Machine-Learning-Based Exploration of Bending Flexoelectricity in Novel 2D Van der Waals Bilayers

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/12811
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/12914
dc.contributor.author Javvaji, Brahmanandam
dc.contributor.author Zhuang, Xiaoying
dc.contributor.author Rabczuk, Timon
dc.contributor.author Mortazavi, Bohayra
dc.date.accessioned 2022-09-30T05:19:36Z
dc.date.available 2022-09-30T05:19:36Z
dc.date.issued 2022
dc.identifier.citation Javvaji, B.; Zhuang, X.; Rabczuk, T.; Mortazavi, B.: Machine-Learning-Based Exploration of Bending Flexoelectricity in Novel 2D Van der Waals Bilayers. In: Advanced energy materials 12 (2022), Nr. 32, 2201370. DOI: https://doi.org/10.1002/aenm.202201370
dc.description.abstract Accurate examination of electricity generation stemming from higher-order deformation (flexoelectricity) in 2D layered materials is a highly challenging task to be investigated with either conventional computational or experimental tools. To address this challenge herein an innovative and computationally efficient approach on the basis of density functional theory (DFT) and machine-learning interatomic potentials (MLIPs) with incorporated long-range interactions to accurately investigate the flexoelectric energy conversion in 2D van der Waals (vdW) bilayers is proposed. In this approach, short-range interactions are accurately defined using the moment tensor potentials trained over computationally inexpensive DFT-based datasets. The long-range electrostatic (charge and dipole) and vdW interaction parameters are calibrated from DFT simulations. Elaborated comparison of mechanical and piezoelectric properties extracted from the herein proposed approach with available data confirms the accuracy of the devised computational strategy. It is shown that the bilayer transition metal dichalcogenides can show a flexoelectric coefficient 2–7 times larger than their monolayer counterparts. Noticeably, this enhancement reaches up to 20 times for Janus diamane and fluorinated boron-nitrogen derivatives of diamane bilayers. The presented results improve the understanding of the flexoelectric effect in vdW heterostructures and moreover the proposed MLIP-based methodology offers a robust tool to improve the design of novel energy harvesting devices. © 2022 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH. eng
dc.language.iso eng
dc.publisher Weinheim : Wiley-VCH
dc.relation.ispartofseries Advanced energy materials 12 (2022), Nr. 32
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject bending deformation eng
dc.subject charge-dipole model eng
dc.subject flexoelectricity eng
dc.subject machine learning eng
dc.subject van der Waals bilayers eng
dc.subject.ddc 600 | Technik ger
dc.subject.ddc 050 | Zeitschriften, fortlaufende Sammelwerke ger
dc.title Machine-Learning-Based Exploration of Bending Flexoelectricity in Novel 2D Van der Waals Bilayers eng
dc.type Article
dc.type Text
dc.relation.essn 1614-6840
dc.relation.doi https://doi.org/10.1002/aenm.202201370
dc.bibliographicCitation.issue 32
dc.bibliographicCitation.volume 12
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken