From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/15535
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/15656
dc.contributor.author Koyro, Hans-Werner
dc.contributor.author Huchzermeyer, Bernhard
dc.date.accessioned 2023-11-27T12:41:33Z
dc.date.available 2023-11-27T12:41:33Z
dc.date.issued 2022
dc.identifier.citation Koyro, H.-W.; Huchzermeyer, B.: From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. In: Plants 11 (2022), Nr. 13, 1654. DOI: https://doi.org/10.3390/plants11131654
dc.description.abstract Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food–soil–climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant–soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth promoting bacteria (PGPB) at improving nutrient supply to plants. In this review, our focus is on the interplay of both soil amendments on primary reactions of photosynthesis, plant growth conditions, and signaling during adaptation to environmental stress. Moreover, we aim at providing a general overview of how dehydration and salinity affect signaling in cells. With the use of the example of abscisic acid (ABA) and ethylene, we discuss the effects that can be observed when biochar and PGPB are used in the presence of stress. The stress response of plants is a multifactorial trait. Nevertheless, we will show that plants follow a general concept to adapt to unfavorable environmental conditions in the short and long term. However, plant species differ in the upper and lower regulatory limits of gene expression. Therefore, the presented data may help in the identification of traits for future breeding of stress‐resistant crops. One target for breeding could be the removal and efficient recycling of damaged as well as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment. eng
dc.language.iso eng
dc.publisher Basel : MDPI
dc.relation.ispartofseries Plants 11 (2022), Nr. 13
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject autophagy eng
dc.subject auxin eng
dc.subject biochar eng
dc.subject ethylene eng
dc.subject hormone eng
dc.subject plant growth promoting bacteria (PGPB) eng
dc.subject plant–microorganism interaction eng
dc.subject salinity eng
dc.subject stress amendments eng
dc.subject stress perception and signaling eng
dc.subject water withhold eng
dc.subject.ddc 580 | Pflanzen (Botanik)
dc.title From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity eng
dc.type Article
dc.type Text
dc.relation.essn 2223-7747
dc.relation.doi https://doi.org/10.3390/plants11131654
dc.bibliographicCitation.issue 13
dc.bibliographicCitation.volume 11
dc.bibliographicCitation.firstPage 1654
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken