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Abstract

To date, the digital signal processing for an automotive radar sensor has been

handled in an efficientway by general purpose signal processors andmicrocon-

trollers. However, increasing resolution requirements for automated driving

on the one hand, as well as rapidly growing numbers of manufactured sensors

on the other hand, can provoke a paradigm change in the near future. The

design and development of highly specialized hardware accelerators could be-

come a viable option – at least for the most demanding processing steps with

data rates of several gigabits per second.

In this work, application-specific signal processing architectures for future

high-resolution multiple-input and multiple-output (MIMO) radar sensors are

designed, implemented, investigated and optimized. A focus is set on real-

time performance such that even sophisticated algorithms can be computed

sufficiently fast. The full processing chain from the received baseband signals

to a list of detections is considered, comprising three major steps: Spectrum

analysis, target detection and direction of arrival estimation.

Thedevelopedarchitectures are further implementedonafield-programmable

gate array (FPGA) and important measurements like resource consumption,

power dissipation or data throughput are evaluated and compared with other

examples from literature. A substantial dataset, based on more than 3600 dif-

ferent parametrizations and variants, has been established with the help of a

model-based design space exploration and is provided as part of this work.

Finally, an experimental radar sensor has been built and is used under real-

world conditions to verify the effectiveness of the proposed signal processing

architectures.

Keywords—Automotive radar, MIMO, FMCW, Chirp sequence, FFT, CFAR,

Direction of arrival, DOA, FPGA, Design space exploration, Signal processing,

Real-time, Maximum likelihood estimation, Fixed-point.
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Kurzfassung

Bisherwurdedie digitale Signalverarbeitung für automobileRadarsensoren auf

eine effiziente Art und Weise von universell verwendbaren Mikroprozessoren

bewältigt. Jedoch können steigende Anforderungen an das Auflösungsvermö-

gen für hochautomatisiertes Fahren einerseits, sowie schnell wachsende Stück-

zahlen produzierter Sensoren andererseits, einen Paradigmenwechsel in naher

Zukunft bewirken. Die Entwicklung von hochgradig spezialisierten Hard-

warebeschleunigernkönnte sich als einepraktikableAlternative etablieren – zu-

mindest für die anspruchsvollstenRechenschrittemitDatenraten vonmehreren

Gigabits pro Sekunde.

IndieserArbeitwerdenanwendungsspezifischeSignalverarbeitungsarchitek-

turen für zukünftige, hochauflösende, MIMO Radarsensoren entworfen, real-

isiert, untersucht und optimiert. Der Fokus liegt dabei stets auf der Echtzeit-

fähigkeit, sodass selbst anspruchsvolleAlgorithmen in einer ausreichendkurzen

Zeit berechnet werden können. Die komplette Signalverarbeitungskette, be-

ginnend von den empfangenen Signalen im Basisband bis hin zu einer Liste

von Detektion, wird in dieser Arbeit behandelt. Die Kette gliedert sich im

Wesentlichen in drei größere Teilschritte: Spektralanalyse, Zieldetektion und

Winkelschätzung.

DesWeiterenwerdendie entwickeltenArchitekturen auf einemFPGA imple-

mentiert und wichtige Kennzahlen wie Ressourcenverbrauch, Stromverbrauch

oder Datendurchsatz ausgewertet undmit anderen Beispielen aus der Literatur

verglichen. Ein umfangreicher Datensatz, welcher mehr als 3600 verschiedene

Parametrisierungen und Varianten beinhaltet, wurde mit Hilfe einer modell-

basierten Entwurfsraumexploration erstellt und ist in dieser Arbeit enthalten.

Schließlich wurde ein experimenteller Radarsensor aufgebaut und dazu be-

nutzt, die entworfenen Signalverarbeitungsarchitekturen unter realen Umge-

bungsbedingungen zu verifizieren.

Schlagworte — Automobilradar, Digitale Signalverarbeitung, Echtzeitsys-

tem, Entwurfsraumexploration, Winkelschätzung, Radarsensorik, Konstante

Falschalarmrate, Maximum-Likelihood-Schätzung.
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1
Introduction

With over 100 years of history, radar is a major sensing technology with a large

spectrum of applications. At the beginning mainly developed for military and

defense, more and more civilian applications emerged gradually. In recent

years, radar sensors have been successfully employed in passenger cars where

they provide necessary information about the current driving situation and

the surrounding environment of the vehicle. Nowadays, the prevailing ap-

plications of automotive radar sensors are advanced driver assistance systems

(ADAS) which require a real-time perception of the present traffic scenario.

Over the next years, a further extension of the intended use cases for radar

sensors can be anticipated. Not only due to their robustness in several environ-

mental conditions with poor visibility, for instance during low sunlight, night,

rain, fog or smoke, automotive radar sensors are considered to be one pillar of

a self-driving car’s perception system. The excellent range resolution as well as

an instantaneous measurement of the velocity are further advantages of radar

sensors compared to other sensing technologies like video or lidar.

Futuredevelopments towardautomateddriving create an increasingdemand

for high-resolution sensors, aimed to gather even more accurate and detailed

information about the environment. Though, the more fine-grained maps of

the environment come at the cost of a higher processing load. The evolution of

automotive radar sensors has to take place on several levels whether it is a faster

sampling rate of the analog-to-digital converters, more antennas and parallel

channels, an extended measurement time or simply a higher measurement

rate. These changes have all in common that they increase the amount of

data which has to be handled by the sensor in a certain period of time. In

1



1 Introduction

addition, the development and employment of more sophisticated algorithms

and evaluation methods create a further burden for the processing unit. Such

approaches comprise for instance parametric spectral estimation, occupancy

grid mapping or a semantic segmentation based on neural networks [1, 2].

So far, the real-time signal processing for state of the art automotive radar

sensors could be handled sufficiently by digital signal processors (DSPs) [3,

pp. 379 – 398]. These devices achieve a sufficient performance for current appli-

cations, like adaptive cruise control (ACC) or autonomous emergency braking

(AEB), with their relatively low requirements in terms of data rates and compu-

tational load. Formore advanced approaches, the employment ofmultiple DSP

cores and additional vector processors is still considered as a best practice [4].

The prevalence of DSP-based systems is further supported by well-established

programming tools and by a wide range of available software libraries which

facilitate product development.

Two undeniable facts may provoke a paradigm change in the near future.

Firstly, the data rates are reaching a critical level so that conventional micro-

processor architectures cannot catch up in terms of silicon area and power

consumption. Secondly, a tremendous increase in the number of sold sensors

and equipped vehicles justify a higher development and integration effort. In

other words, the fast increasing requirements on the processing unit are hard

to fulfill with conventional microprocessor devices, while at the same time a

per-piece cost advantage is getting more and more important due to the larger

volumes. As a consequence, a trend toward more specialized architectures is

expected in the near future.

The employment of dedicated hardware accelerators confronts the radar sys-

tem developer with new questions, because a larger design space is suddenly

at their disposal. Optimized processing pipelines can be designed, the degree

of parallelization can be defined, data word sizes can be tailored to the ap-

plication, different architectural options are available and have to be chosen

already during the concept phase. At the same time, early cost estimates of the

envisaged final product are crucial for a successful market entry, which can be

a seemingly impossible task.

A practical approach is the early traverse and exploration of the design space

prior to an actual product development [5]. The focus is given to the setup of an

implementation database which contains important figures and characteristics

of modules with a varying parametrization. Subsequently, appropriate model

2



1.1 Contribution of this work

functions can be derived to cover any possible parameter combination. Such

tools can be used later to provide quick and accurate cost estimates across a

large and multidimensional design space. Finally, it shall be feasible to predict

key figures like consumed silicon area or power dissipation before the real

development phase has begun.

1.1 Contribution of this work

One essential contribution of this work is to investigate signal processing con-

cepts for future automotive radar sensors which are suitable for a hardware

acceleration. The trend toward fast chirp sequence modulations, large MIMO

antenna arrays and higher data rates engenders the use of new evaluation algo-

rithms. Different approaches exist and they need to be investigated thoroughly

in order to optimize a possible hardware architecture. The outcome of a litera-

ture study, including the state of the art in industry and research is presented

in chapter 2.

Furthermore, suitable implementation forms have to be identified and ex-

plored in order to set the basis for a future system-on-chip integration. For

this purpose, the most promising approaches which have been identified in

chapter 2 will be further investigated and implemented as hardware accelera-

tor modules. They are described and modeled with the help of the language

VHDL
1
which allows a direct employment in FPGA devices. The architecture

of these modules and their interaction is shown in chapter 3.

With the means of a model-based design space exploration, a radar-specific

database of certain algorithm implementations has been established. Themeth-

ods, as well as the results are illustrated in chapter 4. The system designer can

use such models to select the best trade-off fulfilling the system’s requirements

at a minimum cost. So-called Pareto optimal realizations can be found and

identified from these results.

In addition, early prototype realizations of a high-performance radar system

can be achieved with the help of the implemented building blocks. An oper-

ational system has been built up, based on off-the-shelf parts and devices like

for instance commercial available FPGAs. As part of this work, the provided

implementations form the basis for a radar development framework which

1
Very High Speed Integrated Circuit Hardware Description Language

3



1 Introduction

is operational under real-time conditions. Unlike other experimental setups

which are only stationary and cannot support a long data acquisition period,

the radar prototype presented in chapter 5 can be mounted on a test vehicle

and is able to operate non-stop at a high cycle rate.

A real-world operation and recording of high-resolution radar images during

challenging traffic scenarios is possible. The aim is to support the research in

fields like algorithm development, machine learning, system verification and

requirement analysis, just tomention a few. So far, several scientificpublications

have been realizedwith the help of data acquired by this prototype setup [6–23].

Further research is still going on so that even more results can be expected in

the near future.

4



2
Automotive Radar Sensors

The basic working principle of radar sensors is rather straightforward and

similar for all kind of applications. Though, a variety of different realizations

and technologies exist – each with its own focus – which makes it difficult

to get a quick overview. In general, radar sensors use the physical effect of

electromagnetic wave propagation and especially the reflection of such waves.

The idea is to transmit a radio wave into free space and receive its possible

echoes. Out of the received signals, information about the reflecting objects can

be obtained. For instance, the time of flight can be measured and translated

into a distance, because electromagnetic waves propagate at the speed of light,

which is a natural constant.

Compared to typical air and ground surveillance applications, the intended

detection ranges, and thus the power requirements of automotive radar sensors

are much lower. For example, the average output power of an air surveillance

radar can be several kilowatts [24, p. 3], while an automotive radar transceiver

has a transmit power of only some milliwatts [25]. Another major difference is

the number of present objects in the field of view of the sensor, which is usually

much higher for automotive systems. A crowded city scenario with numerous

traffic participants is a quite common situation which must be recognized as

accurately as possible. Such different requirements entail several particularities

for automotive radar sensors which will be outlined in this chapter.

In section 2.1, the most relevant radar waveforms appropriate for use in

automotive radar sensors are described. Only the currently prevailing modu-

lation scheme for automotive sensors, frequency-modulated continuous wave

(FMCW) is derived in detail. Other operating modes such as pulsed or stepped

5



2 Automotive Radar Sensors

waveforms exist, however, they are not described in-depth in this chapter.

The following section 2.2 describes the target
1
detection process, where all

present objects in the vicinity of the sensor are detected and extracted from the

received signals. During this step, a decision is made if a certain measurement

cell contains an object echo or only noise components. The data output after

this step is already a sparse representation and differs significantly from other

sensing technologies like for instance a video camera, which always outputs an

image of a predefined size, no matter if the pixels contain useful information.

In the next section 2.3, the task of estimating the direction of arrival is ex-

plained. In this context, direction of arrival refers to the origin of an impinging

electromagnetic wave or target echo. The result is an indication about the ob-

ject’s position in the three-dimensional space. This kind of information cannot

be extracted from a single time-of-flight measurement so that additional steps

have to be taken. Besides, the angular measurement is mainly determined by

the used antenna arrays and direction of arrival estimation algorithms which

will be further detailed in section 2.3.3.

Finally, the state of the art regarding the development of automotive radar

sensors is presented briefly in section 2.4, with a special focus on the signal

processing hardware.

Parts of this chapter were also presented in [26, 27].

2.1 Radar waveforms

Receiving the echoes of a previously transmitted radio wave does not provide

any information about the surrounding environment by itself. Consider a pure

sine wave for example, which is not adequate to deduce the time of flight due to

its ambiguity after the phase has increased by a value of 2�. Even an estimation

of the reflected power would become difficult in the case of multiple interfer-

ing targets. Only with the help of certain modulation techniques, it becomes

possible to extract the necessary information out of the received signals.

Below, a summary of themost importantwaveformprinciples for automotive

radar is given. The reasoning is based on basic knowledge which can be found

in established standard literature, such as [3, 24, 28, 29].

1
The term target is used as a synonym for object in many radar related publications even

though no military setting exists.
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2.1 Radar waveforms
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Figure 2.1: Pulsed signal waveform recorded at the radar system. The transmitted
pulse Tx has been reflected by two different objects whose echoes Rx arrive
with a delay �.

2.1.1 Pulsed and continuous-wave (CW) radar

A conventional pulsed radar system uses a very basic amplitudemodulation by

simply switching the transmitter on and off which results in short radar pulses

or bursts with the length ) (cf. Fig. 2.1). The transmitted pulse is marked with

Tx in Fig. 2.1 and the received echoes are marked with Rx. They are basically a

delayed copy of the transmitted pulse with a smaller amplitude. Typically, the

receiver uses a matched filter to detect reflections of the transmitted pulses in

the received waveform [24, pp. 9,276]. By measuring the time delay � between

transmission and reception, it is possible to estimate the distance of a detected

target.

Considering two objects which have a similar distance to the radar system,

it is obvious that their radar echoes could arrive at the same instant of time

at the receiver. In this case, the two signals could superimpose to a single

pulse which can’t be separated anymore. The two objects are blended into a

single detection and the information about the environment is reduced. The

capability of resolving closely spaced targets is referred to as range resolution

and can be improved by reducing the pulse duration ).

At the same time, the transmitted energy is directly proportional to the pulse

length and it follows that if) is shortened, also the energy and hence the signal-

to-noise ratio (SNR) at the receiver is decreased. This is often not desired and

especially in the particular case of automotive radar sensors, which require a

range resolution well below 1m, a pulsed radar system reaches its limits.

7



2 Automotive Radar Sensors
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Figure 2.2: Linear frequency ramp recorded at the radar system. The time delay � of
the reflected pulse Rx can be translated into a frequency difference 51.

In contrast, a continuous-wave (CW) radar transmits a waveform and re-

ceives its echoes simultaneously. In general, this has the advantage that the

transmitted energy can be increased, because the burst length ) is decoupled

from the achievable range resolution and can thus be maximized indepen-

dently [28, p. 188]. This important property can be realized by adding some

kind of time-varying information to the transmitted waveform. Then, the

echoes of the long pulses, which will certainly superimpose in time, can be

separated by appropriate filtering techniques at the receiver. This method is

often referred to as pulse compression, because a matched filter output at the

receiver is much shorter than the actual pulse length. Modulated CW radar is

thus very suitable for all applications where a high range resolution as well as

high SNR levels are desired.

2.1.2 Frequency-modulated continuous wave (FMCW)

A common modulation scheme uses linear FMCWwaveforms, which lead to a

so-called frequency chirp or frequency ramp signal. Typically, the transmitted

waveform consists of a narrowband signal whose frequency is permanently

increased (or decreased), which can be accomplished by a relatively simple

voltage-controlled oscillator (VCO).Moreover, the received echoes can bemixed

8



2.1 Radar waveforms

with the transmitted signal, which is also advantageous in terms of hardware

effort. Accordingly, a preference of FMCW waveforms over pulsed waveforms

can be observed across all manufacturers of automotive radar sensors (cf. sec-

tion 2.4). More details about prevailing electronic circuits in an FMCW radar

system are given in section 5.1.1.

In the case of a frequency-modulated radar system, the transmittedwaveform

BC(C) can be modeled by the following equation, where a linearly polarized,

plane wave has been assumed. The amplitude �) is supposed to be constant

and a dependency on the location has been omitted. The signal is always

referred to the radar system and a monostatic
2
system is presupposed.

BC(C) = �) cos

(
)C(C)

)
(2.1)

with )C(C) = 2�

∫ C

−)
2

5
(
C̃
)
3C̃ (2.2)

For a linear frequency chirp or ramp, the modulation is simply modeled with

a starting frequency 50, a bandwidth � and a ramp duration ). For a better

understanding, refer also to Fig. 2.2. The term
�
) determines the ramp slope <

which is an important parameter for system design. Instead of 50, the center
or carrier frequency of the ramp 52 will be used in the successive derivation, so

that the lower integration boundary is chosen as −)
2
in (2.2). This choice is

motivated by a slight advantage in the deduction of the baseband signal (cf.

appendix A.1).

5 (C) = 52 +
�

)
C = 52 + <C (2.3)

By substituting (2.3) in (2.2), the transmitted waveform can be written in the

following form:

)C(C) = 2�

∫ C

−)
2

52 + <C̃ 3C̃ = 2� 52C + �<C2 + )0 (2.4)

BC(C) = �) cos

(
)C(C)

)
= �) cos

(
2� 52C + �<C2 + )0

)
(2.5)

The waveform BC(C) will propagate away from the radar sensor until it has

been reflected by a surrounding object. Supposing that no phase jump occurs,

the reflected signal BA(C) which is again received by the radar sensor is just a

2
A radar system for which the transmitter and the receiver are at the same location.

9



2 Automotive Radar Sensors

damped, time delayed version of the sent signal.

BA(C) = 
2BC(C − �) = �' cos(2� 52(C − �) + �<(C − �)2 + )0) (2.6)

where 
2 =
�'
�)

accounts for the two-way free space loss and any absorption.

The time duration � expresses the wave propagation delay and depends on the

target distance.

From Fig. 2.2 it can be observed that the delay � is related to the frequency

difference 51 between transmitted and received signal. This property can be

used in a smart way by the receiver, because it is sufficient to measure only

this difference, the so-called beat frequency 51. In practice, a frequency mixer

could be employed, which directly generates the frequency difference of the two

signals BC(C) and BA(C) by simplymultiplying them. Furthermixing products like

the signal component at the sum of the two input frequencies will also occur,

but usually they can be effectively filtered out. Remarkably, the frequency 51 is

much lower compared to the carrier frequency 52 which simplifies subsequent

circuit and component design.

Obviously, the delay � remains constant as long as a target is stationary. For

a moving target, � is varying during the chirp which induces an additional

frequency shift, commonly known as Doppler effect. Considering a moving

target at a distance A, with a constant velocity EA , in a direction radially away

from the sensor, the two-way propagation delay � can be written as

� =
2A

2
+ 2EAC

2
(2.7)

by using the propagation speed of radio waves, the speed of light 2.

The resulting signal at the mixer output can be derived by multiplying (2.5)

with (2.6) and inserting (2.7) for �. The outcome is described by (2.8) and its

complete derivation is included in the appendix A.1.

B1(C) = BC(C) BA(C) = �� cos

(
2�

(
2 52A

2
+

2 52EA

2︸︷︷︸
5E

C + 2<A

2︸︷︷︸
5A

C

))
(2.8)
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2.1 Radar waveforms

The frequency 51 of the baseband signal is composed of two components, a

range dependent part 5A and a velocity dependent part 5E:

51 = 5A + 5E =
2<A

2
+ 2EA

�
(2.9)

where the carrier frequency 52 has been substituted by the wavelength � for

convenience. In (2.9) it can be seen that two unknowns, namely the target range

A and the radial target velocity EA contribute to the resulting beat frequency.

Thus, the estimation of both parameters from a single frequency measurement

is ambiguous and additional measures have to be taken in order to find the

respective values.

2.1.3 Chirp sequence modulation

In automotive applications, a simultaneous measurement of range and velocity

of all targets is desired, but not possible with a single FMCW measurement

as outlined in the previous section. From (2.9), it can be observed that the

two parameters A and EA have a different weighting in the composition of the

beat frequency. More precisely, the range-dependent contribution is influenced

by the ramp slope <, while the velocity-dependent part is not. This enables

methods to estimate both, range and velocity, from a single beat frequency. Two

approaches can be identified, eachwith its own advantages and disadvantages.

Matching Several measurements with different ramp slopes < are used. This

results in a linear equation system, which has to be solved. In general,

the more targets are present, the more frequency components will super-

impose. In the end, even more ramps are required in order to find an

unambiguous solution in multi-target scenarios. Furthermore, the com-

putational complexity grows drastically in this case so that this approach

is only suitable for a bounded number of reflections [30].

Fast chirp The ramp slope < is made steep enough, so that the velocity-

dependent term in (2.9) gets so small that it can beneglected [31]. Then, the

target range can be estimated directly from the measured beat frequency.

Even more important, the estimation of the frequency components does

not get more complicated when multiple targets are present, so that this
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approach scales very well in scenarios with a high target count. How-

ever, the velocity is not available from the frequency measurement and

additional steps have to be performed in order to measure EA .

With regard to automotive scenarios, the target count is usually large due

to present roadside infrastructure and traffic participants. Furthermore, the

growing resolution capabilities engender a higher number of targets because

even closely located objects can be separated. This trend is one reason for the

adoption of chirp sequence modulation schemes by automotive radar sensors,

because a matching based approach cannot keep up with an increased number

of targets, as mentioned above.

A chirp sequence uses a series of fast chirps, each with the same ramp slope

< and starting frequency 50. Furthermore, a constant time relation between all

ramps, the ramp repetition interval )AA8 should be adhered in order to simplify

the following signal processing tasks. The usage of multiple chirps has mostly

two reasons:

• A fast chirp is usually a very short pulse () < 100μs) due to its high ramp

slope <. Hence, the transmitted energy is rather small which deterio-

rates the SNR in the first place. Though, if multiple chirps are evaluated

together, the SNR can finally be regained after signal processing.

• The velocity cannot be estimated from a single fast chirp. By using a chirp

sequence the estimation of EA becomes possible by evaluating the phase

information of the resulting beat signals.

For the subsequent derivation according to [32], the distance of a moving

target is modeled by using a non-fixed distance A: which varies from chirp to

chirp :.

A: = A0 + EA)AA8: (2.10)

Reusing the expression of the baseband signal from a single chirp (2.8) and

inserting the equation for a varying target distance from (2.10), the baseband

12
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signal of the k-th chirp can be written in the following form:

B1,:(C) = �� cos

(
2�
2

(
2 52A: + 2<A:C

) )
(2.11)

= �� cos

(
2�
2

(
2 52A0 + 2 52EA)AA8: + 2<(A0 + EA)AA8:︸ ︷︷ ︸

<< A0

) C
) )

(2.12)

= �� cos

(
2�
2

( Phase︷                ︸︸                ︷
2 52A0 + 2 52EA)AA8:︸     ︷︷     ︸

Velocity

+

Frequency︷︸︸︷
2<A0C︸︷︷︸
Range

) )
(2.13)

For this expression, a sufficient high ramp slope< has been supposed so that the

Doppler-dependent frequency part 5E from (2.8) can be neglected. A typical

Doppler frequency for fast moving objects in a traffic situation might be in

the order of 10 kHz, while the range-dependent part of the beat frequency 5A
amounts easily to several megahertz or more [31].

Furthermore, parts of the last term in (2.12) can be omitted if the velocity EA
is small enough, so that the additional distance EA)AA8 between two chirps : and

: + 1 does not induce a significant different beat frequency. Consequently, the

measured frequency can be considered as constant from chirp to chirp which

simplifies the required signal processing steps. This assumption is true if the

target’s movement during the full measurement cycle, i.e. during all  ramps

of the whole chirp sequence, is below the range resolution of the system. It is

appropriate formost state-of-the-art sensors and for usually encountered object

velocities in automotive scenarios.

However,with increasingbandwidths and the augmented range resolutionof

future radar sensors, the influence of the movement on the range measurement

can become significant. The effect is also referred to as range cell migration
because the beat frequency is not constant and traverses several range cells

during the chirp sequence. Advanced spectrum evaluation methods can help

to compensate for the diverging beat frequency [33], however they are not

covered by this work.

Apart from the beat frequency, the phase of the baseband signal carries

additional information. From (2.13) it can be seen that amoving targetmodifies

the measured phase value of a single chirp. Even though the measured phase

13
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term depends also on the absolute distance A0, an estimation of EA is possible

when evaluating the variation of the phase over time, i.e. from chirp to chirp.

The phasemeasurement is in general very sensitive to any radial movements.

Already a small motion in the order of the wavelength, which means around

4mm at 77GHz, provokes a phase shift of 2�. Such micro-movements can

be captured over a certain period of time so that an accurate estimation of the

radial target velocity becomes possible. A high velocity resolution ofwell below

1m/s is an important feature of this measurement principle [7, 34].

For a constant radial velocity, the phase shift between two consecutive chirps

is also constant as long as the ramp repetition interval )AA8 is not varied. This

property simplifies the subsequent signal processing stepswhichwill be further

explained in the next section. The spacing between two consecutive frequency

chirps )AA8 determines the maximum unambiguous velocity which can be mea-

sured. This property is a consequence of the 2� phase ambiguity. A shorter

)AA8 is in general desired, because it increases the unambiguous velocity.

2.1.4 Spectrum evaluation

The classical approach to separate multiple targets and to estimate their corre-

sponding distances to the sensor is to transform themeasured baseband signals

into the frequency domain. Every single target will cause a discrete beat fre-

quency component which can directly be converted into a distance if a fast

chirp modulation has been used (cf. section 2.1.3). A conventional fast Fourier

transformation (FFT) in combinationwith an appropriate window function can

be used as efficient and robust estimation algorithm.

Furthermore, it is possible to estimate the chirp to chirp phase offset and

hence the velocity by a second FFT which can be applied to the result of the

first transformation. The outcome is a two-dimensional spectrum which is

often referred to as range-Doppler (r-D) matrix.
A schematic describing the signal flow using FFTs can be seen in Fig. 2.3.

Each frequency chirp is separately transformed by the first FFT which will also

be referred to as Range FFT. In the resulting data vectors, which look similar

for all frequency ramps, three targets are marked with different colors. For the

moment, two targets share the same frequency bin so that they can only be

recognized as a single target.

The second FFT is also referred to as Velocity FFT and gets directly applied
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2.1 Radar waveforms

to the result of the first FFT, but in another dimension. For each frequency

bin of the Range FFT, the second transform is computed over all ramps of the

chirp sequence. An important prerequisite is a constant ramp-to-ramp spacing

so that a possible phase offset of a constant velocity will appear equal over

the whole sequence. With this technique, the two targets sharing the same

range bin can be separated due to their different velocities, which can be seen

in the resulting range-Doppler matrix on the right of Fig. 2.3. This separation

capability helps to detect moving targets in scenarios with many overlapping

objects. Even if multiple targets with the same distance share a common range

bin, they can be further separated according to their relative radial velocities.
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Figure 2.3: Chirp sequence modulation waveform and corresponding spectral evalua-
tion using FFTs. Cells containing a target echo are colored.

A further advantage of the two-dimensional spectrum evaluation is an ad-

ditional gain in SNR because the transformation into the frequency domain

behaves like a matched filter. After the frequency transformation, a single tar-

get maps to a discrete frequency, so that the whole signal energy of the target

echo is concentrated into one cell of the FFT while the present noise is dis-

tributed equally across the whole spectrum. The signal-to-noise ratio increases
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and the effect is often referred to as processing gain [35].

Consequently, the two-dimensional frequency estimation should be carried

out for all received signals of the chirp sequence and the full spectrum needs

to be evaluated even though the occupied frequency cells are rather sparse. In

real world scenarios only about one percent of the frequency bins contain valid

targets (cf. chapter 5.3.2) and in the first place it seems inefficient to compute

all bins. Nevertheless, this step is crucial for an enhanced noise margin and

improved detection performance so that the primary drawback of a short chirp

duration in terms of low SNR can be avoided.

The costs of a full spectrum evaluation by using a 2D-FFT become apparent

when regarding the demands placed on the processing system. The FFT by

itself does not reduce the amount of data in any way, i.e. it only transforms an

input vector to an output vector of the same length. Hence, the data throughput

equals the rawdata rate at the input, originating frommultiple analog-to-digital

converters operating at rates of several tens or hundreds of megasamples per

second (MSPS) [3, p. 387]. This sample rate gets multiplied by the number of

parallel channels as well as the word size (resolution), so that a data rate of

10GBit/s and above is to be expected.

Furthermore, the data of a full 2D matrix has to be stored in memory before

the Velocity FFT can be computed, because it requires data from chirp 1 to

chirp  . For certain high resolution applications, the typical length of one FFT

in either dimension might be in the order of 1024, or even greater [36]. In this

case, the total storage size of the full matrices can amount up to 100MByte,

because the number of cells exceeds clearly one million and multiple matrices

have to be stored, one for each channel.

The maximum length of the chirp sequence, i.e. the number of ramps  is

in general only bounded by the available memory and processing capabilities.

The advantage of a longer chirp sequence is certainly the improved velocity res-

olution as well as an improved SNR due to the larger processing gain. On the

downside, a long measurement time can provoke blurring effects in dynamic

scenarios which is also not desirable. Furthermore, the duration of a full chirp

sequence defines the duration of one measurement snapshot or cycle. Conse-

quently, a large number of ramps will decrease the maximum possible cycle

rate of the system. A typical value for automotive applications is a maximum

measurement time of 40ms for all  ramps, so that a cycle rate of 25Hz can be

achieved. [3, pp. 388,393,397]
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2.2 Target detection

2.2 Target detection

The radar echoes at the receiver are usually superimposed by random noise

components or disturbing interference from other signal sources. Hence, a

decision has to be made, if the received signals contain valid radar detections

or just random noise components. In general, a wrong decision deteriorates

the sensor’s performance and it is desired to minimize the following two faults

which could arrive:

False positive A random signal component is classified as valid radar echo.

The sensor outputs a wrong detection, i.e. it detects an object which does

not exist. This case is also referred to as false alarm, dating back to the days

where radar was primarily used to recognize an approaching enemy.

Missed detection The received radar echo is too weak and gets masked by

other signal components like noise or stronger targets in the vicinity, so

that it cannot be detected anymore. This occurs frequently for tiny targets

with a small reflective surface, for which the SNR is simply too low. The

ability to detect such weak radar echoes can be crucial when a detailed

and fine-grained map of the environment is required.

A trade-off between the two properties explained above is required, because

both cannot be improved at the same time. For the system designer it can be

important to limit the probability of false alarm, so that the reliability of the

data can be guaranteed to a certain degree. The common approach is to assure

a constant false alarm rate, which normally requires some dedicated processing

techniques prior to the detection decision. The goal is to eliminate the effect

of locally and temporally different noise characteristics so that the detection

performance remains the same irrespective of changing operating conditions.

In the following section, the theory and different realizations of a constant false
alarm rate (CFAR) processing will be introduced.

The starting point for the target detection is the two-dimensional frequency

spectrum which can be obtained if a chirp sequence modulation is used as it

has been explained in section 2.1.3. The actual detection is performed in the

power spectrum, which means that the absolute square values of the complex

FFT data have to be computed first.

The basic principle is to observe the power level of each frequency bin com-

pared to its local environment in the spectrum. A cell with a larger amplitude is
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supposed to contain a target echo and should be considered as valid detection.

At the same time, all cells whose power level does not stand out from their

neighborhood will most likely contain unimportant noise components.

Furthermore, it is possible to benefit from the existence of multiple receiving

channels by integrating the data prior to the detection. One such possibility is

referred to as non-coherent integration (NCI) and is described more in detail in

section 2.2.2.

2.2.1 Constant false alarm rate (CFAR)

A very basic approach for a decision if a certain cell contains a valid target

would be to use a fixed threshold. Accordingly, if the power level of a cell

exceeds this threshold it can be considered as valid target, otherwise it would

be considered as noise. However, this procedure imposes some limitations due

to the varying operational and environmental conditions.

For instance warmer ambient temperatures can cause all component’s tem-

peratures to rise equally which in turn increases the influence of thermal noise

components. Furthermore, so-called signal clutter originating from distributed

reflections on the ground surface or during rain and snowfall, can increase the

local signal power level in certain ranges [28, pp. 82 – 88]. This is caused by

the superposition of many small echoes which resemble noise components be-

cause an extraction of a distinct frequency of a single target is impossible. In

summary, the noise floor of a radar system is changing over time and it can also

be locally different in the spectrum. Such effects have to be eliminated prior to

the detection if a constant false alarm rate (CFAR) is desired and a simple fixed

threshold decision is not sufficient.

The design of a CFAR detector has been of major interest since an automated

target detection by means of digital signal processing became possible. The

basic principle of all CFARdetectors ismore or less identical even though awide

range of different classes and variants have been reported in the past decades.

Themain idea is to divide the detection space intomany small cells and to use a

locally different threshold for the detection decision. Consequently, an adaptive

threshold based on the local noise characteristics is calculated individually for

every cell under test (CUT) in the spectrum. The procedure is repeated in each

measurement cycle so that it can adapt to changing operating conditions.

Generally, the input cells for the CFAR detector originate from the power
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spectrum, which is often referred to as square law detector in literature. The cell

size can be chosen identical to the size of one frequency bin, so that the result

of an FFT can be directly fed into the CFAR algorithm. More precisely, a single

cell of the CFAR processor corresponds to exactly one absolute square value of

the FFT output in this case.

A major challenge is the accurate estimation of the noise level, which is

required to achieve a constant-false alarm rate. In general, the neighboring

cells around the CUT are considered to contain mostly noise so that they can

provide enough information to estimate the local noise distribution. All cells

which are used for the noise estimation are referred to as window cells. Other

cells usually located in direct vicinity to the CUT do not contribute to the

noise estimation and are referred to as guard cells. These cells with immediate

proximity to the CUT are not taken into account because the energy from a

possible target in the CUT could expand to the neighboring cells which in turn

could distort the result. The noise estimation procedure is often implemented

as a sliding window filter, similar to a convolution, so that parts of the previous

estimation results can be reused.

An exemplary schematic of a CFAR detector is illustrated in Fig. 2.4. The

window cells are taken from the left and the right neighborhood of the CUT

in an one-dimensional manner. If the input cells originate from a 2D-FFT,

then every column or row can be processed separately. In general, for a two-

dimensional spectrum, a rectangular window is likewise imaginable.

The size and the shape of the CFARwindoware important design parameters

because they determinemainly the estimation accuracy and the adaptiveness to

altering noise conditions. On the one hand, a larger window size reduces the

statistical estimation error, but on the other hand local differences in the noise

level can be blurred by a large window. A trade-off has to be made between

a statistical estimation error and the local sensitivity of the adaptive threshold

due to smoothing effects. Furthermore, the computational effort becomesmore

relevant with increasing window sizes.

The major distinctive feature of all CFAR detectors is the method to estimate

the local noise distribution and to derive a decision threshold which maintains

a constant-false alarm rate. In the following subsections, two of the most

prominent variants are presented, the cell-averaging (CA) and the ordered-

statistic (OS) CFAR.
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Figure 2.4: Generic CFAR processing scheme operating on an one-dimensional window.
The values of multiple window cells around the CUT are used to obtain a
noise level estimate which in turn can be used for a target detection deci-
sion. For a chirp sequence modulation, one cell usually corresponds to one
entry in the range-Doppler matrix in Fig. 2.3.

CA-CFAR

Asimple yet powerful approach is to use themeanvalue of a number ofwindow

cells as an estimate for the local noise level. This estimate can subsequently be

used as a target decision threshold, after an appropriate scaling value has been

applied to it. The procedure is a very common approach and is known as cell

averaging CFAR, or CA-CFAR [24, p. 296].

This procedure relies on the assumption that all window cells contain only

noise components and hence the mean value is a good estimate of the noise

variance. In the case of white Gaussian noise, the estimated value is actually

corresponding to the maximum likelihood estimator. However, for many radar

systems the assumption of normal distributed noise turns out to be inaccurate

[37] and more sophisticated CFAR methods are required.

Once an estimate for the local noise level could be obtained by the CA-CFAR,

it has to be scaled appropriately before it can be used as a threshold for the

target decision. This procedure assures that a certain interspace to the noise

floor can be maintained, i.e. the power level of the CUT has to lie significantly

above the estimated noise level.

A direct comparison without scaling would result in an extremely high false

alarm rate Pfa which is demonstrated in the following derivation, according
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to [38, p. 347]. For the calculation of this exemplary false alarm rate, a complex

Gaussian noise distribution is assumed. Thus, the resulting probability distri-

bution of the absolute square values in the power spectrum is an exponential
distribution.

If the noise distribution is known, the rate of false alarms can be obtained

by simply integrating the right tail of the probability density function, i.e. the

portion above the chosen threshold Th. The integral expresses the rate of false
alarms, because it describes the frequency of occurrence of noise components

greater than Th. Hence, for a certain noise variance �2
and threshold Th, the

false alarm rate Pfa corresponds to the complementary value of the cumulative
distribution function3. For an exponential distribution, this leads to:

Pfa(Th) = P(- > Th) = 1 − P(- ≤ Th) = exp

(
−Th
�2

)
(2.14)

Setting Th = �2
, i.e. using the (estimated) noise power level as detection

threshold, results in Pfa = 4−1 = 0.37. This means that in average every third

cell would provoke a false alarm.

Formost applications, such a high rate of false alarmswould stress the follow-

ing signal processing steps with too many noise components. Consequently,

a scaling factor is used to control the false alarm rate according to the appli-

cation’s requirements. Generally, for many applications the false alarm rate is

chosen to be very low, e.g. in the order of 10
−6
.

OS-CFAR

In the case of white Gaussian noise, the CA-CFAR performs very well in single

target scenarios. However, in a multi-target environment, the estimated noise

level will deviate due to interfering targets inside the window cells. Robust

statistics can be used in order to suppress outliers arising from other targets

inside the window. A commonly used variant is the ordered-statistic (OS-

CFAR) which relies on a sorting of the values inside the window, similar to a

median filter [39].

In the same manner as for CA-CFAR, the window cells around the CUT,

excluding the guard cells, are used to form the noise estimate. But instead of

3
The cumulative distribution function is commonly defined as �-(G) = P(- ≤ G) and corre-

sponds to the integral of its probability density function: �-(G) =
∫ G

−∞ 5-(C)3C
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calculating the mean value, all cells inside the window are sorted as a first step.

Then, the :-th value of the sorted list serves as an estimate of the local noise

level. The remaining portion of the algorithm is identical to the CA-CFAR. A

scaling value which controls the false alarm rate is applied to the noise estimate

and subsequently a target decision is made.

The robust statistics approachof theOS-CFAR is consideredas superiorCFAR

procedure for automotive radar applications because it performs significantly

better than the CA-CFAR in scenarioswith interfering targets [40,41]. However,

the computational effort is considerably higher due to the complexity of the

sorting, especially at larger window sizes. An optimized evaluation scheme of

the OS-CFAR which avoids a full sorting will therefore be investigated in this

thesis (cf. section 3.2.1).

2.2.2 Non-coherent integration

Even though the detection takes place before the angular processing, the data

of multiple receiving channels can be used to further improve detection perfor-

mance. An integration or averaging of all channels prior to the detection step

turns out to be beneficial [28, p. 328], assuming that the noise components are

independent and identically distributed (i.i.d.).

Special attention should be paid to the phase relationship of the signals

between adjacent channels. In general, the relation is not known prior to the

angle estimation and can take anyvalue. When summingup the complexvalues

of all channels, the signals can interfere either constructively or destructively.

In order to avoid a cancellation of the signal power, the integration takes place

in the power spectra, which is also known as non-coherent integration (NCI).

Other integration methods like a coherent or binary integration exist, however

they have not been used in this work.

In the following derivation, the noise components are modeled as additive-

white Gaussian noise which means that a zero-mean normal distributed signal

=[C] is added to the reflected signal echo B[C]. Finally, the resulting signal B̂[C] at
the receiver consists of the desired signal superimposed by an arbitrary noise

component (cf. Fig. 2.5). As mentioned above, the noise components =[C] are
assumed i.i.d. for all channels.

Usually, the detection process takes place in the frequency domain, which is

why the spectral characteristics of the additive noise components are likewise
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Figure 2.5: Additive white Gaussian noise model.

important. It can be shown that both, the real and imaginary parts of the noise

components#[:], follow a zero-mean normal distribution after transformation

into the frequency domain [38].

B̂[C] = B[C] + =[C] (2.15)

t
d

(̂[:] = ([:] + #[:] (2.16)

The variance of #[:] depends on the input noise variance �=2
as well as on

the length of the input signal, i.e. the length of the discrete Fourier transform

(DFT). It must be equal for all receiving channels due to the assumption of i.i.d.

random variables.

The actual detection process takes place in the power spectrum, which can

be obtained by summing up the squared values of the real and imaginary parts

of (̂[:]. For cells containing only noise components, the actual signal term ([:]
is zero and only #[:] contributes to the power spectrum. It can be seen that in

this case, the sum of two squared, i.i.d. Gaussian variables is formed:��#[:]��2 = Re (#[:])2 + Im (#[:])2 (2.17)��#[:]��2 ∼ "2(2) (2.18)

The result for the squared noise magnitude |#[:]|2 is a random variable fol-

lowing a chi-squared distribution "2(3) with 3 = 2 degrees of freedom. The

expected value of this "2(2) distribution determines the height of the noise floor

in the power spectrum. Furthermore, the variance of the distribution causes a

random deviation from the nominal mean value so that the noise floor in the

spectrum will never appear as a perfectly flat surface.

When summing up a number of " receiving channels, i.e. " i.i.d. random
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variables, the result will again be chi-squared distributed but with a higher

degree of freedom.

��##��[:]
��2 = "∑

8=1

��#8[:]
��2 ∼ "2(2") (2.19)

According to this chi-squared distribution, the expected value of the noise

power scales linearly with the number of channels". Furthermore, in the case

of an NCI, the signal power is raised by the same amount, i.e. linearly with

". Hence, the resulting SNR, defined as the ratio between the mean values of

signal and noise power, is not directly enhanced. In other words, the distance

to the noise floor of cells which contain a target echo is not increased. This

result is in contrast to the DFT, where a coherent integration takes place and

the SNR can be improved solely by taking longer input sequences.

However, the NCI decreases the variance of the noise power in relation to the

signal power which has an effect on the possibility of false alarm. The noise

floor in the spectrum appears to be more flat after a certain number of channels

has been averaged. Consequently, a real signal echo can be distinguished more

easily andwith a higher confidence from random noise components. The effect

is also referred to as non-coherent integration gain [42].
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Figure 2.6: Distribution of the signal power in a measurement comprising only noise
components. The shape of the distribution is changed after the non-
coherent integration of 32 channels.
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2.3 Direction of arrival estimation

An example measurement is depicted in Fig. 2.6, comparing the noise distri-

bution of one channel and the distribution after the integration of 32 channels.

The mean value of the two distributions is identical, while the variance of the

red histogram is much smaller. It can be observed that for the same threshold

level, a lower probability of false alarm can be achieved after the integration

of 32 channels because the area below the red curve exceeding the threshold is

considerably smaller than the area below the blue curve. The other way round,

if the same probability of false alarm is desired, then a lower threshold level

could be used in the case of 32 integrated channels. This would increase the

detection rate accordingly while maintaining an identical false alarm rate.

2.3 Direction of arrival estimation

In the previous sections, different radarwaveforms and theirmode of operation

were described which enable the measurement of the distance A toward an

object and its relative velocity EA in radial direction. Without any further

information, the object position in space is still not uniquely determined and

can be anywhere on a sphere with the radius A. The exact location in a three-

dimensional space can be described by providing the angle in azimuth and

elevation, which express the angular offset between the direction toward the

target and a reference direction.

For the sake of simplicity, the rest of this thesis will only focus on the az-

imuthal angle � which is more useful in the context of automotive radar. How-

ever, the following approaches can be easily adopted to the elevation angle

which simply lies in a different plane. State of the art sensors like the Bosch

MRRare evaluating both angles in order to obtain theunique three-dimensional

coordinates in space of each reflection [3, p. 382].

The problem of estimating the angle � is often referred to as direction of

arrival estimation (DOA) and is encountered frequently in many radar and

sonar applications. A variety of approaches exist and the most frequently used

are described briefly in the following paragraph.

Steerable antenna A commonly knownmethod and often the first choice for

airspace monitoring, for instance at commercial airports. These systems

use a mechanically rotatable antenna with a high directivity, such as a

parabolic antenna which has a very high gain into a certain direction.
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2 Automotive Radar Sensors

The detection space is then scanned step-by-step for each possible angle

�. Once a target echo is received, its direction of arrival is immediately

known from the current orientation of the antenna.

Antenna array Multiple antennas which are separated spatially can provide

information about the direction of arrival of a signal. Similar to the range

measurement, an additional propagation delay at the different receiver

elements is observable which depends on the direction of arrival. Even

though very small and often in the order of a single wavelength, this delay

can bemeasured as a phase offset. With the help of appropriate array pro-

cessing algorithms, the corresponding DOA can be found. Other phased

array radar techniques like electronic beamsteering on the transmitter

side can also be employedwith the help of antenna arrays. However, their

functional principle is slightly different [43].

Synthetic-aperture radar (SAR) A radar sensorwhich ismounted on amov-

ing platform can acquire multiple measurements from different positions.

By evaluating the gathered data altogether a synthetic aperture is created,

similar to an antenna array looking to the side of the moving direction.

The technique is often used for airborne earth observation and can provide

a very fine resolution. [44]

Most of the current automotive radar sensors use an antenna array in order

to provide a possibility for measuring the angle of incidence. With the help

of two-dimensional arrays, both, the direction in azimuth and in elevation can

be estimated. Furthermore, no mechanical parts are required at all, which

helps to make the sensor reliable andmaintenance-free over its lifetime. Beside

the class of array-based sensors, mechanically scanning sensors have also been

used with success for automotive applications. For example, the ARS300 radar

sensor fromContinental contains a steerable antenna implemented as a rotating

drum [3, p. 386]. Finally, the SAR approach could be employed for vehicles, too,

because they form a moving platform [45]. Though, the resolution can mainly

be increased at the left and right side of the car, i.e. perpendicular to the driving

direction.

In summary, radar sensors incorporating antenna arrays are considered as

the prevailing class of automotive radar sensors in the near future. The un-

derlying array processing concepts are explained in the next section, because
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2.3 Direction of arrival estimation

they will play a crucial role when investigating the corresponding hardware

architectures.

2.3.1 Antenna arrays

An antenna array is formed by multiple individual antennas which are dis-

tributed in space, so that the DOAwith the angle � of a signal can be estimated.

This is possible because the different amplitude and phase relationships at the

antenna elements provide information about the origin of the reflected signal.

As mentioned previously, the time shift due to an additional propagation delay

can be recognized, or alternatively a different amplitude level that results from

a directional characteristic of the antenna can be evaluated.

Preconditions

In the case of automotive radar sensors, the distance to a possible reflector is

usually large compared to the array size. Hence, the incident signal can be

modeled as a plane wave impinging on the sensor which simplifies all following

derivations. Most importantly, the occurring time delays at the antennas can

be decoupled from the target range so that only a dependence on the DOA

remains. For the sake of simplicity, only the azimuthal DOA is considered in

the following derivation. Though, the elevation angle estimation works in the

same way and all described measures can likewise be applied to it.

Furthermore, a second simplification can be used, the so-called narrowband
assumption. As the name suggests, the requirement for this assumption is

that the occupied bandwidth � is small. Many authors [46–48] establish the

following condition for the narrowband case:

�Δ�max � 1 (2.20)

where � is the used bandwidth andΔ�max is themaximum time delay occurring

between two elements of the array. In other words, the travel time across the

array has to be significantly smaller than the inverse bandwidth of the signal.

Then, the additional time delay due to the extended path length at the in-

dividual receiver elements can be expressed as a phase shift. This is very

convenient if the DOA estimation is executed in the frequency domain, be-

cause the estimation algorithms can be directly applied to the FFT results of the
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2 Automotive Radar Sensors

range-Doppler processing step (cf. also section 2.1.4).

More specific conditions for a narrowband signal exist [49], however the

simple relationship (2.20) is sufficient for all further derivations in this section.

Furthermore, even though themethods and algorithmspresented below rely on

the narrowband assumption to be true, they can be extended to the wideband

case [50]. This will be of importance when increased signal bandwidths in the

order of 4GHz in combination with large MIMO arrays are employed.

Uniform linear array

The geometry of the used antenna array plays a crucial role because it directly

influences the resulting phase shift. An often encountered array geometry is

the uniform linear array (ULA) where all elements are arranged on a straight

line with identical spacing between them. Depending on the DOA �, a relative
phase shift )< can be recognized at each individual antenna element 'G< (cf.

Fig. 2.7). Considering a plane wave impinging on a ULA, the relative phase

shift at the m-th element amounts to:

)< = 2�
(< − 1) 3

�
sin (�) (2.21)

where 3 is the distance between two antennas and � is the signal’s wavelength.

In Fig. 2.8, a picture of a receiving antenna array of a 77GHz sensor is shown.

It is a ULA with 12 antennas which are spaced in the horizontal direction,

allowing for aDOA estimation in azimuth. The antennas are directly integrated

onto a printed circuit board, which also holds the electronic circuits. It can

be seen that multiple patch elements
4
are connected together in the vertical

direction which results in a narrower andmore focused beam in elevation. The

received signals are guided on the circuit board with the help of a microstrip

transmission line toward the bottom border of the picture.

In practice, each antenna of the array receives its distinct signal which differs

depending on the antenna’s location in space. The problem to solve is to

estimate the angle of arrival � based on the measured array response. Below,

someuseful concepts assisting in the angle estimation processwill be described.

4
A patch antenna consists of a rectangular metal surface which can be directly fabricated on a

printed circuit board. Its geometry is closely associated to its frequency characteristics [51].
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Figure 2.7: Direction of arrival (DOA) estimation with the help of a uniform linear array
(ULA) at the receiver side. The impinging signal can be modeled as a plane
wave simplifying further derivations.

Figure 2.8: A picture of a ULA with 12 elements on a printed circuit board. The dis-
tinct patch antennas are spaced with approximately 4 mm in the horizontal
direction.
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Steering vector

A lot of research has been carried out to estimate the DOA as good as possible

and many different algorithms are established in this field which is also known

as array processing [46, 47]. An important modeling technique in this context

is the so-called steering vector a(�). It describes the resulting array output for

a single signal source residing at the angle �. It contains one entry for each

antenna element of the array and carries the magnitude and phase response of

each channel depending on the DOA �. Very importantly, the array response

can be decoupled from other signal parameters like distance or reflectivity of

the target. As a consequence, the DOA estimation process can be executed

independently from the targets’ characteristics and the same approach can be

used for all possible detections irrespective of their positions, velocities and

other parameters.

For a ULA, the steering vector can be derived theoretically by the geometrical

relation from (2.21), as long as the directive gain�<(�) of the antenna elements

is known. The antenna gain is reflected in the magnitude response |0<(�)| of
the steering vector and can be assumed to be equal across the array, if identical

antennas are used. Then, the elements of the steering vector differ only in phase

and are mainly determined by the antenna position.

a(�) = [01(�) 02(�) · · · 0"(�)]) (2.22)

= �(�)
[
1 4 92�

3
� sin(�) · · · 4 92�

("−1)3
� sin(�)

])
(2.23)

Interestingly, a relative phase shift in the positive direction can be observed

for such antenna elements which encounter a longer time of flight. It is a direct

cause of the FMCWbeat signal equation (2.8), where the phase is positive linear

dependent on the distance A. This is in contrast to many other definitions of the

steering vector for a ULA, where the phase shift is usually negative for a larger

distance to the target [46, 47]. The discrepancy arises, because most references

in literature use the phase of the electrical field at the array elements as a basis

for the steering vector. However, an FMCW sensor cannot measure the field

of the impinging wave directly. Instead it measures the phase difference of the

local oscillator and a time delayed version of it, which is finally the cause of the

positive sign of the phase term in (2.23).
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Array calibration

Rather than using theoretical derived values, the steering vectors can also be

measured with a special sensor calibration setup. This has the advantage that

any deviation from the ideal array response can be taken into account for the

angle estimation process. In practice, the array response can be distorted, for

instance by small tolerances in the manufacturing process, by a radome in front

of the antennas, by signal coupling between adjacent antenna elements or by

component variations over temperature, just to mention a few.

A sensor calibration is usually conducted with the help of a fixed target at a

knownposition. The sensor scans and records the array output for eachpossible

target angle �. Ideally, the target distance is constant for all measurements so

that the free space loss remains constant and has no influence on the result.

Furthermore, the calibration target should behave very close to an ideal point

target with no directional properties. Often a trihedral corner reflector or a

metal sphere are used for this kind of measurement.

In order to illustrate a practical array response, the magnitude and phase

values of the steering vectors for a real radar sensor featuring a ULA with 8

elements are shown inFig. 2.9. Theused representation is also referred to as two-
way antenna diagram and contains meaningful information about the sensor’s

directional characteristics. The used prototype radar sensor for these measure-

ments has been developed during this thesis’ time span and is presented more

in detail in chapter 5.

As the name suggests, the two-way antenna diagram includes both, the

characteristics of the sending and receiving antennas. The advantage of this

calibrationmethod is that it closely resembles the realmeasurement conditions.

The output is the appropriate steering vector which can be directly applied to

many angle estimation methods.

The magnitude curves �<(�) in Fig. 2.9a provide information about the

directivity of the used antennas. The antenna gain as a function of the target

angle can be immediately read out of the diagram. Two important parameters

can be identified, the location of the maximum gain which defines the antenna
boresight and the width of themain lobewhich basically determines the sensor’s

field of view (FoV).
Remarkably, the influence of the sine term on the phase of the steering vectors

can be observed in the phase curves in Fig. 2.9b, where a smaller gradient for
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Figure 2.9: Measured two-way antenna diagram of the experimental sensor which was
developed along with this thesis (cf. chapter 5). The antenna array has
8 receiving elements spaced with 0.5� and the measurement was made
without a radome.

larger angles �, i.e. toward ±90 degrees, can be seen. The decreased slope

causes steering vectors of a similar angle � to resemble each other whichmakes

the angle estimation process more difficult. As a consequence, the angular

resolution of an array based radar sensor typically deteriorates toward the

sides [46, p. 949].

For a more detailed analysis of the phase values, the deviation of the real

steering vectors from the theoretically derived can be seen in Fig. 2.10 where

only the differences between them are shown. As it can be seen from the plot,

the variations in phase are rather large and amount up to 1 rad, or equivalently

about 60 degrees. Consequently, the DOA estimation quality will suffer if no

calibration or equalization method is applied [52].

2.3.2 Classical beamforming

A very basic approach to estimate the DOA is to directly compare the received

signals of each antenna. An inverse time delay based on a hypothetical DOA

can be applied to each channel. If this delay matches the actual offset, then the

signals will all be in phase again and a subsequent summation would result in
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Figure 2.10: Measured phase errors of the real antenna array from Fig. 2.9. The shown
numbers are the differences between the actual and theoretical values.

a constructive interference. With the help of an exhaustive search, all possible

DOAs can be tested in this manner and the direction � for which the sum is

maximized can be used as a DOA estimate.

The described approach can also be conducted in the frequency domain, after

the range and velocity estimation took place. The time delay at the different

receiver elements appears as a phase offset
5
which can be easily compensated

by a rotation in the complex plane. Besides, the SNR gain resulting from

the spectral evaluation improves the estimation quality and beyond that, the

probability of a superposition of different signals is also reduced. Objects with

a different distance to the sensor will be separated prior to the angle estimation

by the two-dimensional FFT (cf. also section 2.1.4). These reasons suggest a

DOA estimation after the frequency transformation which is also the choice for

all following investigations in this work.

Starting from a detected object in the r-D space, a signal vector x consisting

of complex values is extracted. It carries all necessary information and forms

the data input for the following DOA estimation along with the steering vector.

The number of elements of the signal vector x corresponds to the number of

antennas, just as it is the case for the steering vector.

The individual phase values of the signal vector x can now be modified

according to a possible DOA. This operation corresponds to an element-wise

multiplication with the complex conjugated steering vector a(�) for the spe-

5
Narrow band assumption (2.20)
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cific direction �. The complex conjugation assures that the inverse phase delay

according to the assumed DOA is applied. Finally, the norm of the resulting

vector gives an indication about the degree of correlation. A large value indi-

cates that the individual elements are in phase and sum up constructively. This

procedure can be repeated for other possible DOAs and the same signal vector.

If an exhaustive search for the entire FoV is performed, the problem to solve

can be denoted as:

arg max

�

"∑
<=1

|G<0∗<(�)|2 (2.24)

Or, in vector notation:

arg max

�
|a�(�)x |2 (2.25)

This method is often referred to as conventional beamforming or Bartlett

beamformer [46,47]. Even though the principle is very simple, the performance

is satisfactory for many applications. It can be shown that the conventional

beamformer corresponds to the maximum likelihood estimator in the case

where only one single signal source exists (cf. (2.34) in the following section).

Inmany situations however, especially in the case of automotive radar scenarios,

multiple reflections from different directions will superimpose which makes it

more complicated to detect and separate all the different signal sources.

For a better understanding, the angular spectrum of a real measurement

is shown in Fig. 2.11. It consists of a scenario with only one object at about

-5 degrees, whose reflection is relatively strong so that a high SNR value is

achieved. The result shown corresponds to the evaluated term in (2.25), except

that the full range for all angles � is shown and not only the maximum value.

Similar to a frequency spectrum, the occurrence of amaximumdoes not appear

as a sharp line, but as a rather wide peak which is called main lobe. The

width of the main lobe is connected with the size of the used antenna array.

Larger aperture sizes decrease the width of the main lobe, which consequently

increases angular resolution. A nearby second object can be separated more

easily if the main lobe is more narrow.

The remaining local maxima in Fig. 2.11 do not originate from real targets.

They are called side lobes and belong to the same signal source which induces
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Figure 2.11: Computed output of the conventional beamformer for a single target at
about -5 degrees. The residual side lobes are induced by the same object
and do not originate from other targets.

the main lobe. Their relative signal power is quite high and lies only about

10dB below the level of the main lobe. A target with a smaller signal echo

could get masked easily by the side lobes of a strong reflection. This makes it

very difficult for array based sensors to detect multiple signals in the angular

domain.

2.3.3 Maximum likelihood (ML) estimator

Maximum likelihood (ML) estimators belong to a special class of DOA algo-

rithms with some important statistical properties. They are efficient in the

sense that they achieve the Cramer-Rao lower bound for large sample sizes. In

addition, it has been shown that the performance for small sample sizes or even

in the single snapshot case is superior to other estimators [53,54]. Nevertheless,

the immediate use for real applications has been unacceptable for a long time

due to their high computational cost. In most cases, ML estimators need to find

the global maximum of a non-linear, multidimensional function. In general,

global search procedures are required, because no closed form solution for this

optimization problem exists. Iterative search strategies have been reported,

however their convergence is highly dependent on the initial value [55].
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Motivation for ML estimators

A major drawback for high-resolution DOA estimation in the case of auto-

motive radars is the number of snapshots, i.e. the number of independent

measurement cycles, which is generally small due to the non-stationarity of the

environment. Especially when the data is subject to a range-Doppler prepro-

cessing, like it is the case for many radar applications, only a single snapshot

is available. This impedes the usage of many DOA methods and justifies the

usage of computational demanding maximum likelihood (ML) estimators.

In general, the complexity grows with the number of dimensions, i.e. the

number of signal sources, which lead to the development of approximatemeth-

ods. The advantage ofmany algorithms is that they only require a 1D search, for

instance theminimum-variance (Capon [56]) orMUSIC estimator [57]. Another

class of estimators exploit the regularity of a ULA whose antenna elements are

all equally spaced. ESPRIT [58] or Root-MUSIC [59] are prominent examples

which exploit such properties of the array design. A lot of those algorithms

have in common that they require the number of snapshots to be greater than

the number of signal sources. In addition, if the incident signals are correlated,

the performance degrades heavily and in the case of fully coherent signals the

estimation may even completely fail. In contrast, the performance of MLmeth-

ods is still satisfactory, which makes them essential for certain applications.

Furthermore, they still work if only a single snapshot is available. For this rea-

son, ML methods are very attractive for the usage in automotive radars, which

made them subject to research [54, 60]. More background information about

other DOA estimation methods can be found in [46, 47, 61].

In the remaining part of this section, the general ML estimator is simplified

for the most frequent cases: The estimation of the DOA of a single target or

the estimation of two DOAs belonging to two targets. Even though the total

number of objects in the vicinity of an automotive radar sensor is high, the

angle estimation is conducted separately for each detected target in the r-v-

space. It is recalled, that many different echoes have already been isolated by

the preceding range-Doppler preprocessing step (cf. section 2.1.4). Thus, only

in very few cases more than a single target is remaining and if so, the two target

estimation is usually sufficient.

One aspect when performing a parametric DOA estimation is the determi-

nation of the model order, i.e. the number of present signals whose parameters
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have to be estimated. In fact the problem can also be described by detecting

the number of target echoes in a noise environment. This topic is out of scope

of this thesis and is not specified more in detail. Nevertheless, solutions to this

problem exist which are often referred to as model order selection [62, 63].

Derivation of single and two target ML estimator

The signal models often distinguish two different variants of ML estimation.

The first one assumes a deterministic signal, which is often present in commu-

nication or active radar applicationswhere thewaveform is known. The second

one adapts to a non-deterministic signal which has not been identified yet, e.g.

when passively locating an unknown sender. This leads to two different results

of which the first is known as conditional ML estimation (CMLE) or determin-

istic ML (DML). The second one is referred to as unconditional ML estimation

(UMLE) or statistical ML (SML). The elaboration and results presented in this

thesis are entirely based onDML estimation, because the received signals result

from echoes of the transmitted and hence known waveform.

The following derivation is based on previous work from [46, 47, 60, 61],

though it has been specifically adapted in this thesis. The used signal model

assumes that  complex signals B: impinge on the antenna array compris-

ing " elements. The signals can be integrated into the signal vector s =

[B1 B2 . . . B ]) and every signal B: can arrive from a different direction �: .
In this case, the array output at each of the" elements is a superposition of the

 signals. Finally, a noise vector n, whose elements are all independently com-

plex Gaussian distributed (i.i.d.), is added to form the measured array output

x, which is a " × 1 vector:

x = G())s + n (2.26)

The matrix G()) consists of the steering vectors a(�1), a(�2), . . . , a(� ) which

relate to the signal vector s. The problem to solve consists of two steps: The

number of sources  has to be estimated. Afterwards, an incident angle �: has
to be found for each source B: . As already mentioned above, the number of

sources is assumed to be known for the following derivation in this work.

The DML functionℒ(), s) for the signal model of (2.26) in the case of a single
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snapshot is given by the following expression [46, p. 1005]:

ℒ(), s) = 1

det(��2O) exp(− 1

�2

‖x − G())s‖2) (2.27)

where �2
is the variance of the Gaussian noise and ‖ · ‖ denotes the Euclidean

norm. The same noise model as in section 2.2.2 has been used (cf. also Fig. 2.5).

Applying the natural logarithm function results in the log-likelihood func-

tion, which becomes maximal for the same argument values of ), however its

computation is simplified.

lnℒ(), s) = −" ln� −" ln �2 − 1

�2

‖x − G())s‖2 (2.28)

The goal is to maximize this function in order to find the ML estimator )̂.
This can be achieved by fixing all but one of the parameters and forming the

partial derivation with respect to the arbitrary parameter. For the reason of

brevity just the solution is given, whereas a complete derivation can be found

in [46, pp. 1004-1007].

)̂ = arg min

)



x − G(G�G)−1

G�x


2

(2.29)

The dependency of G on the parameter ) has been omitted to simplify the

expression above. Furthermore, the notation G�
is used for the conjugate trans-

pose6 of the matrix G, and G−1
is used for the inversematrix of G.

The minimization problem from (2.29) can be rewritten as follows:

)̂ = arg min

)

[
x − G(G�G)−1

G�x
]� [

x − G(G�G)−1

G�x
]

(2.30)

= arg min

)

[
x�x − x�G(G�G)−1

G�x
]

(2.31)

= arg max

)

[
x�G(G�G)−1

G�x
]

(2.32)

In general, no closed form solution exists for this expression, which is why

6
The conjugate transpose of a matrix, also referred to as Hermitian transpose, can be obtained

by a complex conjugation of every entry followed by a matrix transposition.
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an exhaustive maximum search has to be performed. In [53], an approximate

estimation method for two closely spaced targets was developed, which is

however only valid if the targets are known to differ only in a small angle Δ�.
For this reason, this approximation cannot be used since the values of Δ� are

not constrained and can take arbitrary values in the case of automotive radar

sensors.

For a single target, the matrix G consists only of a single vector a(�), denoted
as a for convenience. Furthermore, if the normof the steering vector a is known

to be equal to one (which is no restriction in general), the computation of the

term a�a gets trivial and (2.32) simplifies to the following expression:

�̂ = arg max

�

[
x�a (a�a)−1︸   ︷︷   ︸

=1

a�x
]
= arg max

�

[
x�aa�x

]
= (2.33)

= arg max

�
|A� |2 where A� = x�a (2.34)

In the equation above, the scalar product between the measured vector x and

the array steering vector a(�) is denoted as A� for simplicity.

For two targets, the matrix G contains two steering vectors a(�8) and a(�9),
which will be denoted as a8 and a 9. In order to obtain the ML estimator, the

inverse matrix of G�G has to be computed. This can be done by using the

simple analytic solution for a 2x2 matrix:

[
0 1

2 3

]−1

=
1

03 − 12

[
3 −1
−2 0

]
(2.35)

Consequently, for the two target estimator, the matrix G�G and its inverse

can be written as follows:

G�G =

[
a�
8

a�
9

] [
a8 a 9

]
=

[
|a8 |2 a�

8
a 9

a�
9
a8 |a 9 |2

]
=

[
1 �8 9
�∗
8 9

1

]
(2.36)

(G�G)−1

=
1

1 − |�8 9 |2

[
1 −�8 9
−�∗

8 9
1

]
(2.37)

where �8 9 = a�8 a 9 (2.38)
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Combining (2.32) and (2.37) results in a maximization problem for the two

target case:

[
�̂8 �̂9

]
= arg max

�8 ,�9

1

1 − |�8 9 |2
[
A8 A 9

] [
1 −�8 9
−�∗

8 9
1

] [
A∗
8

A∗
9

]
(2.39)

where A8 = x�a8 , A9 = x�a 9 , �8 9 = a�8 a 9 (2.40)

With some simplifications, this leads to the following expression for theDML

estimator in the case of two targets [60, p. 86]:

[
�̂8 �̂9

]
= arg max

�8 ,�9

|A8 |2 + |A 9 |2 − 2 Re

(
A8A
∗
9
�8 9

)
1 − |�8 9 |2

(2.41)

where the operator Re ( · ) represents the real part of a complex number. Clearly,

the complexity of computing one value of the ML function is more than three

times as expensive as in the single target case, because three scalar products

(A8 , A9 and �8 9) have to be computed. In addition, the number of possible angle

values is squared,which is evenmore severe in the case of a full grid search. This

problem is addressed in section 3.3.2 of this work, where an implementation of

the two target DML estimator incorporating several optimizations is presented

which makes a real-time computation nevertheless possible.

2.3.4 Multiple-input multiple-output (MIMO)

So far, the described array processing techniques have been applied solely on

the receiving array. However, the concept of an incident plane wave which

excites a phase shift at the individual receiving elements can also be applied

on the transmitter side. An additional propagation delay likewise occurs if an

array of multiple transmitting antennas is used. In such a setup, a mechanism

to distinguish the superimposing signals at the receiving side is requiredwhich

will be outlined in the following paragraphs.

This concept of utilizing multiple transmitting (Tx) and receiving (Rx) anten-

nas at the same time is also known as multiple-input multiple-output (MIMO)

technique. It is commonly used by state-of-the art wireless communication

standards to increase the link capacity due to the benefit of spatial diversity. In

40



2.3 Direction of arrival estimation

a similar fashion, this method can also help to increase the angular resolution

capabilities of a radar sensor while reducing overall hardware and component

costs.

A conventional receiving array consists of multiple antennas, each connected

to its own dedicated processing channel. At least, a dedicated mixer device,

some kind of baseband signal amplification andfiltering circuit, plus an analog-

to-digital converter (ADC) is required for an FMCW radar, which adds to

the overall system cost. With increasing angular resolution and separation

requirements, a trend toward larger apertures and increasing channel numbers

can be observed. By usingmultiple transmitters, some hardware effort from the

receiving side can be shifted to the transmitting side and the overall efficiency

can be increased. This shall be illustrated by the following example.

If an array geometry consisting of 16 channels is desired for a certain appli-

cation, the conventional approach would be to employ 16 dedicated receiving

channels. With the help of a MIMO system, several channels could be econo-

mized on the receiving side at the cost of additional transmitter channels. For

instance a 2 Tx and 8Rx system achieves also 16 virtual channels at the cost of

only one additional transmitter while half of the receivers can be omitted. The

system could be further optimized and transformed into a 4Tx – 4Rx system

also resulting in 16 virtual channels. In any case, the cost of additional trans-

mitters has to be compensated by the cost of the economized receiver elements.

Furthermore, specific constraints can limit the number of transmitters, i.e. the

possibility to achieve a separation of a large number of transmitters.

Virtual channels

In order to understand the more complex phase relationships which occur

at a MIMO antenna array, the concept of introducing virtual antennas turns

out to be helpful. Any combination and arrangement of sending and receiving

antennas can be transformed into a virtual array representation, which contains

all possible Tx – Rx pairs. Therefore, the number of elements in the virtual array

is obtained by multiplying the number of sending antennas with the number

of receiving antennas. This is the key to the hardware efficiency of a MIMO

array, because a 4 Tx – 4Rx array only consists of 8 physical antennas, while the

virtual array possesses 4 × 4 = 16 elements.

A geometric relation likewise exists between the virtual antennas, which is
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Tx Tx Rx Rx Rx Rx Rx Rx Rx Rx Rx

Physical array Virtual array

Figure 2.12: A physical MIMO array can be transformed into its virtual representation
by a convolution operation. The color marks the corresponding transmit
antenna for the virtual channels.

crucial for the performance of the MIMO array. It can be obtained by a binary

convolution of the transmitting and the receiving array. A basic example is

shown in Fig. 2.12 where 2 Tx and 3Rx form a 6-element virtual ULA. For a

detailed derivation of the theory behind virtual arrays refer to [64, 65].

The main advantage of the virtual representation is that all DOA methods

which have been described so far can be applied to it, even though the physical

array is built with a MIMO concept. Special attention has to be paid to the

transmitter separation, because the sent signals have to be isolated precisely

in order to supply the required information for the DOA algorithms. Existing

techniques will be introduced in the next section.

Transmitter separation

Theproblemof separating thedifferent transmitted signals at the receiver side is

common for all kinds of MIMO radar systems. In fact, the phase and frequency

informationof thedifferent transmitters superimposes andadditionalmeasures

are required to extract the individual signals again.

In the context of digital communication systems, a similar problem is the

usage of a single communication channel by many participants. This can be

achieved by using an appropriate multiplexing technique which ensures a

correct combination of the different signals so that an inverse demultiplexing

process becomes possible at the receiving side.

For aMIMOradar system, theprevailingmultiplexing techniques aremore or

less identical to those used in telecommunications. The most relevant methods

are mentioned here and described briefly in the following list. For a better

understanding, they are further illustrated in a schematic representation in

Fig. 2.13.

Time-division multiplexing (TDM) Astraight forward approach is to activate

only one transmitter at a certain instant of time. Then, the signal at
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the receiving side is known to originate from a certain Tx antenna and

the virtual channels can be assigned unambiguously. Even though the

measurement time has to be shared by the individual Tx channels, this

approach is themost commonly used because it can be realized very easily

with a low hardware complexity.

Frequency-division multiplexing (FDM) Another obvious approach is the

simultaneous use of multiple frequency bands for the different transmit

antennas. The frequency offset between two TX can be chosen rather

small compared to the overall used bandwidth �. The minimum offset

is bounded by the required intermediate frequency (IF) bandwidth of a

single Tx. Then, the resulting total IF bandwidth at the receiver side

is the sum of multiple transmitters’ IF bands and optional guard bands

which imposes quite high requirements to the IF hardware. An example

implementation for such an FDM system was reported in [66].

Another possibility would be the employment of multiple mixer devices

along with dedicated ADCs for each virtual channel. This would help to

reduce IF bandwidth at the cost of a higher component count.

Code-division multiplexing (CDM) A potential way to solve the separation

problem in the digital domain is to employ a distinct code for each signal

which can be recognized again in the received signals. A possibility with

lowhardware effortwould be the usage of a binary phase shiftmodulation

(BPSK) with optimized code sequences [67].

In the rest of this thesis, only the TDM-MIMO technique is further used and

described, but nevertheless many algorithms and architectures can be used

without modification by other methods like FDM. In fact, the full steps of

range-Doppler processing, CFAR processing, target detection as well as DOA

estimation can be performed independently from the used modulation tech-

nique. Only some kind of demultiplexer has to be used first which isolates the

virtual channels present in the physical receiving channel.

Motion compensation

A drawback of the TDM-method in a MIMO radar environment is the occur-

rence of the Doppler shift for moving targets. Due to the non-stationarity of
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Figure 2.13: Different MIMO multiplexing techniques used in the context of an FMCW
radar system with two transmitters.

certain objects, the measured phase will change depending on the instant of

time. Therefore, if different transmitters are triggered sequentially, a phase

shift is introduced depending on the relative velocity. This phase shift has to be

compensated before any DOA estimation method is applied because the phase

relationship between all virtual channels has to be solely provoked by the DOA.

Various techniques for a motion compensation exist, e.g. the employment

of overlapping virtual channels [68]. Another possibility is the accurate esti-

mation of the velocity prior to the DOA estimation and the straightforward

compensation of the expected Doppler shift [69]. This method is also used in

this thesis.

2.4 State of the art

For nearly all driver assistance systems, a reliable sensor system is required in

order to provide the necessary information about the environment. Automotive

radar sensors are one big pillar of current ADAS
7
applications, due to their

7
Advanced Driver Assistance Systems
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robust and accurate distance and velocitymeasurement capability. This section

provides a brief overviewof themost recent trends anddevelopments regarding

commercially available radar sensors for automotive applications.

A steady growth in the number of equipped cars and thus in the number of

produced radar sensors can be observed in the last years. For instance Bosch

started with a series production of automotive radar sensors back in 2000 and

sold one million sensors until 2013 [70]. In the following years until 2016,

in total more than 10 million sensors were sold and a further increase is still

expected [71, 72].

On the technology side, some major changes were conducted compared to

the first generation sensors. In the beginning, the used semiconductor material

for the high-frequency components was mainly based on gallium arsenide

(GaAs), while it was more and more replaced by silicon-germanium (SiGe)

later [73]. Current research focuses on the use of pure silicon CMOS
8
which

would provide a further cost reduction and a better integration capability [74].

Beyond that, a combination of antennas, analog front-end and digital signal

processing blocks onto a single chip may be within reach.

Nowadays, more and more radar sensors utilize the 76 – 77GHz frequency

bandwhich is allocated for automotive applications and is approved for world-

wide use. Besides, a second frequency range from 77– 81GHz is available and

offers the possibility for a bandwidth extension even though it is currently

unused [3, p. 327]. This frequency band above 77GHz is still not approved

for vehicular radar use in some countries. However, the FCC (Federal Com-

munications Commission) has opened up the full frequency range from 76 to

81GHz in the US recently [75], so that a use of the full spectrum by automotive

radar applications seems to move closer. Consequently, wideband applications

incorporating a total bandwidth of up to 5GHz may become possible.

Some midrange sensors also operate in the 24GHz frequency band like for

example the Continental SRR 200 or the 24GHz Radar sensor from Hella. The

advantage of the lower frequency are mainly reduced component costs at the

disadvantage of a larger sensor size due to the increased wavelength [73].

From a modulation point of view, a predomination of FMCW-based sensors

can be clearly observed. Especially the chirp sequence modulation which is

said to “achieve the best possible utilization of the signal power, bandwidth,

8
Complementary Metal-Oxide-Semiconductor
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and measuring time” [3, p. 354] has been successfully brought to the market

recently. This modulation technique allows a significant performance gain

and is increasingly employed, despite its higher requirements on the signal

processing unit. Basically, the raw data rates grow significantly due to the

usage of fast frequency chirps which induce higher baseband frequencies [31].

Furthermore, current sensors only use a fraction of the available bandwidth. An

increase of this bandwidth would result in even higher baseband frequencies

which is a predictable scenario.

The higher data rates which are mainly a result of the faster analog-to-digital

(A/D) sampling rates in the case of fast chirp modulations have to be handled

under strict real-time constraints. Specialized signal processors have already

been developed for this purpose and dedicated radar co-processors which have

been integrated into automotivemicroprocessors are available. At themoment,

their acceleration capability is limited to very basic tasks, however, a further

increase in functionality is expected in the near future.

At this point in time, the following three products targeting the market of

signal processors for radar-based ADAS can be identified. Although their ad-

ditional functionality is confined on FFT accelerators and ADCs only, a trend

toward integrated and more specialized radar system building blocks is recog-

nizable.

NXP MPC577xK-MCU An automotive microcontroller offering a dedicated ac-

celerator block which is able to compute a fixed-point FFT. An analog

front-end including ADCs is also integrated which directly connects to

the FFT accelerator block. [76, 77]

Infineon Aurix TC297TA Similar to the NXP signal processor, this automotive

microcontroller incorporates an FFT accelerator unit as well as ADCs.

These blocks connect to the bus system of the processor which enables a

flexible data flow. [78]

Texas Instruments AWR1642 A complete radar system on chip (SoC) which

combines the analog circuits for the signal and ramp generation with the

digital parts like A/D conversion and DSP. It is manufactured in a radio

frequency (RF) capable CMOS process. [79, 80]

A further increase in computational power aswell as a larger number of units

will lead to the development of more powerful application-specific integrated
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circuits (ASICs) for radar in the near future. The basic signal processing tasks

can be progressively integrated as a hardware accelerator in order to attain a

maximum of performance and efficiency. A case study was conducted during

the development of this thesis which indicated that the expectable data rates

might exceed 10GBit/s andmore if the resolution and accuracy of the sensors is

further increased [36]. The raw data volume of a single measurement snapshot

can amount to more than 100MByte which cannot be handled reasonably by a

general purpose automotive microprocessor.

The already available accelerator blocks of current radar DSPs show the be-

ginning trend of higher integrated and more specialized radar ASICs. The

subsequent signal processing tasks like noise level estimation, target detection

and angle estimation also have quite high requirements in terms of computa-

tional load, so that an acceleration of these steps would lead to amore powerful

and efficient processing unit. At the same time, these algorithms consist usually

of a very regular schedule so that they offer a high potential for parallelization

and savings of computation time.

As a practical example, a recent study [81] investigates the integration of

a target detection accelerator into the specialized radar DSP Infineon TC29X
which has also been mentioned above. The conducted experiments show an

execution time speedup factor of 700 in comparison to the general purpose

central processing unit (CPU) which is integrated on the same chip.

2.4.1 Related work

Several isolated investigations and implementations of hardware accelerators

for automotive radar signal processing tasks have been reported in literature,

but a systematic design space exploration and an integration of the different

blocks has not been realized so far. Often, the intended applications are slightly

different and hence the implementations are not optimized for a use within an

automotive radar sensor employing a chirp sequence modulation technique.

The following paragraph lists some known examples from literature alongwith

their covered use-case. The examples are sorted by their covered algorithmic

sub-step, namely FFT, CFAR and DOA.

Langemeyer, 2011 [82] An architecture optimized for the processing of large

two-dimensional FFTs on an FPGA. The implementation is real-time capa-
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ble and can be used on a moving platform for SAR processing. A sophis-

ticated addressing scheme for dynamic random-access memory (DRAM)

is employed in order to increase the memory throughput.

Winkler et. al., 2004 [83] An automotive radar system which uses an FPGA

for signal processing. The radar system uses a pulse modulation scheme

and operates at 24GHz. A 256 point FFT which is based on a decimation-

in-time (DIT) Radix-2 butterfly as well as an OS-CFAR procedure is calcu-

lated on the FPGA.

Bales et. al., 2012 [84] A comparison of OS-CFAR implementations on dif-

ferent architectures including CPU, GPU and FPGA. The computation

is based on single-precision floating-point values and includes different

architectural variants. A focus is set on real-time capability and large

window sizes up to 256 cells.

Magaz et. al., 2008 [85] An optimized implementation of the OS-CFAR on

an FPGA is presented. The sorting is stopped after the desired value has

been found which helps to save resources. Some figures of the resource

usage are presented for a rather small window size of 16 cells.

Perez-Andrade et. al., 2010 [86] An OS-CFAR processor which is based on

a full sorting of all window cells is presented. The architecture is based on

an insertion sort approach which exploits the sliding window nature of a

CFAR processing. A list of already sorted window cells is kept in memory

while only one additional cell is inserted and removed per time interval.

Different window sizes up to 64 cells were evaluated.

Seguin et. al., 2011 [87] A digital beamforming system for weather track-

ing applications was developed and implemented on an FPGA. A conven-

tional beamforming approach based on phase shifts is used. The system

is capable to process 64 I/Q channels at a maximum sampling rate of

27MSPS. Multiple beams can be computed in parallel so that a real-time

processing of all samples is possible. No target detection prior to the

beamforming is conducted so that the requirements on the beamforming

data throughput are quite high.

Winterstein et. al., 2012 [88] A digital signal processor for a phased array

radar demonstrator is presented employing conventional beamforming.
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The intended application is a ground-based space surveillance radar,

though the described system is only a functional small-scale demonstra-

tor. It uses 16 channels operating at a sampling rate of 50MSPS. The

beamformer output consists of 256 beams which are computed for each

FFT cell.

Walke et. al., 1999 [89] An architecture suitable for the calculation of adap-

tive weights in real-time is presented. The weights for the subsequent

beamforming operation are approximated with the help of a QR decom-

position. This technique is an important preprocessing step if an adaptive

filtering of the input signals is required. The QR decomposition relies on

rotations in the complex plane which are realized with the help of Cordic

processors.

From the list above it can be observed that a variety of radar applications

rely on optimized processing architectures in order to handle high data rates

and a large number of parallel channels. The real-time constraints, however,

are often less strict as it is the case for automotive radars. On the other side,

certain applications have a higher throughput demand on the DOA estimation

step which is performed on the full raw data input. The requirements can

be lowered significantly if the detection takes places before this step. Such

discrepancies make it difficult to directly apply and reuse previous results to

automotive applications using current state-of-the-art chirp sequence modula-

tion techniques. It is thus indispensable to review existing approaches in the

context of changing conditions and also to consider the big picture of the whole

system.

Different approaches and realizations are investigated in this work. The ar-

chitectures which have been developed and optimized during this thesis are

presented in chapter 3. They cover the most essential radar signal process-

ing chain starting from a digitized time signal and arriving at a detection list

which includes, amongst others, the positional coordinates of all measured

target echoes. The underlying algorithms correspond to the ones presented in

this section, namely spectrum evaluation by an FFT, target detection including

CFAR and NCI as well as DOA estimation with the help of ML estimators. A

strong focus is set on the efficiency when being used with a chirp sequence

based FMCWmodulation technique.
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Besides, a comprehensive architecture for a radar pre-processing unit has

been built up which incorporates all the required modules. They are inte-

grated in a stream-based architecture and their data throughput capabilities

are adopted to each other. This allows the usage of a continuous data process-

ing pipeline which avoids unnecessary memory accesses because the data can

be directly transferred to the next module. The whole architecture is further

verified with the help of an experimental high resolution radar prototype (cf.

chapter 5).

Finally, the developed modules are investigated with the help of a model-

based design space exploration in chapter 4. Several important characteristics

can be seen in the results which help designers to partition and optimize a

future radar system.
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Processing

In the previous chapter, the theory behind automotive radar techniques and

corresponding algorithms was derived and explained. A focus was set on the

application of FMCW-based automotive radar sensors, using a MIMO antenna

array and a chirp sequence modulation. The advantages of certain algorithms

and their choice was motivated.

In this chapter, the efficient realization of the required signal processing

steps on dedicated hardware architectures is investigated, like for instance on

FPGAs or ASICs. The implementation along with architectural choices and

optimizations is described, specific properties are identified, numeric effects

related to fixed-point arithmetic are investigated and concepts for an efficient

DRAM utilization are proposed.

The chapter is organized in accordance with the signal processing chain

which is shown in Fig. 3.1. It startswith the spectrum evaluation of the raw time

signals which is realized as a two-dimensional FFT and described in section 3.1.

The following target detection step that incorporates a CFAR processing is then

presented in section 3.2. Finally, the angle estimation leads to a detection list

which contains all recognized objects along with their positional coordinates.

The realization of the required DOA algorithms on dedicated hardware is

explained in section 3.3.

Except the reuse and integration of existing pipelined FFT implementations,

all other modules were designed and built from scratch in this work. The

design was made at register-transfer level (RTL) so that a very good efficiency
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Figure 3.1: Overview of the signal processing chain with references to the respective
sections.

of the resulting implementations was achieved. The standard language VHDL
1

was used which makes it possible to map the individual modules to different

hardware targets. For this work, the hardware descriptions were successfully

mapped to a Xilinx Virtex 7 FPGA, though an adaptation to other vendors and

technologies should be possible.

The systematic investigation of the resource usage, power consumption and

performance characteristics is included in chapter 4. As mentioned above, all

modules were implemented on an FPGA and a model-based design space ex-

ploration (DSE) was conducted. The obtained model functions along with a

graphical representation of the results are shown for each algorithm. Further-

more, a basic comparison to a CPU-based realization is made.

Finally, a functional verification of the whole signal processing chain under

real world conditions inside a prototype vehicle is presented in chapter 5.

Parts of this chapter were also published in [26, 27].

3.1 Two-dimensional fast Fourier transform (FFT)

The very first processing step shown in the block diagram in Fig. 3.1 is the

two-dimensional DFT according to (3.1). The data samples B=,: are indexed by

= for the consecutive ADC samples and : for the frequency chirps. A common

way to perform this calculation is to execute the twofold sum in two separate

steps. First, the inner sum is calculated which only depends on the index =.

1
Very High Speed Integrated Circuit Hardware Description Language
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3.1 Two-dimensional fast Fourier transform (FFT)

This step corresponds to a one-dimensional DFT and, very importantly, can be

applied to each frequency chirp independently. The index : which stands for

the current frequency ramp remains constantwhile theDFT over the# samples

is computed. The results of this first stage DFT have to be stored until the last

ramp has been processed. Once all results of the inner sum are available, the

outer sum can be performed which is again a one-dimensional DFT, however

this time operating along the index :.

(D,F =

 −1∑
:=0

#−1∑
==0

B=,: · e−2�i
=D
# · e−2�i

:F
 (3.1)

The most obvious way to map this algorithm to an efficient implementation

is to use two conventional FFT processors which use a shared memory to store

the intermediate results. This memory has to be large enough to store and

transpose the full data matrix. For future high resolution radar sensors, the

data amount of a single measurement cycle can amount to 100MByte and

more [36]. Consequently, for a growing number of samples and ramps, only

external DRAM can provide enough capacity at a reasonable cost whereas an

on-chip storage is hardly feasible. The particular properties of a DRAM have

to be considered in order to achieve an adequate read and write speed, which

is described in section 3.1.3.

In terms of data throughput, the requirements on the 2D-FFT are the highest

among all processing steps, because the full raw data of all receiving channels

has to be handled by this block. In the worst case, the radar system uses a

modulation with a 100% duty cycle, i.e. there are no gaps between individual

chirps. Then, the data rate can be derived from the ADC sampling rate 5B , the

word length 1 and the number of receiving channels ".

For the experimental system presented in chapter 5, the maximum data

rate amounts to " · 1 · 5B = 16 · 14 bit · 250MHz = 56GBit/s. In this case,

a conventional bus topology where all processing elements are connected via

a shared datapath to the system memory would shortly operate at its limits.

Furthermore, the memory throughput would become a limiting factor if the

modules always load their inputdata fromand store their results to thememory.

A direct handover of the data between the modules along the processing chain,

without a transfer to the systemmemory, was favored instead. Hence, only fully

pipelined architectures for the realization of a streaming 2D-FFT accelerator
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were considered in section 3.1.1. In this context, streaming means that the

accelerator possesses enough built-in buffer memory to store all intermediate

results, so that no further interactions with the system memory are required.

An important design parameter is the word length of the data path. It

determines essentially the numeric accuracy and it has a strong influence on

the resource usage. The challenge for the system designer is to find a minimal

word length which fulfills all requirements of the application. In order to

achieve this, the origins of quantization noise during the 2D-FFT processing

should be well understood. A noise model for the used FFT implementation

with fixed-point arithmetic is presented in section 3.1.2 along with specific

optimizations explicitly related to the two-dimensionality of the FFT.

Lastly, an appropriate window function is applied to the input data before

the actual FFT processing. Its realization is described briefly in section 3.1.4 for

the sake of completeness.

3.1.1 Pipelined FFT implementations

For streaming applications, pipelined FFT architectures provide a very high

throughput. They are especially useful for real-time applications with a con-

stant workload, where a high degree of capacity utilization can be achieved.

In this work, only the choice of an appropriate architecture is motivated,

however in-depth investigations and optimizations of the FFT block itself have

not been performed. The theory behind streaming FFT accelerators is well-

established and the most relevant topics for a practical use are just mentioned

and referenced in this section.

Decimation-in-frequency (DIF) algorithm

The main principle of every FFT realization is to reuse the results of previ-

ous computations so that certain operations can be economized compared to a

brute-force implementation of the DFT. The first and also the most prominent

FFT algorithm is described by Cooley and Tukey [90] and uses a Radix-2 de-

composition. The basic idea is to split the full DFT into two halves which can

be processed independently and to put the individual results together in the

end. The two parts can be further split and so on, until a trivial transform of

the length two remains.
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Figure 3.2: Data flow diagram of an 8-point DIF FFT. Three butterfly stages with a dif-
ferent degree of interleaved edges can be identified.

The described approach is also referred to as decimation-in-time (DIT), be-

cause the decomposition is done in the time domain and the shorter result

vectors are put together in the end. In contrast, the decomposition can also be

realized in the inverse direction which is known as decimation-in-frequency

(DIF). In this case, the full length data is processed in such a way that the

two halves of the intermediate result can be handled completely independent

after the first decomposition. The flow graph of the DIF algorithm is shown in

Fig. 3.2 for an eight point FFT.

The DIF algorithm can accept the input data in its natural order, which

can be advantageous for certain applications. For this work only the DIF

decomposition is further considered, simply because a reordering of the ADC

input data stream can be avoided.

Radix-2 butterfly

As it was mentioned in the previous section, a longer transform length is

realized by recursively splitting it into two halves. The decomposition level

within the transform is often referred to as stage. The total number of stages #(

for a #-point FFT can be easily expressed by #( = log
2
# . At each stage, the

intermediate results of the previous stage are combined in an interleaved way.

A transform of the length two is also called Radix-2 butterfly, due to the

crossing edges in its graph representation. Two input samples are either added

or subtracted in order to form two output samples. Furthermore, one of the
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Figure 3.3: Single Radix-2 decimation-in-frequency (DIF) butterfly.

outputs gets multiplied by a constant which is called twiddle factor and will be

denoted as $D
#
. The subscript # is the length of the FFT while the index D

changes with the location of the butterfly in the signal flow graph (cf. Fig. 3.2).

The described procedure is specific to the Radix-2 DIF algorithm and depends

in general on the type of decomposition. The basic Radix-2 DIF butterfly is also

shown graphically in Fig. 3.3.

Except for the values of the twiddle factors and the degree of data interleav-

ing, the operations at each stage of the FFT are identical for thewhole transform.

Hence, the Radix-2 butterfly can be identified as the smallest building block of

a Radix-2 FFT implementation.

Depending on the data throughput requirements, dedicated FFT implemen-

tations can employ multiple Radix-2 butterflies which operate in parallel. An

often encountered realization is a fully pipelined architecture which uses one

dedicated butterfly for each stage. Below, the most prominent Radix-2 archi-

tectures are described briefly. They differ mainly in the data path and buffer

memories between the individual butterflies.

MDC pipeline

A straight forward implementation of the Cooley and Tukey FFT algorithm

is shown in Fig. 3.4. It is referred to as multipath delay commutator (MDC)

architecture [91, pp. 604 – 609]. It is realized with Radix-2 butterflies which are

combined in a DIF decomposition. This architecture can process two samples

per clock cycle and needs log
2
# − 2 complex multipliers. The last two mul-

tipliers in the pipeline can be replaced by trivial operations, even though the

butterflies are still shown in Fig. 3.4 for a better understanding. Furthermore,

several buffer memories are required which have the total size # − 2.

The input samples have to be provided in parallel and in the same manner,

the results are also output in parallel. If a continuous data stream in natural
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Figure 3.4: Radix-2 MDC pipeline with four stages.

order has to be processed, an additional buffer memory of size #/2 has to be

added in front of the pipeline. The processing cannot start until the first half of

the input data has been written to the input buffer. Hence, the utilization ratio

of the processing elements would only amount to 50%. Furthermore, the total

required memory size in this case amounts to 3#/2 − 2.

Several optimizations have been proposed in order to increase the utilization

of the multipliers and memories in the case of a single streaming data input.

For example when using feedback networks, the efficiency in terms of memory

usage can be improved. This class of pipeline architectures is known as single-

path delay feedback (SDF) network [92] and is presented in the subsequent

section.

Besides, if multiple parallel data streams have to be processed, the utilization

of the complex adders and multipliers of an MDC pipeline can be further

increased to 100%. This can be achieved by using a modified architecture with

a proper scheduling of the different data streams [91, p. 607], [93]. In fact, a

proper input buffer is added in front of the pipeline so that the two inputs can

be fed into the pipeline without interruption. In the case of MIMO systems

employing several parallel RX channels, this approach is a good alternative to

an SDF pipeline because a single MDC pipeline could be shared amongst two

or more channels.

SDF pipeline

A slightly different arrangement of the data buffers and the multiplexer ele-

ments inside the processing pipeline helps to reduce the overall memory size.

This architecture is known as single-path delay feedback architecture. As the

name suggests, only one data path connects the individual butterfly stages. As

a result, this FFT realization can process one sample per clock cycle, which

is only half of the throughput compared to the peak data throughput of an

MDC pipeline. Though, for a single channel streaming application, the average
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Figure 3.5: Radix-2 SDF pipeline with four stages.

throughput will be the same and this implementation requires only # − 1 stor-

age elements which is roughly 50% less than the MDC architecture including

the additional input buffer. The number of Radix-2 butterflies and thus the

number of multipliers is the same in both cases.

Similar to the MDC pipeline, the multipliers and butterfly elements of the

SDF pipeline are only used half of the time so that there is still room for

improvement. For instance when using a Radix-4 implementation, the number

of multipliers can be reduced at the cost of more complicated butterflies which

require more dedicated adders.

Another FFT algorithm for pipelined implementations was proposed by He

and Torkelson [94] and is known as Radix-2
2
algorithm. This optimization sim-

plifies the traditional Radix-2 FFT decomposition by considering two butterfly

stages at once. When modifying some of the twiddle factors, the multiplica-

tions at every second stage can be omitted or rather transformed into a trivial

multiplication by ±9. Adopting this modification to the presented Radix-2 SDF

architecture, half of the multipliers can be saved.

Even though not optimal in terms of butterfly utilization, a separate Radix-2

based processing pipeline provided by the Xilinx IP Core [95] is used for each

channel of the presentedMIMO radar system. The principal reason is the faster

implementation and integration time. The efficiency in terms of resource usage

could be improved in future work, for instance by using a multi-channel MDC

architecture.

3.1.2 Fixed-point arithmetic

In digital signal processing systems, all computations are carried out by discrete

values, predominantly binary numbers. A discrete value is just an approxima-

tion of a real number with a certain accuracy, because only a bounded set of
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numbers can be represented by a binary word. Basically two different concepts

are used within digital hardware, namely fixed-point and floating-point val-

ues. Their major difference is the way how the available bit-length is allocated,

which results in diverse strengths and weaknesses.

When using fixed-point arithmetic, a continuous range of values is mapped

in a linear way to the discrete representation, i.e. the distance between two

adjacent numbers is always the same. Each digit in the digital representation

has a fixed weight which simplifies further processing. In certain architectures

like for instance specific hardware coprocessors, the word length can be chosen

arbitrarily which enables an efficient implementation while the application’s

requirements are fully met. For this reason, many FFT accelerators are based

on integer numbers and various models for the induced quantization noise

have been developed [96–98].

In contrast, a floating-point value uses some of its digits to store an exponent

which can scale the actual value by a power of two. The concept is similar

to scientific or exponential notation which can be used to cover a large range

of values without losing too much precision for tiny numbers. In fact, the

continuous range of values is not mapped in a linear way anymore, because

the distance between adjacent numbers is not constant and thus the absolute

accuracy changes for each value. This drastically maximizes the dynamic range

compared to a fixed-point representation [99, p. 399]. Hence, a system which

uses floating-point arithmetic offers an improved flexibility and can be adapted

to many different applications.

The benefit comes at the cost of increased computational complexity, because

floating-point values require more complicated arithmetic units for basic oper-

ations like addition ormultiplication. Furthermore, the amount of quantization

noise is larger compared to a fixed-point number with the same word length.

Therefore, an FFT accelerator built with floating-point arithmetic is not further

pursued and a fixed-point realization was considered as a better choice. Given

that the two-dimensional FFT will always process the same kind of input data,

the dynamic range of the system is bounded and can be specified in advance.

For most signal processing algorithms, a rescaling of intermediate results

is necessary in order to prevent growing word lengths. For instance, a mul-

tiplication of two fixed-point numbers doubles the word length which is not

acceptable in most cases. The solution is to keep only a fraction of the inter-

mediate result for the subsequent processing steps. Though, any truncation or
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rounding operation in between the actual calculations will result in additional

quantization noise. Especially when using fixed-point arithmetic, the impact

of the additional rounding errors should be analyzed carefully in the context

of the expected signal characteristics.

Bit-accurate model function of an FFT

In the following subsections, several characteristics related to quantization

noise are investigated for the two-dimensional FFT implementation. For this

purpose, a bit-accurate function of a pipelined Radix-2 FFT accelerator, sup-

porting arbitrary word lengths and rounding modes, was used. The function

has been specifically implemented for this work, because existing realizations

which were available as Python or Matlab programs, did not prove satisfactory

due to their relatively long runtime. Hence, the function was developed in C

which enabled a sufficient large number of simulations with many different

parametrizations.

The FFT implementation is using aRadix-2DIFdecomposition and the values

are rounded and scaled after each stage, in order to emulate the behavior in

hardware. The width of the datapath is hence constant throughout the whole

FFT pipeline. Furthermore, the width of the twiddle factors can be adapted

independently and the rounding mode can be configured.

All studies presented within section 3.1.2 are own work and the results were

mainly obtained with the help of this model function. Either random values or

actual radar measurements were chosen as input. The real world radar data,

used for the analyses in this section, was recorded with the prototype setup

presented in chapter 5.

Selection of an ideal word length

In order to specify and compare the numeric performance of a fixed-point

implementation, a measurement unit similar to the SNR is used frequently:

The signal-to-quantization-noise ratio (SQNR) indicates the ratio between the

signal power and the quantization noise power. In general, the higher the

SQNR of a system is, the lower the influence of the quantization noise will be.

Likewise to the SNR, it is often denoted in logarithmic scale.

Adetailedquantizationnoise survey of theusedRadix-2 FFT implementation
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was carried out during the development of this thesis and was previously

presented in [27]. The derivation is based on previous work [100, 101] and

similar results were also published in [96]. A simplified noise model was used

which assumes a uniformly, independent and identically distributed (i.i.d.)

white noise source at each butterfly output. Quantization errors of the twiddle

factors were not taken into account, because their word lengthwas chosen large

enough so that they had only a minor effect on the resulting SQNR [100]. The

assumption of a uniform distribution of the roundoff error seems appropriate,

as long as the input signal occupies a wide bandwidth and has a sufficiently

large amplitude [102].

It turns out that for increasing FFT lengths, a more accurate arithmetic unit is

required inorder tomaintain a certain level of SQNR. Ingeneral twoparameters,

the word length 1 and the transform length of the FFT # , have to be considered

during the design process in order to meet the SQNR requirements of the

system. The relation between the parameters is

(&#' =
3�2

B

2#@2

=
3�2

B

2# 2
−21

(3.2)

where @ = 2
−1

denotes the weight of the least significant bit (LSB) and the

parameter �2

B describes the variance of the input signal. This equation is only

valid for a white noise input signal, whose power �2

B is equally distributed

across all frequency bins of the FFT. In such a scenario, if the FFT length # is

doubled, the word length 1 has to be increased by half a bit in order to maintain

a constant SQNR.

To illustrate the influence of the word length on real input signals, an ex-

emplary radar measurement was processed with a fixed-point FFT function.

For details about the used FFT implementation refer to the previous subsection

on page 60. The result is shown in Fig. 3.6 where the blue curve, which was

processed with double-precision floating-point arithmetic, acts as a reference.

It can be observed that the power spectra of the fixed-point versions lie

all above the reference. The reason is that always a certain amount of the

quantization noise power is added to the signal power. As expected, the noise

floor is the lowest for the floating-point version. Furthermore, the largest visible

deviations from the double-precision reference occur especially in regions with

a lower signal power. The difference for 1 bit word length is at most 6 dB, which
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Figure 3.6: Power spectrum of an FMCW measurement consisting of a single chirp. Only
the word length of the FFT is varied between the individual curves. The FFT
has 512 points and the frequency axis corresponds to the target range.

correlates with the stated noise model in (3.2). In regions with a higher signal

power, for instance around 5m target range, the quantization noise effect is less

severe and not visible due to the negligible contribution on the overall signal

power.

Impact of the FFT transform length

In a real radar system, the minimum sensitivity is determined by the height

of the noise floor in the power spectrum. The SNR of a single target after FFT

processing can be expressed by the distance between the signal level and the

noise floor. Hence, an SNR of 0 dB means that the signal power is at the same

level as the prevailing system noise and the corresponding target cannot be

detectedwithout further measures. A commonmethod to lower the noise floor

is to take longer signal sequences in combination with a longer FFT transform

length, which results in a so called processing gain (cf. section 2.1.4). In contrast,

the amount of quantization noise increases for longer transform lengths which

can reduce the overall gain.

Fig. 3.7 shows the resulting SNR of a single target from a real measurement

for different transform lengths# andword lengths 1. Asmentioned before, the

evaluation was carried out with a fixed-point FFT implementation (cf. page 60),

specifically developed in this thesis. The samemeasurement data is used for all

transform lengths, i.e. only a subset of the data is used for the shorter sequences.
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Figure 3.7: Overall SNR comparison of different FFT transform lengths. For very short
word lengths below 12 bit, serious artifacts appear in the spectrum which
are responsible for the visible outliers.

The shown values are denoted as total SNR, because they originate from the

superposition of several different noise components. As long as the individual

noise components do not have the same order of magnitude, the largest noise

source will dominate the total SNR while all the smaller noise sources do not

contribute significantly and can be neglected.

In order to obtain and measure the SNR, the signal level was extracted from

a fixed target and the noise level was estimated from several FFT cells which do

not contain any target. The absolute SNR level is tightly coupled with the size

and the distance of the used reference target, which means that the presented

absolute values vary heavily depending on the observed scenario.

In this diagram,mainly two different areas can be identified, the quantization

noise dominated section at the left and the thermal noise dominated section

on the right. For a sufficient word length of 1 > 18 bit, the total SNR gets

saturated and the expected processing gain for the different transform lengths

can be observed clearly. Each time the transform length # is doubled, the

SNR increases by about 3 dB. When looking at the transition phase between

the two domains, i.e. around 16 bit word length, it can be seen that for a longer

transform length also a bigger word length is required in order to reach the

saturation region. This property coincides with (3.2) where the amount of

quantization noise is determined by the word length as well as the transform

length. However, in the quantization noise dominated section at the left, no
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difference in SNR between the individual transform lengths can be observed.

The reason for this remarkable effect is a slightly different definition of the total

SNR and the SQNR which will be explained in the following paragraph.

The SQNR relation in (3.2) considers the input signal to be white noise which

will equally spread across all frequency bins of the FFT. However, for a de-

terministic input signal with a single frequency component, the whole signal

energy will concentrate in a small frequency segment or even in a single bin.

Hence, if only the relation between the signal energy of a discrete target and the

quantization noise is used to extract the SQNR, then (3.2) is not valid anymore.

This is the reasonwhy the total SNR in the left section of Fig. 3.7 is independent

from the transform length, even though (3.2) suggest otherwise.

For a general radar system application it should be ensured that the added

quantization noise does not deteriorate the total signal-to-noise ratio. The

SNR is a key parameter for reliable target detection, because smaller targets

with a weak echo signal can be masked by the noise floor which makes them

undetectable. Hence, noise components arising from fixed-point computations

should be clearly below the systemnoise components (e.g. thermal noise) in any

case, i.e. the system should always be situated in the thermal noise dominated

domain.

Rounding to integer

Special attention has to be given to the used rounding mode when computing

the FFT. As mentioned in the previous section, the intermediate results have to

be rescaled after each stage in order to prevent the word lengths from growing

too fast. The simplest way is to truncate the values because no extra logic is

required for this operation.

The quantization error in the case of a truncation, also known as rounding

towardminus infinity, varies between 0 and -1 and can bemodeled by a random

variable following a uniform distribution [102, 103]. This form of rounding

involves a deterministic error contribution due to its non-zeromean component

which can be problematic for certain applications. The expected value for the

noise components is −0.5 @ for each truncation operation. As long as a single

dimensional Fourier transform is considered, a constant bias toward minus

infinity will not have an immediate effect on the subsequent target detection

operationsbecause the error and thus thenoise energy is still equallydistributed
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across the whole spectrum.

However in the case of a two-dimensional FFT, a non-zeromean quantization

noise component has an annoying effect on the resulting power spectrum. The

bias introduced by the first-dimension FFT gets subsequently concentrated in

the DC bin of the second-dimension FFT, because it adds up constructively due

to its non-zero mean noise component.

This effect can be observed in Fig. 3.8 where an exemplary measurement

illustrates the influence of the rounding mode of the FFT on the resulting

range-Doppler power spectrum. The two small additional figures on the bottom

provide just an enlarged viewof this effect. The input data consists in both cases

of 512 samples times 512 chirps and is processed with a two-dimensional FFT.

The word lengths of the FFTs are identical: 17 bits are used for the first FFT,

24 bits are used for the second FFT and the twiddle factors are quantized with

24 bits word length for both dimensions. The figures were obtained with the

help of a custom FFT implementation, which has been introduced on page 60.

For the simple truncation-based rounding implementation, a deterministic

non-zero mean component manifests itself as a horizontal line in the center of

the left spectrum of Fig 3.8. This local deviation of the noise power is certainly

cumbersome for the following target detection process, because it resembles a

real target. An additional check would have to be performed in order to avoid

a false detection near the line where E = 0. Furthermore, a real target could be

simply masked, and thus the sensitivity for these bins is considerably worse.

This situation can be observed for a small target at a distance of approximately

43m in Fig. 3.8a.

An effective countermeasure is the usage of a more advanced rounding

scheme which only induces a zero mean noise component. Even though some

extra logic is required for the realization, it can still be more efficient than using

a wider word length for the whole implementation.

An actualmethod is known as round to nearest and in a special form convergent
rounding, which minimizes the absolute error during a single rounding opera-

tion (refer to Fig. 3.8b and Fig. 3.9). Special attention has to be paid when the

value lies exactly half between two integers. For instance consider a number

like 13.5 which could be rounded either to 13 or 14, introducing an error of +0.5

or -0.5, respectively. Such a situation must not always be treated in the same

manner, e.g. always rounded down, in order to avoid a small but deterministic

bias in the overall error distribution. An established solution is to round to the

65



3 Architectures for Real-time Signal Processing

0 20 40 60 80
−10

−5

0

5

10

Range [m]

V
e
lo

ci
ty

[m
/s

]

−100−80−60−40
Power [dBFS]

40 45 50 55 60 65
−0.4

0

0.4

Range [m]

V
e
lo

ci
ty

[m
/s

]

(a) Truncation

0 20 40 60 80
−10

−5

0

5

10

Range [m]
V
e
lo

ci
ty

[m
/s

]

−100−80−60−40
Power [dBFS]

40 45 50 55 60 65
−0.4

0

0.4

Range [m]

V
e
lo

ci
ty

[m
/s

]

(b) Convergent rounding

Figure 3.8: Influence of the FFT’s rounding mode on the resulting power spectrum.

nearest even number if the value lies exactly half in between. Then, no direc-

tional tendency is introduced because the value is rounded up and down with

the same incident rate, depending on the digit before the point. This rounding

mode is referred to with various names, e.g. convergent rounding [101], round ties
to even [99, 104] or mathematical rounding [105, p. 391].

Word length optimization for the 2D-FFT

For a quantitative comparison of different word lengths, a proper measuring

unit is used which is based on the mean squared error (MSE) of the FFT result.

The peak signal-to-noise ratio (PSNR) expresses the MSE in relation to the

maximum possible value (<0G which is also referred to as peak signal. It is
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Figure 3.9: Comparison of two rounding modes. The input variables G are rounded
according to the respective quantization function &(G) to the result G@.

usually indicated in decibels and can be calculated as follows:

%(#' = 10 log

(2

<0G

1

# 

∑#−1

D=0

∑ −1

E=0

���(̂D,E − (D,E ���2 (3.3)

where D, E are the indices of the two FFTs, #,  are the number of FFT samples,

(̂D,E is the fixed-point result and (D,E is the noise-free result, mostly computed

with the help of double-precision floating-point values.

Asmentionedat thebeginningof this chapter (cf. page 53), the two-dimensional

FFT is computed in two steps with a matrix transposition in between. Intu-

itively, it seems reasonable to use identical word lengths for the two FFT trans-

forms, so that all rounding operations during the computation cause an error

within the same order of magnitude. However, it turns out that if different

word lengths are used for the two transforms, nearly the same level of PSNR

can be reached but with a significant lower resource usage.

Furthermore, an asymmetricword length implementation canbe appropriate

when considering additional constraints like the available memory bandwidth.

For instance a second optimization goal might be to limit the word length of the

intermediate results in between the two transformswhilemaximizing the PSNR

at the output. If the word length of the second FFT is larger than the result of

the first FFT, an improvement in terms of quantization noise contribution can

be attained to a certain extent.

Fig. 3.10 illustrates this use case for different combinations of the word
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Figure 3.10: PSNR level as a function of different FFT word lengths.

lengths. On the x-axis, theword length of the second stage FFT (i.e. the Velocity

FFT) is shown, while on the y-axis the corresponding PSNR value is shown.

Distinct curves are used for different word lengths of the first stage FFT (i.e. the

Range FFT). The twiddle factors were quantized with 24 bits word length for

both dimensions and the transform length of the FFTs is 512 times 512 points.

The presented evaluation was performed as part of this thesis’ work and

makes use of a custom, fixed-point FFT function (cf. page 60). The PSNR value

was first calculated based on simulated input values following a zero-mean

Gaussian distribution (Fig. 3.10a) and subsequently based on real world data

from a moving vehicle on public roads (Fig. 3.10b). Multiple measurements

were investigated and the results were virtually similar so that the presented

characteristics should hold for a wide range of situations.

The simulated data was obtained by using random input values following a

normal distribution. It can be observed that the PSNR gain for the additional

bits in the second stage FFT is very close to the ideal behavior of +6dB PSNR

per bit, as long as the word length of the first stage FFT is not too short. Once

the word length of the Velocity FFT is more than 4 bits longer, the PSNR does

not increase anymore and saturates. The point of the transition into saturation

is probably interesting for the system designer, because it can be considered

as an ideal word length combination with the highest PSNR to resource usage
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ratio. The difference of 4 bits has to be regarded as specific value for this

configuration and may not be generalized, because it depends on the lengths

of the FFT transforms.

The PSNR relation for real measurement data differs clearly from the simu-

lated data. If the word length of the second stage FFT is below 20 bit, the slope

of the curves is considerably smaller than 6dB and the overall PSNR value is

larger compared to the simulated input data. It seems that the input signals

cannot bemodeled appropriately byGaussian noise in this case. Once theword

length is long enough, however, the slope of the curves increases and converges

to the simulated ones. Furthermore, the absolute values are quite the same for

word lengths of 20 bit and above.

Dynamic scaling between the two FFTs

Additional improvements regarding the utilization of the available memory

bandwidth can incorporate block-floating-point strategies. A full-scale ampli-

tude after the first FFT transform is rarely attained, which offers the possibility

to further optimize the dynamic range at this point. For instance a radar sensor

without any range compensation method will provide much lower signal am-

plitudes for targets at larger distances. The theoretical free-space path loss for a

point target is proportional to A−4
and amounts to 40 dB per decade [28, pp. 54 –

57]. This means that more than 6 bits less would be utilized each time the

distance increases by a factor of ten (1 bit ∼ 6 dB).

The free-space path loss effect is illustrated in Fig. 3.11 where the relative

power level of a single target is shown. Multiple measurements from different

ranges of a single, static corner reflector with a fixed direction of arrival were

conducted, so that the power level as a function of distance was obtained. The

visible attenuation effect arises from the range dependent free-space path loss

effect as well as from the frequency response of the used radar system.

The measurement was carried out on an empty test track, so that no interfer-

ing targets were present. However, multi-path effects with the ground surface

could not be avoided which manifest themselves in positive and negative inter-

ference. The consequence is a relatively strong variation of the power level at

certain distances. Though, the overall trend of the signal power is observable

and a power loss of more than 40dB per decade is noticeable. As a result,

the red line indicating the theoretical free-space path loss can be considered as
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Figure 3.11: Resulting power level of a single target at various ranges.

valid model assumption for the proposed optimization technique.

Actually, a total power loss beyond the theoretical free-space attenuation

is visible, i.e. the blue curve decreases faster than the red one and a gap of

approximately 25 dB becomes apparent for larger distances. It is supposed

that the additional attenuation arises from the frequency response of the used

electronic circuits. However, they are only specific to the used prototype radar

sensor and the additional power loss should not be generalized.

In thiswork, a basic range compensationmethod has been developed and im-

plemented. It shall account for the lower signal amplitudes in farther distances

and thus improve the dynamic range. The method has been designed on the

basis of own observations and will be presented in the following paragraphs.

According to the expectable attenuation due to the free-space path loss, the

frequency spectrum is divided into multiple domains, each having a different

power-of-two scaling factor. Hence, the compensation can be realized by a

simple bit shift operation. The actual number of bits by which the digits are

shifted to the left depends on the target range and is illustrated in Fig. 3.12. The

boundaries between the different scaling domains were selected to match the

theoretical free-space path loss effect. For an ideal compensation, a scaling of

the signal power proportional to A4
is necessary which corresponds to a scaling

of the amplitude proportional to A2
. Thus, the signal amplitude should be

doubled each time the target distance increases by a factor of

√
2. However,
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Figure 3.12: Power of two scaling factors which are applied after the first FFT. The num-
bers inside the rectangles correspond to the bit shift applied to a delimited
target range domain.

some of the sections were slightly extended so that the edges fall on a power-

of-two fraction which can be calculated more easily. Seven different domains

have been chosen in this particular example even though this number can be

adapted to the application’s needs.

For a better understanding, the scaling schedule has been integrated into

Fig. 3.11 by indicating the maximum signal power which may occur at a certain

range. Obviously, the curve for this power limit (brown color) approximates the

theoretical free-space loss, indicated by the red curve. Note that the absolute

value of the power limit is adapted to the reference target (blue curve) for a

more convenient representation. In reality, the interspace to the actual power

limit of the sensor is more than 20dB for the used reference target.

When computing the Range FFT, the signal energy is evenly distributed

between the positive and negative frequency bins due to the real-valued FFT

input. Consequently, the maximum amplitude after FFT processing can only

amount to 0.5, given that the FFT is already scaled by
1

# during processing and

that the maximum input amplitude is 1. Hence, the values in the first domain

in Fig. 3.12 are multiplied by a factor of two even though the signal attenuation

is minimal for these frequency bins.

During processing, the actual compensation is applied in between the two

FFTs. The results of the first FFT are shifted left while their void MSBs
2
are

discarded. No overflow should occur, because the MSBs equal zero due to

the small amplitudes at larger target ranges. A simple check during runtime

can monitor any overflow event, even though no further measure is taken to

avoid such a case. The bit shift is predetermined for each frequency bin and no

additional information incorporating the current exponent is stored in order to

save memory bandwidth. The actual bit shift can be obtained from the current

range index information. It is finally reversed after the second FFT and the

2
Most significant bit
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Figure 3.13: Comparison of the PSNR level with and without dynamic scaling. Values
are based on measurement data from public roads.

CFAR processing, allowing these signal processing steps to benefit from the

improved dynamic range.

When using the proposed scaling scheme from Fig. 3.12 in practice, not a

single overflow condition was observed during several hours of test drives,

corresponding to more than 10
6
measurement cycles, so that the free-space

path loss model assumption appears to be valid. The additional gain in PSNR

compared to an implementation without range dependent scaling is shown in

Fig 3.13.

The PSNR level after a two-dimensional FFT processing was calculated with

the help of real measurement data and is shown for different word lengths. The

twiddle factors are quantized with 24 bits for each dimension, and the size of

the FFT is 512 times 512 points. The left figure does not use any scaling between

the two transforms, while the right figure shows the result incorporating the

proposed dynamic scaling scheme. The computations have been performed

with a fixed-point FFT implementation, which was specifically developed for

this thesis (cf. page 60).

It can be observed that a considerable amount of quantization noise can be

avoided, if the signals are scaled in between the two FFT transforms. The

required logic for this operation can be minimal, e.g. a barrel shifter which is

controlled by a simple counter is sufficient for the proposed scaling procedure.
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3.1 Two-dimensional fast Fourier transform (FFT)

The advantage is a considerably higher PSNR level while the resource usage

stays more or less constant.

3.1.3 High-throughput matrix transformation with SDRAM

After the FFT of the first dimension has been computed, i.e. the Range FFT,

the intermediate results have to be stored in a buffer. The computation of the

second dimension FFT, i.e. the Velocity FFT, cannot start before the Range FFT

of the last frequency chirp has been written to this buffer. Hence, a quite large

memory is required which has to cope with a high data rate at the same time.

In the following sections, a solution based on SDRAM
3
is presented, which will

be used throughout this work.

Requirements to the memory

The matrix transformation in between the two dimensions of the FFT has a

rather high requirement in terms of data throughput, because the full data

amount of the chirp sequence has to be written to memory and read again

during each processing cycle. Unfortunately, the large data amounts impede

theusageof fastmemory cells realizedas anon-chipbuffer. Evenwith shrinking

semiconductor technology, the storage volumes which exceed easily 100MByte

andmore [36], cannot be handled efficiently by on-chip RAM. It is thus obvious

to employ an external DRAM memory for this processing step which offers a

larger and more cost-efficient storage capacity.

If an FFT transform of real input values is computed, like it is the case for

the Range FFT, only half of the results have to be transferred to RAM due to

the symmetry of the transform. At the same time, these results now consist of

complex numbers so that the overall data amount is still not reduced after the

first FFT. Furthermore, the word length of the transform is often chosen larger

than the word length of the input data to avoid quantization noise effects and

to accommodate the processing gain of the FFT (cf. also section 3.1.2).

For the radar system used in this work, the maximum data rate at the DRAM

interface amounts to 64GBit/s if all 16 channels with a 16 bit word length

are used at their maximum sample rate of 250MHz. Such a high data rate can

3
Synchronous dynamic random-access memory
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already exhaust current state of the art DDR4 interfaces so that special attention

has to be paid to the addressing scheme.

The maximum data throughput of a DRAM interface is given by its data

width and the operating clock frequency. A state-of-the-art DDR4-2400module

with a 64 bit interface would accordingly achieve a peak data transfer rate

of 2400 · 64MBit/s ≈ 150GBit/s. However, this value is only a theoretical

boundary which cannot be reached in most applications due to certain limiting

factors.

Refresh cycles Periodic refresh cycles are required to avoid data loss due to

leakage currents. These memory refresh operations occur in between the

actual read and write operations and do not contribute to the achievable

data transfer rate.

Read/Write turnaround The data bus is shared between read and write op-

erations which imposes a certain turnaround penalty. This means that an

additional delay has to be introduced each time the data transfer direction

is about to change. For faster data bus speeds, the relative delaymeasured

in number of clock cycles increases and becomes more significant [106].

Access time An important constraint of DRAMs are the intrinsic memory

timingswhich specify aminimum latency for eachdata access. Depending

on the type of the operation, a certain delay is added which is typically

measured in number of clock cycles of the interface speed. There are

always different kinds of delays specified, because certain commands can

be executed more quicker than others.

Special attention has to be paid to the employed addressing scheme, because

eachmemory location is determinedbymultiple address parts. Conventionally,

DRAM is divided into rows and columns, which can be implemented several

times in parallel in multiple memory banks. Since the introduction of the DDR4

standard, multiple banks are further organized in bank groups which can also

be selected by an extra address input [107].

To access a single memory location, the corresponding row of the memory,

also known as page, has to be activated first and then the desired column can be

accessed in a subsequent command. Once a single row has been opened, the

following column operations can be executed more quickly. Hence, a strategy
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which minimizes the number of row activations will increase the efficiency of

the memory system. For CPU-based systems, often the whole page is trans-

ferred into the processor’s cache even though only a single data word out of it

is required.

A typical delay for a column access amounts to 16 clock cycles for a DDR4

module [108], but the actual data is transferred in only four clock cycles. In

other words, the memory interface operates much faster than the DRAM it-

self. Fortunately, multiple commands can be interleaved because the internal

banks of a single memory circuit can operate in parallel. A proper command

scheduling is thus likewise essential if a high utilization rate of the data bus

is desired. A suitable strategy maximizing this efficiency is described in the

following section.

Optimized addressing scheme for SDRAM

The most obvious way to map a two-dimensional array to a linear memory

address is to use either a row-major or column-major order. In the first case, the

subsequent elements inside a single row are located next to each other. In the

latter case, the data is stored column by column, i.e. the consecutive elements

of one column are located nearby.

If used in combinationwith an SDRAM, such an addressing schemewill only

perform well when accessing contiguous data in one certain dimension. For

instance, if a row of the data matrix is mapped to a single row of the SDRAM,

then a row-wise access is ideal and the number of required row activations

is minimal. However, a column-wise data transfer will result in a very poor

performance. Then, for every element of a single column, a new row has to be

activated which introduces a large delay. Hence, additional measures should

be taken when a matrix transformation at high data rates is desired.

A common solution used by many implementations is to employ a window

based address mapping scheme [109–111]. The idea is to fill each memory row

evenly with consecutive data words from both dimensions. Instead of filling

the whole row by a continuous data fragment of the first dimension, only a

short block is written to the beginning of the row, so that a bigger part of the

row remains unused. Some of this free space is then later filled by a second

block when the index of the second dimension increases, and so on. The result

is that each memory row contains consecutive data words in both dimensions.
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Figure 3.14: Window-based address mapping.

The overall row activation count is minimized by this approach which helps to

improve transfer speed [109] and energy efficiency [111].

This approach is illustrated in Fig. 3.14, where the full data matrix holding

#
2
· samples is decomposed into several rectangular blocks. Only half of the#

samples of the Range FFT have to be stored due to the symmetrical spectrum.

Each block of the size ' · � contains several data samples of both dimensions

with the word length �. The block size is chosen in a way so that the data

amount matches the capacity (?064 of a single row of the employed SDRAM.

' · � · � = (?064 (3.4)

In addition to the window address mapping scheme, a bank interleaving

scheme similar to the approaches described in [112, 113] was used to further

optimize the memory transfer rate.

The assignment of a data block to a physical memory row is depicted in

Fig. 3.15. Each row of memory holds one data block, which further holds

' · � samples. The data blocks are indexed by their position inside the two

dimensional matrix, as it is shown in Fig. 3.14.

Adjacent blocks are then written in an interleaved manner to different mem-

ory banks. This happens likewise for both dimensions, so that in total four

memory banks are required. With this approach, a transition from one data
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block to the next block will always result in the usage of a different memory

bank. Accordingly, the row activation delay can be successfully hidden, be-

cause an alternation of the currently used memory bank will occur each time a

new data block has to be addressed. This is likewise true for a row-wise and a

column-wise data access.

When observing the data block to memory bank assignment in Fig. 3.15, it

can be seen that Bank 1 holds the blocks with an odd column index, while

Bank 2 holds the blocks with an even column index. Both, Bank 1 and 2 store

only blocks of an odd row index. Accordingly, Bank 3 and 4 store data blocks

with an even row index.
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Figure 3.15: Optimized bank interleaving scheme with four memory banks.

3.1.4 Window function

It is known from theory, that the Fourier transform of a signal which contains

only a single frequency component will produce a sharp peak in the spectrum.

For instance, the transform of a real-valued sinusoid with frequency $ will

be zero, except at the positive and negative frequencies ±$. Such a behavior

would be ideal for a radar system, because superimposing signalswith different

frequencies originating from closely spaced targets could be separated with

infinite accuracy.

Though, in practice it is not possible to obtain a signal of infinite duration.

Rather, only a finite excerpt or time frame of the actual wave can be measured

and processed. Hence, the spectral transformation of a time-windowed sinu-

soid will suffer from spectral leakage effects. That is, a multiplication with a
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Figure 3.16: Application of an arbitrary window function prior to the actual FFT com-
putation. The coefficients are stored in an on-chip SRAM. The imaginary
data path only exists for the Velocity FFT.

certain window function F[C] in the time domain will produce a convolution of

the transform of the actual signal ([:]with the transform of the window func-

tion ,[:]. For instance a rectangular window in the time domain, resulting

from a finite number of input samples for the FFT, will result in a sinc function

in the frequency domain. Especially the sidelobes of the sinc function are prob-

lematic because they could mask real targets with a lower signal amplitude.

Hence, the application of appropriate window functions prior to the actual FFT

computation is an established measure to lower the amount of spectral leakage

which finally improves the detection performance.

Many different functions have been reported and investigated in the past

[114, 115]. With parametric window functions, a large variety of different

functions eachwith its proper characteristics exist. A trade-offbetween sidelobe

suppression and target separability has to bemade, so that it is difficult to chose

one window function which fits for all possible applications.

In order to maintain a certain degree of flexibility, the employed implemen-

tation of the window function uses a run-time configurable memory which

stores the function coefficients. During processing, the values are read from

the memory and applied to the actual input data stream in linear order. A

simple counter is used as address generator which counts upwards until the

#
2
-th sample is reached. Then the direction is changed and the same values

are read in inverse order. This is possible because all window functions are

symmetric so that half of the storage space can be economized.

The realization of the module is shown in Fig. 3.16. The second, dashed

datapath on the bottom is only required for the Velocity FFTwhich is computed

on complex-valued input data.
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3.2 Target detection

The main objective of the target detection step is to distinguish target echoes

from interfering noise and clutter components, as itwas described in section 2.2.

The target detection block operates on the evaluated frequency spectrumvalues

and provides a binary decision signal for each frequency cell. Only those cells

which are considered as a valid detection will be further processed by the

subsequent algorithms. Therefore, this step can help to reduce the data rate

which lowers the requirements for all downstream modules.

The target detection process used in this work is mainly based on two sub-

steps, namely constant false alarm rate (CFAR) processing and non-coherent

integration (NCI). These steps aim to mitigate varying operational conditions

as well as to improve the detection performance. First, the realization of the

CFAR processing module will be presented in section 3.2.1. Afterwards, the

implementation of the NCI will be described along with the architecture of

the overall detection module in section 3.2.2. For the underlying theory of the

algorithms, refer to section 2.2 in the previous chapter.

3.2.1 Rank-only OS-CFAR

It was explained in section 2.2.1 that the OS-CFAR processing performs very

well in multi-target scenarios. Thus, it is considered as a suitable candidate

for automotive radar sensors and will be further investigated in this section.

Primarily, an efficient implementation of the OS-CFAR processor is presented

and analyzed.

The main task of an OS-CFAR realization is to find the :-th largest value

inside a window consisting of # values. The :-th value serves as a noise

estimate by means of which an adequate decision can be made, whether the

cell under test (CUT) should be considered as target or not. In general, a

straightforward solution to this problem is to sort all cells inside the window

which can be a quite expensive operation. Hence, a direct implementation of

the algorithm can be cumbersome if # becomes too large. Unfortunately, with

increasing resolution capabilities of the sensors, that is exactly the case: The

CFAR window needs to grow which is explained in the following paragraph.

The basic assumption in the case of a CFAR processing is that the bigger part

of the window cells only consist of noise components. Hence, the minimum
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window size of a CFAR detector should be designed so that even large and

widespread targetswill never occupymajor parts of thewindow. Consequently,

if the range and velocity cells are becoming smaller andmore fine-grained, then

a higher number of cells is required to maintain a certain spatial expansion of

the window. For this work, window sizes of 64 cells and larger were used,

which cause a high sorting complexity. It should be kept in mind, that the OS-

CFAR procedure has to be applied to each cell of the range-Doppler spectrum

which can easily comprise a million bins. So even if a list of 64 values can be

easily sorted, this procedure would have to be repeated a million times during

one measurement cycle.

Interestingly, the complete sorting of the whole window is not necessary to

obtain a decision result according to the OS-CFAR algorithm. Hence, a brute-

force implementationwhich relies on a full sortingwould not be a very efficient

solution. Most importantly, two aspects of the OS-CFAR sorting characteristics

have to be considered:

• Only a single value of the sorted list, the future noise estimate, is of interest,

while all other entries are discarded. In other words, the algorithm is not

dependent on a fully sorted list, it only requires to know the :-th largest

value in a set of items.

• When evaluating a continuous spectrum, the CFAR processing can be

applied as sliding window, i.e. neighboring cells are evaluated one after

another. In this case, the previously sorted list can be kept in memory and

used as a starting point.

Several optimized implementations of the algorithm aim at these specific

sorting characteristics. For instance, a “:-th maximum search” can be per-

formed which finds the greatest value and removes it from the set. This step is

repeated until the :-th value has been found [85]. Another efficient realization

uses a sliding window approach which keeps a sorted list in memory [86].

Now, whenmoving the window one step further, the insertion of a single value

requires at most # comparisons.

Besides, if one is only interested in the decision result, the complete sorting

of the list can be bypassed and the detection step can be performed in a “rank-

only” manner [84]. According to this method, the inverse threshold is applied

to the CUT and the result is compared to each cell inside the window. The
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Figure 3.17: Realization of the CFAR module as rank-only variant.

binary comparison results, i.e. 1 if the value is bigger – 0 if not, can be summed

up to get a rank. Only if the actual rank is higher than the desired one, the CUT

is considered as valid detection. This approach is depicted in Figure 3.17.

In contrast to a complete sorting, the rank-only algorithm depends only on

# comparisons. The complexity is thus linear for growing window sizes. The

target decision result is exactly the same, i.e. there is no performance loss. The

only disadvantage is the lack of the :-th value, which is not determined by

the rank-only algorithm. This value could serve as an estimate for the local

noise level and may be required by subsequent signal processing blocks. A

supplementary estimation of this value could be envisaged in this case, e.g.

the computation of the mean value of all neighboring cells which have already

been classified as noise.

FPGA implementation

The rank-only implementation form has several advantages, especially due

to its low computational complexity even for large window sizes. Thus, it

was further investigated in this work by a novel FPGA implementation. The

architecture of the module is shown in Fig. 3.17 and more implementation

specific details are provided below. In contrast to the work presented in [84],

fixed-point arithmetic was used in this case. Consequently, a significant better
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area efficiency is achieved so that the observed resource usage is lower by

approximately a factor of three for a word size of 16 bit (cf. also Tab. 4.1 on

page 117).

The sliding window of the CFAR processor is implemented with the help of

a shift register. Current FPGA devices offer several different building blocks

which can be used as on-chip memory, namely Block RAMs, lookup tables

(LUTs) and ordinary flip-flops. For the presented OS-CFAR architecture all

signal values inside the window need to be accessed and read at once. Hence,

a data tap is required at each position of the shift register and solely flip-flops

can be used for its realization.

Each register of the sliding window is routed to a dedicated comparator,

whose second input is fed by the CUT with the inverse scaling factor applied.

The comparison result is routed to a binary adder with # inputs. Several LUTs

are cascaded for this step, which could impose an upper limit to the clock

frequency. In order to maximize performance, the sum is implemented in two

steps, i.e. the lower and the upper half of the window are added up separately

before the final rank is computed. That is, an extra register stage is inserted and

the adder is thus pipelined. If a further improvement would become necessary,

the binary sum could be split into smaller chunks which are added together in

even more stages.

3.2.2 Target detection accelerator

The rank-only OS-CFAR module which was described in the previous section

can be further combined with an NCI module. This has several advantages

in terms of detection performance (cf. section 2.2.2), but also in terms of re-

source usage as it will be shown in this section. The processing pipeline can

be designed so that a continuous data stream can be handled by the sliding

window of the CFAR implementation. The delay which is introduced by the

NCI and CFAR processing can be compensated by an adequate buffer. Hence,

an on-the-fly target detection is possible, before the raw FFT results from the

spectrum evaluation are transferred to the next module, interface or memory.

This helps to save valuable interface bandwidth because all noise components

can be eliminated immediately.

The overall architecture of the target detection accelerator is shown in Fig. 3.18

and remarkably, it operates like a filter. The data itself is not changed inside
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Figure 3.18: Block diagram of the comprehensive target acceleration module, includ-
ing NCI and OS-CFAR.

the module, however certain data cells are dropped and discarded according

to the CFAR result.

The whole module can process one sample per clock cycle without interrup-

tion. Only at the boundaries of the data matrix, the CFAR window has to be

filled anew. This is accomplished by supplying the data from the opposite side

of the matrix as a prefix. Hence, the data is circularly repeated which conforms

to the cyclic properties of the complex-valued Velocity FFT. Accordingly, a bin

at one end of the spectrum can be considered as immediate neighbor to a cell

at the other end of the spectrum.

The NCI, which is basically a summation of the squared amplitudes of all

receiving channels, is implemented as a binary adder tree. This permits the

insertion of multiple pipeline registers which helps to assure a certain perfor-

mance level for growing channel numbers. At the same time, the additional

delay is small compared to the CFAR latency. At each stage of the tree, the

values grow by one bit because a rounding during the integration has been

avoided.

The raw data buffer which is drawn in the bottom of Fig. 3.18 operates as

first in, first out (FIFO) memory and its size has to be large enough to store a

data sequence with at least half the length of the CFAR window. The reason

for this is the minimum latency until a decision result for a supplied FFT cell is

available, due to the required filling of the CFAR shift register with successive
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Figure 3.19: Submodule resource usage against number of channels for a constant
window size (128 cells).

values. The raw data buffer can be realized efficiently on an FPGA using LUTs

or Block RAMs. An intermediate data tap is not required, as it was the case for

the CFAR window shift register.

Regarding the resourceusage, theCFAR-processingpart (red color inFig. 3.19)

is practically independent from the number of channels, because theNCI step is

performed in advance. The NCI step by itself scales approximately with linear

complexity, which is a result of the used tree structure. It can be concluded that

the usage of NCI before the actual CFAR processing is beneficial in two ways:

It improves the detection performance and reduces resource requirements at

the same time.

For a number of channels above 32, the raw data buffer which compensates

for the pipeline delay consumes more LUTs than the CFAR processing part. It

grows also linearly with the number of channels and is the dominating part

for large channel numbers. The usage of a dedicated Block RAMs may be

considered in this case if the number of LUTs is scarce.

In relation to the overall resource usage of the whole signal processing chain,

the requirements of the CFAR block are relatively small. Nevertheless, the

integration of a CFAR hardware accelerator along with the other algorithms is

crucial because it avoids a data transfer of the full frequency spectrum to the

downstream modules or interfaces. Experiments have shown, that in certain

environments more than 99% of the data cells can be considered as noise (cf.
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section 5.3.2). Hence, in this case, the CFAR processing could lower the data

throughput for the following block by two orders of magnitude.

3.3 Angle estimation

In chapter 2.3, several different radar technologies were introduced which al-

low to estimate the direction of arrival (DOA) of an incident signal. The func-

tional principle of antenna arrays was explained and the approach of using a

steering vector which describes the angle dependent array response was intro-

duced briefly. Many different algorithmic solutions to estimate the DOA can

be identified and they are generally examined within the research field of array

processing [46, 47].

A contribution of this work is to investigate efficient implementations of com-

putational demanding DOA algorithms on dedicated hardware architectures.

Due to the huge algorithmic diversity, only the most promising approaches for

DOA estimation in the context of automotive radar have been chosen, namely

maximum likelihood (ML) estimators. Previous work already compared the

adoption of several DOA algorithms to automotive applications based on their

estimation performance. The findings are summarized in section 2.3.3 and the

choice of the ML estimators is motivated.

Below, various hardware accelerator architectures of different ML estimators

that were designed and implemented on an FPGA are presented. They are

introduced in section 3.3.1 and 3.3.2, respectively. These realizations are further

used in chapter 4 to explore the design space and to form models of their

resource and power requirements. Finally the performance is benchmarked

and compared to a highly optimized CPU-based implementation.

3.3.1 Single target ML estimator

Recalling the expression for the maximization problem of the ML estimator �̂
from (2.34), the following equation has to be solved if the number of incident

signals is fixed to one. The notation x� is used for the conjugate transpose of x,
which is further explained in the footnote on page 38.

�̂ = arg max

�
|A� |2 where A� = x�a(�) (3.5)
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Hence, the computation of the ML angle estimation in the single target case

consists mainly of a scalar product between two complex-valued vectors. First,

the measured array output x has to be multiplied by all steering vectors a(�)
in the search space of �. Usually, the search space is defined by the sensor’s

field of view, i.e. the opening angle of the antennas. Afterwards, the absolute

square value of the scalar product A� has to be calculated and a subsequent

maximum search is required. The final result of the computation is the index

of the maximum which can be translated into the estimated DOA �̂, and the

value of the maximum which gives an indication of how well the signal model

matches the data. A low maximum value suggest the presence of multiple

superimposing signal sources which cannot be handled by the single target

estimator.

The three major steps of the algorithm are listed in their order of execu-

tion, each with their computational load in terms of required additions and

multiplications. " denotes the number of (virtual) channels and # denotes

the number of steering vectors. The values hold for the processing of a single

detection, even though numerous targets will have to be handled during each

measurement cycle.

1. Elementwise multiplication and summation – x�a(�)
" · # complex multiplications; (" − 1) · # additions

2. Absolute square value – | |2

2 · # real multiplications; # additions

3. Maximum Search – arg max�

# − 1 comparisons

Obviously, the scalar product between the two vectors is the prevailing part

and thus the most promising to accelerate. Fortunately, the element-wise mul-

tiplication can be executed independently and provides a first possibility for

parallelization. Furthermore, the scalar products of different radar detections

are also independent so that the DOA for multiple targets could be estimated

at the same time. In the end, these two different means of parallelization can

be combined in order to meet the application’s requirements.

Only the first step of the algorithm, the computation of the scalar product,

is dependent on the number of channels ". Such a dependency is in general
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not desired because the system should be capable to fulfill a given real-time

constraint in terms of number of detections, irrespective of the number of

channels. Hence, a major simplification for the system designer is to decouple

the runtime of the angle estimation module from the number of channels

", by implementing a full parallelization of the element wise multiplication

and addition. Such a parallelization scheme is employed in the proposed

architecture and consequently, the throughput in terms of radar detections per

time is made completely independent from ". Solely the resource usage will

vary if more channels are present.

Multiplier-based implementation variant

A straight forward implementation of the single target estimator employs com-

plex multipliers for the first step of the algorithm. The complex multiplication

is realized in two variants by several real operations according to the following

two equations.

(0 + 81)(2 + 83) = (02 − 13) + 8(03 + 12) (3.6)

(0 + 81)(2 + 83) = 2 (0 + 1) − 1 (2 + 3) + 8 [2 (0 + 1) − 0 (2 − 3)] (3.7)

The realization according to (3.6) employs four real multipliers along with

two adders. They can be implemented in a regular structure with two stages

where the first one consists of the fourmultipliers and the second one of the two

adders. A more resource efficient implementation of a complex multiplication

is described by (3.7). Only three multipliers are required while the number of

adders increases to five. A minor disadvantage is the slightly higher delay due

to the extra stage required for the final addition [116, p. 65].

The subsequent step after the element-wise rotation is a complex addition

of " elements which should be executed in parallel as well, so that the data

throughput matches the previous step. A tree-based implementation scheme

with 2-input adders is used in order to simplify the pipelining of this step. At

each node in the tree, two values are summed up until the final sum is obtained.

The required resources are"−1 adders and thedelayof this operation increases

with log
2
". Depending on the target architecture, other realizations may be

advantageous, such as the usage of tenary adders (3-input adders) for certain

FPGA types [117]. This specific optimization aims to fully utilize all six inputs
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Figure 3.20: Block diagram of the single target estimator module.

of the available lookup tables (LUTs) in order to save resources.

The final maximum search consists of a simple comparator with an upstream

module computing the absolute square value. Two multipliers and one adder

are required to calculate the absolute square value and one comparator along

with a register are used for the maximum search. Each time a larger value is

found, it is stored in the register “maxval” along with the current index which

carries the information about the DOA. The value of the maximum |A�,<0G |2
gives an indication about the estimation quality.

The realization of the described architecture is also shown in Fig. 3.20 where

the elementwise multiplications are denoted by “CMult”. However, these

blocks canbe replacedbyanother implementationvariant referred to as “Cordic”

which is further explained in the following section.

Cordic-based implementation variant

In many radar sensor realizations, the used antenna arrays are homogenous in

the sense that all individual antenna elements have the same directivity and

gain, which results in an equal amplitude response of all elements [3, p. 365].

An exemplary antenna diagram of a prototype sensor with such a homogenous
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antenna array is shown in Fig. 2.9a. A more or less identical amplitude curve

for each channel can be observedwhich reaches its maximum at approximately

zero degrees i.e. straight ahead. The remaining mismatches and deviations

between the channel gains are tolerably small and can be further reduced by a

constant scaling factor for each channel, if necessary.

Accordingly, if the array is made up of homogenous antennas, it can be sup-

posed that all elements of one steering vector have the same amplitude relative

to each other. Furthermore, the ML-based angle estimation can be conducted

solely with normalized steering vectors, i.e. it is ensured that ‖a(�)‖2 = 1 for

any angle �. In this case the complex multiplications in (3.5) can be substituted

by vector rotations in the complex plane. The elements of x are simply rotated

according to the values of the steering vector before they are summed up. This

particular property can be exploited efficiently by the underlying processing

architecture which is lined out in the following paragraph.

Being less demanding than an arbitrarymultiplication, the rotation of a com-

plex value can be implemented efficiently by the well-known Cordic algorithm,

which was already introduced back in 1959 [118]. It belongs to the class of shift

and add algorithms which converges iteratively to the desired value. Various

transcendental numbers, like trigonometric, hyperbolic or logarithmic func-

tions can be approximated by the Cordic algorithm. The accuracy is mainly

determined by the number of iterations and can be adapted to the application’s

requirements. Furthermore, the computation can be easily pipelined, which is

advantageous if high data rates are desired.

The working principle of the Cordic algorithm is to efficiently compute an

arbitrary vector rotation. Therefore, the desired rotation angle Γ is not attained

in a single step, but it gets approximated by multiple smaller and consecutive

steps or so called micro-rotations by the angle �1. The step sizes of the smaller

rotations are chosen so that they can be realized solely by simple additions and

bit shifts, which results in a very resource efficient implementation. With each

iteration, the step size is reduced and the deviation from the final target angle

decreases. This concept is illustrated with the help of the following equation,

which expresses the rotation of a value 0 + 81 by the angle �1 in the complex

plane.
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[
0̂

1̂

]
=

[
cos �1 − sin �1
sin �1 cos �1

] [
0

1

]
= cos �1

[
1 − tan �1

tan �1 1

] [
0

1

]
(3.8)

Thematrix containing the sine and cosine terms is often referred to as rotation

matrix. If the rotation angle �1 can be chosen freely so that tan �1 = 2
−1

is always

true, then all multiplications with the rotation matrix are reduced to a bit shift

by 1 and a consecutive addition. The absolute value of the rotation steps are

thus predetermined and only the sign, i.e. the rotation direction can be changed.

This variant is also referred to as Radix-2 Cordic and is used throughout the

rest of this work.

Different sequences of the directions of the individual micro-rotations pro-

duce different final rotation angles. A corresponding coefficient �1 ∈ {−1, 1} is
used to express these rotation directions in order to match the desired overall

rotation angle Γ. Finally, the approximation of Γwithmultiple smaller rotations

can be described by the following equation:

Γ =

�∑
1=1

�1�1 (3.9)

In general, thedeterminationof the coefficients �1 aswell as the compensation

of the constant “cos �1” scaling factor, which can be seen in (3.8), is not trivial

and requires additional calculations. However, in this particular application

several simplifications to the original Cordic algorithm can be applied which

all together help to save a considerable amount of resources:

• Each element of the measured vector x has to be rotated by a constant

angle which is given by the elements of the steering vectors a(�). Hence,

the Cordic coefficients �1 can be precomputed offline, and the usually

required module which determines the direction of each micro-rotation

on-line can be omitted.

• The final maximum search can operate on scaled values without any diffi-

culty. As long as the scaling factor remains the same for all values, which

is the case for the Radix-2 Cordic variant, the location of the maximum

also stays the same. Thus, the commonly used “cos �1” amplitude com-
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Figure 3.21: Fully pipelined Cordic implementation with three stages. The coeffi-
cients � which control the rotation direction are marked in blue.

pensation at the end of the Cordic algorithm is not necessary and can be

skipped.

• Due to the high throughput requirements, a fully pipelined Cordic imple-

mentation is appropriate for this application. This allows to implement the

normally required barrel shifters as hardwired bit shifts, which reduces

the logic resource usage further.

The realized Cordic implementation for this work is illustrated in Fig. 3.21

where the shown pipeline consists of three stages. The accuracy and thus

the number of stages, which also corresponds to the word length �, can be

configured individually. The �1 values are supplied from a small RAM which

stores the antenna diagram in the form of precomputed Cordic coefficients.

Interestingly, this different representation of the antenna pattern in the form

of Cordic coefficients only requires half of the memory space compared to

the complex values which are required for the multiplier-based version. The

reason for the savings is that the Cordic coefficients do not carry any needless

amplitude information.

Each stage of the Cordic pipeline contains two �-bit adders which are con-

trolled by the coefficient �1 to either add or subtract the supplied values from

the previous stage. The bit shifts applied to the intermediate values increase

during the flow through the pipeline, however they are fixed for each stage so

that this operation can be hardwired. They are illustrated as boxes in Fig. 3.21

91



3 Architectures for Real-time Signal Processing

for a better understanding even though they do not consume any additional

logic.

For a quantitative comparison of the resource usage between this opti-

mized Cordic variant and the multiplier-based implementation variants, refer

to Fig. 4.6 on page 129 in the next chapter. Furthermore, a detailed benchmark

of the different variants has been published in [26].

3.3.2 Two target ML estimator

The computational complexity of the two target ML estimator is considerably

higher than in the single target case. At first, the evaluation of the ML function

for a given parameter set (�8 , �9) requires three scalar products to be computed

instead of one. Moreover, the search space is now two-dimensional which is

evenmore severe andmainly dominates the required computational resources.

However, several optimizations can help to compute also the two target estima-

tor in real-time.

The following expression is recalled from (2.41) in chapter 2 and has to be

solved in the two target case:

[
�̂8 �̂9

]
= arg max

�8 ,�9

|A8 |2 + |A 9 |2 − 2 Re

(
A8A 9
∗�8 9

)
1 − |�8 9 |2

(3.10)

where A8 = x�a(�8) , A9 = x�a(�9) , �8 9 = a(�8)�a(�9) (3.11)

The variables A8 and A 9 are the scalar products between the measured signal

vector x and the steering vectors a(�8) and a(�9). The complex number �8 9
is the result of the scalar product between the two steering vectors and is a

constant parameter for a given sensor.

If a single target estimation has been executed prior to the two target esti-

mation, then all possible A8 and A 9 values have already been computed and can

be reused. Furthermore, the constant coefficients �8 9 can be precomputed and

stored in a memory so that no scalar product has to be evaluated at all during

the computation. Besides, the coefficient can additionally be stored in the form(
1− |�8 9 |2

)−1

so that the rather expensive division operation can be transformed

into a multiplication.

Even more importantly, the two-dimensional search space defined by �8 and
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�9 is fully symmetric. Hence, only half of all possible combinations of 8 and

9 have to be evaluated in order to solve (3.10). The symmetry can be easily

proved by inspecting the argument of the “arg max” function while the two

parameters �8 and �9 are swapped.

As a first consequence, the two scalar products A8 and A 9 are also swapped

whereas �8 9 becomes complex conjugated, i.e. � 98 = �∗
8 9
. Hence, the sum

|A8 |2 + |A 9 |2, as well as the difference 1 − |�8 9 |2 remains the same and only the

term2 Re ( · )must be further examined. For its argument, the following relation

holds: A 9A8
∗� 98 = (A8A 9∗�8 9)∗. Given that just the real part of the argument mat-

ters, the term finally remains unchanged so that the symmetry is established.

Consequently, the search area exhibits a triangular shape which complicates an

efficient parallelization. This aspect is investigated more in detail later in this

section (refer to page 96).

Acceleration of the two target ML function evaluation

Themain task during the two targetML estimation consists of evaluating (3.10),

where the three scalar products A8, A 9 and �8 9 are already available, because they

have been evaluated prior to this step. The computation of the three summands

in the numerator can be parallelized and a total number of nine multipliers is

required for the module: Two for the computation of |A8 |2, six for 2 Re ( · ) and
one for the final multiplication with the reciprocal of 1 − |�8 9 |2. The resulting

implementation is able to produce one value of the ML function per clock cycle

as long as the required A 9 values can be loaded and supplied from memory

without interruption.

A block diagram of the realization is illustrated in Fig. 3.22. The module is

optimized to process a complete rowwith the index 8 of the data matrix. At the

beginning, the value |A8 |2 is computed and loaded into the respective register.

Then, the A 9 and �8 9 values are loaded continuously from the RAMs and are

processed by the module. The ML result is afterward used by a further unit

which performs the maximum search.

A main concern during the system design process is an adequate balancing

of the single target and two target estimation modules, because they need to

interact tightly. The intermediate result of the single target estimator needs

to be kept available until the two target estimation process has been finished.

Due to the two-dimensional search space which is considerably larger than in
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Figure 3.22: Computation of the ML function inside the two target estimator module.

the single target case, multiple processing elements (PEs) according to Fig. 3.22

which evaluate the two target ML function in parallel are required. Below, the

parameter  is used to hold the number of parallel PEs.

A first possibility for a simple parallelization scheme is depicted in Fig. 3.23

for  = 3. In this processing pattern, all lanes share the same value of A 9 in

order to minimize the RAM load operations. However, due to the triangular

shape of the data structure, the lanes have to wait several cycles at the start of

each row which decreases the overall efficiency. The waiting cycles are marked

in olive green and several PEs are idle and do not contribute to the result at this

time. Taking the first cycle, only %�1 is active and the remaining PEs have to

wait until they get a suitable value for A 9. Only from the beginning of cycle 3,

all PEs are busy and the accelerator runs at maximum efficiency.

Even though the overhead in terms of waiting cycles was small and seemed

neglectable in the previous example, a significant decrease in efficiency can

be observed for certain scheduling configurations. Fig. 3.24 illustrates the uti-

lization ratio as a function of the number of steering vectors and for different

parallelization degrees  . It can be observed that the more modules are em-

ployed in parallel, the lower the overall efficiency of the accelerator will be.

This problem can be tackled with an advanced scheduling scheme which is

presented in the next subsection.
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Efficient scheduling scheme for symmetrical data structures

A more efficient scheduling scheme has been developed in this thesis, which

solves the problem of waiting cycles at the beginning of a new row. It is

applicable not only to the evaluation of a two-dimensional ML function but

rather to an evaluation of a triangular data structure in general. In many

practical problems, a symmetry in the data can be observed and only half

of the values is of interest, while the indices are still organized in a matrix

representation. Then, the idea is to process the data in a different form, which

helps to distribute the load equally across all processing elements (PEs). The

PE which had to process the longest row in the current pass is scheduled to

process the shortest row in the next pass. Consequently, the average load of

all PEs becomes equal even though each row of the triangular matrix has a

different length.

The proposed processing scheme is depicted in Fig. 3.25 and again each

matrix element is marked with the corresponding processing cycle. It can be

observed that all PEs operate on different values of A 9, which is remarkable be-

cause it doesn’t seem to be efficient in terms of RAM load operations. However,

the offset between adjacent PEs is only one element so that the required values

can be buffered inside a register or a cache memory close to the PEs. The actual

RAM load operations are only performed by the first PE while the remaining

PEs can reuse the A 9 values from the PE with a lower index.

Furthermore, the processing direction is changed after a line has been com-

pletely processed, i.e. the index 9 is increased up to# and then decreased again.

This is necessary to maintain the direction in which the elements A 9 are passed

between the PEs, i.e. even after the processing direction has been changed, the

load operations are still performed by %�1. The two processing directions are

referred to as forward if the index 9 is increasing and backward if 9 is decreasing.
The transition from forward to backward takes  processing cycles, i.e. each

cycle one PE changes its direction. In contrast, the transition from backward

to forward is executed in a single cycle, i.e. all PEs change their processing

direction at the same time.

In a dedicated hardware architecture, the PEs which compute the result of

the ML estimation can be cascaded in a chain of PEs which operate according

to the optimized scheduling scheme. The cyclic transfer of the A 9 values can

be realized with the help of dedicated point to point connections between two
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Figure 3.25: Optimized scheduling scheme for triangular data structures. The  pro-
cessing elements (PEs) are always active and no waiting cycles occur.
Again, the numbers inside the cells designate the processing cycle.

modules. An exemplary realization of such a PE is given in Fig. 3.26, where

a first interface (in) is used to receive the next value A 9 and a second interface

(out) is used to connect to the next PE in the chain. In addition a third interface

(result) is installed which provides the output of the ML function at the current

index.

Two registers are implemented which are used to store the value A8 which

remains constant for one row. The first register (r-next) directly connects to

the input interface and accepts the next value A8 for the subsequent row, while

the second register (r-i) provides the current value A8 to the arithmetic unit

and protects the value against overwriting. Finally, a third register (r-dl) can
accept and buffer the value which is destined for the downstream PE. Two

multiplexers are used which facilitate the transfer of the correct A8 and A 9 values

at the turnaround of the processing direction.

Besides, the physical realization is simplified because large portions of the

datapath only require point to point connections between twomodules. A large

fan-out of the data path can be avoided even if the number of PEs is high.

97



3 Architectures for Real-time Signal Processing

r-next

r-dl

r-i
in

5 (A8 , A9)

out

result

Figure 3.26: Architecture of a single processing element (PE) for the two target esti-
mator. The actual ML function evaluation occurs in the block marked with
5 (A8 , A9) which corresponds to Fig. 3.22.

3.4 Summary

An efficient implementation of the processing tasks according to the general

overview from Fig. 3.1 was investigated in this chapter. The final system ar-

chitecture which has been elaborated in this work is shown in Fig. 3.27. All

necessary signal processing steps are included in order to get a list of detections

along with their coordinates in space out of the raw input data. Furthermore,

the algorithms are specifically adapted and optimized for future automotive

applications. Important aspects such as data throughput, numeric accuracy

of fixed-point implementations, resource usage or speedup compared to other

implementations were presented for each module.

In Tab. 3.1, a first estimation of the resource consumption is presented in

order to give the reader an impression of the overall system complexity. For

this early assessment, prior to the actual design space explorationwhich follows

in the next chapter, a typical parametrization for a high resolutionMIMO radar

system has been applied.
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Module LUTs Registers BRAM 36kb DSPs Area [mm2]

Range processing 77640 129936 209 336 53.50
FFT window 113 823 1 16 0.59
Radix-2 FFT (SDF pipeline) 76152 126723 208 320 51.91
Compress (dynamic scaling) 1375 2390 0 0 0.99

Velocity processing 79392 126410 473 352 70.97
FFT window 119 1111 1 32 0.88
Radix-2 FFT (SDF pipeline) 77553 124915 296 320 58.38
MIMO TDM Buffer 1720 384 176 0 11.69

Target detection 18111 23412 0 259 14.46
Absolute square 2816 4992 0 256 5.98
Non-coherent integration (NCI) 2829 2892 0 0 1.00
Rank-only OS-CFAR 3328 6595 0 3 2.27
FIFO buffer 9138 8933 0 0 5.19

Angle estimation 18453 28405 91 620 27.32
DML 1target (DSP-3M) 12177 17490 43 392 16.64
DML 2target (16 Lanes) 6276 10915 48 228 10.68

Ethernet interface 1824 1485 0 0 1.07
ADC interface 16023 16345 16 0 8.34
Memory controller 11261 8463 0 0 4.87
Interconnect & bus infrastructure 3476 6201 46 1 5.15
Control logic & configuration 563 619 0 2 0.50

Total 226743 341276 835 1570 186.22

Table 3.1: Exemplary system resource usage for a typical parametrization with 4 trans-
mit and 16 receive channels.

Finally, the major findings and results of this chapter are summarized again

in the following list, where a reference to the corresponding page is given for

each point.

Two-dimensional FFT

• For increasing FFT lengths, also a wider word length is appropriate. Each

time the transform length is doubled, the word length should grow by

half a bit. (→ p. 61)

• The employed rounding schemematters and it can introduce artifacts into

the frequency spectrum. For the Range FFT, an unbiased rounding mode

should be used, e.g. convergent rounding. (→ p. 64)
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3.4 Summary

• It can be beneficial to use different word lengths for the Range FFT and the

Velocity FFT. This may be especially considered in situations where the

data amount in between the two transforms shall be minimized. (→ p. 66)

• The dynamic range of the fixed-point values is rarely fully exploited for

larger target distances. A dynamic scaling can help to improve the PSNR

without generating additional resource usage. (→ p. 69)

• If an SDRAM is used for thematrix transformation, an optimized address-

ing scheme is very important in order to fully utilize the available interface

bandwidth. (→ p. 73)

Target detection

• The usage of a rank-only CFAR implementation scheme allows the em-

ployment of large window sizes with 128 cells and more. (→ p. 81)

• NCI improves the detection performance and helps to save resources at

the same time. (→ p. 84)

• For growing channel numbers, i.e. 32 channels and more, the raw data

buffer which compensates for the CFAR processing latency predominates

the resource usage. (→ p. 84)

Angle estimation

• The usage of Cordic processors which apply the scalar product can be

advantageous in terms of resource usage. Furthermore the coefficient

storage requirement can be cut into half. (→ p. 88)

• The intermediate results of the single target estimator should be cached

inside the angle estimation module, because they can be reused later by

the two target estimator. (→ p. 92)

• An optimized scheduling scheme for symmetric data structures has been

developed which allows to improve the utilization ratio of the two target

estimator. (→ p. 96)
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4
Design Space Exploration

One objective of this work is to investigate the available design space in a

systematic manner, in order to set up a useful database of implementation

results. Such a dataset can be very helpful in an early product concept phase,

because it enables a quick and accurate estimation of important figures like

cost, performance and efficiency. Most notably, this is possible before the

actual development phase has even begun.

In the following section, the employed design space exploration method

along with the used tools is introduced and explained. Subsequently, the

results are presented which have been obtained for the target detection module

(cf. section 4.2) as well as for the single and two target ML estimator module

(cf. section 4.3 and 4.4 respectively).

4.1 Methodology

A model-based design space exploration approach similar to [5] is employed,

which can be executed in two major steps. Firstly, the implementation results

of different design variants, each with its own parametrization, are measured

and collected. Secondly, an appropriate model function is selected which shall

describe the major relations between the design parameters as accurately as

possible. The selection can be based on observation of the available measure-

ment data as well as on prior knowledge of the module’s architecture. The

coefficients of the model function are determined by a multiple linear regres-

sion which is explained in section 4.1.3.
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4 Design Space Exploration

Once an appropriate model function has been established, it becomes possi-

ble to estimate the outcome of any design parameter combination. Even those

realizations for which a direct measurement was never performed are now cov-

ered by the model function. This is a big advantage, because usually it is not

possible to explore the huge amount of all possible parameter combinations.

4.1.1 Measured quantities in the design space

For the evaluation and comparison of different realizations in the design space,

numerousmetrics can bemeasured and used for a quantitative analysis. In this

work, the following variables were collected for each individual variant of the

module under investigation.

Area

The consumed silicon area of the module provides a very good cost estimate

and is expressed in mm
2
. As the silicon area is not explicitly reported by the

FPGA tools, it has to be estimated based on other values like the number of

incorporated logic blocks, e.g. the number of DSP slices. The total equivalent

silicon area can then be computed if the area size of a single building block

is known. For this work, such area consumption factors were deduced for the

used FPGA devices and for every different logic block type. The coefficients

alongwith their derivation are included in appendixA.2. The exact relationship

to the actual unit costs of the integrated circuit (IC) can be quite complex to

deduce and would require more knowledge about the used technology node,

wafer size and yield [119], which is out of scope for this work.

In total, three different logic elements are available within the used Virtex 7

FPGA. They are mentioned and briefly introduced in the following paragraph.

For a more detailed explanation of the underlying functionality and architec-

ture, refer to standard literature such as [120, 121] or to the respective user

guides from Xilinx [122–124].

Logic slices Mostuniversal andfine-grainedbuildingblocks, consistingmainly

of multiple lookup tables (LUTs) and flip-flops. They can realize arbitrary

logic functions.

DSP slices These elements are meant for implementing digital signal process-

ing (DSP) functionality. One slice usually contains a hard-wiredmultiplier
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4.1 Methodology

along with supporting logic, such as adders and flip-flops.

Block RAM (BRAM) Embedded memory blocks with a very low latency and a

fixed size (e.g. 18 kbit per block for the used FPGA).

The major advantage of using the total equivalent silicon area of those build-

ing blocks is amuch better comparability. Frequently, different logic block types

can be used to realize the same functionality which makes it hardly feasible to

compare different FPGA implementations on the basis of only a single resource

type. Instead, the resource usage in its entirety, i.e. across all types of logic

elements, has to be taken into account. Thus, the usage of the equivalent silicon

area seems reasonable because it provides a weighted sum of all logic elements

according to their actual silicon area consumption on the FPGA device.

However, it has to be considered that the estimation of a silicon area by the

translation of multiple other values, like the number of used building blocks,

is a complex task and that a certain risk of misinterpretation exists. It has

been mentioned above, that the exact coefficients for the calculation were not

available from the manufacturer. They were obtained by other means only and

accordingly, they can be a potential source of error. Furthermore, the estimated

area cannot account for architecture related effects and constraints like the

consumption of routing resources, the availability of clocking infrastructure or

the granularity of the individual logic elements on the FPGA. It may happen

that the same design can be mapped more efficiently to other FPGA types of

the same family which would in turn result in differing estimates of the silicon

area.

Power

The power dissipation of a device is a crucial design parameter because it has

an immediate influence on the required supply current and the generated heat.

These are important design parameters affecting the system’s power supply,

housing and cooling solutions. The actual power efficiency, which is of major

importance for battery powered devices, is however not only related to the

power but rather on the required energy for a certain amount of computational

load. The efficiency was also evaluated in this work and the unit is introduced

later in this section.

Thepower consumption is expressed inWatts (W) and is a direct consequence
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4 Design Space Exploration

of the operating voltage and current of the device. Instead of measuring the

actual supply current of a physical realization, an estimated value is used for

this work, which is provided by the FPGA tools. Even though the accuracy

of an estimation is worse than that of a measurement, the effort to obtain

the value is low enough so that a systematic exploration of many different

implementations is possible. For the estimation, a constant workload near the

module’s maximum data throughput was assumed.

The comparison of different implementations in terms of their power con-

sumption was always performed at the same clock frequency. This is inevitable

because a change in the operating frequencywill directly alter the power values

so that a fair benchmark is not possible. As a compromise, a clock frequency of

200MHz was chosen for all power estimations which will be below the maxi-

mum for certain module variants, but which is nevertheless quite fast for most

FPGA implementations.

In related work, a distinction between static and dynamic power consumption

is often made [125, 126]. Static power is dissipated even if the hardware is

powered up but currently idle. It results mainly from transistor bias and

leakage currents. In contrast, any switching activity and dynamic charging

of capacitances inside the circuit is treated as dynamic power consumption.

In general, the dynamic component is strongly related to the clock frequency

and the computational load. The static component is rather dependent on the

technology process and the operating temperature.

In this work, always the total dissipated power is stated, which is simply the

sum of both components. Even though the used tools are able to report the

static and the dynamic power consumption separately, only the total value is

taken into account. The goal in this work is primarily to provide a realistic

assessment of the expectable power dissipation for certain configurations, and

not to analyze and optimize the individual components. However, the datawas

recorded separately throughout thewhole design space andwould be available

for further studies.

Performance

The performance in terms of data throughput per time interval is very impor-

tant for real-time systems. It is frequently measured in million instructions

per second (MIPS). For a general purpose processor, this unit of measure is a
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meaningful metric because a single instruction is relatively clear determined by

the processor’s available machine instruction set. Though, for dedicated hard-

ware accelerators, such “atomic” operations can hardly be identified because

the arithmetic units, buffer memories and logic circuits are strongly adapted to

a specific application. A strong level of parallelism often prevails and multiple

complex operations can be performed in a single clock cycle.

Therefore, two specific metrics which are only meaningful in the context of

radar signal processing will be used in this work:

Frequency cells per second This unit expresses the number of frequency

binswhich can be handled by themodule. It is primarily useful to describe

the performance of the target detection accelerator, because this blocks al-

ways operates on the raw spectrum cells. In this way, a dependency to

the used modulation can be avoided, because the workload is directly

measured in the input variable of the module.

Detections per second In the same manner as for the target detection ac-

celerator above, the throughput of the angle estimation module can be

measured in its input data type. Hence, the performance is denoted in

detections per second which is usually one or two orders of magnitude

lower than the number of frequency cells per second, due to the removed

noise components (cf. also section 5.3.2).

The performance values whichwill be presented in the following paragraphs

are all based on the maximal achievable operating clock frequency 5max. Of

course, if a lower data throughput is desired, the clock rate can be lowered at

the benefit of a reduced power consumption.

Accuracy

The computational accuracy is mainly important if fixed-point arithmetic is

used and if the available word length is limited. Then, the mean error which is

induced by the imperfect calculation and rounding operations can be expressed

as peak signal-to-noise ratio (PSNR). This unit expresses the deviation of the

erroneous result from a very accurate double-precision result, measured on a

logarithmic scale. For a detailed introduction of the PSNR unit, please refer to

section 3.1.2.
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Area efficiency

A cost-driven evaluation of different implementation variants cannot be based

on its silicon area consumption alone. For instance, a common method to

reduce the runtime of a certain application is to replicate certain logic blocks of

a circuit, so that a parallelization can be achieved. Certainly, the silicon area of

the whole module will increase, however at the additional benefit of a shorter

runtime or equivalently, a higher data throughput. Hence, the ratio between

area and throughput, or likewise the area time product, are good measures to

express the efficiency in terms of area consumption of an implementation.

Power efficiency

In the same manner as for the silicon area consumption, the power dissipation

can also be related to the performance of the module. The result is a metric

which expresses the required power for a certain data throughput. Interest-

ingly, the relation to time is canceling itself, so that the unit of measurement

is equivalent to the required energy for a certain number of operations. Both

versions, i.e. power per data throughput and energy per result, are an adequate

and meaningful quantity to describe a module’s power efficiency.

Even though a value for the power efficiency was obtained for each imple-

mentation in this work, it is not used for a further analysis. For an in-depth

investigation, the design spacewas not traversed sufficiently because only a sin-

gle operating frequency was used for each implementation. Especially when

analyzing the power efficiency of certain realizations, a wide range of operating

frequencies should be considered because the frequency has a strong influence

on both, data throughput and power consumption.

4.1.2 Design space exploration procedure

For this work, a custom framework was developedwhich helps to automate the

following, recurring steps:

1. Generate a list of parameter sets, which describe the discrete points in

the design space to be explored. The parameters are specific for every

different module.

2. Insert a single parameter set into the design under investigation.
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3. Launch the corresponding toolchain which synthesizes and implements

the specific design on a predefined FPGA target device.

4. Parse and collect the desired results from the log and report files. This can

be data like logic utilization, maximum clock rate or power consumption,

just to mention a few.

5. Repeat steps 2 – 4 until the whole list of parameters has been traversed.

Due to the fully automated exploration flow, a manual insertion of parame-

ters as well as extraction of the results is not required by the user. This helps

to avoid data errors and it speeds up the whole exploration process. The real-

ization is based on a custom-made Python script called do_dse.py, which was

specifically developed for this work. Basically, it executes the steps mentioned

above onmultiple processor cores simultaneously. A flow chart of the program

is depicted in Fig. 4.1.

The starting point of every design is a comprehensive Vivado
1
project, herein

named dse_project.zip, including all necessary modules as VHDL source

files. In addition, a specific template file called top_level.mako is required

which is thought to be updated with different parameter sets later during the

exploration. Upon each iteration of the main loop, a different parameter set

is inserted by the DSE framework into the template file. Only afterwards, the

actual FPGA tools are started (“Run Vivado”) and the design is implemented

for the specific point in the design space. After the tools have completed their

execution, all important result and log files are saved and parsed for later

analysis.

Determination of the maximum operating frequency

In the usual design flow, the user gives the tools an indication about the in-

tended clock frequency 5 of the module. Based on this information, the syn-

thesis, placer and routing engines will chose an optimized realization which is

capable to fulfill all the given timing constraints. In the final timing report, all

signal paths of the completed design are listed along with the achieved setup

and hold margins. In principle, the maximum operating frequency could be

directly deduced from this information by simply calculating 5max so that the

1
Vivado is the brand name for the FPGA tools from Xilinx.
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Figure 4.1: Design space exploration flow chart.

margins approach zero. However, such a value is very often far below the pos-

siblemaximumwhich can be achieved for a certainmodule on a specific device.

The reason is that the tools have multiple optimization targets and they will

primarily try to reduce logic usage while fulfilling all other constraints. There-

fore, the timing behavior of a specific realization is just optimized as much as

required for a specified target frequency 5 .

To overcome this limitation, the implementation flow was slightly adapted.
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Multiple iterative runs are executed, each with its own target frequency 5

instead of one unique run. After the completion of one iteration, the design

status is checked whether the timing was achieved or not. On success, the

frequency for the next run will be increased by a certain frequency step 5step
whereas on failure it will be decreased. The frequency step is divided by two

after each iteration until a certain accuracy has been reached. In this work, the

process is stopped at an increment of 4MHz.

FPGA related characteristics

In order to obtain meaningful results, some particular configuration settings

of the Xilinx toolchain were adapted and a specific implementation flow was

chosen.

As a target device, the Virtex 7 FPGA xc7vx485t-2ffg1761c was chosen for

all runs, because the subsequent verification (cf. chapter 5) with real hardware

is also based on this part. All reported results in this work were obtained after

the place and route process of the parameterized design was completed. This

means, that all values are connected to an actual realization which is ready to

be used. Furthermore, all signals were checked against the predefined tim-

ing constraints, i.e. the operational capability of the implementation is always

assured.

The parameter -mode out_of_context was given to the synthesis compiler,

which instructs the tool that the design is meant to be implemented without

interaction of the external world. This is required because per default, a ran-

domly chosen device pin is used for each unconnected input or output signal.

Certainly, this is not the intended behavior, because the investigated modules

are designed with rather wide interfaces with a huge signal count aiming for a

further integration into a system on chip (SoC). If the tools try to bring out all

signals of the FPGA, the routing and timing of major parts would suffer from

this behavior. Hence the results would be distorted, especially the achieved

maximum operating frequency 5max.

Furthermore, a global clock buffer was added for every clock signal present

in the design. Consequently, the dedicated clock routing resources of the FPGA

were utilized and the timing of the sequential logic was improved.
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4.1.3 Fitting of a model function

Based on the gathered data and themeasured quantities, an appropriate model

function will be selected and fitted as accurately as possible to the observed

variables. Later, such a model can be used to estimate the outcome of any

possible design variant even if the actual implementation result for a certain

parameter combination is not on hand.

In a first step, a mathematical expression is set up which shall describe

the relation between an observed, dependent variable H (for example the silicon

area), andmultiple independent variables G 9 which could be theword length, the

number of channels and so on. In combinationwith a set of constant parameters

� 9 where 9 = 1 . . ? and where ? is simply the number of independent variables,

the outcome is a linear function (4.1). The additional parameter �0 is known

as the intercept term and models a constant offset. A random error is added

by the term &, which allows for a deviation of the predicted values Ĥ from the

observations H.

Ĥ = �0 + �1G1 + �2G2 + . . . + �?G? (4.1)

H = Ĥ + & (4.2)

Even non-linear relations can be modeled with the help of this simple function

by using a variable substitution. For instance the quadratic term of a certain

design parameter can be added as an additional independent variable G 9 to the

function. Hence, the approach is adequate to model an arbitrary polynomial.

Once a suitable function has been found, the constant parameters � 9 have to
be determined in a second step, which is often referred to as curve fitting. In the

specific case of a linear functionwithmultiple independent variables according

to (4.1), theprocess is also knownasmultiple linear regression. Due to the linearity

of the function in this case, a basic least square fit can be used which simply

minimizes the sum of squared residuals, i.e. minimizes

∑
8

(
H8 − Ĥ8

)
2

where 8 is

the observation subscript. A necessary condition is that the number of different

observations = in the form of (4.2) is larger than the number of independent

variables ?, so that the system of equations is overdetermined and a unique

solution exists.

However, the increase of the model order ? should be well considered and

handled with care, even if enough observations = are available, because the
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risk of overfitting exists. The term overfitting designates a common problem in

statistics [127–129], where higher-order functions are used to describe a dataset

whose underlying model structure is in fact of a lower order. Especially when

trying to minimize the residual error, one has to be aware that an increased

model order can always adapt better to the observed data. Thus, the choice

of a large number of independent variables ? for the sole purpose of a small

residual can be misleading and should be avoided. Typically, a polynomial of a

too high degree tends to mimic the measurement noise and will consequently

fail to predict new data points which were not part of the original set.

Evaluating the goodness of fit

In reality, several measures can be used to quantify the discrepancy between

the model and the observed data. Such measures are often summarized and

named by the term goodness of fit. They allow a judgment of the accuracy and

the correctness of the chosen model.

A straight forward measure is certainly the residual sum of squares (RSS)

which is always minimal for a least squares fit and a given model order. Taking

this value and dividing it by the number of degrees of freedom (= − ? − 1)

leads to an unbiased estimate of the variance of the random errors &8 , and gets

denoted as B2
. Correspondingly, the value B is an estimate of the standard

deviation and is often referred to as regression standard error:

B =

√
RSS

= − ? − 1

=

√∑
8

(
H8 − Ĥ8

)
2

= − ? − 1

(4.3)

Unlike the RSS, the regression standard error B does not necessarily increase

ifmore data points are used for the regression, whichmakes it easier to compare

the fitting result of datasets with different sample sizes. However, B is a non-

normalized value and has to be set into relation with the usual range of values

of the dependent variable. For instance, with the information that B is 1mm
2
,

a statement about the goodness of fit is not possible yet. It would be a good fit

if the dependent variables are all within the range of 100mm
2
, but it would be

a rather bad fit if they amount to only 1mm
2
.

Another significantmeasure is the coefficient of determination, most of the times

denoted as '2
. It expresses how well the variance in the measured data can be
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explained by the model function and ranges typically from 0 to 1. It is defined

by the following expression:

'2 =

∑
8

(
Ĥ8 − H̄

)
2∑

8

(
H8 − H̄

)
2

(4.4)

where H̄ is the mean of all observations. The closer the value of '2
is to one,

the better the predicted data fits the observations.

For a more comprehensive survey of regression analysis and least square

fittingmethods, including detailed derivations andmore background informa-

tion, the reader can refer to established standard literature, such as [130, 131].

The purpose of this section is rather to introduce the fitting approach which

was used in thiswork and thus some previous knowledge of statistics and curve

fitting methods is presupposed.

4.2 Target detection module

The first module which is to be investigated with the previously described

framework, is the target detection module. The incorporated detection process

comprises mainly two steps, NCI and OS-CFAR which are both explained in

detail in section 2.2. The architecture and implementationof the target detection

module is presented in section 3.2. Thedesign space parameters for thismodule

consist of the following three variables.

Word length (1) Defines theword lengthof the input andoutput spectral data.

The intermediate bitwidths are derived from this parameter automatically

in amanner so that thePSNR is not significantlydeteriorated. For instance,

no rounding is used for theNCI computation and the bitwidth growswith

each addition.

Number of channels (") This is the number of (virtual) receiving channels

which the accelerator can handle in parallel. It should have a strong

influence on the NCI step of the algorithm and nearly no influence on the

CFAR processing.

CFAR window size (#) The CFAR window size limits the number of cells

which can be used for the noise level estimation. In general, a larger

114



4.2 Target detection module

window size causes a larger sorting or rank determination complexity,

but also a higher estimation accuracy.

4.2.1 Area

The area consumption depends on the three parameters mentioned above so

that a single graphical representation including all relevant points of the design

space is difficult to achieve. Thus, two three-dimensional surface plots are used

where one parameter is fixed. The diagram does not show the whole design

spacewhich has been explored, however it gives the reader an impression about

the relationships of the individual parameters. The two upper plots show the

observed, raw measurement data. Every node of the visible mesh originates

from a real implementation. For the graphical representation, all nodes are

simply connected in a straight manner by the surfaces, i.e. no interpolation has

been applied. In contrast, the two lower plots are based on the model function

(4.5) which is introduced later in this section. The visible mesh is considerably

denser for these two plots, because the model function can be evaluated in a

fine-grained manner with minimal effort.

Regarding the dependency on the word length 1, a slight linear increase of

the area until 1 = 18 bit can be observed in Fig. 4.2. Afterwards, the slope

rises considerably because the multipliers for the computation of the absolute

square values do not fit into a single DSP slice anymore. Hence, additional logic

elements are requiredwhich are finally responsible for the rapidly growing area

consumption. For a small extension of the word length, for instance from 18

to 22 bit, only general purpose LUTs are added to implement the remaining

bits of the multiplication. Once the word size expands and reaches 24 bit, the

use of additional DSP slices instead of LUTs becomes favorable, even if their

internal word size is much larger than the required difference of 6 bit. The

effect can be recognized by the stepped characteristic of the area consumption,

which decreases at certain points, e.g. at the transition from 22 to 24 bit or at

the transition from 26 to 28 bit. The steps occur exactly at those spots where the

additional LUTs are replaced by further DSP slices. The cause of the decline is

ultimately a higher area efficiency of the hard-wired multipliers inside the DSP

slices. The word lengths at the transitions are a reasonable choice for a practical

realization, because a local minimum of the area consumption exists.

The scaling behavior of the module in relation to the window size turns out
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Figure 4.2: Silicon area consumption of the target detection module on a Virtex 7 FPGA.

to be nearly linear (cf. Fig. 4.2b). It is mainly caused by the # comparators

as well as the data buffer equalizing the pipeline delay which can be seen on

the bottom of Fig. 3.18 on page 83. The number of channels has a much lower

effect on the silicon area variation than the window size. For instance, the area

consumption is always within the same order of magnitude when comparing

one and 32 channels. The reason for this good scaling behavior is that only
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the NCI step depends on the number of channels and in contrast, the CFAR

processing part is unaffected. Hence, the architecture can be considered as very

efficient for large channel numbers and is thus suitable for MIMO systems.

A benchmarkwith similar FPGA implementations which have been reported

in literaturewasmade and its results are summarized inTab. 4.1. The advantage

of the rank-only implementation form is visible among all results, even though

a direct comparison of the resource usage values is not possible due to slightly

different design parameters. For instance the more than three times lower

logic slice consumption of the module from this work in comparison to [84] is

expected to originate from the shorter word length and the absence of costly

floating-point arithmetic.

Publication Resource usage
Window
size (#)

Word size
(1)

Comments

This work 2389 LUTs (6-input) 128 16 bit Rank-only
� 1025 Slices

Bales et. al. [84] ∼ 3500 Slices 128 32 bit Rank-only
float

Bales et. al. [84] ∼ 6500 Slices 128 32 bit Insertion sort,
float Req. multiple cycles

Magaz et. al. [85] 1823 LUTs (4-input) 16 12 bit K-th maximum search,
� 1283 Slices Req. multiple cycles

Perez-Andrade 1260 LUTs (4-input) 64 12 bit Insertion sort
et. al. [86] � 2790 Slices

Table 4.1: Comparison of the resource usage of different OS-CFAR implementations on
an FPGA.

Model function

The following function is used to approximate the consumed silicon area of the

target detectionmodule. The word length 1 is not explicitly stated in (4.5), even

though a dependency exists. In fact, the influence of 1 is modeled by a family

of curves (4.5), where the set of parameters � differs for every word length 1

(see also Tab. 4.2).

H�A40(", #) = �" " + �# # + �"# "# + �0 (4.5)
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A linear dependency on the CFAR window size # as well as on the number

of channels " is included. The origin for these two linear terms is the logic

consumption of the comparators which grows with # and the binary adder

tree, which grows with ". Furthermore, a combined dependency on both

parameters is taken into account by the coefficient �"# . It is caused by the raw

data buffer whose size grows with both variables, " and # .

The third parameter, the word length 1, provokes a rather irregular and

stepped behavior. The root cause for this special characteristic lies in the fixed

word length of the embedded multipliers inside the DSP slices, which has

already been explained in detail on page 115. The effect is strongly dependent

on the used FPGA architecture and the associated software tools, so that its

influence on the area consumption can be hardly described by an analytical

expression. Hence, the parameter 1 is not directly included in the function

itself. Instead, the model function was fitted independently for each different

word length 1 and all coefficientswere determined individually. They are listed

in Tab. 4.2 along with the goodness of fit (GOF), which has been introduced in

section 4.1.3 on page 113.

From the graphical appearance (cf. Fig. 4.2c and Fig. 4.2d), as well as from

the GOF measures, a very high accuracy of the model can be observed. The

regression standard error B is far below 1mm
2
, and '2

is above 0.99 for all

investigated word lengths 1.

Word size Coefficients [mm2] GOF

1 �" �# �"# �0 B [mm2] '2

12 0.0551 0.0083 0.1801 ·10−3 0.1467 0.279 0.995
14 0.0594 0.0099 0.1663 ·10−3 0.1099 0.175 0.998
16 0.0635 0.0111 0.2144 ·10−3 0.0764 0.341 0.995
18 0.0670 0.0127 0.1984 ·10−3 0.0478 0.252 0.998
20 0.1442 0.0136 0.2565 ·10−3 0.2013 0.343 0.997
22 0.1894 0.0150 0.2525 ·10−3 0.1656 0.258 0.999
24 0.1479 0.0162 0.2816 ·10−3 0.0556 0.382 0.997
26 0.2705 0.0175 0.2958 ·10−3 0.0998 0.312 0.999
28 0.2524 0.0187 0.3221 ·10−3 0.1394 0.388 0.998

Table 4.2: Coefficients of the model function (4.5) describing the silicon area consump-
tion of the target detection module
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4.2 Target detection module

4.2.2 Power

The power consumption of the module is shown in Fig. A.1 in appendix A.3.1

with four distinct surface plots, in the same manner as previously conducted

for the area consumption. The first two figures are based on the observed data,

while the last two figures show the predicted data of a fitted model function

(A.15). The coefficients of this function are included in Tab. A.4.

For the power evaluation, the operating frequency was fixed at 200MHz

for every different realization, in order to get rid of any dependency on the

clock rate. In general, the characteristics follow the previously shown results of

the silicon area, however some differences can be observed. For instance, the

local minimum for a word length of 24 bit is less pronounced and the power

consumption is almost monotonically increasing with 1.

The absolute value of the target detection module’s power consumption can

be below 1W as long as the window size doesn’t become too large and exceeds

128 cells. Keeping in mind that this module is able to process 200 million

frequency cells per second for the used settings, the power efficiency of the

rank-only implementation form clearly stands out. This is apparent when

comparing the realization with other computing platforms.

Previous work investigated the performance of a CAGO-CFAR implementa-

tion on a graphics processing unit (GPU) and compared it to a version running

on a central processing unit (CPU) [132]. A window size of 32 cells and single-

precision floating-point values were used so that only a rough comparison can

be made. A pretty high data throughput of around 2.4 billion cells per second

was achieved on theGPUplatform in contrast to a throughput of only 80million

cells on the CPU. Even though the GPU implementation performs about twelve

times faster than the FPGA module in this work (200 million cells per second),

the maximum power consumption of the mentioned GTX 280 GPU platform is

specified with 236W [133]. The power consumption of the CPU is unknown,

however it is expected to be above 10Wwhich is true for most general purpose

processors. Both versions, the GPU and the CPU are thus considerably worse

in terms of power efficiency, mainly due to the very low power consumption of

1W of the FPGA module built in this work.

Independent, related work which investigates a rank-only OS-CFAR imple-

mentation arrives at a similar result, confirming the power-efficiency of an

FPGA-based architecture [84]. With the general framework being identical to
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the previous example (Multi-core CPU versus GPU, single-precision floating-

point, 32 window cells) a performance of 340 million cells per second was

achieved on the CPU and more than 1 billion cells per second on the GPU.

Furthermore, a very power-efficient FPGA implementation which consumes

less than 1W is also presented in [84]. Finally, the FPGA version is rated as

the most efficient due to the distinct higher power consumption of the other

architectures (max. 190W for the CPU and max. 238W for the GPU).

4.2.3 Performance (Data throughput)

The data throughput of the target detection module is one frequency cell per

clock cycle. Furthermore, the module is able to operate without interruption

once the CFARwindow has been filled and as long as a continuous data stream

can be supplied to the input. In this case, the only parameter affecting the

performance is the operating clock frequency of the module. The maximum

possible frequency 5max was found for each point in the design space according

to the process described in section 4.1.2 so that the exact data throughput of

each implementation can be stated. Amongst all investigated parameter sets, a

maximum throughput rate of around 340 million cells per second was reached

when using a CFARwindowwith less than 64 window cells and a word length

below or equal to 18 bit.

Interestingly, a dependency between the area consumption and the perfor-

mance is visible, which seems to be linked to the size of the CFAR window.

For growing window sizes # , the maximum clock frequency and thus the data

throughput decreaseswhich can be observed in Fig. 4.3. In addition to this rule,

a general upper limit of about 245MHz exists for word sizes equal to or greater

than 20 bit. Apart from that, the word size 1 has little or no effect on the clock

frequency and for most implementations only the area consumption differs. As

a result, a mainly horizontal expansion of the different clusters can be noticed.

Moreover, the width of the clusters increases for larger window sizes # , which

can be seen in Fig. 4.3 using the two labeled clusterswith# = 128 and# = 1024

as an example.

The inverse relationship between window size and maximum operating fre-

quency is suspected in the realization of the target detection module. The

integration step of the binary comparison results, i.e. the addition of # values,

is only split into two sub-steps, regardless of the window size # . As a conse-
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Figure 4.3: Performance and area consumption of various configurations of the target
detection accelerator. In each separate data class, the channel number "
is varied between 1 and 32 which has nearly no impact on the performance.

quence, more complex logic operations have to be performed within a single

clock cycle if the window size keeps growing which finally results in a worse

timing behavior.

4.3 Single target ML estimator

The single target ML estimator module performs an angle estimation on the

basis of complex valued input data. Beside this input data, it relies on sensor

specific constants which are known as steering vectors and which have to be

stored in a memory inside the module. The estimation process is usually in-

voked after the spectrum evaluation and after the target detection process, so

that a lower requirement on the data throughput exists. The angular informa-

tion is provided in parallel from all receiving and transmitting channels. For

a more detailed description of the module’s composition refer to section 3.3.1
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and for the algorithmic background to section 2.3.

The design space parameters for thismodule comprisemainly three variables

which are briefly introduced below. Furthermore, the module can be realized

in several different architectural variants. Each of these options provides the

same functionality, however the performance, numerical accuracy and resource

usage differ. The choice of the variant is thus marked by a fourth parameter so

that the specific advantages of each implementation form can be identified in

the results.

Word length (1) Defines the word length of the frequency cells at the input.

One complex input value is comprised of two actual data words, the real

and the imaginary part with a word size of 1 bits each.

Number of channels (") This is the number of (virtual) receiving channels

which the accelerator can handle in parallel. The length of each steering

vector must match this value.

Number of steering vectors (#) This parameter defines the size of the an-

gular search space and has an influence on the processing time as well as

on the size of the read-only memory for the steering vectors.

Scalar product realization variant Fourdifferent variantswere realized, each

able to compute the scalar product. They are summarized in the follow-

ing list while their functional and algorithmic background is described

in-depth in chapter 3.3.1.

• Cordic – Complex rotation realized with pipelined Cordic processor

• LUT-4M – Complex multiplication using four multiply operations;

realized solely with LUTs

• DSP-4M – Like LUT-4M, but using DSP slices instead

• DSP-3M – Like DSP-4M, but requires only three multiply operations

4.3.1 Area

It turns out, that the DSP-based variant with three multipliers for a complex

multiplication (DSP-3M) is the most efficient in terms of resource usage. There-

fore, only the area consumption of this realization form is shown in the follow-

ing figures. The influence of the other three design parameters are presented
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4.3 Single target ML estimator

with the help of two separate surface plots, exactly as it was done before in sec-

tion 4.2.1. Please refer there formore details about the graphical representation.

Again, the two upper plots show the observed measurement data, while the

two lower plots are based on the model function (4.6) which will be introduced

later in this section.

In Fig. 4.4a, the figure at the left side, the number of steering vectors# is fixed

to 256. A linear increase, with almost no outliers, can be observed as a function

of the number of channels ". The slope of this increase is however different

and changes with the word length. Concerning the second dimension, where

the number of channels is fixed and the word length is varied, a more or less

stepwise growth of the area can be seen, most noticeably between 18 and 20 bit,

as well as between 24 and 26 bit. The root cause for the stepped characteristic

is the fixed word length of the embedded multipliers (DSP slices), which has

already been explained in detail on page 115.

Regarding the dependency on the number of steering vectors (cf. Fig. 4.4b),

a constant scaling behavior is visible throughout the entire design space under

investigation. In fact, the additional steering vectors do not provoke any addi-

tional area consumption which is not explainable without deeper analysis of

the used resource blocks.

First of all, it is essential to realize that the read-only memory which stores

the steering vectors is implemented by making use of the Block RAM (BRAM)

resources. The minimum size of such a memory block is fixed to 18 kbit for

the used FPGA device, while the width to depth ratio can be adapted to the

application’s needs, at least to a certain extent. When using the configuration

with the widest interface, the depth of the memory is accordingly minimal,

but it still exhibits 512 entries. This constraint becomes important if a massive

parallel data access is required and, at the same time, the number of entries is

below 512. In such a case, the remaining portion of the RAM’s capacity cannot

be exploited and will be wasted.

Now, in the specific case of the single target ML estimator module, a fully

parallel access to one steering vector per clock cycle is required. Consequently,

as long as the total number of steering vectors # is equal to or smaller than

512, the required quantity of BRAM elements is solely determined by the data

width. It explains the primarily strange effect of a constant area consumption

for # ≤ 512, which is observable in Fig. 4.4b. For values of # > 512, additional

BRAMs would become necessary and it is expected that the resource usage
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Figure 4.4: Silicon area consumption of the single target ML angle estimation module
on a Virtex 7 FPGA. All values are based on the DSP-3M implementation
variant, which is the most efficient in terms of area consumption.

would increase with # . However, this portion of the design space was not

investigated due to the lack of practical relevance.
2

2
Choosing # = 512 and assuming a relatively large field of view (FoV) of ±50 degrees, the

resulting angular cell size would be Δ� = FoV/# = 100
◦/512 < 0.2◦, which is far below the

cell size of current automotive applications (1
◦
or more, cf. [3, pp. 382 – 401]).
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4.3 Single target ML estimator

A comparison to other digital beamforming accelerators from the literature,

which have likewise been realized on an FPGA, is not easy to achieve. Most

of the time, the modules are designed for different applications or they are in-

tegrated into a bigger framework consisting of diverse processing steps. A

benchmark with two references was made and is summarized in Tab. 4.3.

Further implementations of digital beamforming accelerators have been re-

ported [134, 135], however they are not included in the table because only

partial information on the design parameters were available.

Data Number of Number of Word
Publication Resource usage throughput channels st. vectors size

[Dets. / s] (") (#) (1)

This work (I) 2803 LUTs (6-input) 953k 16 256 24 bit
104 DSPs

This work (II) 12177 LUTs (6-input) 953k 64 256 24 bit
392 DSPs

Winterstein <7639 LUTs (4-input) 172k 16 256 >12 bitb

et. al. [88] <134 DSPsa

Seguin 24048 LUTs (4-input) 6M 64 24 10 bit
et. al. [87] 576 DSPs

aThe values contain a significant portion of other modules, e.g. an FIR filter. It is expected
that the actual beamforming part consumes considerably less resources.

bThe word length of the beamforming implementation is not mentioned, however the input
samples from the ADC comprise 12 bit.

Table 4.3: Comparison of the resource usage of different digital beamforming imple-
mentations on an FPGA. Values from this work are based on the DSP-3M
variant.

Model function

The following function is used to approximate the consumed silicon area of the

single targetML angle estimationmodule. The influence of theword length 1 is

modeled by a family of curves (4.6), where the parameters � differ, depending

on 1 (refer to Tab. 4.4). Thus, a separate model function exists for every word

length 1.

H�A40(", #) = �" " + �0 (4.6)

125



4 Design Space Exploration

Only two terms are enough to describe the area consumptionwith a sufficient

precision. A linear dependency on the number of channels " exists which is

taken into account by the coefficient �" and furthermore a constant offset

�0 is added to the equation. The coefficients were found by a least squares

interpolation and are presented in Tab. 4.4. As mentioned above, the model

function is fitted individually for every different word length 1, because a

reasonable analytical expression for the stepped and irregular behavior does

not exist. It is mainly provoked by the fixed word size of the DSP slices, which

has already been explained in-depth in section 4.2.1 on page 115.

A dependency on the parameter # is not included in the sum, but neverthe-

less the model is valid for the investigated range of steering vectors from 16

up to 512, which comprises the entire design space for practical applications

at this time. The function should not be evaluated beyond # = 512, because

a deviation from reality may happen from there on. The reason is that the

minimal depth of 512 of the embedded Block RAMswill be fully utilized at this

point, which has already been explained in detail in the previous subsection.

The linear dependency on the number of channels is very obvious when the

graphical representation in Fig. 4.4 is studied. It originates from the parallel

evaluation of the scalar product and the downstream adder tree. Due to the

absence of any outliers, the quality of the fitted function is also very highwhich

manifests itself in a low regression standard error B below 0.2mm
2
and a '2

value pretty close to 1.

Word size Coefficients [mm2] GOF

1 �" �0 B [mm2] '2

12 0.1009 0.1085 0.030 0.9991
14 0.1065 0.1182 0.042 0.9985
16 0.1204 0.1113 0.041 0.9988
18 0.1271 0.1640 0.049 0.9985
20 0.2274 0.1753 0.067 0.9991
22 0.2457 0.1304 0.054 0.9995
24 0.2506 0.2413 0.071 0.9992
26 0.5316 0.2756 0.105 0.9996
28 0.4847 0.1774 0.135 0.9992

Table 4.4: Coefficients of the model function (4.6) describing the silicon area consump-
tion of the single target ML angle estimation module
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4.3.2 Power

Themodule’s power dissipation is strongly correlatedwith the used silicon area

so that the plots in Fig. A.2 in appendix A.3.2 resemble those of the previous

section. The model function for the power consumption (A.16) is also included

in the appendix A.3.2 along with its coefficients which are shown in Tab. A.5.

The power values given in this work comprise both, the static and the dynamic

portion of the power consumption (cf. section 4.1.1, page 105 for a further

explanation).

Similar to the silicon area usage, nearly no variation in the dissipated power

can be observed when increasing the number of steering vectors up to 512.

The maximum power dissipation does not cross the mark of 2W even for large

word lengths of 28 bits. This is remarkable, because the module has proven

its effectiveness in a benchmark with a CPU implementation which will be

presented in the following section 4.3.3. The CPU is specified with a maximum

power consumption of 35W even though the data throughput drops back

considerably in relation to the FPGA for larger channel numbers.

Related work compared the effectiveness of several processing architectures

(CPU, GPU and FPGA) for digital beamforming applications and concludes

with the FPGA being the most power efficient, especially for fixed-point real-

izations [136].

4.3.3 Performance (Data throughput)

In this work, another variant of the single target estimator was implemented

on a general purpose processor, in order to provide a basis for a performance

benchmark. A state-of-the-art CPU from Intel (i5-3320M Ivy-Bridge) which

runs at 2.6GHz was used and the implementation was highly optimized in or-

der tomake use of the available vector instructions. The 256 bit AVX instruction

set offers the ability to perform up to eight multiplications in parallel on a sin-

gle core. This kind of SIMD
3
command can only process floating-point values

which means that an exact comparison to the fixed-point implementation on

the FPGA is not possible. Two different word sizes are supported by the pro-

cessor, namely single-precision values (SP) and double-precision values (DP)

with a word length of 32 and 64 bit, respectively. The single target estimation

3
SIMD – Single instruction, Multiple data
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Figure 4.5: Performance in terms of data throughput for various implementations of
the single target ML estimator.

routine was executed on a single core and no multi-threading was used. A

further possibility of acceleration would be to exploit multiple cores, though a

performance improvement might be difficult due to the already high memory

bandwidth utilization.

The performance results are shown in Fig. 4.5. The FPGA implementation

used for this benchmark is based on the 3-multiplier variant (DSP-3M). All

complex multipliers are realized with DSP blocks and a 24 bit word length is

used for the fixed-point datapath.

It should be kept in mind that the processor has to iterate over each receiving

channel while the scalar product is evaluated. Hence the required processing

time per detection is heavily dependent on the number of receiving channels.

In contrast, the data throughput on the FPGA remains more or less constant

because the scalar product is computed in parallel. Only a small deviation can

be observed which originates from slightly different maximum clock frequen-

cies. In terms of the number of steering vectors, both the CPU and the FPGA

implementation achieve a lower throughput. This dependency is almost linear

due to the consecutive evaluation of all steering vectors.

The speedup of the FPGA variants compared to the processor-based variants

lies approximately between a factor 1.6 for 8 receiving channels and a factor 10

for 64 channels. Hence, the FPGA implementation can be considered as a

powerful hardware accelerator with a significant higher power efficiency. The

estimated power consumption by the used FPGA tools ranges at approximately
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4.3 Single target ML estimator

2.1W for the 64 channel version. In contrast, the thermal design power (TDP)

of the used CPU is specified as 35W, which is an order of magnitude higher.

4.3.4 Numerical accuracy

The PSNRwas evaluatedwith simulated input data for all four implementation

variants and for a diverse number of channels and word lengths. Naturally,

a trade-off between the required silicon area and the numerical accuracy can

be made. Though, certain points in the design space are more favorable for a

realization than others, because they deliver a better resource usage to PSNR

ratio. Especially the four architectural options differ clearly and often only the

DSP-3M can be considered as Pareto optimal.

This characteristic is demonstrated in Fig. 4.6 where the PSNR value is shown

as a function of the area consumption per channel. Due to the normalization

of the area usage, implementations with different channel numbers manifest

themselves in closely spaced clusters. Interestingly, for some specific PSNR

levels, the four multiplier variant (DSP-4M) does not consume more silicon
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Figure 4.6: Fixed-point accuracy (PSNR) and area consumption of various configura-
tions of the single target ML angle estimation accelerator. All values with
256 steering vectors and between 4 and 32 channels.
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area than the version with three multipliers. It seems that in some favorable

configurations the additionalmultiplier can be compensated by the lower num-

ber of adders which are required for the DSP-4M implementation form. The

Cordic variant does not reach the Pareto frontier even though it approaches the

DSP-based versions for some specific word lengths. The LUT-based multiplier

variant (LUT-4M) is by far the worst option throughout the investigated design

space, due to its very low area efficiency.

A direct comparison between the Cordic variant and the DSP-based multi-

plier variants can be misleading, because the principal logic operation of the

Cordic implementation are additions, which are consequently realized by gen-

eral purpose LUTs. The corresponding adders, which are required in a large

quantity, will exhibit a lower area efficiency than the hardwired multipliers in-

side the DSP slices. However, this relationship holds only for the specific FPGA

architecture, because a dedicated and hardwired adder block is not existent. A

benchmark of the Cordic variant on another target device, like for instance a

customASIC,would be interesting andmay potentially lead to different results.

4.4 Two target ML estimator

A prerequisite for the two target ML estimation process is the computation of

the scalar products A� between the input data and the steering vectors. Never-

theless, a full evaluation of these scalar products can be avoided, because they

have already been calculated during the single target estimation process. The

most straightforward approach is certainly to cache and reuse the previous re-

sults. Consequently, the figures presented below do not include computational

logic to evaluate the scalar product and the module relies on the availability

of the A� values at its input. For more information about the architecture of

the module refer to section 3.3.2 and for the theoretical background of the ML

estimation in the two target case to section 2.3.3.

The design space for this module comprises mainly three parameters which

are shortly described in the following list.

Word length (1) Defines the word length of the scalar products at the input.

One complex input value is comprised of two actual data words, the real

and the imaginary part with a word size of 1 bits each.
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Number of PEs ( ) This is the number of processing elements (PEs) which

evaluate the ML function in parallel. This number can be adapted to the

application’s needs and determines the trade-off between silicon area and

data throughput.

Number of steering vectors (#) This parameter defines the size of the an-

gular search space and has an influence on the processing time as well as

on the size of the read-only memory for the constant, sensor-specific �8 9
values.

4.4.1 Area

Fig. 4.7 shows the equivalent area of the two-target DMLmodule implemented

on a Virtex 7 FPGA. Several observable characteristics of the area consumption

can be related to a respective parameter which will be further explained in the

following paragraphs.

The dependency on the used word size can be observed from both plots.

Two almost constant regions which are connected by a transition zone in-

between predominate the shape of both plots. The area consumption remains

approximately the same for word lengths below 18 bit, due to the used DSP

slices. As long as the input operands are small enough so that they fit into a

single DSP block, the resource usage increases onlymarginally. The same effect

is reached above 24 bit for the input words because the operations are then

performed by four DSP slices which offer enough capacity for even larger word

lengths. The slope of the transition zone is variable because the intermediate

word lengths are mapped to a hybrid implementation using both, DSP slices

and LUTs for its realization. Please refer also to page 115 where this property

has already been explained in-depth.

It is known from the module’s structure, that the arithmetic unit of the hard-

ware module is independent of the number of steering vectors. Nevertheless,

a dependency of the resource usage can be observed which is provoked by the

memory storing the �8 9 values. The more steering vectors have to be processed,

themore constant values have to be stored, which is why an increasing resource

usage can be observed. The area consumption exhibits a quadratic dependence

on the number of steering vectors due to the two-dimensional search space.

Regarding the number of PEs, a quite remarkable, stepped behavior of the
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(c) Model function, refer to (4.7)
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Figure 4.7: Silicon area consumption of the two target ML angle estimation module on
a Virtex 7 FPGA.

area consumption can be seen in Fig. 4.7a. With each PE, the full arithmetic

unit performing all addition andmultiplication operations has to be replicated,

so that a linear increase of the resource usage would be obvious. However, a

periodic behavior, where at certain points the used resources even decrease,

can also be seen in Fig. 4.7a. The reason for this primarily strange characteristic

lies in the nature of the memory realization which only supports power of two
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sizes. Hence, the most efficient implementations are those without unused

memory due to the restricted steps of memory sizes.

Model function

The following function is used to approximate the consumed silicon area of the

two target ML angle estimation module. Once again, the dependency on the

word length 1 is modeled by a family of curves (4.7), where the coefficients �
differ for every word length 1 (cf. Tab. 4.5).

H�A40( , #) = �  + � # #2  2
−blog

2
 c + �0 (4.7)

The first summand in (4.7) stands for a linear increase of the silicon area as a

functionof thenumber of lanes . For each additional lane, the entire arithmetic

unit has to be replicated which is taken into account by the coefficient � .

The second summand depends primarily on #2
due to the resource con-

sumption of the two-dimensional coefficient memory. The additional term

 2
−blog

2
 c

models the possible memory overhead for unfavorable values of  ,

where the operator b c denotes the floor function, i.e. rounds down. Only if

 is a power of two, that is for  ∈ {1, 2, 4, 8, . . .}, the memory can be fully

utilized and no overhead exists. In this case, the term  2
−blog

2
 c

becomes one

and cancels itself out.

The fitted result has a very high accuracy which can be seen in Tab. 4.5.

The regression standard error averages out at 0.3mm
2
and the coefficient of

determination '2
is consistently above 0.99. Moreover, the visible results in

Fig. 4.7 are virtually identical to the observations.

4.4.2 Power

The estimated power dissipation of the two target estimation module is shown

in Fig. A.3 in appendix A.3.3 in the same manner as the area consumption.

The corresponding model function (A.17) and its coefficients in Tab. A.6 are

likewise included in appendix A.3.3.

In general, the figures look very similar to the silicon area usage from the

previous section. Each additional logic resource has to be powered so that a

strong correlationbetweenarea andpower consumption is observable. Though,

the stepped increase as a functionof thenumberofPEs is by far lesspronounced.
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Word size Coefficients [mm2] GOF

1 � � # �0 B [mm2] '2

12 0.2774 0.0531 ·10−3 0.1147 0.264 0.999
13 0.2816 0.0531 ·10−3 0.1074 0.252 0.999
14 0.2905 0.0531 ·10−3 0.0778 0.248 0.999
15 0.2921 0.0532 ·10−3 0.0969 0.251 0.999
16 0.2964 0.0532 ·10−3 0.1026 0.255 0.999
17 0.3135 0.0530 ·10−3 0.0772 0.252 0.999
18 0.3349 0.0533 ·10−3 0.0861 0.253 0.999
19 0.4044 0.0535 ·10−3 0.1490 0.300 0.998
20 0.5223 0.0524 ·10−3 0.3186 0.312 0.998
21 0.5826 0.0521 ·10−3 0.3426 0.303 0.998
22 0.5867 0.0522 ·10−3 0.3472 0.305 0.998
23 0.4851 0.0527 ·10−3 0.2006 0.257 0.999
24 0.4860 0.0527 ·10−3 0.2208 0.259 0.999
25 0.5004 0.0527 ·10−3 0.2082 0.288 0.999

Table 4.5: Coefficients of the model function (4.7) describing the silicon area consump-
tion of the two target ML angle estimation module

In contrast, the local maximum in the region around 20 bit word length is

intensified and it seems that the hybrid LUT/DSP realizations consume a great

amount of current.

The overall power consumption is astonishingly small with values below 2W

even for 16 PEs in parallel. A CPU-based variant of the two target estimator,

whichwill be presented in detail in the next section, falls behind clearly in terms

of data throughput even though the processor is specified with a maximum

power dissipation of 35W.

4.4.3 Performance (Data throughput)

The performance of the two target DML estimation hardware module was

evaluated in the same manner as the single target module. A processor based-

implementation was used again, with the same framework and parameters as

in section 4.3.3. Again, a 24 bit word length for the fixed-point FPGA module

was chosen as reference for this benchmark. This time, the processing time per

detection is independent from the number of receiving channels because the

previously computed scalar products can be reused. Thus, only the number of

steering vectors determines the total runtime and a quadratic dependence on
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Figure 4.8: Performance in terms of data throughput for various implementations of
the two target ML estimator.

this parameter can be noticed. The hardware implementation offers further the

possibility to employ multiple PEs in parallel at the cost of a higher resource

usage.

The results are shown in Fig. 4.8, where it can be observed that the processor

based version is faster than the dedicated hardware implementation with a

single PE, but slower than the version with four PEs in parallel. With an even

higher number of PEs, the performance of the FPGA module can be further

increased if required by the application. For instance with 16 PEs in parallel a

speedup of factor 7 compared to the CPU can be achieved, while less than 5%

of the FPGA’s resources in terms of silicon area are occupied. In contrast to the

CPU, the power consumption is considerably lower and lies at approximately

1.45W for the parallelization with  = 16.

4.4.4 Area and power efficiency

The module offers the possibility to adjust the data throughput by choosing an

arbitrary parallelization factor  , which determines the number of processing

elements (PEs). Though, this is only a trade-off because the area consumption

will also increase with a higher parallelization. For the designer it might be

interesting to observe the area efficiency in dependency of  so that an eventual

loss in efficiency can be identified for certain configurations.
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Figure 4.9: Area and power efficiency of the two target ML angle estimation module
on a Virtex 7 FPGA. The number of steering vectors is fixed at 256 for both
figures.

For the computation of the area efficiency, the maximum achievable data

throughput of the module was used, i.e. the accelerator was operated at 5max

and the input values were supposed to be supplied without any interruption.

The result is shown in Fig. 4.9a as a function of  and the word length. The

reader should take notice of the interchanged axes of abscissas which differ

from the previous surface plots. Beside the area efficiency, the power efficiency

is also shown even though it originates always from a discrete clock frequency

and not from an ideal operating point.

A stepped and terraced characteristic can be observed in Fig. 4.9, i.e. there are

certain areas where the efficiency remains virtually constant and there are also

some regions with a distinct step of the efficiency. These steps occur in both

dimensions and manifest themselves as straight edges across the whole figure.

For instance if the word length traverses 18 bit, the efficiency clearly drops due

to an increased area consumption but also due to a lower 5max which was to

be expected. The steps in dependency of  occur always if a power of two is

reached, more precisely at 2, 4, 8 and 16 PEs in this figure. The location of the

steps originate from the likewise stepped area consumption which has already

been explained in section 4.4.1. More interestingly, the efficiency increases

with a higher parallelization which is an exceptional behavior and needs to be
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4.4 Two target ML estimator

further explained.

Itwasmentioned that the full computational logic has to be replicated for each

additional processing element. However, the memory storing the �8 9 values
does not need to be cloned one-to-one because every PE will only operate on

a subset of the 8 , 9 indices. As a result, the individual memory size of each PE

decreases for a larger number of  and hence the area per PE also decreases.

This is the reason for a better efficiency at a higher parallelization degree which

is quite remarkable.

The observable deviations in the primarily constant and flat regions of the

area efficiency are caused by small fluctuations of the maximum operating

frequency. When looking at the power efficiency in Fig. 4.9b, it is conspicuous

that the surfaces are much smoother than in Fig. 4.9a. The reason is that

a higher operating frequency always comes along with an increased power

consumption. In terms of efficiency, the local peaks of 5max are canceled out

by a higher power consumption and in the end, the power efficiency remains

constant.

It remains to underline that only the implementations for which  is a power

of two can be considered as Pareto optimal. This is demonstrated in a slightly

different data representation in Fig. 4.10where the data throughput is shown as

a function of the area consumption. The differentword lengths are connected in

increasing order and different parallelization degrees can be identified through

different colors and markers. Two reference lines were added which mark the

Pareto frontier for 16 and 24 bit word length, respectively. Only the power of

two realizations are located on these lines in contrast to the two examples with

 = 6 and  = 12 which drop behind clearly.
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Figure 4.10: Data throughput as a function of silicon area consumption for various par-
allelization degrees ( ). For every different  , several word lengths are
shown; they are connected by lines. All values are based on 256 steering
vectors.
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5
Verification with an Experimental

High-Resolution MIMO Radar

During the course of this thesis, a high-resolution prototype radar sensor was

designed and built up in my working group at Bosch
1
. One of its purposes

is the ability to verify the implemented signal processing architectures under

real world conditions. Besides, the operational radar prototype was used suc-

cessfully for further research and development of automotive radar processing

techniques and algorithms. In combination with the presented FPGA-based

hardware accelerator, the experimental setup achieves highest performance in

terms of range, velocity and angular resolution. It enabled the acquirement of

high-resolution measurement data, which was in turn used for further studies

and lead to numerous publications [6–23].

The whole system was designed from scratch with the objective to provide

a modular radar framework with the ability to exchange certain components

easily. Parts of the radio frequency (RF) front end were developed in collabora-

tion with the Institute for Communications Engineering and RF-Systems of the

Johannes Kepler University (JKU) in Linz. The remaining baseband and power

supply circuitry was developed within Bosch during this thesis’ time span. For

the FPGA-based processing platform, mainly off-the-shelf components were

used which kept the hardware development effort minimal.

The first complete radar setup was ready for operation at the end of 2014, in

the beginning solely as a non-moving and stationary sensor. Since mid 2016, it

1
Advanced Engineering Sensor Systems, Chassis Systems Control (CC/ENA2) in Leonberg
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5 Verification with an Experimental High-Resolution MIMO Radar

has become possible to mount the sensor on a test vehicle, and thus dynamic

traffic scenarios in combination with a moving sensor can be investigated. The

system is operational in connection with the presented preprocessing archi-

tectures, so that a real-time data acquisition and reduction is possible. It is

expected that further research will be based on this framework and finally new

findings can be made with the help of this radar sensor prototype.

In the following sections, the hardware architecture and some operating

parameters will be presented (cf. 5.1 and 5.2). Finally, the signal processing

performance of the previously described architectures is evaluated and verified

with the help of real world radar measurements. In order to provide data of

complex traffic scenarios, the prototype sensorwasmounted onto a test vehicle.

The corresponding results are discussed in section 5.3. They demonstrate the

enhancements in resolution, they provide new insights and finally they help to

deduce requirements for future automotive radar systems.

Someparts of the presented results in this chapterwere also published in [11].

5.1 Overall radar system architecture

The experimental radar sensor system used for this work is split into twomajor

parts, which can be separately placed inside a test vehicle. The first part consists

of an RF front end in connection with additional signal processing and analog-

to-digital (A/D) conversion circuits. The second part is completely digital and

consists of an FPGAprocessing platform including an external DRAMmemory

and some extension modules for a raw data connection to the radar front end.

Finally, a PC or laptop is connected via Ethernet to the FPGA to record and

visualize the data.

Themain advantage of this split architecture is the spatial separation of radar

front end and signal processing unit. It helps to speed up the integration of

prototype setupswith different antenna arrays into a vehicle, because thewhole

processing platform can be kept without any modifications. The connection

between the two parts is made with the help of a digital high-speed link which

is transmitting raw data.

The architecture can be seen in the block diagram in Fig. 5.1a and the com-

ponents are described briefly in the following paragraphs.
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Figure 5.1: Radar prototype system which was developed and used for the verification
of the signal processing modules. The two parts are connected via a high
speed raw data link.
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5.1.1 Radar sensor head

The sensor head is composed of three distinct circuit boards which are all

connected via short cables or direct board-to-board connectors. They are me-

chanically integrated into a plastic housing with an optional radomewhich can

be placed in front of the antennas.

Radio frequency (RF) front end

The signal generation is based on automotive monolithic microwave integrated

circuits (MMIC), which support fast chirp linear FMCW ramps at an operating

frequency of 77GHz. A phase-locked loop (PLL) is used in conjunction with a

voltage-controlled oscillator (VCO) to generate the waveform.

The timing as well as the bandwidth can be user-defined at runtime, so that

a wide range of different modulation settings are supported by the framework.

The maximum bandwidth is limited around 3GHz by the VCO tuning range,

which results in a range resolution of about 0.05m. Compared to state-of-the

art systems, the bandwidth and hence the range resolution is approximately 5

to 10 times higher [3, pp. 382,388].

The used patch antennas offer a wide opening angle of ±50 degrees, so that

a rather large field of view is covered by a single sensor. In combination with

sufficient measurement time, the processing gain of the system is large enough

to detect small targets in 100m range and beyond. Therefore, far objects as well

as objects to the left and right of the sensor can be recognized simultaneously.

The modular concept allows the usage of many different antenna layouts

without changing the other components of the system. Two RF front ends with

different antenna configurations were used primarily during the development

of this thesis: 4 Tx – 8Rx, as well as 8 Tx – 16Rx.

The number of 16 receiving channels is the limit for the connected baseband

circuitry and the subsequent FPGA-based processing system. In contrast, the

number of sending antennas is not restricted to eight so that a further increase

of the aperture size would be possible without changing the baseband condi-

tioning and processing hardware.
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5.1 Overall radar system architecture

Baseband signal conditioning and analog-to-digital converters (ADC)

Themixer outputs from theRF front enddesignate the interface to the following

processing stage. At this point, the received radar signals have already been

demodulated to a baseband signal with a much lower frequency range. The

purpose of the following circuitry is to condition and prepare the signals for

the subsequent A/D conversion. The required components are located on a

separate circuit board which is mounted directly behind the RF front end (cf.

Fig. 5.1b). Differential signal pairs are used throughout the system in order to

minimize external interference, noise and crosstalk.

First, the signal level is increased by a variable-gain amplifier (VGA) tomatch

the input range of the ADC. Their gain factor can be adjusted to maximize

the dynamic range of the system without any overdrive or distortion. Addi-

tional coupling and filtering circuits limit the bandwidth below the Nyquist

frequency. After the amplification, each channel is converted into the digital

domain by a discrete high-speed ADC. Finally, the digitized signals are output

as a serialized data stream.

The ADC sampling clock is derived from a common reference clock which

is used for the RF ramp generation as well. This assures a coherent sampling

which is essential for the evaluationof the employed chirp sequencemodulation

(cf. section 2.1.4). Besides, an additional PLL is used for jitter cleaning and

synchronous clock distribution to all ADC devices on the circuit board. Phase

mismatches between the individual channels wereminimized as far as possible

so that the beamforming process is not deteriorated.

Sensor power supply

A large number of parallel channels, sophisticated low-noise amplifiers, high-

speed ADCs as well as low ripple voltage regulators provoke a rather high

power consumption in the order of 50W. This causes quite large supply cur-

rents of several amperes which have to be distributed across all ICs of the

system. Furthermore, several different voltage levels are required throughout

the system. In order to operate the radar sensor from a single 12V supply, a

custom step-down converter circuitry was developed and integrated into the

sensor head. The voltage is first converted down by a switching regulator with

a high efficiency of more than 90%. A linear regulator with a smaller volt-
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age drop is then used to filter the voltage ripple from the upstream switching

regulator. Further filtering circuit components reduce the noise in the supply

voltage to a minimum in order to increase the overall sensitivity of the radar

sensor. All voltage conversion circuits are located on a third board which is

also integrated into the sensor head.

5.1.2 Signal processing back end

High speed raw data link

The digital connection to the radar sensor is based on a serialized high-speed

data link with signaling rates of up to 5Gbit/s per Rx channel. The total raw

bitrate of the link is hence 16×5 = 80Gbit/s. Before transmission, the raw data

words from the ADCs are first serialized, then scrambled and finally encoded

with a 8b/10b code so that a 20 bit code word carries the data of one sample.

The whole serialization and encoding process is a standardized procedure and

happens inside the ADC circuits [137]. The line code assures enough state

transitions, a mean-free signal and an error detection capability. At the FPGA

side, the signal is received by integrated multi-gigabit transceiver blocks which

perform in turn the deserialization and decoding of the data words. Finally,

after descrambling, the raw data words are ready for processing.

The used QSFP connectors integrate four differential lanes into one cable

so that the total connector and cable count is divided by four [138]. Another

advantage of this off-the-shelf technology is that copper cables as well as fiber

optic cables can be used. In the pictures (b) and (c) of Fig. 5.1, the QSFP

connectors can be recognized easily by the four prominent metal cages which

are mounted on the circuit boards on both sides of the system.

FPGA-based processing unit

In order to keep the development effort minimal, a commercial available FPGA

platformwas used. The VC707 board fromXilinx features a Virtex7-485T FPGA

in conjunction with a 1 GB external DRAM [139]. The maximum memory

interface bandwidth for this system is bounded to approximately 100GBit/s,

which gets fully utilized when running the ADCs at their maximum sample

rate. A 1Gbit/s Ethernet interface is used for the link to a PC which provides

measurement and visualization tools. The VC707 FPGA-board features two
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FMCconnectorswith a highpin countwhich can beused formany applications.

The requiredQSFP interfaces are added to the FPGAby two customFMCbreak-

out boards, which act as a connector adapter (cf. Fig. 5.1c). In addition, some

general purpose pins are used for the connection of low speed control signals,

namely a Serial Peripheral Interface (SPI) and trigger lines. The clock signal of

the AD-converters is recovered from the data stream and used for the signal

processing logic inside the FPGA. Thus, this backend is fully synchronous to

the radar front end, although it is separated spatially.

5.2 Acquisition of measurement data

For the research and development of radar signal processing algorithms, the

availability of real world datasets is crucial. Certain steps like proof-of-concept,

performance evaluation, benchmarking, functional tests and verification are

virtually impossible to conduct without measurement data. The continuous

acquisition of sensor data during the development cycle helps to find weak-

nesses and pitfalls early enough so that a high quality of the final product can

be ensured.

Requirements on the data format

The required data format differs according to the investigated signal process-

ing steps and according to the development task. A database containing raw

sensor data offers the greatest flexibility and thus supports the largest number

of possible use cases, because any other data format can be deduced from it.

Furthermore, it is possible to exchange the processing algorithms and parame-

ters later in order to reprocess the measurement data. Finally, raw data is often

required since it is the only way to ensure and monitor a correct operation of

all system components. For instance, a problem related to the analog parts

of the circuit boards can be possibly only tracked down by analyzing the full

frequency spectrum and the occurring noise components.

Unfortunately, raw data has also the largest storage requirements which can

becomean issuewhen ahugenumber of datasets needs to be recorded. Another

considerable challenge during data acquisition is the limited write speed of

current available PC systems,which is boundedby some1000MB/s,mostlydue

to the used solid-state drives. When using traditional hard disk drives based
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on magnetic storage, the writing speed is even lower. Furthermore, another

constraint is often the used data interface to the PC,which is a 1GBit/s Ethernet

interface in this case. Other technologies like USB 3.0 or PCIe are available at

higher bandwidths, however the continuous data streaming of large sequences

to the hard disk drives is still not self-evident. Practical experiments with the

presented radar prototype revealed that occasional data loss occurs already at

datarates of 1GBit/s, due to the lack of real-time capabilities of the operating

system and the overloaded write caches of the solid-state drives.

A good alternative to raw data is to store only the raw detections which

are extracted by the CFAR processing step. Accordingly, most of the noise

components can be discarded before the recording takes place. The space

requirements can be reduced by a factor of 100 or more (cf. section 5.3.2), while

the preprocessed data is still universal enough for most of the development

tasks. For instance a benchmarking of different tracking algorithms would

presumably be based on preprocessed radar detections.

Operational modes

According to the different requirements on the measurement data format, the

presented prototype was designed to support both, the acquisition of raw data,

as well as data preprocessing in real-time. In fact, the on-line data reduction

is crucial for some high-resolution parametrizations, which cannot be realized

in the raw data mode. Below, both modes of operation will be compared

on the basis of their respective measurement cycle rate, which is an essential

parameter for real-time applications. Often the terms frame rate or update rate are
used synonymously. A single measurement cycle, which is also referred to as

single snapshot, corresponds to a full chirp sequence according to the presented

processing scheme in chapter 2.1.4.

The diagrams in Fig 5.2 show the operational range of the FPGA-based and

the PC-based mode. If the PC-based raw data acquisition mode is used, the

unambiguous range and velocity has to be decreased in order to achieve the

desiredmeasurement cycle rate of 20Hz. Even though theunambiguous area in

Fig. 5.2 can be traded against update rate, it is only reasonable to some extent. In

contrast, when using the FPGA-based preprocessing mode, the unambiguous

area can be maximized while the cycle rate of 20Hz remains constant.

An upper limit for the unambiguous range can be observed in both figures. It
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Figure 5.2: Operational range of the FPGA-based, CFAR processing mode (blue) and the
PC-based, raw data mode (red and brown). The frame rate is fixed at either
10 or 20 Hz. The resolution in range and velocity is doubled from (a) to (b).

results from the maximum Range FFT length of 4096 samples which the FPGA

implementation can handle. The half of this value (due to the real-valued

transform) multiplied by the cell size limits the overall unambiguous range.

Even though an increase of the maximum FFT length would be possible in raw

data mode, it is not shown in the plots because this operation mode is only of

theoretical nature due to the very low unambiguous velocity.

Moreover, the operational range has to be understood as hypothetical space

which is supported by the processing back end. Certain configurations cannot

be put into action due to physical limitations of the analog components. This

could be an upper limit of the frequency ramp slope or a minimum chirp time.

The two different operational modes, namely either CFAR preprocessing or

raw data recording, make the prototype system very powerful but yet flexible.

Until now, the acquirement of raw data has been a convenient approach for

prototyping new systems. However, this experimental radar system shows

that a real-time data preprocessing will become more important, because the

huge data rates can’t be handled by thewell-established PC-based development

tools anymore. It is expected that FPGA-based processing platforms will be

increasingly used in the future because they offer the required computational

power as well as high bandwidth interfaces.
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(a) Test vehicle equipped with the radar
prototype sensor (white housing)

Bandwidth 3 GHz

Measurement time
(single snapshot) 40 ms

Number of channels 16

Raw data amount
(single snapshot) 128 MByte

Frame rate 20 Hz

False alarm rate 10-6

(b) Modulation parameters

Figure 5.3: Prototype setup used for evaluation measurements.

5.3 Real world evaluation

A test vehicle was equipped with the sensor prototype, according to the setup

presented in section 5.1. The mounting position in the vehicle bumper can be

seen in Fig. 5.3a and the used modulation parameters are listed in Fig. 5.3b.

The power supply and a PC were put into the back of the car, along with other

measurement instrumentation. A video camera provides a reference image of

the scene which is recorded synchronously to the radar data.

With this setup, real world measurement data can be recorded for research

and development purposes. The seamless integration into a commercially

available passenger car makes it possible to perform measurements of many

different traffic scenarios on public roads. Furthermore, other traffic partici-

pants are not distracted by anodd-lookingprototype vehicle so that anunbiased

behavior of all road users can be supposed.

5.3.1 Single snapshot performance

During normal operation, the radar sensor is continuously scanning the en-

vironment and provides either the raw data or an already processed version

according to the signal processing steps presented in chapter 3. In both opera-

tion modes, the smallest meaningful chunk of data is the result of a full chirp

sequence measurement. The recording duration is typically in the order of

several milliseconds and amounts to 40ms for the exemplary parametrization

shown in Tab. 5.3b. The resulting dataset is often referred to as a single snapshot
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and it is fully independent from previous or following measurement cycles.

Temporal filtering and tracking algorithms often take advantage from this fact,

because they can easily filter out one-time occurring noise and interference

events.

The analysis of a single measurement snapshot is a convenient approach to

benchmark the detection and resolution capabilities of a radar system without

the influence of enhanced perception algorithms. A three-dimensional point

representation of the environment can already be computed and gives a first

insight on the provided data quality. Certainly, a multitude of noise and inter-

ference components are still included in the data, however the scenery can be

interpreted by humans already.

An example measurement, performed with the radar prototype which was

introduced in section 5.1, is presented on page 150. Please refer to Fig. 5.3 for

details about the radar sensor’smounting position andmodulation parameters.

In Fig. 5.4, two different data representations are shown, the bird’s-eye view in

(a) and the range-Doppler view in (b). Static and moving targets can be easily

separated due to the highly accurate Doppler information and the knowledge

of the own vehicle’s speed. The moving objects are shown with a red color and

they manifest themselves as dense point clusters. Even the shape and orien-

tation of the vehicles are directly recognizable from this measurement which

demonstrates the improved resolution capabilities. The road side infrastruc-

ture is also very detailed and dense, so that a road trajectory could be estimated

from a single snapshot.

The accuracy of these measurements results is comparable to independent,

recent work [140–142] and demonstrates the progress in automotive radar tech-

nology. It shows the effectiveness of an increased bandwidth in combination

with the employment of MIMO systems with a large channel number. Such

systems emphasize the requirement of a powerful, real-time capable and yet

efficient processing unit. For instance, the measurement shown in Fig. 5.4 was

obtained from raw data with the size of 128MByte. Only with the help of

more advanced hardware accelerators, it will become possible to handle such

an increasing amount of data in a reasonable manner.
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Figure 5.4: Single radar measurement snapshot, recorded with the prototype setup
shown in Fig. 5.3. Moving target detections are marked with red color. The
three road users (1 – 3) can be recognized by dense point clusters.

5.3.2 Requirements for next generation radar systems

The implemented processing steps on the FPGA can reduce the raw data rate

to a certain extent by separating the signals from the background noise. Ac-

cordingly, the appropriate output after the CFAR processing step are raw radar

detections which need to be further processed. The subsequent algorithms like

angle estimation will then operate on such lists of detections, which can vary in

size. Thus, the runtime of the following units depends on the number of radar

targets which are present in the vicinity of the sensor.

In practice, it is very difficult for the designer to ensure the real-time ca-

pability of the subsequent processing units due to the varying nature of the

computational load. The peak number, and also the average number of targets
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5.3 Real world evaluation

has to be specified as accurately as possible in order to optimize the overall cost

efficiency of the system. Early measurements with the envisaged final modu-

lation settings are thus required to investigate the usual target number in real

world scenarios.

The radar target count is somehow related to the number of objects in the

field of view of the sensor. Though, specific physical effects like a micro-

Doppler signature can cause a disproportionately high detection count on a

single object. A spinning wheel may carry multiple detection points due to

its rotation [7, 143]. Furthermore, roadside infrastructure with different radar

reflection characteristics can contribute significantly to the final target count. It

is thus reasonable to investigate different scenarioswhen determining an upper

bound for the number of radar targets.

Fig. 5.5 shows the progression over time of the number of targets for two

different measurement scenarios, one on a three-lane highway and another

one on an interurban road. The same false alarm ratio as well as the same

modulation settings were used during all measurements so that the number of

targets depends solely on the surrounding traffic environment.

It can be observed that certain structures like a guardrail with a wall behind

(cf Fig. 5.5a) contribute significantly to the total number of targets. Similarly,

oncoming traffic in interurban scenarios causes substantial, fast varying peaks

in the temporal progression. Interestingly, the target count in the case of a

moving environment is heavily increased compared to the case of a stationary

ego-vehicle. The reason for this behavior is that all roadside targets have

a slightly different radial velocity component depending on their azimuthal

position [144]. Hence, they can already be separated before the actual angle

estimation takes place which shows the excellent separation capability of the

radar sensor in the velocity domain.

The total number of targets lies for both scenarios in the order of 10 000 with

peaks of up to 40 000 in special situations. Compared to the total number of

frequency cells, which is approximately 2 millions for the used modulation,

the number of cells occupied by actual targets is rather low. Only around one

percent of the cells contain useful information, while the rest consists solely of

noise components which are effectively filtered out by the CFAR processing.

Consequently, the data rate of the system can be reduced by a factor of 100

or more, which means a significant reduction of the processing load for the

downstream modules.
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Figure 5.5: Detection count over time for different traffic environments.
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6
Conclusion

The current trend toward self-driving cars has a strong impact on the evolution

of automotive radar sensors. Firstly, the requirements in terms of resolution

are increasing significantly which in turn imposes a higher burden on the

processing unit. At the same time, larger quantities of radar sensors are sold,

which allows for a development of highly specialized and application specific

integrated circuits (ASIC).

This work addresses one crucial aspect during the development and imple-

mentation of complex and specialized hardware accelerators: The selection

and definition of an optimal architecture which fits as best as possible to all

intended use cases. Answers and best approaches which support the design

of a processing unit for automotive high-resolution MIMO radar systems have

been provided step-by-step.

At first, the working principle and physical background of a radar system

using an FMCW modulation was analyzed in chapter 2. Furthermore, state of

the art technologies like chirp sequence modulation andMIMO antenna arrays

were explained and the underlying processing algorithms were investigated.

Important steps in the signal processing pipeline were identified, for instance

the target detection which reduces the data rate to a significant extent.

The conducted study of algorithm and processing techniques has lead to the

layout of a stream-based architecture, which is suitable for an implementation

as a hardware accelerator. It was presented in chapter 3 and comprises all

necessary steps in order to arrive at a list of target detections, while starting

from the received signals which are sampled by the A/D converters. The steps

are, in this order, two-dimensional spectral transformation based on FFTs, non-
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6 Conclusion

coherent integration (NCI), constant false alarm rate processing (CFAR), target

detection and maximum likelihood (ML) angle estimation.

These individual tasks were decomposed in proper modules which can be

parametrized according to the desired data throughput, numerical accuracy,

spectral resolution, statistical performance as well as their resource and power

consumption. For each module, several algorithmic and implementation spe-

cific characteristics were observed and certain optimizations were applied. Key

findings are the importance of the rounding scheme for the 2D FFT, the in-

fluence of the addressing scheme on data throughput when using DRAM for

the matrix transformation, the advantage of using NCI before the actual CFAR

processing, the usefulness of a Cordic processor for the angle estimation as

well as an improved scheduling scheme for the evaluation of symmetric data

structures. These results were summarized, amongst others, in section 3.4 on

page 98.

Based on the developed processing architecture, an implementation of all

modules on an FPGAwas realized in a subsequent step. In addition, an experi-

mental radar systembased on aVirtex 7 FPGAwas built up so that a verification

of all modules under real world conditions was possible. Measurement data

which had been gathered and processed by the presented signal processing

architecture was shown in section 5.3 on page 148.

Beside the actual realization of all processing blocks, an extensive design

space exploration was performed in the course of this work. For all of the three

modules comprising target detection, single and two target ML estimator, the

implementation results on a Virtex 7 FPGA were investigated in-depth. More

precisely, their resource and power consumption, maximum clock frequency,

numerical accuracy anddata throughput capabilitiesweremeasured fordiverse

configurations. In numbers, the obtained results are based on more than 3600

discrete module variants, all with a different parameter set. Starting from this

comprehensive and accurate database, suitable model functions were selected

and fitted to the observed characteristics. They were all presented, along with

other interesting figures, in chapter 4.

With the help of the gathered results from this work, it becomes possible to

discover and understand important relations between the individual design pa-

rameters, to find Pareto optimal implementations, to choose between different

realization variants and to estimate the requirements for an arbitrary system

configuration.
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6.1 Future work

6.1 Future work

Starting from the outcome of this thesis, some directions for future work can

be set. An extension of the obtained results for other modulation schemes or

other target devices and especially ASICs seems reasonable.

A transition away from FMCW and toward more advanced modulation

schemes like orthogonal frequency-division multiplexing (OFDM) will defi-

nitely entail changes in the initial processing steps of the spectral transforma-

tion [145]. New modules will have to be developed and investigated which

account for the changes in the underlying processing schemes. The impor-

tance of such accelerators will further gain in importance as sampling rates can

increase easily to one gigasample per second and beyond if no optimization

measures on the system side are taken [146].

Although the provided results of the design space exploration can be used

for the estimation and dimensioning of future radar systems, it should be kept

in mind that all values were obtained from an FPGA-based implementation.

It is expected that certain characteristics will change in the case of a custom

implementation as part of an integrated circuit. Therefore, the behavior of the

modules’ resource and power consumption should be investigated again on the

desired target architecture in order to provide more accurate results.

The presented signal processing pipeline comprises only the low-level pro-

cessing tasks of an actual automotive radar system. Usually, the raw target

detections are subsequently fed into some sort of clustering and tracking al-

gorithms, a classification and segmentation step, as well as enhanced percep-

tion methods like a grid-based mapping of static objects. Most of these tasks

benefit from the already reduced amount of data so that a real-time imple-

mentation is often feasible without further measures. Nevertheless, certain

modules can still be quite demanding due to their sophisticated algorithms like

for instance a semantic segmentation based on convolutional neural networks

(CNNs), density-based clustering or an occupancy grid mapping. Such radar

specific processing techniques are also candidates for a hardware acceleration

and need to be further investigated in future work.
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Appendix

A.1 FMCW baseband signal derivation

Recalling the expression for the transmitted and received waveform in the case

of a single target from (2.5), page 9, where � is the two-way propagation delay

and < the ramp slope:

BC(C) = �C cos

(
)C

)
(A.1)

with )C = 2� 52C + �<C2 + )0 (A.2)

BA(C) = BC(C − �) = �A cos

(
)A

)
(A.3)

with )A = 2� 52(C − �) + �<(C − �)2 + )0 (A.4)

At the receiver side, the two signals BC(C) and BA(C) are multiplied by using a

frequency mixer to generate the baseband signal B1(C).

B1(C) = BC(C) BA(C) (A.5)

=
1

2

�C�A︸ ︷︷ ︸
�1

(
cos

(
)C − )A︸  ︷︷  ︸

)1

)
+ cos

(
)C + )A

)︸          ︷︷          ︸
=0

)
(A.6)

= �1 cos

(
)1

)
(A.7)

The second cosine term can be neglected because its frequency is the sum of the

signal frequencies of BC(C) and BA(C) which is simply filtered out. The received
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phase term now simplifies to the following expression:

)1 = 2� 52C + �<C2 − 2� 52C + 2� 52� − �<C2 + 2�<C� − �<�2

(A.8)

= 2�

(
52� + <C� −

<�2

2

)
(A.9)

The propagation delay � depends on the range and can be expressed by the

following equation, where A remains constant over time and a possible radial

movement is modeled by the radial velocity EA .

� =
2A

2
+ 2EAC

2
=

2

2
(A + EAC) (A.10)

Inserting (A.10) into (A.9) gives the following expression, which can be sim-

plified by neglecting theminor terms in the sum. At this point, the advantage of

using the center frequency 52 instead of 50 as a parameter for the frequency ramp

modeling can be observed. With this choice, the ramp duration and likewise

the variable C is fixed to the interval [−)
2
, )

2
]. This minimizes the introduced

errors due to the simplification of (A.11).
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(A.12)
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A.2 FPGA silicon area estimation

A.2 FPGA silicon area estimation

For the design space exploration presented in chapter 4, one of the most im-

portant metrics is the area consumption of the implemented module. Unfor-

tunately, the used FPGA tools only report the number of consumed FPGA

building blocks like LUTs, DSP slices and memory blocks. This makes it cum-

bersome to compare different implementations because the overall circuit is

composed of several different logic elements. Furthermore, a certain resource

type could be replaced by another type while achieving the same functional-

ity so that it is very important to observe the resource usage of all available

building blocks. In order to form a single metric which estimates the total

area consumption, an individual weighting factor for each resource category

is required. With the help of such a coefficient, the individual blocks can be

properly summed up according to their actual area contribution.

Besides, the coefficients could not only express the silicon area ratio between

certain logic elements, but also the absolute silicon area per block expressed in

mm
2
. Such parameters are not provided directly in the datasheet, but they can

be estimated to a certain extent based on other available information. The used

coefficients in this work and their derivation is now described below.

For the used 7-series FPGA from Xilinx, the outer dimensions of the chip die

of several different components can be found in the respective user guide [147].

The values are summarized in Tab. A.1. Even though the total die size of the

actual used Virtex 7 device 485T is not included in this list, an estimation based

on other devices should be sufficient for this work. All 7-series FPGAs are

produced with a common 28 nm process [147, p. 308] so that each building

block should provoke almost the same area footprint across different devices.

Die size
Device F [mm] ℎ [mm] Area [mm2]

XC7K70T 5.99 9.68 57.98
XC7K160T 8.54 12.05 102.91
XC7K325T 9.87 16.92 167.00
XC7K410T 12.93 16.92 218.78
XC7A200T 11.10 12.05 133.76

Table A.1: FPGA die size

It is further known that the 7-series FPGAs are organized in arrays where

159



Appendix

every column can realize a different functionality [122, p. 16]. For instance a

DSP column consists solely of DSP blocks which include a hardwired multi-

plier block. The number of elements per columns =A,G as well as the number of

columns =2,G of a certain resource type G are also available from the manufac-

turer. The values can be found in [123, p. 19], [124, p. 14] or in the Device view
of the Vivado tools. They are summarized in Tab. A.2.

Number of columns =2,G Elements per column =A,G
Device Slices DSP BRAM18 Slices DSP BRAM18

XC7K70T 62 3 4 200 80 80
XC7K160T 110 6 7 250 100 100
XC7K325T 154 6 7 350 140 140
XC7K410T 190 11 12 350 140 140
XC7A200T 164 9 9 250 100 100

Table A.2: Row and column layout for different devices

The height of each building block ℎG can be estimated directly from the

overall height ℎ divided by the number of elements =A,G because one column

is only occupied by a single resource type. Several variants of the following

equation can be used to find a least squares solution for the ℎG coefficients.

ℎ = ℎG · =A,G (A.13)

The estimation of the width FG of the building blocks is slightly more com-

plex, because the overall width F of the device results from the mixture of

different column types. Hence, an equation of the form below has to be solved.

F = F
SLICE
· =2,SLICE

+ F
DSP
· =2,DSP

+ F
BRAM
· =2,BRAM

+ F
MISC

(A.14)

Beside the coefficients for the three major resource types Slices, DSP blocks

and BRAMs, a fourth coefficient has been added which shall account for the

additional area consumption caused by other blocks like for instance clocking

resources, I/O banks and transceivers. It is assumed that this width contribu-

tion is the same for all FPGA devices. As a result, the equivalent column width

for the miscellaneous resources is only counted once, i.e. =2,MISC
is set to one for

all equations.

Multiple equations like (A.14) are required, at least asmany asFG coefficients,
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A.2 FPGA silicon area estimation

so that a system of linear equations with a unique solution can be formed.

With the available data from Tab. A.1 and Tab. A.2, the system of equations

is overdetermined and a least squares solution was found. It is presented

in Tab. A.3 along with the estimates for the ℎG coefficients and the final area

estimation of each building block.

This work [148]

Element width Element height Element area Element area
FG [mm] ℎG [mm] 0G [mm2] 0G [mm2]

Slice 0.0294 0.0483 0.00142 0.00108
DSP 0.1407 0.1208 0.01699 0.06533
BRAM18 0.2567 0.1208 0.03100 0.06166

Table A.3: Area estimation of the major building blocks of a Xilinx 7-series FPGA

In the rightmost column of Tab. A.3, the estimated values frompreviouswork

are given for a comparison. They are based on a simpler estimation method

which assumes an equal area share between all three building blocks. Though,

the values are quite similar and are within the same order of magnitude.
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A.3 Power consumption data

A.3.1 Target detection module

8
16

24
32

12
16

20
24

28
0

1

2

Number of channels

Word length

Po
w

e
r

[W
]

(a) Observation
CFAR Window size (#) = 128

256
512

1024

12
16

20
24

28
0

2

4

6

CFAR Window size

Word length

Po
w

e
r

[W
]

(b) Observation
Number of channels (") = 16

8
16

24
32

12
16

20
24

28
0

1

2

Number of channels

Word length

Po
w

e
r

[W
]

(c) Model function, refer to (A.15)
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Figure A.1: Power consumption of the target detection module on a Virtex 7 FPGA.
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A.3 Power consumption data

Model function

The following function is used to approximate the power dissipation of the

target detection module.

H%>F4A(", #) = �" " + �# # + �"# "# + �0 (A.15)

It is the same model function which has already been used for the silicon

area, even though the coefficients are different. The function output, which

can be seen in Fig. A.1c and Fig. A.1d, is very similar to the observations. The

coefficients have been obtained separately for each word length 1 by a least

square fitting and are presented in Tab. A.4.

Word size Coefficients [mW] GOF

1 �" �# �"# �0 B [mW] '2

12 6.40 1.83 17.15 ·10−3 177.0 79.2 0.988
14 6.20 2.17 15.51 ·10−3 177.1 82.9 0.990
16 6.57 2.48 9.65 ·10−3 183.1 78.4 0.993
18 6.29 2.58 18.40 ·10−3 192.9 77.2 0.994
20 11.16 2.80 28.43 ·10−3 195.1 102.2 0.992
22 13.42 3.14 26.19 ·10−3 196.6 143.2 0.987
24 12.96 3.33 35.35 ·10−3 200.2 120.1 0.992
26 30.19 3.63 31.16 ·10−3 179.3 133.7 0.992
28 30.19 3.81 30.63 ·10−3 183.6 154.9 0.990

Table A.4: Coefficients of the model function (A.15) describing the power consumption
of the target detection module
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A.3.2 Single target ML estimator
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Figure A.2: Power consumption of the single target ML angle estimation module on a
Virtex 7 FPGA. All values are based on the DSP-3M implementation variant.
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A.3 Power consumption data

Model function

The following function is used to approximate the power dissipation of the

single target ML angle estimation module.

H%>F4A(", #) = �" " + �0 (A.16)

Again, the model function from the silicon area is reused, but with different

coefficients. They have been obtained by a multiple linear regression (cf. sec-

tion 4.1.3) and are listed in Tab. A.5. The low values of B and the high values of

'2
close to 1 indicate a good accuracy of the model, which can also be observed

in the two graphical representations in Fig. A.2c and Fig. A.2d.

Word size Coefficients [mW] GOF

1 �" �0 B [mW] '2

12 9.96 251.4 4.05 0.998
14 10.40 251.9 4.02 0.999
16 11.17 252.5 5.69 0.997
18 11.22 260.1 7.68 0.995
20 19.34 267.1 10.24 0.997
22 22.59 255.1 7.79 0.999
24 22.63 271.5 11.09 0.998
26 43.74 264.4 15.36 0.999
28 40.78 264.1 9.76 0.999

Table A.5: Coefficients of the model function (A.16) describing the power consumption
of the single target ML angle estimation module
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A.3.3 Two target ML estimator
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Figure A.3: Power consumption of the two target ML angle estimation module on a
Virtex 7 FPGA.

166



A.3 Power consumption data

Model function

The following function is used to approximate the power dissipation of the two

target ML angle estimation module.

H%>F4A( , #) = �  + � # #2  2
−blog

2
 c + �0 (A.17)

The function is identical to the model for the silicon area, but consists of

different coefficients which are shown in Tab. A.6. The result of the function

which can be seen in Fig. A.3c and Fig. A.3d resembles the observations very

well.

Word size Coefficients [mW] GOF

1 � � # �0 B [mW] '2

12 34.92 3.111 ·10−3 220.1 60.16 0.983
13 35.61 3.116 ·10−3 219.1 60.39 0.983
14 36.19 3.113 ·10−3 218.8 61.05 0.982
15 36.77 3.113 ·10−3 219.0 60.60 0.983
16 37.37 3.111 ·10−3 218.6 59.84 0.983
17 37.94 3.105 ·10−3 219.3 60.06 0.983
18 42.38 3.119 ·10−3 219.4 61.73 0.983
19 57.59 3.114 ·10−3 220.3 64.13 0.984
20 74.01 3.123 ·10−3 216.4 67.12 0.986
21 84.85 3.122 ·10−3 214.3 69.25 0.986
22 81.73 3.115 ·10−3 205.9 69.72 0.986
23 65.13 3.105 ·10−3 222.9 61.18 0.987
24 65.92 3.105 ·10−3 223.4 61.13 0.987
25 66.59 3.103 ·10−3 224.6 61.67 0.987

Table A.6: Coefficients of the model function (A.17) describing the power consumption
of the two target ML angle estimation module
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List of abbreviations

A/D Analog-to-digital

ACC Adaptive cruise control

ADAS Advanced driver-assistance system

ADC Analog-to-digital converter

AEB Autonomous emergency braking

ASIC Application-specific integrated circuit

BPSK Binary phase-shift keying

BRAM Block random-access memory

CA-CFAR Cell-averaging constant false alarm rate

CDM Code-division multiplexing

cf. Confer

CFAR Constant false alarm rate

CMLE Conditional maximum likelihood estimation

CMOS Complementary Metal-Oxide-Semiconductor

CNN Convolutional neural network

CPU Central processing unit

CUT Cell under test

CW Continuous wave

DFT Discrete Fourier transform

DIF Decimation-in-frequency

DIT Decimation-in-time

DML Deterministic maximum likelihood

DOA Direction of arrival

DP Double-precision

DRAM Dynamic random-access memory

DSE Design space exploration

DSP Digital signal processing

DSP-3M,4M Implementation variants, refer to p. 122
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List of abbreviations

FDM Frequency-division multiplexing

FFT Fast Fourier transform

FIFO First in, first out

FMCW Frequency-modulated continuous wave

FPGA Field-programmable gate array

FoV Field of view

GOF Goodness of fit

GPU Graphics processing unit

GaAs Gallium arsenide

IC Integrated circuit

IF Intermediate frequency

i.i.d. Independent and identically distributed

LSB Least significant bit

LUT-4M Implementation variant, refer to p. 122

LUT Lookup table

MDC Multi-path delay commutator

MIMO Multiple-input and multiple-output

MIPS Million instructions per second

ML Maximum likelihood

MMIC Monolithic microwave integrated circuit

MSB Most significant bit

MSE Mean squared error

MSPS Megasamples per second

NCI Non-coherent integration

OFDM Orthogonal frequency-division multiplexing

OS-CFAR Ordered-statistic constant false alarm rate

PE Processing element

PLL Phase-locked loop

PSNR Peak signal-to-noise ratio

r-D Range-Doppler

RAM Random-access memory

RF Radio frequency

RSS Residual sum of squares

RTL Register-transfer level

Rx Receive

SAR Synthetic-aperture radar
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SDF Single-path delay feedback

SDRAM Synchronous dynamic random-access memory

SIMD Single instruction, Multiple data

SML Statistical maximum likelihood

SNR Signal-to-noise ratio

SP Single-precision

SPI Serial Peripheral Interface

SQNR Signal-to-quantization-noise ratio

SiGe Silicon-germanium

SoC System on chip

TDM Time-division multiplexing

TDP Thermal design power

Tx Transmit

ULA Uniform linear array

UMLE Unconditional maximum likelihood estimation

VCO Voltage-controlled oscillator

VGA Variable-gain amplifier

VHDL Very High Speed Integrated Circuit Hardware Description Language
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