackwitz, R. (1988). Improvement of second-order reliability estimates 

by importance sampling. Journal of Engineering Mechanics, 114(12), 2195-2199. 

[21]. Rackwitz, R. (2001). Reliability analysis—a review and some perspectives. Structural safety, 

23(4), 365-395. 

[22]. Song, J., Lu, Z., Wei, P. & Wang, Y. (2015). Global sensitivity analysis for model with 

random inputs characterized by probability-box. Proceedings of the Institution of 

Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(3), 237-253. 

[23]. Chen, L., Wang, H., Ye, F., & Hu, W. (2019). Comparative study of HDMRs and other 

popular metamodeling techniques for high dimensional problems. Structural and 

Multidisciplinary Optimization, 59(1), 21-42.  

[24]. Wei, P., Lu, Z. & Song, J. (2015). Variable importance analysis: a comprehensive review. 

Reliability Engineering & System Safety, 142, 399-432. 

[25]. Schueller, G. I. (2009). Efficient Monte Carlo simulation procedures in structural 

uncertainty and reliability analysis-recent advances. Structural Engineering and 

Mechanics, 32(1), 1-20.  

[26]. Lu, Z., Song, S., Li, H. &Yuan, X. (2009). The reliability and reliability sensitivity analysis 

for structural and mechanical system. Beijing, China: Science Press, pp. 179-181. 

[27]. Pradlwarter, H. J., Schueller, G. I., Koutsourelakis, P. S., & Charmpis, D. C. (2007). 

Application of line sampling simulation method to reliability benchmark 

problems. Structural Safety, 29(3), 208-221.  

[28]. Pradlwarter, H. J., Pellissetti, M. F., Schenk, C. A., Schueller, G. I., Kreis, A., Fransen, 

S., ... & Klein, M. (2005). Realistic and efficient reliability estimation for aerospace 

structures. Computer Methods in Applied Mechanics and Engineering, 194(12-16), 

1597-1617. 

[29]. Lu, Z., Song, S., Yue, Z., & Wang, J. (2008). Reliability sensitivity method by line 

sampling. Structural Safety, 30(6), 517-532.  

[30]. de Angelis, M., Patelli, E., & Beer, M. (2015). Advanced line sampling for efficient robust 



Research article 2: Non-intrusive imprecise stochastic simulation by line sampling 

106 

 

reliability analysis. Structural safety, 52, 170-182.  

[31]. Depina, I., Le, T. M. H., Fenton, G., & Eiksund, G. (2016). Reliability analysis with 

metamodel line sampling. Structural Safety, 60, 1-15.  

[32]. Valdebenito M A, Valdebenito, M. A., Jensen, H. A., Beer, M., & Pérez, C. A. (2014). 

Approximation concepts for fuzzy structural analysis. In Vulnerability, Uncertainty, and 

Risk: Quantification, Mitigation, and Management (pp. 135-144).  

[33]. Valdebenito, M. A., Jensen, H. A., Hernández, H. B., & Mehrez, L. (2018). Sensitivity 

estimation of failure probability applying line sampling. Reliability Engineering & System 

Safety, 171, 99-111.  

[34]. Haukaas, T., & Der Kiureghian, A. (2006). Strategies for finding the design point in 

non-linear finite element reliability analysis. Probabilistic Engineering Mechanics, 21(2), 

133-147. 

 

  



 

107 

 

 

 

Research article 3: Active Learning Line Sampl- 

ing for Rare Event Analysis 

As have been shown in the last chapter, the line sampling (LS) is not only effective for 

precise reliability analysis with small failure probability, but can also be elegantly injected 

to the NISS framework for analyzing the structure reliability with inputs characterized by 

p-box models. However, when applied to real-world engineering problems, there are still two 

limitations. 

First, as shown by the test examples in the last article, the LS based NISS still requires 

at least hundreds of g-function calls for achieving estimation with high accuracy. For 

practical engineering applications involving computationally expensive computer simulators, 

one g-function call may take several minutes or even several hours, thus the computationally 

cost can still be too high. There is a requirement of further reducing the required number of 

g-function calls.   

Second, the classical LS method is not suitable for problems highly nonlinear 

g-functions. The reasons behind this fact are twofold. On the one hand, the important 

direction need to be specified first, which requires more g-function calls for highly nonlinear 

problems. On the other hand, for highly nonlinear g-function, the high accuracy of LS 

estimator requires much more lines, each of which requires more g-function calls for 

accurately estimating its intersection points with the failure surface. The above two reasons 

make the LS method computationally extremely expensive for highly nonlinear problems.  

For overcoming the above two limitations, this article develops an improved LS 

algorithm by combining the active learning and Gaussian process regression (GPR) with LS 
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method. This algorithm is driven by a newly developed learning function, which can inform 

the posterior probability of correctly estimating the intersection point for each line within a 

specified tolerance. Then, with this learning function, a GPR model is trained and/or 

updated, and the design point is specified one by one actively, with the target to accurately 

estimate the intersection point for each line, with the least g-function calls. All the 

g-function calls for specifying the important direction can be used for training the GPR 

model, so they are not wasted. For highly nonlinear problems, the algorithm adaptively 

produces more lines to promise the accuracy of failure probability estimation, but the 

required number of g-function calls does not increase too much as for the new lines, the 

intersection points have been correctly learned by the trained GPR model. The high 

efficiency of the proposed method is then demonstrated by numerical and engineering test 

cases.  
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Abstract: Line Sampling (LS) has been widely recognized as one of the most appealing 

stochastic simulation algorithms for rare event analysis, but when applying it to many real-world 

engineering problems, improvement of the algorithm with higher efficiency is still required. This 

paper aims to improve both the efficiency and accuracy of LS by active learning and Gaussian 

process regression (GPR). A new learning function is devised for informing the accuracy of the 

calculation of the intersection points between each line associated with LS and the failure surface. 

Then, an adaptive algorithm, with the learning function as an engine and a stopping criterion, is 

developed for adaptively training a GPR model to accurately estimate the intersection points for 

all lines in LS scheme, and the number of lines is actively increased if it is necessary for 

improving the accuracy of failure probability estimation. By introducing this adaptive GPR 

model, the number of required function calls has been largely reduced, and the accuracy for 

estimation of the intersection points has been largely improved, especially for highly nonlinear 

problems with extremely rare events. Numerical test examples and engineering applications 

show the superiority of the developed algorithm over the classical LS algorithm and some other 

active learning schemes.  
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Keywords: Rare Failure Event; Gaussian Process Regression; Line Sampling; Learning Function; 

Adaptive Experiment Design; Active learning 

1 Introduction 

Estimating the failure probability of complex structures has long been recognized as one of 

the most important tasks in civil engineering, mechanical engineering, and related areas. The 

rapid development of computational power has allowed the simulation of more large-scale 

structural systems and more complex failure mechanisms, resulting in the requirement of more 

efficient and accurate computational methods for structural reliability analysis, especially when 

it comes to rare failure event analysis [1].  

From the 60s of last century on, the probabilistic uncertainty propagation and the reliability 

analysis of structural systems have been coming into the view of the academic community, and 

plenty of classical computational methods with their own relative merits have been developed. 

These available methods can be generally grouped into (i) analytical approximation methods, (ii) 

probability-conservation based methods, (iii) stochastic simulation methods, and (iv) surrogate 

model method especially equipped by active learning and stochastic simulation.   

Analytical approximation methods, including the first-order reliability method (FORM) [2], 

the second-order reliability method (SORM) [3], etc., aims at approximating the failure 

probability by statistical moments of the performance function (or limit state function) 

approximated by Taylor series expansion expended at the most probable points (MPPs). This 

group of methods requires gradient information of the performance function and is commonly 

only applicable for problems with continuous performance function of low nonlinearity (around 

the MPP).  

Probability-preservation based methods, including the probability density evolution [4], the 

direct probability integral method [5], etc., propagate the probabilistic uncertainty from model 

inputs to outputs and also estimate the failure probability based on the principle of probability 

conservation. This group of methods commonly rely on experiment design that involves some 

low-discrepancy sequence techniques. Compared with the first group of methods, the latter is 
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commonly computationally more expensive, but have wider applications, especially to dynamic 

problems. 

Stochastic simulation, such as Monte Carlo simulation (MCS) and advanced MCS, are 

rooted in the classical probability theory, and the convergence and accuracy of the estimators are 

guaranteed by the central-limit theory and the law of larger numbers. For structural reliability 

analysis and especially rare event analysis, advanced MCS such as importance sampling (IS) 

[6][7], subset simulation (SS) [8][9], line sampling (LS) [10][11] and directional simulation (DS) 

[12] have been developed, and been comprehensively investigated from both theoretical and 

application aspects. These simulation methods have their advantages but also disadvantages. 

For example, SS is applicable for small failure probability estimation and high-dimensional 

problems, but the convergence is highly affected by the utilized Markov Chain Monte Carlo 

(MCMC) algorithms [9][13], and the estimation errors also increase with respect to the number 

of introduced intermediate failure events. LS can be especially efficient for small failure 

probability estimation, but the efficiency and estimation accuracy highly rely on the important 

direction and the accuracy of calculating the intersection points along each line with the failure 

event; furthermore, for highly nonlinear problems, LS requires more lines and more evaluations 

of the system’s response on each line, thus can be less efficient. Generally, the stochastic 

simulation methods provide rigorous treatments of numerical errors but are still computationally 

expensive for real-world structures with time-consuming simulators. 

The requirement of highly efficient reliability analysis has motivated the development and 

application of surrogate model methods, especially those relying on active learning strategies. In 

particular, methods that combine the advantages of the Gaussian Process Regression (GPR) 

model (also called Kriging model) with stochastic simulation methods have received considerable 

attention. One of the pioneering developments in this direction is the AK-MCS (active learning 

Kriging driven by MCS) proposed by Echard et al. in Ref. [14]. This method makes full use of the 

convergence property of MCS, but avoids its high computational cost by actively learning the 

signs of the performance function for each MCS sample based on the property of GPR model. 

During the past years, this scheme has received a lot of attention, and many improved versions 
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have been developed. There are two mainstreams of these new developments. The first line is 

focused on developing new learning functions for more effective learning. Some of the most 

well-known learning functions include the U-function [14], the expected improvement function 

(EIF) [15], the H-function [16], the least improvement function (LIF) [17], etc. Another line aims 

at combing the active learning scheme with advanced stochastic simulation to improve the 

applicability for small (typically less than 10-3) or extremely small (less than 10-6) failure 

probability estimation. Some of the representative developments in this direction include AK-IS 

methods that combine AK with (adaptive) IS method [18]-[21], AK-SS, or AK-MCMC methods 

combining AK with SS method [22]-[25], etc. Other developments based on AK-MCS also 

include the parallelization of the algorithm [26], the treatment of structural system reliability 

analysis [27][28], etc. The combination of GPR with LS has also been presented in Refs. [29] and 

[30], but neither of these references considers an active training scheme, and specifically, in Ref. 

[29] a large number of performance function evaluations are required for calculating a correction 

coefficient introduced for addressing the model error. Theoretically, the proper combination of 

LS and active learning Kriging (named as adaptive GPR (AGPR) in this paper) has the 

potential to substantially reduce the required performance function calls for extremely small 

failure probability estimation since they are complementary to one another, however, the current 

studies are still far from achieving this goal.  

To make full use of the advantages of the AGPR model and LS method, we develop a new 

active learning scheme, which is named AGPR-LS, for efficiently estimating very small failure 

probabilities. A new active learning function is firstly developed for adaptively learning the 

intersection points between each line and the failure surface accurately, and which also serves as 

a stopping criterion. Then, based on this learning function, the adaptive learning scheme 

AGPR-LS is developed. Extensive numerical and engineering test cases show that the AGPR-LS 

algorithm is especially efficient and accurate for extremely rare event analysis. 

The rest of this paper is organized as follows. Section 2 briefly reviews the classical LS 

method and highlights the aspects that could be improved by injecting the AGPR model. In 

section 3, the new learning function and the AGRP-LS algorithm are developed, followed by the 
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case studies in section 4. Section 5 gives conclusions.   

2 Review of Line Sampling 

LS method, as a classical advanced MCS method, formulates a reliability problem as a 

group of conditional one-dimensional reliability estimations, and each one-dimensional problem 

is solved by searching along the line parallel to the important direction [10][29]. The important 

direction is defined as a vector pointing from the origin to the most probable failure region in 

input space [10][11], and the performance of LS highly relies on the accuracy of specifying the 

important direction.  

Assume that the -dimensional input random variables are denoted by , 

and the performance function of a reliability problem is denoted as , where  

indicates the failure of the structure. The classical LS method is established in the standard 

Gaussian space. However, in real-world applications, non-Gaussian input variables are 

ubiquitous, and these non-Gaussian input variables must be transformed into standard Gaussian 

variables. This can be realized by using an isoprobabilistic transformation such as Rosenblatt or 

Nataf transformation [31]. Here we briefly introduce the transformation for the independent case. 

Let  denote the cumulative distribution function (CDF) of any type of distribution, then 

the isoprobabilistic transformation is , where  indicates the inverse CDF 

of the standard Gaussian variable . Then the inverse transformation is given as 

. For the general case with dependent input variables, one can refer to Ref. [31] 

for details. For the general case, let  denote the isoprobabilistic transformation (e.g., 

Rosenblatt transformation) of , and the inverse transformation is formulated as . 

Then the performance function with standard Gaussian arguments can be formulated as 

. For simplification, all the subsequent work will be discussed in standard 

Gaussian space with the performance function expressed by . 

The normalized important direction associated with  is denoted by . Once  has 

been estimated, the standard Gaussian space can be orthogonally decomposed into a 

one-dimensional subspace and a -dimensional subspace, and the input vector can be 
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decomposed into two vectors: 

  (1) 

, where  is the one-dimensional standard Gaussian variable so that  is parallel to , 

and  is the -dimensional standard Gaussian variables orthogonal to . For a given 

value of , the value of  and  can be calculated with the following expression 

  (2) 

, where  indicates inner product. 

With the above decomposition, the failure probability  can be formulated as a 

double-loop integral, i.e.,  

  (3) 

, with a -dimensional integral of  in the outer loop and one-dimensional integral of 

 in the inner loop. Based on Eq.(3), the LS method involves first generating a set of  

samples  in the -dimensional subspace of  based on Eq.(2), 

and then expressing the estimator of failure probability as: 

 . (4) 

For estimating the failure probability based on Eq.(4), one only needs to estimate the  

one-dimensional integrals, and this problem is schematically shown in Figure 1. As can be seen, 

given a fixed value  of ,  varies along the line  which is parallel to the 

important direction. The intersection point of this line with the failure surface is then denoted as 

. Clearly, if the value of  exceeds , then failure happens along this line, and 

since  follows standard Gaussian distribution, the estimator in Eq.(4) can then be further 

derived as: 

  (5) 

, and the variance of the estimator is  
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 . (6) 

Therefore, the estimation of the failure probability is equivalent to the estimation of the 

intersection point for each line sample. With the estimator in Eq.(5) and the variance of the 

estimator in Eq.(6), the Coefficient Of Variation (COV) of the estimate can be computed by: 

 . (7) 

 

Figure 1 Geometric interpretation of LS in standard Gaussian space. 

Many numerical methods can be used for calculating the value of  associated with the 

intersection point on each line, and the most efficient way is to use the three-point-second-order 

(TPSO) polynomial interpolation method. This procedure involves first generating three values 

for , denoted as , , , and evaluating the performance function values at the three 

points on the s-th line, then the one-dimensional function  can be approximated 

by TPSO polynomial interpolation, thus the value of  is calculated by searching the root of 

this polynomial.  

The above LS scheme has been widely known to be efficient for rare event analysis due to 

the high efficiency of one-dimensional searching in the most important direction. However, 

disadvantages also exist. For highly nonlinear problems, the TPSO method can be less effective 

for accurately estimating the intersection points, resulting in poor accuracy, and further, high 



Research article 3: Active learning line sampling for rare event analysis 

116 

 

nonlinearity also increases the number of required lines for generating sufficiently reliable failure 

probability estimations, which will largely increase the number of g-function calls. For rare event 

analysis, the proper selection of the three values ,  and  is also a challenging problem 

because in most cases the distance of the intersection points from the origin is unknown, and 

improper selection of the three points will also result in a poor estimation of the failure 

probability. One can also increase the number of points on each line to improve the accuracy of 

estimating the intersection points, but this will also increase the number of required g-function 

calls. Besides, improper selection of the important direction will also result in poor performance 

as more lines are required for identifying the whole important failure region. In the next section, 

we inject the adaptive GPR model into LS to tackle the above disadvantages.  

3 The proposed method 

3.1 Brief introduction of the GPR model 

Before the development of AGPR-LS, it is necessary to briefly review the GPR model. One 

can refer to Ref. [32] for more details. Given the performance function , the GPR model 

(denoted as ) assumes that:  

  (8) 

, where  is the mean function which can be assumed to be zero, constant, linear, or any 

closed-form function, and  is the kernel function representing the covariance between 

two realizations  and . Many kinds of kernel functions have been developed for different 

situations, and one can refer to Ref. [32] for more information. The forms of the mean and kernel 

functions reflect part of our prior information on the GPR model. Assume we have a set of  

training data , where  is a  matrix with each row being a sample of , and  

is a -dimensional column-wise vector with the i-th value being the performance function 

evaluated at the i-th sample point of . Then, the maximum likelihood method can be utilized 

for estimating the values of the hyper-parameters included in the mean function  and the 

kernel function. Once these hyper-parameters have been computed, the posterior prediction 

 of the GPR model at a new realization  is also a Gaussian variable with expectation 
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and variance given by: 

  (9) 

, and 

  (10) 

, where  is a column-wise vector of functions with the i-th component being the 

covariance between  and the i-th row of , and  is a -dimensional matrix with 

the -th entry being the covariance between the i-th and j-th rows of . The variance 

 actually measures the variation of prediction.  

Eq.(9) reveals that the GPR model prediction equals to the mean function (prior knowledge 

on ) plus a linear combination of the kernel function between the new site and the training 

data, where the second term reflects the information learned from the training data. Eq. (10) 

indicates that the variance of GPR model prediction equals the prior variance minus a term 

which reflects the reduction of epistemic uncertainty on the value of  learned from the 

training data. The above interpretations indicate that, with more training data, the epistemic 

uncertainty on the prediction of any new sites will be reduced, and this property brings many 

more benefits for the algorithm to be developed. In the next subsection, we introduce a new 

learning function that serves as the engine of the proposed AGPR-LS algorithm.  

3.2 Learning function 

From the rationale of the GPR model, it is known that once the true performance function 

 is approximated by a GPR model  with mean  and variance , the 

prediction of the performance function at any new realization is a Gaussian variable. This 

property brings two benefits for LS. First, the distance  w.r.t. the intersection point between 

the failure surface of  and the s-th line can be easily computed by any numerical scheme 

due to the smoothness of . Second, it can be used to judge whether the 

estimated value  is accurate enough. For answering the second question, we develop a new 

definition of learning function, which is expressed as: 

  (11) 
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, where  refers to the probability density function of Gaussian distribution 

with mean  and variance , and  is the error tolerance to control the width of 

integral interval, whose value should be close to zero. Generally, the learning function can be 

interpreted as the probability of the true value of  being included in the small interval 

.  

For reliability analysis, specifically for the intersection point  of a given line, 

where the value of  theoretically equals to zero, the learning function actually measures 

the probability that the g-function value at the true intersection point being included in the 

pre-specified narrow bounds . The larger this probability is, the more accurately this 

intersection point is estimated. The learning function is schematically interpreted in Figure 2.  

 

Figure 2 Schematic interpretation of the learning function .  

As can be seen in Figure 2(a), and  are the intersection points of the same line 

 with the failure surfaces  and , and the two GPR 

models are both meta-models of the same limit state function. Figure 2(b) shows the 

corresponding probability density function of  at the two points. Obviously,  has a 

larger variation of prediction than , thus its probability mass contained within the 

interval  is less than that of ; accordingly, the learning function value at  is 

smaller than that evaluated at . Thus, a larger value of the learning function indicates a 
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better estimation of the intersection point. It is easy to observe that , where 

 indicates that the corresponding intersection point is poorly estimated, and  

reveals that the intersection point is accurately computed. Commonly,  

provides satisfactory estimation, here  denotes the learning function threshold. In the next 

subsection, we develop the AGPR-LS algorithm with the proposed learning function .  

3.3 The AGPR-LS algorithm 

The basic idea of the AGPR-LS algorithm is then adaptively learning the correct 

intersection points for each line of LS based on the GPR model, which is actively updated by 

including the most informative points identified by the learning function . The flowchart of 

the algorithm is represented in Figure 3. The detailed procedure is also described as follows.  

 Step 1: Initialization  

The algorithm is started by setting the total number  of candidate lines, the number  

of initial lines for training the initial GPR model, the threshold  and the error tolerance . 

Then, generate  samples  so as to create  lines along the 

important direction  by using, e.g., Latin-hypercube sampling. Then randomly select  

lines from those  lines, and estimate the intersection point for each of these  lines by using 

TPSO polynomial interpolation that is also mentioned in section 2; the found intersection points 

are expressed by . This procedure introduces  training data 

points, which are added to the training data set . After that, evaluate the g-function of the 

 intersection points, and also add them into the training data set. In practical applications, 

the important direction generally cannot be derived analytically, and numerical procedures such 

as FORM need to be used for calculating it numerically [2]. This numerical procedure also 

introduces  extra g-function calls, and it is recommended to also add these data points into 

the training data set . Let  denote the training sample size of , so that the training 

sample size after initialization will become . The number of lines  can 

be set to be the same as in the classical LS algorithm. Commonly, higher nonlinearity and/or 

larger span failure regions require a larger number of candidate lines.  can be set to be a 
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small value less than ten, e.g., 4.  

 Step 2: Train or update the GPR model  

Train or update the GPR model  by using the training data set . In this step, one 

needs to specify the mean function  and the kernel function . Commonly, if the 

nonlinearity of the performance function is not high, zero or constant mean function is 

recommended. However, if the nonlinearity is high, linear or quadratic polynomial mean function 

is recommended. For the kernel function, the squared exponential kernel is utilized in this work. 

The function “fitrgp” in the Matlab Statistic and Machine Learning Toolbox is utilized in this 

work for training the GPR model.  

 Step 3: Learning from the GPR model 

The GPR model trained in Step 2 provides a pair of quantities, i.e.,  and , for 

any realization . Compute the intersection point  for each line (including the  

initial lines) by solving the univariate equation . During this procedure, it 

may happen that, for some lines, no zero point can be found, indicating a large GRP prediction 

error in this line. One can simply set the corresponding value of  as the average values of  

for other lines, but this point is definitely not an estimated intersection point. Then, for each line, 

compute the learning function value  for the intersection point  by 

modifying the learning function of Eq. (11) as: 

 . (12) 

Find the minimum value . If , find the intersection point with the 

minimum value of learning function, compute the corresponding g-function value, and add this 

point to the training data set , let , and go back to Step 2; else go to Step 4. 

  Step 4: Estimation and Iteration 

Estimate the failure probability  with the intersection point computed for each line in 

Step 3 by Eqs. (5) and (6). If the COV estimated by Eq. (7) is higher than a pre-specified 

tolerance, say 0.05, then create  more lines. Let , and go back to Step 3; 

otherwise, end the algorithm.  can be set to be 50 or more.                         ▇ 
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Figure 3 Flowchart of the AGPR-LS algorithm. 

In step 1, the value of the error tolerance  should be carefully treated. Since the GPR 

prediction at each calculated intersection point equals to zero, the next point being selected by 

the learning function in Eq. (12) is always the one with the largest value of prediction variance 

if it is an intersection point, or the one on a line whose intersection point is not available by 

solving . The value of  does not affect the determination of training data 

to be added in each iteration. However, this value definitely affects the stopping criterion in step 

3. A larger value of  results in faster convergence but also poorer accuracy of each intersection 

point, while smaller value requires more training data, leading to higher computational cost. 

Therefore, a proper tradeoff should be made for . Based on our experience, it is suggested to 

set  as  times the average absolute values of g-function at the intersection points of the 

initial  lines estimated by TPSO interpolation, where . Another choice of  is 

suggested as (0.01~0.10) , where  is the standard deviation of the g-function. This value can 
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also be updated at each iteration based on the intersection points which are being accurately 

estimated by the trained GPR model.  

It is found in the last step that, increasing the number of lines will not increase the required 

number of g-function calls too much. As for most newly added lines, the well-fitted GPR model 

can produce accurate estimations of the intersection points. In the case that for some newly 

added lines, the intersection points are not accurately estimated, the active learning function 

 can commonly improve those estimations to required accuracy level with only a small 

number of training data (thus g-function calls) being added. Thus, compared with the classical 

LS algorithm, the AGPR-LS is more applicable to highly nonlinear performance function, and 

also the case where the important direction is not accurately specified. Besides, for rare event 

analysis, searching the intersection point based on the fitted GPR model can be much easier and 

more efficient due to the smoothness of the GPR predictor. 

The AGPR-LS algorithm also has more appealing advantages over the advanced AK-MCS 

algorithms. The classical AK-MCS algorithm is known to be not effective for rare event analysis 

due to the large size of the required sample pool. Many improved algorithms such as the 

AK-MCMC have been developed [24][25]. As will be illustrated in the test examples, the 

AK-MCMC algorithm needs to approximate a set of intermediate failure surfaces adaptively, 

which will cost a considerable number of g-function calls. However, due to the high efficiency of 

the one-dimensional line search, the AGPR-LS method can be much more efficient for 

identifying the failure surface, especially when the failure probability is extremely small (less 

than 10-6). Besides, all the AK-MCS and advanced AK-MCS algorithms require a large sample 

pool (with e.g., 105 samples) especially for extremely small failure probability, making the 

implementation inefficient. The AGPR-LS algorithm avoids this shortcoming since only a much 

small line pool (commonly with several hundreds of lines) is required.  

However, the AGPR-LS algorithm also has its limits. The high efficiency of line searching is 

based on the specified important direction. In most applications, the failure region is mainly 

concentrated in one direction, and the proposed algorithm can be extremely efficient. However, 

if multiple important directions exist, the algorithm can be less effective for approaching the 
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whole failure region.  

4 Case studies 

4.1 A two-dimensional numerical example 

A two-dimensional toy example is considered with limit state function: 

  (13) 

, where  and  are constants used for determining the magnitude of  ,  and  are also 

constants used to justify the nonlinearity of the limit state function.  and  are two 

independent random input variables, both of which follow standard Gaussian distribution. The 

important direction for this example is assumed to be known precisely, and given in Table 1. 

Next, we consider three cases for this example. The first case is utilized for demonstrating 

the robustness of the proposed AGPR-LS algorithm given different important directions, the 

second case is used for demonstrating its performance for extremely small failure probability, 

and the third case is designed for investigating its performance for highly nonlinear problems.  

For implementing the classical LS in case 1 and case 2, the intersection point for each line is 

calculated by the three-point interpolation, thus the total number of function calls is 

; while for case 3, the intersection point for each line is computed by the four-point 

interpolation due to the high nonlinearity, thus the total number of function calls is . 

For all three cases, the classical LS algorithm is implemented by the COSSAN software [33]. 

For implementing the AGPR-LS algorithm, four initial training lines are created in the 

same way with the classical LS algorithm, and for each line, the three-point interpolation is 

utilized for calculating the intersection points. Thus, the total number of initial training samples 

is sixteen.  

 Case 1: ,  and   

The reference result is computed by LS and IS, as given in Table 1. We implement the LS 

algorithm by setting the line size as 10, 100, and 1000 respectively, and the corresponding results 

are reported in Table 1. As can be seen, although the mean estimates of the three runs are all 

near to the reference solution, the COVs with 10 and 100 lines are both higher than 20%, 
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indicating that the accuracy is not acceptable. When the line size is increased to 1000, the COV 

drops to 2.7%, indicating the convergence of the LS algorithm.  

For implementing the AGPR-LS algorithm, the important direction is set to  

and  to demonstrate the insensitivity of the algorithm to the accuracy 

of important direction. For both runs, the stopping criterion are set to be .  

The training process of AGPR-LS for case 1 with the important direction  is 

schematically shown in Figure 4. As can be seen, four lines are first generated randomly, and for 

each line, the three-point second-order interpolation is utilized for calculating the intersection 

point with the limit state function. The above procedure introduces sixteen input-output 

samples for training the initial GPR model. By setting the parameters as  and 

, 596 more lines are generated, but only four more training samples are added 

sequentially based on the learning function . Based on the 20 training samples, the 

intersection points for all the 600 lines are accurately estimated, and the failure probability is 

then calculated based on the LS estimators, and the results are shown in the second row of Table . 

The reference results generated by another adaptive learning method AK-MCMC developed in 

Ref. [24] are also listed for comparison. As can be seen, results generated by all the methods are 

in good agreement, and the COV of the estimate by AGPR-LS is quite small (approximately 

4.5%), indicating that the failure probability estimation by AGPR-LS for this case is accurate, 

robust and efficient.   

We then change the important direction to  to test the sensitivity 

of the performance of AGPR-LS to the important direction. The training process is shown in 

Figure 5, and the results are given in Table 1. It is shown that, although the utilized important 

direction is distinct from the most informative one, the AGPR-LS algorithm still produces a 

correct and robust estimation, and the total number of g-function calls is still 20. It is also shown 

that the total number of required lines has increased to 1500, indicating when the important 

direction is not the most informative one, more lines are required. However, this does not result 

in a significant increment of the computational cost since the required number of required 
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training samples is still 20. This indicates that, for this case, the AGRP-LS method is not very 

sensitive to the important direction.  

           

Figure 4 Results of AGPR-LS for case 1 of the toy example with important direction being 

. 

 

Figure 5 Results for case 1 of the toy example generated by AGPR-LS by setting the important 

direction as .  



Research article 3: Active learning line sampling for rare event analysis 

126 

 

 Case 2: ,  and  

With this setting, we aim at testing the performance of the AGPR-LS algorithm for 

analyzing the extremely rare failure events. In this case, the important direction is set to be 

. The classical LS algorithm is still implemented using COSSAN with 10, 100, and 

1000 lines, respectively, and the results are reported in Table 1. As can be seen, with the line size 

less than 100, it is impossible to create a robust estimate with COV less than 10%. 

We then implement the AGPR-LS algorithm by setting the stopping criterion as 

, and we use four initial training lines (thus sixteen initial training samples) to 

start the AGPR-LS algorithm. The details of the training process are illustrated in Figure 6, and 

the estimation results are listed in Table 1, together with the estimations by AK-MCMC, LS, 

and IS for comparison.  

 

Figure 6 Training process of APGR-LS algorithm for case 2 of the toy example. 

It is seen that, although the failure probability is extremely small (with the order of 

magnitude being 10-9), the AGPR-LS algorithm can still give an accurate and robust estimation, 

with the same number of g-function calls as in case 1. This means that estimating a smaller 

failure probability does not necessarily increase computational cost, attributed to the high 

efficiency of line search. It is also found that the COV of the estimation, in this case, is even 
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smaller than that in case 1, although the line size (250) is less than that in case 1, indicating that 

the AGRP-LS method can be especially useful for extremely rare event analysis. Figure 6 shows 

that the intersection points between the initial four lines and limit state function computed by 

three-points second-order interpolations are not as accurate as those in case 1. However, during 

the adaptive training process, the intersection points for all lines (including the four initial 

training lines) are adaptively updated, and the final intersection points for all lines are much 

accurately calculated. This indicates that, in the classical LS method, the inaccuracy of 

estimating the intersection points will result in an extra numerical error, however, by injecting 

the active learning procedure into LS, this shortcoming can be largely alleviated.   

 Case 3: , ,  and .  

With this setting, the failure probability is still very small, but the nonlinearity of the limit 

state function is much higher than that of the former two cases (see Figure 7 for the true limit 

state function). The classical LS algorithm is implemented using COSSAN with line sizes 

varying, and the results are listed in Table 1. As can be seen, for this highly nonlinear problem, 

even when the line size touches 1000, the COV is still higher than 5%, which is much higher than 

those in case 1 and case 2. This is unquestionably caused by the high nonlinearity of the 

g-function. This phenomenon indicates that, for highly nonlinear problems, the classical LS 

algorithm requires many more lines to achieve acceptable accuracy. As will been shown later, 

this can be largely alleviated by the AGPR-LS algorithm. 

The stopping criterion of the AGPR-LS algorithm is still set to be , and 

the important direction is set to be . The training process is then shown in Figure 7. 

For this highly nonlinear limit state function, 41 more samples are adaptively added to 

accurately estimate the intersection points for all the candidate lines, thus the total number of 

g-function calls is 57, which is still much smaller than that of AK-MCMC algorithm, which is 173, 

as shown in Table 1. This indicates that, for even highly nonlinear problems, the AGPR-LS 

algorithm is much more efficient than the AK-MCMC algorithm. This is because, for small 

failure probability, many g-function calls need to be performed for approximating a set of 
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intermediate failure surfaces, and this number can be large when the nonlinearity of the limit 

state function is high; however, the AGPR-LS algorithm can approach the true failure surface 

very efficiently along each line without the requirement of approximating any intermediate 

failure surface, no matter how far the failure surface is, thus can be extremely effective. It can be 

seen from Table 1 that, both the estimations of AGPR-LS and AK-MCMC algorithms are 

accurate when compared with the reference solutions computed by LS and IS algorithms, but the 

estimation of AGPR-LS is a little bit better than that of AK-MCMC. In terms of efficiency, the 

AGPR-LS algorithm consumes much fewer g-function calls than AK-MCMC. 

Compared with case 1 and case 2, the required number of training samples has increased, 

but it is still small. This increment is caused by the necessity of capturing highly nonlinear 

behavior along the failure surface. From Figure 7, it is also seen that, on some lines, more than 

one training sample is added, this is also due to the high nonlinearity of the limit state function 

along these lines. However, as long as the limit state function is continuous along this line, this 

active learning mechanism driven by the learning function can always approach the real 

intersection points within the allowed error range.  

 

Figure 7 Learning details of AGPR-LS algorithm for case 3 of the toy example. 



Research article 3: Active learning line sampling for rare event analysis 

129 

 

Table 1 Reliability analysis results of the toy example. 

 Methods Parameter settings   COV(%)  

Case 1 

AGPR-LS 

 

 

, ,  
600 2.596×10-6 4.5 20 

 

,   
1.5×103 2.740×10-6 4.7 20 

AK-MCMC — — 2.581×10-6 7.3 47 

LS   

10 3.606×10-6 21.5 30 

100 3.295×10-6 20.9 300 

103 2.728×10-6 2.7 3×103 

IS   — 2.646×10-6 3.1 104 

Case 2 

 

AGPR-LS 
 

,   
250 1.891×10-9 3.8 20 

AK-MCMC — — 1.649×10-9 7.7 150 

LS  

10 2.319×10-9 19.1 30 

100 2.305×10-9 12.9 300 

103 2.033×10-9 1.7 3×103 

IS   — 2.027×10-9 3.6 104 

Case 3 

AGPR-LS 
 

, , 
1.9×103 3.520×10-7 4.8 57 

AK-MCMC — — 3.141×10-7 6.7 173 

LS  

10 5.331×10-7 36.5 40 

100 2.159×10-7 21.2 400 

103 3.515×10-7 6.8 4×103 

IS  — 3.560×10-7 5.7 104 

 

4.2 Dynamic response of a nonlinear oscillator 

Consider a nonlinear undamped single degree of freedom system, shown in Figure 8, which 

is adapted from Ref.[14]. The limit state function is formulated as: 

  (14) 

, where . The six input variables are all assumed to follow Gaussian 

distribution with distribution parameters shown in Table 2.  
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Figure 8 A nonlinear oscillator. 

Table 2 Probability distributions of the six input variables of the nonlinear oscillator. 

Variables Distribution Mean COV 

 Gaussian 1 0.05 

 Gaussian 1 0.1 

 Gaussian 0.1 0.1 

 Gaussian 0.5 0.1 

 Gaussian 0.45 1/6 

 Gaussian 1 0.2 

The results of the failure probability estimated by AGPR-LS, AK-MCMC, LS, and IS are 

listed in Table 3. The most probable point (MPP) is estimated by the FORM method to be 

(-0.4405, -1.2432, -0.1243, -4.0363, 2.6542, 2.3750), and the total number of function calls is 

seventeen. Then IS procedure is implemented by moving the sampling center from the mean 

point to the MPP. The important direction for AGRP-LS and LS is then derived from the MPP 

as (-0.0794, -0.2241, -0.0224, -0.7282, 0.4787, 0.4285).  

The LS algorithm is implemented using COSSAN by setting the line size as 10, 100, and 500 

respectively, and for each line, five points are used for estimating the intersection points. As can 

be seen, with ten lines, the accuracy is not acceptable as the COV is higher than 20%. The 

accuracy of results generated with 100 lines is acceptable for engineering computation, but the 

COV is still too high for academic research. With 500 lines, the COV is below 5%, and the 

estimate can be regarded as the reference solution.  

For running the AGPR-LS algorithm, four initial training lines (thus sixteen initial training 

samples) are randomly generated. One notes that, in this example, the parameter  is still set 

to be 0.985, while the parameter  is set to be 0.005, which is different from the last example. 

This is because the level of magnitude of the response in this example is smaller than the last 
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example. For implementing the AK-MCMC algorithm in Ref. [24], the size  of the sample 

pool for each intermediate failure surface is set to be 105, the initial training sample size  is 

set to be 12, and the intermediate probability  is set to be 0.01.  

Table 3 shows that the results produced by the four methods are in good agreement. 

Compared with the AK-MCMC algorithm, the AGPR-LS demanded only 77 g-function calls, 

which is much less than that of the AK-MCMC algorithm. However, the AGRP-LS algorithm 

gives a better estimate since the COV of the estimation is much smaller than that of the 

AK-MCMC algorithm. This indicates that for this example with extremely small failure 

probability, the AGPR-LS method outperforms AK-MCMC. The AGPR-LS results are also 

competitive with those generated by the classical LS algorithm with 500 lines due to the same 

level of COV, but the computational cost is much lower.  

For illustrating the learning process of AGPR-LS, we plot the minimum value of the 

learning function  at each iteration step in Figure 9. As can be seen, with more training 

samples added, the minimum value of  over all lines tends to increase, but this is not 

always the case at each step. With the minimum value adaptively approaching one, it is believed 

that the intersection point for each line is accurately calculated, resulting in an accurate 

estimation of failure probability as long as the number of lines is enough.     

Table 3 Reliability analysis results of the nonlinear oscillator. 

Methods Parameter Settings  
( ) 

COV 

(%) 
 

AGPR-LS ,  300 1.530 4.1 17+60=77 

AK-MCMC 
, , 

 
— 1.493 9.9 155 

LS — 

10 2.370 27.8 17+50=67 

100 1.889 10.4 17+500=517 

500 1.775 4.6 17+2.5×103=2517 

IS — — 1.512 2.7 17+104 
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Figure 9 Plots of the minimum value of the learning function against the learning step for the 

nonlinear oscillator example. 

4.3 Confined seepage model 

A steady state of confined seepage below a dam discussed in Ref.[34] is considered, and the 

elevation of the dam is shown in Figure 10. The water flows from the upstream side (segment AB) 

towards the downstream side (segment CD) through the two permeable layers, silty gravel and 

silty sand, and an impermeable layer is below these two permeable layers. It is assumed that 

there is no water flow on any of the boundaries except for the segments AB and CD. In Figure 

10, the water height  in the upstream side of the dam is modeled as a random variable with 

uniform distribution , the hydraulic head  over the impermeable layer is 

. The permeability of the two permeable layers are assumed to be anisotropic 

and modeled as random variables following lognormal distribution, the horizontal and vertical 

permeabilities are denoted by  and  (  for sand layer,  for gravel layer). The 

distribution parameters of the permeability of the two soil layers as well as the water height are 

provided in Table 4. The governing partial differential equation of the seepage problem is 

 . (15) 
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The boundary conditions are the hydraulic head over segments AB and CD. A finite element 

mesh with 3413 nodes and 1628 quadratic triangular elements is established to solve the 

governing equation. The seepage  at the downstream side can be calculated by 

 . (16) 

    Note that the unit of  is the volume over time over distance . Commonly, we expect 

the seepage to be small enough for ensuring a safe state of the dam, so the failure event of interest 

is defined when seepage q  exceeds a prescribed threshold 50 , and the limit state 

function is .  

 

Figure 10 Elevation of the dam in confined seepage model. 

Table 4 Distribution parameters of input variables for confined seepage model. 

Variables Description Distribution type Parameter1 Parameter2 

[10-7m/s] 
Horizontal permeability  

of silty sand soil layer 
lognormal Mean=5 COV=1 

[10-7m/s] 
Vertical permeability  

of silty sand soil layer 
lognormal Mean=2 COV=1 

[10-6m/s] 
Horizontal permeability  

of silty gravel soil layer 
lognormal Mean=5 COV=1 

[10-6m/s] 
Vertical permeability  

Of silty gravel soil layer 
lognormal Mean=2 COV=1 

[m] 
water height in upstream  

side of dam 
uniform   

 

We first calculate the MPP by FORM, and the result is (3.1257, 1.5715, 1.0808, 0.9211, 
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0.8865), thus the important direction can be specified as (0.8059, 0.4052, 0.2787, 0.2375, 0.2286) 

by normalizing the vector from the origin to MPP. The total number of function calls in FORM 

is 30. Then we implement the AGPR-LS algorithm with four lines and thus  initial 

training points. The algorithm parameters are set to be  and . The results 

are then reported in Table 5, together with the reference results computed by AK-MCMC, LS, 

and IS respectively, where IS is implemented by shifting the sampling center to the MPP. The LS 

is implemented by setting the line size to 10, 100, and 200, and it is shown that the COV of the 

estimate generated with 10 lines is over 20%, thus it is not acceptable. However, the results 

generated with 100 or more lines are robust and accurate, and can be served as reference 

solutions. As can be seen, the failure probability estimated by AGRP-LS is a little bit better 

than that calculated by AK-MCMC, when compared with the reference solutions computed by 

IS and LS. However, the AGRP-LS demands only 80 g-function calls, which is much less than 

that consumed by AK-MCMC. This indicates that, for this example, both the AGRP-LS and 

AK-MCMC algorithms work well, but the AGRP-LS algorithm is much more efficient than 

AK-MCMC. 

Similarly, the minimum value of  against the iteration step is schematically shown in 

Figure 11. A similar phenomenon as seen in Figure 9 is found here, that is, the minimum value 

of  across all lines decreases rapidly with the increase of training samples identified by the 

learning function, and finally with only 50 training points, the AGPR-LS algorithm produces 

accurate estimations for the intersection points of all lines, and also accurate estimation of the 

failure probability.   

Table 5 Reliability analysis results for the confined seepage model. 

Methods Parameter Settings  ( ) COV (%)  

AGPR-LS ,  200 2.811 4.6 30+50=80 

AK-MCMC , ,  — 2.465 4.9 337 

LS — 

10 1.696 25.6 30+30=60 

100 3.006 7.8 30+300=330 

200 2.933 4.2 30+600=630 

IS — — 2.846 1.8 30+5×104 
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Figure 11 Plots of the minimum value of the learning function at each iteration step for the 

seepage model. 

4.4 A two-dimensional wing flutter model 

A two-dimensional wing flutter model adapted from Refs. [25] and [35] is introduced here. 

As shown in Figure 12, the mass of the wing is denoted by , the point  denotes the 

center-of-mass of the wing,  is the location of stiffness center. Let  and  denote the 

vertical and rotational displacements, respectively.  and  are the stiffness of the vertical 

spring and the torsional spring both of which are fixed at the stiffness center. The chord length 

of the wing is , the variable  refers to the dimensionless distance between the midpoint of 

the chord and the stiffness center, and the variable  refers to the dimensionless distance 

between the center-of-mass  and the stiffness center . The phugoid mode frequency of the 

wing is , the pitching mode frequency is , the radius of the 

rotation of the wing towards  is expressed as . The equation governing the vibration of the 

two-dimensional wing is derived as: 

  (17) 
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Let  express the general displacement, and  denotes the dimensionless 

time, then the above governing equation can be rewritten as 

   (18) 

, where  

  (19) 

, and  is the generalized aerodynamic force expressed as 

  (20) 

,  and  are the aerodynamic force coefficient of the wing and aerodynamic moment 

coefficients towards the stiffness center , respectively. Assume that the mass ratio is 

, then  expresses the dimensionless flutter critical speed. Theo 

Dawson unsteady aerodynamic model is used to derive the aerodynamic force of the wing, and 

then the above flutter model is solved with V-g method, one can find more details about V-g 

method in subsection 3.7 of Ref.[35]. 

 

Figure 12 A two-dimensional wing flutter model. 

The flutter will happen if the critical speed  is smaller than the threshold 0.4414, thus 

the performance function is defined as . The six inputs variables, i.e. , , 

, ,  and , are assumed to follow truncated Gaussian distribution with distribution 

parameters listed in Table 6 and truncated support , where  and  are 
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the mean and standard deviation of each input respectively.  

Table 6 Distribution parameters of the input variables in the wing flutter model. 

Variables Description Mean COV 

 Mass ratio 20 0.0425 

 Dimensionless radius of rotation  0.5 0.0425 

 Phugoid mode frequency 30 0.0255 

 Dimensionless distance between midpoint of the chord and  -0.4 0.0255 

 Pitching mode frequency 50 0.0255 

 Dimensionless distance between  and  0.2 0.0255 

The MPP and important direction are first calculated by the FORM method, and the total 

number of function calls is 18. Then the AGPR-LS is implemented with six initial lines (thus 24 

initial training samples) by setting  and , and the results are reported in 

Table 7, with the training process being schematically illustrated by the evolution of learning 

function values shown in Figure 13. The reference solutions computed by AK-MCMC, LS, and 

IS are also reported in Table 7 for comparison, where the LS algorithm is implemented by setting 

the line size as 10, 100, and 200 respectively, and for each line, five points are utilized for 

calculating the intersection point. As can be seen, both AGPR-LS and AK-MCMC algorithms 

produce satisfactory results, but still, the AGPR-LS algorithm is much more efficient than 

AK-MCMC, as revealed by the total number of g-function calls. It is also shown in Table 7 that, 

the AGPR-LS with totally 120 g-function calls produces the estimate with the same level of 

accuracy as the classical LS with 200 lines (thus 18+103 g-function calls), indicating the 

superiority of the AGPR-LS algorithm to the classical LS algorithm.  

Table 7 Reliability analysis results of the two-dimensional wing flutter model. 

Methods Parameter Settings  ( ) COV (%)  

AGPR-LS ,  200 9.332 2.7 18+102=120 

AK-MCMC 
, , 

 
— 9.409 6.0 346 

LS 

 

— 

10 8.390 18.8 18+50=68 

100 10.552 7.1 18+500=518 

200 9.493 3.6 18+103=1018 

IS — — 9.298 2.1 18+104 
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Figure 13 Plot of the minimum value of the learning function with respect to the training step 

for the wing flutter model. 

4.5 Transmission tower  

For demonstrating the performance of the AGPR-LS algorithm for high-dimensional 

problems, we consider an electricity transmission tower structure shown in Figure 14, which is 

adapted from Refs. [36] and [37]. The finite element model is established with Matlab. This 

structure consists of 80 bars, all of which behave within the linear elastic range. Four static loads 

are applied in the top nodes. All these four loads are assumed to be deterministic with 

magnitude F=200 [kN], and they are all applied in the direction . There 

are twenty corner bars whose cross-section areas  and Young’s modulus 

 are assumed to be random input variables, and for the rest 60 bars, both the 

cross-section areas Young’s modulus are assumed to be deterministic with magnitudes 4.35×10-3 

[m2] and 2.1×1011 [Pa] respectively. For the twenty corner bars, both  and  follow 

lognormal distribution with mean values being 7.45×10-3 [m2] and 2.1×1011 [Pa] respectively. The 

COVs of all these 40 input random variables are assumed to be 0.1. The failure event is defined 

as the displacement of node A at the top of the tower exceeding 0.072 [m].   



Research article 3: Active learning line sampling for rare event analysis 

139 

 

 

Figure 14 A transmission tower structure. 

All the 40 lognormal random variables are first transformed into independent standard 

Gaussian variables by using the isoprobabilistic transformation, and then the MPP is calculated 

in the standard Gaussian space by using FORM, and 18 g-function calls are consumed. This 

MPP is then utilized for implementing the simulation. The LS and IS algorithms are 

implemented for providing reference solutions, as shown in Table 8. One notes that with the IS 

algorithm, only when the sample size being very large (e.g., 2×105), the COV of the estimate is 

less than 5%. The LS algorithm is implemented by setting the line size as 10, 100, and 200 

respectively, and for each line, five points are utilized for calculating the intersection points with 

spline interpolation. It is shown that the accuracy of the result with 10 lines is not acceptable 

due to the large COV. When 200 lines are used, the COV of the estimate is less than 5%, and the 

result can be served as a reference solution. 

The AGPR-LS algorithm is then implemented with three initial lines, and for each line, 

three points are used for calculating the intersection points, thus the initial training sample size 

is 12. The results are then reported in Table 8. As can be seen, the AGPR-LS algorithm 

consumes totally 231 g-function calls to produce the estimate of the same level of accuracy with 

the classical LS algorithm with 200 lines (18+1000 g-function calls), indicating that even for this 



Research article 3: Active learning line sampling for rare event analysis 

140 

 

high-dimensional problem, the AGPR-LS algorithm outperforms the classical LS algorithm.  

An interesting phenomenon appears in the implementation of the AGPR-LS algorithm for 

this high-dimensional problem. During the training process, especially in the first several dozens 

of iterations, it happens that for some lines, the intersection points defined by 

 (see step 3 in subsection 3.3) do not exist. For this case, we set the 

corresponding  values as the average value of  across other lines computed in the previous 

iteration to improve the robustness of the algorithm. Interestingly, this phenomenon rarely 

happens in low-dimensional problems. The reason behind it is that, with the increment of the 

input dimension, the distance between lines tend to be larger, indicating weaker correlation 

strength between lines. For the lines which are far from the training data, the GPR prediction 

errors can be large, making it sometimes intractable to solve the univariate equation 

. This is also why we need more training samples, and thus g-function calls, 

for this high-dimensional problem than that for the several previous low-dimensional problems. 

However, as indicated, the AGPR-LS algorithm is still much more efficient than the classical LS 

algorithm if the target is to generate estimates with the same level of COV.   

Table 8 Reliability results of the transmission tower. 

Methods Parameter Settings  (×10-9) COV (%)  

AGPR-LS ,   200 5.297 4.5 18+213=231 

LS — 

10 3.995 25.9 18+50=68 

100 5.576 8.0 18+500=518 

200 5.009 4.9 18+103=1018 

IS — — 5.458 4.5 18+2×105 

4.6 Final remarks 

With the above five test examples, we have shown the high performance of the AGRP-LS 

algorithm. The results have proved that, with the introduction of the adaptive learning 

procedure, the AGPR-LS algorithm has the potential to outperform classical LS algorithm for 

problems with extremely rare failure events, nonlinear performance function, and 

high-dimensional inputs. The reason behind this improvement is that the AGPR-LS algorithm, 
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on the one hand, takes full advantage of the high efficiency of the one-dimensional line search of 

the classical LS algorithm and, on the other hand, makes the best use of the spatial correlation 

information among lines and training samples to improve the speed and accuracy of calculating 

the intersection point for each line.  

One notes that there are also other improved LS schemes being developed, and one of the 

most related developments is the metamodel LS (MLS) developed in Ref. [29], which improves 

the classical LS by combining it with the GPR without adaptive learning. We make a simple 

comparison of AGPR-LS with the MLS by using the second test example (a parallel system) of 

Ref. [29] and their results (Table 6 of Ref. [29]). The performance function is highly nonlinear. It 

is reported in that paper that, the results with MLS and LS are 2.42 ×10-4 (with COV being 

3.52%) and 2.45 ×10-4 (with COV being 4.00%) respectively, and the corresponding total 

numbers of g-function calls are 762 and 2905 respectively. We then implement AGPR-LS 

algorithm to achieve the same level of estimation accuracy, and the mean estimate and the 

corresponding COV are 2.42×10-4 and 3.58% respectively, while the total number of g-function 

calls is only 42, indicating that for this highly nonlinear problem, the AGPR-LS algorithm is 

much more efficient than both the MLS and LS algorithms. This high efficiency benefits from 

the adaptive learning scheme. The combination of the GPR model, the active learning scheme, 

and LS has largely improved the efficiency and robustness of the LS algorithm for different types 

of problems. 

5 Conclusions and discussions 

The LS algorithm is one of the most competitive stochastic simulation algorithms for small 

failure probability estimation. However, it is mostly applied to problems with moderately 

nonlinear performance functions, and the correct identification of the important direction is 

extremely important for the efficient implementation of the algorithm. The reason is that, for 

highly nonlinear performance function, many more lines are required for accurately estimating 

the failure probability. Besides, for highly non-linear performance functions, more g-function 

calls are required for accurately calculating the intersection point for each line. All the above 
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elements may lead to a considerable increment of g-function calls. However, compared with the 

other stochastic simulation algorithms such as SS, the LS can be especially efficient due to the 

high searching efficiency along lines, each of which is equivalent to solving a one-dimensional 

nonlinear equation.  

The AGPR-LS algorithms developed in this paper has tackled the above disadvantages, but 

keeping the high efficiency of one-dimensional searching. The devised learning function  is 

proven to be especially effective for improving the accuracy of calculating the intersection point 

for each line, and the induced AGPR-LS algorithm is shown to be extremely efficient for 

extremely small failure probability estimation, and also less sensitive to the specified important 

directions and the nonlinearity of performance function as more lines can be added without 

largely increasing the number of performance function evaluations. Compared with the other 

active learning algorithms such as AK-MCMC, due to the high efficiency of one-dimensional 

search, the AGPR-LS algorithm is more efficient especially for rare events since the line search 

allows approaching the failure surface very easily. Besides, the introduction of a small line pool 

in the AGPR-LS algorithm, instead of the large sample pool as used in the AK-MCS and 

advanced AK-MCS methods, makes it even more efficient for numerical implementation. 

However, for problems with multiple important directions and/or failure modes and/or failure 

domains, the proposed algorithm is still less effective, and needs to be improved in future work.  
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Conclusions and Prospects 

1. Conclusions 

The imprecise probability models and the non-probabilistic models have been widely 

recognized as the necessary developments for modeling uncertainties when epistemic uncertainty 

is presented due to scarcity, incompleteness, imprecision, vagueness, etc., of the available 

information. The imprecise probability models are utilized for modeling both the aleatory 

uncertainty and epistemic uncertainty of random variables, and the non-probabilistic models are 

widely used for modeling the epistemic uncertainty of deterministic-but-unknown variables. 

Compared with the prosperous developments of the plenty kinds of uncertainty characterization 

models, the developments of efficient propagation of these uncertainty models through the 

computer simulators are far from satisfying the needs of engineering applications. Although the 

general NISS methodology framework has been developed by me and my co-authors for tackling 

this kind of problems, it is still of great challenge when it comes to the case with both kinds of 

uncertainty characterization models being involved and the case with extremely small failure 

probability but computationally expensive computer simulators.  

Within this thesis, further steps have been made to improve the NISS methods for the above 

challenges and to promote the real-world engineering applications of those methods. Three main 

contributions have been developed on different aspects of NISS. The first article concerns the 

generalization of the global NISS methods for computer simulators with all three kinds of 

uncertainty characterization models (precise probability model, distributional p-box model, and 

interval model) as inputs. The Bayesian formula and kernel density estimation have been 

developed for establishing NISS estimators for the interval input models as well as their 

interaction terms with the p-box models. As has been shown, all the advantages of the classical 
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NISS have been reserved in this new development. Only one stochastic simulation is required for 

implementing the generalized NISS method, and both kinds of numerical errors (statistical 

errors and truncation errors) are properly addressed. The Sobol indices of the epistemic 

parameters are also generated as by-products, which are shown for especially indicating the 

truncation errors and for instructing the further collection of information. The NASA Langley 

UQ challenge has been correctly solved by the generalized NISS method, and the results show 

that the proposed method works well for this high-dimensional (twenty-one input variables and 

thirty-one epistemic parameters) real-world problem. The limitation of this development is that, 

the component functions of the interval models over second-order cannot be properly estimated 

due to the limitation of kernel density estimation. Moreover, this development is based on the 

global NISS since the local NISS is not applicable for interval variables.   

The second article then concerns the efficient stochastic simulation of the failure probability 

function for rare events. Two algorithms based on classical line sampling procedure, which is 

originally developed for precise probability models, have been developed for achieving the above 

targets, both of which can be regarded as post-processing of the classical line sampling 

implementation. Both strategies are devised based on the local NISS, but both can be extended 

to global NISS. Results of the test examples show that, although both strategies can be regarded 

as post-processing of one line sampling simulation, they show different performances for the 

estimation of the failure probability functions. It is also concluded in these results that, the 

important direction is substantially responsible for the efficiency of the two imprecise line 

sampling algorithms, which is the same as that in the classical line sampling. Therefore, for 

efficiently implementing both algorithms, the important direction should be accurately 

estimated in advance. Based on the rationale of the line sampling algorithm, both of these two 

algorithms are applicable for the problems with moderately nonlinear performance functions, 

and for highly nonlinear problems, more lines are required, which results in low efficiency.  

The results of the second article also show that, although the two imprecise line sampling 

algorithms have been efficient for those test examples, however, when applied to complex 

structures where one deterministic simulation may take more than one hour, both algorithms are 
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still less efficient since at least several hundreds of g-function calls are required. To fix this 

challenge, the AGPR-LS algorithm has been developed in the third article. The engine of this 

algorithm is the newly developed learning function, with which the least number of training data 

can be identified iteratively to substantially improve the accuracy of estimating the intersection 

points for each line in line sampling implementation. Results show that, with this improvement, 

the line sampling algorithm becomes less sensitive to the important direction specified in 

advance, and gets more applicable to highly nonlinear problems, since, introducing more lines 

will not substantially increase the number of required g-function calls. Results of test examples 

also show that the method can be quite efficient for extremely rare events with failure 

probability even less than 10-6, and this is attributed to the high efficiency of one-dimensional 

search of the classical line sampling algorithm. However, in the classical line sampling algorithm, 

more g-function calls are required for each one-dimensional search so as to accurately estimate 

the interaction points, whereas, in the AGPR-LS algorithm, this issue is relieved to large extent 

due to the high effectiveness of the developed learning function.   

In summary, the three developments in this thesis have made contributions from different 

aspects, for improving the suitability and efficiency of NISS for dealing with the problems 

uncertainty propagation and structural reliability analysis when both aleatory and epistemic 

uncertainties are involved. All the developments aim at estimating the HDMR component 

functions of, e.g., model response expectation function and failure probability function, and the 

generated results can be of great importance for learning the behavior of these functions visibly, 

and also can be of great significance for instructing the future information collection for reducing 

the epistemic uncertainty. The main drawback of NISS has also been highlighted. All the NISS 

class methods perform well when the epistemic uncertainty presented in the input distribution 

parameters is small, however, for the situations with large epistemic uncertainty, the NISS 

estimators may have large variation due to the large variation of the density weight functions 

introduced in the NISS estimators.   

Although this thesis takes the distributional p-box model and the interval model as 

examples to describe the developments. However, it is unquestionably that the developments are 
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also applicable to other kinds of distributional imprecise probability models such as 

distributional second-order probability model and distributional fuzzy probability models, as 

well as other kinds of non-probabilistic models such as convex model and fuzzy set model. For 

distribution-free models where the distribution type is also unknown, the current developments 

are not applicable.  

2. Open problems and Prospects 

Concerning the treatment of aleatory and epistemic uncertainties for real-world engineering 

applications, several challenges on both uncertainty characterization and propagation are still 

left to be fixed.  

As has been widely mentioned in this thesis, the imprecise probability models are widely 

used for separately characterizing the aleatory and epistemic uncertainties in a unified model 

framework, and the distributional p-box model is utilized in this thesis. Although these models 

no long attributes deterministic values for the distribution parameters, the assumption on 

distribution types is still required in these models, which may introduce another kinds of 

epistemic uncertainty, which indicates the difference between the real probability distribution 

and the assumed distributional p-box, and is named as model-form uncertainty. In applications 

with rare data, the distribution type generally cannot be inferred with high confidence, and thus 

may result in incorrect assumptions on the distribution types. This brings to challenges. The 

first is to develop a statistical inference method for testing the fitness of the distributional 

imprecise probability models to the real data. The second is to develop statistical methods for 

inferring distribution-free imprecise probability models with no model-form uncertainty, but still 

with tight probability bounds so that the models are still informative.  

Considering the uncertainty propagation, this thesis has made big steps for propagating the 

distributional models, and also for estimating extremely small failure probability. However, one 

of the major challenges of the NISS class methods is that, for large epistemic uncertainty, the 

variations of NISS estimators can be very large due to the large variations of the density weight 

functions introduced in the NISS estimators. In some real-world engineering applications, the 
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available information can be extremely scarce and of poor quality, resulting in large epistemic 

uncertainty, and large spans of the epistemic space. In applications, the resultant failure 

probability bounds may even cover several orders of magnitudes, and the NISS methods can be 

less effective for dealing with this type of problem. In my future work, this challenge will be of 

great interest.  

The necessity of developing distribution-free imprecise probability models also brings the 

necessity for efficiently propagating these models through the computer simulators so as to 

generate a reliable estimation of the probability bounds of model responses. The NISS methods 

can be further extended for dealing with this type of problem, but for large epistemic uncertainty 

cases, the NISS will also lose its advantages, and new methods need to be developed.  

Besides, the NISS methods introduced in this thesis can also be applied to deal with the 

other typical tasks in uncertainty quantification such as sensitivity analysis and model updating, 

but requires specific developments.  

All the test examples and applications in this thesis are mainly on structural engineering 

problems. However, the NISS methods are unquestionably also applicable to system reliability 

assessment when the life data on system components is rare and/or censored, thus may have 

potential contributions to the safety assessment of key infrastructures such as urban 

water-supply systems and power supply systems.   
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