Towards a Better Representation of Fog Microphysics in Large-Eddy Simulations Based on an Embedded Lagrangian Cloud Model

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/9952
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/10010
dc.contributor.author Schwenkel, Johannes
dc.contributor.author Maronga, Björn
dc.date.accessioned 2020-08-03T15:49:15Z
dc.date.available 2020-08-03T15:49:15Z
dc.date.issued 2020
dc.identifier.citation Schwenkel, Johannes; Maronga, Björn: Towards a Better Representation of Fog Microphysics in Large-Eddy Simulations Based on an Embedded Lagrangian Cloud Model. In: Atmosphere 11 (2020), Nr. 5, 466. DOI: https://doi.org/10.3390/atmos11050466
dc.description.abstract The development of radiation fog is influenced by multiple physical processes such as radiative cooling and heating, turbulent mixing, and microphysics, which interact on different spatial and temporal scales with one another. Once a fog layer has formed, the number of fog droplets and their size distribution have a particularly large impact on the development of the fog layer due to their feedback on gravitational settling and radiative cooling at the fog top, which are key processes for fog. However, most models do not represent microphysical processes explicitly, or parameterize them rather crudely. In this study we simulate a deep radiation fog case with a coupled large-eddy simulation (LES)–Lagrangian cloud model (LCM) approach for the first time. By simulating several hundred million fog droplets as Lagrangian particles explicitly (using the so-called superdroplet approach), we include a size-resolved diffusional growth including Köhler theory and gravitational sedimentation representation. The results are compared against simulations using a state of the art bulk microphysics model (BCM). We simulate two different aerosol backgrounds (pristine and polluted) with each microphysics scheme. The simulations show that both schemes generally capture the key features of the deep fog event, but also that there are significant differences: the drop size distribution produced by the LCM is broader during the formation and dissipation phase than in the BCM. The LCM simulations suggest that its spectral shape, which is fixed in BCMs, exhibits distinct changes during the fog life cycle, which cannot be taken into account in BCMs. The picture of the overall fog droplet number concentration is twofold: For both aerosol environments, the LCM shows lower concentrations of larger fog droplets, while we observe a higher number of small droplets and swollen aerosols reducing the visibility earlier than in the BCM. As a result of the different model formulation we observe higher sedimentation rates and lower liquid water paths for the LCM. The present work demonstrates that it is possible to simulate fog with the computational demanding approach of LCMs to assess the advantages of high-resolution cloud models and further to estimate errors of traditional parameterizations. eng
dc.language.iso eng
dc.publisher Basel : MDPI
dc.relation.ispartofseries Atmosphere 11 (2020), Nr. 5
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject cloud microphysics eng
dc.subject lagrangian cloud model eng
dc.subject large-eddy simulation eng
dc.subject radiation fog eng
dc.subject.ddc 550 | Geowissenschaften ger
dc.title Towards a Better Representation of Fog Microphysics in Large-Eddy Simulations Based on an Embedded Lagrangian Cloud Model eng
dc.type Article
dc.type Text
dc.relation.doi https://doi.org/10.3390/atmos11050466
dc.bibliographicCitation.issue 5
dc.bibliographicCitation.volume 11
dc.bibliographicCitation.firstPage 466
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken