Quantum imaging beyond the standard-quantum limit and phase distillation

Download statistics - Document (COUNTER):

Schaffrath, S.; Derr, D.; Gräfe, M.; Giese, E.: Quantum imaging beyond the standard-quantum limit and phase distillation. In: New Journal of Physics (NJP) 26 (2024), Nr. 2, 023018. DOI: https://doi.org/10.1088/1367-2630/ad223f

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/16736

Selected time period:

year: 
month: 

Sum total of downloads: 10




Thumbnail
Abstract: 
Quantum sensing using non-linear interferometers (NLIs) offers the possibility of bicolour imaging, using light that never interacted with the object of interest, and provides a way to achieve phase supersensitivity, i.e. a Heisenberg-type scaling of the phase uncertainty. Such a scaling behaviour is extremely susceptible to noise and only arises at specific phases that define the optimal working point (WP) of the device. While phase-shifting algorithms are to some degree robust against the deleterious effects induced by noise they extract an image by tuning the interferometer phase over a broad range, implying an operation beyond the WP. In our theoretical study, we investigate both the spontaneous and the high-gain regime of operation of an NLI. In fact, in the spontaneous regime using a distillation technique and operating at the WP leads to a qualitatively similar behaviour. In the high-gain regime, however, typical distillation techniques inherently forbid a scaling better than the standard-quantum limit, as a consequence of the photon statistics of squeezed vacuum. In contrast, an operation at the WP still may lead to a sensitivity below shot noise, even in the presence of noise. Therefore, this procedure opens the perspective of bicolour imaging with a better than shot-noise phase uncertainty by working in the vicinity of the WP. Our results transfer quantum imaging distillation in a noisy environment to the high-gain regime with the ultimate goal of harnessing its full potential by combining bicolour imaging and phase supersensitivity.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2024
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 2 20.00%
2 image of flag of Spain Spain 2 20.00%
3 image of flag of Germany Germany 2 20.00%
4 image of flag of China China 2 20.00%
5 image of flag of Singapore Singapore 1 10.00%
6 image of flag of Austria Austria 1 10.00%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse