Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/15371
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/15491
dc.contributor.author Wichmann, Marcel
dc.contributor.author Eden, Michael
dc.contributor.author Zvegincev, Dennis
dc.contributor.author Wiesener, Frederik
dc.contributor.author Bergmann, Benjamin
dc.contributor.author Schmidt, Alfred
dc.date.accessioned 2023-11-20T07:06:51Z
dc.date.available 2023-11-20T07:06:51Z
dc.date.issued 2023
dc.identifier.citation Wichmann, M.; Eden, M.; Zvegincev, D.; Wiesener, F.; Bergmann, B. et al.: Modeling the wetting behavior of grinding wheels. In: International Journal of Advanced Manufacturing Technology, The 128 (2023), Nr. 3-4, S. 1741-1747. DOI: https://doi.org/10.1007/s00170-023-12002-y
dc.description.abstract Helical flute grinding is an important process step in the manufacturing of cylindrical cemented carbide tools where the use of cooling lubricants is a defining factor determining process performance. Finding optimal parameters and cooling conditions for the efficient use of lubricant is essential in reducing energy consumption and in controlling properties of the boundary zone like residual stresses. Any mathematical model describing the interactions between grinding wheel, lubricant and workpiece during the process has to account for the complex microstructure of the wheel; however, this renders the identification of parameters like slip or heat exchange coefficients numerically prohibitively expensive. In this paper, results from grinding oil droplet experiments are compared with simulation results for the wetting behavior of grinding wheels. More specifically, finite element simulations of the thin-film equation are used to identify slip parameters for different grinding wheel specifications (grain size, bonding structure, wetting status). Our results show that both the bonding and the grain size have an influence on the wetting behavior. The slip parameters that we identified account for the fluid-microstructure interactions and will be used to effectively model those interactions in more complex 3D fluid-dynamic simulations via the Beavers-Joseph condition. eng
dc.language.iso eng
dc.publisher London : Springer
dc.relation.ispartofseries International Journal of Advanced Manufacturing Technology, The 128 (2023), Nr. 3-4
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Cooling lubrication eng
dc.subject Modeling eng
dc.subject Thin-film equation eng
dc.subject Tool grinding eng
dc.subject.ddc 670 | Industrielle und handwerkliche Fertigung
dc.title Modeling the wetting behavior of grinding wheels eng
dc.type Article
dc.type Text
dc.relation.essn 1433-3015
dc.relation.issn 0268-3768
dc.relation.doi https://doi.org/10.1007/s00170-023-12002-y
dc.bibliographicCitation.issue 3-4
dc.bibliographicCitation.volume 128
dc.bibliographicCitation.firstPage 1741
dc.bibliographicCitation.lastPage 1747
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken