Updating structural wind turbine blade models via invertible neural networks

Download statistics - Document (COUNTER):

Noever Castelos, Pablo: Updating structural wind turbine blade models via invertible neural networks. Hannover : Institut für Windenergiesystem. Leibniz Universität Hannover. (Dissertations of the Institute for Wind Energy Systems ; 1), xi, 122 S., Seite xiii - xxxiii

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/13301

Selected time period:

year: 
month: 

Sum total of downloads: 296




Thumbnail
Abstract: 
Wind turbine rotor blades are huge and complex composite structures that are exposed to exceptionally high loads, both extreme and fatigue loads. These can result in damages causing severe downtimes or repair costs. It is thus of utmost importance that the blades are carefully designed, including uncertainty analyses in order to produce safe, reliable, and cost-efficient wind turbines. An accurate reliability assessment should already start during the design and manufacturing phases. Recent developments in digitalization give rise to the concept of a digital twin, which replicates a product and its properties into a digital environment. Model updating is a technique, which helps to adapt the digital twin according to the measured characteristics of the real structure. Current model updating techniques are most often based on heuristic optimization algorithms, which are computationally expensive, can only deal with a relatively small parameter space, or do not estimate the uncertainty of the computed results.This thesis’ objective is to present a computationally efficient model updating method that recovers parameter deviation. This method is able to consider uncertainties and a high fidelity degree of the rotor blade model. A validated, fully parameterized model generator is used to perform a physics-informed training of a conditional invertible neural network. This network finally represents a surrogate of the inverse physical model, which then can be used to recover model parameters based on the structural responses of the blade. All presented generic model updating applications show excellent results, predicting the a posteriori distribution of the significant model parameters accurately.
License of this version: CC BY 4.0 Unported
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Dissertationen
Dissertations of the Institute for Wind Energy Systems

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 163 55.07%
2 image of flag of United States United States 38 12.84%
3 image of flag of China China 18 6.08%
4 image of flag of Ireland Ireland 11 3.72%
5 image of flag of Spain Spain 8 2.70%
6 image of flag of United Kingdom United Kingdom 7 2.36%
7 image of flag of Portugal Portugal 6 2.03%
8 image of flag of Turkey Turkey 5 1.69%
9 image of flag of Netherlands Netherlands 5 1.69%
10 image of flag of Canada Canada 4 1.35%
    other countries 31 10.47%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse