Modeling N fertilization impact on water cycle and water use efficiency of maize, finger-millet, and lablab crops in South India

Download statistics - Document (COUNTER):

Almawazreh, A.; Uteau, D.; Subbarayappa, C.T.; Buerkert, A.; Lehmann, S. et al.: Modeling N fertilization impact on water cycle and water use efficiency of maize, finger-millet, and lablab crops in South India. In: Vadose Zone Journal (2024), in press, e20319. DOI: https://doi.org/10.1002/vzj2.20319

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/17232

Selected time period:

year: 
month: 

Sum total of downloads: 2




Thumbnail
Abstract: 
The understanding of the impact of nitrogen (N) fertilization on the field water cycle and corresponding water use efficiency (WUE) is very important for optimizing fertilization rates and conserving stressed water resources. We modeled soil moisture dynamics of maize (Zea mays L.), finger millet (Eleusine coracana Gaertn.), and lablab [Lablab purpureus (L.) Sweet] plots using calibrated HYDRUS-1D model on two experimental sites (rain-fed and irrigated) for three seasons under different N treatments. The results indicate that the effects of N depended on plant specific properties such as N-fixation and drought tolerance, and on plant available water content governed by soil structure and rainfall seasonal variability. Maize WUE of plots which received 150 kg/ha of urea (46 (Formula presented.) N) were 10–30 kg/ha/mm higher than plots which received none; likewise, millet that received 50 kg/ha of urea had a 7–10 kg/ha/mm higher WUE than control plots in both experiments. However, differences in water cycle components were noticeable between N treatments only in the rain-fed experiment, where higher N levels led to around 60 and 30 mm higher transpiration, 30 and 20 mm lower evaporation, and 30 and 15 mm lower percolation per season for maize and millet, respectively. In 2018, which was the driest year, the difference in maize WUE between the high and low N treatments was only 1 kg/ha/mm, which corresponded with low actual to potential transpiration ratios ((Formula presented.)). This indicates higher sensitivity of maize to water stress compared to the other crops. The results of lablab indicate a positive impact of N fertilization on WUE only under water-limited conditions.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2024
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 1 50.00%
2 image of flag of France France 1 50.00%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse