Numerical analysis of the ultra-wide tunability of nanofiber Bragg cavities

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/16417
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16544
dc.contributor.author Takashima, Hideaki
dc.contributor.author Schell, Andreas W.
dc.contributor.author Takeuchi, Shigeki
dc.date.accessioned 2024-02-27T11:45:25Z
dc.date.available 2024-02-27T11:45:25Z
dc.date.issued 2023
dc.identifier.citation Takashima, H.; Schell, A.W.; Takeuchi, S.: Numerical analysis of the ultra-wide tunability of nanofiber Bragg cavities. In: Optics Express 31 (2023), Nr. 9, 13566. DOI: https://doi.org/10.1364/oe.483843
dc.description.abstract Nanofiber Bragg cavities (NFBCs) are solid-state microcavities fabricated in optical tapered fiber. They can be tuned to a resonance wavelength of more than 20 nm by applying mechanical tension. This property is important for matching the resonance wavelength of an NFBC with the emission wavelength of single-photon emitters. However, the mechanism of the ultra-wide tunability and the limitation of the tuning range have not yet been clarified. It is important to comprehensively analyze both the deformation of the cavity structure in an NFBC and the change in the optical properties due to the deformation. Here, we present an analysis of the ultra-wide tunability of an NFBC and the limitation of the tuning range using three dimensional (3D) finite element method (FEM) and 3D finite-difference time-domain (FDTD) optical simulations. When we applied a tensile force of 200 µN to the NFBC, a stress of 5.18 GPa was concentrated at the groove in the grating. The grating period was extended from 300 to 313.2 nm, while the diameter slightly shrank from 300 to 297.1 nm in the direction of the grooves and from 300 to 298 nm in the direction orthogonal to the grooves. This deformation shifted the resonance peak by 21.5 nm. These simulations indicated that both the elongation of the grating period and the small shrinkage of the diameter contributed to the ultra-wide tunability of the NFBC. We also calculated the dependence of the stress at the groove, the resonance wavelength, and the quality Q factor while changing the total elongation of the NFBC. The dependence of the stress on the elongation was 1.68 × 10-2 GPa/µm. The dependence of the resonance wavelength was 0.07 nm/µm, which almost agrees with the experimental result. When the NFBC, assumed to have the total length of 32 mm, was stretched by 380 µm with the tensile force of 250 µN, the Q factor for the polarization mode parallel to the groove changed from 535 to 443, which corresponded to a change in Purcell factor from 5.3 to 4.9. This slight reduction seems acceptable for the application as single photon sources. Furthermore, assuming a rupture strain of the nanofiber of 10 GPa, it was estimated that the resonance peak could be shifted by up to about 42 nm. eng
dc.language.iso eng
dc.publisher Washington, DC : Optica
dc.relation.ispartofseries Optics Express 31 (2023), Nr. 9
dc.rights Optica Open Access Publishing Agreement
dc.rights.uri https://opg.optica.org/library/license_v2.cfm#VOR-OA
dc.subject Elongation eng
dc.subject Finite difference time domain method eng
dc.subject Optical properties eng
dc.subject Particle beams eng
dc.subject Photons eng
dc.subject Q factor measurement eng
dc.subject Bragg cavity eng
dc.subject Grating periods eng
dc.subject Optical tapered fibers eng
dc.subject Q-factors eng
dc.subject Resonance peak eng
dc.subject Resonance wavelengths eng
dc.subject Tensile forces eng
dc.subject Tuning ranges eng
dc.subject Ultra-wide eng
dc.subject Wide tunability eng
dc.subject Nanofibers eng
dc.subject.ddc 530 | Physik
dc.title Numerical analysis of the ultra-wide tunability of nanofiber Bragg cavities eng
dc.type Article
dc.type Text
dc.relation.essn 1094-4087
dc.relation.doi https://doi.org/10.1364/oe.483843
dc.bibliographicCitation.issue 9
dc.bibliographicCitation.volume 31
dc.bibliographicCitation.firstPage 13566
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber 13566


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics