Thermo-Elastic Topology Optimization For High Temperatures Gradients Using Load Separation

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16271
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16398
dc.contributor.author Bode, Behrend
dc.contributor.author Herrmann, Kevin
dc.contributor.author Reusch, Jannis
dc.contributor.author Plappert, Stefan
dc.contributor.author Ehlers, Tobias
dc.contributor.author Gembarski, Paul Christoph
dc.contributor.author Hasse, Christian
dc.contributor.author Lachmayer, Roland
dc.date.accessioned 2024-02-12T08:15:42Z
dc.date.available 2024-02-12T08:15:42Z
dc.date.issued 2023
dc.identifier.citation Bode, B.; Herrmann, K.; Reusch, J.; Plappert, S.; Ehlers, T. et al.: Thermo-Elastic Topology Optimization For High Temperatures Gradients Using Load Separation. In: Procedia CIRP 119 (2023), S. 576-581. DOI: https://doi.org/10.1016/j.procir.2023.03.113
dc.description.abstract Designing components for thermo-mechanical loads is a challenging process. While mechanical loads like forces or pressure demand a stiff and thick-walled design, thermal loads create temperature gradients, resulting in thermo-mechanical stress from the structure's temperature proportional and, therefore, uneven expansion. In contrast to a pure mechanical load case, an initial design before optimization can already include stress levels beyond the limit of the material. Therefore, common optimization approaches for a preliminary design use exemplary systems with low-temperature gradients, so thermal stresses do not exceed the limit. From there, energy density is used to calculate the topology optimizations sensitivity and therefore decide which elements to remove and which to keep. This paper describes a novel approach for reducing thermo-mechanical stress by following the stress corresponding temperature gradients from the heat source to the sink to calculate a new sensitivity that helps to grow cooling channels. The optimization is exemplarily shown on a piston for internal combustion engines. While handling delta temperatures of 600K, results show a reduction in thermo-mechanical stress while reducing the component's mass. Because the approach reduces critical stress in a component, it allows the initial design (before the topology optimization) to have stress levels way above yield strength. eng
dc.language.iso eng
dc.publisher Amsterdam [u.a.] : Elsevier
dc.relation.ispartofseries Procedia CIRP 119 (2023)
dc.rights CC BY-NC-ND 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject cooling eng
dc.subject design eng
dc.subject elastic eng
dc.subject Finite Element Analysis (FEA) eng
dc.subject gradients eng
dc.subject optimization eng
dc.subject piston eng
dc.subject separation eng
dc.subject stress eng
dc.subject structural eng
dc.subject temperature eng
dc.subject thermal eng
dc.subject topology eng
dc.subject.classification Konferenzschrift ger
dc.subject.ddc 600 | Technik
dc.title Thermo-Elastic Topology Optimization For High Temperatures Gradients Using Load Separation eng
dc.type Article
dc.type Text
dc.relation.essn 2212-8271
dc.relation.doi https://doi.org/10.1016/j.procir.2023.03.113
dc.bibliographicCitation.volume 119
dc.bibliographicCitation.firstPage 576
dc.bibliographicCitation.lastPage 581
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken