Neural sensing and control in a kilometer-scale gravitational-wave observatory

Show simple item record

dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16798
dc.identifier.uri https://doi.org/10.15488/16671
dc.contributor.author Mukund, N.
dc.contributor.author Lough, J.
dc.contributor.author Bisht, A.
dc.contributor.author Wittel, H.
dc.contributor.author Nadji, S.
dc.contributor.author Affeldt, C.
dc.contributor.author Bergamin, F.
dc.contributor.author Brinkmann, M.
dc.contributor.author Kringel, V.
dc.contributor.author Lück, H.
dc.contributor.author Weinert, M.
dc.contributor.author Danzmann, K.
dc.date.accessioned 2024-03-20T10:11:25Z
dc.date.available 2024-03-20T10:11:25Z
dc.date.issued 2023
dc.identifier.citation Mukund, N.; Lough, J.; Bisht, A.; Wittel, H.; Nadji, S. et al.: Neural sensing and control in a kilometer-scale gravitational-wave observatory. In: Physical Review Applied 20 (2023), Nr. 6, 064041. DOI: https://doi.org/10.1103/physrevapplied.20.064041
dc.description.abstract Suspended optics in gravitational-wave (GW) observatories are susceptible to alignment perturbations, particularly slow drifts over time, due to variations in temperature and seismic levels. Such misalignments affect the coupling of the incident laser beam into the optical cavities, degrade both the circulating power and optomechanical photon squeezing, and thus decrease the astrophysical sensitivity to merging binaries. Traditional alignment techniques involve differential wave-front sensing using multiple quadrant photodiodes but are often bandwidth restricted and limited by the sensing noise. We present a successful implementation of neural-network-based sensing and control at a GW observatory and demonstrate low-frequency control of the signal-recycling mirror at the GEO 600 detector. Alignment information for three critical optics is simultaneously extracted from the interferometric dark-port camera images via a convolutional neural net-long short-term memory network architecture and is then used for multiple-input-multiple-output control using soft actor-critic-based deep reinforcement learning. The overall sensitivity improvement achieved using our scheme demonstrates the capabilities of deep learning as a viable tool for real-time sensing and control for current and next-generation GW interferometers. eng
dc.language.iso eng
dc.publisher College Park, Md. [u.a.] : American Physical Society
dc.relation.ispartofseries Physical Review Applied 20 (2023), Nr. 6
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Cosmology eng
dc.subject Deep learning eng
dc.subject Gravity waves eng
dc.subject Laser beams eng
dc.subject MIMO systems eng
dc.subject.ddc 530 | Physik
dc.title Neural sensing and control in a kilometer-scale gravitational-wave observatory eng
dc.type Article
dc.type Text
dc.relation.essn 2331-7019
dc.relation.doi https://doi.org/10.1103/physrevapplied.20.064041
dc.bibliographicCitation.issue 6
dc.bibliographicCitation.volume 20
dc.bibliographicCitation.firstPage 064041
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

  • An-Institute
    Frei zugängliche Publikationen aus An-Instituten der Leibniz Universität Hannover

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics