Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways

Download statistics - Document (COUNTER):

Volgmann, K.; Epp, V.; Langer, J.; Stanje, B.; Heine, J. et al.: Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways. In: Zeitschrift für Physikalische Chemie 231 (2017), S. 1215-1241. DOI: https://doi.org/10.1515/zpch-2017-0952

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/2240

Selected time period:

year: 
month: 

Sum total of downloads: 428




Thumbnail
Abstract: 
Fundamental research on lithium ion dynamics in solids is important to develop functional materials for, e.g. sensors or energy storage systems. In many cases a comprehensive understanding is only possible if experimental data are compared with predictions from diffusion models. Nuclear magnetic resonance (NMR), besides other techniques such as mass tracer or conductivity measurements, is known as a versatile tool to investigate ion dynamics. Among the various time-domain NMR techniques, NMR relaxometry, in particular, serves not only to measure diffusion parameters, such as jump rates and activation energies, it is also useful to collect information on the dimensionality of the underlying diffusion process. The latter is possible if both the temperature and, even more important, the frequency dependence of the diffusion-induced relaxation rates of actually polycrystalline materials is analyzed. Here we present some recent systematic relaxometry case studies using model systems that exhibit spatially restricted Li ion diffusion. Whenever possible we compare our results with data from other techniques as well as current relaxation models developed for 2D and 1D diffusion. As an example, 2D ionic motion has been verified for the hexagonal form of LiBH4; in the high-temperature limit the diffusion-induced 7Li NMR spin-lattice relaxation rates follow a logarithmic frequency dependence as is expected from models introduced for 2D diffusion. A similar behavior has been found for LixNbS2. In Li12Si7 a quasi-1D diffusion process seems to be present that is characterized by a square root frequency dependence and a temperature behavior of the 7Li NMR spin-lattice relaxation rates as predicted. Most likely, parts of the Li ions diffuse along the Si5 rings that form chains in the Zintl phase. © 2017 Walter de Gruyter GmbH, Berlin/Boston.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2017
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 318 74.30%
2 image of flag of United States United States 60 14.02%
3 image of flag of Japan Japan 9 2.10%
4 image of flag of China China 9 2.10%
5 image of flag of Netherlands Netherlands 6 1.40%
6 image of flag of No geo information available No geo information available 4 0.93%
7 image of flag of United Kingdom United Kingdom 4 0.93%
8 image of flag of France France 3 0.70%
9 image of flag of India India 2 0.47%
10 image of flag of Argentina Argentina 2 0.47%
    other countries 11 2.57%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse