Advanced high pressure turbine blade repair technologies

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/4578
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/4620
dc.contributor.author Alfred, Irene
dc.contributor.author Nicolaus, Martin
dc.contributor.author Hermsdorf, Jörg
dc.contributor.author Kaierle, Stefan
dc.contributor.author Möhwald, Kai
dc.contributor.author Maier, Hans Jürgen
dc.contributor.author Wesling, Volker
dc.date.accessioned 2019-03-27T11:25:35Z
dc.date.available 2019-03-27T11:25:35Z
dc.date.issued 2018
dc.identifier.citation Alfred, I.; Nicolaus, M.; Hermsdorf, J.; Kaierle, S.; Möhwald, K. et al.: Advanced high pressure turbine blade repair technologies. In: Procedia CIRP 74 (2018), S. 214-217. DOI: https://doi.org/10.1016/j.procir.2018.08.097
dc.description.abstract Components in aircraft engines and gas turbines are exposed to extreme conditions in order to increase performance and efficiency of the overall engine, hence there is an increasing need for cost-effective and time-efficient repair strategies. Presented here are two novel approaches to the repair of Nickel-based components. The hybrid brazing process involves the application of a repair coating, a nickel-based filler material, a NiCoCrAlY and an aluminium layer, by thermal spraying followed by a heat treatment and combined brazing-aluminizing process. This significantly shortens the conventional repair brazing process and yields superior results. Single-crystal additive repair by laser cladding is applied for the repair of small or large defects in single-crystal turbine blades by enabling monocrystalline solidification of the cladded material by use of a temperature gradient, thereby allowing for the regeneration of these expensive components. The novel approach that combines layer-wise addition of material and laser melting enables the formation of highly monocrystalline structures. eng
dc.language.iso eng
dc.publisher Amsterdam : Elsevier B.V.
dc.relation.ispartofseries Procedia CIRP 74 (2018)
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Brazing eng
dc.subject Coating eng
dc.subject Hybrid joining eng
dc.subject Laser cladding eng
dc.subject Nickel-based superalloys eng
dc.subject Aircraft engines eng
dc.subject Aluminum alloys eng
dc.subject Brazing eng
dc.subject Chromium alloys eng
dc.subject Coatings eng
dc.subject Cobalt alloys eng
dc.subject Cost effectiveness eng
dc.subject Gas turbines eng
dc.subject Laser cladding eng
dc.subject Nickel alloys eng
dc.subject Nickel coatings eng
dc.subject Repair eng
dc.subject Single crystals eng
dc.subject Thermal spraying eng
dc.subject Turbine components eng
dc.subject Yttrium alloys eng
dc.subject Aluminizing process eng
dc.subject Cladded materials eng
dc.subject Extreme conditions eng
dc.subject High pressure turbine blade eng
dc.subject Hybrid joining eng
dc.subject Monocrystalline structures eng
dc.subject Nickel- based superalloys eng
dc.subject Single crystal turbine blades eng
dc.subject Turbomachine blades eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 600 | Technik ger
dc.subject.ddc 670 | Industrielle und handwerkliche Fertigung ger
dc.title Advanced high pressure turbine blade repair technologies
dc.type Article
dc.type Text
dc.relation.issn 2212-8271
dc.relation.doi https://doi.org/10.1016/j.procir.2018.08.097
dc.bibliographicCitation.volume 74
dc.bibliographicCitation.firstPage 214
dc.bibliographicCitation.lastPage 217
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

  • An-Institute
    Frei zugängliche Publikationen aus An-Instituten der Leibniz Universität Hannover

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics