Revealing the Effect of Nanoscopic Design on the Charge Carrier Separation Processes in Semiconductor-Metal Nanoparticle Gel Networks

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/14231
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/14345
dc.contributor.author Schlenkrich, Jakob
dc.contributor.author Zámbó, Dániel
dc.contributor.author Schlosser, Anja
dc.contributor.author Rusch, Pascal
dc.contributor.author Bigall, Nadja C.
dc.date.accessioned 2023-07-24T07:18:36Z
dc.date.available 2023-07-24T07:18:36Z
dc.date.issued 2022
dc.identifier.citation Schlenkrich, J.; Zámbó, D.; Schlosser, A.; Rusch, P.; Bigall, N.C.: Revealing the Effect of Nanoscopic Design on the Charge Carrier Separation Processes in Semiconductor-Metal Nanoparticle Gel Networks. In: Advanced Optical Materials 10 (2022), Nr. 1, 2101712. DOI: https://doi.org/10.1002/adom.202101712
dc.description.abstract In this paper, it is shown that the nanoscopic design of combining semiconductors and noble metals has a direct impact on the macroscopic (electrochemical) properties of their assembled, hyperbranched, macroscopic gel networks. Controlled and arbitrary deposition of gold domains on CdSe/CdS nanorods leads to tipped and randomly decorated heteroparticles, respectively. Structural and optical properties of the gel networks depend upon assembling the hybrid particles by means of oxidative or ionic routes. Additionally, the impact of different building block designs on the charge carrier separation processes is investigated from spectroelectrochemical point of view. A more efficient charge carrier separation is revealed in the tipped design manifesting in higher negative photocurrent efficiencies compared to the arbitrary decoration, where the charge recombination processes are more remarkable. This work sheds light on the importance of the nanostructuring on the spectroelectrochemical properties at the macroscale paving the way towards their use in photochemical reactions. eng
dc.language.iso eng
dc.publisher Weinheim : Wiley-VCH
dc.relation.ispartofseries Advanced Optical Materials 10 (2022), Nr. 1
dc.rights CC BY-NC 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0
dc.subject Aerogels eng
dc.subject Cadmium compounds eng
dc.subject Charge carriers eng
dc.subject II-VI semiconductors eng
dc.subject Metal nanoparticles eng
dc.subject Nanorods eng
dc.subject Optical properties eng
dc.subject Photochemical reactions eng
dc.subject Separation eng
dc.subject Spectroelectrochemistry eng
dc.subject Carrier separation eng
dc.subject Charge carrier separation eng
dc.subject Direct impact eng
dc.subject Gel networks eng
dc.subject Hybrid nanoparticle eng
dc.subject Hybrid-nanoparticle network eng
dc.subject Nanoparticle networks eng
dc.subject Photo-electrochemistry eng
dc.subject Semiconductor metals eng
dc.subject Separation process eng
dc.subject Self assembly eng
dc.subject.ddc 530 | Physik
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc 670 | Industrielle und handwerkliche Fertigung
dc.title Revealing the Effect of Nanoscopic Design on the Charge Carrier Separation Processes in Semiconductor-Metal Nanoparticle Gel Networks eng
dc.type Article
dc.type Text
dc.relation.essn 2195-1071
dc.relation.issn 2195-1071
dc.relation.doi https://doi.org/10.1002/adom.202101712
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 10
dc.bibliographicCitation.firstPage 2101712
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber 2101712


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken