Investigation of the electroplastic effect using nanoindentation

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/9284
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/9337
dc.contributor.author Andre, D.
dc.contributor.author Burlet, T.
dc.contributor.author Körkemeyer, F.
dc.contributor.author Gerstein, G.
dc.contributor.author Gibson, J.S.K.-L.
dc.contributor.author Sandlöbes-Haut, S.
dc.contributor.author Korte-Kerzel, S.
dc.date.accessioned 2020-01-31T08:49:01Z
dc.date.available 2020-01-31T08:49:01Z
dc.date.issued 2019
dc.identifier.citation Andre, D.; Burlet, T.; Körkemeyer, F.; Gerstein, G.; Gibson, J.S.K.-L. et al.: Investigation of the electroplastic effect using nanoindentation. In: Materials and Design 183 (2019), 108153. DOI: https://doi.org/10.1016/j.matdes.2019.108153
dc.description.abstract A promising approach to deform metallic-intermetallic composite materials is the application of electric current pulses during the deformation process to achieve a lower yield strength and enhanced elongation to fracture. This is known as the electroplastic effect. In this work, a novel setup to study the electroplastic effect during nanoindentation on individual phases and well-defined interfaces was developed. Using a eutectic Al-Al2Cu alloy as a model material, electroplastic nanoindentation results were directly compared with macroscopic electroplastic compression tests. The results of the micro- and macroscopic investigations reveal current induced displacement shifts and stress drops, respectively, with the first displacement shift/stress drop being higher than the subsequent ones. A higher current intensity, higher loading rate and larger pulsing interval all cause increased displacement shifts. This observation, in conjunction with the fact that the first displacement shift is highest, strongly indicates that de-pinning of dislocations from obstacles dominates the mechanical response, rather than solely thermal effects. eng
dc.language.iso eng
dc.publisher London : Elsevier Ltd.
dc.relation.ispartofseries Materials and Design 183 (2019)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Al-Cu alloys eng
dc.subject Electroplasticity eng
dc.subject Metallic-intermetallic composites eng
dc.subject Nanoindentation eng
dc.subject Binary alloys eng
dc.subject Compression testing eng
dc.subject Copper alloys eng
dc.subject Drops eng
dc.subject Glass ceramics eng
dc.subject Intermetallics eng
dc.subject Nanoindentation eng
dc.subject Plastic deformation eng
dc.subject Ternary alloys eng
dc.subject Al-Cu alloys eng
dc.subject Deformation process eng
dc.subject Electric current pulse eng
dc.subject Electroplastic effect eng
dc.subject Electroplasticity eng
dc.subject Elongation to fracture eng
dc.subject Intermetallic composites eng
dc.subject Mechanical response eng
dc.subject Aluminum alloys eng
dc.subject.ddc 600 | Technik ger
dc.subject.ddc 690 | Hausbau, Bauhandwerk ger
dc.title Investigation of the electroplastic effect using nanoindentation eng
dc.type Article
dc.type Text
dc.relation.issn 0264-1275
dc.relation.doi https://doi.org/10.1016/j.matdes.2019.108153
dc.bibliographicCitation.volume 183
dc.bibliographicCitation.firstPage 108153
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken