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Kurzfassung
Mit dem Aufkommen des autonomen Fahrens wird die Lokalisierung mobiler Roboter, insbeson-
dere auch ohne GNSS-Informationen, immer wichtiger. Dabei muss sichergestellt werden, dass
die Lokalisierung robust funktioniert und rechtzeitig Warnungen ausgegeben werden, falls die
Posenschätzung zu unsicher wird, um einen sicheren Betrieb des Systems zu gewährleisten.
Zur Erfüllung dieser Anforderungen benötigen die autonomen Systeme zuverlässige und ver-
trauenswürdige Informationen über ihre Umgebung. Um die Zuverlässigkeit und Integrität dieser
Informationen zu verbessern und robust gegenüber Sensorausfällen zu sein, sollten Informationen
von mehreren Sensoren fusioniert werden. Dies erfordert jedoch, dass bestimmte Eigenschaften
zwischen den Sensoren (z.B. die Transformation zwischen den Sensorkoordinatensystemen)
bekannt sind. Allerdings sind weder die tatsächlichen Sensormessungen fehlerfrei, noch können
diese Eigenschaften zwischen den Sensoren fehlerfrei bestimmt werden. Daher müssen diese
Fehlerquellen während der Sensorfusion entsprechend modelliert werden.

Um autonome Fahrzeuge ohne GNSS-Informationen in 3D zu lokalisieren, wird in dieser
Arbeit ein Dead-Reckoning-Ansatz vorgestellt, der Informationen von einer Kamera, einem
Laserscanner und einer IMU fusioniert. Dafür werden zunächst neue Sensorfehlermodelle
für jeden einzelnen Sensor aufgestellt. Hierbei werden die Sensorfehler als unbekannt, aber
begrenzt angenommen. Dies erfordert, dass Grenzen (d. h. Intervalle), die von den tatsächlichen
Fehlern nicht überschritten werden, bekannt sind. Weitere Annahmen sind nicht erforderlich.
Insbesondere muss die Fehlerverteilung innerhalb der Intervalle nicht bekannt sein, was eine
häufig nicht beachtete Annahme etablierter Ansätze ist. Außerdem sind Fehlermodelle, die auf
der Intervallarithmetik beruhen, mit unbekannten systematischen Fehlern vereinbar und eignen
sich, um Ergebnisse garantieren zu können. Des Weiteren werden in dieser Arbeit neuartige
Ansätze für die raum-zeitliche Kalibrierung zwischen Kamera, Laserscanner und IMU vorgestellt,
die die eingeführten Fehlermodelle verwenden, um nicht nur die Kalibrierparameter, sondern
auch die zugehörigen Unsicherheiten zu bestimmen. Zuletzt wird ein neues Verfahren zur
garantierten Informationsfusion aller Sensoren entwickelt. Hierbei werden sowohl die Fehler
der einzelnen Sensoren als auch die Ungenauigkeiten der Kalibrierung zwischen den Sensoren
berücksichtigt. Anschließend werden die fusionierten Informationen genutzt, um einen mobilen
Roboter inkrementell in einem lokalen Koordinatensystem zu lokalisieren.

Bei der Evaluation stellt sich unter Nutzung sowohl simulierter als auch realer Daten heraus,
dass alle vorgestellten Verfahren korrekte Ergebnisse garantieren, solange die angenommenen
Fehlergrenzen zutreffend sind. Obwohl die intervallbasierten Ansätze den “worst case”, also die
maximalen Sensorfehler, berücksichtigen, sind die Ergebnisse hinreichend genau. Insbesondere
können Situationen, in denen stochastische Verfahren Ergebnisse berechnen, die erheblich von
der tatsächlichen Lösung abweichen, identifiziert werden.

Schlagworte:
Autonomes Fahren, Lokalisierung, Koppelnavigation, Sensorfusion, Informationsfusion, Un-
sicherheitsmodellierung, Sensorfehlermodelle, Intervallarithmetik
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Abstract
With the advent of autonomous driving, the localization of mobile robots, especially without
GNSS information, is becoming increasingly important. It must be ensured that the localization
works robustly and timely warnings are provided if the pose estimates are too uncertain to
assure a safe operation of the system. To meet these requirements, autonomous systems
require reliable and trustworthy information about their environment. To improve the reliability
and the integrity of information, and to be robust with respect to sensor failures, information
from multiple sensors should be fused. However, this requires inter-sensor properties (e.g. the
transformation between sensor coordinate systems) to be known. Naturally, neither the actual
sensor measurements nor the inter-sensor properties can be determined without errors, and
thus must be modeled accordingly during sensor fusion.

To localize autonomous vehicles without GNSS information in 3D, this work introduces a
dead reckoning approach relying on information from a camera, a laser scanner and an IMU.
First, novel error models for the individual sensors are introduced. Here, the errors are assumed
to be unknown but bounded, which requires bounds (i.e. intervals) that are not exceeded by the
actual sensor errors to be known. However, no further assumptions are required. In particular,
the error distribution within the bounds does not need to be known, which is a frequently
overlooked assumption of established approaches. Furthermore, interval-based error models are
compatible with unknown systematic errors and can be used to guarantee results. Second, to
determine the inter-sensor properties and the corresponding uncertainties, this thesis presents
new approaches for the spatiotemporal calibration between camera, laser scanner and IMU
that employ the proposed error models. Third, an innovative method that considers both
sensor and inter-sensor errors for guaranteed sensor fusion is proposed. The fused information
is subsequently used to perform interval-based dead reckoning of a mobile robot.

To evaluate the developed methods, both simulated and real data are analyzed. It becomes
evident that all proposed approaches are guaranteed to enclose the true solution if the sensor
error bounds are correct. Moreover, although interval-based approaches consider the “worst
case”, i.e. the maximum sensor errors, the results are reasonably accurate. In particular, it can
be determined in which instances a state-of-the-art method computes a result that deviates
significantly from the actual solution.

Keywords:
Autonomous Driving, Localization, Dead Reckoning, Sensor Fusion, Visual-LiDAR Odometry,
Error Modeling, Sensor Error Models, Interval Analysis
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1 Introduction

736 billion kilometers. That is the distance covered by motor vehicles on German roads in 2018
according to the Federal Motor Transport Authority [1]. Nowadays, the goal is to automate
these vehicles so that drivers eventually are no longer required. Consequently, mobile robots
must be able to localize themselves in unknown environments with potentially tall buildings that
may prevent information from a Global Navigation Satellite System (GNSS). In the absence
of this global positioning information, the mobile robot must rely on its exteroceptive sensors
(e.g. camera, laser scanner, etc.) and its proprioceptive sensors (e.g. IMU, wheel encoders,
etc.) to localize itself. If additionally no map of the environment is available, the robot can
only localize itself incrementally starting from an arbitrary pose that defines the origin of its
local coordinate system. This procedure can be extended to the Simultaneous Localization and
Mapping (SLAM) problem if a map is built simultaneously. Although much research has been
conducted in this field, the question arises as to how the robustness, safety and integrity of
each vehicle can be guaranteed if they are operated autonomously over the entire 736 billion
kilometers [2].

In general, the terms robustness, safety and integrity involve many different aspects. One
important aspect of robustness is the robustness with respect to the sensor errors. Naturally,
sensors are required to gather information about the robot’s motion and its environment.
However, no sensor can achieve error-free measurements, and thus induces errors during the
localization process. Consequently, these errors must first be identified, appropriately modeled,
and subsequently propagated to guarantee the robustness of the localization results.

Although different models for sensor errors are available, in recent years the probabilistic
error model has prevailed in mobile robotics. Often, sensor errors are assumed to follow a
normal distribution. This has proven to be advantageous as following computations and error
propagations are simple and straightforward. Consequently, the result of localization approaches
is not only the robot’s pose, but a stochastic distribution of possible poses.

The safety of a road vehicle is defined by the International Organization for Standardization
(ISO), among other things, as the absence of unacceptable risk [3]. To quantify risk, the
concept of integrity was introduced in the field of aviation. Among other things, it “includes
the ability of a system to provide timely and valid warnings to the user (alerts) when the system
must not be used for the intended operation” [4]. This definition can be directly transferred to
the field of autonomous driving. For example, one unacceptable risk for an automated vehicle
is a localization error that exceeds a predefined tolerance and that is not detected so that no
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countermeasures (e.g. notifying the driver, slowing down, etc.) can be initiated. Consequently,
the safety of an autonomous vehicle is directly related to its integrity.

To further increase the robustness of autonomous vehicles, it is advisable to combine
information from different sensors to incrementally localize a mobile robot. Within this context,
the incremental localization of a robot refers to the computation of the robot’s pose in a local
coordinate system that is established before the robot starts moving or even at an arbitrary
point in time. This procedure, also known as dead reckoning or odometry, is an integral part
of an autonomous vehicle that cannot be localized in a global coordinate system due to a lack
of map information and tall buildings preventing GNSS information.

Three sensors commonly used for the incremental localization of mobile robots are the
color camera, the Light Detection and Ranging (LiDAR) sensor (or laser scanner) and the
IMU. These sensors are widely employed since they constitute different types of sensors that
exhibit different advantages and disadvantages. For example, while the camera provides rich
image features that can be re-identified at successive points in time and space, the depth of
features (i.e. their distance from the camera) is hard to determine robustly [5]. In contrast, the
laser scanner is able to measure accurate distance information, but does not provide features
which can be re-identified easily. Unlike both these exteroceptive sensors, the IMU is useful
for measuring the acceleration and rotational velocity of the robot. Due to these different
characteristics, it is beneficial to fuse information from all three sensors. The process of
computing the robot’s incremental pose using data from both camera and laser scanner is
usually denoted as visual-LiDAR odometry. Often, data from the IMU is also used without
specifically referring to it in the name.

However, sensor fusion, which is the process of combining data from multiple sensors,
introduces new challenges as inter-sensor properties have to be known. These so-called
spatiotemporal calibration parameters include, for example, the spatial relation between sensor
coordinate systems or the time offset between sensor clocks. Accordingly, we require methods to
compute these parameters. Furthermore, the accuracy of fused information no longer depends
on just the sensor errors, but also on the errors occurring during the calibration.

1.1 Problem statement and contributions
Although sensor errors can be modeled conveniently using a normal distribution, it is not the
appropriate error model for each and every sensor. Usually, the true error distribution of a sensor
deviates from a normal distribution, thus requiring a different stochastic error distribution.
However, often this distribution is unknown and cannot be easily determined since it may differ
from sensor to sensor and requires an extensive calibration to create statistically meaningful
data. For example, a laser beam emitted by a laser scanner is not a perfect beam, but diverges.
Now, when computing the error distribution of the resulting scan point, the energy distribution
within the diverging beam must be taken into account. However, this energy distribution is
generally unknown and may even change over time due to sensor deterioration.

Therefore, this work investigates an alternative error model based on interval analysis. Here,
sensor errors are assumed to be unknown but bounded. Consequently, computations are
carried out using the upper and lower bounds of the interval in which the true value resides.
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Since the true error distribution does not need to be known, this bounded error model is
consistent with any possible error distribution. However, bounds representing the maximum
error must be known. Nonetheless, these bounds are often specified by the manufacturer
(e.g. beam divergence of a laser scanner) or appear naturally due to physical fundamentals
(e.g. discretization into camera pixels). Still, outliers violating these bounds can be taken into
account, as we will show in this work.

Consequently, this fundamentally different way of modeling sensor errors requires new
approaches for the fusion of sensor information and the dead reckoning of a mobile robot.
Moreover, the need to comply with strict safety standards has been identified, which includes
the ability to generate alerts, but not much research has been conducted in this field [6, 7].
For example, most authors evaluate the accuracy of their localization algorithms by computing
the average deviation from the true position and neglect the maximum error their approach
makes. However, for safety-critical systems the maximum error is of special interest since a
single large error can cause the system to crash although it performs well on average.

To overcome these shortcomings, this works aims to make the following contributions:
• Investigation of possible error sources for camera, laser scanner and IMU, as well as

subsequent development of new bounded error models for these sensors.
• Introduction of a novel so-called contractor Coffset to compute the time offset in the

context of constraint programming over dynamical systems.
• Design of a new approach for the spatiotemporal calibration (extrinsic rotation and time

offset) between camera and IMU under interval uncertainty.
• Development of a novel approach for the extrinsic calibration between camera and LiDAR

under interval uncertainty.
• Development of an interval-based sensor fusion approach to combine information from

camera and laser scanner. Here, the desired contribution of this work is to consider both
the sensor error bounds and the uncertain extrinsic calibration parameters.

• Design of a new interval-based visual-LiDAR odometry approach for the dead reckoning
of a mobile robot using the fused information and IMU data.

• Experimental evaluation of all depicted approaches using simulated and/or real data to
assess whether interval-based error modeling can increase the robustness and integrity of
autonomous vehicles.

1.1.1 Why interval analysis?

“I think it’s much more interesting to live not knowing than to have answers
which might be wrong. I have approximate answers and possible beliefs and
different degrees of certainty about different things, but I’m not absolutely
sure of anything and there are many things I don’t know anything about.”

Richard P. Feynman [8]

As in the quote of Richard P. Feynman, when measuring, for example, a distance with a
laser scanner, we cannot determine the actual distance with absolute accuracy, but get an
approximate answer. Intuitively, we as humans would state that we know the distance with an
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accuracy of, for example, ±1 cm. This is the idea of interval analysis. Rather than specifying an
exact value or a stochastic distribution, it is assumed that measurements belong to an interval
without making any statement about which value within the interval is most likely. Since all
following computations are performed using intervals rather than scalar values, new arithmetic
rules and algorithms have been defined [9]. Consequently, the output of these algorithms
are also intervals that enclose the true result while simultaneously reflecting its uncertainty.
The accumulation of all these algorithms and arithmetic rules is denoted as interval analysis
or interval arithmetic. In the following, we list the advantages this alternative way of error
modeling and error propagation offers over traditional stochastic error modeling for this work:

Unknown error distributions

As stated above, the true error distribution of sensors is often unknown. This is especially
true if the measurement accuracy is significantly influenced by the manufacturing process and
the manufacturer does not perform a specific calibration of each sensor. Furthermore, the
error distribution can become unknown if the sensor is exposed to changing environmental
conditions (e.g. temperature) that distort the measurement process. In these cases, stochastic
error modeling is inappropriate since the error can be drastically under-estimated, thus resulting
in a misleading outcome [10]. In contrast, interval analysis only requires maximum error
bounds that are more convenient to obtain (e.g. maximum manufacturing inaccuracies or
maximum allowed temperature). Besides, the measurement process of some sensors results in
natural physical bounds (e.g. the encoder of a motor or the discretization into camera pixels).
Nevertheless, if absolutely no information about the sensor error is available and the error
bounds are chosen too large, subsequent computations are also inaccurate and cannot lead to
significant knowledge gain.

Unknown systematic errors

Although unknown systematic errors are, strictly speaking, part of an unknown error
distribution, we want to stress them especially. Generally, stochastic approaches assume
zero-mean errors which means that the average error over a sufficient number of measurements
equals zero. However, if, for example, a laser scanner systematically overestimates the true
distance by 1 cm due to an imprecise calibration, this assumptions is violated. Consequently,
an unknown systematic error cannot easily be taken into account using a stochastic error
distribution, thus distorting the localization result. Gauss himself always precluded systematic
errors since they were incompatible with his distribution model, nowadays referred to as the
Gaussian (or normal) distribution [11]. In contrast, the bounded error model is consistent
with unknown systematic errors since the only requirement is that the true value resides in the
corresponding interval.

Error propagation

In general, different types of errors exhibit different error distributions. However, when
employing stochastic error models, it is often hard to propagate these different errors consistently.
Consequently, it is more convenient to use only the variances and not the full distribution for
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the error propagation. However, this leads to a overly optimistic result since the errors are
propagated quadratically, whereas Kutterer and Schön show that a linear propagation is more
adequate for, for example, systematic errors [12]. Contrary, interval analysis offers a consistent
error propagation that is guaranteed to not underestimate the resulting error [13]. In addition,
in the case of failures or accidents of autonomous vehicles, the consistent error propagation of
interval analysis allows to determine the cause, i.e. the violated assumption, and thus enables
to unambiguously point out responsibilities (e.g. of the sensor manufacturer).

Guarantees

As stated above, autonomous cars are safety-critical systems for which the average error is
less important than the maximum error. Therefore, interval analysis is well suited for these
systems since it can be employed to compute guaranteed bounds enclosing the true result.
Assuming the initial error bounds are correct, no possible solution is lost during the error
propagation, leading to guaranteed results. Conversely, interval-based approaches also allow to
dismiss infeasible solutions outside the interval, thus shrinking the search space for following
computations. Consequently, outliers can be identified unambiguously. In contrast, stochastic
approaches cannot provide reliable bounds since generally a nonzero probability remains for
solutions far from the true result.

Determinism

Computations performed using interval analysis are deterministic. This means that given an
input value, the result will remain the same no matter how often the computation is repeated.
Especially for safety-critical systems that require certified algorithms, this property is important
since no unpredictable results can occur. In contrast, stochastic approaches like the particle
filter are random to a certain degree, thus leading to non-deterministic results.

Intuitive representation

As explained above, us humans naturally speak in intervals if we are uncertain about a
specific value. If we are asked, for example, about the distance to the nearest bus stop, we
might answer that it is 200 to 300 meters away. Consequently, intervals are an intuitive
representation that can be easily understood. Moreover, instead of just specifying the value,
intervals simultaneously indicate the value’s accuracy. In contrast, a stochastic distribution is
less intuitive and requires additional knowledge to depict the accuracy of a value.

Advantages over optimization algorithms

Common optimization algorithms (e.g. the Levenberg–Marquardt algorithm [14]), which are
often employed to find the optimal parameters of a nonlinear function, require the function
to be linearized. This introduces linearization errors since the optimal linearization point is
unknown. Moreover, these optimization algorithms can converge to a local optimum and
not the global optimum if no adequate initial guess is supplied. In contrast, an equivalent
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interval-based algorithm is guaranteed to find the global optimum without requiring an initial
guess and without linearizing the nonlinear function.

1.1.2 Assumptions

In the following, we discuss the assumptions and framework conditions of this work as well as
the challenges that arise from it.

Off-the-shelf sensors

This work introduces sensor error models for cameras, laser scanners and IMUs. As we
assume these sensors to be available off the shelf, several restrictions must be taken into account.
First, commercially available sensors are typically mass produced, limiting the possibility of
thorough calibration of each sensor for cost reasons. Custom-made sensors, on the other hand,
are generally much more expensive, but subject to extensive calibration. Thus, their error
distribution is usually known, whereas this is not the case with off-the-shelf sensors.

Second, commercially available sensors are typically black-box systems that do not allow
to access the raw data. In addition, they usually do not provide interfaces for the time
synchronization or the extrinsic calibration with other sensors. Consequently, the spatiotemporal
calibration parameters can only be determined using the measurement data that is provided by
the sensor. In addition, the measurement data itself may already be influenced by a variety of
different types of errors when transmitted to the user. For example, a laser scanner typically
provides a distance, but determines that distance by measuring the Time of Flight (ToF) of
a laser beam. Therefore, it should be noted that when developing error models for these
black-box sensors, an error can only be assigned to the data provided by the sensor, but this
error consists of several different error sources.

Sensor errors

We assume to know bounds enclosing the maximum error of each sensor. These bounds
can be established in experiments, specified by the manufacturer or derived from physical
fundamentals. The only requirement is that the actual error does not exceed these bounds.
However, sporadic outliers, i.e. errors exceeding the bounds, are allowed and can also be
taken into account using interval analysis. These outliers can occur because of faults in the
measurement process, environmental influences, or due to software errors (e.g. mismatched
image features). Nonetheless, to take these outliers into account and preserve the guarantees
of interval analysis, we require knowledge about the maximum number of outliers (e.g. no
more than 5 % of image features are mismatched). Naturally, the number of outliers must not
exceed 50 %. Often, the maximum number of outliers is difficult to estimate. Therefore, in
case of doubt, this number as well as the error bounds should be chosen rather conservatively
(i.e. more tolerant) to avoid sensor errors violating these bounds.
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Clock synchronization

Although a contribution of this work is an approach to fuse data from multiple sensors
under consideration of spatiotemporal uncertainties, we assume the data streams of camera
and laser scanner to be synchronized in time and only model the extrinsic calibration between
these sensors as uncertain. The reasoning behind this is that a potential timestamp offset
raises the question how to fuse the information from camera and laser scanner in a guaranteed
way if the environment is not captured at the same time by both sensors. This question is
difficult since a simple linear temporal interpolation of, for example, the laser scan points does
not suffice due to the environment being discontinuous (i.e. the distance of a single laser scan
point does not in-/decrease linearly).

Moreover, for simplicity we assume only a constant timestamp offset between camera and
IMU. Theoretically, however, this timestamp can be repeatedly re-estimated so that the effect
of drifting sensor clocks is negated.

Sensor positioning

For sensor positioning, we assume that the camera and laser scanner are close, i.e. their
baseline is small. If this were not the case, their view of objects in the environment would be
significantly different, resulting in cases where the camera is able to detect an object, but the
laser scanner is not, or vice versa. Consequently, we would not be able to fuse information
for this specific object. Naturally, this also requires the objects in the environment to be
detectable by both sensors, thereby excluding materials such as glass that might be visible
in a camera image due to reflections, but are invisible to a laser scanner due to rays passing
through the glass. Moreover, we assume all sensors to be mounted rigidly so that the IMU is
able to measure the same rotations experienced by the other sensors.

1.2 Solution approach
This work introduces a new approach to fuse information from camera, laser scanner and IMU
for the dead reckoning of a mobile robot. However, before we can fuse information from the
different sensors we have to understand their error characteristics and model them accordingly.
Within this work, we identify interval analysis as an appropriate tool to model the errors of all
three sensors since it allows to propagate sensor errors consistently and in a guaranteed way.
Together with the other advantages of interval analysis mentioned above, this is important for
safety-critical systems. Consequently, we propose bounded-error models for all three sensors
that take different types of error into account.

The newly introduced bounded-error models are the first step to guarantee the integrity of
fused sensor information. Next, we also require the inter-sensor properties such as a timestamp
offset or the extrinsic transformation between sensor coordinate systems before information
from different sensors can be fused. However, these spatiotemporal calibration parameters
cannot be determined exactly, thus introducing an additional source of error for the sensor
fusion that needs to be modeled accordingly. In contrast to the sensor errors, the error of these
parameters is purely systematic since we assume the timestamp offset to be constant and the



8 Chapter 1. Introduction

sensors to be rigidly mounted. Consequently, an error in the estimation of the spatiotemporal
calibration parameters is also constant and therefore systematic. As mentioned above, unlike
stochastic error models, the interval-based error model is consistent with systematic errors.
Thus, we use intervals to enclose the true spatiotemporal calibration parameters for the sensor
fusion.

However, it remains to determine these intervals. One possibility is to use external, more
accurate devices (e.g. a laser tracker) to measure the transformation between sensor coordinate
systems and then estimate conservative interval bounds that are guaranteed to enclose the true
parameters. Similarly, the timestamp offset can be determined using conventional algorithms
such as the Network Time Protocol (NTP) [15]. However, this requires additional knowledge
and/or cooperation from the sensors and cannot be done for black-box systems. Therefore,
we must use the measurement data provided by the sensor to determine these parameters.
However, the existing approaches using measurement data rely on a stochastic error model,
thus possibly underestimating the calibration error due to the reasons mentioned above.

To determine the spatiotemporal calibration parameters in a guaranteed way without relying
on external information or stochastic estimates, we propose interval-based approaches. First, we
compute the timestamp offset and the extrinsic rotation between the camera and the IMU. For
this approach, we rotate the sensor setup in front of a calibration target, determine the intervals
enclosing each individual sensor’s rotation over time, and finally determine the calibration
parameters by aligning the rotation tubes (intervals over time) using a newly developed so-called
contractor Coffset. Second, we find the 6 Degrees Of Freedom (DOF) extrinsic transformation
between the camera and laser scanner coordinate systems. For this approach, we position a
calibration target in different poses in front of the sensor setup. Subsequently, we introduce
novel algorithms to detect the calibration target in both both camera and laser scanner data
which introduces constraints for the desired calibration parameters. Afterwards, based on
these constraints we build contractors that are finally employed in conjunction with the SIVIA
algorithm to compute intervals for the extrinsic calibration parameters.

After the spatiotemporal calibration parameters and the sensor errors are modeled properly,
we focus on the aforementioned sensor fusion. First, we propose a new algorithm to fuse
information from camera and laser scanner by finding distinct image features and assigning
distance information from the laser scanner to them. Here, a main contribution of this work
is the consideration of both sensor and inter-sensor errors. Next, these fused 3D points are
employed to determine the robot’s rigid body transformation between consecutive points in
time, corresponding to the desired dead reckoning. Simultaneously, angular velocities measured
by the IMU are used to further constrain the robot’s rotation.

The computed interval poses are guaranteed to contain the robot’s true pose since all possible
sensor and calibration errors are modeled accordingly. Naturally, the underlying assumption is
that the assumed error bounds are correct. If this is the case, interval analysis allows us to
propagate the errors consistently and without dismissing a potential solution. Our approach is
therefore suitable for safety-critical systems, such as autonomous cars, for which the maximum
error is more important than the average error.

Finally, we evaluate all approaches experimentally and compare their results to stochastic
methods. Simulated data allows us to access ground truth information so that we can verify
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whether our approaches enclose the true result. Moreover, it enables us to examine different
error distributions and unknown systematic errors with regard to their influence on our interval-
based and a conventional stochastic error model. Contrary, real data allows us to evaluate
whether our approaches are suitable for use with real sensors and real robots. Furthermore, a
comparison with existing stochastic approaches demonstrates possibilities for the joint use of
both the interval-based and stochastic error model for safety-critical systems.

1.3 Document structure
In the following we detail the structure of this work. Fig. 1.1 provides a graphical overview in
which the links between the contributions of this work are clarified. We refrain from explaining
this figure for the time being, as we will show it several times throughout the document so
that the reader can follow the common thread of this work and finally understand the contents
of the figure.

In Chapter 2 we summarize the current state of research and introduce basics required for
this work.

Chapter 3 first introduces the basics of interval analysis and subsequently depicts other
interval-based work that is related to ours.

In Chapter 4 we detail various types of error for each sensor and investigate these error
sources with regard to their compatibility with a stochastic or a bounded error model. Based
on our findings, we introduce error models for all three sensors that assume unknown but
bounded errors.
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Figure 1.1: Overview of the structure of this work.
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Chapter 5 introduces our interval-based approach to solve the PnP problem. This con-
stitutes preliminary work that is necessary for the following methods proposed in Chapter 6.
Here, we detail two approaches for the spatiotemporal calibration of the sensors. First, we
focus on the spatiotemporal calibration between camera and IMU, providing a method to
compute both the time offset between sensor clocks and the extrinsic rotation between sensor
coordinate systems. Second, we introduce an approach to perform the six DOF extrinsic
calibration between camera and LiDAR, thus completing the spatiotemporal calibration of our
sensor setup.

In Chapter 7 we introduce an approach for the visual-LiDAR odometry of a mobile robot
that fuses information from camera, laser scanner and IMU under consideration of the previously
determined spatiotemporal calibration parameters. This chapter is divided into two parts. First,
we explain how to fuse information from camera and laser scanner in a guaranteed way. Second,
we detail how to employ this fused information alongside angular velocities measured by the
IMU to compute the robot’s pose in 3D.

Chapter 8 provides an extensive experimental evaluation of all introduced approaches
using simulated and real data. Here, a particular emphasis is put onto the comparison with
conventional stochastic methods.

In Chapter 9 we discuss and assess the results obtained in this work. In addition, we give
an outlook on open research questions and future work.

Finally, Chapter 10 concludes this work with a summary.



2 State of the Art

In the following, we first introduce basic requirements for this work. Next, we present state-
of-the-art approaches for the spatiotemporal calibration of multi-sensor systems and the dead
reckoning of mobile robots with a special focus on methods that fuse information from camera,
laser scanner and IMU. In this chapter, however, we focus only on approaches using stochastic
error modeling, whereas all related work that uses interval-based error modeling is depicted in
Chapter 3.

2.1 Sensor models
In the following, we introduce the sensors employed in this work. This introduction includes an
explanation of the operating principle and a model of each sensor. The sensors we employ are
a 3D laser scanner, a color camera, and an IMU.

2.1.1 3D laser scanner

This work employs 3D laser scanners for the perception of the environment. Laser scanners can
be classified as active, optical measurement systems since they emit and subsequently detect
light. In the simple case of measuring the distance to a single point, a laser ray (typically
at a wavelength of 905 nm) is emitted by the sensor and diffusely reflected by the target in
the environment. Part of the light is reflected to the sensor, and can thus be detected by a
photodiode (receiver). Now, the distance to the measured point can be computed by considering
the speed of light and the time that passed between the emission and the detection of the
laser ray. The corresponding time period is also known as the ToF. Due to this measurement
technique, laser scanners are also denoted as LiDAR.

To extend the idea of the one-dimensional distance measurement to the perception of a
three-dimensional environment, multiple approaches have been considered. In this work, we use
laser scanners manufactured by Velodyne 1. They consist of multiple (e.g. 16 or 64) emitters
and receivers that are arranged on top of each other such that they scan along a virtual vertical
line. Thus, the vertical field of view is limited by the number of emitters and their respective
angular distance. Furthermore, this whole optical system is rotated at a high speed to provide
a 360° horizontal field of view.

1https://velodynelidar.com/

https://velodynelidar.com/
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Still, the only measurement provided by each emitter-receiver-pair is a simple distance r. To
compute a 3D point from this measurement, it is inevitable to know the polar (vertical) angle θ
and the azimuthal (horizontal) angle ϕ. As the single laser sensors are arranged on top of each
other, the vertical angle is constant throughout all measurements and can be found in the data
sheet. To obtain the horizontal angle, the laser scanner measures its current rotation whenever
performing a laser measurement. Thus, finally, we can compute the 3D coordinates of any
measured point by converting the spherical coordinates r, θ and ϕ to Cartesian coordinates:

p =


x

y

z

 =


r · sin θ · cosϕ
r · sin θ · sinϕ
r · cos θ

 . (2.1)

However, as the manufacturing process of the laser scanner is not perfect and the positioning
of the emitter-receiver-pairs might not be accurate, deviations can occur for all three spherical
coordinates. To account for these deviations, a calibration of the laser scanner must be
performed during which a multitude of correction parameters are determined [16].

For this work, we assume that this calibration is carried out beforehand and the correction
parameters are determined appropriately. However, these correction parameters cannot be
computed perfectly, and thus deviations can still occur. Among other things, they therefore
constitute a source of error, which is modeled accordingly in Chapter 4.

2.1.2 Camera

In this work, we employ a color camera that is modeled using the pinhole camera model [17],
which is the simplest yet most common camera model. The pinhole camera model describes
the mapping between the environment and the image taken in the camera coordinate system
C. For this purpose, the camera aperture, through which the light emitted by the environment
passes on the way to the image sensor, is idealized as a point. This point is coincident with
the origin of the camera coordinate system C. Fig. 2.1 shows the pinhole camera model. To
simplify the visualization, the image plane (depicted in orange) is projected in front of the
pinhole, although in reality it resides behind the pinhole resulting in an image that is turned by
180°.

As can be seen, the camera coordinate system is oriented such that the ZC-axis corresponds
to the optical axis. Furthermore, the plane spanned by XC and YC is parallel to the image
plane spanned by u and v with the principal point (cx, cy). Besides, the image plane (orange)
is discretized into small pixels whose number yields the image resolution. Now, the light ray
emitted by the point X passes through the pinhole at the camera’s optical center. On its
way it intersects the image plane where it causes the image coordinates (u, v) to be colored
respectively. The process of determining the color of a pixel is known as the imaging process
and is performed by the image sensor. There exist multiple types of image sensors, the most
popular being Charge-Coupled Device (CCD) and Complementary Metal-Oxide Semiconductor
(CMOS) sensors. For example, the operation of a CCD sensor to discretize the continuous
environment can be compared to placing an array of buckets (the discretized pixels) on a field
(the continuous environment) to measure the spatial distribution of rainfall [18].
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To further visualize the following mathematical derivations, Fig. 2.2 shows the pinhole
camera model as seen from the XC-axis. At first, we introduce the projection of 3D points
into the two-dimensional image plane:

λ


u

v

1

 =


fx 0 cx
0 fy cy
0 0 1



X

Y

Z

1

 = K


X

Y

Z

1

 , (2.2)

where (X, Y, Z) are the coordinates of a 3D point in the camera coordinate system, (u, v) are
the image coordinates in pixel, fx and fy are the focal lengths in pixel units, (cx, cy) is the
principal point that is approximately at the image center, and K is the camera matrix consisting
of the intrinsic parameters. Usually, these intrinsic parameters are determined during camera
calibration by employing a calibration target (e.g. a checkerboard) of known dimensions [17].
Furthermore, λ is the unknown scale factor since the camera is only able to measure the
direction of a point, but not its absolute distance. Thus, we introduce the notion of normalized
(or homogeneous) image coordinates which describe the direction of a 3D point by dividing its
coordinates by Z:

X̃ =


x̃

ỹ

1

 , with x̃ = X

Z
, ỹ = Y

Z
. (2.3)

Consequently, this allows us to directly express the image coordinates (u, v):

u = fx x̃ + cx,

v = fy ỹ + cy.
(2.4)

C

u

YC

ZC

v

XC
(cx, cy)

(u, v)

X =

XY
Z



optical axis

Figure 2.1: Illustration of the pinhole camera model.
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Figure 2.2: The pinhole camera model as seen from the XC-axis.

Vrep

(a) No radial distortion. (b) Pincushion distortion. (c) Barrel distortion.

Figure 2.3: Classification of different radial distortions.

Likewise, we can also compute the normalized image coordinates given the image coordinates:

x̃ = u− cx
fx

,

ỹ = v − cy
fy

(2.5)

Generally, however, lenses are attached to the camera, resulting in distortions that are not
modeled by the pinhole camera model. Fig. 2.3 shows the effect of radial distortions on a grid
pattern. Nevertheless, this distortion can be removed once the distortion parameters k1, k2,
k3, p1 and p2 have been computed during camera calibration:

r2 = x̃2 + ỹ2,

x̃′ = x̃
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p1x̃ỹ + p2
(
r2 + 2x̃2

)
,

ỹ′ = ỹ
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ p1
(
r2 + 2ỹ2

)
+ 2p2x̃ỹ,

(2.6)

where k1, k2, k3 are radial distortion parameters and p1, p2 are tangential distortion parameters.
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After removing the distortion, the new image coordinates (u′, v′) can be computed accordingly:

u′ = fx x̃′ + cx,

v′ = fy ỹ′ + cy.
(2.7)

For this work, we assume to be able to compute the distortion parameters reasonably
accurate, such that the distortion can be removed from all images before further processing
them. This assumption holds since the distortion depends on the lens, and is thus - in contrast
to the intrinsic parameters which can be adapted by the user (e.g. the focal length) - constant
over time as modern lenses are manufactured rigidly. Furthermore, we employ camera lenses
with low distortions (i.e. no fisheye lenses).

2.1.3 Inertial Measurement Unit (IMU)

An IMU is an assembly of multiple inertial sensors. Usually, it contains three orthogonally
mounted accelerometers and gyroscopes (six sensors total) to measure accelerations and
angular velocities around all three coordinate system axes. Optionally, it can also include a
magnetometer to measure the direction relative to the geographic cardinal directions. In this
work, we only employ data from the gyroscopes, and thus provide an introduction for this
sensor only.

A gyroscope measures the rotational velocity around one axis at a high rate (e.g. 100 Hz).
By mounting three of them orthogonally, the IMU is able to provide the angular velocity around
all three axes resulting in a 3 × 1 vector ω̃ = ( ω̃x ω̃y ω̃z )ᵀ. However, the measurements
are distorted by many different error sources that can be modeled and propagated according
to [19]. Using a simple error model the true angular velocity vector can be expressed as

ω = ω̃ + ∆s · ω̃ + ∆b + ∆n, (2.8)

where ∆s is the scale factor (linear relation between true value and measurement), ∆b is the
constant bias and ∆n is the measurement noise. Traditionally, these errors are modeled using
stochastic processes and propagated accordingly [19]. We further detail these types of error
and develop our own interval-based error model for them in Chapter 4.

At the beginning of each experiment, the IMU has to remain static for a few seconds to
define the so called initial alignment (i.e. the pose relative to which we compute the orientation
in the following) and estimate the biases [20]. To compute the orientation relative to this
initial alignment, the rotational velocity vector ω must be integrated. However, as the angular
rates are measured in the continuously changing body frame of the sensor, a simple direct
integration is not possible. Instead, we have to integrate the ordinary differential equation

ṘI0
It = RI0

It · (〈ωt〉×) , (2.9)

where ωt is the angular velocity measurement at time t and 〈ωt〉× is the skew-symmetric
matrix of ωt.
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This skew-symmetric matrix of any vector ω = (ωx ωy ωz )ᵀ is defined as

〈ω〉× =


0 −wz wy
wz 0 −wx
−wy wx 0

 . (2.10)

Since the integration of this ordinary differential equation is difficult, it is often simplified
and computed stepwise. Consequently, we first compute the small, incremental rotation RIt

It+∆t

between two subsequent time instants t and t+ ∆t and subsequently apply the rotation that
occurred up until t:

RI0
It+∆t

= RI0
It ·R

It
It+∆t

. (2.11)

To determine the small, incremental rotation RIt
It+∆t

, we follow the pre-integration approach
described in [21]. Here, the authors assume that the angular velocity is constant for ∆t.
This assumption can be made since the IMU measures at a high rate, and thus ∆t is small
(e.g. ∆t = 0.01 s). From the kinematic model [20] it follows that

RI0
It+∆t

= RI0
It · exp (〈ωt〉×∆t) , (2.12)

where ωt is the angular velocity measurement at time t and 〈ωt〉× is the skew-symmetric
matrix of ωt.

To compute exp (〈ω〉×) for any vector ω = (ωx ωy ωz )ᵀ, let θ =
√
w2
x + w2

y + w2
z .

According to the Rodrigues formula it follows that

exp (〈ω〉×) = I3 + sin θ
θ
〈ω〉× + (1− cos θ)

θ2 〈ω〉2×. (2.13)

While this first-order integration works well for high-rate gyroscope measurements, higher
order integration methods should be employed if the measurement frequency is low [22].

2.2 Stochastic error modeling
In reality, no sensor is capable of performing error-free measurements due to various factors
such as physical effects, changing environments, or manufacturing uncertainties of the sensor.
This results in an error e that distorts the measurement of x which is the true value we are
interested in such that

y = f(x) + e, (2.14)

where f is the known measurement function and y is the distorted value our sensor measures.
Unfortunately, e is generally unknown, and thus we cannot compute the true value x given the
measurement y.

Nevertheless, sensor data has to be employed as there is virtually no other possibility to
gather knowledge about, for example, a robot’s pose. In order to do that, the unknown error e
must be computed as precisely as possible and the remaining uncertainty must be assessed. In
the ideal case, this allows to compute an estimation of the true value x while simultaneously
also providing an assessment of the accuracy of this estimation. Therefore, the error must



2.3. Rotation parametrization 17

be modeled mathematically while taking all possible types of error into account. In practice,
however, this is not possible since there are many different types of error that may be too
complex to model or that require knowledge of unknown characteristics of the environment
(e.g. the surface material) [23]. Thus, generally the goal is to establish an error model that
takes the most important sources of error into account and approximates reality as accurately
as possible. It follows that the more accurate the sensor model, the better the results of the
measurement [23].

Especially since the publication of the book “Probabilistic Robotics” by Sebastian Thrun et
al. [23], the most common error model for sensor inaccuracies in robotics is based on probability
theory. Here, the basic assumption is that sensor errors can be described using a probability
distribution for which the mean value corresponds to the true value, i.e. when measuring, for
example, a distance infinitely often, the mean over all measurements is the true distance. In
contrast, a single measurement can deviate from this mean value and the probability of such a
deviation is indicated by the probability distribution.

The most commonly employed probability distribution is the continuous normal distribution
(or Gaussian distribution):

p(x) = 1√
2πσ
· exp

(
−1

2

(
x− µ
σ

)2
)
, (2.15)

where µ is the mean value and σ is the standard deviation. Assuming this distribution for the
error introduced in (2.14) allows us to state that the error e is distributed normally with zero
mean and a variance of σ2, i.e. e ∼ N (0, σ2).

As previously explained, however, a measurement is generally not affected by only one type
of error, but suffers from different error sources that must be modeled accordingly. In this case,
each error is modeled using a distinct probability distribution. Consequently, probability theory
allows to straightforwardly combine these distributions to one common error distribution under
the assumption of independent errors. For example, Thrun et al. [23] introduce a beam model
of range finders that takes four error sources (measurement noise, unexpected objects, failures,
random measurements) into account and combines the four different distributions by mixing
them by a weighted average.

After finding an appropriate probability distribution for the error of each sensor, stochastic
methods are employed to propagate these errors from the input sources (sensors) to the output
sources (e.g. localization result) [24].

2.3 Rotation parametrization
Since this work deals with sensor calibration and localization in 3D, rotations must also be
modeled in 3D. The most basic, unambiguous representation for a three-dimensional rotation
is the rotation matrix. A 3× 3 matrix R is a properly termed rotation matrix if and only if
Rᵀ = R−1 and det R = 1.

Using rotation matrices, subsequent rotations can be computed straightforwardly by multi-
plying the corresponding rotation matrices. For example, R = R2 ·R1 is the rotation given by
R1 followed by the rotation given by R2.
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However, rotation matrices pose two major disadvantages. First, they cannot be understood
intuitively. Second, they possess nine entries although three variables are sufficient to express a
three-dimensional rotation since R ∈ SO(3), where SO(3) is the 3D rotation group. Thus,
there exist several other representations of rotations, of which we employ only two, and
consequently we introduce only these two in the following.

2.3.1 Euler angles

The coordinate frame of a rigid body in 3D are defined by the three coordinate axes x, y and
z. On this basis, in 1770 Euler proposed to describe the rotation of a rigid body by defining
the rotation around the three coordinate axes individually. However, this formalism creates
ambiguities as the order in which the rotations are performed around the axes is important.
In this work, we adopt the roll-pitch-yaw formulation as it is the accepted standard in mobile
robotics. Here, roll is the rotation around the x-axis, pitch is the rotation around the y-axis
and yaw is the rotation around the z-axis. In this work, we denote the vector of Euler angles
as ξ = (ϕ θ ψ )ᵀ, where ϕ is the yaw angle, θ is the pitch angle and ψ is the roll angle.

Given the three Euler angles ξ, the corresponding rotation matrix R can be computed as

R(ξ) = R(ψ) ·R(θ) ·R(ϕ)

=


cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ·


cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ·


1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 (2.16)

=


cos θ cosψ − cosϕ sinψ + sin θ cosψ sinϕ sinψ sinϕ+ sin θ cosψ cosϕ
cos θ sinψ cosψ cosϕ+ sin θ sinψ sinϕ − cosψ sinϕ+ sin θ cosϕ sinψ
− sin θ cos θ sinϕ cos θ cosϕ

 .
Conversely, given a rotation matrix R, we can compute the three Euler angles as

ϕ = arctan2(R32, R33),
θ = − arcsinR31, (2.17)
ψ = arctan2(R21, R11),

where Rij is the entry in the i-th row and j-th column of R.
However, the main drawback of the Euler angles is that a so called gimbal lock can occur.

For the formulation we chose, the gimbal lock occurs when θ = π
2 (or generally when cos θ = 0).

This means that two of the three axes become collinear (i.e. after applying the rotation of
θ = π

2 , the new x-axis coincides with the previous z-axis). In this case, one degree of freedom
is lost, and thus not all possible rotations can be represented.

Furthermore, two rotations expressed in Euler angles cannot be combined straightforwardly,
but must be converted into rotation matrices first.

Another issue is that the Euler angles are periodic since sine and cosine are periodic.
Consequently, their range must be limited such that, for example, θ ∈ [−π

2 ,
π
2 ], ϕ ∈ [−π, π]

and ψ ∈ [−π, π]. However, this becomes problematic when dealing with bounded uncertainties
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for the Euler angles. For example, we might want to express that ϕ ∈ ([−π,−3] ∪ [3, π])
which will be equal to ϕ ∈ [−π, π] when dealing with intervals.

2.3.2 Modified Rodrigues Parameters (MRP)

In contrast to the Euler angles, the MRP have been introduced comparatively recent [25].
Similar to the Euler angles, they are triplets in R3 and are denoted as a 3× 1 vector ρ in this
work. However, they are more closely related to the axis-angle representation, which usually
represents a rotation by a rotation axis and the magnitude of rotation around this axis. For
example, a well known axis-angle representation are the quaternions [26].

In contrast to other rotation representations, the MRP have the advantage that they consist
of only three scalars, that their singular points are as far away from the origin as possible and
that two subsequent rotations can straightforwardly be combined.

In the following, we give a mathematical introduction of the MRP, that we previously
published in [27].

Let q be a quaternion [26], that is defined as

q =


q0

q1

q2

q3

 =
(
q0

q13

)
=
(

cos(θ/2)
η sin(θ/2)

)
, (2.18)

where η is a unit vector representing the rotation axis and θ is the angle of rotation. The 3× 1
MRP vector is defined as

ρ = q13

1 + q0
= η tan(θ/4). (2.19)

The 3× 3 rotation matrix for ρ is

R(ρ) = I3 + 8 〈ρ〉2× + 4 (1− ‖ρ‖2) 〈ρ〉×
(1 + ‖ρ‖2)2 , (2.20)

where 〈ρ〉× is the skew-symmetric matrix of ρ and ‖ρ‖ is the norm of ρ.
Sequential rotation by φ and then by ρ is denoted by the bullet operator (•) and defined as

ρ • φ = (1− ‖ρ‖2)φ+ (1− ‖φ‖2)ρ− 2 〈φ〉× ρ
1 + ‖ρ‖2‖φ‖2 − 2ρᵀφ . (2.21)

Another useful property of the MRP is that

Rᵀ(ρ) = R(−ρ), (2.22)

which allows direct computation of the inverse rotation.
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Finally, using the MRP it is possible to directly express the kinematic differential equa-
tion that is required to integrate, for example, angular rates that are measured by an IMU
(cf. Section 2.1.3):

ρ̇(t) = 1
4
((

1− ‖ρ(t)‖2
)

I3 + 2 〈ρ(t)〉× + 2ρ(t)ρᵀ(t)
)
ω(t), (2.23)

where ω(t) are the angular velocities at time t and ρ(t) are the MRP describing the rotation
relative to the initial alignment.

2.4 Perspective-n-Point (PnP) problem

The PnP problem concerns the estimation of the pose of a camera in a local world coordinate
system given distinct 2D features in the image and their corresponding 3D coordinates in the
world coordinate system. It has to be solved mainly for the intrinsic and extrinsic calibration
of cameras, but is also relevant in the field of 3D pose estimation relative to known land-
marks. Consequently, the PnP problem is studied in both the Computer Vision [28] and the
Photogrammetry [29] communities.

The PnP problem can be formalized as follows. Given a set of n image coordinates
(ui, vi) in pixels and the corresponding 3D world coordinates XW

i = (XW
i Y W

i ZW
i )ᵀ with

i ∈ {1, . . . , n}, the relation between the camera coordinate system C and the world coordinate
system W can be formulated as:

λ


ui
vi
1

 = K
(
RC
WXW

i + TC
W

)
, (2.24)

where λ is the unknown scale factor, K is the camera intrinsic matrix and RC
W and TC

W are
the desired extrinsic rotation matrix and translation vector, respectively, describing the pose
of the camera in the world coordinate system W . Generally, the camera intrinsic matrix K is
assumed to be known.

To solve the PnP problem, at least three corresponding points are required, i.e. n = 3.
This minimal form of the PnP problem is also denoted as P3P and requires to solve a three-
dimensional non-linear equation system [30]. Due to the nature of this system, up to four
solutions are possible. However, not all four solutions are geometrically feasible (e.g. if the
solution implies that the world points are not within the field of view of the camera). Generally,
such additional constraints lead to a single solution for the extrinsic parameters. If this is not
the case, additional knowledge must be acquired (e.g. a fourth point).

If at least four corresponding point pairs are available, the EPnP approach introduced by
Lepetit et al. [31] can be employed. It is the first algorithm that provides an accurate solution
in O(n). In order to do that, the n 3D points are expressed as a weighted sum of four virtual
control points. Accordingly, the unknowns to solve for are these virtual control points. To
determine their coordinates, a small constant number of quadratic equations has to be solved.
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An extension of the EPnP approach is the UPnP approach published by Kneip et al. [32]. It
does not require the camera intrinsic parameters to be known beforehand and extends the idea
of the EPnP algorithm to non-central cameras. Furthermore, this approach prevails in the case
of solution multiplicity (i.e. if multiple poses are possible solutions).

If even more redundant points are available (n ≥ 6), the Direct Linear Transformation
(DLT) [33] algorithm can be employed to solve for twelve unknowns (nine entries of the rotation
matrix and three entries of the translation vector) while ignoring the properties of the rotation
matrix. Although this approach cannot obtain an exact solution, it is often used to determine
an initial guess with little computational effort.

Besides the presented non-iterative solutions to the PnP problem, iterative optimization
techniques like the Levenberg-Marquardt algorithm [14] can be employed to minimize the
reprojection error. While iterative algorithms generally achieve a high accuracy, they are
computationally expensive and instable due to the local minima of the cost function [34]. Thus,
non-iterative approaches can be employed to find an initial solution that is further optimized
using an iterative method.

2.5 Spatiotemporal calibration
When employing multi-sensor systems to combine the advantages of different sensor by fusing
information from them, it is important to accurately know the spatiotemporal parameters
relating the information from the sensors. As indicated by the term “spatiotemporal”, there
exist spatial parameters such as the extrinsic transformation between sensor coordinate systems
and temporal parameters such as the time offset and the drift between sensor clocks. Finding
these spatial and temporal parameters is denoted as the spatiotemporal calibration of the
multi-sensor system.

While it is convenient to estimate the spatial and temporal parameters simultaneously, it
is also possible to perform a spatial (i.e. extrinsic) and temporal calibration separately. The
extrinsic calibration concerns the extrinsic transformation between sensor coordinate systems
which generally consists of a rotation and a translation. Here, the goal is to determine a
rotation matrix RA

B ∈ R3×3 and a translation vector TA
B ∈ R3×1 that allows to transform a 3D

point XB measured in the sensor coordinate system B into the coordinate system of the other
sensor A:

XA = RA
B ·XB + TA

B. (2.25)

Accordingly, the temporal calibration concerns the temporal relation between sensor clocks.
First and foremost, a temporal offset between the sensor clocks must be determined. Second,
a temporal drift can cause the time offset to change over time. This drift can be quantified by
linear, quadratic or even higher order polynomial fits to the elapsed time. Third, variable-length
delays (jitter) can occur if the data from the sensors is timestamped at a common host computer
that does not run a real-time operating system [35].

In this work, we assume the sensors to include a clock to timestamp the data directly
after acquisition, and can thus neglect jitter. Furthermore, we disregard clock drifts and
focus on determining a relative temporal offset between sensor clocks. Here, the underlying
assumption is that the offset is constant over a short period of time since the drift is negligible
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for short experiments. Accordingly, in the following we introduce related work that focuses on
determining the extrinsic transformation and/or the relative timestamp offset between sensors.

Generally, there exist several approaches to determine the spatiotemporal calibration pa-
rameters externally by using additional hardware. For example, the extrinsic transformation
parameters could be determined by using a laser tracker to accurately measure the sensor
housings and deduce the coordinate system origins from a technical drawing of the sensors.
To synchronize sensor clocks, for example, the Network Time Protocol (NTP) [15] could be
employed. However, these external solutions require additional knowledge about the sensor
(e.g. coordinate system origins), external hardware (e.g. laser tracker, network architecture)
and/or cooperation from the sensor (e.g. adjusting the clock according to the NTP algorithm).
In this work, we aim to develop methods for generic sensors, and thus must assume these
sensors to be black-box systems. Therefore, we can only establish a relation between the sensors
by relying on the sensor data. Consequently, the calibration approaches must be adjusted
to the data provided by the sensor and cannot be applied to arbitrary sensor combinations.
Therefore, in the following, we present related work organized according to the specific sensor
combinations.

2.5.1 Camera to IMU

This section references related work that deals with the spatiotemporal calibration between
camera and IMU using solely sensor data. The existing approaches can be divided into two
categories: offline and online. While offline approaches generally need a calibration target
(e.g. a checkerboard) and are carried out in a laboratory, online approaches can be employed,
for example, on a moving car to continuously estimate the calibration parameters. However,
online approaches are generally less accurate.

One online approach to determine the time offset and the extrinsic calibration parameters
is introduced by Li and Mourikis [36]. The authors propose to include the spatiotemporal
calibration parameters into the state vector of an Extended Kalman Filter (EKF) that performs
vision-aided inertial navigation. Consequently, they are able to continuously track the parameters
over time, and can thus account for clock drift. Moreover, the EKF allows them to deduce the
uncertainty of the estimates of the parameters.

Qin and Shen present another online approach that computes only the temporal offset
between the data streams of the sensors [37]. In order to do that, they include the time
offset as an additional optimization parameter while their main goal is to perform SLAM using
a monocular visual-inertial system. The authors’ idea is to define the velocity of an image
feature on the image plane and to assume this velocity to be constant for short periods of time.
Consequently, the position of an image feature can be formulated as a function depending on
the time offset. Thus, the time offset can be included in the cost function that is iteratively
optimized using Gauss-Newton methods.

To accurately determine both the time offset and the extrinsic calibration parameters, Kelly
et al. propose an offline approach that requires a checkerboard as the calibration target [38].
The authors gather measurement data by rotating their visual-inertial system in front of the
checkerboard. Subsequently, they align the resulting three-dimensional rotation curves of both
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sensors by a variant of the Iterative Closest Point (ICP) algorithm. This alignment directly
results in the desired spatiotemporal calibration parameters.

Another offline approach is presented by Furgale, Rehder et al. [39, 40]. Similar to the work
previously presented, the authors calibrate their visual-inertial system in a laboratory and use a
checkerboard as the calibration target. Again, the temporal offset and the extrinsic calibration
parameters are computed simultaneously. However, they translate the problem into a maximum
likelihood estimation by employing analytical basis functions which allows them to determine
the parameters in a continuous batch optimization procedure.

2.5.2 Camera to laser scanner
Accordingly, this section references work on the calibration between camera and laser scanner
using only sensor data. In contrast to the previous section, however, we focus on the extrinsic
calibration and neglect the temporal calibration since we assume the sensors to be synchronized
(cf. Section 1.1.2). This focus on the extrinsic calibration is in accordance with the literature
we studied. Except for the work by Rehder et al. [41] and our own previously published
approach [42], most approaches are formulated to only determine the extrinsic calibration
parameters. Moreover, we do not present online methods in this section as we develop an
offline approach ourselves and believe that calibrating the rigidly mounted sensor setup once
before the actual experiment suffices.

Previously, we developed an approach to compute the timestamp offset between a camera
and laser scanner [42]. Here, the main goal is to fuse information from both sensors to perform
SLAM. However, it is evident that a timestamp offset leads to less accurate results. Thus, we
define an optimization criterion that reflects the clarity of the map built by the SLAM algorithm.
Subsequently, an iterative brute-force approach allows us to determine the timestamp offset in
a maximum likelihood fashion assuming zero-mean sensor errors.

To our knowledge, Rehder et al. introduce the only approach to perform a full spatiotemporal
calibration between camera and laser scanner [41]. They employ a checkerboard as the
calibration target and wave the sensors in front of this target to generate measurement data
that constrains both the time offset and the extrinsic calibration parameters. To formulate
their calibration problem, the authors use a continuous state representation that allows them
to perform a maximum likelihood estimation.

Existing approaches to find the extrinsic transformation between camera and laser scanner
can be divided into two categories: target-less or target-based. Target-less approaches do not
depend on a dedicated calibration target and are particularly useful to compute the extrinsic
transformation during the operation of the robot [43, 44]. However, due to the lack of
distinct features that can be identified in both camera and laser scan data, these approaches
are generally less accurate or require manual operation by the user. Moreover, the extrinsic
transformation can generally be assumed to be static, and thus it suffices to perform the
calibration once before operation.

Target-based approaches differ in the calibration target and the features they identify on it.
While there exist some approaches employing spheres [45] or even more specialized calibration
targets such as a polygonal planar board [46], most approaches rely on a checkerboard due to its
availability and further usability for intrinsic camera calibration. Zhang and Pless were the first
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to use a checkerboard for the extrinsic calibration of a 2D laser scanner and a camera [47]. They
find the plane parameters of the checkerboard using the camera and subsequently minimize
the distance of laser scan points to this plane.

In 2005, this idea was extended by Unnikrishnan and Hebert to a 3D laser scanner by
additionally computing the plane parameters from the laser scan point cloud [48]. As a
prerequisite, their approach requires a checkerboard that is clearly visible both in the laser
scan and in the camera image. Subsequently, the user is prompted to gather data from
multiple checkerboard poses to constrain the extrinsic calibration parameters in all directions.
Afterwards, their algorithm extracts the plane parameters of the checkerboard from the data of
both sensors. Consequently, they feed the resulting nonlinear equations into an optimization
algorithm that minimizes the difference in observed orientation of the checkerboard and the
distance of 3D scan points to the plane observed by the camera.

Building on Unnikrishnan’s approach, Zhou et al. propose to use additional features from
the checkerboard besides the plane parameters [49]. In their work, they additionally extract the
border lines of the checkerboard from the data of both sensors, which allows them to formulate
additional constraints. Consequently, they are able to compute the full 6 DOF transformation
between camera and laser scanner from one single checkerboard pose, whereas Unnikrishnan
and Hebert require at least three distinct poses. In addition, the authors prove that it suffices
to rotate the checkerboard in front of the sensor setup, while a translational movement does
not constrain the extrinsic transformation parameters further.

Up until here, all presented approaches disregard the sensor uncertainties. In contrast,
Zhou and Deng introduce the only calibration approach that takes the uncertainty of the
plane parameters into account [50]. However, they only employ the uncertainty to weight the
different checkerboard poses during the optimization and do not propagate it to the final result.
Consequently, none of the established approaches are able to directly assess the accuracy of the
computed extrinsic transformation. Instead, they employ ground truth information to compute
the calibration error for specific test cases that cannot serve as a general statement for different
sensors and calibration environments. Furthermore, due to the zero mean error assumption,
systematic errors occurring, for example, for the distance measurements of the laser scanner,
cannot be taken into account.

2.6 Visual-LiDAR odometry
In mobile robotics, the pose of a robot can be computed globally in a pre-defined coordinate
system (e.g. World Geodetic System 1984 (WGS84)) or incrementally starting from the robot’s
current pose. The global localization requires either an external positioning system (e.g. GNSS)
or a known map from which the robot can re-identify known features. However, GNSS can
fail to provide accurate localization information if, for example, high buildings are present and
accurate maps require the environment to have been explored previously. In these cases, the
robot can only localize itself in a local coordinate system and simultaneously build its own
map. This procedure is known as Simultaneous Localization and Mapping (SLAM). The first
step of SLAM is to perform an incremental localization which is also known as dead reckoning
or odometry. Afterwards, for example visual features can be incorporated into a map that
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is subsequently used to improve the robot’s localization. If camera images are employed to
perform the dead reckoning, it is usually also denoted as visual odometry. If additionally
data from a laser scanner is used, the incremental localization procedure is referred to as
visual-LiDAR odometry.

In this work, we only tackle the first problem of SLAM - namely the dead reckoning. A lot
of research has been conducted on the topic of visual odometry, which refers to the estimation
of a robot’s 3D motion from visual camera data alone. The basic idea of feature-based visual
odometry is to find visual features in successive images, estimate depth of the features and
then compute the rigid body transformation that aligns those successive image features. The
most basic setup to conduct visual odometry is a monocular camera. Many approaches have
been investigated in this research area [51], while PTAM [52], SVO [53] and ORB-SLAM [54]
remain the most prominent ones. However, using only one camera, the depth/scale of features
is hard to determine robustly and is “liable to drift over time”, as Strasdat et al. point out [5].

Therefore, it is beneficial to add a second camera to perform stereo visual odometry as
is done for SOFT-SLAM [55] and ROCC [56]. While improving the problem of scale drift,
stereo vision strongly depends on a precise camera calibration. Instead of a second camera, it
is possible to add an IMU to perform visual-inertial odometry [57]. Here, the IMU is employed
to compute an initial estimate of the robot’s translational movement which can then be used
to account for the scale drift. Another option is to use a ToF camera (e.g. Microsoft Kinect
for Windows v2) to measure depth directly [58]. However, ToF cameras are generally only
suitable for indoor environments as their maximum range is limited and they are negatively
impacted by sunlight [59].

To measure distance accurately in outdoor environments, Zhang et al. propose to directly
fuse information from camera and laser scanner [60, 61]. Their algorithm projects the laser scan
points onto the image plane, and subsequently determines distance information for each visual
feature. In order to do that, the authors select the three closest scan points for each image
feature, and are thus able to interpolate the depth linearly. Thereby, they acquire 3D visual
features that can be re-identified over time. It remains to employ a nonlinear optimization
algorithm to solve the rigid body transformation. Moreover, the authors incorporate visual
features for which the depth could not be computed into their optimization algorithm by
defining their reprojection error as the cost.

In subsequent publications Zhang et al. gradually improve their previously proposed approach.
In 2015, the authors add a second step to their approach that is supposed to reduce the drift
of their laser-visual odometry estimation algorithm [62]. In order to do that, they build a map
consisting of so-called edge and planar points that are detected in the point cloud of the laser
scanner. Subsequently, they extract edge and planar points from each new point cloud and
match them with the existing map using a nonlinear optimization algorithm that minimizes the
distance of each new edge point to an edge in the map and the distance of each new planar
point to a plane in the map.

In 2017, Zhang et al. introduce another improvement of their method [63, 64]. They add
an IMU to compute an initial estimate of the robot’s motion which allows them to increase
the robustness of their approach with regard to sensor failures (e.g. in low-light environments).
Furthermore, the authors introduce the concept of keyframes into their laser-visual odometry.
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This means that they refrain from estimating the motion from image to image, but rather
localize themselves relative to a previously defined keyframe for several subsequent images. In
this way they are able to reduce the drift of their algorithm.

Another approach to improve the initial idea of Zhang et al. is proposed by Graeter et
al. [65]. In their work, the authors adjust the estimation of depth for visual features. Similar to
Zhang et al., the authors first project the scan points onto the image plane. Afterwards, they
select points within an rectangle of a predefined size around each visual feature and try to fit a
plane through those scan points to determine the depth of the visual feature. Scan points that
do not satisfy the local plane assumption are rejected. Moreover, they treat scan points on the
ground plane separately as they possess valuable information.

2.7 Relation to this work
In the following, this section classifies the presented related work in the context of this work
and outlines the shortcomings which we aim to resolve in this thesis.

In Section 2.1 we introduced the sensors that are employed during this work, detailed their
operating principle and highlighted possible sources of error. In contrast to the established
stochastic error models introduced here, this work introduces a new bounded error model for
each sensor. Since this new error model is supposed to take all types of error into account, the
underlying operating principle of each sensor has to be understood.

Accordingly, Section 2.2 introduced the basic concepts of stochastic error modeling. Due to
the advantages already depicted in Section 1.1.1, this work employs an error model based on
interval analysis for common problems in robotics that have been tackled previously assuming
known stochastic error distributions.

Since this work introduces approaches to perform an extrinsic calibration between sensors
and the dead reckoning of a robot in 3D, rotations must be treated in 3D accordingly. Thus,
Section 2.3 detailed two different parametrizations to represent a rotation in 3D. As depicted
in this section, both parametrizations exhibit different advantages, and are thus employed for
different approaches in this work.

The PnP problem introduced in Section 2.4 is important in the context of the extrinsic
calibration of a camera. As depicted in this section, there exist several approaches to solve
this problem assuming a known stochastic error distribution for the camera. However, since
this work introduces approaches to perform the extrinsic calibration under interval uncertainty,
the PnP problem has to be solved under interval uncertainty as well. Thus, this work presents
a new approach to tackle the PnP problem in a bounded error context. In contrast to the
presented approaches, this work introduces a deterministic approach that does not depend
on initial values since no optimization technique is employed. Furthermore, it exhibits all
advantages that interval-based approaches generally have over stochastic ones (cf. Section 1.1.1)
such as compatibility with systematic errors (e.g. due to the manufacturing accuracy of the
checkerboard).

As the core of successful sensor fusion are accurate spatiotemporal calibration parameters,
Section 2.5 first introduced the parameters that are important for this work and then presented
established approaches to compute those parameters from solely sensor data. All presented
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approaches have in common that they assume a known stochastic and zero-mean error
distribution for sensor errors. Moreover, often the resulting accuracy of the computed calibration
parameters is not considered or only determined empirically. Thus, this work introduces new
interval-based approaches for the spatiotemporal calibration between camera, laser scanner and
IMU. In contrast to the established methods, the calibration accuracy is a direct result of our
approaches as the sensor errors are propagated consistently. Furthermore, our approaches only
require known bounds for the sensor errors and are compatible with systematic errors.

After computing the spatiotemporal calibration parameters between camera, laser scanner
and IMU, we can finally fuse information from all three sensors to perform dead reckoning of a
mobile robot. We depicted established methods in Section 2.6. These methods exhibit several
shortcomings. First, the sensor errors are assumed to be zero-mean which is not always the
case as we will explain later. Second, most approaches refrain from modeling and propagating
the sensor errors to the localization result which makes it impossible for the user to judge the
accuracy of the robot’s pose.

The approach closest to our work is that by Zhang et al. and all the following improvements
that build on it. Here, we identified a third shortcoming. Since the accuracy of laser scan
points and image features is neglected during the fusion of this information, the depth accuracy
of the visual features cannot be quantified. However, the accuracy of this depth estimation
is vastly different (e.g. for features on planes and for features on edges). Moreover, it poses
valuable information as the accuracy can be used to weight the depth augmented features
during the pose estimation. To overcome all these shortcomings, we introduce an interval-based
visual-LiDAR odometry approach that propagates sensor errors to the localization result in a
consistent manner.





3 Interval Analysis

This chapter introduces interval analysis - a different kind of mathematics developed to put
guaranteed bounds on rounding or measurement errors. In contrast to traditional scalar
mathematics, computations are performed on sets rather than scalar values.

With the advent of modern computers, scientists began to deal with the question of how to
model the error arising due to floating point values. Since real numbers of infinite precision
cannot be represented using a computer that is based on finite floating point calculations, an
error is inevitably made. This prompted Ramon E. Moore to publish the first notable book on
interval analysis in 1966 leading to a rise of popularity [66].

However, the concept of using bounds to provide an approximation of not exactly known
values is presumably as old as mathematics itself. Already the well known Greek mathematician
Archimedes calculated bounds to give a reasonably small enclosure for π [67]. By drawing two
polygons, each with 96 sides, inside and outside of a circle, he concluded: 310

71 < π < 31
7 .

Nevertheless, intervals are not only suitable to provide bounds on irrational numbers or
floating point values. On the contrary, intervals can be used to describe any kind of physical
uncertainties. In the case of robotics, this allows us to bound measurement errors and perform
all following computations in a guaranteed way using the tools provided by interval analysis.

The following notions and definitions are freely taken from Luc Jaulin’s book [9], which
established a link between interval analysis and robotics, and Simon Rohou’s PhD thesis [68],
which extended the notions of intervals analysis to dynamical systems. To represent and
compute with intervals in a computer, we employ the IBEX library [69], which is openly
available.

3.1 Relation to stochastic error distributions

In the field of robotics, uncertainties are usually modeled using stochastic error distributions
(cf. Section 2.2). To describe sensor errors, most of the time a normal (or Gaussian) distribution
is used since it allows simple computations and error propagation due to the necessity of two
parameters only - the mean value µ and the standard deviation σ. Its probability density
function is

p(x) = 1√
2πσ
· exp

(
−1

2

(
x− µ
σ

)2
)
, (3.1)
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x x

µ− 3σ µ− 2σ µ− σ µ µ+ σ µ+ 2σ µ+ 3σ

p(x)

x

Figure 3.1: Exemplary relation between a Gaussian distribution and an interval. To guarantee
a confidence rate of 99.73%, the interval bounds are set to [x] = [µ− 3σ, µ+ 3σ].
Note that no assumption about the distribution between those bounds is made.

which can be used to provide a relative likelihood that the true value is x given the measurement
µ and the standard deviation σ. As for any probability density function, the area under the
curve has to amount to 1: ∫ ∞

−∞
p(x) dx = 1. (3.2)

For the Gaussian distribution, it is possible to calculate the probability of measurements
occurring in certain ranges around the expected value using the standard deviation. For
example, the true value of a measurement µ is in the range of ±σ with a probability of 68.27%.
Similarly, the range of ±2σ corresponds to a probability of 95.45% and the range of ±3σ
corresponds to a probability of 99.73%.

Another stochastic distribution, which might intuitively appear similar to an interval, is the
uniform distribution. Here, each value inside an interval [a, b] is assigned the same probability.
Thus, the probability density function is

p(x) =


1
b−a if x ∈ [a, b],
0 otherwise.

(3.3)

However, a uniform distribution is not the same as an interval, as the following example by
Kreinovich illustrates [70]. Let us assume that we have n independent measurements with
the same uncertainty that we want to add. According to the central limit theorem, the error
distribution of the sum of n uniformly distributed measurements tends to a Gaussian distribution
that grows with n as

√
n. In contrast, when modeling these n measurements with intervals,

the error bounds of the sum grow with n as n. As a result, for large n, the error is seriously
underestimated if a uniform distribution is chosen instead of an interval.

The main difference for all stochastic distributions to interval analysis is the assumption
about knowing the precise distribution of measurements. While for both presented distributions
each value has a specific probability of occurring, which can be computed according to the
probability density functions, interval analysis only allows us to state if a value could be possible
(i.e. it belongs to the interval), or if it is outside the interval. However, no statement about
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the probability of each value is made, which means that the true distribution can be arbitrary
without violating the quality of the interval error model.

Thus, comparing interval analysis to stochastic distributions means comparing two different
ways of modeling sensor errors - each with different assumptions about the real world. While
stochastic approaches assume the error distributions to be known, interval-based approaches
consider the error bounds to be available and to reliably enclose the true value. Hence, we
can argue that the assumption about knowing the exact error distribution is more strict than
only assuming the error bounds to be known - without making any additional statement
about the distribution between those bounds. However, in practice none of those assumptions
is universally correct, and thus it depends on which model is more appropriate and which
advantages (cf. Section 1.1.1) prevail.

Fig. 3.1 shows the relation between interval bounds and a Gaussian distribution. In the case
that sensor data sheets provide us only with the standard deviation σ of a measurement µ, it
is convenient to enclose the true value with a confidence rate of 99.73% by setting the interval
bounds to [x] = [µ− 3σ, µ+ 3σ]. Potential outliers can be taken care of by employing special
interval analysis tools (cf. Section 3.9).

In summary, no direct connection exists between stochastic distributions and interval-based
error modeling since fundamentally different assumptions are made. In the case of unknown
error distributions, interval analysis prevails since it is compatible with any distribution. In
particular, stochastic distributions suffer if the mean error deviates from zero while interval
analysis is still applicable [71].

3.2 Basic notions

An interval [x] is a closed and connected subset of R. The set of all intervals is denoted by IR.
The interval [x] is defined by its lower and upper bounds x and x, respectively, such that

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x }. (3.4)

Both, the lower and upper bounds can be infinite. In the case of x = x the interval [x] is said
to be degenerate. Using this formalism, any real number can be considered as a degenerate
interval. Finally, the empty interval - which represents the absence of a solution for our problems
- is denoted by ∅.

The width of an interval [x] is defined as

w([x]) = x− x. (3.5)

It can be understood as the uncertainty on x∗ which is the actual but unknown value we aim
to estimate. Similarly, the radius of an interval [x] is defined as

r([x]) = x− x
2 . (3.6)
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Moreover, the midpoint of an interval [x] is defined as

mid([x]) = x+ x

2 . (3.7)

If we require a scalar output for our set-membership approach, the midpoint may serve as an
intuitive approximation of x∗.
Example 3.2.1. The following are examples for intervals, their width and their midpoints:

[x] w([x]) mid([x])
[1, 5] 4 3
[3] 3 3
∅ undefined undefined

3.3 Set-theoretic operations

Given two intervals [x] and [y], we can compute their intersection as defined in set theory:

[x] ∩ [y] = { z ∈ R | z ∈ [x] and z ∈ [y] }. (3.8)

Similarly, their union is

[x] ∪ [y] = { z ∈ R | z ∈ [x] or z ∈ [y] }. (3.9)

While the intersection of two intervals results in a new interval, the union of two intervals is
not necessarily an interval since the resulting set can be disconnected.
Example 3.3.1. [1, 2] ∪ [4, 5] is not an interval, since it results in a disconnected set. For
example, the number 3 is missing in this set.

To overcome this problem, we use the interval hull of [x]∪ [y] to create the smallest interval
containing both [x] and [y]:

[x] t [y] = [[x] ∪ [y]], (3.10)

where [{X}] is the smallest interval containing all values from the set X.
Example 3.3.2. The following are examples for set-theoretic operations:

• [1, 5] ∩ [3, 7] = [3, 5],
• [1, 2] t [4, 5] = [1, 5],
• [x] ∩∅ = ∅,
• [x] t [−∞,∞] = [−∞,∞].

3.4 Interval computations
Up until here, only concepts of set theory have been introduced. However, the main idea of
interval analysis is to extend the classical real arithmetic operators to set theory, making it
possible to perform arithmetic computations with intervals/sets. Let � be one of the four
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classical operators, i.e. � ∈ {+,−, ·, /}. Given two intervals [x] and [y], performing [x] � [y]
means computing the smallest interval that contains x � y for every x ∈ [x] and y ∈ [y]:

[x] � [y] = [{x � y ∈ R | x ∈ [x], y ∈ [y] }]. (3.11)

Since we are dealing with closed intervals, the interval bounds are sufficient to perform the
aforementioned operations, e.g.

• [x] + [y] = [x+ y, x+ y],
• [x]− [y] = [x− y, x− y].

Definitions for · and / can be found in [9].
Example 3.4.1.

• [−3, 1] + [4, 7] = [−3 + 4, 1 + 7] = [1, 8].
• [2, 4]− [1, 6] = [2− 6, 4− 1] = [−4, 3].
However, some properties of the basic operators in R differ from those of their interval

counterpart. For example, in general, [x] − [x] 6= [0], because [x] − [x] = [x− x, x− x].
Furthermore, it holds that

[x] · ([y] + [z]) ⊂ [x] · [y] + [x] · [z]. (3.12)

Thus, it is sometimes important to simplify an equation as much as possible to create tighter
intervals.

Further operators that have to be extended to interval arithmetic are elementary functions
such as sin, cos, exp. We give a general definition for these functions while taking into account
that a discontinuous function should not result in a disconnected interval:

[f ]([x]) = [{ f(x) | x ∈ [x] }]. (3.13)

For monotonic functions such as exp the evaluation is straightforward since monotonicity
means that the function only increases or decreases for an increasing argument. Thus, evaluating
the function at the bounds of the argument is sufficient to compute its image:

[exp]([x]) = [exp(x), exp(x)]. (3.14)

However, for non-monotonic functions the computation is more complicated. For example,
using only the bounds to compute [cos]([−π, π]) results in [cos(−π), cos(π)] = [−1,−1], which
differs from the correct result [cos]([−π, π]) = [−1, 1]. To compute these kind of functions,
special algorithms have been built [9].

3.5 Interval vectors

An interval vector (also called box) is the Cartesian product of n intervals, and thus a subset
of Rn:

[x] = [x1]× [x2]× · · · × [xn], (3.15)
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[x1]

[x2] [x]

Figure 3.2: Example for an interval vector [x] = [x1]× [x2] and the projections onto the axes.

where [xi] = [xi, xi], for i = 1, . . . , n.
An interval vector is also denoted as [x] = ( [x1] . . . [xn] )ᵀ. The set of all interval vectors

is denoted as IRn. Naturally, an interval vector [x] is an axis-aligned box, and thus it’s i-th
component is the projection of [x] onto the i-th axis. An example for [x] ∈ IR2 is depicted in
Fig. 3.2.

The basic operations on intervals - such as finding the lower bound, upper bound, midpoint
or width (cf. Section 3.2) - can be easily extended to interval vectors by performing the
corresponding operation on each component of the interval vector. For example, the midpoint
of an interval vector [x] is

mid([x]) = (mid([x1]), . . . ,mid([xn]))ᵀ. (3.16)

Naturally, the definitions introduced for interval vectors can be transferred to interval
matrices accordingly.

3.6 Inclusion functions

Given a function f from Rn to Rm, it is possible to compute the image set f([x]) that results
from applying the function f to every possible value of an interval vector [x]. However, this
image set may have any shape and is not necessarily a box. For instance, this set may consist
of non-connected subsets and can have holes. An example for such a function f resulting in
this kind of image set is depicted in Fig. 3.3. Since dealing with such sets is more complicated
and can become computationally expensive, we strive for a box that is guaranteed to contain
the set, i.e. we want to enclose the set in a box.

In order to do that, we define an interval function [f ] from IRn to IRm as the inclusion
function for f if it computes a box enclosing the image set for any input:

∀ [x] ∈ IRn : f([x]) ⊂ [f ]([x]). (3.17)

The purpose of inclusion functions is to compute a tight enclosure in a short time. A naive
inclusion function for any function f is [f ]([x]) = Rm. While this inclusion function can be
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computed quickly, the resulting box [f ]([x]) is very large, and thus it is not a useful inclusion
function. Fig. 3.3 shows an example of an inclusion function.

An inclusion function is said to be
• minimal if ∀[x], [f ]([x]) is the smallest box containing f([x]). The unique, minimal

inclusion function for f is denoted as [f ]∗ (cf. Fig. 3.3).
• thin if for any punctual interval vector the image is also degenerate: [x] = x, [f ]([x]) =

f(x).
• inclusion monotonic if the following holds: [x] ⊂ [y]⇒ [f ]([x]) ⊂ [f ]([y]).

x1

x2

y1

f([x])

[f ]([x])

[f ]∗([x])

f(x)

[x]

x

y2

Figure 3.3: Examples for: a function f resulting in a disconnected image set f([x]); an inclusion
function [f ] resulting in the box [f ]([x]) enclosing the image set; a minimal inclusion
function [f ]∗ resulting in the smallest possible enclosure [f ]∗([x]) of the image set.

3.6.1 Natural inclusion functions

A straightforward way to obtain an inclusion function for a function f : Rn → Rm that is
composed of a finite number of the four classical operators (+, −, ·, /) and elementary
functions (sin, cos, tan,

√
·, . . . ) is to replace each real variable xi by an interval variable [xi]

and each operator by the corresponding interval operator. An inclusion function [f ] obtained
this way is called a natural inclusion function.

Due to design, each natural inclusion function is thin and inclusion monotonic. However,
in general it is not minimal because of dependencies between variables (cf. Section 3.4).
Nevertheless, if it is composed of continuous operators and functions only, and each of the
variables [xi] appears only once, then [f ] is minimal.
Example 3.6.1. Consider the natural inclusion function f1(x) = 2x − x. It is not minimal
due to dependencies between the variables. Reformulating the expression to an equivalent
function f2(x) = x yields a minimal inclusion function since the variable x appears only once.
Evaluating both functions for [x] = [1, 2] shows this:

[f1]([x]) = 2 · [1, 2]− [1, 2] = [2, 4]− [1, 2] = [0, 3] ⊃ [1, 2] = [f2]([x]). (3.18)
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3.7 Contractors

Starting from an initial domain, we aim to compute the smallest domain for variables that satisfy
a set of constraints. However, characterizing the solution set S is NP-hard in general. Thus, we
introduce contractors in the following section which often allow to compute a reasonably tight
enclosure for the solution set while keeping the computation time polynomial. First, however,
we present the formulation of a CSP for which contractors can be built.

3.7.1 Constraint Satisfaction Problem (CSP)

Let xi, 1 ≤ i ≤ nx, be a set of variables and fj, 1 ≤ j ≤ nf , a set of arbitrary functions that
link those variables as follows

fj(x1, x2, . . . , xnx) = 0. (3.19)

Here, the functions act as constraints on the variables and may allow us to reduce the width of
each variables’ initial domain. Let

x =
(
x1 x2 . . . xnx

)ᵀ
(3.20)

be the variable vector and
[x] = [x1]× [x2]× · · · × [xnx ] (3.21)

be the initial domain for those boxes (i.e. xi ∈ [xi], 1 ≤ i ≤ nx). Furthermore, f is the vector
function consisting of all fj. Now, summarizing (3.19) yields f(x) = 0. This allows us to
formulate the CSP H as

H : (f(x) = 0, x ∈ [x]). (3.22)

A possible solution to H is a mapping that assigns a value from its domain to each variable
such that all constraints are satisfied. Thus, the solution set S of H is

S = {x ∈ [x] | f(x) = 0 }. (3.23)

Example 3.7.1. An exemplary CSP is the following set of constraints and initial domains:

H :

 f(x) =

x2 − exp(x1) = 0
sin(x1) + x3 = 0

[x1] = [2, 3], [x2] = [0, 1], [x3] = [−1, 0.5]

 . (3.24)

3.7.2 Contractors

To approximate the solution set of a CSP, it is possible to contract the variables’ initial domains.
In this case, contracting means replacing the (initially large) domain [x] by a smaller domain
[x′] ⊂ [x] such that S ⊂ [x′]. In other words, only parts that are not contained in the solution
set S are removed from [x]. Any operator that can perform such a contraction is denoted as a
contractor C. However, to avoid an exponential time complexity, contractors cannot bisect the
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Contraction

[0.6931, 1]× [2, 2.718]

[0.3, 1]× [2, 4]

exp(x1)

Figure 3.4: Illustration of how a contractor works. An initially large box [0.3, 1] × [2, 4] is
contracted to the minimal box [0.6931, 1]× [2, 2.718] to better approximate the
exponential function without losing any part of the solution. Example 3.7.2 shows
the corresponding steps in the algorithm.

domain (in contrast to the SIVIA algorithm, which will be explained in Section 3.8). Fig. 3.4
shows the general idea of a contractor.

Formally defined, a contractor is a mapping C from IRn to IRn such that the following
properties hold [72]:

1. Contraction: ∀[x] ∈ IRn, C([x]) ⊆ [x].
2. Consistency: (x ∈ [x], C({x}) = {x}) ⇒ x ∈ C([x]).

Furthermore, we denote a box as insensitive to C if C([x]) = [x]. Otherwise, it is said to be
sensitive. The first property ensures that a contractor can only reduce a box, and not enlarge
it. The second property guarantees that no insensitive points will be removed. Together, these
properties ensure that a contractor never loses a part of the solution and can be applied as
many times as desired since the box can only get smaller.

Other important properties of a contractor C are:

3. Continuity: C({x}) = ∅ ⇔ (∃ε > 0, ∀[x] ⊆ B(x, ε), C([x]) = ∅),
where B(x, ε) is the ball centered on x with radius ε.

4. Monotonicity: [x] ⊆ [y]⇒ C([x]) ⊆ C([y]).
5. Minimality: ∀[x] ∈ IRn, C([x]) = [[x] ∩ set(C)].
6. Idempotence: ∀[x] ∈ IRn, C(C([x])) = C([x]).
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Especially the fifth property is important since we are often interested in finding the minimal
contractor that manages to contract the box [x] to the smallest box containing the solution
set. Moreover, the third property enforces that the set

set(C) = {x ∈ Rn | C(x) = x } (3.25)

is closed. This is required to prove the convergence of contractors.
One of the most important contractors we want to introduce here is the forward-backward

contractor [73]. It decomposes all constraints of a CSP H : f(x) = 0, x ∈ [x] into primitive
constraints and considers them in isolation. In contrast to many different contractors, of which
some can be found in [9], the number of constraints nf is not necessarily equal to the number
of variables nx. The following example illustrates the operations of the forward-backward
contractor.
Example 3.7.2. Consider a reduced version of the CSP given in Example 3.7.1:

H :
(
f(x) = x2 − exp(x1) = 0
[x1] = [0.3, 1], [x2] = [2, 4]

)
(3.26)

For the forward propagation, the constraints are split into a finite sequence of elementary
operations to compute y = f(x). Intermediate variables ai, i > 0 are used to express these
operations:

[a1] := exp([x1])
[y] := [x2]− [a1]

⇒
⇒

[a1] = exp([0.3, 1]) = [1.350, 2.718],
[y] = [2, 4]− [1.350, 2.718] = [−0.718, 2.650].

[y] is taken equal to {0} since f(x) = 0:

[y] := [y] ∩ {0} ⇒ [y] = {0}.

If [y] turns out to be empty, the CSP has no solution. Subsequently, the backward propagation
is performed by computing all possible reformulations of the elementary operations:

[x2] := [x2] ∩ ([y] + [a1])
[a1] := [a1] ∩ ([x2]− [y])
[x1] := [x1] ∩ log([a1])

⇒
⇒
⇒

[x2] = [2, 4] ∩ ([0] + [1.350, 2.718]) = [2, 2.718],
[a1] = [1.350, 2.718] ∩ ([2, 2.718]− [0]) = [2, 2.718],
[x1] = [0.3, 1] ∩ log([2, 2.718]) = [0.6931, 1].

Finally, [x] = [0.6931, 1]× [2, 2.718] is the contracted (and in this case minimal) domain for
the CSP H. Fig. 3.4 visualizes the contraction performed in this example.

Generally, the forward-backward contractor is not minimal and must be applied numerous
times in succession to find a reasonably small box. It is minimal, however, if each variable
appears only once in all constraints together.
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3.8 Set Inversion Via Interval Analysis (SIVIA)
Often, non-linear functions have to be inverted in mobile robotics to compute the solution to
various problems. For example, given a distance function and the corresponding distances to
landmarks, we can compute the robot’s position in 2D by inverting the distance function and
intersecting the resulting circles. However, inverting a non-linear function is not straightforward.
To do this in a bounded-error context, SIVIA was introduced by Jaulin and Walter [74]. In the
following, this section introduces the corresponding algorithm, but first explains the wrapping
effect and introduces subpavings, which are the result of SIVIA.

3.8.1 Wrapping effect
Since intervals and interval vectors are axis-aligned, we introduce pessimism whenever we try
to enclose a set that is not an axis-aligned box. This phenomenon is called wrapping effect. If
we evaluate a function which suffers from the wrapping effect multiple times in a row, this
pessimism can quickly increase. Moore [66] provides an intuitive example for this problem
by applying consecutive rotations to a box. Fig. 3.5 shows this example. To overcome the
wrapping effect, we introduce a set of non-overlapping boxes to describe the solution set in the
following section.

y

x

Figure 3.5: Illustration of the wrapping effect for a robot taking a 180° turn. Starting in the
bottom right corner, the robot (blue box) moves along the black path. At first,
the interval box (red) enclosing the robot is very small since the robot’s position is
known accurately. However, after starting to turn, we compute the robot’s rotation
and apply the very same rotation to the interval box. Now, we need to again find
an axis aligned interval box enclosing the robot’s position, which is depicted in
orange. After continuing further on the path, the new interval box is again rotated
according to the robot’s rotation and enclosed using a new axis aligned box (green).
Finally, after some more identical steps, the interval box enclosing the robot has
become very large (blue).
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(a) Visualization of bisections.
The gray boxes form a reg-
ular subpaving.

X

X

X

(b) Illustration of an inner subpaving X (red) and
outer subpaving X (blue) of the solution set X
(green).

Figure 3.6: Visualization of regular subpavings.

3.8.2 Subpavings

Let K be a set of n boxes:
K = {[x1], [x2], . . . , [xn]}. (3.27)

K is called a subpaving if the boxes xi, 1 ≤ i ≤ n are non-overlapping.
Let [x] be a box enclosing the solution set which we want to approximate more accurately

using a subpaving. To do this, we use a finite number of bisections and selections on [x]
(i.e. recursively splitting [x] in half and keeping only those boxes that contain parts of the solution
set). The set of boxes K resulting from this iterative process is called a regular subpaving.
Fig. 3.6a shows a regular subpaving and its origin from multiple bisections. Typically, bisections
are employed to halve the boxes in their widest dimension.

There exist two different types of subpavings to describe a solution set X. The inner
subpaving X consists only of boxes that lie completely in the solution set, while the outer
subpaving X contains the inner subpaving and additionally all boxes that contain parts of the
solution set. Thus,

X ⊆ X ⊆ X (3.28)

Fig. 3.6b shows an example for an inner and an outer subpaving. Usually, we are interested in
computing an enclosure for the solution set, and thus we will compute an outer subpaving.

3.8.3 SIVIA algorithm

Set inversion is an operation to characterize the set

X = {x ∈ Rn | f(x) ∈ Y } = f−1(Y), (3.29)

where f is a possibly non-linear function f : Rn → Rm and Y is a subset of Rm. The SIVIA
algorithm [74] allows to compute an approximation for X for any Y and any function f for
which a convergent inclusion function [f ] : IRn → IRm exists. As introduced in the previous
section, SIVIA allows to compute an inner and outer subpaving enclosing the solution set
(cf. (3.28)). Fig. 3.7 shows the general idea of SIVIA.
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Figure 3.7: Illustration of how SIVIA works. An initially large box [x0] is bisected to better
approximate the exponential function. Gray boxes contain part of the solution while
white boxes are discarded. Note that [x0] cannot be contracted using a contractor
since it is already the minimal box enclosing the function.

Algorithm 1: SIVIA
input : [f ], [x0], Y, ε
output :X, X

1 S := {[x0]} ; // S is a stack
2 while S 6= ∅ do
3 [x] := top(S);
4 if [f ]([x]) ∩ Y = ∅ then
5 continue;
6 else if [f ]([x]) ⊂ Y then
7 X := X ∪ [x] ;
8 X := X ∪ [x] ;
9 else if w([x]) < ε then
10 X := X ∪ [x] ;
11 else
12 ([x1], [x2]) := bisect([x]);
13 S := S ∪ {[x1]} ∪ {[x2]};
14 end
15 end

In the beginning, SIVIA requires an arbitrarily large box [x0] that is guaranteed to contain
the outer subpaving X. Starting from this box, SIVIA will check if it belongs to X, both X
and X, or if it is not part of the solution set. If the box is too large to decide, SIVIA will
bisect the box and continue with the two sub-boxes recursively. An exemplary version of the
algorithm is depicted in Algorithm 1. The four different cases encountered in the algorithm
can be characterized as follows and are illustrated in Fig. 3.8:

1. [f ]([x])∩Y = ∅: [x] does not lie in the solution set, and thus it is not further considered.
2. [f ]([x]) ⊂ Y: [x] belongs completely to the solution set, and thus we can add it to both

the inner and outer subpaving.
3. [f ]([x]) ∩ Y 6= ∅ and w([x]) < ε: At least some part of [x] belongs to the solution set.

Since the box is already small enough with respect to the algorithm’s expected precision,
we stop the computation on this box and add it to the outer subpaving.

4. Otherwise, we bisect [x] (usually along it’s widest dimension) and continue the computa-
tion with the resulting sub-boxes.
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(a) First case: [f ]([x]) ∩ Y = ∅: [x] does not belong to the
solution set.
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(b) Second case: [f ]([x]) ⊂ Y: [x] belongs completely to the
solution set.
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(c) Third case: [f ]([x]) ∩ Y 6= ∅ and w([x]) < ε: At least
some part of [x] belongs to the solution set.
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(d) Fourth case: [f ]([x]) ∩ Y 6= ∅ and w([x]) > ε: [x] is
undetermined and will be bisected.

Figure 3.8: Illustration of the four cases encountered by the SIVIA algorithm. The set on the
left in light blue is the set to be computed: X = f−1(Y).
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The only parameter of SIVIA is ε, which is used to set the precision of the approximation of
the solution set. The smaller we choose ε, the more bisections occur and the smaller are the
boxes in the outer subpaving. However, this comes at the cost of an increased computation
time. Fig. 3.9 shows examples for subpavings of different accuracies as computed by SIVIA.

(a) Small ε → high accuracy. (b) Large ε → low accuracy.

Figure 3.9: Subpavings of different accuracy levels computed by the SIVIA algorithm to enclose
a circle with an unknown but bounded radius. The boundary of the true solution
set is depicted in black. The inner and outer subpavings are colored in red and
blue, respectively.

There exist different ways to reduce the computation time of SIVIA or to increase the
accuracy. For example, SIVIA can be parallelized to allow the simultaneous evaluation of
different boxes from the stack. Furthermore, SIVIA can be used in conjunction with contractors.
This allows to omit some bisections by contracting the boxes beforehand. However, this comes
at the price that the resulting subpaving may no longer be regular. Algorithm 2 shows a simple
version of the SIVIA algorithm which bases its computations on the contractor C. In contrast to
the previous algorithm, it computes only the outer subpaving. However, for most applications
which require an outer enclosure of the solution set only, this is sufficient.

Algorithm 2: SIVIA with contractor
input : C, [x0], ε
output :X

1 S := {[x0]} ; // S is a stack
2 while S 6= ∅ do
3 [x] := top(S);
4 [x] := C([x]);
5 if [x] = ∅ then
6 continue;
7 else if w([x]) < ε then
8 X := X ∪ [x] ;
9 else
10 ([x1], [x2]) := bisect([x]);
11 S := S ∪ {[x1]} ∪ {[x2]};
12 end
13 end
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3.9 Relaxed intersection
In the case of outliers, the intersection of multiple intervals may be empty.
Example 3.9.1. Consider 5 intervals [x1] = [1, 3], [x2] = [2, 3], [x3] = [2, 5], [x4] = [4, 6],
[x5] = [1, 5]. Apparently, their intersection is empty:

[x1] ∩ [x2] ∩ [x3] ∩ [x4] ∩ [x5] = ∅. (3.30)

To allow for outliers, it is possible to compute a q-relaxed intersection meaning that a
maximum of q outliers are tolerated and all other intervals have to overlap [75, 76]. This
requires the additional assumption that we encounter q outliers at most. Given n intervals

[xi], 1 ≤ i ≤ n, we denote the q-relaxed intersection by
{q}⋂

1≤i≤n
[xi]. An illustration of the

q-relaxed intersection is given in Fig. 3.10.
Example 3.9.2. The 1-relaxed intersection for Example 3.9.1 is

{1}⋂
1≤i≤5

[xi] = [2, 3]. (3.31)

Furthermore, the 2-relaxed intersection is

{2}⋂
1≤i≤5

[xi] = [2, 5]. (3.32)

(a)
{1}⋂

1≤i≤4
[xi]. (b)

{2}⋂
1≤i≤4

[xi]. (c)
{3}⋂

1≤i≤4
[xi].

Figure 3.10: Exemplary q-relaxed intersection of four sets for q ∈ {1, 2, 3}.

3.10 Tubes
In the context of mobile robotics, sensors are often not synchronized and the robot may move
between different measurement acquisitions. However, all techniques described up until here
deal with static state estimation problems and have no means to take time uncertainties into
account. In order to tackle this problem, Bethencourt and Jaulin introduced the notion of
tubes [77] to extend trajectories to the set-membership field. Similar to [68], we denote a
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[x](·)

t1
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t0 tf

[x]

[x](t1)

Figure 3.11: An exemplary tube [x](·) enclosing the true one-dimensional trajectory x∗(·).
Selecting a distinct point in time t1 results in an interval [x](t1) enclosing the
true value x∗(t1).

single n-dimensional trajectory by x(·) : R→ Rn. The (·) notation is used to clearly separate
the notion of a trajectory from a single evaluation of it: x(t) ∈ Rn.

A tube is defined as a set of trajectories over a time interval [t] = [t0, tf ]. Consequently, it
is denoted as [x](·) : R→ IRn. Formally, a tube is defined by two trajectories, which depict
the lower and upper bounds of the tube: [x](·) = [x(·),x(·)], such that ∀t ∈ [t] : xi(t) ≤ xi(t),
where i = 1, . . . , n. Fig. 3.11 shows an exemplary one-dimensional tube. As can be seen, it
encloses the true trajectory x∗(·). Generally, a trajectory x(·) is enclosed in the corresponding
tube [x](·) if ∀t ∈ [t] : x(t) ∈ [x](t).

Interval computations, as presented in Section 3.4, can easily be extended to tubes. In order
to do so, we adapt the general definition for an operator � ∈ {+,−, ·, /} that is applied to two
tubes [x](·) and [y](·):

[x](·) � [y](·) = [{x(·) � y(·) ∈ Rn | x(·) ∈ [x](·),y(·) ∈ [y](·) }]. (3.33)

In words, we compute the smallest tube [x](·) � [y](·) containing all possible combinations of
arbitrarily picking a trajectory x(·) out of tube [x](·) and a a trajectory y(·) out of tube [y](·).
Other operators defined for interval computations can be extended accordingly.

To find the range of possible values in a specific time interval, we recite the interval
evaluation of a tube according to Bethencourt and Jaulin [77]:

[x]([t]) = [{x(t) | x(·) ∈ [x](·), t ∈ [t] }] =
⊔
t∈[t]

[x](t). (3.34)

Fig. 3.12 visualizes this operation. Another operation specifically designed for the handling of
tubes is the tube inversion. Rohou [68] defines it as follows:

[x]−1([y]) =
⊔

y∈[y]
{ t ∈ [t] | y ∈ [x](t) }. (3.35)

In words, we are interested in finding the time interval [t] for which the tube intersects a given
interval [y]. Fig. 3.13 illustrates the idea. As can be seen, the resulting set is technically
disconnected (e.g. there is a gap between [t1] and [t2]), but since we aim to find a single
interval enclosing all points in time, we have to settle for the interval enclosure of the single
time intervals.
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Figure 3.12: Interval evaluation of a tube for [t1].
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Figure 3.13: Tube inversion: [x]−1([y]) =
⊔

1≤i≤4
[ti] = [t1, t4].

Generally, this operation is defined over the whole time interval [t] = [t0, tf ]. However, in
specific cases we may be interested in computing the tube inversion only for a predefined time
interval [tp]. In this case, it is defined as:

[x]−1([y], [tp]) =
⊔

y∈[y]
{ t ∈ [tp] | y ∈ [x](t) }. (3.36)

It is evident that this definition is generally different to computing ([x]−1([y])) ∩ [tp].
Similar as for static state estimation problems, it is possible to design tube contractors that

can be applied to tubes. However, instead of contracting individual intervals, these contractors
aim to remove parts of the tube, and thus remove whole trajectories from the set of trajectories.
Generally, there are two different types of constraints for which contractors have been built.
On the one hand, synchronous constraints are of the form x(t) = y(t). On the other hand,
asynchronous constraints are of the form x(t) = y(t + 1). The reader interested in the
corresponding minimal contractors is referred to [77].

3.10.1 From real data to tubes
Contrary to tubes, which are defined continuously over time, real sensors output data at a
fixed rate. Since we only know the measurement value (or interval) acquired at specific points
in time, generally we cannot make a statement how the observed entity develops in between.
This is especially true for sensors which provide data at a low frequency. Thus, the question
arises how to fill the “gaps” between measurements to obtain a continuously defined function.

To answer this question, we have to first decide whether we are interested in finding a
guaranteed enclosure that is suitable for a sound proof or whether we can settle for a fine
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Figure 3.14: Linear interpolation between sensor measurements (black intervals) to create a
tube that is continuously defined over time.

approximation that works well in practice. In the first case, derivative information is required to
bound the progression of the observed value between measurements. Naturally, the derivative
can be given in the form of a tube. For example, we may use GNSS measurements to obtain
position estimates at a specified rate and simultaneously employ an odometer to additionally
measure our robot’s velocity. In this case, we are to build a tube that is guaranteed to contain
the robot’s true.

However, derivative information is often hard to obtain. In the case that it is not available,
we have to settle for a fine approximation of the trajectory, which is usually sufficient - especially
if the sensor outputs measurements at a high rate. Similar to Rohou [68], we linearly interpolate
between the measurements to create a tube that is defined continuously over time. Fig. 3.14
illustrates the idea.

To represent tubes in a computer we use the Tubex library [78], which is openly available
and compatible with IBEX. It implements a tube using slices of arbitrary widths as presented
in [68, 77]. In other words, the tube is sampled into several interval boxes that have an arbitrary
width on the time axis. This allows easier computation since interval arithmetic on boxes is
well defined.

3.11 Importance of error bounds
Often, we do not have all the necessary information to accurately determine the error bounds
of a measured value. For example, when measuring a distance using the ToF of a laser beam,
the distance depends on the speed of light. However, the speed of light is influenced by many
different factors (e.g. temperature, air pressure, etc.) that we may not know. Consequently,
it becomes difficult to find accurate bounds for the speed of light and thus for the distance
measured.

Since the most important assumption of interval analysis is that the bounds are guaranteed
to enclose the true value, they should therefore be chosen conservatively, as to avoid a violation
of the assumption. However, if the bounds are chosen too conservatively, the measurement is
diluted, and even repeating the measurement does not increase its accuracy. In the best case,
we know the exact error bounds that are reached during the measurement, but not exceeded.
Then, the intersection of a several times repeated measurement becomes a degenerate interval
and we know the exact true value. However, in practice the exact maximum error is almost never
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known. Thus, the error bounds should be chosen conservatively, bearing in mind that a gross
over-estimation is also undesirable. The following example demonstrates the aforementioned
properties.
Example 3.11.1. Let d1 = 1.00 m, d2 = 1.01 m and d3 = 0.99 m be three measurements
of the same distance with an actual accuracy of δ = 0.01. However, we erroneously choose
δ′ = 0.1 as our interval bounds. Consequently, the intersection of all three interval distances
becomes

[d1] ∩ [d2] ∩ [d3] = [0.9, 1.1] m ∩ [0.91, 1.11] m ∩ [0.89, 1.09] m = [0.91, 1.09] m. (3.37)

As can be seen, the accuracy (i.e. interval width) of the intersected measurements is roughly
the same as for the individual measurements (0.18 m vs 0.2 m). If we instead choose the correct
accuracy of δ = 0.01 we get

[d1] ∩ [d2] ∩ [d3] = [0.99, 1.01] m ∩ [1.00, 1.02] m ∩ [0.98, 1.00] m = [1.00 m]. (3.38)

As can be seen, the interval becomes degenerate, thus resulting in the exact true value without
any uncertainty.

3.12 Related work
In the following, we introduce state-of-the-art approaches for the spatiotemporal calibration
of sensors and the dead reckoning of mobile robots using camera and/or laser scanner that
employ interval analysis.

3.12.1 Spatiotemporal calibration
In 1985, Marzullo and Owicki introduced the first application of interval analysis for the
synchronization of clocks in infrastructure networks [79]. They implement a service that
allows to synchronize the time in client-server applications and consider the maximum error
made during this synchronization. Although this work is not directly concerned with the time
synchronization of black-box sensors and requires cooperation from the network nodes, we
mention it here as it constitutes the first application of interval analysis in this field.

Bezet and Cherfaoui propose to timestamp sensor data using interval timestamps to take
sensor latency, transmission delay and clock granularity into account [80]. Their goal is to
convert the timestamps for sensor data from one time reference to another. Moreover, they
continuously estimate the drift between sensor clocks. However, their approach requires a
common clock, such as the bus network clock.

Olson presents an approach that does not use interval analysis tools but still conforms to
the minimum/maximum error paradigm [35]. The author develops a passive algorithm that
improves the computation of sensor data timestamps on the host computer. In contrast to
other approaches, no cooperation from the sensor is required. Instead, the author’s goal is to
determine the communication latency which is the time that passes between the acquisition
of sensor data and its arrival on the host computer. Given the assumption that each system
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occasionally exhibits low-latency for a single sensor message, the minimum latency can be
determined and constitutes a lower bound on the delay between sensor and host timestamps.
Consequently, by considering this minimum latency, the sensor synchronization can only be
improved. However, no upper bound for the synchronization error can be computed using this
method.

Zaman and Illingworth propose the only approach that uses interval analysis and sensor data
to find an interval for the relative timestamp offset between sensor clocks [81]. Their specific
sensor combination in this work is an odometer and a camera. To detect the timestamp offset,
the authors detect distinct events using both sensors. Consequently, they acquire timestamps in
the time reference of each sensor that correspond to the same event. In their specific case this
event is a change from non-motion to motion. Based on these event timestamps, they are able
to compute an interval enclosing the timestamp offset. The accuracy of this interval depends
on the measurement rate of each sensor, but can be improved by increasing the number of
events. Later, it is proven that the algorithm manages to achieve a sub-sample accuracy [82].
Nevertheless, a large number of events is required to accurately estimate the timestamp, which
requires extensive experiments on the one hand and may not be convenient to detect for other
sensor combinations on the other hand.

So far, we have only presented related work on the time synchronization of sensors. This is
because, to our best knowledge, no work has been published on the extrinsic calibration of
sensors using interval analysis.

3.12.2 Visual-LiDAR odometry
Several interval-based approaches for the localization of a mobile robot have been presented.
For example, Langerwisch and Wagner propose to use a laser scanner and wheel odometry to
localize a robot in a two-dimensional feature-based map [83]. Similarly, Kenmogne et al. localize
an unmanned aerial vehicle using a camera and known landmarks in the environment [84, 85].
However, in this work we focus on the dead reckoning of a mobile robot in a local coordinate
system without a known map or landmarks.

Since the odometry computation is the first step of the SLAM problem, we also cite related
work from this research field. In 2009, Jaulin proposed an approach to tackle the SLAM
problem for underwater robots [86]. In this work, he casts the problem into a CSP and builds
contractors that are able to reliable compute a box enclosing the robot’s position. To compute
the robot’s odometry, a loch-Doppler and a gyroscope that measure the speed and rotation,
respectively, are employed. In 2015, Jaulin proposed another approach to solve the SLAM
problem [87]. In this work, he relies solely on range measurements and uses the robot’s control
inputs to compute an initial estimate of the robot’s odometry. Subsequently, this estimate is
contracted using information provided by the range sensors and from the built map.

Similar to Jaulin, Vincke et al. cast the SLAM problem into a CSP [88]. However, they
use different sensors, namely two odometers and a camera. The odometers are employed to
estimate the robot’s odometry and the camera is used to build a map of distinct image features
which are then used to correct the odometry estimate using forward-backward contractors.

Bethencourt and Jaulin introduce a set-membership approach for the three-dimensional
reconstruction of arbitrary objects using a Microsoft Kinect, which is a device composed of a
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color camera and an infrared depth sensor [89]. To be able to correctly reconstruct an object,
it must be detected from different angles, thus requiring the motion between these viewing
angle to be known. To estimate this motion, the authors detect visual features, for which they
automatically receive depth information thanks to the infrared sensor, and match these across
multiple image frames. Consequently, the motion can be estimated by computing the rigid
body transformation. For this computation, the authors employ a forward-backward contractor.

Similarly, Mustafa et al. propose an approach to compute a robot’s two-dimensional rigid
body transformation between distinct points in time, which allows them to infer the robot’s
motion [90]. For their work, they assume to be able to detect distinct landmarks from
different positions using range imaging sensors (infrared sensors, structured-light sensors, etc.).
Subsequently, these associations allow them to formulate a CSP which is then solved using
a forward-backward contractor. Later, the authors extend their work to the SLAM problem
and prove that their approach for mapping is guaranteed to converge if some landmarks with
known locations are available [91].

3.12.3 Relation to this work
In Section 3.12.1 we introduce approaches for the time synchronization of sensors using interval
analysis. However, there is only one approach that computes an interval for the timestamp offset
using only sensor data without requiring cooperation from the sensors. Moreover, this approach
requires the detection of distinct events that need to be generated manually in extensive
experiments. Contrary, this work proposes a new approach to compute the timestamp offset
between camera and IMU, which does not require discrete events but relies on a continuous
representation, namely the rotation of the sensors. In addition, we extend this approach to a
spatiotemporal calibration by also computing the extrinsic rotation between sensor coordinate
systems since, to our best knowledge, there exists no interval-based approach for the extrinsic
calibration of sensors. For this reason, we also present a new approach for the extrinsic
calibration of camera and laser scanner.

In Section 3.12.2 we present approaches to compute the odometry of a robot. Since the
dead reckoning is a first step to solve the SLAM problem, most presented approaches come
from this research field. Although different sensors are employed for every approach, they do
not fuse information from these sensors on the measurement level. Instead, they compute an
interval box enclosing the robot’s pose using one sensor, and subsequently contract this box
using information from a different sensor. In contrast, we propose to directly fuse information
from camera and laser scanner due to the advantages outlined in Section 1.2. In this regard,
the approach proposed by Bethencourt et al. and Mustafa et al. is closest to ours. Similar to
us, they compute the rigid body transformation of a robot using corresponding 2D/3D points.
However, they do not need to perform manual sensor fusion since they use range imaging
sensors that directly provide color and distance information in an image. But, due to their
short range and other drawbacks detailed in Section 1.2, these sensors are not suitable for use
on autonomous vehicles.



4 Sensor Error Models

Camera

Laser
scanner

Inertial
Measure-
ment Unit

Bounded
Sensor Error

Models

Spatiotemporal
Calibration

Visual-LiDAR
Sensor Fusion

Guaranteed
Visual-LiDAR
Odometry

Undistorted
images and
intrinsic

parameters

Spherical
coordinates

Angular
velocities

Camera:
Image pixel

boxes

Laser:
3D scan
boxes

IMU:
Orientation
change

Extrinsic
laser-
camera

parameters

Spatiotemporal
camera-imu
parameters

Fused 3D
feature boxes

Figure 4.1: Classification of the sensor error models in the overall context of this work.

Since this work aims to develop methods for robust and reliable sensor fusion, sensor errors
must be precisely modeled. While doing this, it is important to consider all expected sensor
errors to find guaranteed bounds to uphold in the assumed conditions. Only if this prerequisite
is met, interval analysis allows us to compute guaranteed results by consistently propagating
errors from input to output sources.

This chapter summarizes the types of error that we consider for the sensors introduced in
Section 2.1 and analyzes whether a stochastic or bounded error model is better suited to model
this type of error. Subsequently, the sensor error models employed in this work are presented.
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4.1 Types of error
Before guaranteed error bounds can be assigned to the output of each sensor, the expected
error types for each observation have to be analyzed. Moreover, we compare the stochastic
error model, which is predominant in robotics, to the bounded error model, which we employ
for this work, in terms of applicability to each type of error.

4.1.1 3D laser scanner
Most types of error for a laser scanner can be quantified, i.e. we can determine a value for
these errors and model them accordingly. However, outliers can occur due to non-reflective
objects, mirrors or so called mixed pixels (also discontinuous points). These outliers cannot be
described quantitatively, which is why Skrzypczynski [92] distinguishes between quantitative and
qualitative error types for the laser scanner. In this work, we further subdivide the quantitative
errors into systematic and random errors.

First, we will analyze the systematic errors and start with the offset between measurement
and true value. The measurement of a 3D laser scanner is composed of the actual distance
measurement and the inferred exit angle of the laser beam. For the distance measurement an
offset can occur due to the incidence angle between the laser beam and the surface [16], and
the environment of the sensor (temperature, humidity, etc.) [93]. Since this offset cannot be
predicted without additional information about the environment, it cannot be modeled precisely.
However, experiments and information from the manufacturer allow us to find error bounds
enclosing the maximum offset. Thus, an interval based error model is consistent with this type
of error. In contrast, a stochastic error model is inappropriate since an offset is a systematic
error with an unknown error distribution (cf. Section 1.1.1 for a detailed explanation on the
problem of modeling a systematic error using a stochastic distribution). Due to imperfect
calibration parameters of the laser scanner, an offset can also occur for the exit angle of
the laser beam. However, we assume the interior orientation parameters to be accurately
determined [94], and thus consider the exit angle to be correctly reported by the laser scanner.

The second systematic error we consider is the beam divergence of the laser scanner. In
theory, the laser scanner emits a perfect beam that has neither an initial footprint nor diverges.
In reality, however, it is impossible to manufacture a sensor that emits a perfect beam, and
so the laser beam hits not just a point but a surface. Since the power distribution inside the
pulse is generally unknown, the actual location of the measured point is uncertain and could
be anywhere within the beam footprint [95, 96]. Since the laser scanner only returns the point
along the emitted beam centerline, the error distribution cannot be determined, and thus a
stochastic error model is inappropriate. In contrast, an interval-based error model is suitable to
model this type of error since the initial footprint and beam divergence are bounded and often
specified by the manufacturer.

The only random error we consider for the laser scanner is the measurement noise [16].
Generally, this noise is assumed to follow a Gaussian distribution, however, this assumption
needs to be verified by the sensor manufacturer or through experiments. Consequently, if the
correct distribution of the measurement noise is determined, it can be modeled adequately
using a stochastic error model. Nevertheless, an interval-based error model is also suitable
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- although inferior in the case of a known error distribution - since the noise is generally
not indefinite and appropriate error bounds can be derived from experiments or data sheets.
Without reliable information about the error distribution, however, the bounded-error model
is preferable because, unlike a stochastic model, it does not make false assumptions about
the distribution. For example, this is the case for the Velodyne VLP-16, which we use for our
experiments [96].

Finally, we compare both error models for qualitative errors. As defined above, qualitative
errors are outliers that occur due to unpredictable situations in the environment. For example,
mixed pixels occur when the laser beam hits two objects at different distances simultaneously.
In this case, the laser scanner returns a distance that lies between both objects. Moreover,
mirrors and non-reflective objects are undetectable by the laser scanner since they only reflect
the laser beam in one direction or not at all. Since these outliers happen sporadically with
a low probability, a stochastic distribution that incorporates a non-zero probability of any
possible value (e.g. a Gaussian distribution) can be used to model them. However, the true
probability of outlier occurrences is unknown, and thus a stochastic distribution can only serve
as an approximation. The interval-based error model, however, is incompatible with outliers
since it aims to provide guaranteed bounds for the measurement. Nevertheless, there exist
interval analysis techniques to account for outliers if multiple measurements are available and
the maximum number of outliers can be specified (cf. Section 3.9).

Systematic Random Qualitative

Error model Offset Beam divergence Measurement noise Outliers

Stochastic − − © ©
Interval-based + + © −

Table 4.1: Comparison of the stochastic and the interval-based error model in terms of ap-
plicability to the different types of laser scanner errors. “+” signals a good, “©”
a reasonable and “−” a bad compatibility of the respective error model with the
respective type of error. This table is inspired by Langerwisch [97].

Table 4.1 summarizes the findings of this section - namely the applicability of the stochastic
and interval-based error model to the different types of laser scanner errors.

4.1.2 Camera
This work employs camera images to find features for both the spatiotemporal calibration
and the visual-LiDAR sensor fusion. During the process of acquiring those image features, we
consider different types of errors that can be classified into three categories. First, systematic
errors arising from uncertain intrinsic parameters, quantization into image pixels and blur are
analyzed. Second, both error models are compared for the image noise which constitutes a
random error. Third, we examine both error models for applicability to outliers that occur
during feature extraction or feature matching. Although many additional types of error could
be analyzed in this section, we focus on those that we have identified as most important.



54 Chapter 4. Sensor Error Models

Besides, it is assumed that lens distortion is accurately estimated during camera calibration
and does not vary during the experiment (cf. Section 2.1.2). Thus, the distortion parameters
are not considered as an additional type of error.

As introduced, we distinguish between three different types of systematic errors. First, the
camera intrinsic parameters can be uncertain - i.e. errors can occur during the camera calibration
process or the intrinsic parameters can deviate due to mechanical stress. As explained in
Section 2.1.2, the intrinsic camera parameters (focal lengths and principal point) are required to
find the mapping between pixel coordinates in the image and camera coordinates. Consequently,
since the camera calibration is performed once before carrying out the actual experiment and
the calibrated intrinsic parameters are usually kept fixed throughout the experiment, an error
in these intrinsic parameters is purely systematic [98]. Thus, the error cannot be described
using a distribution and the stochastic model is inapplicable to model this type of error. In
contrast, the interval-based model is consistent with systematic errors and is therefore suitable
for modeling inaccurate intrinsic parameters (cf. Section 1.1.1).

Another systematic error hampering the extraction and matching of image features is the
quantization during imaging. Since the camera has a limited resolution, the analog signal
(i.e. the actual scene) has to be discretized into single pixels. Here, the analysis of the
applicability of both error models to this type of error is straightforward. Since the quantization
provides natural bounds enclosing the feature, the interval-based error model is applicable.
Likewise, a stochastic error model is usable since the probability distribution of a feature inside
a discretized pixel is known to be a uniform distribution [99].

The third systematic error source we consider is blur. Images can be blurred due to motion
or objects not being in proper focus [100]. Since the amount and the characteristics of the
blur depend on many different factors, of which many cannot be modeled due to missing
information from the environment, the correct probability distribution of the position of a
feature cannot always be determined [101]. Furthermore, unrecognizable systematic errors can
occur, e.g. when detecting features on moving objects in the scene. However, a stochastic
error model can only assume zero-mean error with an arbitrary distribution, which is often
chosen as the normal distribution with an experimentally verified standard deviation. Similarly,
the bounds for the interval-based error model can only be determined experimentally. However,
the assumption of knowing bounds enclosing the error that is made due to blur during feature
extraction, is weaker than assuming the correct distribution to be known. Besides, these
bounds are consistent with systematic errors. Thus, the interval-based model is better suited
to account for the blur that influences the process of feature extraction and matching.

Next, the only random error source we consider for this work - namely the image noise - is
analyzed. Image sensors (e.g. Charge-Coupled Device (CCD) image sensor or Complementary
Metal-Oxide Semiconductor (CMOS) image sensor) are subject to many different noise sources
which can corrupt the individual color channels of each image pixel, and thus hamper the
extraction of image features. In principle, each noise source can be modeled with a different
distribution to find a common stochastic distribution resembling the image noise [18]. Thus, a
stochastic error model is appropriate to model this type of error. However, determining the
distribution for every noise source may not always be possible. In this case, a suitable error
distribution can only be approximated, which may lead to an underestimation of the error.
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Similarly, according to Liu et al. bounds enclosing the maximum noise can be determined [102]
making the interval-based model applicable. For unknown noise sources affecting the error
distribution, the interval-based error may even be superior, as it makes no assumption about
the error distribution other than that it is bounded. However, generally a normal distribution is
sufficient to approximate the error made due to image noise reasonably well.

Finally, we compare both error models for outliers occurring during the feature extraction or
feature matching. Although there exist many approaches to eliminate outliers before employing
them for further computations, we have to analyze whether outliers are consistent with both
error models since it cannot be guaranteed that all outliers will be identified. For example,
during feature matching in an urban environment, specific image patches may appear more
than once in the scene (e.g. fencing posts), causing the feature matcher to compute wrong
associations. As explained earlier, although there exist techniques to account for outliers
(cf. Section 3.9), the interval-based error model is incompatible with this type of error, and
therefore inappropriate in this case. Similarly, the stochastic error model suffers from the
fact that the probability of outliers is unknown. However, common stochastic distributions
(e.g. the Gaussian distribution) incorporate a non-zero probability of outlier occurrences, which
theoretically makes them compatible with this type of error.

Table 4.2 summarizes the findings of this section - namely the applicability of the stochastic
and interval-based error model to the different types of error occurring during the identification
and matching of features in camera images.

Systematic Random Qualitative

Error model Intrinsic parameters Quantization Blur Image noise Outliers

Stochastic − + − © ©
Interval-based + + © © −

Table 4.2: Comparison of the stochastic and the interval-based error model in terms of applica-
bility to the different types of errors occurring when using features found in camera
images. “+” signals a good, “©” a reasonable and “−” a bad compatibility of the
respective error model with the respective type of error.

4.1.3 Inertial Measurement Unit (IMU)
Since this work employs data only from the gyroscope of the IMU, we will only introduce the
different types of error for this specific sensor. The literature usually distinguishes between
systematic (deterministic) and random (stochastic) error factors. Deterministic errors occur
due to physical processes such as imperfections during the manufacturing process. In contrast,
stochastic errors depend on random fluctuations occurring only for a distinct period of time
and can be related to environmental factors such as the temperature or humidity [103]. In
general, estimating and removing the deterministic errors is most important for accurate
IMU measurements, as remaining systematic errors cannot be modeled with a stochastic error
model [104]. In contrast, the interval-based error model we propose is consistent with remaining
systematic errors, as long as the bounds enclosing them are known (cf. Section 1.1.1).
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Figure 4.2: Examples of the different types of error exhibited by a gyroscope and their influence
on the measured angular velocity ω.

Starting with the bias, we first focus on the systematic errors. A bias is an offset that is
constant throughout all measurements of the sensor, but may change for each power-up of
the IMU (turn-on to turn-on bias). Consequently, a simple calibration is necessary after each
power-up: the IMU is kept static for several seconds, and thus the measurements should be
zero. Any non-zero mean that is encountered during this calibration is labeled as bias and
subtracted from all following measurements. However, due to the other error factors, the bias
may be determined inaccurately which introduces an unknown systematic error. As unknown
systematic errors are incompatible with any stochastic distribution (cf. Section 1.1.1), but are
consistent with the interval-based error model, the bounded error model is better suited to
model this type of error.

The second systematic error we consider is the scale factor, which describes the linear
relation between true value (input) and sensor measurement (output). If no scale factor is
considered, the output is equal to the input. In contrast, a scale factor of 2% means that
the output is amplified by 2%. Similar to the bias, the scale factor can be determined during
a calibration [105]. Consequently, any inaccuracies lead to a systematic error for which the
interval-based error model is again preferable over any stochastic error model (cf. Section 1.1.1).

Next, we compare both error models for the random walk of the bias (also: bias instability).
Due to various influence factors such as time, change in temperature or mechanical stress on
the sensor, the bias, which we assumed above to be static, changes. Generally, the moving bias
is characterized by Allan variance and modeled as a first order Gauss-Markov process [106], and
is thus consistent with a stochastic error model. However, as many different factors - many
of which cannot be observed - affect the bias stability, it is difficult to assess the true error
distribution. In contrast, the interval-based error model does not require these influence factors
to be known, but can still provide bounds reflecting the worst case of the bias drift [107]. Thus,
depending on the known factors and the completeness of the stochastic error model, the more
simple interval-based error model can be advantageous.

Measurement noise, which constitutes a random (stochastic) type of error, arises due to
interferences of the internal electronics of the IMU with the actual signal. It is often assumed
to be normally distributed [106], and thus a stochastic error model is adequate. Nevertheless,
bounds enclosing the measurement noise can be determined to allow the use of the interval-
based error model [107]. However, the stochastic error model is generally preferable for this
type of error since the error distribution is well studied.
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Systematic Random

Error model Scale factor Bias Walking bias Noise

Stochastic − − © +
Interval-based + + © ©

Table 4.3: Comparison of the stochastic and the interval-based error model in terms of ap-
plicability to the different types of gyroscope errors. “+” signals a good, “©” a
reasonable and “−” a bad compatibility of the respective error model with the
respective type of error.

Fig. 4.2 illustrates the different types of error. Subsequently, Table 4.3 summarizes the
findings of this section - namely the applicability of the stochastic and interval-based error
model to the systematic and random types of error.

4.2 Error models
After comparing the stochastic error model with the interval-based error model for the types
of error we consider for each sensor, it becomes evident that the interval-based error model
provides a reasonable alternative to the predominant stochastic error model. Especially in the
case of unknown systematic errors the interval-based error model has an advantage over the
stochastic error model. Therefore, this work develops and applies interval-based error models
for each sensor. Consequently, interval analysis tools allow the consistent propagation of these
sensor errors to the final results. However, the previous section also outlined problems of the
interval-based error model - especially in the case of randomly distributed errors and outliers.
For these types of error the stochastic error model is better suited. Thus, future work should
deal with the question of how to couple the error models to benefit from the advantages of
both.

In the following, this section introduces and explains the new sensor error models. As
explained previously, some error sources (e.g. outliers) cannot be modeled correctly, and thus
need to be considered in subsequent computations. While the 3D laser scanner error model
is an extension of the 2D laser scanner error model introduced by Langerwisch [83], to our
knowledge, the bounded-error models for camera and IMU (gyroscope) have not been presented
to date.

4.2.1 3D laser scanner
As the error model for the laser scanner is an extension from the 2D laser scanner error model
presented by Langerwisch, this section is inspired by his corresponding work [97].

As explained in Section 2.1.1, the raw measurements of a 3D laser scanner are the radial
distance r, the polar (vertical) angle θ and the azimuthal (horizontal) angle ϕ. To obtain the
3D point corresponding to this measurement, these spherical coordinates can be transformed
into Cartesian coordinates using (2.1).
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Figure 4.3: Visualization of the 3D box [p′] that is guaranteed to enclose the actually measured
point p∗, which is different from the point p corresponding to the raw measurement.
The initial footprint of the laser beam is not considered here.

As explained previously, the goal of this work is to apply intervals to model the uncertainties of
the raw measurements. Amongst the error sources depicted in Section 4.1.1 are the systematic
offset and the measurement noise which distort the distance measurement r. To model these
two types of error, we determine a bounded error ∆r that describes the maximum possible error
such that the true distance r∗ is enclosed in the interval [r] = [r −∆r, r + ∆r], r∗ ∈ [r]. The
last quantitative type of error we model using intervals is the beam divergence. It affects the
polar and azimuthal angle since the true angle at which the returned distance was measured
can be anywhere within the beam. Usually, the beam divergence is different in vertical and
horizontal direction, and thus we define two different maximum possible errors ∆θ and ∆ϕ.
Consequently, the true angles θ∗ and ϕ∗ are enclosed in the intervals [θ] = [θ −∆θ, θ + ∆θ]
and [ϕ] = [ϕ−∆ϕ, ϕ+ ∆ϕ], i.e. θ∗ ∈ [θ] and ϕ∗ ∈ [ϕ].

Using [r], [θ] and [ϕ] it is now possible to compute a box [p′] enclosing the true 3D point
p∗ assuming only the aforementioned types of error, but not yet the initial footprint of the
laser beam. In order to do that, the real variables and operators in (2.1) are replaced by their
interval counterpart:

[p′] =


[x′]
[y′]
[z′]

 =


[r] · sin [θ] · cos [ϕ]
[r] · sin [θ] · sin [ϕ]
[r] · cos [θ]

 . (4.1)

Fig. 4.3 visualizes the computation of the 3D box [p′] from uncertain spherical coordinates.
Since each variable appears only once to compute [x′], [y′] and [z′], the intervals and thus the
box are minimal. However, there exist dependencies between the three dimensions of the box.
Generally, the geometric object enclosing the true point is not a box, but has a different form
depending on the vertical and horizontal angle. Nevertheless, we compute the minimal box
that encloses this arbitrary object, which simplifies further computations.
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Figure 4.4: Exaggerated example for the influence of the laser beam footprint on the accuracy
of the measured point. For simplicity, we assume no further divergence for the
laser beam and no uncertainty for the distance measurement. Consequently, the
vector pointing to the true measured point may not only originate from the origin
of the laser scanner coordinate system, but from any point within the footprint.

To introduce the additional uncertainty arising due to the initial footprint of the laser beam,
we find a rectangle that reflects this is initial footprint. Consequently, the vector pointing
to the measured point may originate from any point within this rectangle, and just from the
origin as assumed for (4.1). In order to find the rectangle, we compute two vectors that
are orthogonal to the laser beam and point along the horizontal and vertical opening angle,
respectively. This allows us to model different widths of the initial footprint in horizontal
and vertical direction, which will be denoted as ∆bϕ and ∆bθ . Fig. 4.4 shows an exaggerated
rectangle corresponding to the footprint of the laser scanner and the resulting uncertainty of
the measured point assuming no further uncertainties besides the initial footprint.

To find the two orthogonal vectors spanning the desired rectangle, we first denote v as the
direction vector pointing to the measured point. v can be immediately deduced from (2.1):

v =


sin θ · cosϕ
sin θ · sinϕ

cos θ

 . (4.2)
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Figure 4.5: Exaggerated visualization of how the initial footprint of the laser scanner influences
the uncertainty of the measured point. For simplicity, the figure shows a projection
onto the x-y-plane and only highlights the horizontal expansion of the initial
footprint. vϕ is the vector that is orthogonal to v and points along the horizontal
axis of the laser scanner. Since the width of the footprint in horizontal direction
is given as ∆bϕ , we can compute the two extreme points from which the vector
pointing to the measured point might have originated. Consequently, the size of
the box containing the true point increases.

The first orthogonal vector, which we want to point along the horizontal opening angle,
must reside in the x-y-plane. Fig. 4.5 shows a projection of v into the x-y-plane and the
orthogonal vector vϕ. Intuitively, it can be computed as

vϕ =


sinϕ
− cosϕ

0

 . (4.3)

Subsequently, the second orthogonal vector vθ, which points along the vertical opening
angle, can be computed as the cross product between v and vϕ:

vθ = v× vϕ =


cos θ · cosϕ
cos θ · sinϕ
− sin θ

 . (4.4)

Finally, we can formulate the full equation for the laser scanner error model that allows to
compute a box [p] enclosing the true measured point p∗ given the measured distance r, vertical
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Figure 4.6: The most extreme laser beams originate from the most extreme points of the
initial footprint of the laser scanner that is depicted as a green rectangle. The red
laser beam corresponds to the measurement and starts at the origin. Subsequently,
we bisect the intervals of all variables (distance, vertical and horizontal angle) to
compute the green boxes, which approximate the shape of the geometric object
describing the actual uncertainty of the measured point. The blue box corresponds
to the computation in (4.5) and is the minimal 3D box enclosing all green boxes.
As can be seen, some parts of the blue box correspond to an overestimation of the
uncertainty that we must accept to simplify the following computations.
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angle θ and horizontal angle ϕ, as well as the uncertainties for the distance measurement ∆r,
vertical angle ∆θ, horizontal angle ∆ϕ and the dimensions of the initial footprint ∆bθ and ∆bϕ :

[p] =


[x]
[y]
[z]

 =


[r] · sin [θ] · cos [ϕ]
[r] · sin [θ] · sin [ϕ]
[r] · cos [θ]

+ [∆bϕ ] · vϕ + [∆bθ ] · vθ, (4.5)

where [∆bϕ ] = [−∆bϕ ,∆bϕ ] and [∆bθ ] = [−∆bθ ,∆bθ ].
Since each variable appears only once as an interval to compute [x], [y] and [z], the intervals

and thus also the 3D boxes are again minimal. However, as explained previously, dependencies
exist between the three components of the 3D box. Thus, we only compute the minimal box
that encloses the geometric object, which is of an arbitrary shape.

We refrain from providing a proper visualization of the resulting computation in 3D since
it is too complex to convey all information in one figure. However, the computation can be
understood as a combination of Fig. 4.3, which shows the 3D box without considering the
initial footprint, and Fig. 4.5, which considers all types of error, but shows the projection of
the 3D box to the x-y-plane. Furthermore, Fig. 4.6 shows an example for the computation of
the measurement box in 3D.

4.2.2 Camera
Since this work employs camera data only to find visual features, the raw measurements we use
are pixel points (u, v) in the image. Consequently, the pinhole camera model (cf. Section 2.1.2)
can be applied to obtain the homogeneous coordinates ( x̃ ỹ 1 )ᵀ in the camera coordinate
system, which correspond to a 3D vector pointing in the direction of the image feature:

x̃ = u− cx
fx

ỹ = v − cy
fy

, (4.6)

where (cx, cy) is the principal point and fx, fy are the focal lengths from camera calibration.
As introduced previously, we aim to formulate a bounded error model that allows to compute

intervals which enclose the true homogeneous coordinates and further reflect their uncertainty.
Thus, in the following we model all types of error introduced in Section 4.1.2. Previous work
using bounded error models for camera data has been conducted by Telle et al. [98, 108, 109].

The first error source are uncertain intrinsic camera parameters which cannot be deter-
mined perfectly during camera calibration, and thus distort the transformation of the pixel
points into homogeneous coordinates. Fig. 4.7 emphasizes this fact. Thus, we denote
the maximum deviation of the focal lengths as ∆fx and ∆fy . Consequently, the intervals
[fx] = [fx −∆fx , fx + ∆fx ] and [fy] = [fy −∆fy , fy + ∆fy ] enclose the true focal lengths fx∗

and fy∗. Similarly, the maximum deviations of the principal point are denoted as ∆cx and ∆cy .
Therefore, the intervals [cx] = [cx −∆cx , cx + ∆cx ] and [cy] = [cy −∆cy , cy + ∆cy ] span the
interval box [cx]× [cy] which encloses the true principal point (cx∗, cy∗).

The other types of error analyzed in Section 4.1.2 directly influence the detection of the image
feature (u, v). Thus, we can model these uncertainties by determining the maximum deviations
between the detected image feature (u, v) and the true location of the feature in the image
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Figure 4.7: Geometry according to the pinhole camera model as seen from the y axis. The
influence of an uncertain focal length on the homogeneous coordinates can be
observed.

Figure 4.8: Exemplary image of a checkerboard for which the corner features (green dot) have
to be detected. However, various error sources lead to an inaccurate detection (red
dot). Thus, we apply our bounded-error model which results in the blue interval
box that encloses the true checkerboard feature.

(u∗, v∗). These maximum deviations are denoted as ∆px and are the sum of several individual
error sources. Consequently, the interval box [u] × [v] encloses the true position (u∗, v∗)
of the feature in the image, where [u] = [u−∆px, u+ ∆px] and [v] = [v −∆px, v + ∆px].
Fig. 4.8 shows an image feature that is detected inaccurately, but enclosed in the corresponding
interval box. Likewise, Fig. 4.9 shows image features that are matched inaccurately, but their
corresponding interval box overlap for parts of the same object.

As stated above, ∆px is the sum of the individual types of error that are listed in Section 4.1.2,
i.e.

∆px = ∆pxq + ∆pxb + ∆pxn , (4.7)

where ∆pxq , ∆pxb , and ∆pxn are upper bounds for the feature detection error caused by
quantization, image blur and measurement noise, respectively.
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Figure 4.9: Two exemplary images for which matching image features are sought. The red dots
are the anticipated result of traditional image feature matching and do not reside
on exactly the same object in the real world due to the error sources mentioned
previously. Thus, we use interval boxes (depicted in blue) to model the uncertainties.
As can be seen, the two interval boxes overlap for parts of the same object, and
therefore establish a correct feature matching.

Generally, ∆pxq = 0.5 px since in the worst case the actual location of the feature is on
the bound of the pixel while the feature detector will report the midpoint of the pixel as the
result. However, some features can be detected with sub-pixel accuracy by making use of
known constraints (e.g. checkerboard corners reside on the intersection of lines). In this case,
the quantization error ∆pxq can be smaller than 0.5 px.

In contrast to the quantization error, the other two error sources affecting the feature
extraction and matching - namely image blur and measurement noise - are more difficult to
quantify. Therefore, we can only determine ∆px empirically without distributing the error
among the three individual types of error.

4.2.3 Inertial Measurement Unit (IMU)
As introduced in Section 4.1.3, we use only gyroscope data from the IMU which is distorted by
two systematic errors, namely scale factor and bias, and two random errors, namely walking
bias and noise. Thus, the only raw measurement we process is the 3× 1 angular velocity vector
ω that contains the angular velocities around the three axis of the IMU. Consequently, we
express the interval vector containing the true angular velocities as

[ω](t) = ω(t) + [∆s] · ω(t) + [∆b] + [∆wb] · (t− t0) + [∆n], (4.8)

where t0 is the start time, t is the time of the angular velocity measurement, [∆s] is the interval
enclosing the scale factor, [∆b] is the interval vector enclosing the constant bias, [∆wb] is the
interval vector enclosing the walking bias which can be time-dependent and [∆n] is the interval
vector enclosing the measurement noise.

Subsequently, these velocity measurements must be integrated to obtain the desired orien-
tation of the IMU. However, as the gyroscope measures the angular velocities in a reference
system that is local to the rotated IMU, the initial orientation of the IMU has to be considered.
In order to do that, we use the interval extension of the first-order integration scheme detailed
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in (2.12) in Section 2.1.3. As expected, the uncertainty of the computed rotation increases
over time since the uncertainty of each velocity measurement is propagated to all successive
points in time. This phenomenon is commonly known as drift.

4.3 Conclusion
This chapter provides original bounded sensor error models for three sensors commonly used
in mobile robotics, namely the camera, laser scanner and IMU. These error models consider
the different types of error we depict in the beginning of this chapter. Moreover, this chapter
presents a comparison between an interval-based and a stochastic error model for the identified
types of error. In summary, it can be stated that an interval-based error model is a viable model
for each sensor, which is superior to a stochastic error model in the case of systematic errors.

In the context of this work, this chapter represents the part that is subject to failures,
since the presented sensor error models form the backbone of all subsequent approaches.
Consequently, these approaches are guaranteed to enclose the true solution only if the models
are correct. In other words, the introduced error models constitute assumptions of the true
sensor errors. Therefore, if these assumptions are violated, the following computations are
no longer guaranteed. Ideally, in the future these sensor error models can be replaced by
more sophisticated models which may come from a sensor manufacturer that is able to
provide guaranteed error bounds. In this case, the following approaches for the spatiotemporal
calibration of sensors and the visual-LiDAR odometry can adopt the more sophisticated models
straightforwardly. The sole requirement is that the error model must supply bounds that are
guaranteed to enclose the true value.





5 Perspective-n-Point (PnP) Problem

The idea of many spatiotemporal calibration approaches is to establish a connection between
the data streams of both sensors by observing a known object, for example in a laboratory.
If a camera is one of the sensors to be calibrated, this known object is often a checkerboard
since it provides distinct features (the checkerboard corners) and it allows to compute the
full 3D pose of the camera relative to the checkerboard by taking advantage of the fact that
the dimensions of the checkerboard are known. Thus, the PnP problem (cf. Section 2.4) has
to be solved before the actual calibration. Since this work introduces methods to perform a
spatiotemporal calibration under interval uncertainty, the PnP problem must also be solved
under interval uncertainty.

5.1 Constraints

To solve the PnP problem under interval uncertainty, we aim to build multiple contractors
(cf. Section 3.7) that are based on different functions constraining the transformation between
checkerboard coordinate system and camera coordinate system. As introduced in Section 2.4,
this transformation consists of a 3× 3 rotation matrix RC

W ∈ SO(3) (3 DOF, cf. Section 2.3)
and a 3× 1 translation vector TC

W (3 DOF) and has a total of 6 DOF. In the following, this
section introduces the constraints we identified and the corresponding contractors.

Let XC = ( xC yC zC )ᵀ and XW = ( xW yW zW )ᵀ be a pair of corresponding 3D points
in the camera coordinate system C and the checkerboard/world coordinate system W . In total,
we have n such corresponding 3D point pairs. The associated rigid body transformation can
be expressed as:

XC = RC
W ·XW + TC

W . (5.1)

However, as the camera only allows to measure the direction vector to a point, but not its
3D coordinates, we reformulate the equation using normalized coordinates X̃C and an unknown
scale factor λ:

λ · X̃C = RC
W ·XW + TC

W , (5.2)

where X̃C = ( x̃C ỹC 1 )ᵀ = ( x
C

zC
yC

zC
1 )ᵀ are the normalized image coordinates as introduced

in Section 2.1.2.
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As X̃C can be determined from the image by applying the pinhole camera model (cf. Sec-
tion 2.1.2), it remains to remove the unknown scale factor λ. The third row of (5.2) can be
expressed as:

λ = R3 ·XW + T3, (5.3)

where Rj and Tj are the jth row of RC
W and TC

W , respectively.
Substituting (5.3) into (5.2) and reformulating allows us to find two equations without λ:

(R1 − x̃CR3)XW + T1 − x̃CT3 = 0, (5.4)
(R2 − ỹCR3)XW + T2 − ỹCT3 = 0. (5.5)

From here, there are two different possibilities to build contractors for these constraints. First,
the rotation matrix can be expressed using a rotation representation introduced in Section 2.3
(e.g. Euler angles). This results in nonlinear equations for which we build forward-backward
contractors. Second, stacking (5.4) and (5.5) for multiple corresponding image and world
points results in a linear system for which we apply the Gauss-Seidel contractor [9].

5.1.1 Nonlinear forward-backward contractor

To reduce the number of unknowns for the rotation matrix, we express it using the Euler
angles ξCW = (ϕCW ψCW θCW )ᵀ. Nevertheless, any other rotation representation introduced
in Section 2.3 is possible. Subsequently, stacking the equations (5.4) and (5.5) for all n
corresponding image and world points we obtain the constraints

fpnp,nli

(
ξCW ,TC

W , X̃
C

i ,XW
i

)
= 0, (5.6)

where i ∈ {1, . . . , n} and each fpnp,nli has two rows resulting in a total of 2n constraints.
This allows us to formulate the CSP Hpnp,nl:

Hpnp,nl :
∀i ∈ {1, . . . , n} : fpnp,nli

(
ξCW ,TC

W , X̃
C

i ,XW
i

)
= 0

ξCW ∈ [ξCW ],TC
W ∈ [TC

W ], X̃C

i ∈ [X̃C

i ],XW
i ∈ [XW

i ]

 , (5.7)

where [ξCW ] and [TC
W ] are the desired interval vectors enclosing the Euler angles and translation

parameters, respectively. Furthermore, [X̃C

i ] are the known normalized camera coordinates
of the observed point i. To obtain these, we use a state-of-the-art approach to detect
checkerboard corners in the image, and subsequently apply the bounded error model derived in
Section 4.2.2. Accordingly, [XW

i ] are the 3D coordinates in the checkerboard/world coordinate
system of the same point i. Since the size of the squares of the checkerboard is known and
the world coordinate system can be selected arbitrarily, these 3D coordinates can be computed
straightforwardly. However, due to inaccuracies during the checkerboard manufacturing process,
the 3D coordinates can exhibit an error that we model using intervals. Generally, the error
bounds of these intervals correspond to the printing accuracy of the checkerboard.
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Subsequently, we build a forward-backward contractor Cpnp,nli ([ξCW ], [TC
W ]) for each constraint

i of the CSP Hpnp,nl and intersect all of them to obtain the final contractor:

Cpnp,nl([ξCW ], [TC
W ]) =

⋂
1≤i≤n

Cpnp,nli ([ξCW ], [TC
W ]). (5.8)

5.1.2 Linear Gauss-Seidel contractor

Another possibility to build a contractor for equations (5.4) and (5.5) is to take advantage of
the fact that these are linear equations if we neglect the properties of the rotation matrix RC

W

and treat each of its entries as an unknown. This allows us to reformulate both equations as a
system of linear interval equations:



xW1 yW1 zW1 0 0 0 −x̃C1 xW1 −x̃C1 yW1 −x̃C1 zW1 1 0 −x̃C1
0 0 0 xW1 yW1 zW1 −ỹC1 xW1 −ỹC1 yW1 −ỹC1 zW1 0 1 −ỹC1

... ... ...

xWn yWn zWn 0 0 0 −x̃CnxWn −x̃Cn yWn −x̃Cn zWn 1 0 −x̃Cn
0 0 0 xWn yWn zWn −ỹCn xWn −ỹCn yWn −ỹCn zWn 0 1 −ỹCn





R11

R12

R13

R21

R22

R23

R31

R32

R33

T1

T2

T3



= 0,

(5.9)
where Rij is the entry in the i-th row and j-th column of RC

W . As can be seen, each pair of
corresponding image and world points introduces two rows in the matrix and thus the matrix is
of dimension 2n× 12.

Unfortunately, finding the minimal solution for interval linear systems is NP-hard [110].
However, there exist efficient contractors to find a reasonably accurate solution. In this work,
we apply the Gauss-Seidel contractor with preconditioning [9] which only works for square
interval matrices on the left side of the equation (5.9). Thus, we need to reduce the number of
rows of the matrix to twelve since the matrices contain twelve columns. In order to do that, we
randomly choose six corresponding image and world point pairs since each pair introduces two
rows in the matrix. If no preconditioning is used, the linear Gauss-Seidel contractor corresponds
to the previously introduced forward-backward contractor.

Naturally, this procedure can be repeated many times with different point pairs until
no further contraction of the entries of the rotation matrix Rij and the translation vector
TC
W = (T1 T2 T3 )ᵀ are achieved. We denote this contractor as Cpnp,GS([RC

W ], [TC
W ]). Although

this contractor alone cannot provide a good enclosure for the transformation parameters since
it ignores the properties of the rotation matrix, it can be used in conjunction with the nonlinear
forward-backward contractor to provide an additional contraction.
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5.2 Algorithm
After introducing the contractors in the previous section, we will now combine them in a
common algorithm to solve the PnP problem under interval uncertainty. The algorithm employs
both contractors and additionally bisects the Euler angles to improve the accuracy further.
Thus, it is a version of the SIVIA algorithm introduced in Section 3.8. Algorithm 3 shows an
overview of our algorithm.

Algorithm 3: PnP under interval uncertainty
input : Cpnp,nl, Cpnp,GS, [ξCW ], [TC

W ], ε
output :X, which is a subpaving for the 6 DOF transformation

1 S :=
{{

[ξCW ], [TC
W ]
}}

; // S is a stack

2 while S 6= ∅ do
3

{
[ξCW ], [TC

W ]
}

:= top(S);

4
{

[ξCW ], [TC
W ]
}

:= Cpnp,nl
(
[ξCW ], [TC

W ]
)
;

5 [RC
W ] := eul2mat

(
[ξCW ]

)
;

6
{

[RC
W ], [TC

W ]
}

:= Cpnp,GS
(
[RC

W ], [TC
W ]
)
;

7
{

[ξCW ]
}

:=
{

[ξCW ]
}
∩mat2eul

(
[RC

W ]
)
;

8 if any of
{

[ξCW ], [TC
W ]
}

= ∅ then
9 continue;

10 else if w
({

[ξCW ]
})

< ε then
11 X := X ∪

{
[ξCW ], [TC

W ]
}
;

12 else
// only the Euler angles are bisected

13
({

[ξCW,1]
}
,
{

[ξCW,2]
})

:= bisect
({

[ξCW ]
})

;

14 S := S ∪
{{

[ξCW,1], [TC
W ]
}}
∪
{{

[ξCW,2], [TC
W ]
}}

;
15 end
16 end

At first, the user needs to specify initial intervals for the Euler angles and the translation
vector, which are denoted as [ξCW ] and [TC

W ]. Generally, these intervals can be arbitrarily
large, but the Euler angles must be bounded in such a way that ambiguities cannot occur
(cf. Section 2.3.1).

Subsequently, the standard SIVIA procedure is followed until we call the first contractor in
Line 4. After employing the nonlinear contractor (cf. Section 5.1.1) to contract the domains
for both the Euler angles and the translation vector, we have to convert the Euler angles to a
rotation matrix before the linear Gauss-Seidel contractor is applicable. In order to do that, we
make use of the interval extension (i.e. the natural inclusion function) of equation (2.16) that
is depicted in Section 2.3.1. Consequently, the linear Gauss-Seidel contractor (cf. Section 5.1.2)
is applied to further reduce the uncertainty of both the rotation matrix and the translation
vector. Next, the rotation matrix must be converted back to Euler angles to keep the number
of variables as low as possible and allow a more efficient bisection process. Equation (2.17)
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shows the general conversion from a rotation matrix back to Euler angles. Thus, we use the
interval extension of this function to compute the contracted Euler angles in Line 7.

Afterwards, our algorithm again follows the standard SIVIA procedure. However, instead of
bisecting all six parameters (three Euler angles and three translations), we bisect only the Euler
angles in Line 13. The reason is that each translation appears only once in equations (5.4)
and (5.5), and thus can be computed more accurately using the nonlinear forward-backward
contractor Cpnp,nl. In fact, given an optimal enclosure of the Euler angles, the forward-backward
contractor would suffice to compute the optimal domains for the translation parameters. In
contrast, the Euler angles appear more often (each Euler angle appears multiple times in
the rotation matrix, cf. equation (2.16) in Section 2.3.1), and are therefore subject to an
overestimation which we aim to reduce by applying bisections.

5.3 Conclusion
This chapter provides an algorithm to contract the 6 DOF transformation between camera
coordinate system and known 3D points in a world coordinate system. Since interval analysis
tools, namely contractors and SIVIA, are employed, the computed intervals are guaranteed
to enclose the true solution without requiring a good initial guess. This constitutes a benefit
over existing stochastic approaches. Another contribution of this chapter is to randomly select
points for the Gauss-Seidel contractor due to the problem being over-constrained. However, the
combination of the forward-backward and the Gauss-Seidel contractors is not optimal since the
decomposition of the problem into multiple independent constraints leads to an overestimation
of the uncertainty. Consequently, SIVIA is required to compute a more accurate solution. In the
future, it would be beneficial to introduce a special contractor dedicated to the PnP problem
that is capable of computing an accurate solution without requiring bisections.

In the context of this work, the PnP problem must be solved to perform the spatiotemporal
calibration between a camera and other sensors. In the following, we use the algorithm presented
to compute the pose of a camera relative to a checkerboard that serves as a calibration target.
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Figure 6.1: Classification of the spatiotemporal calibration in the overall context of this work.

The basis to perform sensor fusion is the knowledge of the spatiotemporal calibration
parameters for the sensors from which information is to be fused. Generally, the parameters
can be divided into two categories: spatial and temporal. As depicted in Section 2.5, spatial
parameters usually concern the extrinsic transformation consisting of the rotation matrix RA

B

and the translation vector TA
B between sensor coordinate systems A and B. Formalizing this

relation in an equation yields
XA = RA

B ·XB + TA
B, (6.1)

where XA and XB are 3D coordinates in the (sensor) coordinate systems A and B, respectively.
In contrast, temporal parameters describe the time relation between sensor clocks. As

explained in Section 2.5, in this work we focus on the relative time offset τ since it is assumed
to be constant over a short period of time. Furthermore, it can be re-estimated multiple times
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to negate the effect of drifting sensor clocks. Thus, an event or an effect observed by sensor A
at time t is registered by sensor B at time t+ τ :

xA(t) = xB(t+ τ). (6.2)

As depicted in Section 1.1.2, we assume the sensors to be black-box systems and aim to
rely solely on sensor data to determine the spatiotemporal calibration parameters. Accordingly,
we presented several stochastic approaches to perform the extrinsic and/or temporal calibration
between camera, laser scanner and IMU. However, since the goal of this work is to fuse
information from camera, laser scanner and IMU under interval uncertainty to perform dead
reckoning in a guaranteed way, the spatiotemporal parameters must be estimated under interval
uncertainty as well. Thus, this chapter presents calibration procedures that are adapted to the
bounded error models developed in Chapter 4.

First, Section 6.1 introduces our interval-based approach to compute the time offset and the
extrinsic rotation parameters between camera and IMU. Determining the extrinsic translation
parameters is not required as we will only use rotation measurements from the IMU to support
the guaranteed localization. Subsequently, Section 6.2 presents a new approach to determine
the extrinsic calibration parameters between camera and laser scanner under interval uncertainty.
In this work, for the reasons given in Section 1.1.1, we assume camera and laser scanner to
be synchronized (e.g. by triggering the image acquisition of the camera externally), and thus
there exists no time offset that would have to be determined. Nevertheless, the procedure for
determining the time offset between camera and IMU in Section 6.1 could straightforwardly
be adapted to the data correspondences established between camera and laser scanner in
Section 6.2.

6.1 Spatiotemporal calibration between camera and IMU
Since this work aims at fusing information from camera and IMU, the spatiotemporal calibration
parameters between both sensors have to be known. Here, we consider a constant time offset
τ as the temporal part of this spatiotemporal calibration. This temporal offset manifests itself
in such a way that the same real world effect, which is observed by both sensors, is assigned
the timestamp t by the camera and the timestamp t+ τ by the IMU. Consequently, we have to
deal with time uncertainties that have been identified to be generally difficult to deal with [111].

Given a one-dimensional effect that is observed by both sensors, it holds that

∀t : xC(t) = xI(t+ τ), (6.3)

where xc(·) and xI(·) are the effects observed by the camera and the IMU, respectively.
However, as this work employs angular velocities measured by the IMU to predict the rotation

of the camera, the effect we are interested in is not one-dimensional, but constitutes a rotation
in 3D. For example, the rotation of the IMU can be expressed as RI0

I (·), where I0 is the initial
frame (relative to which we compute the rotation) and I is the current frame of the IMU.
Since any rotation matrix can be represented using only three parameters (cf. Section 2.3), the
effect for which we determine a constant time offset is three-dimensional.
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Besides the temporal calibration, we need to simultaneously determine the rotation matrix
RI
C that describes the static rotation between the coordinate systems of both sensors. This

information is required to later employ the rotation measured by the IMU in its coordinate
system I to predict the rotation of the camera in its own coordinate system C. The rotation
RI
C is not time-dependent as the sensors are rigidly mounted, and thus the rotation between

them does not change, but remains static. Since this work employs the IMU only to estimate
the rotation, determining the translation between both coordinate systems is not required.

Summarizing the constraints for the spatiotemporal calibration in a common equation yields:

∀t : RC0
C (t) =

(
RI
C

)ᵀ
·RI0

I (t+ τ) ·RI
C , (6.4)

where RC0
C (·) and RI0

I (·) are the rotations relative to the initial frames C0 and I0 over time of
the camera and IMU, respectively.

In the following, Section 6.1.1 presents the idea to perform the spatiotemporal calibration
between camera and IMU, which we previously published in [112]. Subsequently, Section 6.1.2
presents a new contractor Coffset to determine the constant time offset between two arbitrary
effects for which an unknown but bounded error is assumed (i.e. tubes). Finally, Section 6.1.3
details how this contractor is employed in a version of the SIVIA algorithm to simultaneously
estimate both the temporal offset and the spatial/extrinsic rotation between both sensors
(previously published in [27]).

6.1.1 General idea

Since we assume the sensors to be black-box systems for which the relative time offset cannot
be computed externally (e.g. using algorithms like the Network Time Protocol (NTP) [15]), we
have to rely on sensor data that is timestamped either at a centralized receiver or by each sensor
individually. Consequently, we aim to find correspondences in the data of both sensors, i.e. we
require common data that can be measured by both camera and IMU and that allows us to
deduce the constant time offset. Inspired by Kelly et al. [38], we use orientation measurements
as a common representation in this work.

Fig. 6.2 shows the general idea. Both sensors are rigidly mounted on a common platform
such that the extrinsic rotation RI

C between their respective coordinate systems does not
change. At the start of the experiment, t0, this platform is kept static and we denote the
corresponding, initial coordinate systems by C0 and I0 for the camera and IMU, respectively.
Afterwards, the setup is rotated either manually or by using a motor.

Now, the idea is to compute the three-dimensional rotation over time for both sensors. In
order to do that for the camera, a calibration target with known 3D world points is required.
In this work, we choose a checkerboard as our calibration target and compute the camera pose
relative to this target by solving the PnP problem under interval uncertainty (cf. Chapter 5)
for each acquired camera image. This results in an estimate for the orientation of the camera
relative to the checkerboard coordinate system over time: RC

W (·). Consequently, the rotation
relative to the starting time t0 can be expressed as

RC0
C (·) = RC0

W ·
(
RC
W (·)

)ᵀ
. (6.5)
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Figure 6.2: Visualization of the general idea to perform the spatiotemporal calibration between
camera and IMU. Both sensors are mounted rigidly on a common platform, such
that they experience the same movement during the experiment. Subsequently, we
move the platform and compute the rotation of both sensors between the starting
time t0 and the current time t. For the camera, this rotation can be determined
by observing a static checkerboard calibration target. For the IMU, the angular
velocities are integrated. This results in three-dimensional tubes (orientation over
time) for both sensors that constrain both the constant time offset and the constant
extrinsic rotation parameters.

To compute the rotation over time for the IMU, we integrate the angular velocities under
interval uncertainty as introduced in Section 4.2.3. In contrast to the camera, the uncertainty
of the orientation estimates by the IMU increases over time due to the integration process.

After acquiring three-dimensional tubes that bound the rotation over time for both sensors,
the these tubes must satisfy the following constraint:

∀t : RC0
C (t) =

(
RI
C

)ᵀ
·RI0

I (t+ τ) ·RI
C ,

RC0
C (·) ∈ [RC0

C ](·),RI0
I (·) ∈ [RI0

I ](·),RI
C ∈ [RI

C ], τ ∈ [τ ].
(6.6)

In simple terms, this means that the orientation tubes that are measured by the IMU and
transformed into the camera coordinate system, must overlap the orientation tubes measured
by the camera. However, as there is an unknown offset τ , these tubes are offset to each other
on the time axis. Fig. 6.3a shows a one-dimensional example that ignores the unknown rotation
RI
C and focuses on the time offset. As can be seen, the camera and IMU tubes do not overlap,

and thus there exists a non-zero time offset.
The general idea to find an interval enclosing the time offset [τ ] is to shift one tube (e.g. the

red one) along the time axis until it starts overlapping the other tube for every point in time.
This allows to find the lower/upper (depending on the sign of τ) bound of [τ ]. Subsequently,
we find the other (upper/lower) bound of [τ ] by shifting the tube further in the same direction
until it barely overlaps the other tube. Fig. 6.3b and Fig. 6.3c visualize this idea.

Generally, our algorithm does not require tubes from orientation measurements, but works
with any common data that can be measured by both sensors. Moreover, the orientation tubes
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(a) Exemplary visualization of two one-dimensional tubes that exhibit a time offset. [x](t1)
and [y](t1) are the interval evaluations of the tubes [x](·) and [y](·) at time t1, respec-
tively. Since these intervals do not overlap, it is evident that there exists a non-zero
time offset between both tubes.
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(b) To find the lower bound of [τ ] = [τ , τ ], the
red tube is shifted along the time axis (to the
right) until it overlaps the blue tube for every
point in time.
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(c) To find the upper bound τ , the red tube is
further shifted along the time axis (to the
right) until it barely overlaps the blue tube for
every point in time.

Figure 6.3: Overview over the idea to determine the time offset between two one-dimensional
tubes.
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could be determined using natural image features, thus removing the need for a calibration
target and enabling a periodic re-estimation of the timestamp offset on a moving vehicle to
negate a possible clock drift.

In the following, Section 6.1.2 introduces a new contractor Coffset that computes the desired
time offset domain [τ ] between two one-dimensional tubes. Consequently, in Section 6.1.3
this contractor is coupled with SIVIA to compute both the unknown rotation between sensor
coordinate systems [RI

C ] and the time offset [τ ] from three-dimensional orientation tubes.

6.1.2 Time offset contractor

This section introduces a new contractor for the CSP Hoffset that is defined as:

Hoffset :



Variables: τ, x(·), y(·)
Constraints:

1. ∀t ∈ [t0, tf ] : x(t) = y(t+ τ)
Domains: [τ ], [x](·), [y](·)

, (6.7)

where [t0, tf ] is the time interval over which both [x](·) and [y](·) are defined. In theory, this
CSP introduces an infinite number of constraints due to the ∀-operator. However, in practice
we sample the time domain [t0, tf ], and thus obtain a finite number of constraints.

In words, x(·) and y(·) are two trajectories (or effects) that are shifted in time by a constant
offset τ . Although the trajectories are one dimensional in this definition, the CSP (and thus
the corresponding contractor) can be extended to the multidimensional case straightforwardly.
In the following, we present a contractor Coffset that can be employed to contract both the time
offset domain [τ ] and the tubes [x](·) and [y](·) without dismissing part of the solution.
Proposition 1
The operator Coffset is a contractor for the CSP Hoffset. It is defined as:


[τ ]

[x](t)
[y](t)

 Coffset−−−→


[τ ] ∩

tf⋂
t1=t0

([y]−1 ([x] (t1))− t1) ∩
tf⋂

t1=t0
(t1 − [x]−1 ([y] (t1)))

[x](t) ∩ [y] (t+ [τ ])
[y](t) ∩ [x] (t− [τ ])

 , (6.8)

where [t0, tf ] is the time interval over which both [x](·) and [y](·) are defined.

Proof. We prove that Coffset is a contractor by showing that it satisfies both the contraction
and the consistency property depicted in Section 3.7.2. This ensures that the contractor cannot
enlarge the result and never loses a part of the solution.
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Consistency property

We need to prove that no valid solution for neither τ , x(·) nor y(·) is lost. First, we prove
that no valid solution for τ is lost. In order to do that, we prove the consistency of all three
parts of the contraction function that are intersected, i.e. we prove consistency for

(i) [τ ]

(ii)
tf⋂

t1=t0
([y]−1 ([x] (t1))− t1)

(iii)
tf⋂

t1=t0
(t1 − [x]−1 ([y] (t1)))

(6.9)

The proof for (i) is trivial as τ ∈ [τ ].
Let x(·) ∈ [x](·), y(·) ∈ [y](·) and τ ∈ [τ ] such that ∀t ∈ [t0, tf ] : x(t) = y(t + τ). We

reformulate (ii) as

tf⋂
t1=t0

(
[y]−1 ([x] (t1))− t1

)
⊇

tf⋂
t1=t0

(
[y]−1 (x (t1))− t1

)

=
tf⋂

t1=t0

(
[y]−1 (y (t1 + τ))− t1

)

⊇
tf⋂

t1=t0

(
y−1 (y (t1 + τ))− t1

)

=
tf⋂

t1=t0
(t1 + τ − t1)

=
tf⋂

t1=t0
(τ) = τ.

(6.10)

Thus, we have proven that τ ∈
(

tf⋂
t1=t0

([y]−1 ([x] (t1))− t1)
)
.

Next, the constraint x(t) = y(t+ τ) can be reformulated as x(t− τ) = y(t). Using this,
we can reformulate (iii) as

tf⋂
t1=t0

(
t1 − [x]−1 ([y] (t1))

)
⊇

tf⋂
t1=t0

(
t1 − [x]−1 (y (t1))

)

=
tf⋂

t1=t0

(
t1 − [x]−1 (x (t1 − τ))

)

⊇
tf⋂

t1=t0

(
t1 − x−1 (x (t1 − τ))

)

=
tf⋂

t1=t0
(t1 − (t1 − τ))

=
tf⋂

t1=t0
(τ) = τ.

(6.11)
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Thus, we have proven that τ ∈
(

tf⋂
t1=t0

(t1 − [x]−1 ([y] (t1)))
)
, and therefore we have proven

the consistency property for τ .
To prove the consistency property for x(·), according to the contractor definition in (6.8),

we need to prove that ∀t ∈ [t0, tf ] : x(t) ∈ ([x](t) ∩ [y] (t+ [τ ])). Since x(t) ∈ [x](t) is trivial,
we only need to prove that x(t) ∈ ([y] (t+ [τ ])). The following reformulation proves this
property:

[y] (t+ [τ ]) ⊇ [y] (t+ τ) ⊇ y (t+ τ) = x (t) (6.12)

Analogously, the consistency property for y(·) can be proven by using x(t− τ) = y(t). We
omit the full expression at this point.

Contraction property

The proof is trivial since all three variables are intersected with themselves during the
contraction, and thus their size cannot increase.

Finally, we have proven Proposition 1, and thus Coffset is indeed a contractor. �

6.1.2.1 Algorithm

Since the contractor Coffset in (6.8) is defined over tubes that are continuous in time, it cannot
directly work on tubes that are built from real data. As introduced in Section 3.10.1, such
tubes are implemented using slices of identical width. Fig. 6.4 shows two tubes [x](·) and [y](·)
that are represented by slices.

[txi ][y]−1 ([xi])

[x] (·)

[y] (·)

[xi]

t

δx

δyor
ien

ta
tio

n

Figure 6.4: Exemplary tubes [x](·) and [y](·) which are shifted by a constant offset. This
visualization serves to help understand the implementation of the time offset
contractor Coffset, which is detailed in Algorithm 4.
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Consequently, Algorithm 4 depicts the algorithm that operates on these slices to contract
the domain for the time offset [τ ] as well as the envelope of both tubes [x](·) and [y](·). We
explain it using the visualization in Fig. 6.4. At first, the algorithm iterates over the first
tube [x](·) and extracts the time domain of each slice which we denote as [txi ] (depicted
in purple). Since the width of a slice is known to be δx this time domain can be computed
straightforwardly. Subsequently, we are interested in finding the interval [tyi ] that constitutes
the time domain over which the other tube [y](·) intersects [x]([tyi ]). However, the tube [y](·)
may not be defined over this time domain. Thus, we have to check first if [tτi ] is a true subset
of [ty], where [ty] is the time domain over which [y](·) is defined. Afterwards, we compute the
image [xi] (depicted in green) of the tube [x](·) during the time domain [txi ]. Next, the tube
[y](·) is inverted to determine the desired time domain [tyi ] (depicted in orange). Finally, the
definition of the contractor given in (6.8) is applied in lines 7 and 8. As the algorithm iterates
over [x](·), only the corresponding slices of this tube are contracted here. Subsequently, the
algorithm iterates over the second tube [y](·) and repeats the same procedure.

Algorithm 4: Time offset contractor Coffset
input : [τ ], [x](·), [y](·)
output : [τ ], [x](·), [y](·)

1 for i = 0 to nx do // iterate over the first tube [x](·)
2 [txi ] := [i · δx, (i+ 1) · δx]; // δx is the width of a slice of the tube [x](·)
3 [tτi ] := [txi ] + [τ ];
4 if [tτi ] ⊂ [ty] then // [ty] is the time interval over which [y](·) is defined
5 [xi] := [x] ([txi ]); // interval evaluation of a tube
6 [tyi ] := [y]−1 ([xi], [tτi ]); // tube inversion
7 [τ ] := [τ ] ∩ ([tyi ]− [txi ]); // contraction of [τ ]
8 [x] ([txi ]) := [x] ([txi ]) ∩ ([y] ([txi ] + [τ ])) ; // contraction of a slice of [x](·)
9 end

10 end
11 for i = 0 to ny do // iterate over the second tube [y](·)
12 [tyi ] := [i · δy, (i+ 1) · δy]; // δy is the width of a slice of the tube [y](·)
13 [tτi ] := [tyi ]− [τ ];
14 if [tτi ] ⊂ [tx] then // [tx] is the time interval over which [x](·) is defined
15 [yi] := [y] ([tyi ]); // interval evaluation of a tube
16 [txi ] := [x]−1 ([yi], [tτi ]); // tube inversion
17 [τ ] := [τ ] ∩ ([tyi ]− [txi ]); // contraction of [τ ]
18 [y] ([tyi ]) := [y] ([tyi ]) ∩ ([x] ([tyi ]− [τ ])) ; // contraction of a slice of [y](·)
19 end
20 end

Remark
When iterating over the tubes in Algorithm 4, each slice corresponds to a single contractor
for the time offset [τ ]. However, not all such contractors are equally useful to contract the
time offset and some result in no contraction due to weak constraints (e.g. if the neighboring
slices enclose a similar domain, i.e. if the derivative is close to zero). In order to design a more
efficient algorithm, not all contractors have to be taken into account, but a small subset that
ideally leads to the same contraction. However, this is not the focus of this thesis and remains
a question for future work.
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6.1.3 Spatiotemporal calibration

After introducing the time offset contractor in the previous section, we couple it with SIVIA to
compute the extrinsic transformation RI

C and the offset τ simultaneously in this section. This
approach was previously published in [27].

First, we need to reduce the number of variables of RI
C by expressing it using a different

rotation representation (cf. Section 2.3). Inspired by [38], we use the MRP since they exhibit
several advantages. First, to express an inverse rotation it suffices to negate the three parameters.
This allows us to reformulate (6.6) as

∀t : ρC0
C (t) = −ρIC • ρI0I (t+ τ) • ρIC ,

ρC0
C (·) ∈ [ρC0

C ](·),ρI0I (·) ∈ [ρI0I ](·),ρIC ∈ [ρIC ], τ ∈ [τ ],
(6.13)

where ρAB is the three-dimensional MRP vector for the rotation from coordinate system A to
B, i.e. the equivalent to the rotation matrix RA

B. Furthermore, (•) is the operator defining a
sequential rotation (cf. Section 2.3.2).

Being able to compose two orientations straightforwardly using the (•) operator constitutes
the second advantage of the MRP. Combining these two advantages allows us to drastically
reduce the number of occurrences of the elements of the MRP vector b in the expression

− a • b • a, (6.14)

where a is another MRP vector. In total, each component of b appears only once in each row
of (6.14). This allows us to find a tighter enclosure for the right side of (6.13). Due to its
size, we omit the full expression.

The third advantage of the MRP is that the singular points are as far away from the origin as
possible, which allows us to perform drastic rotations of our sensor setup during the experiment
before encountering singularities.

Finally, we depict the whole process to compute domains enclosing the spatiotemporal
calibration parameters ρIC and τ such that they satisfy (6.13). At first, we position the rigidly
mounted sensor setup in front of the calibration target to achieve a common starting point t0
for both sensors. Subsequently, the sensor setup is rotated either manually or by using a motor
such that the calibration target remains in view of the camera over the whole experiment.

Now, we compute the three-dimensional tube enclosing the rotation of the IMU from the
common starting point t0: [ρI0I ](·). In order to do that, we apply our bounded-error model
to the angular velocities measured by the IMU and integrate them under interval uncertainty
(cf. Section 4.2.3). Likewise, we determine the rotation of the camera: [ρC0

C ](·). For this, we
model the uncertainties of the detected checkerboard corners and their respective 3D coordinates
in the checkerboard coordinate system using intervals (cf. Section 4.2.2). Subsequently, we
solve the PnP problem under interval uncertainty (cf. Chapter 5) which results in the orientation
of the camera in the world coordinate system. Thus, we apply (6.5) to determine the rotation
from the common starting point.

From here, Algorithm 5 depicts the further procedure. It follows the standard SIVIA algorithm,
except that only the extrinsic rotation parameters are bisected in line 11. Furthermore, the
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Algorithm 5: IMU-Camera calibration
input : [τ ], [ρIC ], [ρI0I ](·), [ρC0

C ](·), ε
output :X, which is a subpaving for the offset τ and the 3 DOF rotation ρIC

1 S :=
{{

[τ ], [ρIC ]
}}

; // S is a stack

2 while S 6= ∅ do
3

{
[τ ], [ρIC ]

}
:= top(S);

// The IMU tube is rotated into the camera coordinate system
4 [ρ′I0I ](·) := −[ρIC ] • [ρI0I ](·) • [ρIC ];

// Coffset is called separately for all three dimensions of the tubes

5 Coffset
(
[τ ], [ρC0

C ](·), [ρ′I0I ](·)
)
;

6 if any of
{

[τ ], [ρC0
C ](·), [ρ′I0I ](·)

}
= ∅ then

7 continue;
8 else if w

(
[ρIC ]

)
< ε then

9 X := X ∪
{

[τ ], [ρIC ]
}
;

10 else
// only the extrinsic rotation parameters are bisected

11
(
[ρIC,1], [ρIC,2]

)
:= bisect

(
[ρIC ]

)
;

12 S := S ∪
{{

[τ ], [ρIC,1]
}}
∪
{{

[τ ], [ρIC,2]
}}

;
13 end
14 end

rotation parameters of the current iteration are applied to the IMU tube in line 4 to transform
it into the camera coordinate system according to (6.13). Subsequently, in line 5 the previously
introduced time offset contractor Coffset is called for the properly rotated tubes to contract [τ ].
Since the tubes are three-dimensional, the contractor must be called separately for each row.
Finally, the algorithm outputs a subpaving for both the extrinsic rotation parameters ρIC and
the time offset τ .
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6.2 Extrinsic calibration between camera and LiDAR

The following approach was previously published in [113].
To fuse data from camera and laser scanner, we need to be able to transform laser scan

points into the camera coordinate system, or vice versa. In order to do so, it is inevitable
to know the extrinsic transformation parameters between camera and laser scanner. These
transformation parameters consist of the rotation matrix RC

L and the translation vector TC
L

and allow us to establish a link the sensor coordinate systems as follows:

XC = RC
L ·XL + TC

L , (6.15)

where XC and XL are 3D points in the camera and laser scanner coordinate system, respectively.
The process of computing RC

L and TC
L is denoted as extrinsic calibration.

Building on the sensor error models introduced in Chapter 4, we present an approach to
compute RC

L and TC
L in a bounded-error context. Instead of finding only point-valued results

for the transformation parameters, we compute intervals which are guaranteed to enclose the
true parameters - naturally only if the initial assumption about bounded sensor errors is valid.
Thus, our extrinsic calibration approach can be described as guaranteed, consistent and reliable.
Furthermore, interval analysis allows us to not only enclose the transformation parameters, but
also to assess their uncertainty by evaluating the interval widths. This poses an advantage
over conventional methods which can often only specify the accuracy of the transformation
parameters by comparing them to ground truth information (cf. Section 2.5.2).

In addition to the consistency and the possibility to assess the uncertainty, the proposed
approach does not need good initial values to find the correct solution. Unlike optimization
methods that can converge to a local minimum, interval analysis allows us to compute intervals
guaranteed to contain the global minimum, starting from an arbitrarily large domain.

The general idea to perform the extrinsic calibration is to find features in both camera and
laser scan data which can be associated automatically. Inspired by the method introduced
by Zhou et al. [49], we find plane, line and point correspondences from a checkerboard
which constrain the rigid body transformation between the sensor coordinate systems. Fig. 6.5
visualizes the idea. The feature extraction process is detailed for the camera in Section 6.2.1 and
for the laser scanner in Section 6.2.2. Subsequently, in Section 6.2.3 the plane, line and point
correspondences are used to formulate the CSP which is then solved using forward-backward
contractors and SIVIA.

Although it is possible to perform the extrinsic calibration using one single camera image and
laser scan, we generally employ multiple checkerboard poses. This means that we position the
checkerboard differently in front of the sensors for each recording. The reason for this is that a
single checkerboard might not constrain all transformation parameters adequately. For example,
one checkerboard pose may impose strong constraints on the rotation around the z-axis, but
is not suitable to contract the translation along the x-axis. Thus, it is necessary to combine
constraints enforced by several checkerboard poses. However, the following explanation of our
method considers one checkerboard pose only. Nevertheless, multiple poses can be combined
by merging the resulting contractors in the final SIVIA procedure.
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Corner boxes

Plane normal vector

Laser beam

Scan boxes

Line direction vectors

C

Goal: RC
L , TC

L

L

PnP problem

Scan line

Figure 6.5: To find the extrinsic transformation, i.e. the rotation matrix RC
L and the translation

vector TC
L , between camera and laser scanner in a guaranteed way we find plane, line

and point features in both camera and laser scan data under interval uncertainty.

6.2.1 Camera feature extraction
We aim to find three-dimensional plane, line and point features on the checkerboard in a
single camera image. Fig. 6.5 visualizes the features we are interested in. Since the rigid body
transformation between checkerboard and camera coordinate system is unknown, we have
to first solve the PnP problem as detailed in Chapter 5. This results in interval domains for
the translation vector TC

W ∈ [TC
W ] and the rotation matrix RC

W ∈ [RC
W ], which define the

transformation between the checkerboard (or world) coordinate system W and the camera
coordinate system C.

Plane feature extraction

First, we are interested in finding the checkerboard plane equation as observed from the
camera coordinate system. The general plane equation is

ax+ by + cz + d = n ·X + d = 0, (6.16)

where n = ( a b c )ᵀ is the plane normal vector, X = (x y z )ᵀ is any 3D point on the
plane and d is a constant. Our checkerboard coordinate system W is defined such that the
plane intersects the origin and nW = ( 0 0 1 )ᵀ is the normal vector of the plane. Thus, to
determine the plane normal vector in the camera coordinate system, we have to transform nW

using the previously determined rigid body transformation. Since nW is a vector, and thus the
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transformation is independent of the translation, we can compute the plane normal using solely
the rotation matrix as

nC = RC
W · nW = r3,

nC ∈ [nC ],RC
W ∈ [RC

W ], r3 ∈ [r3],
(6.17)

where r3 is the third column of the rotation matrix RC
W . Subsequently, any point XW

0 belonging
to the checkerboard plane that is transformed into the camera coordinate system can be used
to compute dC . We choose XW

0 = ( 0 0 0 )ᵀ, and thus

dC = −(nC ·XC
0 )

= −(nC · (RC
W ·XW

0 + TC
W ))

= −(nC ·TC
W ),

dC ∈ [dC ],nC ∈ [nC ],TC
W ∈ [TC

W ].

(6.18)

Point feature extraction

Second, taking advantage of the known checkerboard dimensions, we are able to immediately
determine the four corner points CW

m , m ∈ {1, . . . , 4}, in the checkerboard coordinate system.
Subsequently, they are transformed into the camera coordinate system using the previously
determined rigid body transformation:

CC
m = RC

W ·CW
m + TC

W ,

CC
m ∈ [CC

m],RC
W ∈ [RC

W ],CW
m ∈ [CW

m ],TC
W ∈ [TC

W ].
(6.19)

with m ∈ {1, . . . , 4} and
[CW

m ] = CW
m + [∆W ], (6.20)

where [∆W ] is the accuracy of the world points of the checkerboard that is given by the
manufacturing accuracy of the checkerboard.

Line feature extraction

Third, we aim to find the line equations of the four border lines surrounding the checkerboard.
The general line equation we use is

X = X0 + r d, (6.21)

where X0 is the starting point of the line, r is a constant, d is the (unit) direction vector
of the line and X is any point on the line. Since we already know two points belonging to
each line, namely the corner points previously computed, only the direction vector is left to
be determined. Reformulating (6.21) yields that an arbitrarily scaled direction vector can
be computed by subtracting two points from one another. Let CW

j = (xWj yWj 0 )ᵀ and
CW
k = ( xWk yWk 0 )ᵀ be two adjacent corner points given in the checkerboard coordinate

system as depicted in Fig. 6.5. Computing dCi means transforming the two corner points into
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the camera coordinate system and then subtracting them while exploiting the z-coordinate to
be 0:

ri dCi = (RC
W ·CW

j + TC
W )− (RC

W ·CW
k + TC

W )
= RC

W · (CW
j −CW

k )

=
(
r1 r2

)
· d̂

W

i ,

(6.22)

where rl, l = {1, 2}, is the l-th column of the rotation matrix RC
W and

d̂
W

i :=
(
xWj − xWk
yWj − yWk

)
,

d̂
W

i ∈ [d̂
W

i ],
(
xW{j,k}
yW{j,k}

)
∈
(

[xW{j,k}]
[yW{j,k}]

)
,

(6.23)

with i, j, k ∈ {1, . . . , 4} and
(

[xW{j,k}]
[yW{j,k}]

)
=
(
xW{j,k} + [∆W ]
yW{j,k} + [∆W ]

)
, (6.24)

where [∆W ] is the accuracy of the world points of the checkerboard.
To compute the unit vector that is not scaled by ri, it is convenient to normalize the

direction vector first since rotating it afterwards preserves its length:

dCi =
(
r1 r2

)
· d̂

W

i

‖d̂
W

i ‖
,

dCi ∈ [dCi ], r1 ∈ [r1], r2 ∈ [r2], d̂
W

i ∈ [d̂
W

i ]

(6.25)

6.2.2 Laser scanner feature extraction
As for the camera data, we extract the same plane, line and point features from laser scan data.
However, identifying these features in point clouds is more difficult since the transformation
between checkerboard and sensor coordinate system cannot be calculated as conveniently. In
addition, using intensity data to detect the the checkerboard features as fixed points for the
checkerboard coordinate system is impractical, if intensity measurements are not available.

Before we can compute the plane parameters from the laser scan points, we have to identify
all points belonging to the plane of the board. In order to do that, we make use of the dedicated
environment in which the extrinsic calibration is performed - i.e. a laboratory which is set
up to not contain any objects around the checkerboard. Thus, any scan point residing in a
pre-defined area is said to belong to the checkerboard. As will be explained later, outliers
(e.g. on the checkerboard boundaries) can be taken into account by employing a q-relaxed
intersection (cf. Section 3.9). Let Np be the number of interval points residing on the plane
and [PL

l ], l ∈ {1, . . . , Np}, an interval point according to the bounded error model introduced
in Chapter 4. Fig. 6.5 shows exemplary interval points on the checkerboard plane and the
corresponding plane, line and point features we are striving for.
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Plane feature extraction

We employ the general plane equation (6.16) to formulate a CSP for the plane normal
vector. Additionally, we introduce a second constraint to restrict the normal vector to a unit
vector. The CSP P can be formulated as:

P :



Variables: nL, dL, PL
l

Constraints:
1. nL ·PL

l + dL = 0 for l ∈ {1, . . . , Np}
2. ‖nL‖ = 1

Domains: [nL], [dL], [PL
l ]

(6.26)

The domains are initialized with [nL] = ([−1, 1]×3)ᵀ and [dL] = [0,∞]. In words, we
consider the normal vector to be unknown, but restrict dL ≥ 0 to remove the ambiguity of
positive/negative unit vectors. To solve the CSP, we employ a forward-backward contractor
(cf. Section 3.7.2) in conjunction with the SIVIA algorithm (cf. Section 3.8). SIVIA is necessary
since there are Np + 1 constraints in total (one for each point on the plane and the unit
vector constraint) each involving the normal vector nL. To reduce complexity, we refrain from
bisecting dL and only bisect nL.

Besides the forward-backward contractor, it is possible to run a preconditioned Gauss-Seidel
contractor [9]. However, this contractor works only for linear square systems. Since our system
is not linear due to the second constraint and generally not square due to Np > 4 (i.e. there
are more scan points on the plane than unknown variables), it is not possible to use solely this
contractor to achieve a satisfying contraction. Nevertheless, it can be used in conjunction with
the forward-backward contractor by randomly selection four points to formulate a square linear
system based on the first constraint.

While contracting the domains [nL] and [dL] in every step of the SIVIA algorithm, we
simultaneously contract the domains for each point [PL

l ]. This allows us to reduce the
uncertainty of our interval points which will be further needed to determine the line and point
features.

In the presence of outliers, it is possible to employ a q-relaxed intersection for the first
constraint of the CSP P . Instead of requiring that all points have to fulfill this constraint, we
allow a pre-determined number of points, which depends on the sensor and the environment,
to be potential outliers. Afterwards, we detect guaranteed outliers by checking for every point
whether the constraints of the CSP P uphold with the contracted domains for [nL] and [dL]. If
this is not the case, the relevant point is removed from the further feature extraction process.

Line feature extraction

The line feature extraction consists of two steps since the representation of a line i ∈
{1, . . . , 4} requires the line direction vector dLi and at least one point QL

ij , with j ∈ {1, . . . , Ni},
on the line. Ni is the total number of points we compute for the line i. At first, we determine
so-called hypothetical laser rays originating from the laser scanner and passing through the
border of the checkerboard. Subsequently, these hypothetical laser rays are intersected with
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ij
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laser ray dLsx

checkerboard
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Figure 6.6: Visualization of the line feature extraction. Hypothetical laser rays (red) originating
from the laser scanner and passing through the border of the checkerboard are
intersected with the checkerboard plane (blue) to find the desired border points
(yellow). Furthermore, the hypothetical laser rays span a plane (red), which is
intersected with the checkerboard plane to find the direction vector of the border
line.

the checkerboard plane to find the line points QL
ij. Moreover, these hypothetical rays span

another plane, which is intersected with the checkerboard plane to find the direction vector of
the border line dLi . Fig. 6.6 visualizes the line feature extraction.

We explain the process of determining the hypothetical laser rays by looking at a single
scan line s ∈ {1, . . . , Ns}, where Ns is the total number of scan lines (cf. Fig. 6.5). Fig. 6.7
shows such a scan line in top view. Let PL

sm be a point belonging to this scan line with
m = {1, . . . , ns}, where ns is the total number of points on the scan line s. We know that all
points of this scan line s have an overlapping interval for the vertical opening angle

[θs] =
⋂

m={1,...,ns}
[θsm], (6.27)

where θsm ∈ [θsm] is the vertical opening angle of PL
sm according to the bounded error model

introduced in Chapter 4. However, the horizontal opening angles ϕsm ∈ [ϕsm] are different.
Now, the idea is to find the interval for the horizontal opening angle [ϕsxc ] of the right/left-

most point on the checkerboard plane and the interval for the horizontal opening angle [ϕsxb ]
of the adjacent scan point that did not hit the plane but the background. x ∈ {r, l} indicates
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Laser scanner

[ϕsl] [ϕsr]

True
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plane

Interval
checkerboard
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checkerboard border
QL
sl

[ϕsrb ]
[ϕsrc ][ϕslb ]
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Figure 6.7: Top view of a single scan line s. The laser scanner measures several points (red) in
the background and on the checkerboard. According to our bounded error model
we assign an interval error to the horizontal opening angle of each measurement
(orange rays). Consequently, we are able to find the horizontal opening angles
[ϕsr] and [ϕsl] of the hypothetical laser rays passing through the borders of the
checkerboard. We do so by computing the union over the last scan point residing on
the checkerboard and the adjacent scan point hitting the background. Using these
horizontal opening angles and the vertical opening angle, which is common among
all scan points of the same scan line, we are able to determine the hypothetical
laser rays [dLsl] and [dLsr]. Finally, we compute a box enclosing the checkerboard
border points by intersecting those laser rays with the previously determined interval
checkerboard plane. The light blue lines depict both extremes of a plane containing
all scan points.
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whether we consider the right or left border of the checkerboard. This allows us to find a
guaranteed interval for the horizontal opening angle of the desired hypothetical laser ray as

[ϕsx] = [ϕsxc ] t [ϕsxb ]. (6.28)

Often, laser rays hitting both the checkerboard and the background are problematic since
they result in two different reflections that correspond to two different distances. Generally,
these distances are averaged by the laser scanner, resulting in a non-existent point between
checkerboard and background. However, our approach can cope with such laser rays since we
only require the horizontal opening angle, but not the distance.

Subsequently, we can state the direction vector of the hypothetical laser ray originating
from the laser scanner and passing through the border of the checkerboard as

dLsx =


sin θs cosϕsx
sin θs sinϕsx

cos θs

 ,
dLsx ∈ [dLsx], θs ∈ [θs], ϕsx ∈ [ϕsx].

(6.29)

To find points on the border line of the checkerboard, we intersect the hypothetical laser
rays with the checkerboard plane. Let QL

sx be the right/left border point we are looking for.
To be on the hypothetical laser ray dLsx it must fulfill the equation

QL
sx =


0
0
0

+ rsxdLsx, (6.30)

where rsx is an arbitrary factor.
Furthermore, according to the previous paragraph, to lie on the checkerboard plane it must
fulfill the equation

nL ·QL
sx + dL = 0. (6.31)

Substituting (6.30) into (6.31) and solving for rsx yields

rsx = − dL

nL · dLsx
. (6.32)

Thus, we can finally compute the box [QL
sx] enclosing the border point

QL
sx = − dLdLsx

nL · dLsx
,

QL
sx ∈ [QL

sx], dL ∈ [dL],dLsx ∈ [dLsx],nL ∈ [nL].
(6.33)

After computing points on the boundary lines of the checkerboard, it remains to determine
the direction vectors of the lines. As previously explained and depicted in Fig. 6.6, we find
the plane spanned by the hypothetical laser rays and intersect it with the checkerboard plane.
Starting from s = 1, we iteratively add the hypothetical laser rays [dLsx] to the set Dx1 in
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ascending order. Simultaneously, starting from s = ns, we iteratively add the hypothetical laser
rays [dLsx] to the set Dx2 in descending order. At every step we compute the plane normal of
the plane spanned by all vectors in the set as

[nLxm ] :=
⋂

dLjx∈Dxm

⋂
dLkx∈Dxm

j 6=k

[dLjx]× [dLkx]
‖[dLjx]× [dLkx]‖

. (6.34)

If [nLxm ] becomes empty, we know that the last inserted hypothetical laser ray does not lie
in the common plane. Thus, it is removed again and the iteration stops. Afterwards, if a
hypothetical laser ray belongs to both sets, it is omitted.

Laser scanner

[dL2 ]
[dL3 ]

[dL4 ]

[dL1 ]
[QL

5l]
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10l]

[QL
1r]

[QL
5r]

[QL
6r]

[QL
10r]

Dr1

[QL
1l]

Dr2

Dl2

Dl1

Hypothetical laser ray [d L
5l ]

Hypothetical laser ray [d L
1l ]

Figure 6.8: Visualization of the border points and corresponding boundary lines. As can
be seen, border points QL

sx have been computed for s ∈ {1, . . . , 10} by finding
hypothetical laser rays dLsx (dL1l is exemplified in red) and intersecting them with
the checkerboard plane. Subsequently, the hypothetical laser rays are split into the
sets Dxm . To indicate this distribution, we circle the corresponding border points.
As can be seen, dL5l /∈ Dl1 and dL5l /∈ Dl2 since this hypothetical laser ray could
belong to both sets, and is thus omitted.
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Subsequently, the unit direction vectors dLi of the four boundaries, i ∈ {1, . . . , 4}, can be
computed as

dLi = nLxm × nL

‖nLxm × nL‖
, i =



1, for x = l,m = 1
2, for x = l,m = 2
3, for x = r,m = 1
4, for x = r,m = 2

dLi ∈ [dLi ],nLxm ∈ [nLxm ],nL ∈ [nL].

(6.35)

However, we are not able to determine all four direction vectors if the scan lines are more or
less parallel to the boundaries of the checkerboard. In this case, we can only compute two of
the four direction vectors.

Subsequently, it remains to associate which points belong to which line direction vectors.
This association can be done straightforwardly by considering the sets Dxm . As can be seen
from Fig. 6.8, each hypothetical laser ray dLsx ∈ Dxm has a corresponding border point QL

sx.
Since each hypothetical laser ray is already associated to one of the four checkerboard boundaries
(according to the sets Dxm), we are able to unambiguously associate the corresponding border
points as well. In the following, a border point that is associated to the boundary line i is
denoted by QL

ij, j ∈ {1, . . . , Ni}, where Ni is the total number of points on the line i.
Finally, we exploit the fact that two of the four vectors each must be parallel due the

geometry of the checkerboard. Thus, we intersect the corresponding pairs of direction vectors
whose cross product domains contain 0 to reduce the uncertainty.

Point feature extraction

After finding the boundary lines, the corner points of the checkerboard can be extracted
by performing a three-dimensional line intersection. Let dLi and dLj be two intersecting line
direction vectors (i.e. their cross product must not be 0). Accordingly, QL

ik and QL
jp are points

on the respective lines. This allows us to formulate the CSP L:

L :



Variables: CL
m, rik, rjp,d

L
i ,d

L
j ,QL

ik,QL
jp

Constraints:
1. CL

m = rikdLi + QL
ik = rjpdLj + QL

jp

Domains: [CL
m], [rik], [rjp], [dLi ], [dLj ], [QL

ik], [QL
jp]

(6.36)

CL
m is the corner point we are interested in. To compute the domain [CL

m], we have to contract
the domains for rik and rjp, which are unknown constants, and thus we set their initial domains
to [rik] = [rjp] = [−∞,∞]. To solve the CSP, we employ a forward-backward contractor and
SIVIA. Since solely rik and rjp are unknown, we have to bisect in two dimensions only.

To find the tightest possible domain for CL
m, we formulate the CSP L for every combination

of points QL
ik and QL

jp (i.e. ∀k ∈ {1, . . . , Ni}, ∀p ∈ {1, . . . , Nj}) and intersect the resulting
intervals for CL

m. Generally, we determine all four corner points (i.e. m = {1, . . . , 4}) of the
checkerboard. However, if we find only two parallel direction vectors, we cannot compute any
corner point.
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6.2.3 Finding the extrinsic parameters

Having extracted the desired features from both sensor data streams, we must now establish
the correspondences between camera and laser features. Since there is only one plane on the
checkerboard, finding the allocation between plane features is not necessary. However, as there
are four boundaries and four corner points, the mapping of line and point features between
both sensors is not as straightforward. For now, we assume this mapping to be known and will
explain later how it can be established.

Before specifying the final CSP, we repeat the notions for all extracted features. Generally,
a right superscript C or L indicates that the particular feature is given in the camera or laser
scanner coordinate system, respectively.

• nL and nC are the unit checkerboard plane normal vectors.
• dLi and dCi are unit direction vectors describing the same checkerboard boundary line
i ∈ {1, . . . , 4}.

• QL
ij and QC

ik are points on the line i with j ∈ {1, . . . , Ni} and k ∈ {1, 2}. Ni is the
total number of points on the line i which we extracted from laser scan data. In contrast,
we determined only two points on every line i for the camera - namely the two adjacent
corner points.

• PL
l are scan points on the checkerboard with l ∈ {1, . . . , Np}. Np is the total number

of scan points on the plane.
• dC is the constant for the camera plane equation.
• CL

m and CC
m are corresponding checkerboard corner points.

Subsequently, we are able to formulate the CSP C which imposes constraints on the desired
extrinsic calibration parameters composed of the rotation matrix RC

L and the translation TC
L :

C :



Variables:
RC
L ,TC

L ,nL,nC ,d
L
i ,d

C
i ,

QL
ij,QC

ik,PL
l , d

C ,CL
m,CC

m

Constraints:
1. RC

LnL = nC

2. RC
LdLi = dCi

3.
(
I− dCi

(
dCi
)ᵀ) (

RC
LQL

ij + TC
L −QC

ik

)
= 0

4. nC ·
(
RC
LPL

l + TC
L

)
+ dC = 0

5. RC
LCL

m + TC
L = CC

m

Domains:
[RC

L ], [TC
L ], [nL], [nC ], [dLi ], [dCi ],

[QL
ij], [QC

ik], [PL
l ], [dC ], [CL

m], [CC
m]

(6.37)

The first two constraints establish a connection between unit direction vectors, and thus
only involve the rotation matrix. The third constraint forces a boundary point QL

ij, which is
transformed into C, to also lie on the boundary as computed in C. The fourth constraint ensures
that all scan points lying on the checkerboard fulfill the plane equation after being transformed
into C. Lastly, the fifth constraint states that a corner point CL

m which is transformed into C
should coincide with the corresponding corner point computed from image data.
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To reduce the number of unknown variables involved in the CSP C to six, we express the
rotation matrix using Euler angles ξCL (cf. Section 2.3.1). The domains [ξCL ] and [TC

L ] are
initialized to either an initial estimate of the transformation (e.g. by examining the multi-
sensor system) or to [ξCL ] = ([−π, π]×3)ᵀ and [TC

L ] = ([−∞,∞]×3)ᵀ. In the second case, we
assume no initial information about the extrinsic calibration. Subsequently, a forward-backward
contractor is built for every constraint of the CSP C. After combining these contractors to one
large forward-backward contractor (cf. Section 3.7.2), we employ this contractor in combination
with the SIVIA algorithm to find more accurate domains for the extrinsic transformation. In
order to reduce computational load, we bisect only the domains for the Euler angles [ξCL ].
Bisecting the domains for the three translation parameters is not necessary since they appear
only once in each constraint, and are thus not as prone to overestimation as the Euler angles.

Up until here, we depicted the method to contract the extrinsic transformation parameters
from one single laser scan and camera image. While this can already provide sufficiently precise
estimates, we generally use data of different checkerboard poses to impose stronger constraints
on the transformation parameters. Thus, we position the checkerboard in different poses in
front of the camera and the laser scanner and gather multiple corresponding laser scans and
camera images. Afterwards, we intersect all resulting forward-backward contractors and execute
SIVIA as described above.

Naturally, different checkerboard poses provide varying constraints on each of the six
transformation parameters. While one pose may particularly constrain the rotation around the
z-axis, another pose may be especially valuable to contract the translation along the x-axis.
Generally, we strive to contract the transformation parameter domains as much as possible
while using as few checkerboard poses as needed, to limit the computational load. Thus, it is
important to choose these checkerboard poses carefully. In this context, Zhou et al. [49] show
that it is not necessary to move the checkerboard to yield all possible constraints. In contrast,
they prove that rotating the checkerboard as close as possible to the sensors is sufficient.

Finding correspondences between camera and laser features

As suggested earlier, finding the correspondences between checkerboard boundaries or corner
points is not a straightforward task. One possibility to find out which boundary (or corner
point) as detected by the camera corresponds to which boundary (or corner point) as detected
by the laser scanner, is to assume an initial estimate for the rotation matrix RC

L ∈ [RC
L ] and

the translation vector TC
L ∈ [TC

L ]. In this case, the domains [RC
L ] and [TC

L ] must be small
enough to provide an unambiguous allocation between those features. The initial estimate may
for example stem from the user who is able to observe the multi-sensor system.

However, generally we assume no initial information about the translation, i.e. [TC
L ] =

([−∞,∞]×3)ᵀ, and the rotation, i.e. [ξCL ] = ([−π, π]×3)ᵀ. To still find the correspondences,
we can employ only the first and fourth constraints of the CSP C, which do not require the
mapping to be known. Subsequently, we are able to contract the extrinsic calibration domain
by calling SIVIA in combination with a forward-backward contractor for this first and fourth
constraint only. However, due the nature of Euler angles, an ambiguity may occur since different
sets of Euler angles can describe the same rotation. Therefore, we must discard one of the
possibilities or preclude such ambiguities by providing an initial estimate of the Euler angles.
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Afterwards, it is possible to determine corresponding boundary lines using the second and
third constraint of C, and to finally find the corresponding corner points by employing the fifth
constraint. In order to do that, we employ the contracted transformation domains to check for
every possible mapping of features whether the corresponding constraint is fulfilled. If it is not,
we can immediately conclude that the selected features do not belong to the same real world
entity on the checkerboard. If a specific feature fulfills the constraints for multiple mappings,
we cannot decide yet which mapping is correct. Solely in the case that a feature fulfills the
constraints for only one corresponding feature, and vice versa, we can establish a mapping
between these features (i.e. we require a bijection).

6.3 Conclusion
The contribution of this chapter are two new approaches for the guaranteed spatiotemporal
calibration between different sensors. The first approach can be used to determine the time
offset and the extrinsic rotation between camera and IMU. However, this approach includes
the new time offset contractor Coffset that is more general and can be used to determine an
interval enclosing the time offset between any two tubes. Therefore, this contractor constitutes
a contribution to the field of constraint programming over dynamical systems. Moreover, this
contractor can be applied to compute the time offset between any combination of sensors that
measure the same entity over time.

To determine the extrinsic 6 DOF transformation between the coordinate systems of a
camera and a laser scanner, this chapter additionally introduces a second approach. Here,
the novelty of this work is that we present a method with which features of a checkerboard
can be identified in a laser scanner point cloud in a guaranteed way. In combination with the
guaranteed solution to the PnP problem in the previous chapter, this allows us to formulate a
CSP for which we build forward-backward contractors that are capable of reliably contracting
the transformation parameters. However, as for the PnP algorithm, we require bisections to
compute the transformation between camera, laser scanner and IMU accurately. Consequently,
in the future a dedicated contractor that does not decompose the constraints of the extrinsic
calibration between sensors should be developed. Furthermore, the approach could be extended
to other potentially three-dimensional calibration targets.

The experiments showing that we are able to reliably and accurately enclose the desired
spatiotemporal calibration parameters using both simulated and real data can be found in
Section 8.1 and Section 8.2.

To our knowledge, spatiotemporal calibration approaches between these sensor combinations
have not yet been investigated in the context of bounded-error modeling, and thus pose an
essential contribution of this work. Naturally, the spatiotemporal calibration parameters must
be determined before information from camera, laser scanner and IMU can be fused. Since the
aim of this work is to fuse sensor information in a guaranteed way to subsequently perform
visual-LiDAR odometry, this chapter constitutes a necessary preliminary step in order to also
compute the spatiotemporal calibration parameters in a guaranteed manner. In the following,
we assume the intervals enclosing these parameters to be known, and can thus proceed with
the main goal of this thesis: the interval-based sensor fusion for visual-LiDAR odometry.



7 Bounded-Error Visual-LiDAR Odometry

This chapter introduces our approach to perform dead reckoning for a mobile robot using data
from camera, laser scanner and IMU. First, we fuse information from camera and laser scanner
to create visual features that are augmented with depth information from the laser scanner. In
order to do that, we assume both sensors to be synchronized (cf. Section 1.1.2). Moreover, in
Section 6.2 we proposed an approach to compute the extrinsic transformation between camera
and laser scanner under interval uncertainty. Using these extrinsic parameters and the bounded
sensor error models introduced in Chapter 4, we are able to perform guaranteed visual-LiDAR
sensor fusion, as all relevant errors are taken into account with intervals. Section 7.1 details
our approach.
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Figure 7.1: Classification of the sensor fusion in the overall context of this work.

Second, we employ the visual 3D features to estimate the robot’s relative motion between
consecutive points in time. In order to do that, the IMU data serves as an initial estimate
for the rotation. Here, the spatiotemporal calibration parameters between camera and IMU
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(cf. Section 6.1) are required to utilize this initial guess. Afterwards, we compute the rigid body
transformation between two points in time that is constrained by the 3D features. Since our
approach relies on interval analysis, and thus the computations are guaranteed, outliers can be
unambiguously identified afterwards. Section 7.2 details our approach for the guaranteed visual-
LiDAR odometry. Finally, Section 7.3 concludes this chapter by summarizing the procedure to
incrementally localize a robot using camera, laser scanner and IMU.

7.1 Visual-LiDAR sensor fusion

The purpose of this section is to augment visual features with depth information for subsequent
use in a more accurate motion estimation compared to visual features alone. In order to do that,
camera and laser scanner information must first be brought into a common reference frame.
Thus, in Section 7.1.1 we project the laser scan points onto the image plane. Afterwards,
state-of-the-art methods are employed to detect and track image features between consecutive
image frames. Finally, in Section 7.1.2 we present our approach to augment visual features
with depth information in a guaranteed way.

7.1.1 Laser scan projection

To project the laser scan points onto the image plane, we have to first transform all points
i ∈ {1, . . . , Nl} from the laser scanner coordinate system L into the camera coordinate system
C, where Nl is the number of scan points. This can be done using the extrinsic transformation
consisting of the rotation matrix RC

L and the translation vector TC
L :

XC
i = RC

L ·XL
i + TC

L = RC
L ·


ri sinαi cos βi
ri sinαi sin βi
ri sinαi

+ TC
L , (7.1)

where ri, αi and βi are the spherical coordinates of laser scan point i according to Section 2.1.1.
Subsequently, we project the transformed points onto the virtual image plane (z-coordinate

equals 1) by normalizing their coordinates:

x̃Ci = xCi
zCi
,

ỹCi = yCi
zCi
.

(7.2)

Substituting (7.1) into (7.2) allows us to define the projection function

(
x̃Ci
ỹCi

)
= fproj

(
XL
i ,RC

L ,TC
L

)
=

R1·XL
i +T1

R3·XL
i +T3

R2·XL
i +T2

R3·XL
i +T3

 , (7.3)

where Rm and Tm, m ∈ {1, 2, 3} are the m-th row of RC
L and TC

L , respectively.
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(a) Traditional projection without considering un-
certainties.

(b) Interval boxes enclosing the projected laser
scan points. The color of each box corresponds
to the midpoint of the depth interval.

Figure 7.2: Exemplary projected laser scan points that are color coded by depth (red: close,
blue: distant).

Since we perform computations with intervals, we define [f ]proj as the natural inclusion
function of fproj (cf. Section 3.6.1). Unfortunately, [f ]proj cannot be simplified. Thus, the
coordinates XL

i (and consequently the spherical coordinates ri, αi, βi) and the entries of the
rotation matrix (and consequently the Euler angles ϕCL , θCL , ψCL ) appear several times. To avoid
substantial overestimation of the projected scan points, it is possible to bisect the spherical
coordinates and the Euler angles during the computation [9].

Finally, we compute the interval box containing the projected laser scan point as

[X̃C

i ] =
(

[x̃Ci ]
[ỹCi ]

)
= [f ]proj

(
[XL

i ], [RC
L ], [TC

L ]
)
, (7.4)

where [XL
i ] is the box enclosing the scan point i according to the bounded error model derived

in Section 4.2.1. Moreover, [RC
L ] and [TC

L ] are the domains enclosing the extrinsic calibration
parameters that can be determined as depicted in Section 6.2.

Fig. 7.2 shows laser scan points that are projected onto the image plane in the traditional
way (i.e. without considering uncertainties) and using the approach we proposed. The depth
interval of a projected scan point i is its z-coordinate before the projection, i.e. [zCi ].

7.1.2 Data fusion
Before we can fuse data from camera and laser scanner, we have to decide which image points
we want to augment with depth information. Naturally, any approach could be employed to
detect and match image features. Since this is not the focus of our work, we decided to use one
that is available in Open Source Computer Vision Library (OpenCV) [114] and has produced
reasonable results in our experiments. Consequently, we employ “Good features to track” which
is a state-of-the-art approach to detect features in the image [115]. Subsequently, we use the
Lucas Kanade feature tracker to calculate the optical flow between consecutive images, and
are thus able to re-identify the aforementioned image features [116]. In this way, we are able
to establish so-called image feature matches, meaning that the matched image features of the
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Figure 7.3: Our general idea to fuse data from camera and laser scanner. For this example, we
only distinguish between scan boxes that are close (red) or distant (blue). As can
be seen, the yellow image feature resides on a plane that is almost parallel to the
image plane, and thus all intersecting scan boxes exhibit similar depth information.
In contrast, the green image feature resides on an edge and intersects scan boxes
from both fore- and background. Consequently, the depth estimate for the yellow
image feature will be more accurate than for the green image feature.

first and second image correspond to the same object. Naturally, outliers can occur during this
feature matching process. However, for now we assume the established matches to be correct
and take care of outliers in Section 7.2.4.

Fig. 7.3 shows the general idea of our approach to fuse data from camera and laser scanner.
Since image features and scan points are no longer points, but boxes guaranteed to contain
the true value, we find all overlapping scan boxes for each image feature box. Consequently,
we compute the depth of the image feature as the union over the depth of all intersecting
scan boxes. This results in an interval for the depth which allows us to immediately assess its
accuracy. In the following, we formalize our method.

Let j be an image feature which we aim to augment by depth information. First, we
compute the box enclosing its normalized coordinates on the image plane according to the
bounded error model introduced in Section 4.2.2: [X̃C

j ] = [x̃Cj ]× [ỹCj ].
Next, we determine the set Sj of all previously projected scan boxes i whose normalized

coordinates have a non-empty intersection with the normalized coordinates of feature j:

Sj = { i ∈ {1, . . . , Nl} | [X̃
C

i ] ∩ [X̃C

j ] 6= ∅ }. (7.5)

Subsequently, we can determine the depth (i.e. the z-coordinate) of the image feature j. In
order to do that, we compute the union over the z-coordinates of all overlapping scan boxes:

[zCj ] =
⋃
i∈Sj

[zCi ]. (7.6)
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Consequently, we use this interval to determine the non-normalized x- and y-coordinates:

[XC
j ] = [zCj ]


[x̃Cj ]
[ỹCj ]

1

 , (7.7)

where [XC
j ] is the desired box enclosing the 3D coordinates of the image feature j.

Of course, the underlying assumption to find depth information using our proposed method
is that the laser scanner measures a 3D point close enough to every image feature. Otherwise,
it might happen that the true depth of a feature is not enclosed in the computed interval.
However, this is the case since the laser scanner produces a dense point cloud and we check
that each image feature is surrounded by sufficient 3D points.

The result of this approach are depth augmented visual features that can be re-identified in
successive images. Since we compute the depth estimates using interval analysis, the results
are guaranteed if the initial assumptions about the sensor errors are correct. Moreover, we can
directly assess the accuracy of the depth estimates, and are thus able to distinguish between
accurate and inaccurate features. For example, the depth of features residing on a plane parallel
to the image plane can generally be computed more accurately than for features residing on
edges. Fig. 7.4 shows exemplary images that illustrate the results of our sensor fusion approach.

However, we cannot calculate the depth of every feature, for example, if the projected point
cloud does not cover the entire image. Nevertheless, image features without depth information
can still be employed for the motion estimation. Consequently, in the following section we
distinguish between features with or without depth information.

(a) Colored by depth (red: close, blue: distant).
Features without depth information are colored
purple.

(b) Colored by depth accuracy (red: accurate,
blue: inaccurate).

Figure 7.4: Exemplary results of our approach for data fusion. In the left image, image features
are color coded by their depth, i.e. the mid point of the interval enclosing their
z-coordinate. In the right image, image features are colored by their depth accuracy,
i.e. the width of the interval enclosing their z-coordinate. As expected, the depth
estimate is less accurate for features that are close to edges since the feature could
lie on either side of the edge (e.g. features on the borders of cars). Furthermore, the
depth estimate for features that are far away from the camera is also as expected
less accurate.
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7.2 Guaranteed visual-LiDAR odometry
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Figure 7.5: Classification of the guaranteed visual-LiDAR odometry in the overall context of
this work.

In this section we introduce our approach to incrementally localize a robot using the
previously fused information from camera and laser scanner as well as IMU data. As explained
in Section 2.6, no global information (e.g. a known map or known pose in a global coordinate
system) is available. Thus, we can only compute the relative motion of the robot between
distinct points in time, which are the times of acquiring image and laser scan data for our work.
Fig. 7.6 shows the general idea of our approach.

Formally, we define the problem of visual-LiDAR odometry as follows. Let f and g be two
consecutive image frames with the corresponding timestamps tCf and tCg such that tCg > tCg . The
motion of the robot between these image frames is described by the rigid body transformation
consisting of the rotation matrix RCf

Cg and the translation vector TCf
Cg . Here, Cf and Cg is the

camera coordinate system during the acquisition of image frames f and g, respectively.
First, Section 7.2.1 introduces the procedure to compute an initial enclosure of the robot’s

relative rotational movement between image frames. Here, the spatiotemporal calibration
parameters between camera and IMU that are determined according to Section 6.1 are required.
Next, in Section 7.2.2 we explain how to employ the previously created visual 3D features
to further contract the initial rotation estimate and simultaneously compute the relative
translational movement of the robot. Moreover, although it is possible to compute the
relative motion between each consecutive image pair, we introduce the concept of keyframes
in Section 7.2.3 to reduce the drift of our approach. Last, in Section 7.2.4 we explain how
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Cg
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Rigid body transformation:
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f
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f
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Figure 7.6: We find visual features and augment them by depth information in two different
coordinate systems (i.e. at two different poses), and are thus able to find the rigid
body transformation consisting of the rotation matrix RCf

Cg and the translation
vector TCf

Cg .

outliers occurring during the image feature matching process can be taken into account during
the motion estimation.

7.2.1 Rotation prediction using IMU data

The goal of this section is to compute intervals that serve as a first approximation of the
relative rotation of our robot between the image frames f and g. Again, tCf and tCg are the
points in time at which the camera captures the images f and g, respectively. Generally, given
these two points in time, we can use the unknown but bounded angular velocities measured by
the IMU and integrate them according to equation (2.12). However, there exists an unknown
but bounded time offset [τ ] between the data streams of the camera and the IMU that we
determine as explained in Section 6.1. Consequently, in addition to the uncertainty of the
angular velocities, we also have to take into account the uncertainty of this time offset. Here,
the general idea is to translate the time uncertainty into an increased uncertainty of the angular
velocities.

Let [ω̂I ](·) be the three-dimensional tube enclosing the angular velocities in the time
reference and coordinate system of the IMU that is built according to the error model in
Section 4.2.3. Now, the goal is to determine the three-dimensional tube [ωI ](·) that encloses
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[ω̂Ix](·)

[ωIx](·)

t1

ωx

t

[ω̂Ix](t1 + [τ ])
= [ωIx](t1)

[τ ]

Figure 7.7: Visualization of how the uncertainty of the angular velocities is inflated to account
for the unknown but bounded time offset [τ ].

the angular velocities in the time reference of the camera. Consequently, we have to take the
time offset [τ ] into account and compute the desired tube as:

∀t ∈ [t0, tf ] : [ωI ](t) = [ω̂I ](t+ [τ ]), (7.8)

where [t0, tf ] is the time interval over which [ω̂I ](·) is defined. Fig. 7.7 visualizes this idea.
Note, however, that the angular velocities still correspond to the coordinate system of the IMU
and we only account for the time offset between camera and IMU, but not yet for the extrinsic
rotation between both sensors.

Subsequently, we employ the natural inclusion function of (2.12) to integrate the angular
velocities [ωI ](·) between tCf and tCg . This results in an interval matrix [RIf

Ig ] that encloses
the relative rotation of the IMU between the acquisition of the image frames f and g by the
camera.
Remark
In theory, since (2.12) corresponds to a simple first-order integration method, the interval
matrix [RIf

Ig ] is not guaranteed to enclose the true rotation matrix RIf
Ig

∗
. This is due to the

assumption of angular velocities being constant for a small period of time.
If we want to keep the guarantees intact, it is possible to use guaranteed integration

methods [117] and formulate the problem as follows:

ẋt = f
(
xt, ω̂I(t)

)
, (7.9)

where f is the differential equation corresponding to the matrix formulation in (2.9) and
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xt =
(
r11 r12 . . . r33 Υ

)
,

x0 =
(
1 0 0 0 1 0 0 0 1 τ

)
,

Υ̇ = 1,
xt ∈ [xt], x0 ∈ [x0], τ ∈ [τ ], ω̂I(t) ∈ [ω̂I ](t),

(7.10)

where x0 is the initial condition and r11, r12, . . . , r33 are the desired entries of the rotation
matrix. Note that the time offset [τ ] is taken into account by introducing the parameter Υ in
the differential equation that evolves with time due to the additional constraint Υ̇ = 1 and
setting the initial condition Υ0 ∈ [τ ].

However, the guaranteed integration of (7.9) is not straightforward and up until now there
exists no software library to compute it. Consequently, this work relies on the first-order
integration method described above. Although this approach is theoretically not guaranteed,
it has no disadvantages in practice because the angular velocities are measured at a high
frequency.

Finally, after computing the robot’s rotation in the IMU coordinate system, we have to
transform it into the camera coordinate system. In order to do that, we require the extrinsic
rotation between both sensor coordinate systems that can be determined as explained in
Section 6.1. Consequently, we compute

[RCf
Cg ] =

(
[RI

C ]
)ᵀ
· [RIf

Ig ] · [R
I
C ], (7.11)

where [RI
C ] is the interval matrix enclosing the extrinsic rotation matrix.

7.2.2 Rigid body transformation

From here, we omit the superscript C for the rotation matrix RCf
Cg and the translation vector

TCf
Cg . Instead, we write Rf

g and Tf
g since all computations are performed in the camera

coordinate system. Moreover, we also omit the superscript C for coordinates and write, for
example, Xf

j instead of XCf
j for the coordinates of a feature j in the camera coordinate system

C during the image frame f . To reduce the number of unknowns for the rotation matrix Rf
g ,

we express it using the Euler angles ξfg = (ϕfg θfg ψfg ) (cf. Section 2.3.1).
After computing an initial enclosure for the robot’s relative rotation between the image

frames f and g, this section introduces constraints to further contract the rotation estimate
Rf
g and to compute the translational movement Tf

g . In order to do that, we distinguish
between three cases for matched image features. First, we build a contractor for image features
which were successfully augmented by depth information in both images. Second, we employ
the contractors introduced for the PnP problem (cf. Chapter 5) for image features for which
depth information was found only in one of the two consecutive images. Third, we build a
new contractor for image features that could not be augmented by depth information in both
images.
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7.2.2.1 Depth information in both images

If we succeed to augment an image feature by depth information in both images, we know its
3D coordinates which allows us to formulate the rigid body transformation as follows:

Xf
j = Rf

g ·X
g
j + Tf

g , (7.12)

where Xf
j are the 3D coordinates of the feature j ∈ Fboth found in image f and Xg

j is the
same feature j found in image g. Moreover, Fboth is the set of all matches for which both
features were augmented by depth information in image g and f .

This allows us to formulate a multi-dimensional function fboth with the j-th row as

fbothj

(
ξfg ,Tf

g ,X
f
j ,X

g
j

)
= Rf

g

(
ξfg
)
·Xg

j + Tf
g −Xf

j = 0. (7.13)

Now, we can formulate the CSP Hboth:

Hboth :
 ∀j ∈ Fboth : fbothj

(
ξfg ,Tf

g ,X
f
j ,X

g
j

)
= 0

ξfg ∈ [ξfg ],Tf
g ∈ [Tf

g ],X
f
j ∈ [Xf

j ],X
g
j ∈ [Xg

j ]

 , (7.14)

where [ξfg ] and [Tf
g ] are the desired interval vector enclosing the Euler angles and the translation

parameters, respectively. Furthermore, [Xf
j ] and [Xg

j ] are the 3D coordinates of the feature j
in the images f and g, respectively, that are augmented by depth information as explained in
Section 7.1.2.

Subsequently, we build a forward-backward contractor Cbothj ([ξfg ], [Tf
g ]) (cf. Section 3.7.2)

for each constraint j of the CSP Hboth and intersect all of them to obtain the final contractor

Cboth([ξfg ], [Tf
g ]) =

⋂
j∈Fboth

Cbothj ([ξfg ], [Tf
g ]). (7.15)

7.2.2.2 Depth information in one image

If we fail to find depth information for a feature in image f , but succeed to do so for the same
feature in image g, the problem of estimating the rotation matrix and the translation vector
becomes the PnP problem:

zfj X̃
f

j = Rf
g ·X

g
j + Tf

g , (7.16)

where zfj is the unknown depth and X̃f

j are the normalized image coordinates of a feature
j ∈ Fone. Moreover, Fone is the set of all matches for which only one feature was augmented
by depth information.

Vice versa, if we fail to find depth information for a feature in image g, but succeed to do
so for the same feature in image f , the equation becomes(

Rf
g

)ᵀ (
X̃f

j −Tf
g

)
= zgjX

g
j . (7.17)

In both cases we can employ the contractors introduced in Section 5.1. However, as there
are generally only a few features for which depth information is found in one image but not in
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the other, we omit the linear Gauss-Seidel contractor since it requires at least six such features.
Thus, we only build the nonlinear forward-backward contractor Cpnp,nlj ([ξfg ], [Tf

g ]) for every
feature j ∈ Fone.

Again, we intersect all these contractors to obtain the final contractor Cone([ξfg ], [Tf
g ]):

Cone([ξfg ], [Tf
g ]) =

⋂
j∈Fone

Cpnp,nlj ([ξfg ], [Tf
g ]). (7.18)

7.2.2.3 No depth information

If no depth information is available for a feature in both images, the equation becomes:

zfj X̃
f

j = zgjRf
g · X̃

g

j + Tf
g , (7.19)

where zfj and zgj are the unknown depths of the image feature in image f and g, respectively.
To eliminate both zfj and zgj we combine all three rows. First, we solve the third row for zfj :

zfj = zgj (R3 · X̃
g

j ) + T3, (7.20)

where Rl, l ∈ {1, 2, 3} is the l-th row of Rf
g and Tm, m ∈ {1, 2, 3} is the m-th row of Tf

g .
Next, we substitute the previous expression (7.20) for zfj into the second row of (7.19):

(zgj (R3 · X̃
g

j ) + T3)ỹfj = zgj (R2 · X̃
g

j ) + T2. (7.21)

Rearranging the expression allows us to find an expression for zgj :

zgj ỹ
f
j (R3 · X̃

g

j )− z
g
j (R2 · X̃

g

j ) = T2 − ỹfj T3

zgj =
T2 − ỹfj T3

ỹfj (R3 · X̃
g

j )− (R2 · X̃
g

j )
.

(7.22)

Finally, both (7.20) and (7.22) can be substituted into the first row of (7.19):

x̃fj

 T2 − ỹfj T3

ỹfj (R3 · X̃
g

j )− (R2 · X̃
g

j )
(R3 · X̃

g

j ) + T3

 =
T2 − ỹfj T3

ỹfj (R3 · X̃
g

j )− (R2 · X̃
g

j )
(R1 · X̃

g

j ) + T1.

(7.23)
Eliminating the common denominator on both sides results in

x̃fj
(
T2 − ỹfj T3

)
(R3 · X̃

g

j ) + x̃fjT3
(
ỹfj (R3 · X̃

g

j )− (R2 · X̃
g

j )
)

=(
T2 − ỹfj T3

)
(R1 · X̃

g

j ) + T1
(
ỹfj (R3 · X̃

g

j )− (R2 · X̃
g

j )
)
.

(7.24)

Rearranging this expression results in(
−ỹfj T3 + T2

)
(R1 · X̃

g

j ) +
(
x̃fjT3 − T1

)
(R2 · X̃

g

j ) +
(
−x̃fjT2 + ỹfj T1

)
(R3 · X̃

g

j ) = 0, (7.25)
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which can be expressed in matrix form as(
−ỹfj T3 + T2 x̃fjT3 − T1 −x̃fjT2 + ỹfj T1

)
·Rf

g · X̃
g

j = 0. (7.26)

We define j ∈ Fno, where Fno is the set of all image feature matches without depth information.
Consequently, we obtain a multi-dimensional function fno with the j-th row as

fnoj
(
ξfg ,Tf

g , X̃
f

j , X̃
g

j

)
=(

−ỹfj T3 + T2 x̃fjT3 − T1 −x̃fjT2 + ỹfj T1
)
·Rf

g

(
ξfg
)
· X̃g

j = 0,
(7.27)

Now, we can formulate the CSP Hno:

Hno :
 ∀j ∈ Fno : fnoj

(
ξfg ,Tf

g , X̃
f

j , X̃
g

j

)
= 0

ξfg ∈ [ξfg ],Tf
g ∈ [Tf

g ], X̃
f

j ∈ [X̃f

j ], X̃
g

j ∈ [X̃g

j ]

 , (7.28)

where [ξfg ] and [Tf
g ] are the desired interval vector enclosing the Euler angles and the translation

parameters, respectively. Furthermore, [X̃f

j ] and [X̃g

j ] are the normalized image coordinates of
the feature j in the images f and g, respectively.

Subsequently, we build a forward-backward contractor Cnoj ([ξfg ], [Tf
g ]) (cf. Section 3.7.2) for

each constraint j of the CSP Hno and intersect all of them to obtain the final contractor

Cno([ξfg ], [Tf
g ]) =

⋂
j∈Fno

Cnoj ([ξfg ], [Tf
g ]). (7.29)

7.2.2.4 Final contractor

After introducing the contractors in the previous sections, we can now build one contractor
that combines all of them to provide a more accurate enclosure of the robot’s motion. Since
we distinguish between image features for which depth information can be found in either both
image frames, one image frame or not at all, we build three main contractors. Each of these
contractors is an intersection over multiple forward-backward contractors that are built for each
individual image feature match. Consequently, we can intersect the three main contractors
to build one common contractor that successively applies the primitive forward-backward
contractors:

Codom([ξfg ], [Tf
g ]) = Cboth([ξfg ], [Tf

g ]) ∩ Cone([ξfg ], [Tf
g ]) ∩ Cno([ξfg ], [Tf

g ]). (7.30)

We refrain from employing more sophisticated contractors than forward-backward contractors
since these exhibit several advantages for our application. First, they can deal with highly
nonlinear constraints which arise in our application due to the three-dimensional rotations [9,
73]. Second, in contrast to other contractors, the number of constraints can be larger than
the number of unknowns [9, 73]. In general, this is the case since there are only six unknowns
(6 DOF transformation), but we detect significantly more image feature matches. Third,
the computational cost for forward-backward contractors is comparatively low, as it is only
necessary to decompose the constraint into primitive functions, compute the forward evaluation
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and then propagate the new domains backwards [9, 73]. This is important in view of the fact
that we employ constraints from a large number of image features.

However, the main drawback of the forward-backward contractor is that variables that
appear more often in the equation cannot be contracted optimally due to the dependency
problem (cf. Section 3.6.1). This is the case for the Euler angles in our constraints. Thus, we
additionally employ bisections to compute these parameters more accurately, as explained in
Section 7.3.

7.2.3 Keyframes
Since the concept of keyframes has been proven to be successful in many approaches for visual
odometry, we adopt it in this work [57]. This means that instead of computing the robot’s
relative motion between consecutive image frames, we estimate the transformation from the
current image frame relative to the most recently defined keyframe until we have to insert a
new keyframe. Fig. 7.8 shows the idea.

The main advantage of this concept is that the odometry drift can reduced since the error
accumulates only between keyframes and not between each consecutive image frame. For
example, when computing the motion frame by frame, we would have to determine the rotation
between k1 and k2 as follows:

Rk1
k2 = Rk1

f1 ·R
f1
f2 · · · · ·R

f7
k2 . (7.31)

As can be easily understood, this leads to an accumulation of the error over all frames. In
contrast, finding image feature matches between k1 and k2 allows the direct computation of
the rotation Rk1

k2 , which is thus independent of the intermediate frames.
However, this raises the question of when to insert a new keyframe. On the one hand, it is

beneficial to insert as few keyframes as possible to reduce the computation time and minimize
drift. On the other hand, it is important to track sufficient reliable visual features for a robust
motion estimation. Established approaches employ simple (number and distribution of image
features) or more advanced heuristics to judge the quality of their visual features. However,
these metrics are often not resilient to different circumstances as becomes evident by the fact

k1

Motion estimation

f1 f2 f3 f4 f5 f6 f7 k2

Figure 7.8: Visualization of the concept of keyframes. Instead of estimating the motion between
consecutive images (i.e. Rf1

f2 , Rf2
f3 , etc.), we estimate the motion relative to the

last keyframe k1 (i.e. Rk1
f1 , Rk1

f2 , etc.) until we have to insert a new keyframe k2.



110 Chapter 7. Bounded-Error Visual-LiDAR Odometry

that different approaches for the selection of keyframes have been introduced [57, 65, 118,
119].

In contrast, in the context of interval analysis, we can employ a straightforward approach
to select keyframes. We propose to use a dynamic approach that observes the uncertainty of
odometry estimates (i.e. the width of the intervals for the Euler angles and the translation
parameters) and inserts a new keyframe once the position uncertainty exceeds a predefined
threshold. An increasing uncertainty is the direct consequence of insufficient constraints
that prevent our contractors from contracting the pose domain, and thus a direct indicator
of insufficient visual features. This allows us to insert keyframes only when it is absolutely
necessary. Moreover, this approach can be straightforwardly adapted for different applications
by setting the maximum tolerable uncertainty.

7.2.4 Outlier treatment

As explained in Section 7.1.2, the 3D features needed to estimate the rigid body transformation
are not necessarily outlier-free. Although our approach to fuse data from camera and laser
scanner is guaranteed to compute a proper enclosure for the depth of a visual feature, the
feature matching between images is error-prone. Accordingly, it may happen that the feature
tracking algorithm matches two visual features that do not correspond to the same object.
Moreover, we may detect image features that correspond to the same object, but this object is
not static (e.g. a moving car), and thus must be treated as outliers when computing the rigid
body transformation.

To deal with outliers occurring during the feature matching, we employ a two-fold approach.
First, we aim to exclude outliers before computing the rigid body transformation. Second, we
account for remaining outliers during the motion estimation by employing a relaxed intersection
(cf. Section 3.9).

We exclude wrongly matched image features before proceeding with the motion estimation
using different approaches. First, we employ a state-of-the-art approach to make the compu-
tation of the optical flow of image features more robust. The basic idea is that the solution
should not depend on the reference image, i.e. it should not matter whether the optical flow is
calculated from image A to image B, or vice versa [120]. Thus, we only keep image feature
matches that are established independent of the direction in which the optical flow is computed.

Second, given the corresponding image features, we compute the so-called fundamental
matrix using Random Sample Consensus (RANSAC). This matrix relates the image points
from image A to another image B, i.e. using the fundamental matrix, for each image point
from image A we can describe a so-called epipolar line in image B on which the corresponding
point must lie. Consequently, we mark all matched image features that deviate by more than
the maximum image pixel error r([∆px]) (cf. Section 4.2.2) from these epipolar lines as outliers.
More details on the background of epipolar geometry can be found in [28].

Third, we use the 3D information of depth augmented image features if it is available for
a feature match in both image frames. The main idea is that for a rigid body, the distance
between two points does not change over time. Thus, for every two 3D features i and j, the
distances measured in two consecutive frames g and f must coincide. Let us denote the 3D
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Figure 7.9: Visualization of the idea to detect outliers by computing the distances between 3D
points. At t1, the red robot detects four yellow features and computes their 3D
coordinates as explained above. Subsequently, we compute the distances between
these 3D points. After moving to t2, we repeat the same procedure and check
whether the distances remain the same. However, since the first feature resides on
a moving object, the distances d1j, j ∈ {2, 3, 4} change. Consequently, we are able
to mark the first feature as an outlier. Similarly, we can detect outliers occurring
due to mismatched features.

coordinates of a point i in frame g by Xg
i and the corresponding Euclidean distance between

the points i and j in frame g by dgij.
As introduced before, we do not have the exact values of the 3D coordinates, but only

intervals of possible values. Based on these intervals, for each i and j, we can only compute
intervals of possible values of dgij and d

f
ij. The actual value of the distance must be in both

intervals, thus these intervals must have a non-zero intersection. To compute the intervals for
the distance, we use the natural inclusion function of the Euclidean distance (cf. Section 3.6.1).

If at least one of the points is mismatched or not rigid (i.e. an outlier for our application)
and the corresponding intervals are tight enough, the distances become different, and there
is no longer any intersection. Consequently, we aim to find the largest set of points that are
mutually consistent (i.e. the distances between any two points of the set must intersect over
both frames). Since the problem of finding this set of points is NP-complete, we employ the
approach proposed by Howard [121]:

1. We determine the point that is consistent with the largest number of other points and
add it to the set.

2. For each point that is not in the set, we compute the number of points from the set
that it is consistent with.

3. We add the point with the largest number computed in step two to the set.



112 Chapter 7. Bounded-Error Visual-LiDAR Odometry

Consequently, we repeat steps two and three until no more points can be added to the set.
Finally, only the 3D points from the set are employed for the rigid body transformation, while
all other points are marked as outliers. Fig. 7.9 visualizes the idea.

Afterwards, we use the Guaranteed Minimum Outlier Number Estimator (GOMNE) [122].
The idea of this algorithm is to initially assume all remaining 3D features to be correct and use
the forward-backward contractors (cf. Section 7.2.2.4) to compute a solution set. If this solution
set is empty, the number of constraints is iteratively relaxed using a q-relaxed intersection
(i.e. q is increased in every iteration) until a non-empty solution set is found.

While this procedure helps to remove obvious outliers, it is not guaranteed to find all outliers.
Thus, some may remain and distort the motion estimation. Therefore, we employ a q-relaxed
intersection (cf. Section 3.9) when computing the final forward-backward contractor Codom
in Section 7.2.2.4. In order to do that, we have to specify the maximum number of outliers
to expect. However, this is a difficult assessment to make since this number depends on the
environment and visible dynamic objects. Consequently, we tend to choose the maximum
number of outliers more conservatively, which means that we rather over- than underestimate
this number. Nevertheless, we can determine it only empirically during our experiments.

Finally, after computing the rigid body transformation using the relaxed intersection, we
aim to identify the remaining outliers. Interval analysis allows us to do so in a guaranteed
way. Given the contracted transformation parameters, we check if the constraints formulated
in Section 7.2.2 hold for the corresponding image feature matches. If this is not the case,
we have identified an outlier in a guaranteed way. However, it is not possible to guarantee
that all outliers will be found. This is because the depth information of a feature might be
computed inaccurately (e.g. for features on edges). Consequently, it would be consistent with
any transformation although the image feature match is incorrect.

7.3 Summary of the visual-LiDAR odometry approach
To conclude this chapter, we give an overview over our algorithm. Fig. 7.10 shows a flowchart
that details the sequence of the previously introduced steps. As can be seen, we couple the
resulting forward-backward contractor with the SIVIA algorithm to further contract the initial
rotation estimate [ξkf ] and compute intervals enclosing the translational movement [Tk

f ]. Since
only the Euler angles appear multiple times in the constraints, and are thus subject to the
dependency problem, we only bisect these three parameters.

Naturally, the result of this computation is only the transformation between the robot’s
pose at the last keyframe and its current pose. Thus, we have to consider the robot’s motion
up until the keyframe to compute its pose relative to the start. Fig. 7.11 shows an exemplary
transformation chain with keyframes and regular frames in between. Consequently, the robot’s
pose at frame f9 relative to the first keyframe k1 can be computed as

Rk1
f9 = Rk1

k2 ·R
k2
k3 ·R

k3
f9 , (7.32)

Tk1
f9 = Tk1

k2 + Rk1
k2 ·T

k2
k3 + Rk1

k2 ·R
k2
k3 ·T

k3
f9 , (7.33)

with Ra
b ∈ [Ra

b ], Ta
b ∈ [Ta

b ], a ∈ {k1, k2, k3}, b ∈ {k2, k3, f9}.
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Figure 7.10: Overview of our approach for bounded-error visual-LiDAR odometry. The same
procedure is repeated for every new image that is acquired at the same time as a
corresponding point cloud from the laser scanner.
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Figure 7.11: Exemplary transformation after the insertion of three keyframes.

7.4 Conclusion
This chapter concludes the methodology section of this work by introducing a novel approach
for guaranteed visual-LiDAR odometry. Here, the contributions lie in the consideration of
spatiotemporal uncertainties, the original method for sensor data fusion, and the new strategy
for keyframe insertion. Accounting for the uncertainty of the extrinsic transformation between
sensor coordinate systems can be done by simply transforming information between those
coordinate systems using the interval transformation parameters. To consider a time offset
between camera and IMU, we propagate the time uncertainty to the uncertainty of the measured
angular velocities before integrating them. Here, a guaranteed integration method could be
employed in the future that we deemed unnecessary for this work due to the high measuring
frequency of the IMU.

Since all sensor errors are modeled rigorously, we are able to generate visual 3D features that
can be re-identified over time and carry information about their depth uncertainty. As a result,
features whose depth information is uncertain contribute weaker constraints to the CSP, and
thus have less influence on the pose estimation. Again, we build forward-backward contractors
for the CSP and couple them with SIVIA to accurately estimate the 6 DOF transformation.
As mentioned earlier, these contractors are not ideal since they decompose the problem, and
thus introduce pessimism. Consequently, contractors dedicated to the problem of 6 DOF pose
estimation should be developed in the future.

Our novel strategy for keyframe insertion is based on the direct link between the uncertainty
of the pose estimates and the quality of the visual 3D features. This is due to the fact that
less accurate features lead to a less accurate contraction of the robot’s pose. Consequently, we
insert a new keyframe as soon as the uncertainty of the estimated pose exceeds a predefined
threshold.

Section 8.3 depicts an evaluation of the guaranteed visual-LiDAR odometry using real data
from a large-scale experiment. Since our dataset also contains precise ground truth information,
we can show that our approach is indeed able to enclose the robot’s pose in a guaranteed way.



8 Experimental Results

In this chapter, the newly introduced error models and approaches are evaluated and investigated
with regard to their applicability for guaranteed sensor fusion. Moreover, we compare our
approaches to established stochastic approaches to highlight advantages and disadvantages.

The experiments are carried out both in simulated, but also, more importantly, in real
environments. First, simulated data helps to understand the general accuracy of our approaches
and allows us to vary sensor error bounds or specific parameters to study their effects. Second,
real data confirms the applicability of our error models and approaches to real multi-sensor
systems and mobile robots.

All computations are performed on a single consumer-grade laptop (Intel Core i7 @ 2.7
GHz × 8, 16 GB RAM). To acquire and store measurement data we use the Robot Operating
System (ROS) [123]. In addition, we employ the IBEX library [69] for constraint processing over
real numbers, the Tubex library [78] for computations over sets of trajectories and VIBes [124]
to visualize interval boxes.

8.1 Spatiotemporal calibration between camera and IMU

This section details the experimental evaluation of the approach for the interval-based spa-
tiotemporal calibration between camera and IMU that we presented in Section 6.1. The main
evaluation criterion is the desired guarantee of being able to reliably enclose the true solution.
Since it is difficult to find the true solution using real data, we first evaluate the approach
using simulated data before showing that it is also capable of dealing with real data.

The results of this experiment have previously been presented in [27]. Therefore, we reuse
some of the wording of this publication in this section.

8.1.1 Simulated data

To be able to know the true time offset and extrinsic rotation between camera and IMU, we
first use simulated data. Moreover, this enables us to simulate different offsets which should be
enclosed by our approach. As a prerequisite for the experiments carried out, the experimental
environment used is first explained.
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8.1.1.1 Simulated experimental environment

To simulate the experiment, we employed the multi-robot simulator Gazebo [125]. It is
convenient to use with the Robot Operating System (ROS) as necessary interfaces are available
by default. Furthermore, common sensors for autonomous robots such as laser scanners,
cameras and IMUs, which we require for our experiments, are readily available.

First, we constructed a simulation environment that is composed of the calibration target
and the multi-sensor system consisting of camera and laser scanner. In addition, we added
a motor to the multi-sensor system which allows to rotate the setup around all three axis in
front of the calibration target. To compute the orientation of the camera with respect to the
calibration target more accurately, we decided to assemble our calibration target from three
checkerboards, which are mounted perpendicular to each other. Fig. 8.1 shows the calibration
target. The size of each board is 34× 34 cm, while the imprinted checkerboard is composed of
6 × 6 squares with a side length of 5 cm each. To distinguish the three different checkerboards,
they are augmented by Aruco markers [126]. We placed the calibration target in a distance of
roughly 2 m from the multi-sensor system.

Figure 8.1: Image of the calibration target for the spatiotemporal calibration between camera
and IMU.

We used Gazebo’s predefined camera controller to simulate the camera. Unfortunately, it
only allows to simulate Gaussian noise for each frame and does not provide an option to define
the error distribution manually. We simulated an error following a Gaussian distribution with a
mean value of 0 and a standard deviation of 0.01. This noise value was added to each pixel’s
color channels which lie in the range from 0 to 1. Furthermore, the controller allows to manually
set the parameters of the pinhole camera model (cf. Section 2.1.2). We set similar parameters
as we encounter for the real camera - i.e. we set an image resolution of 1920× 1080 px and
fx = fy = 2200 px, cx = 960 px, cy = 540 px. A subsequent camera calibration showed a
maximum reprojection error of 0.3 px, and thus we set [∆px] = [−0.3, 0.3] px. Moreover, we
set the frame rate of the camera to 25 frames per second (FPS).

Likewise, we used Gazebo’s predefined IMU controller to simulate gyroscope measurement.
As for the camera, we replicated the IMU that we use for the real experiments. Consequently, we
introduced the different types of error mentioned in Section 4.2.3 for the simulation of the angular
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velocities, namely the scale factor ∆s, the constant bias ∆b, the walking bias ∆wb and the
measurement noise ∆n. The values for these parameters are set to comply with the data sheet of
our real IMU. Consequently, we set the same error bounds that we later derive in Section 8.1.2.2
for the experiments with real data: [∆s] = [−0.05, 0.05] %, [∆b] = ([−0.05, 0.05] °/s)ᵀ×3,
[∆wb] = ([−0.0014, 0.0014] °/s2)ᵀ×3 and [∆wb] = ([−0.03, 0.03] °/s)ᵀ×3.

The true orientation of the camera in the IMU frame is specified using MRP (cf. Section 2.3.2)
as ρIC = (−1

3 −
1
3 −

1
3 )ᵀ for all simulations. We chose these rotation parameters to

approximately replicate our real multi-sensor system.

8.1.1.2 Results

We recorded a set of four different data sets that vary by the axis around which the multi-sensor
system is rotated and by the velocity with which the setup is rotated in front of the calibration
target. The setup was rotated around one axis only for the first data set (e.g. only around the
axis facing upwards). Our experiments show that the results are independent of the choice of
this axis. For the three remaining data sets the setup was rotated around all three axis at the
same time. The motion durations for all data sets range from 1 s to 3 s.

Time offset only

At first, we solve the one-dimensional problem, which means that we only use the time offset
contractor Coffset to contract [τ ] and assume the extrinsic rotation between camera and IMU to be
known up to some accuracy. The results for two different rotation uncertainties [ρIC ] are depicted
in Table 8.1. The column containing [τ1] corresponds to a rather small rotation uncertainty
[ρIC ] = ([−0.34,−0.32]×3)ᵀ, which results in an angle uncertainty of w([θIC ]) = 6° according
to (2.19). In contrast, we choose a large rotation uncertainty [ρIC ] = ([−0.36,−0.30]×3)ᵀ for
the column containing [τ2]. This corresponds to an angle uncertainty of w([θIC ]) = 18°.

Axis Velocity (rad/s) [τ1] (ms) [τ2] (ms)

one axis 2.0 [−11.7, 13.3] [−14.8, 14.1]
three axis 0.5 [−37.5, 50.0] [−39.8, 100.0]
three axis 1.0 [−20.3, 28.1] [−24.2, 62.5]
three axis 2.0 [−10.9, 17.2] [−14.8, 39.1]

Table 8.1: Results of Coffset to only compute the time offset [τ ] for different simulated experi-
ments that vary by the rotation axis and the rotational velocity.

It can be seen that the true offset τ ∗ = 0 is enclosed within [τ1] and [τ2] for all four data
sets. Furthermore, we note that the velocity has a large influence on the resulting interval
width. Another important finding is that the offset interval widths increase for [τ2], but not
by the same factor we increase the rotation uncertainty. The rotational velocity has a far
greater impact. This shows that we can find a reasonable timestamp offset interval even if
we are uncertain about the rotation between both sensors. The smallest interval we obtain is
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[τ ] = [−11.7, 13.3] ms, and thus the highest accuracy we achieve using only the time offset
contractor Coffset is w([τ ]) = 25 ms.

Full spatiotemporal calibration

Next, we solve the four-dimensional problem which means that we also assume the extrinsic
rotation between camera and IMU to be unknown, and thus have to bisect the intervals for
the MRP [ρIC ] and simultaneously use Coffset to contract the interval enclosing the time offset
[τ ]. Here, we set an accuracy of ε = 0.001 for the SIVIA algorithm.

Moreover, we choose the initial rotation [ρIC ] = ([−0.5,−0.1]×3)ᵀ, which corresponds to
an initial angle uncertainty of w([θ]) = 124°. Generally, an initial rotation estimate is not
needed if the multi-sensor system is rotated around all three axis to accurately enclose the true
extrinsic rotation. However, since we also recorded data in which we rotated the setup around
one axis only, an initial, albeit uncertain, rotation estimate is required to provide a solution in
this case as well.

Axis
Velocity [τ ]

[ρx] [ρy] [ρz]
w([θ])

(rad/s) (ms) (°)

one axis 2.0 [−10.2, 11.7] [−0.42,−0.20] [−0.50,−0.10] [−0.50,−0.10] 102.79
three axis 0.5 [−33.6, 36.7] [−0.37,−0.29] [−0.37,−0.30] [−0.36,−0.31] 19.98
three axis 1.0 [−16.4, 19.5] [−0.37,−0.29] [−0.37,−0.30] [−0.36,−0.31] 20.06
three axis 2.0 [−8.6, 10.9] [−0.37,−0.29] [−0.37,−0.30] [−0.36,−0.31] 19.91

Table 8.2: Results of the full spatiotemporal calibration for different simulated experiments
that vary by the rotation axis and the rotational velocity. The single components of
the MRP are denoted as follows: [ρIC ] = ( [ρx] [ρy] [ρz] )ᵀ.

Table 8.2 shows the results. As expected, we are not able to find a tight enclosure for the
extrinsic rotation if we rotate around one axis only. However, if we rotate around all three
axis, we can reduce the initial interval widths to find an outer approximation for the rotation
parameters. As can be seen, the accuracy of the rotation parameters does not depend on the
rotational velocity. Furthermore, we are able to increase the accuracy of the timestamp offset by
solving the four-dimensional problem. The smallest interval we obtain is [τ ] = [−8.6, 10.9] ms,
which corresponds to an uncertainty of w([τ ]) = 19.5 ms. Nevertheless, this comes at the cost
of an increased computation time in the region of several minutes up to one hour while the
one-dimensional problem can be solved in less than 0.1 s.

Different true time offsets

Next, we present results for different simulated time offsets between camera and IMU.
For this experiment, we only use the fourth data set of the previous evaluation in which
we rotated our setup around all three axis with a velocity of 2 rad/s. We show results for
both the one-dimensional and the four-dimensional problem. For the one-dimensional problem
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we only employ the time offset contractor Coffset and set [ρIC ] = ([−0.34,−0.32]×3)ᵀ, which
corresponds to an angle uncertainty of w([θIC ]) = 6°. For the four-dimensional problem we
additionally bisect the intervals for the extrinsic rotation between both sensors starting from an
initial domain of [ρIC ] = ([−0.5,−0.1]×3)ᵀ, which corresponds to an initial angle uncertainty
of w([θ]) = 124°.

τ ∗ [τ1D] (ms) [τ4D] (ms)

10.0 [−0.8, 27.3] [0.8, 21.1]
−10.0 [−21.1, 7.8] [−18.8, 1.6]
20.0 [8.6, 37.5] [10.9, 31.3]
50.0 [39.1, 67.2] [41.4, 60.9]

Table 8.3: Results of Coffset and the full spatiotemporal calibration for different simulated time
offsets.

The results can be seen in Table 8.3. [τ1D] corresponds to the one-dimensional problem
while [τ4D] corresponds to the four-dimensional problem. Note, that the true offset τ ∗ is always
enclosed in the corresponding intervals [τ1D] and [τ4D]. If we solve the four-dimensional problem,
the extrinsic rotation between the sensors is also recovered with an accuracy of approximately
w([θ]) = 20°. Furthermore, it can be seen that the deviation of the true offset from zero has
no effect on the accuracy of the computed offset. Small fluctuations can be explained by the
nature of the discretization into tube slices and the bisections in Algorithm 5.

8.1.2 Real data
Since our approach is able to reliably enclose the true time offset and extrinsic rotation between
camera, we can evaluate its applicability to real data. Because of the previously mentioned
problem of finding ground truth information for our real multi-sensor system, this section only
evaluates whether a reasonably accurate solution can also be found for real data, and compares
the results to the outcome of an established approach. As a prerequisite for the experiments
carried out, the multi-sensor system and the experimental environment is introduced.

8.1.2.1 Real experimental environment

Fig. 8.2 shows the multi-sensor system consisting of a camera and an IMU that we employed to
record data for the experimental evaluation of the spatiotemporal calibration. It is composed of
a FLIR Grasshopper3 GS3-U3-23S6C-C color camera and a LORD MicroStrain 3DM-GQ4-45
GNSS aided IMU. The camera is equipped with a Fujinon CF12.5HA-1 lens that has a focal
length of 12.5 mm.

For our experiments we operated the camera at a resolution of 1920× 1200 px and a
frame rate of 25 FPS. Before acquiring data, we calibrated our camera intrinsically using the
algorithm proposed by Zhang [17] and the corresponding implementation in OpenCV [114].
The focal length amounts to approximately 2200 px. Using the intrinsic calibration parameters
we removed distortion from each image before processing it. The coordinate system of the



120 Chapter 8. Experimental Results

Figure 8.2: Image of the multi-sensor system consisting of a camera and an IMU.

camera is defined as follows: the z-axis is pointing in the viewing direction, the x-axis is pointing
to the right and the y-axis is pointing down. Besides, the IMU is operated at a frequency of
100 Hz.

Moreover, we employed the calibration target that was already introduced in the simulated
experimental environment and is depicted in Fig. 8.1. Since we cannot precisely access the
printing accuracy of the checkerboard, we conservatively assume [∆W ] = [−1, 1] mm for each
checkerboard corner. This calibration target was positioned in a distance of approximately 1 m
to 2 m in front of the multi-sensor system.

8.1.2.2 Derivation of sensor error bounds

In Section 4.2 we introduced bounded error models for the IMU and the camera. These models
require error bounds for every different type of error we identified. Naturally, the error bounds
differ from sensor to sensor. Thus, in the following we derive or determine these bounds for the
sensors introduced in the previous section that are then employed for all following experiments.

IMU

According to Section 4.2.3, we need to determine the uncertainties of the scale factor [∆s],
the constant bias [∆b], the walking bias [∆wb], and the measurement noise [∆n].

Fortunately, the manufacturer of our IMU provides a comprehensive data sheet in which
all uncertainties are listed. First, the scale factor stability is given as [∆s] = [−0.05, 0.05] %.
Second, the manufacturer specifies the constant bias as [∆b] = ([−0.05, 0.05] °/s)ᵀ×3. Third,
the walking bias is given as 5 °/h, and thus we set [∆wb] = ([−0.0014, 0.0014] °/s2)ᵀ×3. Fourth
and last, the data sheet states a measurement noise density of 0.002 °/s/

√
Hz. Because the

IMU is operated at a bandwidth of 100 Hz, the noise density is 0.02 °/s. Since this is the
standard deviation of the noise, which is assumed to be Gaussian, we choose bounds that enclose
the true noise with a probability of 99.7 %, and thus we set [∆wb] = ([−0.03, 0.03] °/s)ᵀ×3.

Camera

According to Section 4.2.2, we need to determine intervals enclosing the feature detection
error caused by quantization [∆pxq ], by image blur [∆pxb ] and by measurement noise [∆pxn ].
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Usually, [∆pxq ] = [−0.5, 0.5] px since the actual scene is discretized into pixels. However,
the detection of checkerboard corners can be more accurate since multiple observations
(i.e. intersection of lines) are used to find a single corner. In contrast, image blur and
measurement noise cannot be quantified just as easily since many different factors - some of
which are unknown - have an impact. Consequently, we can only choose error bounds [∆px]
that summarize all of the previously mentioned types of error. Since we only need to specify
the maximum error occurring during the detection of the checkerboard corners, we determined
the maximum reprojection error occurring during the intrinsic camera calibration and employ it
as the interval error bounds for the camera features: [∆px] = [−0.3, 0.3] px.

8.1.2.3 Results

Overall, we collected four different data sets of different characteristics. For the first trial, we
added a motor to our setup such that we could conduct an experiment with a rotation around
only one axis. For this experiment, we set the velocity of the motor to 1 rad/s. The following
three data sets were recorded while rotating the setup by hand and ensuring that the 3D target
remained in the field of view of the camera. At first, however, we placed our setup on the
floor in front of the 3D target to define the reference coordinate system, picked it up after
roughly 1 s and rotated it for approximately 10 s. We aimed to increase the rotational velocity
from trial to trial, such that the second trial contains low velocity rotations and the fourth trial
contains high velocity rotations.

Time offset only

Similar to our simulation studies, we solve the one-dimensional problem at first, which means
that we use a fixed interval vector for the rotation and only employ the time offset contractor
Coffset to compute an interval enclosing the time offset between camera and IMU. The three-
dimensional MRP vector is estimated by hand and different measurement uncertainties are
added.

Trial [τ1] (ms) [τ2] (ms) τxcorr (ms)

1 [41.0, 68.4] [37.1, 73.2] 50.9
2 [1.0, 94.7] [−23.4, 126.0] 48.8
3 [25.4, 76.2] [2.0, 102.5] 48.2
4 [29.3, 60.5] [5.9, 77.1] 45.8

Table 8.4: Results of Coffset to only compute the time offset [τ ] for different real experiments.

The results can be seen in Table 8.4. We choose a rather small rotation uncertainty of
w([θIC ]) = 6° for the column containing [τ1] and a large rotation uncertainty of w([θIC ]) = 18°
for the column containing [τ2]. As can be seen, the interval widths, and thus the accuracies
are similar to our experiments using simulated data.

Furthermore, as expected after the simulation studies, the accuracy with which we are able
to enclose the time offset again depends on the velocity with which we rotated our sensor
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setup. However, it makes no difference whether the setup is rotated around all three or just one
axis. Furthermore, all computed intervals overlap, which shows that the results are consistent
and the calibration is repeatable. Since the results should be guaranteed, it is inevitable that
all computed intervals share a common intersection. If not, we would have discovered an
inconsistency. The common intersection for our experiments is [τ ] = [41.0, 60.5] ms. Thus, the
final uncertainty for our one-dimensional studies is w([τ ]) = 19.5 ms. Naturally, this accuracy
can be improved by estimating more accurate rotation parameters.

To provide some reference data, we compute the orientation of the camera and the IMU over
time using traditional methods and apply cross-correlation to temporally align the data series as
described by Mair et al. [127]. The results, which can be seen in the fourth column of Table 8.4,
are always enclosed in the corresponding interval for the timestamp offset. Consequently, the
results of our interval-based method to compute the time offset between camera and IMU are
in accordance with the results of an established approach.

Finally, Fig. 8.3 provides a visualization of the time offset between camera and IMU by
showing the respective orientation tubes of camera and IMU for the fourth trial after aligning
them spatially using the estimated bounded rotation.
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Figure 8.3: Spatially aligned orientation tubes (rotation over time) for the fourth trial that are
non-overlapping due to a timestamp offset.

Full spatiotemporal calibration

Next, we solve the four-dimensional problem, meaning that we use our time offset contractor
Coffset in combination with SIVIA to enclose both the three-dimensional MRP interval vector
for the extrinsic rotation and the time offset between camera and IMU. We choose the same
initial rotation uncertainty of w([θ]) = 124◦ as for our simulation studies. Moreover, we set an
accuracy of ε = 0.001 for the SIVIA algorithm.

As Table 8.5 shows, we are not able to estimate the rotation to a reasonable accuracy for
the first trial in which we employed the motor to rotate around one axis only. Nevertheless, we
manage to contract the three-dimensional MRP interval vectors for trials two to four. While the
results are comparable to the results we achieve using simulated data, they are too inaccurate
to be employed for fusing data from camera and IMU as will be explained later. We believe
the reason for this inaccuracy is two-fold. On the one hand, the rapidly increasing uncertainty
of the orientation tubes of the IMU prevents us from gathering sufficient constraints. After
just a few seconds, the uncertainty is too large due to drift. On the other hand, we are limited
in our movement of the multi-sensor system because the calibration target must be kept in
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Trial [τ ] (ms) [ρx] [ρy] [ρz] w([θ]) (°)

1 [43.0, 65.4] [−0.42,−0.21] [−0.50,−0.10] [−0.50,−0.10] 100.72
2 [27.3, 68.4] [−0.35,−0.31] [−0.35,−0.32] [−0.36,−0.30] 12.77
3 [35.2, 57.6] [−0.35,−0.31] [−0.35,−0.32] [−0.36,−0.30] 12.24
4 [37.1, 51.8] [−0.36,−0.31] [−0.36,−0.32] [−0.36,−0.30] 12.93

Table 8.5: Results of the full spatiotemporal calibration for different real experiments that vary
by the rotation axis and the rotational velocity. The single components of the MRP
are denoted as follows: [ρIC ] = ( [ρx] [ρy] [ρz] )ᵀ.

the field of view of the camera. Consequently, we cannot perform large rotations which could
introduce additional constraints for the contraction of the extrinsic rotation.

In contrast, the computation of the time offset between camera and IMU is reasonably
accurate and can be used for sensor fusion. Again, the intervals for the offset share a
common intersection [τ ] = [43.0, 51.8] ms ms, which is also consistent with the result of our
one-dimensional studies. Thus, the final accuracy we achieve is w([τ ]) = 8.8 ms.

In contrast to the time offset contractor Coffset, which requires less than 0.1 s computation
time, the computation time for the four-dimensional problem ranges from 10 min for the fourth
trial to 1 h for the second trial. The computation time for the first trial amounts to 10 h since
the rotation parameters do not converge. However, since our approach is supposed to be
employed for an offline calibration prior to the actual experiment, computation time should
play a subordinate role compared to the calibration accuracy.

Figure 8.4: Aligned camera and IMU orientation intervals after calibration.

Fig. 8.4 shows the camera and IMU orientation intervals which were aligned using the
computed extrinsic rotation. Note the increasing uncertainty of the IMU orientation due to the
integration of the angular velocities.
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Figure 8.5: Subpavings corresponding to the fourth trial. The single components of the MRP
are denoted as follows: [ρIC ] = ( [ρx] [ρy] [ρz] )ᵀ. Figures have been drawn using
VIBes [124].

Finally, we depict the subpaving (cf. Section 3.8.2) corresponding to the fourth trial in
Fig. 8.5. Since it is impossible to display a four-dimensional subpaving, we decided to show the
dependencies between each two pairs. The graphs should be interpreted as follows. Consider
Fig. 8.5e. [ρx] is plotted on the x-axis pointing to the right and [ρz] is plotted on the y-axis
pointing to the top. The possible combinations of [ρx] and [ρz] that belong to the solution set
are colored blue. This means that [ρx] can only be large if [ρz] is large as well (i.e. in the top
right corner). However, there is no solution if [ρx] is small and [ρz] is large (i.e. in the top left
corner).

It becomes evident that the timestamp offset [τ ] does not depend on the rotation parameters.
This can be observed by the fact that the upper subpavings are close to rectangular. In contrast,
there exist dependencies between the rotation parameters themselves. Especially the subpaving
in Fig. 8.5e is not rectangular, thus indicating that we are not able to compute [ρx] independent
of [ρz]. This can be attributed to an insufficient rotation by hand. As previously explained, we
did not manage to rotate around all three axis at the same time while keeping the 3D target in
the field of view of the camera.
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8.2 Extrinsic calibration between camera and LiDAR
This section details the experimental evaluation of the approach for the extrinsic calibration
between camera and LiDAR that we presented in Section 6.2. The main evaluation criterion is
the desired guarantee of being able to reliably enclose the true solution. Since it is difficult
to find the true solution using real data, we first evaluate the approach using simulated data
before showing that it is also capable of dealing with real data. In addition, we compare the
accuracies of different results for different sensor error bounds and show the advantages of our
method over an established approach.

If not stated otherwise, we set the following accuracies for the different instances of the
SIVIA algorithm we employ. First, the accuracy of the SIVIA algorithm fitting a plane to laser
scan boxes (cf. Section 6.2.2) is set to εplane = 0.001. Second, the accuracy of the SIVIA
algorithm employed to solve the PnP problem (cf. Section 5.2) is set to εpnp = 0.001°. Third,
the accuracy of the SIVIA algorithm for the final computation of the extrinsic transformation
parameters (cf. Section 6.2.3) is set to εcalibration = 0.1°.

8.2.1 Simulated data
Finding the transformation between camera and laser scanner for a real multi-sensor system
without relying on sensor data is infeasible since the sensors are generally black-box systems
that do not allow to find the coordinate system origin. Thus, any computed transformation is
compromised by data errors and we have no means to asses the true transformation between
the sensors. Hence, to evaluate our approach against ground truth data, we have to resort to
simulated data. Furthermore, this enables us to simulate bounded errors and the number of
outliers in a guaranteed way, allowing us to evaluate these influences on the calibration result.
As a prerequisite for the experiments carried out, the experimental environment used is first
explained.

8.2.1.1 Simulated experimental environment

To simulate the experiment, we again employed the multi-robot simulator Gazebo [125]. Since
the assumption made in Section 6.2.2 states that there should be no interfering objects around
the checkerboard target, we constructed a simulation environment that is solely composed of
the checkerboard and the two sensors. Recreating this environment in the real world can be
done by performing the experiment in a laboratory. At first, we added the checkerboard that is
constructed according to the real world object we use for later experiments. The total size
of the board is 100× 76 cm, while the imprinted checkerboard is composed of 10 x 7 squares
with a side length of 8 cm each. We placed the checkerboard in a distance of roughly 2.5 m
from the multi-sensor system.

We used Gazebo’s predefined camera controller to simulate the camera. Unfortunately,
it only allows to simulate Gaussian noise for each frame and does not provide an option to
define the error distribution manually. Nevertheless, it enabled us to evaluate our approach
for different mean errors and different standard deviations for which we defined the interval
error bounds according to Section 3.1. We simulated an error following a Gaussian distribution
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with a mean value of 0 and a standard deviation of 0.01. This noise value was added to each
pixel’s color channels which lie in the range from 0 to 1. We derived the bounded error for the
camera as explained in Section 4.2.2 and set [∆px] = [−0.3, 0.3] px. Furthermore, the controller
allowed us to manually set the parameters of the pinhole camera model (cf. Section 2.1.2).
We set similar parameters as we encounter for the real camera - i.e. we set an image resolution
of 1920× 1080 px and fx = fy = 2200 px, cx = 960 px, cy = 540 px.

To simulate the laser scanner, we defined an own controller that is based on Gazebo’s ray
sensor. Our controller replicates the laser scanner we use for our experiments and allows to
set unknown but bounded errors for the spherical coordinates of each scan point. In total,
we simulated 300.000 points per second in a 360° horizontal and a 30° vertical field of view.
The laser scanner is set to rotate with a frequency of 5 Hz, resulting in a horizontal angular
resolution of 0.1° and a vertical angular resolution of 2° (16 individual lasers/channels). To
simulate the unknown but bounded errors, we applied a random number generator following
a uniform distribution. For the first experiments, we simulated no outliers and the following
bounded errors: [∆r] = [−3, 3] cm and [∆θ] = [∆ϕ] = [−0.03, 0.03]° (cf. Section 4.2.1).

The true rotation matrix RC
L between camera and laser scanner is expressed using Euler

angles (cf. Section 2.3.1). For our first experiments, we set φCL = 90°, θCL = 0° and ψCL = 0°.
Furthermore, the translation is set to TC

L = ( xTCL yT
C
L zT

C
L )ᵀ = (−27 cm 15 cm −12 cm )ᵀ.

We chose these transformation parameters to approximately replicate our real multi-sensor
system. Later, we also show results for different transformation parameters to show that
our approach encloses the true parameters regardless of their characteristics. Finally, we set
εcalibration = 0.1° for the first simulated experiments.

8.2.1.2 Results from individual checkerboard poses

At first, we show results for the transformation parameters that are computed from one
checkerboard pose only. As explained in Section 6.2, one sensor data pair (i.e. one camera
image and one laser scan) suffices to perform the extrinsic calibration. However, the accuracy is
expected to be different from one transformation parameter to another since one checkerboard
pose does not enable us to constrain all six parameters equivalently. We select six different
checkerboard poses, which are depicted in Fig. 8.6, to show the influences on different extrinsic
calibration parameters. Furthermore, the initial domains for the rotation are set to [θCL ] =
[−90, 90]° and [φCL ] = [ψCL ] = [−180, 180]°. Besides, we set [wTCL ] = wT

C
L + [−50, 50] cm

for w ∈ {x, y, z}. Thus, we assume no initial information about the extrinsic transformation
other than a rough idea of the setup of the multi-sensor system. This is necessary since some
parameter domains cannot be contracted at all.

Table 8.6 shows the results and Table 8.7 depicts the corresponding interval widths. As can
be seen, all intervals enclose the true result, showing the expected behavior of our approach.
Nevertheless, we can observe some interesting characteristics. While all six checkerboard poses
allow to compute a reasonably accurate domain for the three Euler angles, some translation
domains cannot be contracted for some poses. However, also the rotation parameters differ
from one pose to another. This can be explained by two different phenomena.

The first phenomenon is related to the geometry of the individual checkerboard poses. For
example, the fifth pose does not allow an accurate computation of the rotation around the
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(a) Pose 1. (b) Pose 2. (c) Pose 3.

(d) Pose 4. (e) Pose 5. (f) Pose 6.

Figure 8.6: Simulated camera images of six different checkerboard poses which we employed
individually to perform the extrinsic calibration between camera and LiDAR.

Pose [φCL ] (°) [θCL ] (°) [ψCL ] (°) [xTCL ] (cm) [yTCL ] (cm) [zTCL ] (cm)

1 [89.3, 90.7] [−0.6, 0.5] [−0.6, 0.7] [−29.7,−24.4] [−35.0, 65.0] [−13.6,−10.5]
2 [88.9, 91.2] [−0.4, 0.5] [−0.8, 0.7] [−29.9,−24.4] [−35.0, 65.0] [−13.9,−9.9]
3 [89.3, 90.8] [−0.9, 0.9] [−0.4, 0.5] [−31.5,−22.4] [−35.0, 65.0] [−13.8,−10.1]
4 [89.6, 90.3] [−0.6, 0.6] [−0.7, 0.7] [−30.5,−24.1] [−17.4, 47.0] [−62.0, 38.0]
5 [88.9, 91.1] [−1.1, 1.1] [−0.1, 0.3] [−32.5,−21.2] [9.1, 20.6] [−13.6,−10.6]
6 [89.2, 90.7] [−1.1, 0.9] [−1.1, 1.2] [−32.0,−21.2] [11.2, 18.6] [−14.2,−9.5]

Table 8.6: Results using single simulated checkerboard poses to constrain the transformation
parameters. The pose identifiers correspond to the visualizations in Fig. 8.6.

x- and y-axis, but prevails at contracting the interval for the rotation around the z-axis. This
is due to the fact that the boundary line direction vectors lie in the x-y-plane of the camera
coordinate system, and thus a rotation around the z-axis has a larger effect than a rotation
around the x- or y-axis. While this is also true for the first pose, the fifth pose enables us to
identify all four boundary lines, and thus also the corner points, resulting in more information
and a tighter enclosure of the rotation around the z-axis. However, in contrast, the first pose
is better suited to constrain the rotation around the x-axis since its detectable boundary lines
also reside in the y-z-plane.

Nevertheless, this does not explain why the first pose results in a tighter enclosure for the
rotation around the y-axis. This rotation is mainly constrained by the plane normal vector,
which is geometrically the same for both poses. However, as the checkerboard is rotated
with respect to the camera coordinate system for the fifth pose, the computation of the PnP
problem suffers from the wrapping effect (cf. Section 3.8.1), and thus the pose estimate of
the camera with respect to the checkerboard is less accurate. However, this pose estimate is
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Pose
w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])

(°) (°) (°) (cm) (cm) (cm)

1 1.4 1.1 1.3 5.3 100.0 3.1
2 2.3 0.9 1.5 5.5 100.0 4.0
3 1.5 1.8 0.9 9.1 100.0 3.7
4 0.7 1.2 1.4 6.4 64.4 100.0
5 2.2 2.2 0.4 11.3 11.5 3.0
6 1.5 2.0 2.3 10.8 7.4 4.7

Table 8.7: Interval widths for the results from Table 8.6.

required to compute the plane normal vector in the camera coordinate system, and thus the
estimation of the plane normal vector becomes less accurate as well. In contrast, the pose
estimate of the camera with respect to the checkerboard is more accurate for the first pose,
resulting in a more accurate computation of the plane normal vector, and thus in stronger
constraints for the rotation around the y-axis.

However, the geometry alone does not explain why the rotation around the x-axis is most
constrained by the fourth pose. But, this can be explained by the second phenomenon that
applies for every interval analysis approach and is explained in Section 3.11. In short, the
better the error bounds represent the actual error we encounter for a sensor, the more accurate
the results become. Since the fourth pose leads to larger image errors, and thus allows the
PnP problem to be solved more accurately, the resulting features required for the extrinsic
calibration are more accurate as well. Consequently, as the geometry of the pose is best suited
to constrain the rotation around the x-axis, the corresponding interval can be contracted more
tightly. In contrast, the image errors are small for the first pose due to the best possible viewing
angle, and thus the PnP problem is solved less accurately. However, as we have to choose
conservative error bounds that enclose all possible values, this behavior is expected.

After discussing the results for the rotation parameters, we want to focus on the translation
parameters in the following. As already mentioned, some poses do not provide sufficient
constraints to contract the corresponding intervals. For example, the first pose does not enable
our approach to compute the translation along the y-axis (downwards). When looking at the
camera image in Fig. 8.6a and the CSP (6.37) it becomes obvious why this is the case. Since
two of the boundaries of the checkerboard (top and bottom) are parallel to the scan lines
of the laser scanner, we are not able find border points on these boundaries. Consequently,
it becomes impossible to compute corner points since we can only determine the right and
left boundary lines of the checkerboard in the coordinate system of the laser scanner. Thus,
only the third and fourth constraint of the CSP (6.37) constrain the translation TC

L . When
looking at these constraints in detail, it becomes evident that the third constraint forces
border points to lie on the boundary lines and the fourth constraint forces points to lie on
the checkerboard plane. Since the two detectable boundary lines are parallel to the y-axis in
the camera coordinate system, the third constraint only constrains the translation in x- and
z-direction, but allows arbitrary movements in y-direction. Similarly, the checkerboard plane is
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parallel to the x-y-plane in the camera coordinate system, and thus it follows that the fourth
constraint only constrains the translation in z-direction. In summary, the first checkerboard
pose does not provide constraints on the translation in y-direction.

In contrast, the fourth pose does provide - albeit weak - constraints on the translation along
the y-axis. This is due to the fact that we rotate the checkerboard such that the plane becomes
almost parallel to the x-z-plane in the camera coordinate system. However, this comes at the
cost of not being able to contract the translation along the z-axis. The explanation for this
behavior is the same as before. However, the constraints are weaker since - as conceivable
from Fig. 8.6d - less scan points reside on the checkerboard (i.e. less information is available)
and the checkerboard plane is not exactly parallel to the x-z-plane. Rotating the checkerboard
even further is not possible, as the laser scanner would not see it anymore.

Furthermore, the fifth and sixth pose allow to contract the domains for all six transformation
parameters. However, some of the computed intervals (e.g. [θCL ]) are less accurate due to the
fact that less border points can be computed for each checkerboard boundary, and thus less
information is available to find the direction vectors of the boundary line. Besides, some of the
increasing uncertainty can be attributed to the wrapping effect (cf. Section 3.8.1) since the
boundaries of the checkerboard are not parallel to the coordinate system of the laser scanner.
However, when trying to compute the extrinsic calibration parameters from one pose, it is
advisable to employ a checkerboard pose similar to the fifth or sixth pose for the best possible
accuracy.

8.2.1.3 Results from multiple checkerboard poses

After showing the results for contracting the extrinsic calibration parameter domains based
on single checkerboard poses, we depict the results for the same algorithm that combines the
constraints of all six checkerboard poses. However, as we are confident that the combination of
these poses allows us to contract all six parameter domains, we employ different initial domains.
The initial domains for the rotation are set to [θCL ] = [−90, 90]° and [φCL ] = [ψCL ] = [−180, 180]°.
Besides, we set [wTCL ] = wT

C
L + [−∞,∞]cm for w ∈ {x, y, z}. Thus, we assume no initial

information for the extrinsic calibration parameters.
Table 8.8 outlines the results and the corresponding interval widths. As expected, the

computed transformation parameter domains resemble the best possible results of employing
the different poses individually. For example, when intersecting the domains for [θCL ] from
the first and second pose, we can deduct that [θCL ] = [−0.4, 0.5]°, which is consistent with
the result we compute when combining all six poses. However, some domains - such as the
translation parameters - can be determined even more accurately. This can be explained by the
fact that the combined constraints supplement each other. For example, the contractor built for
the sixth checkerboard pose manages to contract the translation in y-direction, which in turn
leads the contractor built for the first pose to contract the translation in x- and z-direction even
more accurately. Thus, this experiment shows a textbook example of how different contractors
can be combined to produce an even more powerful contractor.

Having shown reasonably accurate results when employing six checkerboard poses, we
want to examine whether significant improvements in accuracy can be achieved if even more
checkerboard poses are used. In total, we employ 27 different checkerboard poses, which are
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x [φCL ] (°) [θCL ] (°) [ψCL ] (°) [xTCL ] (cm) [yTCL ] (cm) [zTCL ] (cm)

[x] [89.6, 90.3] [−0.4, 0.5] [−0.1, 0.3] [−29.6,−25.0] [12.7, 17.0] [−13.1,−11.0]
w([x]) 0.7 0.9 0.4 4.6 4.3 2.1

Table 8.8: Results combining all six (cf. Fig. 8.6) simulated checkerboard poses to constrain
the transformation parameters.

displayed in Fig. 8.7. The poses are selected such that many different orientations of the
checkerboard are covered, while making sure that both camera and laser scan data are suitable
to identify the required features. As explained in Section 6.2, moving the checkerboard is not
necessary since this does not produce additional constraints.
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Figure 8.7: Visualization of 27 different checkerboard poses which are simultaneously employed
to contract the extrinsic transformation parameter domains.

Table 8.9 shows the results and the corresponding interval widths. It is evident that the
additional checkerboard poses do not enable us to contract transformation parameter domains
much further. The largest improvements can be seen for the translation in x- and y- direction,
for which we reduce the uncertainty by 0.8 cm (17.4 %) and 0.7 cm (16.3 %), respectively.
However, this comes at the cost of an additional effort for the calibration since more data has
to be collected and the computation takes more time.

x [φCL ] (°) [θCL ] (°) [ψCL ] (°) [xTCL ] (cm) [yTCL ] (cm) [zTCL ] (cm)

[x] [89.6, 90.3] [−0.4, 0.3] [−0.1, 0.3] [−28.8,−25.0] [13.1, 16.7] [−13.1,−11.0]
w([x]) 0.7 0.7 0.4 3.8 3.6 2.1

Table 8.9: Results combining all 27 (cf. Fig. 8.7) simulated checkerboard poses to constrain
the transformation parameters.

An interesting observation that can be made is that both the rotation around and the
translation in direction of the z-axis can be computed more accurately than the other rotation
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and translation parameters. This can be explained by analyzing the constraints of the CSP (6.37)
and the geometry of possible checkerboard poses. As mentioned previously, the fourth constraint
of the CSP forces scan points to reside on the checkerboard plane. Thus, it induces strong
constraints on the translation in the direction of the plane normal vector. Consequently, the
best possible constraints can be established for the coordinate system axis that is parallel to
the plane normal vector. However, it is not possible to position the checkerboard such that
the x- or y-axis of the camera coordinate system coincides with the plane normal vector of the
checkerboard since this would not allow the detection of the features required for the extrinsic
calibration (i.e. the checkerboard in Fig. 8.6b and Fig. 8.6d would have to be rotated even
further in the corresponding direction, resulting in an image of the checkerboard in side view).
In contrast, placing the checkerboard such as for Fig. 8.6a makes the plane normal vector
parallel to the z-axis of the camera coordinate system. The reason why the fourth constraint is
stronger than the other constraints involving the translation is that scan points residing on
the checkerboard plane can be computed more accurately and in a larger number than border
points (third constraint) or corner points (fifth constraint).

Similarly, the strongest constraints on the rotation parameters are imposed by the second
constraint of the CSP (6.37) since we compute multiple line direction vectors that are generally
more accurate than the plane normal vector (first constraint). Geometrically, a direction vector
is particularly suited to constrain the rotation around the plane normal vector of the plane it
resides in (e.g. a direction vector in the x-y-plane imposes strong constraints on the rotation
around the z-axis). Thus, according to the same argument as in the previous paragraph, the
rotation around the z-axis can be computed the most accurate since we can only find line
direction vectors in the x-y-plane (cf. Fig. 8.6e).

8.2.1.4 Results for different bisection widths

After showing the general applicability of our approach for the extrinsic calibration of a simulated
multi-sensor system that resembles the true setup we will use for our real experiments, we want
to evaluate the influence of different parameters on the calibration result.

We start by investigating the importance of the parameter εcalibration, which specifies the
bisection width, and thus the accuracy of the final SIVIA algorithm that computes the domains
for the transformation parameters. In order to do that, we varied εcalibration and observed the
resulting computation time as well as the accuracy of the transformation parameter. To achieve
the best possible accuracy, we employed all 27 checkerboard poses. Table 8.10 shows the
results. Note that the reported computation times concern only the final SIVIA algorithm for
which the required camera and laser scanner features have been extracted previously. The
computation time required to extract these features varies for each checkerboard pose, totaling
240 s for all 27 checkerboard poses combined.

As can be seen, εcalibration does not significantly influence the accuracy of all six transformation
parameters. While we observe a slight improvement for the width of the translation parameter
domains when decreasing εcalibration from 1.0° to 0.05°, the computation time drastically increases
from 1 s to 1121 s since a significantly larger number of bisections have to be performed. This
result shows that the forward-backward contractor alone is already strong enough to contract
the transformation parameter domains and does not rely on additional bisections. Nevertheless,
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εcalibration Computation w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])
(°) time (s) (°) (°) (°) (cm) (cm) (cm)

1.0 1 0.70 0.78 0.47 3.92 3.71 2.20
0.1 155 0.70 0.78 0.47 3.85 3.68 2.04
0.05 1121 0.70 0.78 0.47 3.83 3.67 2.01

Table 8.10: Influence of the extrinsic calibration parameter εcalibration, which specifies the
bisection width, and thus the accuracy of the SIVIA algorithm, on both the
computation time and the accuracy of the parameters. The reported computation
times refer only to the final SIVIA algorithm.

it is still possible to slightly improve the result by setting εcalibration = 0.05°. Since the extrinsic
calibration between camera and LiDAR is usually performed once before using the resulting
domains for many subsequent experiments, it is worthwhile to invest additional computation
time - although this may only slightly improve the accuracy.

8.2.1.5 Results for different errors

In the following, we depict calibration results for different simulated laser scanner and camera
errors. For the first experiment, we simulated different errors for the three spherical coordinates
of each scan point (cf. Section 4.2.1). As explained in the beginning of this section, we
add an error to each of these parameters that is randomly sampled inside the chosen error
bounds. Instead of using all 27 checkerboard poses, we fall back on the six poses depicted in
Fig. 8.6 since these poses were sufficient to achieve a reasonable accuracy. Furthermore, we
set εcalibration = 1.0 to reduce computation time.

Simulated errors Results

r([∆r]) r([∆θ]) r([∆ϕ]) w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])
(cm) (°) (°) (°) (°) (°) (cm) (cm) (cm)

3.0 0.03 0.03 0.70 0.92 0.47 4.72 4.51 2.23
6.0 0.03 0.03 0.75 1.10 0.71 5.52 4.74 2.29
3.0 0.06 0.03 0.81 1.02 0.67 5.22 5.19 2.25
3.0 0.03 0.06 0.71 0.98 0.81 5.20 4.88 2.26
6.0 0.06 0.06 0.92 1.25 0.95 6.19 5.84 2.42

Table 8.11: Influence of different simulated laser scanner errors on the accuracies of the extrinsic
transformation parameters.

Table 8.11 depicts the results. In principle this rule applies: increasing the error for any of the
three spherical parameters results in an increasing uncertainty of the extrinsic transformation
parameters. However, the uncertainty does not increase significantly, indicating that our
approach can cope with different errors when the appropriate error bounds are known.
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In addition, we also simulated different errors for the checkerboard corner feature detections.
Originally, we simulated an error for the camera by adding Gaussian noise to each pixel’s color
channels. However, increasing this noise does not automatically result in a corresponding
increase of the pixel error with which the checkerboard corners are identified. Therefore, we
added an additional artificial error to each checkerboard corner detection instead. Accordingly,
the interval error bounds [∆px] are adapted to enclose this additional error. Since the original
corner detections already introduce an error of [−0.3, 0.3] px in the worst case, adding an
additional artificial error that is randomly sampled, for example, in the interval [−0.1, 0.1] px
results in an error of [−0.4, 0.4] px in the worst case. Since the interval error bounds have to
reflect this worst case, we set [∆px] = [−0.4, 0.4] px for this example.

r([∆px]) w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])
(px) (°) (°) (°) (cm) (cm) (cm)

0.3 0.70 0.92 0.47 4.72 4.51 2.23
0.4 0.77 0.94 0.51 4.83 4.89 2.69
0.5 0.82 0.96 0.54 5.01 5.23 2.99
0.6 0.82 1.06 0.55 5.46 5.30 3.20

Table 8.12: Influence of different simulated camera errors on the accuracy of the parameters.

Table 8.12 outlines the pixel error for the checkerboard corner detections and the resulting
width of the extrinsic calibration parameters. Again, increasing the error results in wider
intervals reflecting the increasing uncertainty. However, similar to the previous experiment,
the uncertainty does not increase significantly. Thus, we can state that our approach can
handle different errors for both camera and laser scan data without drastically increasing
the uncertainty of the resulting transformation parameters. Of course, this holds only on
the condition that the error bounds are known and not overestimated, since otherwise the
uncertainty can increase sharply as explained in Section 3.11.

8.2.1.6 Results under consideration of outliers

Next, we introduced artificial outliers in the laser scan data to assess the robustness of our
approach with respect to outliers. We did not add outliers to the camera images since the
employed checkerboard detector can reliably detect the checkerboard corner features and does
not introduce large errors which could be classified as outliers. To add outliers to the laser scan
data, we first selected a maximum outlier percentage δmax outliers which resulted in a maximum
number of outliers out of the Np scan points on the checkerboard: nmax outliers = δmax outliers ·Np.
Consequently, we randomly picked noutliers ∈ {0, . . . , nmax outliers} to represent the fact that we
do not know the actual number of outliers for our real experiments, but only an upper bound.
Afterwards, we randomly selected noutliers scan points and modified their distance measurement
such that it is no longer consistent with the error bounds we previously chose.

Subsequently, we employ a q-relaxed intersection for the laser scan feature extraction as
explained in Section 6.2.2. Due to the design of our experiment, nmax outliers outliers can occur
at most, and thus we set q = nmax outliers for the q-relaxed intersection (cf. Section 3.9).
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Again, we only use the six poses depicted in Fig. 8.6 and set εcalibration = 1.0 to reduce
computation time. Since the accuracy drastically varies with the actual numbers of outliers
noutliers, we repeat the experiment 100 times and report the average accuracy over all 100
runs. Table 8.13 shows the results for different outlier percentages δmax outliers. Since all results
enclose the true transformation parameters, we only present the resulting interval widths.

δmax outliers w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])
(%) (°) (°) (°) (cm) (cm) (cm)

0.0 0.70 0.92 0.47 4.72 4.51 2.23
0.1 0.70 0.97 0.48 4.91 4.52 2.24
0.5 0.86 1.08 0.49 5.42 5.21 2.33
1.0 0.95 1.16 0.50 5.78 5.66 2.38
2.0 1.16 1.26 0.53 6.22 6.53 2.53
5.0 1.54 1.45 0.61 7.07 8.11 2.92

Table 8.13: Influence of laser scan outliers on the accuracy of the parameters. The depicted
interval widths are the average interval widths over 100 consecutive runs. For each
run, at most δmax outliers · Np outliers are randomly generated in the laser scan
data.

The results show that the uncertainties of the parameters increase with the maximum outlier
percentage δmax outliers. However, we claim that this phenomenon is not related to the actual
outliers, but to the fact that we generated δmax outliers · Np at most, and often the actual
number of outliers is smaller than this. Thus, we overestimate the number of outliers. This
decreases the accuracy with which we can extract the features from the laser scan data, and
thus increases the uncertainty of the entire extrinsic calibration.

To verify this claim, we show results for which noutliers is not randomly picked, but automati-
cally set to noutliers = nmax outliers. Thus, the number of actual outliers we encounter complies
with the parameter we feed into the q-relaxed intersection. Table 8.14 shows the outcome.
As can be seen, the results support our claim since the interval widths of the parameters
change only slightly (0.01° at most) with an increasing outlier percentage. This change can be
attributed to the fact that the outliers influence the bisection process during the laser scanner
feature extraction. As there are some outliers, there are less valid constraints to extract the
plane parameters from the set of scan points. Thus, to achieve the desired accuracy during the
SIVIA algorithm more bisections are required, which can then even increase the accuracy of
the plane parameters.

However, these results are only useful to explain where the increasing uncertainty in Table 8.13
stems from. When employing real data, it is impossible to know how many outliers occur, and
thus we can only specify a maximum number of outliers to expect. Nevertheless, this also
highlights the importance of not overestimating the actual number of outliers, as doing so can
lead to an increasing uncertainty of the calibration parameters.



8.2. Extrinsic calibration between camera and LiDAR 135

δmax outliers w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])
(%) (°) (°) (°) (cm) (cm) (cm)

0.0 0.70 0.92 0.47 4.72 4.51 2.23
0.1 0.70 0.92 0.47 4.72 4.51 2.23
0.5 0.70 0.93 0.47 4.72 4.51 2.23
1.0 0.70 0.92 0.47 4.71 4.51 2.23
2.0 0.70 0.92 0.47 4.71 4.51 2.23
5.0 0.70 0.92 0.47 4.71 4.50 2.23

Table 8.14: Influence of laser scan outliers on the accuracy of the parameters. For this
experiment, exactly δmax outliers ·Np outliers are randomly generated in the laser
scan data.

8.2.1.7 Results for different true transformations

For our final simulated experiment, we created different true transformations between laser
scanner and camera to ensure that our approach works for arbitrary transformations and to
evaluate the influence of the transformation on the accuracy of the parameter domains. Note,
that the transformations are not truly arbitrary, as it is mandatory to find checkerboard poses
for which both the camera and the laser scanner can extract the required features with a
reasonable accuracy. We employed two different transformations for this experiment. To create
these, we kept the pose of the laser scanner constant and moved the camera around. This has
the advantage that the same 27 checkerboard poses from Fig. 8.7 can be employed for the
computation since they were originally chosen to replicate all checkerboard poses for which
we can extract features from laser scan data. However, as the camera is moved, we cannot
extract features from all 27 camera images, and thus some poses were discarded. Furthermore,
we set εcalibration = 1.0 to reduce computation time. Again, we set initial domains for the
rotation to [θCL ] = [−90, 90]° and [φCL ] = [ψCL ] = [−180, 180]° and for the translation to
[wTCL ] = wT

C
L + [−∞,∞]cm for w ∈ {x, y, z}.

x φCL (°) θCL (°) ψCL (°) xT
C
L (cm) yT

C
L (cm) zT

C
L (cm)

x∗ 100.345 14.767 2.664 −53.5 65.1 5.0
[x] [99.9, 100.8] [14.2, 15.3] [2.0, 3.2] [−56.6,−50.4] [61.9, 67.9] [2.3, 7.7]

w([x]) 0.9 1.1 1.2 6.2 6.0 5.4

x∗ 71.887 −33.644 10.272 151.6 −31.8 55.2
[x] [71.2, 72.7] [−34.4,−32.9] [9.2, 11.3] [147.1, 155.5] [−36.4,−27.0] [51.8, 58.6]

w([x]) 1.5 1.5 2.1 8.4 9.4 6.8

Table 8.15: Evaluation using two different true extrinsic transformations between camera and
laser scanner.
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The results are depicted in Table 8.15. They show that our approach reliably encloses
the true transformation parameters. However, the domain widths, and thus the accuracies
of the parameters vary. This can be observed for both the upper transformation and the
lower transformation. Nevertheless, a plausible explanation for this behavior can be given
by considering the wrapping effect (cf. Section 3.8.1). For the previous experiments each
coordinate system axis of the camera coordinate system was parallel to a coordinate system
axis of the laser scanner coordinate system. Thus, the wrapping effect did not occur for
the transformation parameters. In contrast, the coordinate system axes of camera and laser
scanner are rotated with respect to each other, inducing an additional uncertainty due to the
wrapping effect. This applies especially for the second transformation since this transformation
incorporates a large rotation, but is also true for the first transformation. In particular, the
uncertainty for the rotation around the z-axis and the translation along the z-axis increases.
Previously, a checkerboard pose for which the normal vector is parallel to axes of both the
camera and laser scanner coordinate system allowed us to contract these transformation
parameters tightly. However, due to the rotation between camera and laser scanner coordinate
system, this is no longer possible.

Nevertheless, it can be seen that the uncertainty of the translation parameters does not
increase proportionally with their absolute value. For example, the percentage uncertainty of the
translation along the x-axis lies in the interval [13.2, 15.2] % for the transformation employed
in the previous experiments, in the interval [11.0, 12.3] % for the first transformation and in
the interval [5.4, 5.7] % for the second transformation. Moreover, the translation uncertainty
increases along the y-axis for the second transformation, although its absolute value decreases
with respect to the first transformation. Thus, it is evident that the translation uncertainty
does not scale proportionally with the absolute value, but is affected by the rotation and the
induced wrapping effect.

8.2.1.8 Comparison to traditional approach

To show the differences and highlight the advantages of our approach to state-of-the-art
methods, we compare it to the approach of Zhou et al. [49]. However, a direct comparison
is infeasible since the objectives of both approaches are different. On the one hand, Zhou et
al. aim to compute point-valued parameters for the extrinsic transformation between camera and
laser scanner while ignoring the underlying uncertainties. On the other hand, our approach is
designed to consistently propagate the sensor errors to the extrinsic transformation parameters,
but cannot provide point-valued results. Nevertheless, we show the advantages of our approach
that are revealed in the presence of systematic errors (i.e. biases) and during the selection of
unfavorable checkerboard poses.

Influence of systematic errors

Since Zhou et al. refrain from modeling sensor errors, their approach only works in the
presence of zero-mean errors. However, systematic errors violating this prerequisite can occur
for both camera and laser scanner as explained in Section 4.1. In contrast, our approach can
cope with systematic errors since they are modeled implicitly when relying on interval analysis.
The following experiment, for which the results are depicted in Table 8.16, illustrates this fact.
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Figure 8.8: Two different error distributions we employ to show the influence of systematic
errors in the laser distance measurements.

We employ the same simulated 27 checkerboard poses as in Section 8.2.1.3. Originally, the
error follows a uniform distribution in the interval [−0.03, 0.03] m (cf. Fig. 8.8a), and thus does
not violate the zero-mean assumption of the state-of-the-art approach. The corresponding
results for both approaches are depicted in the second and third row of Table 8.16. As can be
seen, the state-of-the-art approach performs reasonably well and is able to accurately estimate
the extrinsic transformation parameters. Furthermore, our own approach exhibits the same
characteristics as explained in Section 8.2.1.3.

Subsequently, we added a bias to the error of the distance measurements of the laser
scanner such that the mean distance error is 1 cm, but the error is still bounded in the interval
[−0.03, 0.03] m. Fig. 8.8b shows the corresponding error distribution. The fourth and fifth row
of Table 8.16 show the corresponding extrinsic calibration parameters. As can be seen, the
approach of Zhou et al. [49] is significantly influenced by the systematic error. As expected,
the translation along the z-axis is off by approximately 1 cm, as this is the forward facing axis,
which is thus most affected by a distance error of the laser scanner. In contrast, our approach
is not disturbed by systematic errors and the results are similar to the results for the unbiased
data.

φCL (°) θCL (°) ψCL (°) xT
C
L (cm) yT

C
L (cm) zT

C
L (cm)

True 90.0 0.0 0.0 −27.0 15.0 −12.0
[49], no bias 90.01 −0.01 −0.04 −27.00 14.96 −11.91
Our, no bias [89.6, 90.3] [−0.4, 0.3] [−0.1, 0.3] [−28.8,−25.0] [13.1, 16.7] [−13.1,−11.0]
[49], bias 89.98 0.01 0.04 −27.09 14.88 −12.97
Our, bias [89.7, 90.3] [−0.4, 0.5] [−0.4, 0.3] [−29.5,−25.0] [13.0, 16.8] [−13.1,−10.9]

Table 8.16: Results showing the influence of biased distance measurements on both our and
the stochastic approach.

Selection of checkerboard poses

Another problem arising during the extrinsic calibration of camera and laser scanner is the
selection of appropriate and sufficient checkerboard poses. Thus, Zhou et al. [49] introduce
their method with the ulterior motive of reducing the minimal number of poses required for the
calibration to one. Their approach, however, lacks the capability to determine if the chosen
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checkerboard poses are sufficient, as sensor errors are neglected and thus not propagated
to the final calibration result. Consequently, the user cannot determine whether additional
checkerboard poses are required to improve the calibration accuracy. The following experiment
illustrates this limitation.

As for the evaluation of our approach, we employ the six checkerboard poses introduced in
Section 8.2.1.2 individually to perform the extrinsic calibration using the approach of Zhou et
al. [49]. Table 8.17 shows the results. Furthermore, Table 8.18 recalls the resulting interval
widths of our approach for the same data. As can be seen, the state-of-the-art method cannot
compute the correct extrinsic calibration parameters from every individual pose. For example,
the translation along the y-axis is incorrect for the poses one to three. While this is the expected
behavior, as these poses do not provide sufficient constraints to compute this parameter, the
results can be misleading because the user cannot recognize these inaccuracies from the results
alone. Although our approach obviously cannot compute these parameters either (i.e. the
intervals do not get contracted), the results reflect the uncertainty and allow to recognize the
need for additional checkerboard poses.

Pose φCL (°) θCL (°) ψCL (°) xT
C
L (cm) yT

C
L (cm) zT

C
L (cm)

True 90.0 0.0 0.0 −27.0 15.0 −12.0
1 89.43 −0.21 0.04 −26.21 0.00 −12.11
2 89.89 0.01 0.06 −26.98 −349.18 −11.94
3 90.27 0.42 −0.01 −28.95 0.00 −11.89
4 89.83 0.05 0.04 −27.33 15.66 −9.30
5 89.64 −1.37 0.07 −20.43 13.12 −11.58
6 89.94 −0.22 0.00 −25.99 14.47 −12.15

Table 8.17: Results from applying the approach of Zhou et al. [49] to single simulated checker-
board poses. The pose identifiers correspond to the visualizations in Fig. 8.6.

Pose
w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])

(°) (°) (°) (cm) (cm) (cm)

1 1.4 1.1 1.3 5.3 100.0 3.1
2 2.3 0.9 1.5 5.5 100.0 4.0
3 1.5 1.8 0.9 9.1 100.0 3.7
4 0.7 1.2 1.4 6.4 64.4 100.0
5 2.2 2.2 0.4 11.3 11.5 3.0
6 1.5 2.0 2.3 10.8 7.4 4.7

Table 8.18: Interval widths from applying our approach to single simulated checkerboard poses.
Full results are depicted in Table 8.6.
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(a) Exemplary calibration image which depicts the
calibration environment as well as the employed
checkerboard.

(b) Multi-sensor system, consisting of a cam-
era and a laser scanner, that is employed
to evaluate the extrinsic calibration.

Figure 8.9: Overview of the equipment used for the extrinsic calibration.

Furthermore, the fifth and sixth checkerboard pose allow our approach to constrain all six
calibration parameters. However, the interval widths indicate that the results are still inaccurate
and data from additional poses should be added. Similarly, the approach of Zhou et al. manages
to compute an approximation for all six parameters. However, the translation along the x-axis,
which also our approach identified as the most inaccurate translation parameter, still exhibits
an error of more than 1 cm. Thus, additional checkerboard poses are required to improve the
accuracy.

Since capturing data of a variety of checkerboard poses is a cumbersome task, it is beneficial
to require as few poses as possible. Nevertheless, the accuracy of the extrinsic calibration
parameters should not suffer from the selection of too few checkerboard poses. Under this
perspective, our approach allows to immediately assess the calibration accuracy to determine if
additional checkerboard poses are necessary and to learn which poses constrain which calibration
parameters. As depicted, this is in contrast to the presented state-of-the-art approach.

8.2.2 Real data

After confirming the correctness of our extrinsic calibration approach for simulated data, we
show the applicability to real data. However, as finding ground truth information is infeasible,
we can only evaluate the calibration accuracy (i.e. the interval widths) and compare the results
to the results computed using the approach of Zhou et al. [49]. As a prerequisite for the
experiments carried out, the experimental environment is depicted.

8.2.2.1 Real experimental environment

Fig. 8.9a shows an exemplary image captured by the camera during the extrinsic calibration.
As can be seen, the checkerboard is mounted on a tripod that is positioned in free space such
that we can define a box containing nothing but the checkerboard. As explained earlier, this
allows us to easily determine the set of scan points residing on the checkerboard. It remains to
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filter out the scan points on the tripod stands. However, this is straightforward as there are
only a few that can be easily identified with RANSAC.

Next, we introduce the sensors employed for the experiments. Fig. 8.9b shows the setup
consisting of laser scanner and camera that are rigidly mounted on aluminum profiles. The
camera is a Point Grey Grasshopper3 USB3 vision camera that we operated at a resolution
of 1920× 1200 px. The focal length, which we determined by performing a intrinsic camera
calibration using the same images we acquired for the extrinsic calibration, amounts to
approximately 2200 px. The intrinsic calibration is performed using the algorithm proposed
by Zhang [17] and the corresponding implementation in OpenCV. Subsequently, we used the
computed distortion parameters to remove distortion from all images.

The laser scanner is a Velodyne PUCK (VLP-16) with a total of 16 channels. It has a range
of 100 m and generates approximately 300.000 points per second, which lie in a horizontal field
of view of 360° and a vertical field of view of 30°. Consequently, the vertical angular resolution
is 2°. We set the rotation rate of the laser scanner to 5 Hz, resulting in a horizontal angular
resolution of 0.1°.

For our experiments, we positioned the checkerboard, which has a total size of 100× 76 cm,
in a distance of approximately 2 m to 3 m in front of the multi-sensor system.

8.2.2.2 Derivation of sensor error bounds

In Section 4.2 we introduced bounded error models for the camera and the laser scanner.
These models require error bounds for every different type of error we identified. Naturally,
the error bounds differ from sensor to sensor. Thus, in the following we derive or determine
these bounds for the sensors introduced in the previous section that are then employed for all
following experiments.

Laser scanner

According to Section 4.2.1, we need to determine the uncertainties of the distance measure-
ment [∆r], the vertical angle [∆θ], the horizontal angle [∆ϕ] and the dimensions of the initial
footprint [∆bθ ] and [∆bϕ ].

Regarding the distance uncertainty [∆r], the manufacturer specifies an accuracy of ±3 cm.
Consequently, we choose [∆r] = [−3, 3] cm. Next, the manufacturer specifies the horizontal
divergence of a laser beam as 3 mrad and the vertical beam divergence as 1.5 mrad. Thus,
we set [∆ϕ] = [−1.5, 1.5] mrad and [∆θ] = [−0.75, 0.75] mrad. Last, the dimensions of the
initial footprint of the laser beam are given as 9.5 mm tall by 12.7 mm wide. Consequently, we
choose [∆bθ ] = [−4.75, 4.75] mm and [∆bϕ ] = [−6.35, 6.35] mm.

Furthermore, we assume a maximum outlier percentage of δmax outliers = 0.5 % for the
computation of the plane parameters, which we determined empirically.

Camera

The derivation of the sensor error bounds for the camera that we employ to evaluate the
extrinsic calibration approach can be found in Section 8.1.2.2, since we employ the same sensor
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to measure the same data as in this section. For this experiment, the maximum reprojection
error during camera calibration is 0.5 px, and thus we set [∆px] = [−0.5, 0.5] px. As before, we
cannot precisely access the printing accuracy of the checkerboard, and thus we conservatively
assume [∆W ] = [−1, 1] mm for each checkerboard corner.

8.2.2.3 Results from individual checkerboard poses

In the same way as for the simulated data, we first show results from individual checkerboard
poses. Similarly, we expect different checkerboard poses to constrain different transformation
parameters with varying degrees of accuracy. We choose six different checkerboard poses that
resemble the poses we simulated in Section 8.2.1.2. Fig. 8.10 shows the corresponding images
taken by the camera. Since we expect each individual pose to provide sufficient constraints
to contract the rotation parameters - although with different accuracies - we set the initial
domains to [θCL ] = [−90, 90]° and [φCL ] = [ψCL ] = [−180, 180]°, and thus assume no initial
information about them. In contrast, not every checkerboard pose is suited to contract all
three translation parameters. Assuming no information about them would result in infinite
uncertainties which would prevent us from contracting any parameter domains. Thus, we
set [TC

L ] = ( [−77, 23] cm [−35, 65] cm [−62, 38] cm ), which constitutes a basic assumption
about the multi-sensor system that can be verified during a visual inspection.

(a) Pose 1. (b) Pose 2. (c) Pose 3.

(d) Pose 4. (e) Pose 5. (f) Pose 6.

Figure 8.10: Camera images of six different checkerboard poses which we employed individually
to perform the extrinsic calibration between camera and LiDAR.

Table 8.19 shows the results and Table 8.20 depicts the corresponding interval widths. We
created similar checkerboard poses as in our simulation studies, and as can be seen, the results
are therefore similar to our simulation studies. For example, the first three poses again do not
provide constraints to contract the translation along the y-axis. Moreover, the accuracies for
the three Euler angles again differ in the same way as in our simulation studies. For example,
the second pose results in the tightest contraction of the rotation around y-axis. The same
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Pose [φCL ] (°) [θCL ] (°) [ψCL ] (°) [xTCL ] (cm) [yTCL ] (cm) [zTCL ] (cm)

1 [88.5, 91.4] [−1.6, 0.6] [−0.3, 1.6] [−30.2,−20.4] [−35.0, 65.0] [−13.1,−9.6]
2 [87.7, 92.0] [−0.7, 0.8] [−0.3, 2.4] [−30.0,−23.5] [−35.0, 65.0] [−14.3,−7.7]
3 [88.3, 90.7] [−1.5, 1.1] [0.0, 1.6] [−31.8,−20.7] [−35.0, 65.0] [−13.6,−9.4]
4 [89.8, 90.8] [−1.2, 1.2] [−0.9, 2.0] [−32.6,−21.5] [−26.7, 61.8] [−62.0, 38.0]
5 [87.2, 92.1] [−2.4, 2.7] [0.0, 1.0] [−39.5,−16.1] [4.2, 25.8] [−14.4,−8.5]
6 [89.1, 91.2] [−1.9, 0.9] [−0.9, 2.3] [−31.1,−19.2] [13.5, 22.4] [−14.2,−8.5]

Table 8.19: Results using single checkerboard poses to constrain the transformation parameters.
The pose identifiers correspond to the visualizations in Fig. 8.10.

Pose
w([φCL ]) w([θCL ]) w([ψCL ]) w([xTCL ]) w([yTCL ]) w([zTCL ])

(°) (°) (°) (cm) (cm) (cm)

1 2.9 2.2 1.9 9.8 100.0 3.5
2 4.3 1.5 2.7 6.5 100.0 6.6
3 2.4 2.6 1.6 11.1 100.0 4.2
4 1.0 2.4 2.9 11.1 88.5 100.0
5 4.9 5.1 1.0 23.4 21.4 5.9
6 2.1 2.8 3.2 11.9 8.9 5.7

Table 8.20: Interval widths for the results from Table 8.19.

applies to the fourth pose and the rotation around the x-axis, and the fifth pose and the
rotation around the z-axis.

However, it can also be seen that the overall accuracy is lower than in our simulation studies.
For example, using simulated data the fifth pose allows us to compute the rotation around
the y-axis with an accuracy of w([θCL ]) = 2.2°, while we are only able to reach an accuracy
of w([θCL ]) = 5.1° using real data. The same is true for every pose and every transformation
parameter. Thus, in the following we provide an explanation for this finding. First, we observed
that the accuracies of the checkerboard features (i.e. plane parameters, line parameters and
corner points) extracted from camera images are similar for real and simulated data. In contrast,
we are able to compute these checkerboard features more accurately using simulated instead of
real point clouds. Therefore, the lower accuracy of the extrinsic calibration must be related to
the checkerboard feature extraction from the point clouds.

As explained for our simulation studies, we simulate the error of the laser scanner to follow
a uniform distribution. Consequently, the error bounds we chose in our simulation studies are
optimal since they are guaranteed to enclose the true error, but do not overestimate it. In
contrast, the error bounds for our experiments using real data are chosen to comply with the
information provided by the manufacturer. However, the actual error may not exhaust the error
bounds, and is therefore overestimated. As a result, the checkerboard features are extracted
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less accurately, which in turn leads to a less tight contraction of the extrinsic transformation
parameters.

8.2.2.4 Results from multiple checkerboard poses

After presenting the results computed from single checkerboard poses, we combine the contrac-
tors constructed from multiple checkerboard poses to determine more accurate transformation
parameter domains. Since combining those contractors allows us to contract the domains
of all six transformation parameters, we can assume no initial information about them and
set [wTCL ] = [−∞,∞]cm for w ∈ {x, y, z}. As before, we also set [θCL ] = [−90, 90]° and
[φCL ] = [ψCL ] = [−180, 180]°. At first, we combine the constraints from the six checkerboard
poses we presented in the previous section.

x [φCL ] (°) [θCL ] (°) [ψCL ] (°) [xTCL ] (cm) [yTCL ] (cm) [zTCL ] (cm)

[x] [89.8, 90.7] [−0.7, 0.6] [0.2, 1.0] [−29.0,−24.2] [15.6, 20.0] [−12.6,−10.2]
w([x]) 0.9 1.3 0.8 4.8 4.4 2.4

Table 8.21: Results combining all six (cf. Fig. 8.10) checkerboard poses to constrain the
transformation parameters.

Table 8.21 presents the results and the corresponding interval widths. As in our simulation
studies, it is evident that we are able to compute the translation along the z-axis more accurately.
Overall, the interval widths are similar, although not quite as tight as for our simulated six
checkerboard poses. However, we were able to reduce the comparatively large uncertainty of
our previous evaluation, in which we employed individual checkerboard poses to constrain the
transformation parameters.

In the following, we further extend the number of constraints by employing a total of 26
distinct checkerboard poses for which we rotated the checkerboard in front of the multi-sensor
system. Some poses are selected such that we can just barely extract the desired features from
both images and point clouds while maximizing the rotation around one or several axes. This
allows stronger constraints to be found. However, moving (i.e. performing a translation) the
checkerboard is not required as detailed in Section 6.2. Fig. 8.11 depicts those 26 checkerboard
poses relative to the coordinate system of the camera.

x [φCL ] (°) [θCL ] (°) [ψCL ] (°) [xTCL ] (cm) [yTCL ] (cm) [zTCL ] (cm)

[x] [89.8, 90.5] [−0.6, 0.4] [0.4, 1.0] [−28.3,−25.2] [15.7, 18.8] [−12.5,−10.3]
w([x]) 0.7 1.0 0.6 3.1 3.1 2.2
x′ [49] 90.6 −0.6 0.9 −24.6 15.7 −13.2

Table 8.22: Results combining all 26 (cf. Fig. 8.11) checkerboard poses to constrain the
transformation parameters.

Table 8.22 shows the results and the corresponding interval widths. By using additional
checkerboard poses in addition to the six previously presented, we can further reduce the
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Figure 8.11: Visualization of 26 different checkerboard poses which are simultaneously employed
to contract the extrinsic transformation parameter domains.

uncertainty of the extrinsic transformation parameters. Again, it can be seen that the resulting
interval widths are similar to our simulation studies, in which we used 27 checkerboard poses.

Since the results using real data are similar to using simulated data, we can conclude that
our approach is suitable to find the extrinsic transformation between camera and laser scanner,
and can be applied to real data. Moreover, the intervals should be guaranteed to enclose the
true parameters, since we were able to reliably enclose the true parameters using simulated
data and the accuracies are comparable using real data.

In addition to the results of our approach, Table 8.22 contains the results of the established
stochastic approach introduced by Zhou et al. [49]. It can be seen that some of the computed
parameters are not enclosed by our corresponding intervals. However, since our intervals
are guaranteed to contain the true solution, the results of the stochastic approach cannot
be accurate. A possible reason could be systematic errors that are not compatible with the
assumption of zero-mean errors in stochastic approaches, as highlighted in Section 8.2.1.8.
Consequently, our approach can be used not only to perform the extrinsic calibration, but also
to determine whether the parameters computed by a stochastic approach could be correct.
Moreover, our approach enables the final accuracy of the calibration to be assessed, and is
therefore able to determine whether additional checkerboard poses are required to improve the
results. In order to further compare our interval-based approach with the stochastic approach
in the future, various metrics such as the reprojection error could be used. Moreover, a different
setup consisting of two cameras and the laser scanner could be employed to use the stereo
camera calibration as ground truth information.
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8.3 Bounded-error visual-LiDAR odometry
This section details the experimental evaluation of the approach for interval-based visual-LiDAR
odometry that we presented in Chapter 7. The main evaluation criterion is the desired guarantee
of being able to reliably enclose the true solution. Consequently, we require a dataset that
contains accurate ground truth information. In the following, we present such a dataset that
was gathered within the Research Training Group i.c.sens2. Afterwards, we introduce the
sensor error bounds used for the evaluation and detail how they were derived. We then present
the results, which include different evaluation criteria such as accuracy or number of outliers.
Finally, we examine results using different error bounds or different parameters to show the
effect of these.

8.3.1 Dataset
Since our approach for visual-LiDAR odometry is dedicated to autonomous driving in urban
areas, we require data from sensors attached to a vehicle that is driving through a city. For
this purpose, a so-called mapathon was organized by our research training group i.c.sens [128].
Here, we equipped a van with a multi-sensor platform that can be seen in Fig. 8.12. Among
other sensors, this platform houses a LORD MicroStrain 3DM-GQ4-45 GNSS aided IMU, a
Velodyne HDL-64E laser scanner and a FLIR Grasshopper3 GS3-U3-23S6C-C color camera.
The IMU was operated at a measurement frequency of 500 Hz.

Camera

Mobile mapping system
for ground truth

LiDAR

IMU

Figure 8.12: Image of our multi-sensor platform on which the sensors relevant for this work
were marked. Red: Velodyne HDL-64E laser scanner, blue: FLIR Grasshopper3
color camera, yellow (hidden behind other sensors): LORD MicroStrain IMU,
green: Riegl VMX-250 Mobile Mapping System. Image credit: Sören Vogel.

The laser scanner was set to rotate with a frequency of 10 Hz resulting in a horizontal
angular resolution of 0.1728°. It consists of 64 laser beams firing simultaneously that are

2The Research Training Group i.c.sens [RTG 2159] is funded by the German Research Foundation (DFG).
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arranged on top of each other resulting in a vertical angular resolution of 0.5°. Thus, the
Velodyne HDL-64E laser scanner delivers a vertical field of view from 2° to −29.5°.

The camera was equipped with a Fujinon CF12.5HA-1 lens that has a focal length of
12.5 mm. Unfortunately, due to the different vertical fields of view of the camera and the laser
scanner, no distance information can be assigned by the laser scanner to the image features in
the upper third of the image. This can be seen in Fig. 7.2. We define the coordinate system
of the camera, which is the reference coordinate system for our odometry computations, as
follows. The z-axis is pointing in the viewing direction, the x-axis is pointing to the right and
the y-axis is pointing down.

Moreover, the image size of the camera is 1920× 1200 px and it is set to capture images
whenever the laser scanner faces forward, thus resulting in a frame rate of 10 frames per
second. For this synchronization of camera and laser scanner, we employed the idea depicted
in [129]. Here, the authors propose to use a reed contact attached to the rotating laser
scanner to generate an electrical pulse that triggers the camera whenever the laser scanner
is facing forward. Consequently, the camera and laser scanner are directly synchronized in
time. In addition, the electrical pulse was also routed into a Raspberry Pi that is synchronized
to Global Positioning System (GPS) time using an EVK-M8T GNSS receiver and the GPS
daemon (gpsd). Thus, we were able to assign an accurate GPS timestamp to every image
and laser scan point. Since our IMU encompasses a GNSS receiver, the timestamps of the
measured angular velocities are also given in the GPS time reference, and thus all our sensors
are synchronized via GPS time.

To measure accurate ground truth information, the vehicle was additionally equipped with a
Riegl VMX-250 Mobile Mapping System that consists of two laser scanners, a camera system
and a localization unit. The Mobile Mapping System can be seen in the back of Fig. 8.12. For
this work, we are particularly interested in the localization unit that consists of a highly accurate
GNSS/IMU system coupled with an external distance measurement instrument (Applanix POS
LV 510).

To determine the extrinsic calibration between the Mobile Mapping System and our own
platform, a laser tracker (Leica Absolute Tracker AT960) was used to accurately measure
reference points on the sensor housings. Moreover, to enable a more accurate extrinsic
calibration (compared to our own spatiotemporal calibration approaches) between camera,
laser scanner and IMU, the laser tracker was employed to measure known reference planes and
control points in a laboratory, which were then identified in the images and point clouds.

For the evaluation of this work, we choose a dataset that was acquired in the “Nordstadt”
of Hanover, Germany. The test environment and the route are depicted in Fig. 8.13. As can
be seen, there are many tall buildings along the route that prevent GNSS information but offer
many visual features. However, there are also passages with some vegetation and thus less rich
image features, but better GNSS reception. In total, we recorded data for 262 s and covered a
distance of 1328 m during this timespan.

8.3.2 Derivation of sensor error bounds
In Section 4.2 we introduced bounded error models for the camera, the laser scanner and
the IMU. These models require error bounds for every different type of error we identified.
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Google Earth
Image Landsat / Copernicus

Figure 8.13: Overview of the test environment with the route drawn in red. Source: Google
Earth, Image credit: Landsat / Copernicus.

Naturally, the error bounds differ from sensor to sensor. Thus, in the following we derive
or determine these bounds for the sensors introduced in the previous section that are then
employed for all following experiments.

Laser scanner

According to Section 4.2.1, we need to determine the uncertainties of the distance measure-
ment [∆r], the vertical angle [∆θ], the horizontal angle [∆ϕ] and the dimensions of the initial
footprint [∆bθ ] and [∆bϕ ].

Regarding the distance uncertainty [∆r], the manufacturer specifies an accuracy of ±2 cm
(one sigma). Consequently, to bound the distance measurements with a probability of 99.7 %,
we choose [∆r] = [−6, 6] cm. Next, the manufacturer specifies the beam divergence of each
laser beam as 3 mrad. Unfortunately, there is no distinction between the horizontal and the
vertical beam divergence, and thus we set [∆θ] = [∆ϕ] = [−1.5, 1.5] mrad. Last, we need
to determine the initial footprint of each laser beam, i.e. its dimensions when it is emitted.
However, it is not specified by the manufacturer, and there are no experiments aimed at
determining this initial footprint. We therefore assume the laser emitters of the Velodyne
HDL-64E to be similar to those of the VLP-16 mentioned above. Consequently, we choose
[∆bθ ] = [−4.75, 4.75] mm and [∆bϕ ] = [−6.35, 6.35] mm.

Camera

According to Section 4.2.2, we need to determine intervals enclosing the feature detection
error caused by quantization [∆pxq ], by image blur [∆pxb ] and by measurement noise [∆pxn ].
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Naturally, [∆pxq ] = [−0.5, 0.5] px since the actual scene is discretized into pixels. In contrast,
image blur and measurement noise cannot be quantified just as easily since many different
factors - some of which are unknown - have an impact. Consequently, we can only choose error
bounds [∆px] that summarize all of the previously mentioned types of error. However, to our
knowledge there exists no studies on the error distribution of image feature matches. Thus, we
need to select [∆px] empirically and rather conservatively to not underestimate the error. For
our experiments, we found that error bounds that scale with the distance from the last keyframe
are superior to fixed error bounds. The reason is that the accuracy of the feature matches
decreases the further away from each other the images have been recorded. Consequently,
[∆px](t) = [∆pxf ] + d(t) · [∆pxs ], where d(t) is the distance from the last keyframe at time t
and [∆pxf ] is an error bound that is fixed for every image frame and [∆pxs ] is an error bound
that scales with the distance from the last keyframe.

We set the error bounds [∆pxf ] = [−2, 2] px and [∆pxs ] = [−0.1, 0.1] px that are guaranteed
to enclose most image feature matches, while some are obvious outliers and need to be treated
using a relaxed intersection, as explained in Section 7.2.4.

IMU

The derivation of the sensor error bounds for the IMU that we employ in this experiment
can be found in Section 8.1.2.2, since we employ the same sensor to measure the same data as
in this section.

8.3.3 Parameters

Before finally presenting results of our approach for guaranteed visual-LiDAR odometry, we
recall some important parameters that were introduced in Chapter 7.

First, we limit the number of feature matches for every image pair. To do so while
simultaneously ensuring a proper distribution of image features, we divide each image into
20× 15 sub-windows. For the first results, we allow a maximum of 3 image features in each of
this 300 sub-windows. However, in Section 8.3.7 we vary the number of features and analyze
the effect of this parameter.

Second, we have to choose a maximum size of the interval vector enclosing the pose
parameters before inserting a new keyframe as introduced in Section 7.2.3. Here, we only
monitor the area of the position box projected onto the ground plane. Other possibilities for
determining the uncertainty of the pose estimate include the volume of the position box or
the interval width of the Euler angles. However, we discovered that it is sufficient to consider
the area of the position box since it is directly related to the volume of the position box and
the rotation uncertainty. Thus, if the area increases, the volume and the rotation uncertainty
increase simultaneously. For the first results, we insert a new keyframe once the area of
the position box exceeds 5 m2, but we also vary and analyze this parameter more closely in
Section 8.3.8.

Third, we have to specify the maximum number of outliers to expect for the relaxed
intersection explained in Section 7.2.4. We choose a maximum of 5 % outliers that we
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determined empirically and selected rather conservatively to keep the guarantees intact. However,
we will also vary this parameter and inspect it more closely in Section 8.3.9.

Next, we specify the spatiotemporal uncertainties used to fuse information from camera,
laser scanner and IMU. As stated in Section 8.3.1, we employed an external laser tracker to
accurately measure the true extrinsic calibration between our sensors. Moreover, we use GPS
timestamps to ensure an adequate time synchronization of sensor data streams. Although we
could have used our new approaches for the spatiotemporal calibration of sensors, we decided
to decouple the experiments. This allows us to evaluate the bounded-error visual-LiDAR
odometry approach using different accuracies for the spatiotemporal calibration parameters
while simultaneously ensuring that the true parameters are enclosed. Nevertheless, for the
first results we employ error bounds that are similar to the uncertainties discovered during the
experimental evaluation of the calibration approaches in Section 8.1 and Section 8.2.

First, we focus on the extrinsic calibration between camera and LiDAR. For the translation
parameters, we choose an uncertainty of [−5, 5] cm for [xTCL ] and [yTCL ], and an uncertainty of
[−1.5, 1.5] cm for [zTCL ]. For the rotation parameters, we choose an uncertainty of [−0.35, 0.35]°
for [φCL ] and [θCL ], and an uncertainty of [−0.2, 0.2]° for [ψCL ]. All of these uncertainties should
result in the transformation parameter intervals enclosing the true parameters and are chosen
even more conservatively than the results in Section 8.2.2 to not underestimate the possible
error.

Second, we focus on the spatiotemporal calibration between camera and IMU. Unfortunately,
the extrinsic rotation accuracy depicted in Section 8.1 is too low. Using the interval bounds
shown there for sensor fusion would not make it possible to provide an initial rotation estimate
using IMU data. In contrast, our experiments here show that an uncertainty of [−0.5, 0.5]°
that we add to all three rows of [ξIC ] is required to provide a reasonably accurate guess for the
rotation of the vehicle. For the time offset, we choose an uncertainty of [τ ] = [−7.5, 7.5] ms.
This is in accordance with the results in Section 8.1.

Finally, we found that coupling the forward-backward contractors with SIVIA as explained
in Section 7.3 does not significantly increase the accuracy of our pose estimates and therefore
does not justify the additional computation time.

8.3.4 Comparable state-of-the-art approach
To compare our results to those of a state-of-the-art approach, we implemented the frame to
frame motion estimation by Zhang et al. [60, 61]. Similar to our work, the authors of this
work project the laser scan point cloud to the image plane and are therefore able to compute
the depth of the image features. However, they only consider the three closest scan points
for each image feature and compute the depth by interpolating between those three points.
Consequently, they are not able to assess the accuracy of the fused 3D features. Afterwards,
the authors employ a nonlinear optimization algorithm (in this case the Levenberg-Marquardt
algorithm [14]) to compute the rigid body transformation corresponding to the robot’s pose.
Here, they employ the same equations we depict in Section 7.2.2. Besides the frame to
frame motion estimation, the authors’ approach also incorporates an approach for bundle
adjustment. To keep the comparison fair, however, we only implemented the frame to frame
motion estimation since our own approach does not perform bundle adjustment. Moreover, we
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feed the very same image features, laser scan points and initial rotation estimate by the IMU
to both our and this stochastic approach.

8.3.5 Results
Finally, this section details the results of our interval-based visual-LiDAR odometry approach
using the sensor error bounds and parameters depicted previously. Moreover, we provide a
comparison with the state-of-the-art approach introduced in the previous section.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

8

4

0

x (m) 64 z (m)

true solution
interval localization result
interval midpoints
keyframe
comparable state-of-the-art approach

Figure 8.14: Short experiment (10 s) depicting the increasing uncertainty due to error propaga-
tion at keyframes. Green dots depict the true solution, blue boxes illustrate our
interval localization results, yellow dots depict their respective midpoints, orange
boxes highlight keyframes and violet dots depict the result of the comparable
state-of-the-art approach.

Since our approach only serves the purpose of computing the robot’s pose relative to the
last keyframe, we only evaluate this relative, but no global localization results. Nevertheless,
it is possible, to combine the transformations between multiple keyframes as explained in
Fig. 7.11 to compute the robot’s motion not only between keyframes, but also over a longer
period of time. However, this results in a rapidly growing uncertainty since the uncertainty
that accumulates until the insertion of a new keyframe cannot be contracted in the future.
An example of this behavior, which is typical for dead-reckoning approaches, can be seen
in Fig. 8.14. Here, we use the first 10 s of our dataset. It becomes evident that all boxes
contain the true solution and the interval midpoints approximate the true result reasonably
well. However, after a few seconds, the uncertainty grows too large to provide any meaningful
bounds on the vehicle’s pose. After 10 s, the last position box of this small experiment covers
an area of 18 m2 and has a volume of 52 m3. Nevertheless, this uncertainty allows us to warn
the user or determine when external information is needed.

In contrast, the stochastic approach also drifts from the true result and has an error of
1.81 m on the ground plane and an error of 1.84 m in 3D after 10 s. However, the stochastic
approach provides no means to assess the uncertainty of its position estimates. As a further
comparison, the midpoint of the interval box has an error of 0.49 m on the ground plane and an
error of 0.55 m in 3D. In addition, as can be seen, some stochastic pose estimates are outside
the computed boxes, and so we can be sure that the stochastic result must be wrong in these
cases. A possible explanation of why the stochastic approach fails in some cases while our
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interval-based approach is still able to compute a box containing the true solution will be given
later.

The findings of this first small experiment are that global contractors should be developed in
the future to prevent the uncertainty from increasing rapidly. These global contractors can be
found, for example, by extending our approach by bundle adjustment, extending it to SLAM,
or by using GNSS information.

To evaluate the performance of our approach, we define the following metrics:
• Correct (%): The percentage of image frames for which the true pose is enclosed in

the computed pose intervals.
• Volume (m3): The average volume of our 3D boxes enclosing the robot’s true position.
• Area (m2): The average area of our 3D position boxes that are projected onto the

ground plane.
• Rotation accuracy (°): The average width of the interval enclosing the robot’s orienta-

tion on the ground plane.
• Features w. depth: The average number of image feature matches for which we were

able to find depth information.
• Distance per keyframe (m): The average driving distance after which we insert a new

keyframe due to the position uncertainty becoming too large.
• Inconsistencies (%): The percentage of image frames for which the result of the

state-of-the-art approach [60, 61] is not enclosed in the 6 DOF pose intervals.

Correct Volume Area Rotation Features Distance per Inconsistencies
(%) (m3) (m2) accuracy (°) w. depth keyframe (m) (%)

100 0.77 1.30 0.77 105 11.35 29.9

Table 8.23: Quantitative results of the interval-based visual-LiDAR odometry approach.

Table 8.23 depicts the results. As can be seen, we are able to reliably enclose the robot’s true
pose in all 2644 image frames, and are thus able to provide the desired guarantees. Moreover,
the accuracy of our approach is reasonable, considering that we take the maximum error
into account and allow up to 5 % outliers. Despite this accuracy, we are able to detect an
inconsistency of the state-of-the-art approach in 29.9 % of all image frames, showing that our
approach can be employed to alert the user in the case of errors.

In addition, Fig. 8.15 shows the originally three-dimensional position boxes that are projected
onto the ground plane. Since we only compute the robot’s pose relative to the last keyframe,
we use ground truth information at every keyframe to transform the position boxes into a global
coordinate system for this visualization. As can be seen, the size and thus the uncertainty
of the position boxes as well as the frequency of keyframes vary for different parts of the
trajectory. To explain this phenomenon, we present the image features of two different points
in our experiment on the bottom of Fig. 8.15. It becomes evident that the image on the
right is recorded in an environment, which makes it easy to re-identify image features and
to assign accurate depth information to image features on planes parallel to the image plane
(e.g. on the cars). In contrast, the image on the left is captured in an environment with less
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Figure 8.15: Visualization of the boxes enclosing the robot’s position in the x-z-plane. Green
dots depict the true solution, blue boxes illustrate our interval localization results,
orange boxes highlight keyframes and violet dots depict the solution of the
stochastic approach. All results are transformed into a global coordinate system
using ground truth information at every keyframe. In addition, on the bottom left
and right we show feature images that are typical for the corresponding sections
of the trajectory. Here, the image features are colored coded by depth uncertainty
with red signaling accurate features and blue signaling inaccurate features.
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rich image features. Moreover, there are fewer features with accurate depth information due to
the discontinuity of the environment (e.g. caused by the pillars). Consequently, the constraints
introduced by the 3D features of the right image are stronger than those introduced by the 3D
features of the left image, thus resulting in a more accurate contraction of the robot’s pose at
the time of the right image than at the time of the left image.

Furthermore, Fig. 8.16 shows the interval pose bounds and the results of the stochastic
approach with respect to ground truth information. Since the car moves mainly in two
dimensions, we only show results for the translation in x- and z-direction and the rotation
around the y-axis. It is evident that our error bounds never violate the true result (i.e. 0 is
always enclosed in those intervals), and thus we can state that our intervals are guaranteed
to contain the true solution. Furthermore, it can be seen that the midpoint of our intervals
approximates the true result reasonably well, and thus it can be used if a point-valued result is
needed. The next characteristic we want to point out is that the width of our intervals, and
thus the uncertainty of the localization results, varies drastically. This can also be seen by the
fact that keyframes are inserted more frequently for some parts of the trajectory.

To further illustrate this behavior and provide more details, Fig. 8.17 shows two smaller
sections of the experiment. As can be seen, significantly less keyframes are inserted between
100 s and 150 s (cf. Fig. 8.17b, Fig. 8.17d and Fig. 8.17f). In contrast, more keyframes
keyframes are inserted between 210 s and 260 s (cf. Fig. 8.17a, Fig. 8.17c and Fig. 8.17e).
This is due to the fact that different areas of the trajectory provide 3D features of different
numbers and different uncertainties. For example, the right image of Fig. 8.15 is recorded
around t = 120 s, whereas the left image of Fig. 8.15 is captured around t = 245 s.

Moreover, these figures illustrate the inconsistencies between the results of the stochastic
and our interval-based approach. Whenever the result of the stochastic approach lies outside
the lower and upper interval bounds (i.e. the red line crosses a blue line), the stochastic
solution cannot be correct and therefore an inconsistency has occurred. We believe that these
inconsistencies occur due to unmodeled uncertainties of the 3D features. Since the stochastic
approach disregards any uncertainty the augmented features might have, better features cannot
be assigned a higher weight, and thus many bad features overrule the few good features. In
contrast, our interval-based approach considers the uncertainties during sensor fusion. Features
for which depth cannot be determined accurately (e.g. on borders) are assigned large intervals
and vice versa. Consequently, the constraints imposed by uncertain features do not contribute
much to the contraction process. In contrast, features for which depth could be determined
accurately impose stronger constraints on the rigid body transformation.

Fig. 8.18 shows augmented feature images for both our and the stochastic approach during
the detected faults (especially for the translation along the z-axis) around t = 200 s. First, it
can be seen that our approach uses some features without depth, for which the stochastic
approach finds depth. This is due to the fact that our approach is able to dynamically check if
the image feature interval is completely covered by scan point intervals and does not assign
depth information if this is not the case. In contrast, the conventional approach only requires
three scan points to be close enough to the image feature. Except for these few features, it
can be seen that the depth estimates by the stochastic approach (cf. Fig. 8.18a) look similar to
the mid points of our depth intervals (cf. Fig. 8.18b). However, the uncertainty of our depth
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Figure 8.16: Visualization of the results of our interval-based visual-LiDAR odometry approach.
The three graphs show the relative error (i.e. ground truth is 0) over time. Each
vertical gray line corresponds to the insertion of a new keyframe (thus, position
estimates are always relative to the last vertical line). The lower and upper bounds
of our method are depicted in blue, the corresponding midpoints are colored yellow
and the result of the stochastic method is colored violet. More detailed sections
of this graphs are provided in Fig. 8.17.
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(a) Stochastic features colored by depth (red:
close, blue: distant, violet: no depth).

(b) Interval features colored by depth midpoint
(red: close, blue: distant, violet: no depth).

(c) Interval features colored by uncertainty (red:
certain, blue: uncertain).

Figure 8.18: Image features for the detected fault around t = 200 s.

intervals indicates that only a few features are accurate and should be trusted (cf. Fig. 8.18c).
Although stochastic approaches successfully apply various methods to cope with erroneous
position estimates (e.g. Zhang et al. employ bundle adjustment to smooth the computed
trajectory), we still believe that detecting these faults in a guaranteed way, allows stochastic
approaches to be more robust to unfavorable features.

Finally, we mention and analyze the computation time of our approach. On average, the
computations for one image frame take 0.91 s. This computation time can be divided into
0.26 s for detecting and tracking image features, 0.13 s for assigning depth information to image
features, 0.02 s for determining outliers, 0.41 s for building the forward-backward contractors for
every image feature match and 0.09 s for running the aforementioned contractors to contract
the pose domains. These computation times were achieved on a consumer-grade laptop with
little effort for threading or code optimizations making us optimistic that this approach is
suitable for future online applications. Parallelization in particular can be used to speed up the
computations. Moreover, while the IBEX library allows a simple implementation of contractors,
it was developed without special consideration of computation time, and thus the construction
of forward-backward contractors takes a considerable amount of time. However, the execution
of those contractors is comparably fast and we are therefore optimistic for a future online
implementation.
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8.3.6 Error bounds
After presenting the general results, we conduct a parameter study starting with different error
bounds for the image pixel error of the camera. In the following, we refrain from varying the
sensor error bounds of the laser scanner and the IMU since these are thoroughly described in
the data sheets, and thus assumed to be correct.

Camera

At first, we vary only the fixed image pixel error [∆pxf ] while retaining all other parameters
and error bounds as described above.

r([∆pxf ]) Correct Volume Area Rotation Features Distance per Inconsistencies
(px) (%) (m3) (m2) error (°) w. depth keyframe (m) (%)

0.5 99.47 0.60 1.15 0.80 94 11.86 25.9
1.0 99.77 0.67 1.18 0.83 92 12.30 27.5
1.5 99.96 0.70 1.25 0.80 98 11.97 29.9
2.0 100 0.77 1.30 0.77 105 11.35 29.9
2.5 100 0.77 1.35 0.76 108 11.16 25.2
3.0 100 0.74 1.35 0.75 109 10.98 25.3
3.5 100 0.85 1.44 0.74 107 10.80 24.2
4.0 100 0.95 1.52 0.75 111 10.46 22.0

Table 8.24: Results of the parameter study on the fixed image pixel error [∆pxf ].

The results can be seen in Table 8.24. As expected, if r([∆pxf ]) is chosen too small, we are
no longer able to enclose the correct solution for every image frame, and thus the results are
not guaranteed. However, our approach is still able to compute a correct solution for more
than 99 % of all image frames. In contrast, if r([∆pxf ]) is chosen too large, the accuracy of
our results decreases as can be seen by the fact that the average area and the average volume
increases. Besides, more keyframes have to be inserted. This is also in accordance with our
expectations since large error bounds that are never reached by the sensor dilute the results
(cf. Section 3.11). Finally, we want to mention that the variations of the number of image
features with depth can be explained by the fact that the image pixel error is also employed to
filter outliers during the image feature matching process (cf. Section 7.2.4).

Time offset between camera and IMU

Next, we vary the accuracy of the time offset interval [τ ]. Since the sensors are synchronized
using GPS timestamps, we assume that τ ∗ = 0. However, an error, which we cannot assess,
may still remain. All other parameters and sensor error bounds are retained.

Table 8.25 shows the results. As can be seen, assuming no uncertainty (i.e. r([τ ]) = 0.0 ms)
results in some erroneous pose estimates due to the initial rotation intervals not containing
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r([τ ]) Correct Volume Area Rotation Features Distance per Inconsistencies
(ms) (%) (m3) (m2) error (°) w. depth keyframe (m) (%)

0.0 99.77 0.69 1.23 0.70 97 11.86 29.4
7.5 100 0.77 1.30 0.77 105 11.35 29.9
15.0 100 0.80 1.34 0.88 105 11.35 25.2
30.0 100 0.85 1.38 1.08 105 11.55 23.8
50.0 100 0.88 1.42 1.28 106 10.80 20.7

Table 8.25: Results of the parameter study on the time offset between camera and IMU [τ ].

the true rotation. This can either be due to the extrinsic rotation uncertainty being set too
optimistically or due to an imperfect synchronization of the sensors.

Naturally, a more uncertain time offset results in less accurate rotation estimates. Since the
accuracy of the translation parameters depends not only on the accuracy of the 3D features
but also on the accuracy of the rotation, the position estimate also becomes less accurate with
an increasing uncertainty of the time offset. In turn, an increasing uncertainty of the position
estimates leads to a more frequent insertion of keyframes, since the threshold for the maximum
area of a position box is exceeded more often. Moreover, the number of feature matches with
depth increases with the uncertainty of the time offset. The reason is the outlier detection
(cf. Section 7.2.4) that finds feature matches that are not consistent with the initial rotation
estimate by the IMU.

Extrinsic rotation between camera and IMU

r([ξIC ]) Correct Volume Area Rotation Features Distance per Inconsistencies
(°) (%) (m3) (m2) error (°) w. depth keyframe (m) (%)

0.1 97.96 0.59 1.20 0.59 95 12.18 41.4
0.25 99.51 0.62 1.21 0.67 98 11.96 35.8
0.5 100 0.77 1.30 0.77 105 11.35 29.9
0.75 100 0.86 1.38 0.90 107 11.35 23.0
1.0 100 0.96 1.43 1.02 108 11.07 19.1
2.0 100 1.51 1.66 1.60 105 10.30 14.8

Table 8.26: Results of the parameter study on the extrinsic rotation between camera and IMU
[RI

C ].

In the following, we evaluate the influence of the uncertainty of the extrinsic rotation between
camera and IMU. Initially, we set the uncertainty of all three Euler angles [ξIC ] to 0.5° and did
not distinguish between the three different rotation axes. Here, we maintain this procedure
and adapt the accuracy of all three Euler angles simultaneously. The intervals for the Euler
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angles should be centered on the true rotation parameters since we calibrated the sensor setup
externally as explained above. However, we cannot assess the accuracy of this calibration, and
thus an error may remain such that setting r([ξIC ]) = 0° is infeasible.

Table 8.26 depicts the results. The interpretation is similar to the previous paragraph, since
an increasing uncertainty of the extrinsic rotation - similar to an increasing uncertainty of the
time offset - leads to less accurate rotation estimates by the IMU.

Extrinsic transformation between camera and laser scanner

Next, we focus on the accuracy of the extrinsic transformation between camera and laser
scanner. As for the extrinsic calibration between camera and IMU, we used an external
calibration system to accurately compute the 6 DOF transformation. Afterwards, we added an
uncertainty to each parameter that corresponds to the accuracy our interval-based calibration
approach achieves. Consequently, the transformation intervals [TC

L ] = ( [xTCL ] [xTCL ] [xTCL ] )
and [ξCL ] = ( [φCL ] [θCL ] [ψCL ] ) should be centered on the true values. Even for the external
calibration system, however, there remains a certain degree of inaccuracy.

Trial
r([xTCL ]) r([xTCL ]) r([xTCL ]) r([φCL ]) r([θCL ]) r([ψCL ])
(cm) (cm) (cm) (°) (°) (°)

1 3 3 1.0 0.20 0.20 0.1
2 5 5 1.5 0.35 0.35 0.2
3 7 7 2.0 0.50 0.50 0.3
4 3 3 1.0 0.35 0.35 0.2
5 5 5 1.5 0.20 0.20 0.1

Table 8.27: Listing of the trial number and the corresponding extrinsic transformation uncer-
tainties between camera and laser scanner.

Since the inaccuracies of all six parameters are set differently, we cannot fit the parameter
inaccuracies and corresponding results into a common table. Consequently, Table 8.27 assigns
a trial number to each combination of parameter uncertainties.

Finally, Table 8.28 depicts the results. As can be seen, we are able to reliably enclose the
correct solution in all five experiments, which shows that that the external extrinsic calibration
parameters are more accurate than initially assumed. Naturally, more accurate transformation
parameters result in a more accurate contraction of the robot’s pose as can be seen by
the average area and average volume for the first, fourth and fifth trial. In contrast, less
accurate transformation parameters for the third trial lead to less accurate pose contractions.
Consequently, this experiment shows the importance of the accuracy of the extrinsic calibration
between camera and LiDAR. Therefore, our extrinsic calibration approach should be further
improved in the future to enable more accurate visual-LiDAR odometry.

Another effect of more accurate transformation parameters is that fewer keyframes have
to be inserted. The reason for this is directly linked to the more accurate contraction of the
robot’s pose. Since we insert a new keyframe whenever the position box exceeds a maximum
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Trial
Correct Volume Area Rotation Features Distance per Inconsistencies
(%) (m3) (m2) error (°) w. depth keyframe (m) (%)

1 100 0.54 0.94 0.79 88 12.65 31.5
2 100 0.77 1.30 0.77 105 11.35 29.9
3 100 0.94 1.77 0.75 110 8.91 22.0
4 100 0.73 1.19 0.79 101 12.18 26.7
5 100 0.59 1.04 0.80 92 12.53 28.1

Table 8.28: Results of the parameter study on the extrinsic transformation between camera
and laser scanner consisting of the rotation [RC

L ] and the translation [TC
L ].

threshold, but this threshold is reached less often with more accurate pose parameters, fewer
keyframes have to be inserted. Consequently, fewer features with depths are found if the
transformation parameters are more accurate. The reason for this is that more image feature
matches are found immediately after a new keyframe is inserted, and the further we are from
the last keyframe, the fewer matches with image features remain.

Naturally, we are also able to detect more inconsistencies using more accurate transformation
parameters. The reason is twofold. As explained, more accurate transformation parameters
result in a more accurate contraction of the pose parameters, and thus even smaller deviations
of the stochastic approach can be identified. Second, the stochastic approach performs worse
the further we are from the last keyframe since fewer features remain, and thus even few outliers
or features with inaccurate depth information significantly distort the result. Consequently,
weighting those features becomes even more important.

Another finding of these experiments is that, as expected, the rotational uncertainty has a
greater impact on the final accuracy, as a comparison of the results for the fourth and fifth
trials shows.

8.3.7 Number of features
Next, we focus on the number of features we select in each of the 20× 15 sub-windows. Again,
all other parameters and sensor error bounds are retained as described above.

Table 8.29 shows the results. As can be seen, only with at least two features per window,
our approach is guaranteed to enclose the correct solution. However, if we only select one
feature per window, our approach fails for two image frames and does not compute a box
containing the true solution. This can be explained as follows. If we use only a few features
for the contraction but compute the maximum number of outliers proportionally, sometimes
even one or two outliers violate this maximum number of outliers. Consequently, we require a
sufficient number of features to permit the proportional computation of expected outliers.

Moreover, the uncertainty - as indicated by the average volume and average - increases
with the number of features per window. At first glance, this appears counterintuitive, since
established approaches can usually find more accurate solutions the more information they
obtain. This can also be seen by the fact that the percentage of inconsistencies decreases if
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Number of Correct Volume Area Rotation Features Distance per Inconsistencies
features (%) (m3) (m2) error (°) w. depth keyframe (m) (%)

1 99.92 0.62 1.21 0.74 45 11.26 43.9
2 100 0.67 1.25 0.77 76 11.75 33.7
3 100 0.77 1.30 0.77 105 11.35 29.9
4 100 0.77 1.33 0.76 124 11.45 24.7
5 100 0.77 1.34 0.76 139 11.26 23.3
6 100 0.78 1.37 0.75 158 11.45 21.9

Table 8.29: Results of the parameter study on the number of features we select in each of the
20× 15 sub-windows.

we allow more features per window. However, for our approach it can be seen that adding as
much information as possible (i.e. allowing up to six features per window) is counter-productive.
This is because the additional features do not always add new information (e.g. if two features
are close by and have the same 3D coordinates), but increase the overall number of features,
which in turn increases the maximum number of outliers that is computed proportionally.
Consequently, the result is diluted. In summary, we conclude that our approach can compute a
guaranteed solution even if few image features are provided while this is not the case for the
stochastic approach that fails for almost every third image frame.

Finally, allowing more features directly increases the computation time of our approach since
additional contractors must be built and executed. While the average computation time per
image frame using one feature per window is 0.6 s, it increases to 1.3 s if we use six features
per window.

8.3.8 Keyframe insertion criteria
Next, we vary the maximum area the position box must not exceed before a new keyframe is
inserted. As previously explained, the position box is projected to the ground plane to compute
its area. Again, all other parameters and sensor error bounds are retained.

The results can be seen in Table 8.30. Again, our approach provides the desired guarantees
and encloses 100 % of the true solutions. Naturally, if the keyframe insertion criterion is more
strict (i.e. the maximum area of a position box is 2.5 m2), more keyframes are inserted, and
thus the average distance per keyframe decreases. Simultaneously, the uncertainty of the pose
estimates - as indicated by the average area, the average volume and the average rotation error
- decreases. Moreover, the average number of features with depth increases. This is expected
since we find more features directly after inserting a keyframe. Thus, inserting a keyframe
more often results in more feature matches.

Finally, the number of inconsistencies is the lowest for a maximum area of 2.5 m2. This
can be explained as follows. Our interval-based approach is capable of computing an - albeit
inaccurate - pose box containing the true solution even for few feature matches due to its
ability to take the uncertainty of the depth information into account. Thus, if we allow a larger
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Maximum Correct Volume Area Rotation Features Distance per Inconsistencies
area (m2) (%) (m3) (m2) error (°) w. depth keyframe (m) (%)

2.5 100 0.39 0.88 0.70 115 8.62 22.7
5 100 0.77 1.30 0.77 105 11.35 29.9

7.5 100 1.08 1.68 0.83 94 13.15 27.6
10 100 1.27 1.91 0.81 93 13.69 24.5
15 100 2.12 2.71 0.86 88 14.92 28.8

Table 8.30: Results of the parameter study on the maximum area of our position box on the
ground plane before we insert a new keyframe.

maximum area before inserting a new keyframe, our interval-based approach can still compute
a box containing the true solution even if the robot moved a considerable distance from the last
keyframe and only a few image feature matches remain. In contrast, the stochastic approach
cannot distinguish between accurate and inaccurate 3D feature matches, and thus fails to
converge to the correct solution if few feature matches are provided. Consequently, since
more keyframes are inserted and more feature matches are found for the most strict keyframe
insertion criterion, the stochastic approach is less likely to fail for a maximum area of 2.5 m2.

8.3.9 Outlier percentage

In this section, we vary the maximum number of outliers to expect for the relaxed intersection.
The remaining parameters and sensor error bounds are retained.

Maximum Correct Volume Area Rotation Features Distance per Inconsistencies
outliers (%) (%) (m3) (m2) error (°) w. depth keyframe (m) (%)

10 100 0.82 1.66 0.72 115 9.42 20.8
9 100 0.89 1.64 0.74 111 9.77 21.7
8 100 0.86 1.56 0.75 109 10.21 22.4
7 100 0.86 1.46 0.77 105 10.71 26.5
6 100 0.80 1.40 0.77 105 11.35 27.3
5 100 0.77 1.30 0.77 105 11.35 29.9
4 99.85 0.72 1.24 0.81 95 12.18 27.0
3 99.81 0.71 1.16 0.81 94 12.53 27.2
2 99.81 0.67 1.07 0.82 94 12.89 31.6
1 99.66 0.62 0.94 0.83 93 13.15 29.7
0 96.86 0.48 0.73 0.73 105 10.71 32.8

Table 8.31: Results of the parameter study on the maximum number of outliers.
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Table 8.31 shows the results. It is evident that a decreasing maximum outlier percentage
results in an increasing accuracy of our pose estimates. In addition, fewer keyframes have to be
inserted. However, if the maximum outlier percentage is chosen too large, not all pose boxes
contain the true solution, and thus the results are no longer guaranteed. This again underlines
the importance of choosing interval bounds as narrow as possible but as large as necessary
(cf. Section 3.11).

Decreasing the maximum outlier percentage to 0 reverses the downward trend of features
with depth information and the upward trend of the average distance per keyframe. This can
be explained as follows. Whenever the pose contraction results in an empty box, we have to
insert a new keyframe to be able to compute the current pose. This is exactly what happens
when setting the maximum outlier percentage to 0, because in this case even a single outlier
can lead to an empty pose box. As a result, more keyframes are inserted, and the number of
features increases again since more features are found immediately after a new keyframe is set.

Nevertheless, it can be seen that even with the assumption of all feature matches being
correct, only 3.14 % of all 2644 pose boxes do not contain the correct solution. Consequently,
we conclude that mismatched features only occur for few images.

8.3.10 Without outliers
Finally, we want to highlight the potential of our approach if the feature matching would be
flawless. Therefore, we employ ground truth information to remove incorrect feature matches
before using them to compute the robot’s pose. Consequently, we are able to set the maximum
number of outliers to expect to 0.

Correct Volume Area Rotation Features Distance per Inconsistencies
(%) (m3) (m2) accuracy (°) w. depth keyframe (m) (%)

100 0.83 0.57 0.83 90 14.13 33.5

Table 8.32: Quantitative results of the interval-based visual-LiDAR odometry approach assum-
ing no image features are mismatched.

The results are depicted in Table 8.32. As expected, we achieve more accurate results and
have to insert fewer keyframes because we can trust the information of each image feature
match, rather than conservatively assuming that some of them might be outliers. Naturally,
the number of features with depth information decreases since fewer keyframes are inserted
and outliers are removed beforehand. Still, the solution is correctly enclosed for all 2644 image
frames.

In addition, more inconsistencies can be detected due to the more accurate results. Again,
we want to point out that we provide the same image features for both our interval-based and
the established stochastic approach. Consequently, in this experiment the outliers are removed
also for the stochastic approach. Nevertheless, it is not able to compute a reasonable pose
estimate for every third image frame. Thus, we are once again able to show the importance of
error modeling during sensor fusion for robust visual-LiDAR odometry.
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In the future, more reliable feature matching algorithms should be investigated. Here, the
main focus should be on the prevention of outliers instead of increasing the number of image
feature matches. As our experiments show, a few reliable image feature matches (sometimes as
few as ten) for which we can find accurate depth information suffice to compute a reasonable
accurate pose box. This is in contrast to the stochastic approach which generally requires
more image feature matches since it cannot assess the accuracy of the depth estimates. If only
a few image feature matches are present and the depth estimate of one of those features is
considerably wrong, the optimization process is significantly distorted. Consequently, we also
believe that our approach prevails in situations in which only a few image feature matches can
be found.



9 Summarizing Discussion and Prospects

The experimental evaluation aimed to determine whether the newly introduced approaches can
increase the integrity of autonomous vehicles by providing guarantees and giving timely warnings
to the user if the information of the system is too uncertain to ensure safe operation. Moreover,
a comparison with established stochastic approaches was provided since we introduce our
approaches in the context of interval-based error modeling, which constitutes a fundamentally
different approach to take sensor errors into account.

In general, we were able to show that our approaches for the spatiotemporal calibration
between camera, laser scanner and IMU are suitable to compute intervals that, on the one hand,
enclose the true calibration parameters and, on the other hand, allow to assess the accuracy
of the calibration. Moreover, we demonstrated the importance of correctly modeling sensor
and inter-sensor errors for the subsequent sensor fusion. By considering those uncertainties,
our new visual-LiDAR odometry approach is able to compute 6 DOF pose estimates that are
guaranteed to contain the true solution. Consequently, it can identify faults of established
stochastic approaches that do not consider these uncertainties.

Spatiotemporal calibration between camera and IMU

In Section 8.1 we evaluated our interval-based approach for finding the extrinsic rotation
between camera and IMU as well as the constant time offset between the clocks of the sensors.
Our experiments show that we are able to compute a reasonably accurate enclosure for the
time offset that can be employed to fuse information from the camera and IMU. However, the
extrinsic rotation is not accurate enough to allow sensor fusion, and thus we present prospects
to further improve the results.

First, we employed simulated data to compare our approach to ground truth information,
which cannot be obtained for real data, and to evaluate the results for different time offsets.
The evaluation of our newly introduced time offset contractor Coffset shows that we are able to
enclose the true time offset in a guaranteed way, meaning that the true offset always resides in
the computed intervals. Naturally, the width of these intervals and thus the accuracy of the
time offset depends on the accuracy of the estimate for the extrinsic rotation as well as the
velocity and the axis of the rotation of our multi-sensor system. However, it is independent of
the true time offset. The evaluation of the full spatiotemporal calibration approach shows that
we are able to reliably enclose not only the time offset but also the extrinsic rotation.
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The evaluation using real data confirms the results of our simulation studies, thus showing
the applicability of our approach to real multi-sensor systems. The achieved accuracies -
w([τ ]) = 8.8 ms for the time offset and w([θ]) = 12.2° for the extrinsic calibration - are similar.
A comparison with an established stochastic approach shows that our results are plausible since
the results of the stochastic approach are enclosed in our intervals. However, the established
approach does not propagate the sensor errors to the final calibration result. Therefore, the
accuracy of the result can only be inferred from previous experiments in which the true solution
is compared to the computed result. Here, a large number of experiments are required to
determine a stochastic distribution, which consequently only applies to the specific sensor
combination and the experimental setup. Although the accuracy of the results of our approach
is significantly lower due to the consideration of the worst case, we are, to the best of our
knowledge, for the first time able to guarantee the calibration results and to infer the accuracy
directly from the sensor errors.

As the evaluation of our approach for bounded-error visual-LiDAR odometry shows, the
accuracy of the time offset is adequate to enable information fusion from camera and IMU.
However, the extrinsic rotation between both sensors is too inaccurate to allow a useful
transformation of data measured by the IMU into the coordinate system of the camera.
Consequently, in the future, our approach should be improved with regard to the accuracy of
the extrinsic rotation. A first improvement could be to employ tubes enclosing the angular
velocities of both sensors instead of tubes enclosing the orientation of the sensors. This would
allow a longer experiment duration and thus enable to gather more data. At the moment, the
duration of the experiments is limited by the rapidly increasing uncertainty of the orientation
estimates caused by the integration of the angular velocities of the IMU. Consequently, after a
few seconds, the intervals are too wide to constrain the spatiotemporal calibration parameters.
However, tubes that are guaranteed to enclose the angular velocities of the camera cannot be
computed straightforwardly due to the low frequency of measurements.

Moreover, our experiments show that we are not able to eliminate the dependencies between
the extrinsic rotation parameters. We believe the reason is that we were not able to rotate the
multi-sensor system freely due to the requirement to keep the calibration target in the field of
view of the camera. Consequently, either multiple calibration targets should be employed in
the future, or the approach should be adapted to not rely on a calibration target.

Extrinsic calibration between camera and LiDAR

Section 8.2 provided an evaluation of our interval-based approach that computes intervals
enclosing the extrinsic transformation parameters between camera and laser scanner. Our
experiments using both simulated and real data show the applicability of our approach to
the extrinsic calibration problem and highlight the advantages over an established stochastic
method.

First, an experiment using simulated data shows the influence of the checkerboard pose
on the accuracy of the 6 DOF calibration. This experiment highlights a first advantage over
the established stochastic approach. While our method allows assessing the accuracy of
each transformation parameter, and thus enables the user to determine whether additional
checkerboard poses are required, the stochastic approach does not compute the accuracy of the
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parameters. Consequently, the user must acquire data for a sufficient number of checkerboard
poses, but cannot track the accuracy, and therefore cannot be sure that the calibration is
sufficiently accurate.

Next, our results show that six checkerboard poses suffice to compute a reasonably accurate
enclosure of the parameters. This is a textbook example of how the different contractors for
individual checkerboard poses can be combined to produce an even more powerful contractor.
Adding even more checkerboard poses results in only a slight improvement of the results.
This again highlights the need to assess the parameter accuracies during the calibration to
determine whether a checkerboard pose adds valuable information. The final accuracy of our
calibration experiment is 0.7° for the rotation around the x- and y-axis, 0.4° for the rotation
around the z-axis, approximately 3.7 cm along the x- and y-axis and 2.1 cm along the z-axis.
As expected, the parameter domains contain the true transformation parameters. This is true
for all experiments using simulated data, making us confident that our approach is guaranteed
to enclose the true result.

Naturally, these accuracies seem disappointing when comparing them to the accuracies
reported by state-of-the-art approaches. It should be noted, however, that the results of
interval-based approaches reflect the worst case, and therefore cannot be directly compared to
stochastic approaches. Moreover, the evaluation of our bounded-error visual-LiDAR odometry
shows that an even lower accuracy is sufficient to perform reasonably accurate dead reckoning.
Nevertheless, improving the accuracy of the extrinsic calibration would allow to also fuse
information from camera and laser scanner more accurately. Possible improvements of our
approach could be made by incorporating more constraints, e.g. by using different calibration
targets.

In addition, we conducted a parameter study in which we varied the sensor errors and the
number of outliers. The results show that the uncertainty of our result increases with an
increasing sensor error. However, it only increases slightly, which is insignificant to the extent
to which we increased the sensor errors. Nevertheless, that only applies if the exact error
bounds are known and the actual error is not overestimated. This is further illustrated by our
experiment in which we randomly simulated different numbers of outliers, but only assumed
the maximum number of outliers to be known. Here, the uncertainty increases significantly.
If, on the other hand, exactly as many outliers are simulated as are assumed for the relaxed
intersection, the uncertainty does not increase. This again shows the importance of knowing
the exact error bounds (cf. Section 3.11), which constitutes a major weakness of interval-based
approaches.

To highlight another advantage of our interval-based approach over stochastic approaches,
we also conducted an experiment in which we simulated a systematic error for the distance
measurements of the laser scanner. Since a systematic error is not consistent with the
assumption of zero-mean errors, the result of the stochastic approach deviates significantly
from the true result. In contrast, our interval-based approach is not affected and computes the
same result regardless of whether there is a systematic error or not. This constitutes a major
advantage of our and interval-based approaches in general since systematic errors often occur
for the distance measurements of a laser scanner due to, for example, an imprecise intrinsic
calibration (cf. Section 4.1.1).
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Moreover, we are also able to show the applicability of our approach to a real multi-sensor
system. Here, the resulting accuracies of the extrinsic calibration parameters are similar but
slightly lower than in our simulation studies. This can be attributed to less optimal sensor error
bounds, which we only derived from the manufacturer’s information in the sensor data sheets
and which probably overestimate the actual error. As explained previously, determining optimal
error bounds is a major challenge of interval-based approaches. Nevertheless, the results are
still guaranteed. Moreover, the parameters computed using the stochastic approach do not
reside in the corresponding intervals, and are therefore presumably incorrect. This could be
due to systematic sensor errors and shows the ability of our approach to detect inconsistencies.

Finally, in the future, our approach could be extended to not rely on a calibration target, so
it can be employed to automatically re-calibrate the multi-sensor system during operation.

Bounded-error visual-LiDAR odometry

In Section 8.3 we evaluated our approach that fuses information from camera, laser scanner
and IMU to perform dead reckoning, i.e. compute the robot’s 6 DOF pose incrementally in a
locally defined coordinate system. Our experiments show that we are able to compute a box
enclosing the true pose for all image frames, and thus the desired guarantees are achieved.

Naturally, the results of our approach for bounded-error visual-LiDAR odometry are rather
conservative (i.e. less accurate) compared to established stochastic approaches. However,
this is expected since the results are guaranteed. Moreover, the uncertainty of our pose
estimates increases rapidly due to the nature of dead-reckoning approaches, since no technique
to eventually reduce the accumulated uncertainty is used. Consequently, whenever a new
keyframe is inserted, the previous uncertainty is propagated to the new pose estimates. For
our experiments, already after 10 s the box containing the position of our vehicle covers an
area of 18 m2 and has a volume of 52 m3. However, this is expected since we only perform
visual-LiDAR odometry. Nevertheless, in the future, our approach should be augmented by
global contractors that keep the uncertainty from growing infinitely. These global contractors
can be found, for example, by extending our approach by bundle adjustment, extending it to
SLAM, or by using GNSS information.

A general weakness of interval-based approaches is the dependence on correct error bounds.
As explained in Section 3.11, the bounds should be guaranteed to enclose the true result,
but should not be too large to avoid overestimating the actual error. Our parameter studies,
which show the results for different sensor error bounds or maximum outlier percentages,
repeatedly highlight this phenomenon. Thus, future work should focus on the extension of
our introduced bounded error sensor models to even more accurately model possible error
sources. Moreover, more extensive information on the maximum sensor errors is required from
the sensor manufacturers. Besides, although the accuracies achieved using our spatiotemporal
calibration approaches are generally sufficient for reasonably accurate sensor fusion, they can
still be improved as detailed in the previous paragraphs. This, in turn, would also increase the
accuracy of our visual-LiDAR odometry approach.

Furthermore, our experiments show that we are able to compute more accurate pose
estimates if feature matching outliers are removed beforehand and a relaxed intersection is not
required. In fact, in most image frames there are no wrongly matched image features. This
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can be seen by our experiment in which we do not remove outliers beforehand but nevertheless
set the maximum number of outliers to 0. Here, the result is still correct for 96.86 % of all
image frames. However, since we do not know for which image frames the outliers occur, we
have to assume outliers for every image frame, and thus overestimate the actual error for most
image frames. Consequently, guaranteed feature matching algorithms should be developed that
aim to not generate outliers, rather than maximizing the number of image feature matches.

An advantage of our approach is the possibility to dynamically insert keyframes whenever
the uncertainty of the pose estimate grows too large. This is made possible by the fact that our
approach not only computes a solution but a set of solutions, which at the same time reflects
the current uncertainty. Consequently, the insertion of keyframes is no longer heuristic but
based on the actual uncertainty of the system. The experiments show that the pose estimation
in areas in which fewer features can be assigned precise depth information (e.g. due to the
discontinuity of the environment) is, as expected, more uncertain. Therefore, the presented
approach for visual-LiDAR odometry is particularly suitable for safety-critical systems such as
autonomous vehicles, for which the worst-case error is more important than the average error
and which cannot be based on a heuristic keyframe insertion strategy.

However, an obvious disadvantage due to the design of interval-based approaches is the
inability to compute the most likely point-valued solution. We only compute a set of solutions
which is guaranteed to contain the true solution, but is it not possible find this true solution.
Nevertheless, our experiments show that the midpoint of the intervals can serve as a reasonably
accurate solution. Still, a combination of interval-based and stochastic approaches will be
required in the future to combine the advantages of both worlds.

Finally, we would like to emphasize that we are able to meet our initial goal of increasing
the integrity of autonomous vehicles by providing warnings that notify the user if the result of
an established stochastic approach is incorrect, or the uncertainty has become too large. For
our dataset we are able to identify an inconsistency of the stochastic approach in approximately
30 % of all image frames although the same image features, point clouds and spatiotemporal
calibration parameters are provided to both the stochastic and our interval-based approach. This
shows the importance of correctly modeling all errors during sensor fusion in order to assess the
accuracy of the 3D features when employing them to compute the motion estimation. This is
particularly important if only a few image features are available and accurate depth information
can be assigned to even fewer. In these cases the most inconsistencies of the established
approach are detected. In contrast, our interval-based approach manages to compute a box
containing the true solution because it can assess the accuracy of the 3D features and thus
weight them. Naturally, further methods could be employed to hopefully correct the errors
made during the optimization of the stochastic approach (e.g. bundle adjustment). However,
we believe it is advantageous not to make these errors in the first place.





10 Conclusions

This thesis considers the question of how robust dead reckoning, i.e. incremental localization
without a map of the environment or GNSS information, of mobile robots in 3D can be carried
out. Especially for autonomous driving, the question arises of how, in addition to being robust,
the safety and integrity of each autonomous vehicle can be guaranteed. Fig. 10.1 depicts the
overview that was established throughout the thesis.
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Figure 10.1: Overview of the contributions of this thesis.

To increase the robustness with respect to sensor failures and improve the trust in the
information (i.e. integrity) of autonomous systems, it is beneficial to fuse information from
multiple sensors. The present work therefore deals with the fusion of information from three
sensors commonly used in mobile robotics, namely the camera, the laser scanner and the IMU.
Besides the sensor fusion, this thesis also tackles the question of how results can be guaranteed
under the consideration of all possible error sources and how simultaneously the uncertainties
of these results can be assessed. Here, the ultimate goal is to provide timely warnings to the
user if the uncertainty is too large, or to identify inconsistencies of an established approach.
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Therefore, this thesis first presents newly developed bounded error models for each of the
three sensors. These error models take into account all identified types of error and bound
them using intervals. The main advantages of interval analysis are the inherent guarantees
that are required for safety-critical systems and the usually unknown true error distribution of
sensors, which means that the assumption of any stochastic distribution is generally incorrect
without a proper calibration of the sensor. Systematic errors in particular cannot be reconciled
with the zero-mean errors assumption, which is essential for all stochastic approaches.

For robust sensor fusion, however, it is not sufficient to only consider the different errors of
each sensor, since also the inter-sensor properties required for sensor fusion (e.g. a time offset
between sensor clocks and the extrinsic transformation between sensor coordinate systems)
cannot be perfectly determined and therefore induce additional uncertainties. In general, and
in particular in the context of interval analysis, however, there are no approaches to perform a
spatiotemporal calibration between camera, laser scanner and IMU, which take into account
the sensor errors and propagate them to the resulting calibration parameters. Consequently,
interval-based approaches for the spatiotemporal calibration between camera, laser scanner and
IMU are presented in this work.

For the spatiotemporal calibration between camera and IMU, the main contribution of this
thesis is a newly developed time offset contractor (Coffset) that can be employed to efficiently
compute a constant time offset between two tubes. Although this work shows the application
of the time offset contractor (Coffset) to the problem of sensor calibration, it is a novel general
contractor in the context of constraint programming over dynamical systems that can be applied
to any two tubes that are delayed in time. Furthermore, using the new error models, this work
transfers existing methods into the interval context to determine tubes for the camera and IMU,
which describe the same physical phenomenon, i.e. the rotation of both sensors. This includes
the transfer of the PnP problem into a CSP for which Gauss-Seidel and forward-backward
contractors are built. The corresponding experiments using both simulated and real data
show the ability of the time offset contractor to robustly enclose the true time offset. The
accuracy is sufficient for the following sensor fusion. While the extension to also compute
the extrinsic rotation between the two sensors can also reliably enclose the true rotation, the
computed intervals are too inaccurate to be used for sensor fusion. The reason is that due to
the integration of angular velocities, the uncertainty of the system increases rapidly. Therefore,
an approach should be developed in the future that avoids this integration.

For the extrinsic calibration between camera and LiDAR, this thesis contributes interval-
based methods to extract checkerboard features from both camera and laser scan data. These
checkerboard features constrain the transformation between the sensors. Subsequently, forward-
backward contractors are built that enable the transformation to be computed without initial
values. As the corresponding experiments show, the approach is capable of reliably enclosing
the true 6-DOF transformation parameters for both simulated and real data. This is valid
regardless of the configuration of the multi-sensor system and the actual sensor errors, provided
that the correct error bounds are known. Moreover, the results are sufficiently accurate so that
they can subsequently be used for sensor fusion.

Together with the bounded sensor error models, these two approaches for the spatiotemporal
calibration of the three sensors enable all possible error sources for sensor fusion to be determined.
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On this basis, an approach to interval-based visual-LiDAR odometry is developed to answer the
initial question of guaranteed and robust dead reckoning. Besides the errors of each individual
sensor, an important contribution of this thesis is the consideration of the uncertainties of the
spatiotemporal calibration parameters. Even if methods other than the approaches presented
for spatiotemporal calibration are used, it is advisable to assume unknown but bounded errors
for the calibration parameters. The reason is that the error of these parameters does not follow
a stochastic distribution due to the rigidity of the system - since the multi-sensor system is
mounted rigidly and the time offset is assumed to be constant - and thus any deviations of the
computed parameters from the true parameters lead to a purely systematic error during sensor
fusion. Naturally, the calibration cannot be perfect, and therefore a systematic error, which is
not compatible with stochastic methods, inevitably occurs.

The developed approach for interval-based visual-LiDAR odometry fuses information from
camera and laser scanner in the sense that image features are assigned depth information from
the laser scanner. The novelty of the present work is to not only compute the depth of image
features, but to also determine the uncertainty of these depth estimates. This enables to assess
the trustworthiness of 3D features. Trustworthy 3D features constrain the subsequent pose
estimation stronger than untrustworthy features, and thus contribute more to the final pose
computation. In addition, the presented approach succeeds in finding an initial estimate of the
rotation of the vehicle that is guaranteed to enclose the true rotation. For this purpose, the
angular velocities measured by the IMU are integrated, taking into account all sensor errors.
Afterwards, the resulting rotation intervals are transformed into the time and coordinate system
reference of the camera, taking into account all uncertainties of the spatiotemporal calibration
parameters.

The evaluation using real data shows that the introduced approach is capable of providing
guaranteed boxes enclosing the true 6-DOF pose in 100 % of all cases. Moreover, the uncertainty
of each pose estimate reflects the quality of the corresponding 3D features. Besides, the
experiments show the applicability of the approach to identify inconsistencies of an established
method. Even if only a few accurate 3D features are available, the new approach manages
to compute a sufficiently accurate and in particular correct pose estimate. In contrast, the
comparable state-of-the-art method fails in these situations because it is unable to assess the
accuracies of the depth estimates and use them to subsequently weight the features during
optimization. Thus, the initial requirement to provide the user with timely warnings in the
event of insufficiently accurate localization results or errors in the stochastic approach is met.
Nonetheless, during a parameter study possible improvements of the approach are determined.
In particular, reducing the number of outliers during image feature matching and determining
the sensor and inter-sensor error bounds more accurately prove to be promising.

In summary, this thesis shows that a guaranteed and robust sensor fusion is possible and
particularly useful for safety-critical systems. However, the accuracy of the spatiotemporal
calibration and the pose estimates can still be improved, with the determination of sensor error
bounds being a particular problem. Therefore, future research should deal with the experimental
determination or derivation of these sensor error bounds from physical effects. Moreover,
interval-based approaches are valuable to avoid computing a completely wrong solution. In the
future, however, a combination with stochastic approaches will be required to select the most
likely point-valued solution in the interval.
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