Predicting the Excitation Dynamics in Lanthanide Nanoparticles

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/14901
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/15020
dc.contributor.author Spelthann, Simon
dc.contributor.author Thiem, Jonas
dc.contributor.author Melchert, Oliver
dc.contributor.author Komban, Rajesh
dc.contributor.author Gimmler, Christoph
dc.contributor.author Demicran, Ayhan
dc.contributor.author Ruehl, Axel
dc.contributor.author Ristau, Detlev
dc.date.accessioned 2023-10-11T11:38:14Z
dc.date.available 2023-10-11T11:38:14Z
dc.date.issued 2023
dc.identifier.citation Spelthann, S.; Thiem, J.; Melchert, O.; Komban, R.; Gimmler, C. et al.: Predicting the Excitation Dynamics in Lanthanide Nanoparticles. In: Advanced Optical Materials 11 (2023), Nr. 14, 2300096. DOI: https://doi.org/10.1002/adom.202300096
dc.description.abstract With their dipole-forbidden 4f transitions, lanthanides doped in nanoparticles promise high excited state lifetimes and quantum yields that are required for applications such as composite lasers or nanoscale quantum memories. Quenching at the nanoparticle surface, however, severely reduces the lifetime and quantum yield and requires resource-consuming experimental optimization that could not be replaced by simulations due to the limitations of existing approaches until now. Here, a versatile approach is presented that fully accounts for spatiotemporal dynamics and reliably predicts the lifetimes and quantum yields of lanthanide nanoparticles. LiYF4:Pr3+nanoparticles are synthesized as a model system, and the lifetimes of a concentration series (≈10 nm, 0.7−1.47 at%) are used to match the model parameters to the experimental conditions. Employing these parameters, the lifetimes and quantum yields of a size series (≈5 at%, 12−21 nm) are predicted with a maximum uncertainty of 12.6%. To demonstrate the potential of the model, a neutral shell is added around the core particles in the model which extends the lifetime by up to 44%. Furthermore, spatiotemporal analysis of single nanoparticles points toward a new type of energy trapping in lanthanide nanoparticles. Consequently, the numerical optimization brings applications such as efficient nanoparticle lasers or quantum memories within reach. eng
dc.language.iso eng
dc.publisher Weinheim : Wiley-VCH
dc.relation.ispartofseries Advanced Optical Materials 11 (2023), Nr. 14
dc.rights CC BY-NC 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0
dc.subject core/shell nanoparticles eng
dc.subject luminescence eng
dc.subject Monte Carlo simulations eng
dc.subject praseodymium eng
dc.subject.ddc 530 | Physik
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc 670 | Industrielle und handwerkliche Fertigung
dc.title Predicting the Excitation Dynamics in Lanthanide Nanoparticles eng
dc.type Article
dc.type Text
dc.relation.essn 2195-1071
dc.relation.issn 2195-1071
dc.relation.doi https://doi.org/10.1002/adom.202300096
dc.bibliographicCitation.issue 14
dc.bibliographicCitation.volume 11
dc.bibliographicCitation.firstPage 2300096
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken