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Abstract

We show that superstring field theories are integrable in the sense that their equations of motion

can be written as compatibility conditions (“zero-curvature conditions”) for certain linear equa-

tions. This makes it possible to transfer powerful solution generating techniques for integrable

field theories to (open and vacuum) superstring field theories. These techniques should facilitate

the task to confirm Sen’s conjectures, e. g., by finding classical solutions which correspond to

the closed string vacuum in open string field theory.

In a first preparatory step, one particular solution generating technique, the dressing ap-

proach, is introduced in a field theory setting. Its use is demonstrated by the construction of

several new soliton-like solutions in noncommutative self-dual Yang-Mills theory in 2+2 dimen-

sions. These are interpreted as D-branes in N=2 string theory.

In a second step, the dressing approach is then transferred to Berkovits’ WZW-like string

field theory. Additionally, a second method for the construction of exact classical solutions

is introduced, the splitting technique. Both procedures reduce the nonpolynomial equation of

motion to linear equations; solutions of the latter give rise to nonperturbative solutions to the

original equations of motion. This discussion applies to N=1 and N=2 strings. In both cases,

several classes of solutions are presented explicitly.

In a third step, it is shown that these ideas also carry over to cubic superstring field theory.

The transition from the description of string field theory around the open string vacuum to a

description around the closed string vacuum is embedded in a natural way into the framework

of the dressing approach.

As a (in some respects) simplified model for a string field theory with kinetic operators which

mix different world-sheet sectors, N=2 string field theory seems to be a viable candidate. We

determine the integration and reflector states as well as the 3-string vertex for the world-sheet

fermions in this theory. Since the fermions are of weights 0 and 1, these vertices do not coincide

with those for N=1 world-sheet fermions, or ghosts. Our results have applications in Berkovits’

hybrid formalism of a covariant superstring field theory in D = 4, in the ηξ system from the

bosonization of N=1 world-sheet ghosts and the twisted bc system used in vacuum string field

theory. They pave the way for the concrete computation of solitonic solutions in nonpolynomial

string field theory for N=2 strings.

Finally, several appendices on the mathematical background of the zero-curvature condition,

twisted N=4 superconformal algebras, and interrelations between the field and the string field

theory discussions conclude this work.
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Zusammenfassung

Es wird gezeigt, dass Superstringfeldtheorien integrabel sind in dem Sinne, dass ihre Bewegungs-

gleichungen als Kompatibiltätsbedingungen (
”
zero-curvature conditions“) von linearen Gleichun-

gen aufgefaßt werden können. Somit lassen sich Lösungstechniken von integrablen Feldtheorien

auf (offene und Vakuum-) Superstringfeldtheorien übertragen. Diese Techniken lassen sich ein-

setzen, um die Sen-Vermutungen zu bestätigen – beispielweise indem man klassische Lösungen

konstruiert, die das Vakuum für geschlossene Strings aus Sicht der offenen Stringfeldtheorie

beschreiben.

Vorbereitend wird dazu eine solche Lösungstechnik, die
”
dressing-Methode“, in der Feldthe-

orie eingeführt. Mit ihrer Hilfe werden verschiedene neue solitonartige Lösungen in nichtkom-

mutativer selbstdualer Yang-Mills-Theorie in 2+2 Dimensionen berechnet. Diese werden als

D-Branes in einer N=2-Stringtheorie interpretiert.

Im nächsten Schritt wird die dressing-Methode dann auf Berkovits WZW-artige

Stringfeldtheorie übertragen. Zusätzlich wird eine zweite Methode für die Konstruktion von

exakten klassischen Lösungen vorgestellt, die
”
splitting-Technik“. Beide Prozeduren reduzieren

die nichtpolynomialen Bewegungsgleichungen auf lineare Gleichungen, deren Lösungen wiederum

Lösungen der ursprünglichen Bewegungsgleichungen entsprechen. Dieses Verfahren wird für

N=1- und N=2-Strings besprochen. Verschiedene Lösungsklassen werden für beide Fälle

angegeben.

Im weiteren wird gezeigt, dass sich diese Überlegungen auch auf die kubische Super-

stringfeldtheorie übertragen lassen. Der Übergang von einer offenen Superstringfeldtheorie auf

eine Vakuum-Superstringfeldtheorie ergibt sich hierbei in natürlicher Weise im Rahmen der

dressing-Methode.

Als einfaches Modell für eine Stringfeldtheorie mit kinetischen Operatoren, die verschiedene

Weltflächen-Sektoren miteinander mischen, bietet sich die N=2-Stringfeldtheorie an. Wir geben

den Integrations-, den Reflektor- sowie den 3-String-Vertex für die Weltflächen-Fermionen in

dieser Theorie an. Da die Fermionen konforme Gewichte 0 und 1 haben, stimmen diese nicht mit

den bekannten Vertizes für N=1-Weltflächen-Fermionen oder -Geistern überein. Unsere Resul-

tate lassen sich auch auf Berkovits Hybridformalismus für eine kovariante Superstringfeldtheorie

in vier Dimensionen, auf das ηξ-System (aus der Bosonisierung der N=1-Weltflächen-Geister)

und auf das getwistete bc-System in der Vakuum-Stringfeldtheorie anwenden. Mit ihrer Hilfe

lassen sich solitonische Lösungen in der N=2-Stringfeldtheorie konkret berechnen.

Verschiedene Anhänge über den mathematischen Hintergrund der zero-curvature condition,

getwistete N=4-superkonforme Algebren und die Beziehungen zwischen feld- und stringfeldthe-

oretischen Diskussionen beschließen diese Arbeit.

Schlagwörter: Stringfeldtheorie, Tachyonkondensation, D-Branes
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Chapter I

Introduction

Bosonic and non-BPS D-branes carry tachyonic open string excitations on their world-volumes.

Sen interpreted these modes as an indication of the instability of such brane configurations and

conjectured that the potential of the tachyon field should exhibit a non-trivial minimum allowing

the field to condense in a way similar to the Higgs-Kibble mechanism.1 As the field rolls down to

its minimum, the D-brane decays into closed string radiation; Sen conjectured that the negative

energy density from the tachyon potential should equal the tension of the unstable brane (up

to a sign) [170]. At the endpoint of this condensation process, all open strings should have

vanished from the spectrum, leaving us with the closed string vacuum. Apart from that, it was

postulated that lower dimensional D-branes in the world-volumes of higher dimensional ones can

be interpreted as solitonic lump solutions where the tachyon field asymptotically approaches its

minimal value in the directions perpendicular to the lower dimensional brane [170]. In the case

of N=1 superstring theory, these conjectures have been used to extend the picture of various

string dualities to non-BPS states [165, 166, 167, 168, 169].

Evidence for the above conjectures was collected first in conventional string theory. As a

first-quantized on-shell theory, this is actually an inept setting, since the spacetime independent

tachyon field has momentum zero and is therefore off-shell. As a candidate for an off-shell

formulation of string theory, open string field theory offers the opportunity to test various

aspects of Sen’s conjectures. Indeed, expanding all string fields around the trivial solution to

its equation of motion, string field theory describes the dynamics of open strings on (stable

and unstable) D-branes in a second-quantized approach. According to Sen’s conjectures, its

equation of motion should possess classical solutions corresponding to the closed string vacuum

and to lower dimensional D-branes. This applies to the bosonic (Witten’s cubic bosonic string

field theory) and to the superstring cases (Witten’s cubic superstring field theory and Berkovits’

nonpolynomial superstring field theory).

It is hard to guess the form of an explicit solution to the equation of motion to either of

these theories, mainly for two reasons:

1Indeed, (part of) the U(1) gauge symmetry on the worldvolumes of the D-branes is spontaneously broken by

tachyon condensation.
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Firstly, they are all based on a rather complicated product in the string field algebra. Wit-

ten’s star product is graphically defined as a an operation which glues the left half of the first

string to the right half of the second string; but unfortunately, it turns out to be quite intricate

to compute the result of the product of two string fields in an oscillator basis [66, 67, 68]. A

possible cure has been offered recently by the proof that the string field algebra is in fact isomor-

phic to a continuous product of Heisenberg algebras [45, 17, 4, 49, 18, 14, 15]. In a certain basis

of this algebra, star products can be computed just like ordinary Moyal products. This makes

available all the powerful computational methods developed for noncommutative field theories.

Secondly, the form of the kinetic operator in the above string field theories involves matter

as well as ghost fields which renders it impossible to study the equation of motion in each sector

separately. As a loophole, Rastelli, Sen, and Zwiebach proposed to consider string field theory

around the tachyon vacuum and to describe D-branes from this point of view [151, 152, 154]. It

could be shown that, after a singular reparametrization of the world-sheet, the kinetic operator

consists solely out of ghosts [151, 80, 59, 144]. Thus, the equation of motion factorizes into a

matter and a ghost part, the matter part being simply the condition that the matter string field

is a projector of the string field algebra. This discovery triggered many subsequent developments

in this area (which will be mentioned partially later in the text). In particular, projectors in

the matter sector were determined explicitly [102] and later identified with D-brane solutions

of this so-called vacuum string field theory [152]. However, solutions to this theory without the

singular reparametrization or to open string field theory which describe the tachyonic ground

state (the so-called closed string vacuum), are still missing. A solution generating technique

could help out of this predicament.

Indeed, it was shown that nonpolynomial string field theory for N=2 strings is integrable [107]

in the sense that its equation of motion derives from a system of linear equations; the same can

be proven for N=1 superstring field theories. Taking advantage of this fact, one can try to bring

to application the powerful solution-generating techniques available for integrable equations.

The goal of this thesis is to present the proof for N=1 superstring field theories, to carry over

some of these techniques to string field theory and to attempt to determine exact solutions to

its equation of motion.

In a first step, one particular solution generating technique (the so-called dressing approach)

is presented in a noncommutative field theory setting in chapter II. These results are mainly

based on [I]. Although primarily field-theoretical, the discussion is intended to display connec-

tions with string theory and string field theory (for N=2 strings). Compared to string field

theory, in the finite-dimensional field theory case it is possible to explain somewhat more strin-

gently the mathematical background of the Lax pair method. We consider the Seiberg-Witten

limit of fermionic N=2 string theory with nonvanishing B-field, which is governed by noncommu-

tative self-dual Yang-Mills theory (ncSDYM) in 2+2 dimensions. In this chapter, we construct

nonlinear soliton-like and multi-plane wave solutions of the ncSDYM equations corresponding

to certain D-brane configurations by employing a solution generating technique, an extension of
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the so-called dressing approach. The underlying Lax pair is discussed in two different gauges,

the unitary and the hermitean gauge. Several examples and applications for both situations are

considered, including abelian solutions constructed from GMS-like projectors, noncommutative

U(2) soliton-like configurations and interacting plane waves. This concludes the field theory

part of this thesis.

In chapter III we give a short introduction to string field theory. After an explanation of

the algebraic basics of string field theory we introduce cubic bosonic string field theory, two

versions of cubic superstring field theory, and nonpolynomial superstring field theory. This lays

the foundation for a further treatment in the following chapters. In the rest of the chapter, we

shortly expound upon more modern developments in this area: We present the vacuum versions

of the string field theories and work out the importance of projectors in the string field algebra

for vacuum string field theories as well as the dressing approach.

After this interlude we show in a second step in chapter IV that the equation of motion

for Berkovits’ WZW-like open (super)string field theory is integrable in the sense that it can

be written as the compatibility condition (“zero-curvature condition”) of some linear equations.

This enables us to transfer solution-generating techniques known from field theory to superstring

field theory. Employing a generalization of solution-generating techniques (the splitting and the

dressing methods), we demonstrate how to construct nonperturbative classical configurations of

both N=1 superstring and N=2 fermionic string field theories. With and without u(n) Chan-

Paton factors, various solutions of the string field equation are presented explicitly. This chapter

relies to a large extent on [II].

In a third step these considerations are transferred in chapter V to cubic superstring field

theory as well as cubic and nonpolynomial vacuum superstring field theories. It is shown how

dressing transformations relate the linear equations in open superstring field theories to those

in vacuum superstring field theories. The main references for this chapter are [III, IV].

Chapter VI is devoted to the explicit computation of the identity, the reflector, and the

three-string vertex in the world-sheet fermionic part of N=2 string field theory. This defines

the interaction in the fermionic sector of this theory in an oscillator language; it paves the way

for a more detailed analysis of the dressing equations in nonpolynomial string field theory for

N=2 strings. Since this theory shares many characteristic properties with Berkovits’ superstring

field theory, it is expected that scrutinizing this (in some respects simpler) theory might give

a clue of how solutions in the N=1 case look like. As the world-sheet fermionic part of N=2

string field theory is isomorphic to the ηξ system from the bosonization of the N=1 superghosts

and the twisted bc ghost system in bosonic string theory, the results in this chapter find various

applications also in bosonic and N=1 string field theories. This chapter relies to some extent

on [V].

Outlook and conclusions are presented in chapter VII, followed by several appendices on the

mathematical background of chapter II (appendix A), the conventions used for bosonic, N=1

and N=2 string theories (appendix B) and some background material on the small twisted N=4
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superconformal algebra which is important for Berkovits’ superstring field theories (appendix C).

A theorem on cohomology of vector spaces is proven in appendix D which has several applications

throughout the text. The close connection between the field and the string field theory parts

is substantiated in appendix E. The bosonic Neumann coefficients and part of the overlap

equations for the world-sheet fermion system is finally subject to appendix F.



Chapter II

Field theory

II.1 Introduction

In this chapter, we will introduce the methods used later on in string field theory first in a

purely field theoretical setting, namely in noncommutative self-dual Yang Mills theory in 2+2

dimensions. The study of noncommutative field theory has become an important subject in

modern theoretical physics. Even though the idea of noncommuting coordinates is a rather old

one [174], research in this direction has been boosted only after the discovery that noncommu-

tativity naturally emerges in string theory with a B-field background in a certain zero slope

(α′ → 0) limit [44, 163, 164]. Of special interest is the study of nonperturbative objects in its

low energy field theory limits, like solitons or instantons, which may be interpreted as D-branes

in the context of string theory (for a review see [134, 76, 46, 99]). The goal is to gain some

insight into the nonperturbative sector of these theories.

The discovery of Ooguri and Vafa that open N=2 string theory at tree level can be identified

with self-dual Yang-Mills theory [145] sparked new interest in the study of this area. That

noncommutative self-dual Yang-Mills (ncSDYM) appears as the effective field theory describing

the open critical N=2 string in 2+2 dimensions with nonvanishing B-field was shown later

in [111, 112]. Furthermore, (commutative) self-dual Yang-Mills has been conjectured to be a

universal integrable model ([181], see also [86] and references therein), meaning that all (or at

least most) of the integrable equations in d < 4 can be obtained from the self-dual Yang-Mills

equations. Therefore it is worthwhile to study the noncommutative generalization of this theory

and, more specifically, plane wave and soliton-like solutions to the ncSDYM equations.

A lot of work concerning noncommutative solitons has been carried out during the past

years.1 In particular, noncommutative solitons and plane waves in an integrable U(N) sigma

model in 2+1 dimensions were discussed in [108, 109, 30, 189]. In this chapter we will show that

all the cases studied in [108, 109, 30, 189] can be obtained from ncSDYM theory by dimensional

reduction, i.e., by demanding that the solutions do not depend on one of the time directions (see

1See, e. g., [63, 69, 70, 148, 116, 11, 1, 77, 71, 74, 78, 62, 72, 79, 73, 47, 54, 55, 56, 118, 75, 131].
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section II.4.2). The self-duality equations will be regarded as the compatibility conditions of

two linear equations (Lax pair). Solutions ψ to residue equations of the latter can then be used

to find solutions to the self-duality equations. By employing a solution generating technique,

namely a noncommutative extension of the so-called dressing approach [192, 50, 182], we are

able to compute the aforementioned auxiliary field ψ. Starting from a simple first order pole

ansatz for ψ, one can easily construct higher order pole solutions corresponding to multi-soliton

configurations.

This chapter is organized as follows: Section II.2 contains a review of some results from N=2

string theory with nonvanishing B-field, motivating the program carried out in this chapter from

a string theory point of view and placing it in this context. In section II.3 we introduce our

notation and conventions as well as the Moyal-Weyl map as a useful tool for later computations.

After that, the dressing approach will be discussed in section II.4. We present various calcula-

tions and examples of solutions in this framework in sections II.5 and II.6. The discussion of

some mathematical preliminaries like twistor spaces and the moduli space of complex structures

on R
2,2 is relegated into appendix A.1. An example of an abelian pseudo-instanton which is

somewhat detached from the rest of this field theory part will be discussed in appendix A.2.

The main reference for this chapter is [I].

II.2 Noncommutativity from string theory

N=0 and N=1 string theories. It is well known for N=0 and N=1 string theories that turning

on a B-field in the presence of D-branes modifies the dynamics of open strings [164]. It alters

the ordinary Neumann boundary conditions along the brane, which results in a deformation

of the space-time metric Gµν seen by open strings. Another consequence is the emergence of

space-time noncommutativity in the world-volume of the brane [163],

[Xµ(τ), Xν(τ)] = iθµν . (II.1)

This noncommutativity pertains to the low energy field theory capturing the dynamics of open

strings on the brane. In this discussion, Gµν and θµν can be extracted from the closed string

metric gµν and the Kalb-Ramond field Bµν as the symmetric and antisymmetric part of

[(g + 2πα′B)−1]µν = Gµν +
1

2πα′ θ
µν . (II.2)

In the Seiberg-Witten limit [164]

α′ → 0, keeping Gµν and θµν fixed, (II.3)

open string theory reduces to noncommutative Yang-Mills.2 The effective open string coupling

Gs, which is related to the closed string coupling gs via Gs = gs[(detG/det(g + 2πα′B)]−1/2, in

this limit reduces to

Gs
α′→0−→ g2

YM

2π
. (II.4)

2Alternatively, one can keep α′ and gµν fixed and take B → ∞. This formulation will be useful for the string

field theory discussion in section E.2.
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Note that bulk effects (due to closed string modes) only decouple from the open string modes if

we take the Seiberg-Witten limit.

It is a standard result (cf. [176] and references therein) that soliton solutions in Yang-Mills

(-Higgs) theory can be interpreted as lower-dimensional D-brane configurations. These induce

an “electric” field Fµν on the brane, thus the B-field in the above formulas has to be replaced

by the gauge invariant quantity Fµν := Bµν + Fµν . The noncommutativity parameter θµν will

in general be a function of Fµν . Note that, in this work, the back reaction of a nonvanishing

gauge field configuration on the open string parameters will be neglected.

N=2 string theory. In the case of (critical) N=2 fermionic string theory in 2+2 dimensions,

an analysis of B-field effects was carried out in [111]. In the following, we shall briefly delineate

the results of this paper. In critical N=2 string theory with nonvanishing Kähler two-form field

B = (Bµν), the dynamics of fields on N coincident space-time filling D-branes3 in the Seiberg-

Witten limit is governed by U(N) ncSDYM in the Leznov gauge.4 As a nontrivial check, the

authors of [111] showed the vanishing of the noncommutative field-theory four-point amplitude

at tree level. This is in accordance with the expectation from N=2 string theory, which features

trivial n-point tree-level scattering amplitudes for n > 3, due to a certain kinematical identity

in 2+2 dimensions. In this context it is worthwhile to emphasize two points: The failure of

the Moyal-Weyl commutator to close in su(N) necessitates the enlargement of the gauge group

from SU(N) to U(N) [128]. Furthermore, to obtain ncSDYM in the Yang gauge [190], which

will mostly be used in this chapter, one has to consider N=2 string theory restricted to the zero

world-sheet instanton sector.

After this brief string theoretic overture, let us now turn to ncSDYM, whose nonperturbative

solutions shall concern us for the rest of this chapter.

II.3 Noncommutative self-dual Yang-Mills on R
2,2

II.3.1 Notation and conventions

In this chapter we will consider solutions to the self-duality equations for the noncommutative

version of U(N) Yang-Mills theory on the space R
2,2. We choose coordinates (xµ) = (x, y, t̃,−t)

such that the metric will take the form (ηµν) = diag(+1,+1,−1,−1).5

Coordinates. The signature (+ + −−) allows for two different choices of isotropic (light-like)

coordinates (see appendix A.1). The set of real isotropic coordinates (suitable for the discussion

3Due to the absence of R-R forms in the closed string spectrum of N=2 string theory, D-branes are simply

defined in parallel to bosonic string theory as submanifolds on which open strings can end.
4N=2 string theory with N coincident D2-branes yields an integrable modified U(N) sigma model on noncom-

mutative R
2,1 [112] (generalizing the commutative case considered by Ward [182]).

5All conventions are chosen to match those of [108, II]. The choice x4 = −t is motivated by the fact that the

hyperplane t̃ = 0 then has the same orientation as in earlier work on self-dual Yang-Mills theory dimensionally

reduced to this hyperplane.
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of the unitary gauge, see section II.4.1) is

u :=
1

2
(t+ y), v :=

1

2
(t− y), (II.5a)

ũ :=
1

2
(t̃+ x), ṽ :=

1

2
(t̃− x) , (II.5b)

giving rise to

∂u = ∂t + ∂y, ∂v = ∂t − ∂y, (II.6a)

∂ũ = ∂t̃ + ∂x, ∂ṽ = ∂t̃ − ∂x . (II.6b)

For the discussion of the hermitean gauge (section II.4.3), the other choice of isotropic coordi-

nates, namely complex ones,

z1 := x+ iy , z̄1 = x− iy , (II.7a)

z2 := t̃− it , z̄2 = t̃+ it , (II.7b)

turns out to be useful. These yield the following partial derivatives

∂z1 =
1

2
(∂x − i∂y) , ∂z̄1 =

1

2
(∂x + i∂y) , (II.8a)

∂z2 =
1

2
(∂t̃ + i∂t) , ∂z̄2 =

1

2
(∂t̃ − i∂t) . (II.8b)

Star product. The multiplication law used to multiply functions is the standard Moyal-Weyl

star product given by

(f ? g)(x) := e

h
i
2
(θµν ∂

∂xµ
∂

∂yν )
i

f(x)g(y)
∣∣∣
y=x

. (II.9)

The noncommutativity of the coordinates is encoded in the usual structure of the commutator6

[xµ?,xν ] = iθµν . (II.10)

As a constant antisymmetric matrix, θµν is taken to be

(θµν) :=




0 θ12 0 0

θ21 0 0 0

0 0 0 θ34

0 0 θ43 0



, (II.11)

where θ12 = −θ21 =: θ and θ34 = −θ43 =: θ̃. Without loss of generality we assume θ > 0,

and choose θ̃ ≥ 0, which, in the case θ = θ̃, corresponds to self-dual θµν .7 Note that we are

dealing with two time directions which mutually do not commute, but that the commutator of

one temporal and one spatial coordinate still vanishes.

6[xµ ?, xν ] := xµ ? xν − xν ? xµ.
7In the self-dual case, θµν = 1

2
εµνρσθ

ρσ, where ε1234 := 1.
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Yang-Mills theory. The action of noncommutative Yang-Mills theory on R
2,2 reads

SncYM = − 1

2g2
YM

∫
d4x tru(N)Fµν ? F

µν . (II.12)

Here, Fµν = ∂µAν −∂νAµ+[Aµ ?, Aν ]. The self-duality equations in xµ-coordinates are given by

F12 = F34 , F13 = F24 and F14 = −F23 . (II.13)

Due to the Bianchi identities for Fµν , each solution to (II.13) will also be a solution to the

equations of motion of noncommutative Yang-Mills theory.

II.3.2 Moyal-Weyl map and operator formalism

The Moyal-Weyl map provides us with the possibility to switch between two equivalent non-

commutative formalisms. The noncommutativity of the configuration space may be captured

by deforming the multiplication law for functions (the Moyal-Weyl- or ?-product formalism),

which in turn are defined over a commutative space. Equivalently, we may pass to the operator

formalism, which often simplifies calculations considerably.

Fock space. In the operator formalism, the coordinates xµ become operator-valued, thus

satisfying [x̂µ, x̂ν ] = iθµν . More specifically, the commutation relations among the coordinates

(x, y, t̃,−t) are:

[
x̂, t̂
]

=
[
ŷ, t̂
]

=
[
x̂, ˆ̃t
]

=
[
ŷ, ˆ̃t
]

= 0 , (II.14a)
[
x̂, ŷ
]

= iθ ⇒
[
ẑ1, ˆ̄z1

]
= 2θ , (II.14b)

[
t̂, ˆ̃t
]

= iθ̃ ⇒
[
ẑ2, ˆ̄z2

]
= 2θ̃ . (II.14c)

The last two lines lead us to construct creation and annihilation operators (for θ, θ̃ > 0):

a1 :=
1√
2θ
ẑ1, a2 :=

1√
2θ̃
ẑ2 , (II.15a)

a†1 :=
1√
2θ

ˆ̄z1, a†2 :=
1√
2θ̃

ˆ̄z2 . (II.15b)

These operators act, as usual, in a Fock space H constructed from the action of the two cre-

ation operators a†1, a
†
2 on the vacuum |0, 0〉. We introduce an orthonormal basis for H, i.e.,

{|n1, n2〉;n1, n2 ∈ N0} subject to

Ni|n1, n2〉 := a†iai|n1, n2〉 = ni|n1, n2〉 , i ∈ {1, 2} ,
a1|n1, n2〉 =

√
n1|n1 − 1, n2〉 , a†1|n1, n2〉 =

√
n1 + 1|n1 + 1, n2〉 ,

a2|n1, n2〉 =
√
n2|n1, n2 − 1〉 , a†2|n1, n2〉 =

√
n2 + 1|n1, n2 + 1〉 .

In the case θ̃ = 0 we can only introduce a1 and a†1; H will then be a one-oscillator Fock space.
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Moyal-Weyl map. It can be shown that there exists a bijective map, which maps functions

f(zi, z̄i) (also called Weyl symbols) to operators f̂ := Of (ai, a
†
i ) (cf. e.g. [76, 71]):

f(zi, z̄i) 7→ Of (ai, a
†
i ) = −

∫
d2k1d

2k2

(2π)4
d2z1d2z2 (II.16)

× f(zi, z̄i)e−i{k̄1(
√

2θa1−z1)+k1(
√

2θa†1−z̄1)+k̄2(
√

2eθa2−z2)+k2(
√

2eθa†2−z̄2)} ,

where
∫

d2k1d2k2
(2π)4

d2z1d2z2 :=
∫

dk1dk̄1
(2π)2

dz1dz̄1
∫

dk2dk̄2
(2π)2

dz2dz̄2. Note that this formula implies an

ordering prescription, the so-called Weyl ordering. The inverse transformation is given by:

Of (ai, a
†
i ) 7→ f(zi, z̄i) = 4π2θθ̃

∫
d2k1d

2k2

(2π)4
(II.17)

× TrH

[
Of (ai, a

†
i )e

i{k̄1(
√

2θa1−z1)+k1(
√

2θa†1−z̄1)+k̄2(
√

2eθa2−z2)+k2(
√

2eθa†2−z̄2)}
]
.

It is understood that, under the Moyal-Weyl map,

f ? g 7→ f̂ ĝ. (II.18)

Also, an integral
∫

d4x over the configuration space becomes a trace TrH over the Fock space H
(modulo pre-factors) and derivatives are mapped to commutators, e.g.,

∂xf 7→ i

θ

[
ŷ, f̂
]
, ∂z1f 7→ − 1√

2θ

[
a†1, f̂

]
, (II.19)

and analogously for the other possible combinations. From now on, we will work in the operator

formalism; exceptions will be mentioned explicitly. In order to slenderize the notation, hats will

be omitted everywhere.

II.4 Dressing approach

As explained in appendix A.1, exact solutions to the self-duality equations (II.13) can be con-

structed by means of an associated linear system. Solutions to this linear system will be obtained

via the so-called dressing method. It was originally invented for commutative integrable mod-

els as a solution generating technique to construct solutions to the equations of motion (see,

e.g. [192, 50, 182]). New solutions can be constructed from a simple vacuum seed solution by

recursively applying a dressing transformation. It was shown in [108] that the dressing approach

can easily be extended to noncommutative models. In the following we will apply such an ex-

tension of the dressing method to construct solutions for the Lax pairs related to the self-duality

equations of ncYM on R
2,2.

II.4.1 Unitary gauge

Lax pair. Let us start the discussion by considering the Lax pair given in terms of real isotropic

coordinates [86]:

(ζ∂ṽ + ∂u)ψ = −(ζAṽ +Au)ψ , (II.20a)

(ζ∂v − ∂ũ)ψ = −(ζAv −Aũ)ψ , (II.20b)
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where A = (Aµ) is the antihermitean gauge potential for the self-dual field strength F = (Fµν),

ψ ∈ GL(N,C) and ζ ∈ CP 1 is the spectral parameter.8 As shown in appendix A.1, ψ may be

chosen to satisfy the following reality condition:

ψ(u, v, ũ, ṽ, ζ)[ψ(u, v, ũ, ṽ, ζ̄)]† = 1 . (II.21)

The compatibility conditions for the linear equations (II.20) are given by the self-duality equa-

tions expressed in real isotropic coordinates:

Fuũ = 0 , (II.22a)

Fuv + Fũṽ = 0 , (II.22b)

Fvṽ = 0 . (II.22c)

If we require

ψ(u, v, ũ, ṽ, ζ → 0) = g−1
1 (u, v, ũ, ṽ) +O(ζ) (II.23)

for some U(N) matrix g1 and

Au = g−1
1 ∂ug1 , (II.24a)

Aũ = g−1
1 ∂ũg1 , (II.24b)

then eqs. (II.20) in the limit ζ → 0 are identically satisfied [190]. Thus, solving (II.20) (without

knowing the gauge fields explicitly, simply by exploiting the asymptotics of ψ) amounts to

solving (II.22a). In the limit ζ → ∞, we can read off from (II.20) that

Aṽ = g−1
2 ∂ṽg2 , (II.25a)

Av = g−1
2 ∂vg2 , (II.25b)

where g−1
2 := ψ(u, v, ũ, ṽ, ζ = ∞) ∈ U(N); clearly, (II.25) solves eq. (II.22c).

Gauge fixing. Note that we can choose a gauge in which Av and Aṽ vanish: Consider the

gauge transformation

ψ 7→ ψ′ := g2ψ . (II.26)

Its action on the gauge field yields

Aṽ 7→ A′
ṽ = g2Aṽg

−1
2 + g2∂ṽg

−1
2 = 0 , (II.27a)

Av 7→ A′
v = g2Avg

−1
2 + g2∂vg

−1
2 = 0 ; (II.27b)

this is equivalent to ψ′(u, v, ũ, ṽ, ζ = ∞) = 1. For the remaining components we find

A′
ũ = Ω−1∂ũΩ , (II.28a)

A′
u = Ω−1∂uΩ , (II.28b)

8For a detailed discussion concerning the appearance of the complexified gauge group, we refer to [119, 149].
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with Ω−1 := g2g
−1
1 = ψ′(u, v, ũ, ṽ, ζ = 0) (Yang prepotential, cf. [85]). This gauge is called

(unitary) Yang gauge.

The gauge-fixed linear equations read

(ζ∂ṽ + ∂u)ψ
′ = −A′

uψ
′ , (II.29a)

(ζ∂v − ∂ũ)ψ
′ = A′

ũψ
′ . (II.29b)

Moreover, since g2 ∈ U(N), the reality condition (II.21) is “preserved” under (II.26):

ψ′(u, v, ũ, ṽ, ζ)[ψ′(u, v, ũ, ṽ, ζ̄)]† = g2g
†
2 = 1 . (II.30)

In the following we shall omit the primes on the gauge transformed quantities. Using the above

expressions (II.28) for A′
ũ and A′

u, the remaining self-duality equation (II.22b) in this gauge

takes the form

∂v(Ω
−1∂uΩ) + ∂ṽ(Ω

−1∂ũΩ) = 0 . (II.31)

Action functional. Let us introduce an antisymmetric rank two tensor ωµν with components

ωyt = −ωty = −1, ωxt̃ = −ωt̃x = −1. Then ωµν coincides with f̄2
µν , the analogue to the

’t Hooft tensor in 2+2 dimensions introduced in [86]; it is anti-self-dual. One can interpret

ω = 1
2ωµνdx

µ ∧ dxν as the Kähler form w.r.t. the complex structure J̃ = −
(

0 σ3

σ3 0

)
on R

2,2 (σ3

denotes the third Pauli matrix). In xµ-coordinates, we can rewrite eq. (II.31) as

(ηµν − ωµν)∂µ(Ω
−1∂νΩ) = 0 . (II.32)

In contrast to the metric ηµν , the Kähler form is not invariant under SO(2, 2) rotations; it

therefore breaks the rotational invariance of the equation of motion even in the commutative

case. A straightforward computation shows that this is the equation of motion for the Nair-Schiff

type action [132, 120]

S = −1

2

∫

R2,2

d4x ηµνtr(∂µΩ
−1∂νΩ) − 1

3

∫

R2,2×[0,1]

ω ∧ tr(Ã ∧ Ã ∧ Ã) . (II.33)

Here the gauge potential A = Ω−1dΩ and the Kähler form ω have nonvanishing components

only along R
2,2; in the Wess-Zumino term, Ã = Ω̃−1dΩ̃ is defined via a homotopy Ω̃ from a fixed

element Ω1 from the homotopy class of Ω to Ω, i.e., Ω̃(0) = Ω1, Ω̃(1) = Ω. Star products are

implicit. Note that the variation w.r.t. Ω̃ of the Wess-Zumino term is a total divergence. An

“energy-momentum” tensor can be easily obtained from this action; however, we do not want to

embark on a discussion whether it can serve to give a sensible definition of energy or momentum

in 2+2 dimensions. As a simplification, we will sometimes nevertheless speak of soliton solutions

if we can verify that the solutions have finite energy in 2+1 dimensional subspaces at asymptotic

times.

Dressing approach and ansatz. Note that, due to (II.30), eq. (II.29) can be rewritten as

ψ(ζ∂ṽ + ∂u)ψ
† = Au , (II.34a)

ψ(ζ∂v − ∂ũ)ψ
† = −Aũ . (II.34b)
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It is possible to solve the gauge-fixed linear equations (II.34) without knowing Aũ and Au

explicitly, simply by fixing the pole structure9 of ψ in such a way that the left hand sides of

(II.34) are independent of ζ. Inserting an ansatz for ψ, we obtain conditions on its residues which

can be solved. From the solution ψ, we may determine Aũ and Au via eqs. (II.23) and (II.24).

Suppose we have constructed a seed solution ψ0 by solving some appropriate (gauge-fixed) linear

equations, in the present case eqs. (II.29). Then we can look for a new solution of the form

ψ1 = χ1ψ0 with χ1 = 1 +
µ1 − µ̄1

ζ − µ1
P1 , (II.35)

where µ1 ∈ H− (lower half plane) is a complex constant and where P1(u, v, ũ, ṽ) is an N × N

matrix independent of ζ. It can be shown that µ1 may be interpreted as a modulus parametrizing

the velocity of the lump solution (see e.g. [182, 108] for the 2+1 dimensional case).

Let us start from the vacuum seed solution ψ0 = 1 (the corresponding gauge potential

vanishes). The reality condition (II.30) for ψ1 is satisfied if we choose P1 to be a hermitean

projector, i.e., (P1)
2 = P1 and (P1)

† = P1.
10 The transformation ψ0 7→ ψ1 is called dressing. An

m-fold repetition of this procedure yields

ψm =
m∏

p=1

(
1 +

µp − µ̄p
ζ − µp

Pp

)
, (II.36)

corresponding to an m-soliton type configuration if all µp ∈ H−. For (II.36), the reality con-

dition (II.30) is automatically satisfied if we choose the Pp to be hermitean (not necessarily

orthogonal) projectors. We will see below that taking all µp to be mutually different will lead

us to interacting plane wave and non-interacting solitons, whereas second-order poles in (II.36)

(i.e., µi = µj for some i 6= j) entail scattering in soliton-like configurations.

First-order pole ansatz. For now, let us restrict to an ansatz (II.36) containing only first-

order poles in ζ, i.e., choose all µp to be mutually different. Then, performing a decomposition

into partial fractions, we can rewrite the multiplicative ansatz (II.36) in the additive form

ψm = 1 +
m∑

p=1

Rp
ζ − µp

. (II.37)

The N ×N matrices Rp(u, v, ũ, ṽ) are constructed from multiplicative combinations of the Pp;

as in [108], we take the Rk to be of the form

Rp =
m∑

l=1

TlΓ
lpT †

p , (II.38)

where the Tl(u, v, ũ, ṽ) are N × r matrices and the Γlp(u, v, ũ, ṽ) are r × r matrices for some

r ≥ 1. The ansatz (II.37) has to satisfy the reality condition (II.30). Since the right hand side of

the latter is independent of ζ, the poles on the left hand side must be removable. Therefore we

9A nontrivial ψ(ζ) cannot be holomorphic in ζ, since ζ ∈ CP 1, which is compact.
10This is the simplest solution to the algebraic conditions on P1 emerging from the reality condition (II.30).
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should equate the corresponding residues at ζ = µ̄k and ζ = µk of the left hand side to zero.11

This yields 
1 −

m∑

p=1

Rp
µp − µ̄k


Tk = 0 . (II.39)

These algebraic conditions on Tk imply that the Γlp invert the matrices

Γ̃pk :=
T †
pTk

µp − µ̄k
, i.e.,

m∑

p=1

ΓlpΓ̃pk = δlk . (II.40)

Furthermore, our ansatz should satisfy the gauge-fixed linear equations (II.34). Putting to

zero the residues of the left hand sides of (II.34) at ζ = µk and ζ = µ̄k, we learn that

1 −

m∑

p=1

Rp
µp − µ̄k


 (µ̄k∂ṽ + ∂u)R

†
k = 0 , (II.41a)


1 −

m∑

p=1

Rp
µp − µ̄k


 (µ̄k∂v − ∂ũ)R

†
k = 0 , (II.41b)

Thus, we may define new isotropic coordinates (note that µk is complex) w1
k and w2

k in the kernel

of the differential operators in (II.41):

w1
k := µ̄−1

k ṽ − u and w2
k := µ̄−1

k v + ũ (II.42a)

⇒ w1
k = µ−1

k ṽ − u and w2
k = µ−1

k v + ũ . (II.42b)

The Lax operators can be written as antiholomorphic vector fields in terms of these new isotropic

coordinates12

L̄1
k := µ̄k∂ṽ + ∂u = µ−1

k (µ̄k − µk)
∂

∂w1
k

, (II.43a)

L̄2
k := µ̄k∂v − ∂ũ = µ−1

k (µ̄k − µk)
∂

∂w2
k

. (II.43b)

As long as Tk is in the kernel of L̄1
k and L̄2

k, all functions Rk from (II.38) automatically solve

eqs. (II.41). Thus, special solutions to (II.41) are given by (II.38) with arbitrary differentiable

functions Tk(w
1
k, w

2
k), i.e., ∂w1

k
Tk = 0 = ∂w2

k
Tk (for each k = 1, . . . ,m). By inserting such Tk into

Ω−1 = ψ(u, v, ũ, ṽ, ζ = 0) = 1 −
m∑

l,p=1

TlΓ
lpT †

p

µp
, (II.44)

explicit expressions for Au, Aũ can be derived from (II.28) and (II.40).

11In fact, the equation for ζ = µ̄k is the hermitean adjoint to the equation for ζ = µk. In general, this will hold

for any two residue equations if the points are related by complex conjugation (or, for λ from section II.4.3, by

the mapping (A.9)).
12In general, L̄1(ζ) := ζ∂ṽ +∂u and L̄2(ζ) := ζ∂v−∂ũ correspond to the antiholomorphic vector fields introduced

in appendix A.1 (in the coordinates u, v, ũ, ṽ). Defining coordinate functions w1(ζ) := ζ−1ṽ−u, w2(ζ) := ζ−1v+ ũ

in their kernel, we may write L̄1,2
k = L̄1,2(ζ = µ̄k) and w

1,2
k = w1,2(ζ = µ̄k). Furthermore we have L̄1,2(ζ) =

ζ̄−1(ζ − ζ̄)∂w1,2(ζ̄).
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II.4.2 Dimensional reduction to 2+1 dimensions

Dimensional reduction. In order to establish the connection between the solutions obtained

above and previous work carried out in 2+1 dimensions13 (see [108, 109, 30, 189]) we have to

perform a dimensional reduction. This can be done by imposing the condition that all fields are

independent of one of the time coordinates in R
2,2. As a consequence, we may put θ̃ = 0. To be

precise, let us impose

∂t̃Tk = 0 . (II.45)

We switch to the complex isotropic coordinates introduced in (II.42). Using (II.6), we can

reexpress ∂
∂t̃

as

∂

∂t̃
=

1

2

{
µ̄−1
k

∂

∂w1
k

+ µ−1
k

∂

∂w1
k

+
∂

∂w2
k

+
∂

∂w2
k

}
. (II.46)

As derived in section II.4.1, eqs. (II.41) are solved by matrices Tk independent of w1
k and w2

k;

therefore (II.45) reads [
µ̄−1
k

∂

∂w1
k

+
∂

∂w2
k

]
Tk(w

1
k, w

2
k) = 0 , (II.47)

i.e., Tk can only be a function of

wk := νk(w
2
k − µ̄kw

1
k) = νk

(
x+

1

2
(µ̄k − µ̄−1

k )y +
1

2
(µ̄k + µ̄−1

k )t

)
, (II.48)

if it is independent of the second time direction. The normalization constant

νk :=

[
4i

µk − µ̄k − µ−1
k + µ̄−1

k

· µk − µ−1
k − 2i

µ̄k − µ̄−1
k + 2i

]1/2

(II.49)

has been introduced for later convenience. Note that the “co-moving” coordinates wk become

static (i.e., independent of t) when choosing µk = −i; they “degenerate” to the complex coordi-

nates z1 from (II.7). Conversely, they can be obtained from the “static” coordinates z1, z̄1 by

an inhomogeneous SU(1, 1) transformation [108]:

(
wk

wk

)
=

(
cosh τk −eiϑk sinh τk

−e−iϑk sinh τk cosh τk

)(
z1

z̄1

)
−
√

2θ

(
βk

β̄k

)
t , (II.50)

where

βk = −1

2
(2θ)−1/2νk(µ̄k + µ̄−1

k ) , (II.51a)

and

cosh τk − eiϑk sinh τk = νk , eiϑk tanh τk =
µ̄k − µ̄−1

k − 2i

µ̄k − µ̄−1
k + 2i

. (II.51b)

13To recover the linear system of [108], we need to choose the unitary gauge for the linear equations, i.e., Lax

pair (II.20) as discussed in section II.4.1.
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Recall that a general solution Tk in 2+2 dimensions is an arbitrary function of w1
k, w

2
k. Hence,

dimensional reduction to 2+1 dimensions can be accomplished for Tk depending only on wk:

∂w1
k
Tk = 0 = ∂w2

k
Tk and ∂t̃Tk = 0 ⇔ Tk = Tk(wk) . (II.52)

The Lax operators acting in this 2+1 dimensional subspace are given by:

L̄1
k = µ̄k∂t̃ − µ̄k∂x + ∂u

2+1−→ −ν̄k(µ̄k − µk)∂wk
, (II.53a)

L̄2
k = µ̄k∂v − ∂t̃ − ∂x

2+1−→ ν̄kµ
−1
k (µ̄k − µk)∂wk

. (II.53b)

This exactly matches the results of [108].

Note that an alternative reduction can be done if Tk is independent of t (but depends on all

other coordinates):

∂

∂t
= −1

2

{
∂

∂w1
k

+
∂

∂w1
k

− µ̄−1
k

∂

∂w2
k

− µ−1
k

∂

∂w2
k

}
. (II.54)

Then, the condition ∂tTk = 0 and eqs. (II.41) are satisfied for Tk = Tk(w̃k) with

w̃k := νk(w
1
k + µ̄kw

2
k) = νk

(
−y +

1

2
(µ̄k − µ̄−1

k )x+
1

2
(µ̄k + µ̄−1

k )t̃

)
. (II.55)

Note that a “boost” transformation analogous to (II.50) can be found for the coordinates w̃k:
(
w̃k

w̃k

)
= i

(
cosh τk eiϑk sinh τk

−e−iϑk sinh τk − cosh τk

)(
z1

z̄1

)
−
√

2θ

(
βk

β̄k

)
t̃ . (II.56)

Such Tk(wk) or Tk(w̃k) lead to Ω which are given by (II.44) and do not depend on t̃ or t,

respectively.

Map to operator formalism. If we translate the co-moving coordinates wk and w̃k into the

operator formalism, this yields co-moving creation and annihilation operators:

ŵ†
k = ŵk ⇒

[
ŵk, ŵk

]
= 2θ , (II.57a)

̂̃w†
k = ̂̃wk ⇒

[̂̃wk, ̂̃wk
]

= 2θ . (II.57b)

Note that, in general, the commutators between ŵk and ̂̃wk will not vanish. Therefore, derivatives

with respect to wk and wk translate into commutators (cf. (II.19)) of the simple form

2θ∂wk
= −

[
ŵk, .

]
, 2θ∂wk

=
[
ŵk, .

]
, (II.58)

only when acting on functions of ŵk and ŵk. Analogous statements hold for derivatives with

respect to w̃k, w̃k. In this framework, the transformations (II.50) and (II.56) may be interpreted

as Bogoliubov transformations relating ẑ1 and ˆ̄z1 to the operators in (II.57) [108].

Energy. In 2+1 dimensions it is possible to define the notion of energy in a straightforward

manner and to show that it is conserved. Dimensional reduction of the Nair-Schiff type ac-

tion (II.33) leads to the action for a modified noncommutative sigma model in 2+1 dimensions

as presented in [108]. From this, an energy-momentum tensor can easily be derived:

Tcd = (δac δ
b
d −

1

2
ηcdη

ab)tr(∂aΩ
−1∂bΩ) , (II.59)
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a, b, c and d running over x, y, and t. For the proof that Tcd is divergence-free we need to apply

the equation of motion

(ηab − ωab)∂a(Ω
−1∂bΩ) = 0 (II.60)

obtained by dimensional reduction (by imposing ∂t̃(Ω
−1∂bΩ) = 0) from eq. (II.32). Using the

explicit form of ωµν , it is obvious that one can rewrite eq. (II.60) as

(ηab + Vcε
cab)∂a(Ω

−1∂bΩ) = 0 , (II.61)

where (Vc) = (Vx, Vy, Vt) = (1, 0, 0) manifestly breaks Lorentz-invariance even in the commuta-

tive case. With this, one finds that
∫
d2x ∂aTat vanishes due to the chosen form of ωab. For the

energy density, one obtains

E = Ttt =
1

2
tr[(∂tΩ

†)∂tΩ + (∂xΩ
†)∂xΩ + (∂yΩ

†)∂yΩ] ; (II.62)

obviously ∂t
∫
d2x E = 0.

Nonabelian soliton in 2+1 dimensions. As an illustrative example, consider a nonabelian

one-soliton (m = 1) in 2+1 dimensions as described in [108]. Since m = 1, we may start

from (II.36) with P1 ≡ P = T (T †T )−1T †, cf. (II.38) and (II.40). For definiteness, we take the

soliton to be embedded into the xyt-plane, i.e., T1 ≡ T is a function of w1 ≡ w (cf. (II.48)).

Such a function T trivially solves (II.41).

Exemplarily, we briefly review a solution corresponding to a moving U(2) soliton [108]. Using

the inverse Moyal-Weyl map, we can deduce from the simplest ansatz T = ( 1
w ) that

Ω? = 1 − µ̄− µ

µ̄




2θ
ww+θ

√
2θww2

(ww+θ)2√
2θ w2w

(ww+θ)2
ww+θ
ww+3θ


 , (II.63)

with the ordinary product between w and w, solves the self-duality equation. With the help

of (II.62), the energy of this configuration can be shown to be E = 8π cosh η sinϕ where eη−iϕ =

µ.

A remark on the interpretation of solitons in terms of D-branes is in order: We start out from

ncSDYM on a space-time filling D-brane. If a solution ψ is independent of one coordinate, we

are allowed to compactify and subsequently T-dualize this direction. This alters the Neumann

boundary conditions for open strings living on the space-time filling branes to Dirichlet boundary

conditions. In this case we therefore consider gauge theory on a D2-brane. Although there exists

no Hodge self-duality condition in such a three-dimensional gauge theory, we will (in a slight

abuse of language) still speak of solitonic solutions (implicitly referring to the four-dimensional

gauge theory before T-dualization).

Since Ω? from (II.63) and the corresponding energy density are independent of t̃, a T-

dualization in the t̃-direction leads to a gauge configuration on a pair of D2-branes. Taking into

account that Ω depends only on two variables w,w in three dimensions, we conclude that it

corresponds to a D0-brane moving in the world-volume of two D2-branes.
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II.4.3 Hermitean gauge

Lax pair. Instead of using ζ, the Riemann sphere CP 1 may alternatively be parametrized by

the variable

λ =
ζ − i

ζ + i
. (II.64)

The map ζ 7→ λ carries the lower half plane in ζ to the exterior of the unit disk {|λ| > 1} in

the λ-plane. In terms of λ and the coordinates z1, z̄1, z2, z̄2 on R
2,2 ∼= C

1,1, the Lax pair (II.20)

becomes14

(∂z̄1 − λ∂z2)ψ = −(Az̄1 − λAz2)ψ , (II.65a)

(∂z̄2 − λ∂z1)ψ = −(Az̄2 − λAz1)ψ , (II.65b)

and its compatibility conditions are the self-duality equations

Fz1z2 = 0 , (II.66a)

Fz1z̄1 − Fz2z̄2 = 0 , (II.66b)

Fz̄1z̄2 = 0 . (II.66c)

Here, ψ may be chosen to satisfy the reality condition

ψ(z1, z̄1, z2, z̄2, λ)[ψ(z1, z̄1, z2, z̄2, λ̄−1)]† = 1 . (II.67)

Equations (II.66a) and (II.66c) imply that there exist g, g̃ ∈ GL(N,C) such that:

Az1 = g−1∂z1g , Az2 = g−1∂z2g , (II.68a)

Az̄1 = g̃−1∂z̄1 g̃ , Az̄2 = g̃−1∂z̄2 g̃ . (II.68b)

We read off that a possible choice for g and g̃ is given by

g := [ψ(zi, z̄i, λ→ ∞)]−1 , (II.69a)

g̃ := [ψ(zi, z̄i, λ→ 0)]−1 . (II.69b)

Since we are using antihermitean generators for the gauge group U(N), the GL(N,C)-valued

fields g, g̃ have to be related:

A†
zi = −Az̄i , i = 1, 2 ⇒ g̃ = (g†)−1 . (II.70)

Gauge fixing. As in section II.4.1, we can perform a gauge transformation to set two com-

ponents of the gauge potential to zero. Contrary to the (unitary) gauge choice there, in the

14The conventions for z1, z2 are such that for µ′
k = ∞ we obtain holomorphic functions T as solutions of (II.80).
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following we set to zero those components which are not multiplied by the respective spectral

parameter in eqs. (II.65).15 Explicitly,

ψ′ = g̃ψ , (II.71a)

A′
z1 = h−1∂z1h , A′

z2 = h−1∂z2h , (II.71b)

A′
z̄1 = 0 , A′

z̄2 = 0 , (II.71c)

where h := gg̃−1 = gg† ∈ GL(N,C) is hermitean. This gauge is “asymmetric”, i.e., the gauge

potential does not obey (II.70), but instead it satisfies (A′
zi)

† = −hA′
z̄ih

−1 − h∂z̄ih−1. After

solving (II.66) we are free to gauge back to a “symmetric” gauge, where (II.70) is restored. This

is ensured by the hermiticity of h, which is the remnant of (II.70) in the asymmetric gauge. We

will from now on work in the asymmetric gauge and omit all primes on the gauge-transformed

quantities.

Now, the gauge-fixed linear equations read

(∂z̄1 − λ∂z2)ψ = λAz2ψ , (II.72a)

(∂z̄2 − λ∂z1)ψ = λAz1ψ . (II.72b)

Due to (II.70), the reality condition (II.67) transforms into16

ψ(λ)[ψ(λ̄−1)]† = g̃g−1 = h−1 . (II.73)

In the asymmetric gauge the remaining self-duality equation (II.66b) reduces to

∂z̄1(h
−1∂z1h) − ∂z̄2(h

−1∂z2h) = 0 . (II.74)

First-order pole ansatz. Since the reality condition (II.73) is different from the one in the

unitary gauge, we are forced to employ a modified ansatz for ψ(λ). The first-order pole ansatz

for ψ takes the form17

ψm(λ) = 1 +
m∑

p=1

λR̃p
λ− µ′p

, (II.75)

where

R̃p := −
m∑

q=1

µ′pTpΓ
pqT †

q . (II.76)

The “inverse” matrix Γ̃ = (Γ̃pk), cf. (II.40), here reads:

Γ̃pk = µ′p
T †
pTk

1 − µ′pµ̄
′
k

. (II.77)

15In this way, we facilitate a comparison with chapter IV.
16This is the reason why we call this gauge hermitean. It coincides with the hermitean gauge introduced in [190].
17The parameters µ′

p are the images of µp under (II.64). However, the ansatz (II.75) is not simply the transform

of (II.37).
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The matrix-valued function ψm should satisfy the linear equations (II.72) and is subject to

a reality condition, eq. (II.73). Again, the requirement that the poles at λ = µ̄′−1
k and λ = µ′k

of (II.73) have to be removable yields18

(
1 −

m∑

p=1

R̃p
µ′pµ̄

′
k − 1

)
Tk = 0 , (II.78)

which is solved by (II.76) with (II.77). Now we exploit the pole structure of the Lax pair which,

using (II.73), may be rewritten as

[(
1

λ
∂z̄1 − ∂z2

)
ψ

]
ψ† = Az2h

−1 , (II.79a)

[(
1

λ
∂z̄2 − ∂z1

)
ψ

]
ψ† = Az1h

−1 . (II.79b)

As before, the right hand sides do not feature poles in λ, therefore taking the residue at λ = µ̄′−1
k

and λ = µ′k leads to the conditions

(
1 −

m∑

p=1

R̃p
µ′pµ̄

′
k − 1

)
(∂z̄1 − µ̄′−1

k ∂z2)R̃k = 0 , (II.80a)

(
1 −

m∑

p=1

R̃p
µ′pµ̄

′
k − 1

)
(∂z̄2 − µ̄′−1

k ∂z1)R̃k = 0 . (II.80b)

If we define

η1(λ) := z1 + λz̄2 ⇒ η̄1(λ̄) = z̄1 + λ̄z2 , (II.81a)

η2(λ) := z2 + λz̄1 ⇒ η̄2(λ̄) = z̄2 + λ̄z1 , (II.81b)

and denote ηik := ηi(λ = µ̄′−1
k ), η̄ik := η̄i(λ̄ = µ′−1

k ), the Lax operators can be written as

antiholomorphic vector fields in these coordinates:

L̄1
k = ∂z̄1 − µ̄′−1

k ∂z2 = (1 − |µ′k|−2)
∂

∂η̄1
k

, (II.82)

L̄2
k = ∂z̄2 − µ̄′−1

k ∂z1 = (1 − |µ′k|−2)
∂

∂η̄2
k

. (II.83)

Functions Tk = Tk(η
1
k, η

2
k) are in the kernel of L̄1

k and L̄2
k; therefore R̃k constructed via (II.76)

from such Tk automatically satisfy eqs. (II.80). Due to (II.69) and (II.73), we can determine

Az1 and Az2 in eq. (II.71) from

h−1 = 1 +
m∑

p=1

R̃p . (II.84)

18Note that h−1 is independent of λ.
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II.5 Configurations without scattering

The aim of this section is to demonstrate the usability of the solution generating technique

described in section II.4 in two simple cases. In 2+2 dimensions, we will construct an abelian

GMS-like solution of codimension four and a solution representing two nonabelian moving lumps

without scattering. The description of configurations with scattering will be relegated to sec-

tion II.6. Although we do not check their physical properties like tension and fluctuation spec-

trum, we will refer to them as D-branes.

II.5.1 Abelian GMS-like solution

It is fairly easy to construct U(1) solutions depending on all space-time coordinates (i.e., with

codimension four) via the dressing approach in 2+2 dimensions (cf. [82] on euclidean instantons

via dressing). To this aim, let us start from the discussion of the dressing approach in the

hermitean gauge (section II.4.3). For m = 1, we can omit all labels k; a comparison of (II.75)–

(II.77) with the multiplicative ansatz shows that R̃ = (|µ′|2 − 1)P , where P is a hermitean

projector independent of λ. If we choose θ = θ̃ and define harmonic oscillators19

ci :=
1√

2θ(1 − |µ′|−2)
ηi and c†i :=

1√
2θ(1 − |µ′|−2)

η̄i , (II.85)

then [ci, c
†
j ] = δij ; thus, we can easily invert their commutation relations and obtain

√
2θ(1 − |µ′|−2)∂η̄i =

[
ci, ·
]
. (II.86)

With this, we may rewrite (II.80) as

(1 − P )c1P = 0 , (II.87a)

(1 − P )c2P = 0 . (II.87b)

Obviously, these equations can be solved by the projector P = |0, 0〉′ ′〈0, 0| onto the new vacuum

|0, 0〉′ annihilated by c1 and c2.
20 We may use the inverse Moyal-Weyl map (II.18) to transform

it to the star formulation:

P? = exp

(
− η1η̄1 + η2η̄2

θ(1 − |µ′|−2)

)
(II.88)

= exp

(
−(z1 + µ̄′−1z̄2)(z̄1 + µ′−1z2) + (z2 + µ̄′−1z̄1)(z̄2 + µ′−1z1)

θ(1 − |µ′|−2)

)
.

This is the analogue of the GMS-solution [63] in 2+2 dimensions; the projector P? is an example

for a projector Φ1 in (E.43). The gauge potential can be derived from (II.71) with h−1 =

1 − (1 − |µ′|2)P?. The computation of the value of the action for this solution turns out to be

rather unwieldy.

19Recall that |µ′| > 1 since µ ∈ H− in section II.4.1.
20Since the a-oscillators (cf. (II.81) and (II.15)) and the c-oscillators are related by a unitary transformation

ci = UaiU
†, the (properly normalized) vacuum |0, 0〉′ can naturally be obtained as |0, 0〉′ = U |0, 0〉.
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II.5.2 U(2) solitons without scattering

Let us now demonstrate how the additive ansatz (II.37) in the unitary gauge can be employed

to construct a solution describing two moving lumps. A detailed description of the asymptotic

space-time picture will be given at the end of this section.

Additive ansatz. We work in the star formulation and relax the condition that θ = θ̃. The

result of the first dressing step, corresponding to a soliton in 2+1 dimensions, has already been

given in section II.4.2. This lump moves w.r.t. t in the xy-plane; its energy (which is well-

defined in 2+1 dimensions) was computed in the same section. In the second dressing step, we

want to add a soliton confined for large t to the xyt̃-plane. From the preceding discussion in

section II.4.1 it is clear that for m = 2, we can construct a solution to the self-duality equations

using (cf. (II.37))

ψ2 = 1 +
2∑

l,k=1

TlΓ
lkT †

k

ζ − µk
(II.89)

with T1 =
(

1
w1

)
and T2 =

(
1
ew2

)
. However, it is not obvious that this solution really represents

two soliton-like objects, i.e., whether for large t the solution can be integrated over a (spatial)

plane in the xyt̃-subspace to give finite energy (and vice versa on a plane in the xyt-subspace

at large t̃). To prove this, we compare the additive (first-order pole) and multiplicative ansätze

for asymptotic times. Note that the two are only equivalent if the multiplicative ansatz features

merely first-order poles in µi, that is, if µ1 6= µ2.

Multiplicative ansatz. In the multiplicative ansatz, ψ2 = χ2χ1ψ0 may be constructed by two

successive dressing steps from a seed solution ψ0 = 1. As in eq. (II.36), we may write

ψ2 =

(
1 +

µ2 − µ̄2

ζ − µ2
P2

)(
1 +

µ1 − µ̄1

ζ − µ1
P1

)
, (II.90)

and this has to coincide with (II.89) for all times. Remember that for hermitean projectors

Pk = T̃k(T̃
†
k T̃k)

−1T̃ †
k this ansatz guarantees the reality condition (II.30). The solution ψ2 is

subject to eqs. (II.34):

ψ2(ζ∂ṽ + ∂u)ψ
†
2 = A2,u , (II.91a)

ψ2(ζ∂v − ∂ũ)ψ
†
2 = −A2,ũ . (II.91b)

The removability of the poles of the left hand sides at ζ = µ̄1 and ζ = µ1 is assured if (for

µ1 6= µ2)

(1 − P1)L̄
1
1P1 = 0 and (1 − P1)L̄

2
1P1 = 0 , (II.92)

and this allows for a solution T̃1 = T1 =
(

1
w1

)
. Using the inverse Moyal-Weyl map, we obtain

for P1 and its large-time limits

P1? =




2θ
ww+θ

√
2θww2

(ww+θ)2√
2θ w2w

(ww+θ)2
ww+θ
ww+3θ


 t→±∞−→

(
1 0

0 0

)
=: Π±∞ (II.93)
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with the ordinary product between w1 and w1, as in (II.63).21 In contrast, P2 will in general

be a function P2(t, w̃2, w̃2), i.e., T̃2 6= T2 may also depend on t. Namely, the residue equation

of (II.91) at ζ = µ̄2 and ζ = µ2 yields:

(1 − P2)

(
1 +

µ1 − µ̄1

µ̄2 − µ1
P1

)
L̄1

2

{(
1 +

µ̄1 − µ1

µ̄2 − µ̄1
P1

)
P2

}
= 0 , (II.94a)

(1 − P2)

(
1 +

µ1 − µ̄1

µ̄2 − µ1
P1

)
L̄2

2

{(
1 +

µ̄1 − µ1

µ̄2 − µ̄1
P1

)
P2

}
= 0 . (II.94b)

Due to the asymptotic constancy of P1 for large |t|, we can move the Lax operators next to P2

in this limit, and a short calculation shows that this leads to

(1 − P2)∂ ew2
P2 = 0 for |t| → ∞ . (II.95)

Obviously, we have T̃2 = T2 only asymptotically.

Thus, the energy of the second lump can be computed in the limit |t| → ∞ to give E2 =

8π cosh η2 sinϕ2 as in section II.4.2. Analogously, the energy of the first lump in the limit

|t̃| → ∞ equals E1 = 8π cosh η1 sinϕ1.

For large and fixed |t|, the space-time interpretation of the above solution is as follows: Since

P1 is independent of t̃, the first soliton (at a fixed time t) has some definite position in the xy-

plane and extends along the t̃-direction (see figure II.1). Moreover, the world-volume of the

second soliton in this snapshot corresponds to a tilted line (cf. eq. (II.95)). When t varies in the

asymptotic region, the first (vertical) line gets shifted in a direction determined by µ1, while the

second line remains fixed. Generically, the two world-volumes intersect the xy-plane at different

points. Since Ω depends on both t and t̃, it is not possible to perform a T-dualization in one of

the time directions. Thus, the solution has to be interpreted in terms of tilted D1-branes inside

space-time filling D-branes.

II.6 Configurations with scattering

In this section we discuss two different setups entailing configurations with scattering, namely

two U(2) soliton-like objects and two noncommutative U(2) plane waves, with world-volumes in

2+1 dimensional subspaces of R
2,2. As will become clear in this section, the crucial difference

between the two configurations lies in the fact that for these plane waves scattering occurs even

if µ1 6= µ2, whereas soliton-like objects only scatter nontrivially if µ1 = µ2. (In fact, we have

already seen in the previous section that the solitonic lumps do not scatter for µ1 6= µ2.)

II.6.1 U(2) solitons with scattering

The setup is as in section II.5.2; one of the solitonic lumps is evolving with t on the xy-plane.

Since a first-order pole ansatz for the auxiliary field ψ2 in eqs. (II.89) did not lead to scattering,

we now scrutinize the multiplicative ansatz with µ1 = µ2 = µ.

21From the asymptotics, we can read off that the two lumps pass through each other without scattering.
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Figure II.1. Snapshot of the configuration discussed in section II.5.2 for fixed

large |t|. The support of the solution is concentrated around the solid lines.

First dressing step. Starting from a seed solution ψ0 = 1, we make the following ansatz for

the first dressing step:

ψ1 = 1 +
µ− µ̄

ζ − µ
P1 . (II.96)

This automatically fulfills the reality condition (II.30) as long as P1 is a hermitean projector.

The residue condition on the linear equations (II.34) leads to

(1 − P1)∂wP1 = 0 , (II.97)

i.e., P1 varies in a 2 + 1 dimensional subspace parametrized by w as defined in (II.48).

Now we set out to find explicit expressions for the components of the gauge potential. First

note that, since P1 is chosen to be independent of t̃, A1,ũ effectively reduces to A1,x. From

eqs. (II.28) and using ψ2(ζ = 0) = Ω−1 or (II.44), we find22

A1,u = ρ̄ (1 − ρP1) ∂uP1 , (II.98a)

A1,x = ρ̄ (1 − ρP1) ∂xP1 , (II.98b)

where ρ = 1 − µ̄/µ was introduced for convenience.

22Alternatively, we could parametrize A1,u and A1,ũ in terms of the algebra-valued Leznov prepotential φ1

(cf. [85]):

A1,ũ = ∂vφ1, A1,u = −∂ṽφ1 ,

where φ1 = (µ− µ̄)P1 is defined by the asymptotic condition

ψ1(u, v, ũ, ṽ, ζ → ∞) = 1 + ζ
−1
φ1(u, v, ũ, ṽ) + O(ζ−2) .

This also leads to eqs. (II.103).
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Second dressing step. The reality condition (II.30) for the new ansatz ψ2 = χ2ψ1 will be

satisfied if we choose χ2 to be of the same functional form as ψ1, i.e.,

ψ2 =

(
1 +

µ− µ̄

ζ − µ
P2

)(
1 +

µ− µ̄

ζ − µ
P1

)
(II.99)

with a hermitean projector P2 = T2(T
†
2T2)

−1T †
2 in general depending on all four coordinates.

The corresponding gauge-fixed linear equations (II.34) are:

ψ2(ζ∂ṽ + ∂u)ψ
†
2 = A2,u , (II.100a)

ψ2(ζ∂v − ∂ũ)ψ
†
2 = −A2,ũ , (II.100b)

which is equivalent to

A2,u = χ2A1,uχ
†
2 + χ2(ζ∂ṽ + ∂u)χ

†
2 , (II.101a)

−A2,ũ = χ2A1,ũχ
†
2 − χ2(ζ∂v − ∂ũ)χ

†
2 . (II.101b)

Inserting χ2 = 1+ µ−µ̄
ζ−µP2 and demanding that the right hand sides of eqs. (II.101a) and (II.101b)

are free of poles for ζ → µ̄ and ζ → µ leads to

(1 − P2) {ρ∂w1 −A1,u}P2 = 0 , (II.102a)

(1 − P2) {ρ∂w2 +A1,x}P2 = 0 . (II.102b)

Recall that we defined ρ = 1 − µ̄/µ. In the following, we shall assume P2 = P2(w,w, t̃). By

appropriately combining eqs. (II.102) and taking into account eqs. (II.98), we obtain the following

equations for the projector P2:

(1 − P2) {∂wP2 − (∂wP1)P2} = 0 , (II.103a)

(1 − P2) {∂t̃P2 + νρ̄(∂wP1)P2} = 0 . (II.103b)

In the derivation of the second equation we have also made use of the hermitean conjugate of

eq. (II.97), that is

P1∂wP1 = 0 . (II.104)

In the operator formalism, all derivatives can be understood as commutators in the sense

of (II.57). The projector identities

(1 − P2)P2 ≡ 0 and (1 − P2)T2 ≡ 0 (II.105)

transform eqs. (II.103) into

(1 − P2)
{
wT2 − [w,P1]T2

}
(T †

2T2)
−1T †

2 = 0 , (II.106a)

(1 − P2)
{
∂t̃T2 − η′[w,P1]T2

}
(T †

2T2)
−1T †

2 = 0 , (II.106b)
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where η′ := ν
2θ µ̄

−1(µ̄ − µ) and ν = ν1 = ν2 from (II.49). Due to (II.105), a sufficient condition

for a solution is given by

wT2 − [w,P1]T2 = T2S1 , (II.107a)

∂t̃T2 − η′[w,P1]T2 = T2S2 , (II.107b)

for some functions S1(w,w, t̃) and S2(w,w, t̃).

Explicit solutions. For the example of U(2) soliton-like configurations, we choose T1 = ( 1
w ),

which is the simplest nontrivial U(2) ansatz compatible with eq. (II.97). In the operator for-

malism,

P1 = T1(T
†
1T1)

−1T †
1 =

(
(1 + ww)−1 (1 + ww)−1w

w(1 + ww)−1 w(1 + ww)−1w

)
. (II.108)

Our task is now to determine a possible solution for T2. We employ the ansatz

T2 =

(
u1(t̃, w, w)

u2(t̃, w, w)

)
. (II.109)

Setting S1 = w and inserting (II.109) into eq. (II.107a) yields

[
w, u1

]
=

[
w, (1 + ww)−1

]
(u1 + wu2) + 2θ(1 + ww)−1u2 , (II.110a)

[
w, u2

]
= w

[
w, (1 + ww)−1

]
(u1 + wu2) + 2θw(1 + ww)−1u2 . (II.110b)

The last two equations immediately imply

[w,wu1 − u2] = 0 . (II.111)

The case θ̃ = 0θ̃ = 0θ̃ = 0. Evidently, if we restrict ourselves to [t, t̃] = iθ̃ = 0,

u2 = wu1 − f(t̃, w) (II.112)

solves eq. (II.111) with an arbitrary function f (depending only on t̃ and w) yet to be determined.

Exploiting eqs. (II.110a) and (II.111), we find a solution

u1 = 1 + (1 + ww)−1wf(t̃, w) , u2 = w − (1 + ww + 2θ)−1f(t̃, w) . (II.113)

From (II.107b) we obtain in a similar fashion

∂t̃u1 = η′
[
w, (1 + ww)−1

]
(u1 + wu2) (II.114)

by setting S2 = 0. Taking into account eq. (II.114) the explicit t̃-dependence of f(t̃, w) can be

easily deduced:

f = 2θη′
(
t̃+ h(w)

)
, (II.115)

for some function h meromorphic in w. Finally, substituting the results into (II.109) leads to

T2 =

(
1

w

)
+

(
w

−1

)
(1 + ww + 2θ)−1f(t̃, w) . (II.116)
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Translating this to the star formalism, we easily read off that T1 = T2 at the zero locus of

f?(t̃, w); moreover, if we restrict µ to be purely imaginary, µ = −ip, p ∈ (1,∞), Ω degenerates

at these points to the identity. If we choose h? = w ?w = w2, which corresponds to two moving

soliton-like objects, this leads to right angle scattering [109]:

f? = 0 ⇒ w = ±
√
−t̃ . (II.117)

For the points in this locus, w is purely real for t̃ < 0, and w is purely imaginary for t̃ > 0. Since

for the above choice of µ,

w =

(
2

p+ p−1

)1/2(
x+

i

2
(p+ p−1)y +

i

2
(p− p−1)t

)
, (II.118)

we see that e.g. for t = 0, the point where Ω = 1 moves along the positive x-axis accelerating

towards the origin for negative t̃. For positive t̃ it decelerates during its motion along the positive

(or negative, depending on the sign in (II.117)) y-axis.

The case θ̃ 6= 0θ̃ 6= 0θ̃ 6= 0. If the two time directions do not mutually commute, i.e., θ̃ 6= 0, eq. (II.107b)

can be written as
1

iθ̃
[t, T2] − η′[w,P1]T2 = T2S2 . (II.119)

Now, we can still solve eq. (II.111) by

u2 = wu1 − g(t̃, w, w) . (II.120)

The difference to the case θ̃ = 0 is that now the vanishing of the commutator (II.111) can only

be achieved by a nontrivial choice for g(t̃, w, w), e.g.,

g(t̃, w, w) = t̃+ αw + h(w) , (II.121)

where α := − i
4(µ̄ + µ̄−1)

eθ
θ and h(w) is again an arbitrary function meromorphic in w. Let us

restrict µ again to be purely imaginary, µ = −ip, p ∈ (1,∞), then α ∈ R+.

Apparently we also need θ 6= 0; then, the contributions of [w,w] and [w, t̃] add up to zero. If

we use the inverse Moyal-Weyl map to translate to the star product and choose h?(w) = w?w =

w2, we obtain

g?(t̃, w, w) = t̃+ αw + w2 . (II.122)

The subsequent calculation is analogous to the case θ̃ = 0. It turns out that P1 and P2 coincide

and Ω = 1 at the locus of g?(t̃, w, w), i.e., t̃+αw+w2 = 0. If we split w into real and imaginary

parts,

w = a+ ib , (II.123)

we can easily read off a and b from eq. (II.118), and the locus where Ω = 1 is given by

−t̃ = αa+ a2 − b2 + i(2a− α)b . (II.124)
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Since t̃ is real, obviously either b = 0 or a = α/2. We obtain

b = 0 =⇒ a = −α
2
±
√
α2

4
− t̃ for t̃ ≤ α2

4
, (II.125a)

a =
α

2
=⇒ b = ±

√
3

4
α2 + t̃ for t̃ ≥ −3

4
α2 . (II.125b)
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Figure II.2. Motion of the “point of degeneracy” where Ω = 1 in t̃ (bold lines).

Its coordinates a and b are plotted for α = 2. For b(t̃), exemplarily the upper

branch was chosen.

This can be interpreted as follows: The “point of degeneracy” where Ω = 1 moves along

a = −α/2+
√
α2/4 − t̃ and b = 0 as t̃ grows until t̃ = −3α2/4. Then, as t̃ grows larger, it moves

along a = α/2 and b = ±
√

3α2/4 + t̃ (see figure II.2). With the help of (II.118), it is easy to

interpret this motion in the xy plane (for fixed t). Therefore we have shown that it is possible

to construct nontrivial configurations with scattering also for the case of noncommuting time

directions. More complicated solutions in both cases may be constructed by making different

choices for h(w) or by choosing a more sophisticated ansatz for T1 and T2.

II.6.2 Colliding plane waves

Beside the soliton-like solutions (discussed above), there is another class of exact solutions to

the self-duality equations (II.22), namely extended plane waves. For asymptotic times, each
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of them has codimension two. In the commutative case, these were constructed and discussed

in [43, 100, 157]. In the context of the U(N) sigma model in 2+1 dimensions, this type of

solution was first discussed by Leese [117]; the noncommutative generalization was given in [30].

In [71], plane waves were described in (noncommutative) D1-D3 systems. Here we want to show

that one can construct noncommutative two-wave solutions in ncSDYM which entail nontrivial

scattering even for µ1 6= µ2.

Additive ansatz. We assume µ1 6= µ2 henceforth and therefore make a single-pole ansatz for

the auxiliary field ψ. In this section, exceptionally all products are understood to be star prod-

ucts (including the inverse and the exponential of coordinates). The calculation is largely parallel

to the derivation in section II.5.2 which gives us the opportunity to shorten the description here

and to concentrate on the novel features.

We start from the additive ansatz (II.89), but now choose, inspired by [117, 30], the expo-

nential ansätze

T1 =

(
1

eb1w1

)
and T2 =

(
1

eb2 ew2

)
(II.126)

with b1 ∈ R>0, b2 ∈ R. The discussion in section II.4.1 guarantees that this will yield a solution

to the self-duality equations. However, it is not obvious that this solution factorizes into two

plane waves for asymptotic times; to prove this, we have to compare with the multiplicative

ansatz again.

Multiplicative ansatz. The multiplicative ansatz takes the same form as eq. (II.90). It can be

easily shown as in section II.5.2 that P1 = T̃1(T̃
†
1 T̃1)

−1T̃ †
1 can consistently be constructed from

T̃1 = T1, given in (II.126). Let us now scrutinize the |t| → ∞ limits of P1. For simplicity, we set

µ1 = ip strictly imaginary with p > 1. Therefore, β1 in (II.50) is real and

β1 = −1

2
θ−1/2(p− p−1)(p+ p−1)−1/2 < 0 . (II.127)

If we consider the large t limit, it turns out that w1 is dominated by the term linear in t, namely:

b1w1 ' ±b1
√

2θ|β1|t, for t→ ±∞ . (II.128)

Thus, P1 in the large t limit behaves as

P1 =

(
(1 + eb1w1eb1w1)−1 (1 + eb1w1eb1w1)−1eb1w1

eb1w1(1 + eb1w1eb1w1)−1 eb1w1(1 + eb1w1eb1w1)−1eb1w1

)
,

i. e.,

P1 →





t→+∞−→
(

0 0

0 1

)
=: Π+∞ ,

t→−∞−→
(

1 0

0 0

)
=: Π−∞ .

(II.129)
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In these limits, P1 obviously becomes a constant projector. Again, the Lax operators in (II.94)

can be moved next to P2 in these limits to give (II.95). This concludes the proof that we may

write T̃2 = T2 asymptotically.

In addition, we can conclude that this setup entails nontrivial scattering, again by analyzing

Ω† = ψ2(ζ = 0) in the limits t→ ±∞:

Ω†
∣∣∣
t→+∞

= lim
t→+∞

ψ2(ζ = 0) = (1 − ρ2P2)(1 − ρ1Π+∞) , (II.130a)

Ω†
∣∣∣
t→−∞

= lim
t→−∞

ψ2(ζ = 0) = (1 − ρ2P2)(1 − ρ1Π−∞) . (II.130b)

For convenience, we have set ρk = 1 − µ̄k/µk for k = 1, 2. Clearly, Ω†
∣∣∣
t→+∞

and Ω†
∣∣∣
t→−∞

are

different, which indicates nontrivial scattering behavior.

If we now additionally take t̃→ ±∞, we find that P2 also becomes a constant projector,

lim
t̃→±∞

P2 = Π±∞ . (II.131)

Therefore,

Ω†
∣∣∣
t,t̃→−∞

=

(
γ 0

0 1

)
, (II.132a)

and

Ω†
∣∣∣
t,t̃→+∞

=

(
1 0

0 γ

)
, (II.132b)

where γ := µ̄1µ̄2µ
−1
1 µ−1

2 . Again, this result shows the existence of scattering in this two-wave

configuration.

The above-described solutions represent 1+2 dimensional plane waves in the asymptotic

domain, i.e., long before and after the interaction. This can be seen by analyzing the energy

density in 2+1 dimensional subspaces, e.g., the energy density for a gauge field constructed from

P1 (at a fixed time t̃) turns out to depend only on one spatial direction [30]. The asymptotic

space-time interpretation for this setup can be visualized by the following snapshot for fixed

large t (see figure II.3). Since P1 is independent of t̃, the corresponding wave extends along this

direction. The above energy density argument explains its spatial extension. Observe that for

this type of solutions, the moduli µ1, µ2 not only parametrize the velocities of the plane waves

but also their respective parallel directions in the xy-plane (cf. eqs. (II.48) and (II.55) together

with (II.126)). When t varies in the asymptotic region, the world-volume of the first plane

wave undergoes a parallel shift. Consider a space-like section (i.e., t and t̃ fixed). Then, the

intersection of the two plane waves with this xy-plane will consist of two lines which generically

include some angle determined by the moduli µ1 and µ2. For later times t or t̃, the lines

corresponding to P1 and P2 have changed position in the xy-subspace but kept their directions.
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y

x

t̃

plane wave 1

plane wave 2

Figure II.3. Snapshot for fixed large |t| of one octant of the configuration

discussed in section II.6.2. For simplicity, the first plane wave was chosen to be

static (µ1 = −i). This choice implies that the energy density for the first wave at

fixed t̃ does not depend on y. The support of the solution is concentrated around

the grey planes.

II.7 Conclusions

In this chapter we have discussed exact solutions to the self-duality equations of noncommutative

Yang-Mills theory on R
2,2. To this aim, a Lax pair has been gauged in two inequivalent ways;

appropriate ansätze for the auxiliary field ψ have been discussed. From concrete solutions ψ

to the residue equations of the Lax pair explicit expressions for the gauge potentials have been

constructed. In appendix E.2 it will be shown that the Lax pair is included in the string field

theoretic one; therefore, it seems plausible that this also applies to its solutions. Conversely,

our field theoretic solutions could serve as a guideline to construct nonperturbative solutions of

N=2 string field theory. It seems reasonable to expect that a similar program could be carried

out for N=1 strings.

A GMS-like solution and solutions describing U(2) solitons have been constructed. Moreover,

it has been shown that dimensional reduction to 2+1 dimensions leads to results coinciding with

those of [108, 109, 30, 189]. Explicitly, the field theory description of D-brane scattering (for

plane wave and soliton-like configurations) has been generalized to the 2+2 dimensional case. It

would be interesting to trace this description to the string theory level, i.e., compute scattering

in the given B-field background by closed string exchange. To corroborate the interpretation of

our field theory solutions as lower-dimensional D-branes one could try to compute their Chern

characters and examine the fluctuation spectrum around these solutions.
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Chapter III

Short introduction to string field theory

III.1 Introduction

String field theory combines graphic ideas and abstract algebraic manipulations into a definition

of an off-shell theory of interacting strings. It describes exactly how strings interact; the graphical

picture of an interaction vertex ultimately leads to the definition of a rather abstract product on

the algebra of string fields. Historically, two different gluing prescriptions for the description of

this interaction have been of major importance, namely the endpoint and the midpoint gluing

prescriptions. According to the former, two open strings join at their endpoints; the field theory

based on this string field product leads to scattering amplitudes in accordance with conformal

field theory results. Since the parametrization of the product of three strings obviously depends

on the order in which three strings are joined, a reparametrization invariant formulation is

required for the product to be associative. A drawback of such theories is, however, the loss

of manifest Lorentz invariance (for an introduction and review, see, e. g., [123, 65]). Light-cone

string field theory has undergone a renascence in the last years, in particular due to the recent

developments in plane wave geometries.

Witten’s proposal [186] was to use BRST invariance as a substitute for reparametrization

invariance; this admits a covariant formulation of open string field theory which maintains the

desirable aspects of reparametrization invariance as long as the BRST current is conserved.

The prescription he gave for the gluing of two strings can easily be generalized to higher order

vertices; furthermore, an “integration” operation can be naturally defined. These operations

are used to formulate an action functional for string field theory, which possesses enough gauge

invariance to decouple BRST-trivial states. Witten showed that in the bosonic as well as in

the superstring cases, a cubic action functional is sufficient; formally, it takes in both cases the

well-known Chern-Simons form. In the superstring case [186], the picture degeneracy of physical

states necessitates the introduction of picture changing operators at the interaction points; this

was later on shown to give rise to so-called contact term divergences [185, 113].

As an alternative, Berkovits came up with a proposal for a different superstring field theory

based on Witten’s star product [19]. Its action is nonpolynomial and takes the form of a
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Wess-Zumino-Witten action. No picture insertions are necessary; therefore, the theory avoids

problems with contact term divergences (however at the cost of a more complicated action

functional). Both, Witten’s cubic bosonic string field theory as well as Berkovits’ nonpolynomial

superstring field theory have been shown to reproduce the conformal field theory amplitudes at

tree level [187, 138, 23].

In all vertices in string field theories based on Witten’s star product, the midpoint of the

strings is singled out (this is the reason that, indeed, the proposed vertices are only invariant

under midpoint-preserving reparametrizations); the left half of the first string should be glued

to the right half of the second string. This leads to N -vertices with manifest cyclicity and

associativity.

This chapter is organized as follows: In section III.2, we enlarge on the algebraic under-

pinnings of cubic string field theory. Their relevance for Berkovits’ nonpolynomial string field

theory will become clear later. In section III.3, we introduce cubic bosonic string field theory,

cubic superstring field theory in two different modifications, and nonpolynomial superstring field

theory. This discussion lays the foundation for the forthcoming chapters. In section III.4, we

shortly explicate the concepts of vacuum string field theory, which will be scrutinized in chap-

ter V. The importance of projectors of the star algebra becomes clear in this framework; since

they also play a crucial role in the dressing approach in chapters IV and V, some known facts

on these string fields will be summarized in section III.5.

III.2 Algebraic structure

Before embarking on a more detailed discussion of the different string field theories, let us first

briefly explain the algebraic basics of Witten’s cubic bosonic and superstring field theories [58].

String fields. An open string is described by a state in the Fock space of its boundary conformal

field theory. In the case of a bosonic string, this is a complex vector space1 H with a natural

Z-grading #bc given by ghost number (i. e., the zero-mode of the ghost number current Jbc =

−bc, cf. appendix B.1). In the superstring case the grading of this complex vector space is

extended to Z
3, where the second Z-grading #ηξ is induced by the zero-mode of the ghost

number current Jηξ = ξη of the ηξ-system and the third Z-grading #φ is induced by the zero-

mode of the φ-charge current Jφ = −∂φ. The diagonal of the last two gradings is the picture

grading, a Z-grading w.r.t. the zero-mode of the current Jpic = Jφ+Jηξ. The first and the second

Z-gradings can be combined into a further Z-grading #gh which is given by the zero-mode of

the total ghost number current Jgh = Jbc − Jηξ. It is, however, often useful to work with the

original Z
3-grading. The world-sheet statistics of elements of the vector space H depends on its

#gh-charge. The above-mentioned gradings induce gradings on any tensorial power of H and

H∗ so that one can assign, e. g., ghost numbers to elements of H⊗n for any n.

1We neglect Chan-Paton labels for the time being. – In string field theory, it will sometimes be necessary to

take the closure of H for the definition of string fields since the star product of two finite linear combinations of

basis states in H generically will include infinite linear combinations. We shall like to avoid a discussion of the

subtleties related with this phenomenon and denote both with the same letter H.
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Given a basis {|Φi〉} in H, we can introduce a dual basis {〈Φi|} in the dual vector space H∗

by demanding that

〈Φi|Φj〉 = δij . (III.1)

The dual space can be endowed with a grading (which we denote by the same symbols) by

#bc(〈Φi|) := −#bc(|Φi〉) , #ηξ(〈Φi|) := −#ηξ(|Φi〉) , and #φ(〈Φi|) := −#φ(|Φi〉) . (III.2)

This choice will be substantiated in appendix B.1, where also the conventions used here can be

found.

At the same time, we can associate a space-time field ϕi with each basis vector |Φi〉 of

H of definite grade. The space-time fields ϕi depend only on the position zero-mode of the

string; therefore, their multiplication is point-wise. They form a (graded) algebra G with a

multiplicative action on H; H is a module over G. A general element of the G-module H has the

form ∑

i

|Φi〉gi , (III.3)

where the gi are arbitrary elements of G. The subspace of elements
∑

i |Φi〉ϕi is the space of

string fields which are the basic ingredients of any string field theory. They are conventionally

given in momentum space. For instance, a string field in the bosonic case could take the form

Ψ =

∫
d26p [t(p)|0, p〉 ⊗ |↓〉bc +Aµ(p)α

µ
−1|0, p〉 ⊗ |↓〉bc + . . . ] . (III.4)

Here, t is the tachyon potential and Aµ is the gauge potential for the U(1) gauge field on the

brane, which carries the open strings described by our string field theory.

The ghost number grading of H induces a Z-grading gr on G which can be adjusted in such

a way that the fields corresponding to physical bosons and fermions have even and odd degree,

respectively. Now, the module H in bosonic string field theory has a natural Z2-degree (the

Grassmann parity) which is defined as the sum of the degrees #gh (on the corresponding vertex

operators) and gr for the basis elements:

deg
(∑

i

|Φi〉ϕi
)

:=
∑

i

(
#gh(|Φi〉) + 3

2 + gr(ϕi)
)

(mod 2) . (III.5)

The shift by 3
2 is necessitated by the normalization of the ghost number for states (B.10). In

the Neveu-Schwarz sector of superstring field theory, #gh + 3
2 in eq. (III.5) has to be replaced

by #bc + #ηξ + 2 + #φ. In the Ramond sector, a single state in the Hilbert space of conformal

field theory has no definite world-sheet statistics.

Since the vector space H can be identified with the space of vertex operators via the state-

operator correspondence (thereby mapping |Φi〉 to some vertex operator Vi), we will often con-

veniently denote string fields as Ψ =
∑

i ϕ
iVi. In the above example (III.4) this means that

ϕi ∈ {t, Aµ, . . .}, Φi ∈ {|0, p〉 ⊗ |↓〉bc, α
µ
−1|0, p〉 ⊗ |↓〉bc, . . .}, and Vi ∈ {ceip·X , c∂Xeip·X , . . .}. The
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state-operator correspondence is one-to-one, thus enabling us to switch to the description most

appropriate for the respective structure. Whenever there is a difference between both descrip-

tions of string fields (e. g., concerning ghost numbers2), we will make the statement precise.

It is customary to use a third representation of string fields, namely as functionals of the

world-sheet fields (which we will denote collectively by X for this purpose). One can easily

translate states to this description by contracting them with a bra-eigenvector of all world-sheet

oscillators, i. e. symbolically

Ψ[X(σ)] = 〈X(σ)|Ψ〉 . (III.6)

This will be substantiated in appendix E.1. For different representations of string fields, we refer

to [3]. Sometimes, we stick to the convenient notation (−1)deg(|Ψ〉) =: (−1)|Ψ〉 = (−1)Ψ for the

Grassmannality of |Ψ〉 ∈ H. In this section, general string fields will be called Ψ and Υ whereas

the Witten string field will be denoted by A.

The dual module H∗ is defined as the space of states

∑

i

f i〈Φi| (III.7)

with f i ∈ G arbitrary. The pairing 〈Φi|f igj |Φj〉 = f igjδij defines an element of G. The Grass-

mannality of vectors in H∗ is defined as the Grassmann parity of their dual vectors. In particular,

we have (−1)|↓〉 = (−1)〈↑| = −(−1)〈↓|. Thus, dual pairings such as 〈↑|↓〉 are Grassmann-even.

BRST operator. The BRST operator is a Grassmann-odd endomorphism Q : H → H; it

serves as a kinetic operator. In the critical dimension, Q should be nilquadratic:

Q2Ψ = 0 . (III.8)

The action of Q on string fields is defined by the contour integral of the BRST current around

the corresponding vertex operator:

(QΨ)(z) =

∮

z

dw

2πi
JBRST (w)Ψ(z) . (III.9)

The grading of H carries over to a grading of End H which we denote by the same symbols.

Then we have

#gh(Q) = 1 , #bc(Q) = 1 , and #pic(Q) = 0 . (III.10)

In the superstring case the BRST operator can be decomposed into three parts Q0, Q1, and Q2

of φ-charge 0,1, and 2, respectively. The ηξ-charge is always its negative, e. g., #ηξ(Q2) = −2.

BRST invariance will impose severe constraints on the additional structures to be introduced

below.

2For an explanation of the measuring of ghost numbers etc. for states and for operators, see also appendix B.1.
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Graded symmetric form. In order to formulate an action for the string fields, we have to

introduce a (graded) symmetric bilinear form 〈·, ·〉 on H. As a bilinear map from H⊗H to C,

it is given by a reflector element 〈V2| ∈ H∗ ⊗H∗ through

〈Ψ,Υ〉 = 12〈V2|Ψ〉1|Υ〉2 . (III.11)

The subscripts 1 and 2 label the two spaces in the tensor product corresponding to the different

strings. If we require that 12〈V2| = 21〈V2|, this implies that

〈Ψ,Υ〉 = (−1)ΨΥ〈Υ,Ψ〉 . (III.12)

This is just the statement of graded symmetry. The state 〈V2| will be later on identified with the

2-string vertex. The graded symmetric form can be realized by the prescription that two strings

with opposite orientation should be glued together to give a number. The bilinear map itself

does not carry any ghost number3 (this will become clear for the 2-vertex later in chapter VI);

with the above conventions, the ghost anomaly on the disk therefore puts a restriction on the

ghost numbers of two operators with nonvanishing product:

〈Ψ,Υ〉 6= 0 =⇒ #bc(Ψ) + #bc(Υ) = 3 . (III.13)

Obviously, 〈·, ·〉 couples only states of opposite Z2-grade. For states, we glean that the bc-ghost

numbers have to add up to zero. In the superstring case we take 〈·, ·〉 to be neutral w.r.t. #ηξ and

#φ , therefore we obtain two additional requirements (on operators):

〈Ψ,Υ〉 6= 0 =⇒ #ηξ(Ψ) + #ηξ(Υ) = 1 and #φ(Ψ) + #φ(Υ) = −2 . (III.14)

Just as the Hilbert space H is a tensor product of the matter and the ghost parts, one can

decompose 〈V2| ∈ H∗ ⊗ H∗ into its matter and ghost parts. This statement generalizes in the

obvious way to the case of superstrings. Then, the reflector state in a fermionic first order

system is Grassmann-odd, otherwise even.

The bilinear form is invertible; there exists a |V2〉 ∈ H ⊗H such that

12〈V2|V2〉23 = 3 1 . (III.15)

This implies that for fermionic first order systems with odd background charge (such as the bc

and the ηξ systems) |V2〉 is antisymmetric under interchange of the string labels, since

12〈V2| = 14〈V2| 23〈V2|V2〉34
= 21〈V2| = 23〈V2| 14〈V2|V2〉43 .

(III.16)

The right hand sides in both lines are equal upon interchange of the Grassmann-odd 〈V2|’s; thus,

|V2〉34 = −|V2〉43.
3This is a matter of convention. In [18], e. g., the authors made a different choice.
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Explicit forms for 〈V2| and |V2〉 in terms of oscillators for bosonic strings are given, amongst

others, in [66, 68, 94]. For superstrings, a two-vertex for the bosonized superghosts has been

constructed in [18].

The requirement that the reflector be BRST invariant,4

12〈V2|(Q(1) +Q(2)) = 0 , (III.17)

can be translated into the statement that the BRST charge is self-adjoint (up to a sign) w.r.t.

to the graded symmetric form 〈·, ·〉:

12〈V2|Q(1)|Ψ〉1|Υ〉2 = −12〈V2|Q(2)|Ψ〉1|Υ〉2 = −(−1)Ψ〈V2|Ψ〉1Q(2)|Υ〉2
=⇒ 〈QΨ,Υ〉 = −(−1)Ψ〈Ψ, QΥ〉 . (III.18)

The kinetic term in Witten’s Chern-Simons like string field theory is proportional to 〈A,QA〉.
From eqs. (III.12) and (III.18) we conclude that the string field A has to be Grassmann-odd in

order to have a nonvanishing kinetic term:

〈A,QA〉 = (−1)A(1+A)〈QA,A〉 = 〈QA,A〉 = −(−1)A〈A,QA〉 . (III.19)

BPZ conjugation. The above 2-string vertex 〈V2| defines a linear map from H to H∗ via

2〈bpz(Ψ)| := 12〈V2|Ψ〉1 . (III.20)

The left hand side is the so-called BPZ conjugate state to |Ψ〉; it obviously satisfies 〈bpz(Ψ)|Υ〉 =

〈Ψ,Υ〉. Note that BPZ conjugation is linear, complex numbers are not conjugated. In terms

of the state-operator correspondence, the BPZ conjugate can be understood as follows: Let |0〉
denote a vacuum state (in some oscillator basis) in H and 〈0| its dual. Then, a conformal field

Φ can be mapped to a state |Φ〉 ∈ H by |Φ〉 := limz→0 Φ(z)|0〉; a primary field inserted at the

origin (i.e., at τ = −∞) of the complex plane generates the state |Φ〉 from |0〉. The conformal

transformation I(z) := −1/z applied to Φ maps τ = −∞ to τ = ∞; its application to the

bra-vacuum 〈0| yields the BPZ conjugate state 〈bpz(Φ)|:

〈bpz(Φ)| := lim
z→∞

1

z2h
〈0|Φ

(
− 1

z

)
, (III.21)

where h denotes the weight of Φ. Inserting the mode expansion Φ(z) =
∑

n Φnz
−n−h, it is easy

to see that BPZ conjugation acts on modes as

bpz(Φn) = Φ−n(−1)n+h . (III.22)

Eq. (III.20) entails that BPZ conjugation acts as a graded antihomomorphism, i. e., the order of

the modes is reversed with additional signs for each interchange of Grassmann-odd quantities:

bpz(ΦnΛm) = bpz(Λm) bpz(Φn) (−1)ΦΛ . (III.23)

4Since operators sometimes also carry other indices, string labels in this case are denoted as superscripts in

brackets.
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The 2-string vertex is defined in such a way that the definitions (III.20) and (III.21) coincide:

If we parametrize the world-sheet instead with coordinates σ and τ , the inversion I sends σ to

π−σ and τ to −τ (cf. the conventions in appendix B.1). This latter fact will become important

for the overlap conditions which the Neumann matrices have to satisfy, cf. chapter VI.

The state |V2〉 induces the inverse map bpz−1 : H∗ → H, 〈Ψ| 7→
∣∣bpz−1(〈Ψ|)

〉
with

∣∣bpz−1(〈Ψ|)
〉

:= 1〈Ψ|V2〉12 (−1)Ψ . (III.24)

The sign factor ensures that bpz ◦ bpz−1 = bpz−1 ◦ bpz = . Because of eq. (III.15), this can be

rewritten as

〈
bpz−1(〈Ψ|),Υ

〉
= 23

〈
V2

∣∣bpz−1(〈Ψ|)
〉
2

∣∣Υ
〉
3 = 23〈V2|V2〉12 1〈Ψ|Υ〉3 = 〈Ψ|Υ〉 . (III.25)

This establishes a connection with the dual pairing defined after eq. (III.7).

Hermitean conjugation. Hermitean conjugation5 hc is a map from H to H∗ with

〈hc(Ψ)|Υ〉 = 〈hc(Υ)|Ψ〉 , (III.26)

where the bar denotes complex conjugation in G. Complex conjugation in the Grassmann algebra

G is defined as an antiautomorphism of the algebra, i. e., fg = gf . On complex numbers, hc

acts as complex conjugation. As well as BPZ conjugation, it preserves the Grassmann parity.

Formally, we denote the inverse as hc−1. The BRST operator is required to be hermitean w.r.t.

hc, i. e.,

hc(Q|Ψ〉) = 〈hc(Ψ)|Q . (III.27)

This will be important for the reality of the kinetic term.

Star conjugation. The two maps bpz and hc from H to H∗ and their inverses can be combined

in two different ways to give antilinear maps

bpz−1 ◦ hc , hc−1 ◦ bpz: H → H ; (III.28)

these two maps invert each other. From (III.25) and (III.26) we learn that

〈Ψ,Υ〉 = 〈bpz(Ψ)|Υ〉 = 〈hc(Υ)|hc−1 ◦ bpz(Ψ)〉
= 〈bpz−1 ◦ hc(Υ), hc−1 ◦ bpz(Ψ)〉 .

(III.29)

Demanding that the two maps in (III.28) be equal, we can define the star conjugation

∗ = bpz−1 ◦ hc = hc−1 ◦ bpz , (III.30)

which acts as an involution and controls the reality of the graded symmetric form:

〈Ψ,Υ〉 = 〈Υ∗,Ψ∗〉 . (III.31)

5We prefer the symbol hc over † for notational reasons.
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From the hermiticity condition (III.27) and the BRST invariance of |V2〉, we can conclude that

(Q|Ψ〉)∗ = bpz−1 ◦ hc(Q|Ψ〉) = bpz−1(〈hc(Ψ)|Q)

= (−1)Ψ1〈hc(Ψ)|Q(1)|V2〉12 = −Q(2)
1〈hc(Ψ)|V2〉12

= −(−1)ΨQ|Ψ∗〉 ,
(III.32)

and therefore from (III.31) that

〈Ψ, QΥ〉 = 〈Υ∗, QΨ∗〉 . (III.33)

Applying this to the kinetic term 〈A,QA〉, we see that it is real provided that A∗ = ±A. Usually,

the string field is taken to be real under (III.30), i. e.,

A∗ = A . (III.34)

Star product. As already mentioned in the introductory paragraph, we need a product for

the formulation of interaction terms in string field theory. The product will be denoted by ?, it

maps two elements of H into a third, turning the G-module H into an algebra. The product is

manifestly associative,

Ψ ? (Υ ? Φ) = (Ψ ?Υ) ? Φ , (III.35)

and should satisfy the following property,

〈Ψ,Υ ? Φ〉 = 〈Ψ ?Υ,Φ〉 . (III.36)

The latter can in view of eq. (III.12) be rewritten as

〈Ψ,Υ ? Φ〉 = (−1)Ψ(Υ+Φ)〈Υ,Φ ?Ψ〉 . (III.37)

This guarantees cyclicity up to a sign. It will turn out that Witten’s cubic string field action

includes an interaction term of the form 〈A,A ? A〉. It may serve as a check of the signs in

eq. (III.37) that this term is manifestly cyclic and therefore in general nonvanishing.

As such, the star product can be realized in terms of an element of H∗ ⊗H∗ ⊗H. With the

help of the reflector state in eq. (III.11) we can write the star product in terms of the 3-vertex

〈V3| ∈ H∗ ⊗H∗ ⊗H∗:

43〈V2|(|Ψ〉 ? |Υ〉)4 = 123〈V3|Ψ〉1|Υ〉2 . (III.38)

The 3-vertex can be realized by the midpoint gluing prescription: Take the two incoming strings,

fold them by their midpoints and glue the left half of the first string to the right half of the

second string. This graphical recipe can be evaluated with conformal field theory methods to

give explicit expressions for 〈V3|; we will do this in chapter VI. It is straightforward to construct

a 4-vertex from two 3-vertices and one dual reflector state by 1234〈V4| = 125〈V3| 634〈V3|V2〉56 [57].

This procedure can be applied recursively for the construction of all higher N -vertices 〈VN |.
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The graphical recipe mentioned above is reflected in the definition of the star product for

the description of string fields as functionals of world-sheet fields: The product between two

functionals can be symbolically defined as [186, 3]

(Ψ ?Υ)[X(σ)] =

∫ ∏
π
2
≤σ≤π

dX ′(σ) dX ′′(π − σ) δ[X ′(σ) −X ′′(π − σ)]Ψ[X ′(σ)]Υ[X ′′(σ)] ,

(III.39)

with X(σ) =




X ′(σ) for 0 ≤ σ ≤ π

2 ,

X ′′(σ) for π
2 ≤ σ ≤ π .

The path integral expressions in eq. (III.39) are understood for all world-sheet fields Xµ, b, c

(and ψµ, β, γ). It motivates the customary name “delta function overlap”. A similar definition

exists for all other N -vertices. For concrete computations, they are all rather impractical.

The disk anomalies of the appropriate currents entail that the 3-vertex is charged under the

above gradings. We will see from general arguments in chapter VI that the anomaly of the

bc-current requires

#bc(?) =
3

2
. (III.40)

We do not specify the further gradings since for superstring field theory, additional mental

acrobatics will be necessary; cf. section III.3.2.

The BRST operator acts as a graded derivation of the star algebra:

Q(Ψ ?Υ) = (QΨ) ?Υ + (−1)ΨΨ ? (QΥ) . (III.41)

The last equation is the statement that the three-vertex is BRST invariant [114],

〈V3|(Q(1) +Q(2) +Q(3)) = 0 . (III.42)

Integration operation. The star algebra H is endowed with a linear evaluation map∫
: H → C. Due to linearity, this map determines a state 〈I| ≡ 〈V1| ∈ H∗. This identity

or integration state can be used to contract a 3-vertex into a 2-vertex, so that the kinetic term

could be formulated without the introduction of a graded symmetric form.6 The string field |I〉
is Grassmann-even. It should be noted that there is some unsolved puzzle concerning the ghost

part of the identity string field: It does not act as an identity on all fields in H, since it can

be shown that the zero-mode of the reparametrization ghost acts as a derivation on the star

algebra, c0(Ψ ?Υ) = (c0Ψ) ?Υ+(−1)ΨΨ ? (c0Υ), but c0I 6= 0, which is in obvious contradiction

with the former statement for Ψ = Υ = I [156, 48, 95, 161].

The BRST invariance of this vertex implies that Q-closed string fields “integrate” to zero:

〈I|Q = 0 =⇒
∫
QΨ = 0 . (III.43)

6Indeed, this is the way it was originally formulated.
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The integration operation can be implemented as folding a string by its midpoint and gluing

both halves together. The corresponding world-sheet features a curvature singularity at the

string midpoint which results in an anomaly just inverse to the star product anomaly:

#bc(
∫

) = −3

2
; (III.44)

the other gradings in the superstring case will be specified below. We will construct operator

expressions for the identity string field in the bosonic (and N=2 world-sheet fermionic) sector in

chapter VI. This concludes our discussion of the algebraic underpinnings of string field theories

based on the Witten star product. We will now describe how string field theory actions may be

constructed from these ingredients.

III.3 Three different string field theories

In this section, we want to introduce the action functionals for Witten’s bosonic string field

theory, cubic superstring field theory, and Berkovits’ nonpolynomial superstring field theory.

We will discuss their equations of motion (which we finally set out to solve), gauge invariances

and problems.

III.3.1 Witten’s bosonic string field theory

The formulation of an interacting string field theory requires a kinetic term for string fields that

reproduces (at least in a certain gauge) the kinetic terms for the space-time fields in G. It is easy

to see that the kinetic term (III.19) satisfies this condition in the Feynman-Siegel gauge [138].

Furthermore, an interaction term of the form

Sint =
2g

3
〈VN |(|A〉)⊗n =

2g

3

∫
A?n (III.45)

(with some coupling constant g) is needed. The factor of 2
3 was chosen for later convenience.

Ghost number considerations will single out n = 3, restricting the action to a cubic form:

The string field theory action should possess a gauge symmetry that is large enough to

decouple BRST-closed states from physical states. Because of the grading (III.40) it is clear

that gauge parameters |Λ〉 should have bc-charge − 3
2 since they should form a closed subalgebra

of H. If we assume a gauge invariance under infinitesimal transformations of the form7

δ|A〉 = Q|Λ〉 + g(|A〉 ? |Λ〉 − |Λ〉 ? |A〉) , (III.46)

string fields |A〉 will satisfy #bc(|A〉) = −1
2 due to (III.10). The kinetic term (III.19) then

obviously has ghost number 0. A vanishing ghost number of the interaction term (III.45) can

only be achieved for n#gh(|A〉) + (n − 1)#gh(?) + #gh(
∫

) = 0, i. e., n = 3. It can be shown

7Note that this gauge transformation leads to nonabelian gauge transformations of the gauge potential on the

brane [138]. All string fields here possibly carry u(N) Chan-Paton labels.
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that a linear combination of eqs. (III.19) and (III.45) is not invariant under (III.46) unless the

relative coefficient is one. After a rescaling A 7→ α′

g A, the action for bosonic string field theory

reads

S =
1

g2

(
1

α′ 〈V2|A〉Q|A〉 +
2

3
〈V3|A〉|A〉|A〉

)
≡ 1

g2

(
1

α′

∫
A ? QA+

2

3

∫
A ? A ? A

)
. (III.47)

It is easy to see that this action is invariant under the gauge transformations [92]

A 7→ A′ = U † ? QU + U † ? A ? U (III.48)

with some string field U = eΛ. The exponential of string fields is, here and in the following,

defined via the Witten star product,

U = eΛ = I +
∞∑

k=1

Λ?k

k!
. (III.49)

Eq. (III.48) generalizes (III.46) to finite gauge transformations.

The equation of motion takes the form

1

α′QA+A ? A = 0 . (III.50)

For convenience, we will set α′ = 1 from now on.

The computation of the tachyon potential in Witten’s bosonic string field theory in the

so-called level truncation scheme has been driven to a very high precision [103, 173, 129]. In

spite of the recent observation [177, 61] that the resulting energy density for D-branes does not

approximate monotonously the value predicted by the Sen conjectures with increasing level (but

first exceeds this value and then decreases again), the results are in excellent agreement with

Sen’s prediction.

In contrast to this numerical success, no analytical solution to eq. (III.50) has been found as

of today. In principle, it should be possible to determine solutions describing the closed string

vacuum and a situation with multiple D-branes [178].

III.3.2 Witten’s cubic superstring field theory

Witten devised an extension of the above bosonic action (III.47) to a superstring field theory

(SSFT) [187]. It owes most of its complexity to the inclusion of the Ramond sector and the

picture phenomenon [52]. It is formulated entirely within the small Hilbert space.

SSFT in the Neveu-Schwarz sector. A naive ansatz for superstring field theory in the

Neveu-Schwarz (NS) sector could be to take the NS string field A in the natural −1 picture;

the ghost number (of the operator) #bc(A) should still be +1. This ansatz fails since the
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cubic term in (III.47) carries φ-charge −3 and therefore vanishes if the star product is #φ-

neutral, cf. (III.14). The obvious cure to this predicament is to modify the star product and the

integration map into

Ψ ∗ Υ := X (Ψ ?Υ) , (III.51a)
∮

Ψ :=

∫
YΨ , (III.51b)

where the picture raising and lowering operators are inserted at the string midpoint (i. e., σ = π
2

or z = i). The action for the Neveu-Schwarz sector now reads

S =
1

g2

(∮
A ∗QA+

2

3

∮
A ∗A ∗A

)
. (III.52)

The equation of motion is formally the same as in the bosonic case after replacing ? with the

modified star product (III.51a),

QA+ X (A ? A) = 0 . (III.53)

Since the string field A lives in the small Hilbert space (which does not contain the ξ zero-mode),

we additionally have

η0A = 0 . (III.54)

Just as for the BRST operator (cf. eq. (III.9)), the action of η0 on string fields is defined via

contour integration of η(w) around the corresponding vertex operator,

(η0Ψ)(z) =

∮

z

dw

2πi
η(w)Ψ(z) . (III.55)

SSFT in the Ramond sector. For the extension to the Ramond (R) sector we have to take

into account that the product of two Ramond states should be in the Neveu-Schwarz sector.

Assuming that the Ramond operator is in the natural − 1
2 picture and has also ghost number +1,

we group a NS state A and a R state ψ into a combined system M = (A,ψ) and define the

product

(A1, ψ1)?̂(A2, ψ2) :=
(
A1 ∗A2 + ψ1 ? ψ2, A1 ∗ ψ2 + ψ1 ∗A2

)
. (III.56)

Two Ramond fields are multiplied by the picture-neutral ?. The star products are adjusted

in such a way that the product of two picture (−1,− 1
2) operators has again picture (−1,− 1

2).

Since the integral of a Ramond sector string field must vanish due to Lorentz invariance, a new

integration operation is defined by

∫∫
(A,ψ) :=

∮
A (III.57)

with
∮

as in eq. (III.51b). It is easy to check that now the action

SSSFT =
1

g2

∫∫ (
M?̂QM +

2

3
M?̂M?̂M

)
(III.58)
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for the combined NSR sector string field M = (A,ψ) is gauge invariant under the gauge trans-

formations

δM = QΛ +M?̂Λ − Λ?̂M . (III.59)

However, the proof is formal, and gauge invariance even breaks down already at tree level due to

contact term divergences. These divergences arise from the singular operator product expansions

of the picture changing operators in (III.51a); they spoil gauge invariance and necessitate the

introduction of infinite counterterms in the action [185, 113, 138].

Rewritten in terms of A, ψ and the original #pic-neutral operations ? and
∫

, the ac-

tion (III.58) reads

SSSFT =
1

g2

∫ (
A ? QA+ Y ψ ? Qψ + 2

3XA ? A ? A+ 2A ? ψ ? ψ
)
. (III.60)

This action has been scrutinized in the course of computations of the tachyon potential with

the level truncation scheme [42]. Unfortunately, it turns out that the tachyon potential (after

the inclusion of the GSO(−) sector) does not have a minimum in this theory, and that upon

inclusion of higher levels the situation does not seem to improve.

Modified cubic superstring field theory. To overcome the above-mentioned contact term

problems, a modification of Witten’s original action (III.60) was proposed in [8, 9, 150]. Neveu-

Schwarz string fields in the small Hilbert space are now taken in the 0-picture; the action for

the NS sector reads:

SSSFT,mod =
1

g2

∫ (
Y−2A ? QA+ 2

3Y−2A ? A ? A
)
. (III.61)

Here, the defining property of the double-step inverse picture changing operator Y−2 is [3]

lim
z→w

Y−2(z)X (w) = Y (w) . (III.62)

It should be BRST invariant, Lorentz invariant (in particular, independent of momentum), and

of conformal weight 0. There are two candidates for Y−2, the chiral variant [180]

Y−2(z) = −4e−2φ(z) − 16

5
e−3φc∂ξψµ∂X

µ(z) , (III.63)

and the nonchiral one [113],

Y−2(z, z̄) = Y (z)Y (z̄) . (III.64)

It is not clear what the physical reason for this ambiguity should be and whether the theories

defined with the two different Y−2’s are equivalent off-shell. Furthermore, since the picture

changing operators (B.28) and (B.29) have non-trivial kernels one obtains unphysical solutions

to the equation of motion, which now reads

Y−2(QA+A ? A) = 0 . (III.65)

Apart from that, the modified theory indeed solves some of the problems of Witten’s cubic

superstring field theory. For instance, the tachyon potential displays a minimum; level truncation

at level (2,4) already yields about 88% of the expected result [7].
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III.3.3 Berkovits’ nonpolynomial superstring field theory

As an alternative to Witten’s superstring field theory, which suffers from contact term diver-

gences, Berkovits proposed a (nonpolynomial) WZW-like action [19] for the NS sector. It is

formulated in the large Hilbert space of [52] and based on a twisted small N=4 superconformal

algebra. Before motivating Berkovits’ result, let us first briefly review some necessary back-

ground on twisted small N=4 superconformal algebras:

Small N=4 superconformal algebra. It is well known that the full (i. e., c = 0) N=1 super-

conformal algebra of critical N=1 string theory can be embedded into an N=2 superconformal

algebra with central charge cN=2 = 6, i. e., the matter central charge of critical N=2 string

theory [27]. This embedding is given in appendix C.1. An analogous construction of a nonpoly-

nomial string field theory will also hold for N=2 strings, which naturally comes about with an

N=2 superconformal algebra; so we may start our discussion from a given N=2 superconformal

algebra generated by an energy-momentum tensor T , two spin 3/2 superpartners G± and a U(1)

current8 J . It can be embedded into a small N=4 superconformal algebra with two additional

superpartners G̃± and two spin 1 operators J++ and J−− supplementing J to an SU(2) (or

SU(1, 1)) current algebra9. To this end [138], J can be “bosonized” as J = ∂H, and we define

J++ := eH , J−− := e−H , (III.66)

where H(z) has the OPE

H(z)H(0) ∼ c

3
log z (III.67)

with a central charge c. Then G̃± can be defined by

G̃−(z) :=

∮
dw

2πi
J−−(w)G+(z) = [J−−

0 , G+(z)] , (III.68)

G̃+(z) :=

∮
dw

2πi
J++(w)G−(z) = [J++

0 , G−(z)] , (III.69)

so that (G+, G̃−) and (G̃+, G−) transform as doublets under SU(2) (or SU(1, 1)). We will

see in chapter IV, however, that there is a certain freedom to embed the N=2 superconformal

algebra into a small N=4 superconformal algebra, parametrized by SU(2) (or SU(1, 1)). So, the

embedding given above corresponds to a special choice (see section IV.2 for more details).

This small N=4 algebra in general has a nonvanishing central charge. In topological string

theories [28], it is removed by “twisting” T by the U(1) current J , i. e. T → T + 1
2∂J , so that

the resulting algebra has vanishing central charge, cf. eq. (C.12a).

The realization in terms of matter and ghost multiplets and the operator product expansions

of a twisted small N=4 superconformal algebra are given in appendix C.

8The labels denote the U(1)-charge w. r. t. J .
9The case of an SU(2) current algebra applies to N=1 strings, and the case of an SU(1, 1) current algebra

corresponds to the N=2 string.
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N=2 vertex operators. Let us first restrict to N=1 string theory. Neveu-Schwarz vertex

operators A in Witten’s cubic (unmodified) superstring theory naturally had ghost number +1

and were in the −1 picture (and in the small Hilbert space). As such, they were Grassmann-odd.

For the construction of a nonpolynomial action, they should be ghost- and picture-neutral; to

this aim, one can embed them into the large Hilbert space by mapping them to “N=2 vertex

operators”

Φ(z) := ξA(z) . (III.70)

As usual, the product is assumed to be normal ordered. Since #gh(ξ) = −1 and #pic(ξ) = +1, Φ

satisfies the above requirements. Recall that nonvanishing correlation functions (on the disk) in

superstring field theory should have operator insertions of ghost charge #gh = 2, cf. eqs. (III.13)

and (III.14). Thus, correlation functions constructed solely from operators (III.70) will vanish;

G+- and G̃+-insertions are necessary in order to obtain a nonvanishing result. Obviously, these

are the new BRST operators; since unphysical states should decouple, an insertion of G+ or

G̃+ into the correlation functions guarantees that correlation functions of BRST-trivial states

vanish. Note that after twisting, G+ and G̃+ are currents of weight 1 (and charge +1) such that

their zero-modes are indeed reasonable candidates for BRST charges. The action of G+ and

G̃+ on vertex operators is defined in direct generalization of eqs. (III.9) and (III.55) as an

integral

(G+Φ)(z) =

∮
dw

2πi
G+(w)Φ(z) , (G̃+Φ)(z) =

∮
dw

2πi
G̃+(w)Φ(z) , (III.71)

with the integration contour running around z. With this definition,

{G+, G̃+} = 0 , (G+)2 = (G̃+)2 = 0 . (III.72)

Thus, if we demand

0
!
= G+G̃+Φ(z) =

∮
dw′

2π
JBRST (w′)

∮
dw

2π
η(w)ξ(z)A(z) = {Q,A(z)} , (III.73)

this is equivalent to the on-shell condition for A. As argued above, G+- and G̃+-trivial states

decouple in correlation functions; therefore one should identify

Φ ∼ Φ +G+Λ + G̃+Λ̃ . (III.74)

The on-shell condition (III.73) together with the equivalence relation (III.74) on on-shell states

defines a cohomology, the vector space of physical states. Pure gauge states Φ = G+Λ + G̃+Λ̃

correspond to N=1 vertex operators

A = η0Φ = G̃+Φ = G+(−G̃+Λ) = Q(−η0Λ) , (III.75)

i. e., BRST-exact states in the N=1 sense.

Nonpolynomial action. The on-shell condition (III.73) can be implemented by the action

Skin =

∫
Φ ? G+G̃+Φ , (III.76)
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where
∫

and ? are the picture-neutral integration and product operations. However, it can be

shown that it is impossible to construct a purely cubic interaction which is invariant under a

non-linear generalization of the gauge transformation (III.74) [19]. Instead, Berkovits proposed

a WZW-like action which contains in its Taylor expansion a kinetic term and a cubic interaction

similar to Witten’s superstring field theory action:

S =
1

2g2
tr

∫ 
(e−ΦG+eΦ)(e−ΦG̃+eΦ) −

1∫

0

dt(e−
bΦ∂te

bΦ){e−bΦG+e
bΦ, e−

bΦG̃+e
bΦ}



 . (III.77)

Here eΦ = I + Φ + 1
2Φ ?Φ + . . . is defined via Witten’s midpoint gluing prescription (I denotes

the identity string field), the NS string field Φ now possibly carries u(n) Chan-Paton labels10

with an extension Φ̂(t) interpolating between Φ̂(t = 0) = 0 and Φ̂(t = 1) = Φ.

The action (III.77) in this form also applies to the case of N=2 strings [19, 26]. A discussion of

this string field theory is relegated into the subsequent chapters. It will be shown in appendix E.2

that the equation of motion (III.79) in the N=2 case contains the self-duality equation for Yang-

Mills theory; this is physically sensible, since the low-energy limit of open N=2 string theory is

supposed to describe self-dual Yang-Mills theory. The star product for the world-sheet fermions

in this case will be more concretely defined in section VI.5. For the application in the next

chapters it might suffice to state that it shares the properties of the bosonic star product, in

particular associativity. Furthermore, the realization of the currents G+ and G̃+ in terms of

world-sheet fields naturally depends on the degree of world-sheet supersymmetry.

The above action is invariant under the finite gauge transformation [140]

eΦ 7→ (eΦ)′ = Λ ? eΦ ? Λ̃ with G+Λ = 0 , G̃+Λ̃ = 0 (III.78)

generalizing (III.74); and arguments based on this gauge invariance suggest that beyond repro-

ducing the correct four-point tree amplitude allN -point tree amplitudes are correctly reproduced

by (III.77). The corresponding equation of motion reads

G̃+(e−ΦG+eΦ) = 0 , (III.79)

where contour integrations are implied again.

Nonpolynomial string field theory has been scrutinized in the course of computations of

the tachyon potential with the level truncation scheme [20, 25, 84, 39]. The results are quite

promising already at comparatively low levels: At level (2, 4), e. g., the tachyon potential reaches

already about 90% of its expected depth. Finally, it should be mentioned that Berkovits extended

the Neveu-Schwarz sector action (III.77) to the Ramond sector in [22]. Since the Ramond sector

describes spacetime fermions, this is important for checking Sen’s conjectures if one wants to

10All states in the string field Φ are taken to be GSO(+). For including GSO(−) states (e. g. for the study of

tachyon condensation) one has to add internal Chan-Paton labels to Φ and also to G+ and eG+ (for a review on

this subject see [138, 40]).
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examine whether supersymmetry is restored in, say, the construction of a BPS brane as a kink

via tachyon condensation.11

III.4 Vacuum string field theories

An immediate consequence of Sen’s conjectures is that there should exist solutions to the equa-

tions of motion of string field theories which describe unstable brane configurations that repre-

sent the closed string vacuum. Finding solutions even to the bosonic equation of motion (III.50)

turned out to be a rather intractable problem, mainly due to the complicated structure of

Witten’s star product in the oscillator representation (to be reviewed in section VI.2) and the

ghost-matter mixing of the BRST operator in (III.50).

III.4.1 Bosonic vacuum string field theory

Rastelli, Sen and Zwiebach proposed a way to circumvent the latter problem by trying to describe

D-brane solutions from the point of view of the tachyon vacuum:

Kinetic operator around the tachyon vacuum. Expanding all string fields around a given

solution A1 to the bosonic equation of motion (III.50) according to A = A1 + A′, we see that

the equation of motion becomes

QA′ +A1 ? A
′ +A′ ? A1 +A′ ? A′ = 0 , (III.80)

or, defining a new kinetic operator by Q′Ψ := QΨ + A1 ?Ψ − (−1)A1Ψ ? A1 for abitrary string

fields Ψ,

Q′A′ +A′ ? A′ = 0 . (III.81)

Obviously, the equation of motion is form-invariant if we admit a field-dependent redefinition

of the kinetic operator.12 The same is true for the action (III.47) which is simply shifted by

a constant. Suppose now that A1 represents the (unknown) solution describing the tachyon

vacuum. In this case the new BRST operator Q′ should have vanishing cohomology in order

to satisfy the condition that no open strings are left in the closed string vacuum. Furthermore,

it should be universal, that is, it should be possible to express it without any reference to the

boundary conformal field theory describing the original D-brane.

In general, a nontrivial field redefinition is necessary in order to bring the shifted string

field theory action into the canonical form representing the new background [172]. This field

redefinition could be used to transform the unknown operator Q′ to a simpler form Q, thereby

leaving the cubic term in (III.47) invariant. Appropriate redefinitions are of the form

A := e−KA′ , (III.82)

11For an earlier work on spacetime supersymmetry in this context, see [191].
12This argument will be repeated in chapter V in the framework of the dressing approach.
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where K is a linear combination of the generators Kn := Ln − (−1)nL−n of the midpoint-

preserving reparametrizations. As usual, Ln are the modes of the energy-momentum tensor of

the coupled matter-ghost system. This guarantees that

K(Ψ ?Υ) = (K Ψ) ?Υ + Ψ ? (KΥ) , (III.83a)

〈K Ψ,Υ〉 = −〈Ψ,K Υ〉 , (III.83b)

as can be shown using contour deformation arguments. Eq. (III.83) is sufficient for proving that

the interaction term is indeed unchanged; the action of string field theory around the tachyon

vacuum now takes form

SVSFT =
1

g2

(
〈A,QA〉 +

2

3
〈A,A ?A〉

)
(III.84)

after the subtraction of a constant “zero-point energy”. Here,

Q = e−KQ′eK (III.85)

should satisfy

Q2 = 0 , (III.86a)

Q(Ψ ?Υ) = (QΨ) ?Υ + (−1)ΨΨ ? (QΥ) , (III.86b)

〈QΨ,Υ〉 = −(−1)Ψ〈Ψ,QΥ〉 , (III.86c)

in order to ensure gauge invariance of the action. These identities hold by virtue of (III.83)

and (III.85). The above physical requirements on Q′ carry over unchanged to Q.

These requirements can be complied if we take a kinetic operator Q for the expansion around

the tachyon vacuum which is constructed purely from ghost operators [151]. In particular any

combination of the ghost number one operators

C0 := c0 , Cn := cn + (−1)nc−n for n 6= 0 (III.87)

will do the job. First of all, eq. (III.86a) is manifest; the derivation properties (III.86b)

and (III.86c) can be easily shown using contour integral arguments [156]; the universality

property is also manifest, and the triviality of the cohomology is guaranteed by the exis-

tence of contracting homotopy operators Bn := 1
2(bn + (−1)nb−n) with {Cn,Bn} = 1 (cf. ap-

pendix D).13 The coefficients in this linear combination were determined independently by

several authors [80, 59, 144], using a numerical analysis of the equation of motion in the Siegel

gauge b0A = 0.14 It turned out that the ghost kinetic operator may be written as

Q =
∞∑

n=0

(−1)nC2n =
1

2i
(c(i) − c(−i)) , (III.88)

13The loophole that a state |χ〉 in the kernel of Cn is trivial (because of |χ〉 = Cn(Bn|χ〉)) unless Bn|χ〉 is infinite

was used in [59] to find closed strings at the tachyon vacuum.
14Interestingly, the result is such that the product of two string fields Ψi in the Siegel gauge b0Ψi = 0 is

BRST-closed, Q(Ψ1 ?Ψ2) = 0 [143].
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where z = i and z = −i denote the string midpoint (recall that we are using the doubling

trick) [59]. A posteriori, Rastelli, Sen and Zwiebach postulated that the ghost kinetic operator

could have arisen from a singular reparametrization of the world-sheet which concentrates the

string into its midpoint. Under this reparametrization, all fields contained in Q′ are transformed

according to their conformal weights; it was argued that for such a reparametrization only the

vertex operator with lowest weight survives. This is the ghost field c of weight −1 which in this

way is concentrated to the string midpoint. The whole argument will be briefly reviewed below

in the case of vacuum superstring field theory.

It should be noted, however, that with this choice of a kinetic operator the action (III.84) is

multiplied with an infinite normalization factor and has be regularized in some way [59].

Factorization of the equation of motion. A pure ghost kinetic operator allows one to look

for factorized solutions of the form A = Ag ⊗ Am, where Ag and Am are pure ghost and pure

matter string fields, respectively. Since the star product can be taken separately in the ghost

and matter sectors, the equation of motion

QA = −A ?A (III.89)

factorizes as

QAg = −Ag ?Ag (III.90a)

and

Am = Am ?Am . (III.90b)

The latter is the projector property in the matter part; this equation triggered a myriad of

papers devoted to the search for projectors in the star algebra. We will shortly review some

of the results, most prominently amongst them the sliver state, to provide the necessary back-

ground material for the next chapters. Solutions to the former were constructed using so-called

bc-twisted conformal field theories in [59], see section III.5.3. Since they are assumed to be uni-

versal for all Dp-brane solutions, the ratio of the energies associated with two different D-brane

solutions, with matter parts Am and A′
m, respectively, is given by

〈A′
m,A′

m〉
〈Am,Am〉

. (III.91)

Thus it is possible to compute ratios of D-brane tensions in this theory without knowledge of

the ghost solution Ag.

III.4.2 Cubic vacuum superstring field theory

In superstring field theory one has to take the GSO(−) sector into account for a description

of tachyon condensation. The open string tachyon lives in this sector [171]. This is usually
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accomplished by the introduction of internal Chan-Paton factors, where the conventions are

chosen in such a way that the product of two GSO(−) string fields is in the GSO(+) sector, and

setting the GSO(−) string to zero reduces the action to the customary GSO(+) action.

The same prescription applies to the vacuum versions of superstring field theory. Let us

start with a discussion of cubic vacuum superstring field theory; since Witten’s original version

was disqualified due to the arguments presented in section III.3.2, we restrict to the 0-picture

modification with the non-chiral double step picture lowering operator (III.64).

Internal Chan-Paton factors. We discuss the conventions for internal Chan-Paton factors

for open and for vacuum superstring field theory simultaneously. Let labels ± denote the GSO-

sector in which the corresponding string field lives. Hats over a string field indicate that it is

tensored with internal Chan-Paton factors. Then, consistent conventions for these Chan-Paton

factors are [2, 141]: String fields O of odd ghost number are expanded into GSO(±) parts

according to

Ô = O+ ⊗ σ3 +O− ⊗ iσ3 , (III.92)

where σi are the customary Pauli matrices. The same holds true for Q̂, Q̂′ and its vacuum

version after the world-sheet reparametrization, Q̂,

Q̂ = Q⊗ σ3 , (III.93a)

Q̂′ = Qodd ⊗ σ3 +Qeven ⊗ iσ2 , (III.93b)

Q̂ = Qodd ⊗ σ3 + Qeven ⊗ iσ2 . (III.93c)

It will be argued below that the even part of the vacuum BRST operator has the unusual

property of being Grassmann-even. It couples GSO(+) to GSO(−) string fields. Naturally, the

customary BRST operator Q for the open string vacuum consists of an odd part only. Finally,

ghost number even string fields have the form

Ê = E+ ⊗ + E− ⊗ σ1 . (III.94)

It is easy to convince oneself that these Chan-Paton labels have the desired properties.

Cubic superstring field theory for both GSO-sectors. For ease of notation, we slightly

modify the notation for the graded symmetric form (III.11):

〈Ŷ−2|Ψ̂, Υ̂〉 := 12〈V2|Ŷ−2Ψ̂〉1|Υ̂〉2 . (III.95)

Here, Ŷ−2 = Y (i)Y (−i) ⊗ σ3 can be inserted in either of the two strings; their midpoints are

identified anyway. One can show that the modified graded symmetric form maintains all the

required properties for the construction of a cubic action [141]. This leads to the following

generalization of eq. (III.61):

SGSO± =
1

g2
Tr
(
〈Ŷ−2|Â, Q̂Â〉 + 2

3〈Ŷ−2|Â, Â ? Â〉
)
. (III.96)
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The trace Tr is taken over the internal Chan-Paton matrices; and the ghost number 1 string

field Â = A+ ⊗ σ3 +A− ⊗ iσ2 decomposes into a Grassmann-odd part A+ consisting of states of

integer weights and a Grassmann-even part A− consisting of states of half-integer weights. As

mentioned above, this action reduces consistently to eq. (III.61) if we set A− = 0.

Cubic vacuum superstring field theory. Following the same steps as in the bosonic case,

it can be shown that the action for cubic vacuum superstring field theory takes the form

SGSO±, vac =
1

g2
Tr
(
〈Ŷ−2|Â, Q̂Â〉 + 2

3〈Ŷ−2|Â, Â ? Â〉
)
. (III.97)

The fluctuation field Â splits according to eq. (III.92) into GSO(+) and GSO(−) parts. The

form of the vacuum kinetic operator will be specified below. The action is invariant under the

transformation

δÂ = Q̂Λ̂ + Â ? Λ̂ − Λ̂ ? Â , (III.98)

where Λ̂ is an infinitesimal gauge parameter of ghost number 0 and picture number 0, whose

internal Chan-Paton structure is given by (III.94). The equation of motion,

Q̂Â + Â ? Â = 0 , (III.99)

can be written in terms of components as

QoddA+ + A+ ?A+ + QevenA− −A− ?A− = 0 , (III.100a)

QoddA− + A+ ?A− + QevenA+ −A− ?A+ = 0 . (III.100b)

Vacuum kinetic operator. The argument of Rastelli, Sen, and Zwiebach was generalized to

the superstring case in [141]. Since there are some additional subtleties and we will need the

result in chapter V, let us shortly review the main line of arguments here:

We make the following ansatz for the vacuum BRST operator Q̂′ before the reparametriza-

tion:

Q̂′ =
∑

r

π∫

−π

dσar(σ)O+,r(σ) ⊗ σ3 +
∑

s

π∫

−π

dσbs(σ)O−,r(σ) ⊗ iσ2 , (III.101)

where ar and br are smooth functions of σ, andOr,+, Os,− are local operators of ghost number 1 in

the GSO(+) and GSO(−) sectors, respectively. This expression is written on the double cover of

the strip, which explains its integration range. We now apply a midpoint preserving world-sheet

reparametrization σ 7→ f(σ), i. e., f(π−σ) = π−f(σ) for 0 ≤ σ ≤ π and f(−π−σ) = −π−f(σ)

for −π ≤ σ ≤ 0. Such reparametrizations do not change the structure of the cubic term but

change the kinetic term. If Or,+ and Os,− denote primary fields of dimension hr,+ and hs,−,

respectively, then Q̂′ under this reparametrization transforms to

∑

r

π∫

−π

dσar(σ)(f ′(σ))hr,+O+,r

(
f(σ)

)
⊗σ3+

∑

s

π∫

−π

dσbs(σ)(f ′(σ))hs,−O−,r
(
f(σ)

)
⊗iσ2 . (III.102)
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Consider now a reparametrization for which f ′(±π/2) is small; then,
∫
dσ(f ′(σ))h will receive

large contributions from the region around σ = ±π/2 whenever h is negative. In the super-

symmetric Fock space, there are two operators of negative conformal dimension, c and γ (with

weights −1 and −1/2, respectively). We assume a function f which around |σ| = π/2 behaves

as

[f ′(σ)]−1 ∼ − 1

ε2r
δ
(
|σ| − π

2

)
and [f ′(σ)]−

1
2 ∼ − 1

εr
δ
(
|σ| − π

2

)
(III.103)

in the singular limit εr → 0. Then Q̂ is dominated by

Q̂ =
1

ε2r

(
a
(
π
2

)
c
(
π
2

)
+ a
(
− π

2

)
c
(
− π

2

))
⊗ σ3

+
1

εr

(
b
(
π
2

)
γ
(
π
2

)
+ b
(
− π

2

)
γ
(
− π

2

))
⊗ iσ2 .

(III.104)

The invariance of the action (III.96) under world-sheet parity σ 7→ π−σ can be used to determine

the leading terms in Q̂ without knowing the values of a(±π
2 ) and b(±π

2 ). It turns out that in

terms of z-coordinates,

Qodd =
1

2iε2r

(
c(i) − c(−i)

)
+

1

2

∮
dz

2πi
bγ2(z) , (III.105a)

QGSO(+)
even =

1

2iεr

(
γ(i) − γ(−i)

)
, (III.105b)

QGSO(−)
even =

1

2iεr

(
γ(i) + γ(−i)

)
. (III.105c)

The second term on the right hand side of eq. (III.105a) was inserted so as to make Q̂
nilquadratic. It can be shown [141] that 〈I|Q̂ = 0 after some appropriate regularization, that

Q is still a derivation of the star product, and that it is hermitean in the presence of Ŷ−2,

cf. eq. (III.95). In [141], first steps for solving the equations of motion (III.100) power by power

in εr were taken. Very recent results obtained by level truncation [142] seem to indicate that the

pure ghost kinetic operator (III.105) fails to describe the theory around the tachyon vacuum.

III.4.3 Nonpolynomial vacuum superstring field theory

As was derived in [96, 126], the nonpolynomial action for fluctuations is of the same form as the

action (III.77). After a singular world-sheet reparametrization and the extension to the GSO(−)

sector it reads [141]

S =
1

2g2
Tr

∫ 
(e−

bΦQ̂ebΦ)(e−
bΦη̂0e

bΦ) −
1∫

0

dt(e−t
bΦ∂te

tbΦ){e−tbΦQ̂etbΦ, e−tbΦη̂0e
tbΦ}



 . (III.106)

Here, Φ̂ denotes the GSO-unprojected Berkovits string field of ghost number 0 and picture

number 0. Its expansion in the GSO(±) sectors goes along the lines of (III.94). The only

property of the action which was needed in the above derivation of Q̂ was its twist invariance.
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Therefore, it is clear that the form of Q̂ in nonpolynomial vacuum superstring field theory

depends on the twist invariance of eq. (III.77). In [25] it was shown that it possesses the same

twist invariance as the cubic action. Thus, Q̂ is given by (III.105), and η̂0 is assumed to be of

the form η̂0 = η0 ⊗ σ3. It is trivial to check that, with this definition, Q̂ and η̂0 anticommute

similar to eq. (III.72). Finally, we note that the action (III.106) is invariant under

δ(e
bΦ) = (Q̂Λ̂) ? e

bΦ + e
bΦ ? (η̂0Λ̂) , (III.107)

and the equation of motion reads

η̂0(e
−bΦQ̂ebΦ) = 0 . (III.108)

III.5 Projectors of the star algebra

The importance of matter projectors in the star algebra is clear from eq. (III.90); they are

solutions to the matter part of the vacuum string field equations. Apart from improving our

understanding of the string field algebra they are also crucial for the dressing approach (which

was presented in the noncommutative field theory case in chapter II and will be generalized to

string field theory in chapters IV and V). Therefore we here briefly expound upon the most

relevant facts.

Indeed, one projector of the star algebra is already known from section III.2. The identity

string field is a projector by definition. We will see below that it belongs to the class of states

called wedge states; two members of this class are projectors. The other projector is the sliver

state, on which we concentrate now.

III.5.1 The sliver

Algebraic construction. The sliver state was first constructed algebraically in [102]. Starting

from an ansatz

|V3〉123 = exp
(
− 1

2

3∑

r,s=1

∞∑

m,n=1

a(r)†
m · V rs

mn · a(s)†
n

)
|p1 = 0〉1 ⊗ |p2 = 0〉2 ⊗ |p3 = 0〉3 (III.109)

for the bosonic matter 3-vertex at zero momentum in oscillator language (the oscillators are

introduced in appendix B.1), Kostelecký and Potting could construct a projector of the star

algebra in terms of the Neumann coefficients V rs
mn using coherent state techniques.15 Namely,

let

M rs := CV rs with Cmn = (−1)mδmn , m, n ≥ 1 (III.110)

and X := M11, then the sliver state |Ξ〉 in the matter sector is constructed as a squeezed state

|Ξ〉 = N 26 exp
(
− 1

2a
† · S · a†

)
|p = 0〉 , N = [det(1−X) det(1 + T )]1/2 , S = CT . (III.111)

15As before, r and s label the Hilbert spaces of the different strings. If the oscillator indices m,n are omitted,

we implicitly assume matrix multiplication. The dots denote contraction over the Lorentz indices.
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Finally, the matrix T is given by

T = (2X)−1(1 +X −
√

(1 + 3X)(1 −X)) . (III.112)

This complicated expression finds a natural explanation [35] in the Moyal formulation of the

bosonic sector, cf. section E.1.

Wedge states. Surface states are bra-vectors 〈Σ| in the dual Hilbert space H∗ of a boundary

conformal field theory with Hilbert space H, which are associated to a particular Riemann

surface Σ (with boundary). The surface in question is a disk with one puncture P at the

boundary, where local operators φ will be inserted. The disk should be endowed with a global

parametrization s : H → Σ (H denotes the canonical upper half-disk {|z| ≤ 1, Im z ≥ 0} ⊂ C)

such that P = s(0). Operator insertions on H are made at z = 0; looking from the “interaction

point” z = i, the arc {|z| = 1,Re z ≥ 0, Im z ≥ 0} ⊂ H is usually called the left half of the

string, the arc {|z| = 1,Re z ≤ 0, Im z ≥ 0} ⊂ H the right half of the string. Then the defining

relation for the surface state 〈Σ| ∈ H∗ is

〈Σ|φ〉 = 〈s ◦ φ(0)〉Σ , (III.113)

where |φ〉 ∈ H is the state corresponding to the local operator φ(z) via the state-operator

correspondence, |φ〉 = limz→0 φ(z)|0〉. The correlation function 〈 〉Σ is evaluated on Σ, s◦φ(0) =(
s′(0)

)h
φ(s(0)) is the conformal transform of φ by the map s. It is convenient to introduce the

BPZ conjugate ket-state to 〈Σ| and denote it with a small abuse of notation by |Σ〉.

We are now ready to introduce the wedge state description of the sliver. Wedge states

constitute a subclass of the surface states introduced above. The surface Σ will be embedded

as a unit disk {w ≤ 1} in a w-plane, with the puncture P located at w = 1. For any ν ∈ , let

the surface Σn be parametrized by

wn = sn(z) ≡ (h(z))2/n =
(1 + iz

1 − iz

)2/n
, (III.114)

where h(z) takes the canonical upper half-disk into a unit half-disk in the h(z)-plane, lying in the

region Re h(z) ≥ 0, |h(z)| ≤ 1. The puncture z = 0 is mapped to h(0) = 1 at the curved side of

the half-disk. This half-disk is squeezed by the map wn = (h(z))2/n into a wedge of angle 2π/n at

wn = 0. The resulting surface state is by convention called 〈n| [153]. Scrutinizing the behavior

of wedge states under star multiplication, one finds that they form a closed subalgebra [156]

|m〉 ? |n〉 = |m+ n− 1〉 . (III.115)

It can be shown that all wedge states can be expressed in terms of exponentials of the Virasoro

generators of the boundary conformal field theory [156]:

|n〉 = exp
(
− n2 − 4

3n2
L−2+

n4 − 16

30n4
L−4−

(n2 − 4)(176 + 128n2 + 11n4)

1890n6
L−6+ . . .

)
|0〉 . (III.116)

Such representations are called universal, since they do not depend on the details of the boundary

conformal field theory, but are background independent.
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We observe that for n = 1, the surface Σ1 covers the whole unit disk in the w1-plane with a

cut along the negative real axis. The left half and the right half coincide (are “glued together”)

along this cut. This identifies the surface state for n = 1 with the identity,

〈
n = 1

∣∣ = 〈I| . (III.117)

In accordance with eq. (III.115), this is a projector. For |I〉, a closed expression in terms of Ln

was determined in [48].

The state 〈n = 2| is the vacuum state, cf. eq. (III.116); the surface Σ2 is the right half-disk

in the w2 plane. The star product of two SL(2,R) invariant vacua is the state 〈n = 3|, which is

already a nonpolynomial expression in the Fock space oscillators.

The n→ ∞ limit of eq. (III.116) is smooth, we find:

|n = ∞〉 = exp
(
− 1

3
L−2 +

1

30
L−4 −

11

1890
L−6 + . . .

)
. (III.118)

The surface Σ∞ in this limit is an infinitely slim wedge, its apex lies at the origin. The ap-

parent local coordinate singularity in the n → ∞ limit can be resolved by SL(2,R) invariance.

Using conformal field theory techniques similar to the ones applied for the computation of Neu-

mann coefficients (cf. chapter VI) the state |n = ∞〉 was identified with the sliver |Ξ〉 given in

eq. (III.111) [152]. By (III.115), it can be constructed as an infinite star product of the SL(2,R)

invariant vacuum with itself. The sliver state is believed to represent a D25-brane in bosonic

vacuum string field theory; a computation of its tension yields the correct value. It was general-

ized to solutions corresponding to arbitrary Dp-branes; the sliver in the perpendicular directions

to the brane is constructed from an oscillator vacuum with a0|0〉 = 0 instead of the momentum

zero vacuum |p = 0〉 (see, e. g., [130]). Again, the ratios of tensions agree with the expected

values for Dp-branes. The sliver has singular properties: For instance, it could be shown that

the left- and right-halves of the open string on the brane described by |Ξ〉 split and can move

independently – the midpoint is fixed to the brane [130, 60].

III.5.2 Other projectors

Butterfly states. Other projectors of the star algebra are the so-called butterfly states |Bα〉;
they belong to a whole family of surface states parametrized by a real parameter α ∈ [0, 2] [59,

60]. They are associated to the whole upper half-plane Σ and can be defined by the map

sα : H → Σ, z 7→ 1
α sin(α tan−1 z). As α → 0, we recover the sliver. For α = 1, this leads to

the definition of the butterfly state |B〉 with the map s1(z) = z√
1+z2

, which in operator form is

simply written as

|B〉 = exp
(
− 1

2
L−2

)
|0〉 . (III.119)

The |Bα〉 are projectors for all α, |Bα〉 ? |Bα〉 = |Bα〉. The details of their geometrical interpre-

tation are quite intricate and can be found in [60, 162, 127]. In [127], they are also identified

with D-brane solutions.
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Nothing state. The nothing state is a surface state |N 〉 defined by the map s : z 7→ z
z2+1

.

This is the butterfly state with α = 2. Again, the surface Σ associated to it is the whole upper

half-plane; for a geometrical interpretation, see [60]. An operator expression for the nothing

state can be obtained from substituting L−2n → (−1)nL−2n in the operator expression for the

identity state. In particular, the Fock space representation is given by

|N 〉 = exp
(
− 1

2

∞∑

n=1

a†n · a†n
)
|0〉 (III.120)

in the bosonic matter part.

It should be noted that all surface state projectors described above have the property that

the string midpoints located at z = i are mapped to s(i) ∈ {±i∞} by the defining map s : H → Σ

in case Σ is the upper half-plane.16 This will become important in the next subsection.

III.5.3 Further remarks

The bc twisted sliver. Rastelli, Sen, and Zwiebach pointed out [59] that the sliver in the so-

called bc-twisted conformal field theory gives rise to a solution of the ghost part of the vacuum

string field equations (III.90). We generalize their argument to any of the above-described

surface state projectors: Twisting the bc conformal field theory with energy-momentum tensor

T and U(1) ghost current Jbc by T 7→ T ′ = T − ∂Jbc leads to a first order system of fields b′, c′

with spins 1, 0. The twisted first order system can be bosonized in terms of a bosonic field ϕ as

c′ = eiϕ, b′ = e−iϕ; in [59], it is shown that the star products in the bc- and the b′c′-system are

related by

|B ? C〉 ∝ σ+′

(i − ε)σ−
′

(i − ε)|B ?′ C〉 , (III.121)

where σ+′
(z) = eiϕ/2(z) and σ−

′
(z) = eiϕ/2(z̄) are defined on the double cover of the upper half-

plane; the star product in the bc-system is denoted by ?, the star product in the twisted system

by ?′. The whole expressoin is understood in the limit ε→ 0. Therefore, the ghost equations of

motion rewritten in the ?′-product read

Q|Ag〉 ∝ −σ+′

(i − ε)σ−
′

(i − ε)|Ag ?
′ Ag〉 . (III.122)

We will now take as an ansatz for 〈Ag| an arbitrary surface state projector 〈P ′| in the b′c′

conformal field theory defined by a map s to the upper half-plane as described above. This state

satisfies (cf. (III.113))

〈P ′|φ〉 = 〈s ◦ φ(0)〉′ , (III.123)

where the primed correlation function has to be evaluated in the b′c′ conformal field theory on

the upper half-plane. This can be used to rewrite eq. (III.122) in terms of correlation functions

16The two wedge state projectors 〈n = 2| and 〈n = ∞| were defined via maps to the unit disk. If the unit disk

is mapped to the upper half-plane, the same statement holds true.
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for arbitrary operators φ. By an explicit translation between the bc-oscillators and the b′c′-

oscillators it is easy to see that Q ∝ (c′(i)+ c′(−i)), cf. eq. (III.88). Therefore, the left-hand side

of (III.122) is proportional to

〈
s ◦
(
φ(0)(c′(i) + c′(−i))

)〉′
=
〈
s ◦ φ(0)

(
c′(i∞) + c′(−i∞)

)〉′
. (III.124)

Here we have made use of the fact that all surface state projectors have the string midpoints

mapped to ±i∞. Expanding s(i + ε) ' iη, the right-hand side of eq. (III.122) is proportional to

〈
s ◦
(
φ(0)σ+′

(i + ε)σ−
′

(i + ε)
)〉′ ∝

〈(
s ◦ φ(0)σ+′

(iη)σ+′

(−iη)
)〉′

, (III.125)

where we have used the boundary conditions to relate σ−′
(iη) to σ+′

(−iη). Recall that the

correlation functions has to be evaluated on the upper half-plane (and not on its double cover),

therefore c′(i∞) + c′(−i∞) can be replaced by 2c′(i∞) on the right-hand side of eq. (III.124).

On the right-side side of eq. (III.125), we can replace σ+′
(iη)σ+′

(−iη) by the leading term in

the corresponding operator product expansion, i. e. c′(i∞). Therefore both sides of eq. (III.122)

are proportional to 〈s ◦ φ(0)c′(i∞)〉, which proves that the surface projector state 〈P ′| subject

to (III.123) solves the vacuum equations for the ghost part. The normalization has to be fixed

separately.

In fact, we will determine the Neumann matrices for the ψ± system in chapter VI; this

system is equivalent to the b′c′ system. This paves the way for finding more solutions to the

vacuum equations for the ghost part since one is now in the position to determine all possible

projectors in the b′c′ system.

Projectors in SSFTs. The above proof that the sliver in the twisted ghost system solves the

bosonic vacuum string field equations was generalized to the sliver of a doubly twisted [5, 101]

and a triply twisted [140] ghost system in the superstring case.

In the case of nonpolynomial vacuum superstring field theory one can show that the full

(ghost plus matter) supersliver fails to describe non-BPS D9-branes in type IIA theory. Namely,

let Φ be a string field annihilated by η0 (such as the supersliver and any other surface state,

see [140]). Then, eΦ also lies in the kernel of η0. It satisfies the equation of motion,

η0

(
e−Φ ?QeΦ

)
= (η0e

−Φ) ? (QeΦ) − e−Φ ?Q(η0e
Φ) = 0 , (III.126)

but it is gauge-trivial (cf. the generalization of (III.78) to the vacuum case)! A non-trivial

solution has to be constructed in the large Hilbert space.
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Chapter IV

Solving the string field theory equations

IV.1 Introduction

In the last chapter, Witten’s bosonic string field theory and cubic and nonpolynomial superstring

field theories as well as their vacuum versions were introduced. In this chapter, we will attack

the problem to find solutions to the equation of motion of Berkovits’ superstring field theory.

Apart from providing a better understanding of the structures of string field theories, finding

solutions to the string field equations is important for the study of Sen’s conjectures. Namely,

solutions to the string field equations describe classical string fields, which convey information

about nonperturbative string configurations. However, there are some major obstacles for finding

classical solutions to the equations of motion of open string field theories, which already have

been mentioned in the course of the last chapter. E. g., the BRST operator usually mixes matter

and ghost string fields; this makes it impossible to study matter and ghost sectors separately.

Sen’s conjectures have been tested in the framework of Berkovits’ superstring field theory in

various ways: Using the level-truncation scheme, numerical checks were performed e. g. in [20, 25,

41, 84], and the predicted kink solutions describing lower-dimensional D-branes were found [139].

On the analytic side, a background-independent version of Berkovits’ string field theory was

proposed in [97, 158], and the ideas of vacuum string field theory and computations of the sliver

state of bosonic string field theory were transferred to the superstring case [126, 2, 140]. More

recently, there have been some attempts [96, 98, 140] to solve the string field equation (III.79)

but, to our knowledge, no general method for finding explicit solutions has been presented so

far.

The same applies to N=2 string field theory. However, since N=2 strings have no tachyon

in their spectrum, Sen’s conjectures are not the prime motivation for a study of their field

equations. Nevertheless, it would be interesting to show that lower-dimensional D-branes can

be found as solitonic solutions to these equations. Since nonpolynomial string field theories for

N=1 and for N=2 strings share most characteristic properties, there is some hope that solutions

to the N=2 string field equations may serve as guidelines for the N=1 case.
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In general, it would be desirable to have solution generating techniques at hand which allow

for finding some (or all) solutions by a well-defined prescription. It is the purpose of this

chapter to introduce such a solution generating technique (which is known from the field theory

treatment in chapter II) for the case of nonpolynomial (super)string field theory. We will see

in the next chapter that this technique can be transferred also to cubic superstring field theory

and the vacuum versions of both superstring field theories. This chapter is based mainly on

reference [II].

We show that the WZW-like string field equation (III.79) is integrable in the sense that it

can be written as the compatibility condition of some linear equations with an extra “spectral

parameter” λ. This puts us in the position to parametrize solutions of (III.79) by solutions

of linear equations on extended string fields (depending on the parameter λ) and to construct

classes of explicit solutions via various solution-generating techniques. This discussion will be

independent of any implementation of G+ and G̃+ in terms of matter multiplets and is therefore

valid for N=1 superstrings as well as for N=2 strings.

We discuss two related approaches to generating solutions of the WZW-like string field

equation (III.79). First, considering the splitting method and using the simplest Atiyah-Ward

ansatz for the matrix-valued string field of the associated Riemann-Hilbert problem, we reduce

eq. (III.79) to the linear equations G̃+G+ρk = 0 with k = 0,±1. Here ρ0 and ρ±1 are some

string fields parametrizing the field eΦ. However, our discussion of the splitting approach is

restricted to the n = 2 case, i. e. u(2) Chan-Paton factors, or a certain embedding of u(2) into

u(2 + l). Second, we consider the (related) dressing approach which overcomes this drawback.

With this method, new solutions are constructed from an old one by successive application of

simple (dressing) transformations. Using them, we write down an ansatz which reduces the

nonlinear equation of motion (III.79) to a system of linear equations. Solutions of the latter

describe nonperturbative field configurations obeying (III.79). Finally, we present some explicit

solutions of the WZW-like string field equation.

This chapter is organized as follows: In section IV.2 we discuss the reality properties of some

operators in the superconformal algebra. This issue is crucial for the treatment of the linear

equations. We prove the integrability of the WZW-like string field equation in section IV.3. The

construction of solutions via solving a Riemann-Hilbert problem and via dressing a seed solution

is subject to sections IV.4 and IV.5, respectively. Finally, section IV.6 presents some explicit

solutions.

IV.2 Reality properties

Real structures on sl(2,CCC). We would like to introduce a real structure on the Lie algebra

sl(2,C). A real structure σ on a vector space V is by definition an antilinear involution σ : V →
V , i. e. σ(ζX + Y ) = ζ̄σ(X) + σ(Y ) for ζ ∈ C, X,Y ∈ V and σ2 = idV (here we choose

V = sl(2,C)). There are three choices for a real structure on sl(2,C). Acting onto the defining
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representation of sl(2,C), we can write them as

σε

(
a b

c −a

)
:=

(
0 1

ε 0

)(
ā b̄

c̄ −ā

)(
0 ε

1 0

)
(IV.1)

σ0

(
a b

c −a

)
:=

(
ā b̄

c̄ −ā

)
(IV.2)

for ε = ±1 and a, b, c ∈ C. We denote the space of fixed points by VR, i. e. VR := {X ∈ V :

σ(X) = X}. For the real structures (IV.1), it is straightforward to check that VR
∼= su(2) for

ε = −1 and VR
∼= su(1, 1) for ε = 1, whereas, for the real structure σ0, we obtain VR

∼= sl(2,R).

Real linear combinations of vectors within VR are again contained in VR, so they make up real

linear subspaces in sl(2,C).1 Because of the form of eqs. (IV.1) and (IV.2) it is clear that σ

preserves the Lie algebra structure, i. e. the VR are real Lie subalgebras. In the case of σε,

complex conjugation can be “undone” by a conjugation with the matrix ( 0 1
ε 0 ) on an element

of this linear subspace. Let us already here note that this conjugation matrix is contained

within the group SU(2) for ε = −1, but is outside SU(1, 1) for ε = 1. This means [83, 81] that

conjugation by ( 0 1
ε 0 ) is an inner automorphism on su(2) and an outer automorphism on su(1, 1).

Bar operation. As stated above, an N=4 superconformal algebra contains as a subalgebra a

current algebra generated by J , J++, and J−−. Its horizontal Lie algebra, when complexified, is

sl(2,C). On sl(2,C), let us introduce a real structure σε from (IV.1), where we choose ε = −1 for

N=1 and ε = 1 for N=2 strings. The action of complex conjugation on the N=4 superconformal

generators, as determined in [28, 29], looks as follows:

J∗ = −J , (J++)∗ = J−− , (G+)∗ = G− , (G̃+)∗ = G̃− . (IV.3)

Now, the signflip of J in (IV.3) necessitates an additional rotation to reestablish the original

twist T → T+ 1
2∂J of the N=4 superconformal algebra. As mentioned in the previous paragraph,

this can be accomplished by an inner automorphism in the case of N=1 strings and by an outer

automorphism of the current Lie algebra in the case of N=2 strings. These automorphisms

consist in conjugating an element of the defining representation with the matrix ( 0 1
ε 0 ). In the

following, we want to scrutinize how the rotation reestablishing the twist acts onto the other

elements of the N=4 superconformal algebra.

As explained in [29], the four spin 3
2 superpartners of the energy-momentum tensor transform

under the current group (therefore the current indices ±) as well as under a group2 of additional

automorphisms SU(2) (or SU(1, 1)). Explicitly,

(Geαα) =

(
G+ G̃+

εG̃− G−

)
(IV.4)

transforms under current group transformations by left-multiplication (note that the columns of

this matrix form doublets under the current algebra, cf. (III.68) and (III.69)). Under additional

1In the following, we will be mainly interested in σε. The case of eq. (IV.2) has been used in [26] and [107].
2For a discussion of its existence, see [29].
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automorphisms it transforms by right-multiplication. Obviously, the rotation reestablishing the

original twist acts onto the complex conjugate matrix as
(

0 1

ε 0

)(
G− G̃−

εG̃+ G+

)
=

(
εG̃+ G+

εG− εG̃−

)
. (IV.5)

Having established the action of this rotation on the N=4 superconformal algebra, we denote

the combined operation of star conjugation and “twist-restoring” transformation by a bar, i. e.

G+ = εG̃+ , G̃+ = G+ , G̃− = G− , and G− = εG̃− . (IV.6)

On elements of the complexified current algebra, the bar operation acts by (IV.1), in particular

it acts trivially onto the real su(2) or su(1, 1) subalgebra.

Additional automorphisms. The aforementioned additional automorphisms of the N=4 su-

perconformal algebra act on the “G-matrix” from the right [29]. We take them to be elements

of SL(2,C) and therefore define
(
G+(v) G̃+(v)

ε G̃−(v) G−(v)

)
:=

(
G+ G̃+

ε G̃− G−

)(
v3 v1

v4 v2

)
(IV.7)

for vi ∈ C with v2v3 − v1v4 = 1. The action of the additional automorphisms should be

compatible with the above-defined bar operation (IV.6), i. e.

G+(v) = εG̃+(v) , G̃+(v) = G+(v) , G̃−(v) = G−(v) , and G−(v) = εG̃−(v) . (IV.8)

These four equations all lead to the same requirements v3 = v̄2 =: u1 and v4 = εv̄1 =: u2, which

in effect restricts the group of additional automorphisms from SL(2,C) to SU(2) for ε = −1

and to SU(1, 1) for ε = 1:
(
G+(u) G̃+(u)

ε G̃−(u) G−(u)

)
:=

(
G+ G̃+

ε G̃− G−

)(
u1 εū2

u2 ū1

)
(IV.9)

with |u1|2 − ε|u2|2 = 1. Note that
(

0 ε

1 0

)(
u1 εū2

u2 ū1

)(
0 1

ε 0

)
=

(
ū1 εu2

ū2 u1

)
. (IV.10)

Obviously, eq. (IV.8) entails the introduction of the same real structure on the group of additional

automorphisms as the one chosen for the current group. Since we are only interested in the

ratio of the prefactors of G+ and G̃+, and of G− and G̃−, respectively, we define for later use

the combinations

G̃+(λ) := G̃+ + λG+ =
1

ū1
G̃+(u) ,

G̃−(λ) := G̃− + λ̄G− =
1

u1
G̃−(u) ,

G+(λ) := G+ + ελ̄G̃+ =
1

u1
G+(u) ,

G−(λ) := G− + ελG̃− =
1

ū1
G−(u) .

(IV.11)
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Here, (ū1 : εū2) can be regarded as homogeneous coordinates on the sphere S2 ∼= CP 1, and

λ ≡ εū2/ū1 is a local coordinate for ū1 6= 0.

Let us reconsider the action of the bar operation on the matrix (IV.9). Remember that the

bar operation consists of a complex conjugation and a subsequent twist-restoring rotation as

in (IV.5). Acting on (IV.9), we have

(
0 1

ε 0

)(
G− G̃−

εG̃+ G+

)(
ū1 εu2

ū2 u1

)
=

(
εG̃+ G+

εG− εG̃−

)(
0 ε

1 0

)(
u1 εū2

u2 ū1

)(
0 1

ε 0

)

=

(
G+ G̃+

εG̃− G−

)(
ū2 u1

εū1 u2

)
.

(IV.12)

For the first equality, we have used (IV.5) and (IV.10). An additional right-multiplication by

( 0 ε
1 0 ) transforms the “u-matrix” on the right hand side back to its original form (cf. (IV.10)),

thereby taking ελ̄−1 to λ. This mediates a map between operators defined for |λ| < ∞ and

operators defined for |λ| > 0.

The action of the bar operation on G̃+(ελ̄−1) etc. can be determined from the fact that

ελ̄−1 = u1/u2 and therefore

(
G+(ελ̄−1) G̃+(ελ̄−1)

εG̃−(ελ̄−1) G−(ελ̄−1)

)
=

(
G+ G̃+

εG̃− G−

)(
ū2 u1

εū1 u2

)(
ū−1

2 0

0 u−1
2

)
. (IV.13)

Multiplying the complex conjugate matrices from the left by a twist-restoring rotation, we obtain

(
0 1

ε 0

)(
G− G̃−

εG̃+ G+

)(
u2 ū1

εu1 ū2

)(
u−1

2 0

0 ū−1
2

)
=

(
λ̄−1G+(λ) λ−1G̃+(λ)

ελ̄−1G̃−(λ) λ−1G−(λ)

)
. (IV.14)

So, “barring” accompanied by the transformation λ 7→ ελ̄−1 maps G̃+(λ) (defined for |λ| <∞)

to 1
λ G̃

+(λ) (defined for |λ| > 0),

G̃+(ελ̄−1) =
1

λ
G̃+(λ) . (IV.15)

This result will be needed in section IV.3.

For the selection of an N=2 superconformal subalgebra within the N=4 algebra, there is

obviously the freedom to choose a linear combination of the J ’s as the U(1) current. All choices

are equivalent through current SU(2)- (or SU(1, 1)-) rotations (acting on the matrices in (IV.4)

from the left). In addition, there is the freedom to choose which linear combination of the

positively charged G’s will be called G+ [38]. This freedom is parametrized by another SU(2)

(or SU(1, 1)), cf. (IV.9). Since in our case only the ratio of the prefactors of G+ and G̃+ is

important, we arrive at generators (IV.11) parametrized by λ ∈ CP 1. So, we obtain a one-

parameter family of N=2 superconformal algebras embedded into a small N=4 algebra [28, 29].
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IV.3 Integrability of Berkovits’ string field theory

In this section we show that the equation of motion (III.79) of Berkovits’ string field theory can

be obtained as the compatibility condition of some linear equations. In other words, solutions

of these linear equations exist iff eq. (III.79) is satisfied. For N=2 strings the integrability

of Berkovits’ string field theory was shown in [107], and here we extend this analysis to the

N=1 case. The payoff for considering such (integrable) models is the availability of powerful

techniques for the construction of solutions to the equation(s) of motion.

Sphere CCCP 1. Let us consider the Riemann sphere S2 ∼= CP 1 ∼= C ∪ {∞} and cover it by two

coordinate patches

CP 1 = U+∪U− , U+ := {λ ∈ C : |λ| < 1+ε} , U− := {λ ∈ C∪{∞} : |λ| > (1+ε)−1} (IV.16)

for some ε > 0 with the overlap

U+ ∩ U− ⊃ S1 = {λ ∈ C : |λ| = 1} . (IV.17)

We will consider λ ∈ U+ and λ̃ ∈ U− as local complex coordinates on CP 1 with λ̃ = 1
λ in U+∩U−.

Recall that λ ∈ CP 1 was introduced in the previous section as a parameter for a family of N=2

subalgebras in the twisted small N=4 superconformal algebra with fermionic currents (IV.11).

Linear system. Taking the string field3 Φ from (III.77) and operators G̃+(λ) from (IV.11), we

introduce the following equation:

(G̃+ + λG+ + λA)Ψ = 0 , (IV.18)

where A := e−ΦG+eΦ and Ψ is a matrix-valued string field depending not only on X and ψ

but also (meromorphically) on the auxiliary parameter λ ∈ CP 1. As in eq. (III.71) the action

of G+ and G̃+ on Ψ implies a contour integral of the (fermionic) current around Ψ. Note that

G+ and G̃+ are Grassmann-odd and therefore (G+)2 = (G̃+)2 = G+G̃+ + G̃+G+ = 0.

If eΦ is given, then (IV.18) is an equation for the field Ψ. Solutions Ψ of this linear equation

exist if the term in brackets squares to zero, i. e.

(
G̃+ + λG+ + λA

)2
= 0 ⇔ λ2(G+ +A)2 + λG̃+A = 0 (IV.19)

3In this chapter, we will consider string fields as functionals of Xµ(σ, τ), ψµ(σ, τ), b(σ, τ), c(σ, τ), β(σ, τ),

and γ(σ, τ) for N=1 and of Za(σ, τ), Z̄ ā(σ, τ), ψ+a(σ, τ), and ψ−ā(σ, τ) for N=2. We will often suppress the

τ -dependence of the world-sheet fields and only indicate their σ-dependence when necessary. As an abbreviation

for this list of world-sheet fields, we use X and ψ and thus denote a string field Φ by Φ[X,ψ] (in the N=2 case,

one may think of X as the real and imaginary parts of Z, similarly with ψ). Throughout this chapter, all string

fields are understood to be multiplied via Witten’s star product. – In our subsequent discussion, some string fields

(such as T kTk) have to be invertible. Without further specification we assume that all string fields are units of

the star algebra (which is, e. g., manifest for string fields of the form eΦ). It should, however, be noted that the

star algebra is not an integral domain (which can be seen from the fact that it contains non-trivial projectors).
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for any λ. Here we have used the Grassmann nature of G+ and G̃+ . So, we obtain two equations:

G+A+A2 = 0 , (IV.20)

G̃+A = 0 . (IV.21)

The first of these two equations is trivial since G+ acts as a derivation on the algebra of string

fields. The second equation coincides with the equation of motion (III.79).

Chiral string fields. As a special case of eq. (IV.18) one can consider the equations
(
G̃+ + λG+ + λA

)
Ψ+ = 0 , (IV.22)

( 1

λ
G̃+ +G+ +A

)
Ψ− = 0 , (IV.23)

where Ψ+ and Ψ− are invertible matrix-valued string fields depending holomorphically on λ and
1
λ , respectively.

Considering λ → 0 in (IV.22), we see that G̃+Ψ+(λ = 0) = 0, and one may choose Ψ+(λ =

0) = I. Analogously, taking λ→ ∞ in (IV.23), we obtain

A = e−ΦG+eΦ = Ψ−(λ = ∞)G+Ψ−1
− (λ = ∞) , (IV.24)

and one may choose Ψ−(λ = ∞) = e−Φ as a solution thereof. From this we derive the asymptotic

behavior of our fields:

Ψ+ = I +O(λ) for λ→ 0 , (IV.25)

Ψ− = e−Φ +O(λ−1) for λ→ ∞ . (IV.26)

We see that Ψ− may be considered as a λ-augmented solution of eq. (III.79), and all information

about eΦ is contained in Ψ±.

Suppose that we find solutions Ψ+ and Ψ− of eqs. (IV.22) and (IV.23) for a given eΦ. Then

one can introduce the matrix-valued string field

Υ+− := Ψ−1
+ Ψ− (IV.27)

defined for λ ∈ U+ ∩ U−. From eqs. (IV.22) and (IV.23) it follows that

G̃+(λ)Υ+− ≡ (G̃+ + λG+)Υ+− = 0 . (IV.28)

String fields annihilated by the operator G̃+(λ) will be called chiral.

Reality properties. W. r. t. the bar operation from section IV.2, the string field Φ is real4,

i. e. [19] (cf. eq. (III.34))

Φ[X(π − σ), ψ(π − σ)] = Φ[X(σ), ψ(σ)] . (IV.29)

4The world-sheet parity transformation σ 7→ π−σ is accompanied by a transposition of Chan-Paton matrices.

Note that hermitian generators are used for the u(n) Chan-Paton algebra. Therefore, eΦ does not necessarily

take values in U(n).
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To see the behavior of the extended string field under the bar operation we scrutinize eqs. (IV.22)

and (IV.23). We already saw that G̃+(ελ̄−1) = 1
λG̃

+ +G+, and by definition, A = (G+eΦ)e−Φ =

ε(G̃+eΦ)e−Φ under σ 7→ π − σ. Then mapping λ 7→ ελ̄−1 and σ 7→ π − σ in (IV.22) and

conjugating, we obtain

( 1

λ
G̃+ +G+

)
Ψ

−1
+ − 1

λ
(G̃+eΦ)e−ΦΨ

−1
+ = 0 . (IV.30)

This coincides with eq. (IV.23) if we set

(
Ψ+

)−1
[
X(π − σ), ψ(π − σ),

ε

λ̄

]
= eΦΨ−

[
X(σ), ψ(σ), λ

]
. (IV.31)

Then from (IV.31) it follows that

Υ+− = Ψ−e
ΦΨ− (IV.32)

is real, i. e. Υ+−
[
X(π − σ), ψ(π − σ), ελ̄−1

]
= Υ+−

[
X(σ), ψ(σ), λ

]
.

Gauge freedom. Recall that gauge transformations of the fields eΦ and A have the form

eΦ 7→ eΦ
′

= BeΦC with G+B = 0 , G̃+C = 0 ,

A 7→ A′ = C−1AC + C−1G+C .
(IV.33)

Under C-transformations the fields Ψ± transform as

Ψ± 7→ Ψ′
± = C−1Ψ± . (IV.34)

It is easy to see that the chiral string field Υ+− is invariant under the transformations (IV.34).

On the other hand, the field A will remain unchanged after the transformations

Ψ+ 7→ Ψ+h+ , Ψ− 7→ Ψ−h− , (IV.35)

where h+ and h− are chiral string fields depending holomorphically on λ and 1
λ , respectively. In

the special case when h+ and h− are independent of λ the transformations (IV.35) with h+ = I,

h− =: B−1 induce the B-transformations eΦ 7→ BeΦ in (IV.33). In general, eqs. (IV.35) induce

the transformations

Υ+− 7→ h−1
+ Υ+−h− (IV.36)

on the space of solutions to eq. (IV.28), and any two solutions differing by a transforma-

tion (IV.36) are considered to be equivalent.

Splitting. Up to now, we discussed how to find Υ+− for a given A = e−ΦG+eΦ. Consider

now the converse situation. Suppose we found a string field Υ+− which depends analytically on

λ ∈ S1 and satisfies the linear equation (IV.28). Being real-analytic Υ+− can be extended to

a string field depending holomorphically on λ ∈ U+ ∩ U−. Then we can formulate an operator

version of the Riemann-Hilbert problem: Split Υ+− = Ψ−1
+ Ψ− into matrix-valued string fields

Ψ± depending on λ ∈ U+ ∩ U− such that Ψ+ can be extended to a regular (i. e. holomorphic
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in λ and invertible) matrix-valued function on U+ and that Ψ− can be extended to a regular

matrix-valued function on U−. From eq. (IV.28) it then follows that

Ψ+(G̃+ + λG+)Ψ−1
+ = Ψ−(G̃+ + λG+)Ψ−1

− = Ã+ λA , (IV.37)

where Ã and A are some λ-independent string fields. The last equality follows from expanding

Ψ+ and Ψ− into power series in λ and λ−1, respectively. If we now choose a function Ψ+(λ)

such that5 Ψ+(λ = 0) = I then Ã = 0 and

A = Ψ−(λ = ∞)G+Ψ−1
− (λ = ∞) ⇒ Ψ−(λ = ∞) =: e−Φ . (IV.38)

In the general case, we have

e−Φ = Ψ−1
+ (λ = 0)Ψ−(λ = ∞) . (IV.39)

So, starting from Υ+− we have constructed a solution eΦ of eq. (III.79).

Suppose that we know a splitting for a given Υ+− and have determined a correspondence

Υ+− ↔ eΦ. Then for any matrix-valued chiral string field Υ̃+− from a small enough neighbor-

hood of Υ+− (i. e. Υ̃+− is close to Υ+− in some norm) there exists a splitting Υ̃+− = Ψ̃−1
+ Ψ̃−

due to general deformation theory arguments. Namely, there are no obstructions to a de-

formation of a trivial holomorphic vector bundle E over CP 1 since its infinitesimal deforma-

tions are parametrized by the group H1(CP 1, E). This cohomology group is trivial because of

H1(CP 1,O) = 0 where O is the sheaf of holomorphic functions on CP 1. But from the corre-

spondence Υ̃+− ↔ e
eΦ it follows that any solution e

eΦ from an open neighborhood (in the solution

space) of a given solution eΦ can be obtained from a “free” chiral string field Υ̃+−. In this sense,

Berkovits’ string field theory is an integrable theory; in other words, it is completely solvable.

To sum up, we have described a one-to-one correspondence between the gauge equivalence

classes of solutions to the nonlinear equation of motion (III.79) and equivalence classes of solu-

tions (chiral string fields) to the auxiliary linear equation (IV.28). The next step is to show how

this correspondence helps to solve (III.79).

IV.4 Exact solutions by the splitting approach

Atiyah-Ward ansatz. As described in the previous section, solutions of the string field equa-

tions (III.79) can be obtained by splitting a given matrix-valued chiral string functional Υ+−.

In general, splitting is a difficult problem but for a large class of special cases it can be achieved.

The well known cases (for n = 2) are described e. g. by the infinite hierarchy of Atiyah-Ward

ansätze [10] generating instantons in four-dimensional SU(2) Yang-Mills theory. These ansätze

are easily generalized [110] to the case of noncommutative instantons, the first examples of which

were given in [136]. Here, we consider the first Atiyah-Ward ansatz from the above-mentioned

hierarchy [10] and discuss its generalization to the string field case.

5This can always be achieved by redefining Ψ+(λ) 7→ Ψ−1
+ (λ = 0)Ψ+(λ), Ψ−(λ−1) 7→ Ψ−1

+ (λ = 0)Ψ−(λ−1).
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We start from the 2 × 2 matrix

Υ+− =

(
ρ λ−1I
ελI 0

)
, (IV.40)

where ρ is a real and chiral string field, i. e.

ρ
[
X,ψ,

ε

λ̄

]
= ρ[X,ψ, λ] (IV.41)

and

(G̃+ + λG+)ρ = 0 . (IV.42)

We assume that ρ depends on λ ∈ S1 analytically and therefore can be extended holomorphically

in λ to an open neighborhood U+ ∩ U− of S1 in CP 1. From (IV.41) and (IV.42) it follows that

the matrix Υ+− in (IV.40) is chiral and real.

Splitting. We now expand ρ into a Laurent series in λ,

ρ =
∞∑

k=−∞
λkρk = ρ− + ρ0 + ρ+ , ρ− =

∑

k<0

λkρk , ρ+ =
∑

k>0

λkρk , (IV.43)

and obtain from (IV.42) for

ρk =

∮
dλ

2πi
λ−k−1ρ (IV.44)

the recursion relations

G̃+ρk+1 = −G+ρk . (IV.45)

Using (IV.43), one easily checks that

Υ+− = Ψ̂−1
+ Ψ̂− (IV.46)

where

Ψ̂−1
+ =

(
ρ0 + ρ+ −λ−1ρ+

ελI −εI

)
ρ
−1/2
0 , Ψ̂− = ρ

−1/2
0

(
ρ0 + ρ− λ−1I
λρ− I

)
. (IV.47)

However, the asymptotic value of Ψ̂+,

Ψ̂+(λ = 0) = ρ
−1/2
0

(
I −ελ−1ρ+

λI −ε(ρ0 + ρ+)

)∣∣∣∣∣
λ=0

= ρ
−1/2
0

(
I −ερ1

0 −ερ0

)
6= 12I , (IV.48)

shows that this splitting corresponds to a more general gauge than the one used in eq. (III.79)

(see [26, 107] for a discussion of this gauge in the case of N=2 strings).

To obtain the asymptotic behavior (IV.25) one may exploit the “gauge freedom” contained

in (IV.46) and introduce the fields

Ψ+ := Ψ̂−1
+ (λ = 0)Ψ̂+ and Ψ− := Ψ̂−1

+ (λ = 0)Ψ̂− (IV.49)
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which by definition have the right asymptotic behavior. These functionals yield the same chiral

string field since

Υ+− = Ψ̂−1
+ Ψ̂− = Ψ̂−1

+ Ψ̂+(λ = 0)Ψ̂−1
+ (λ = 0)Ψ̂− = Ψ−1

+ Ψ− . (IV.50)

Explicit solutions. Now, from

Ψ− =

(
ρ0 + ρ− − λρ1ρ

−1
0 ρ− λ−1I − ρ1ρ

−1
0

−ελρ−1
0 ρ− −ερ−1

0

)
(IV.51)

we can determine a solution of (III.79) with the help of (IV.26),

e−Φ = Ψ−(λ = ∞) =

(
ρ0 − ρ1ρ

−1
0 ρ−1 −ρ1ρ

−1
0

−ερ−1
0 ρ−1 −ερ−1

0

)
. (IV.52)

A direct calculation shows that this satisfies eq. (III.79) iff ρ0, ρ1 and ρ−1 satisfy the linear

recursion relations (IV.45) for k = −1, 0. Moreover, substituting (IV.52) into (III.79) yields

G̃+G+ρ0 = 0 (IV.53)

which is the analogue of the Laplace equation in the case of instantons in four-dimensional

Euclidean space [110, 136]. Note that (IV.53) is just one of an infinite set of equations,

G̃+G+ρk = 0 ∀k ∈ Z , (IV.54)

which can easily be obtained from the recursion relations (IV.45). So, the ansatz (IV.40) for

Υ+− and its splitting reduce the nonlinear string field theory equation (III.79) to the linear

equations (IV.45) which are equivalent to the chirality equation (IV.42).6

Finally, notice that in the case of N=1 strings, one may take |ρ0〉 = ξ0|V 〉 where |V 〉 is a state

in the “small” Hilbert space [52]. Then eq. (IV.53) reduces to Qη0(ξ0|V 〉) = Q(−ξ0η0|V 〉+|V 〉) =

0, i. e.

Q|V 〉 = 0 and η0|V 〉 = 0 . (IV.55)

This fits in nicely with the discussion in [21].

IV.5 Exact solutions via dressing of a seed solution

Extended solutions. In the previous section we discussed solutions Ψ+ and Ψ− of the linear

system which are holomorphic in λ and 1
λ , respectively. Now we are interested in those solutions

Ψ of eq. (IV.18) which are holomorphic in open neighborhoods of both λ = 0 and λ = ∞ and

6Considering (IV.52) as an ansatz, we can obviously relax the chirality condition (IV.42) and substitute it with

the demand that (IV.45) is satisfied for k = −1, 0. For trivial G+- and eG+-cohomology, however, this is again

equivalent to eq. (IV.45) for all k ∈ Z.
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therefore have poles7 at finite points λ = µk, k = 1, . . . ,m. Again we see from (IV.18) that

Ψ(λ = ∞) coincides with e−Φ up to a gauge transformation and we fix the gauge by putting

Ψ−1(λ = ∞) = eΦ . (IV.56)

The string field Ψ[X,ψ, λ] will be called the extended solution corresponding to eΦ. Recall that

eΦ is a solution of (III.79) where Φ carries u(n) Chan-Paton labels.

The reality properties of extended solutions are derived in very much the same way as

the reality properties of Ψ+ and Ψ−. Namely, one can easily show that if Ψ[X,ψ, λ] satisfies

eq. (IV.18) then e−ΦΨ
−1 [

X,ψ, ελ̄−1
]

satisfies the same equation and therefore

Ψ
[
X(π − σ, τ), ψ(π − σ, τ),

ε

λ̄

]
=
[
Ψ [X(σ, τ), ψ(σ, τ), λ]

]−1
e−Φ , (IV.57)

or equivalently,

Ψ
[
X(σ, τ), ψ(σ, τ), λ

]
Ψ
[
X(π − σ, τ), ψ(π − σ, τ),

ε

λ̄

]
= e−Φ . (IV.58)

Using (IV.58), one can rewrite eq. (IV.18) in the form

[(
1

λ
G̃+ +G+

)
Ψ [X,ψ, λ]

]
Ψ
[
X,ψ,

ε

λ̄

]
= −Ae−Φ . (IV.59)

Notice that Ψ satisfies the same equation as Ψ−, and therefore8 Ξ := Ψ−1Ψ− is annihilated by

the operator G̃+(λ). Thus,

Ψ− = ΨΞ ⇒ Ψ−1
+ = Ψ−e

Φ = Ξ ΨeΦ (IV.60)

for some matrix-valued chiral string field Ξ. Moreover, from (IV.57) and (IV.60) we see that

Υ+− = Ψ−1
+ Ψ− = Ξ ΨeΦΨΞ = Ξ Ξ . (IV.61)

This establishes a connection with the discussion in section IV.4.

Dressing. The dressing method is a recursive procedure generating a new extended solution

from an old one. A solution eΦ of the equation of motion (III.79) is obtained from the extended

solution via (IV.56). Namely, let us suppose that we have constructed an extended seed solution

Ψ0 by solving the linear equation (IV.18) for a given (seed) solution eΦ0 of eq. (III.79). Then

one can look for a new extended solution in the form

Ψ1 = χ1Ψ0 with χ1 = I +
λα1

λ− µ1
P1 , (IV.62)

where α1 and µ1 are complex constants and the matrix-valued string field P1[X,ψ] is independent

of λ. The transformation Ψ0 7→ Ψ1 is called dressing. Below, we will show explicitly how one

7By Liouville’s theorem there are no globally defined holomorphic functions on CP 1 besides constants.
8This is not to be confused with the sliver introduced in section III.5.1.
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can determine Ψ1 by exploiting the pole structure (in λ) of eq. (IV.59) together with (IV.62).

An m-fold repetition of this procedure yields as the new extended solution

Ψm =
m∏

j=1

(
I +

λαj
λ− µj

Pj

)
Ψ0 . (IV.63)

We will choose below the vacuum seed solution Φ0 = 0,Ψ0 = I.

First-order pole ansatz for Ψ. Choose the complex constants µj in (IV.63) such that they

are mutually different. Then using a decomposition into partial fractions, one can rewrite the

multiplicative ansatz (IV.63) in the additive form

Ψm =
(
I + λ

m∑

q=1

Rq
λ− µq

)
Ψ0 , (IV.64)

where the matrix-valued string fields Rq[X,ψ] are some combinations of (products of) Pj . As

already mentioned we now choose the vacuum Φ0 = 0,Ψ0 = I and consider Rq of the form [193,

50, 183, 108]

Rq = −
m∑

p=1

µqTpΓ
pqT q , (IV.65)

where Tp[X,ψ] are taken to be the n×r matrices for some r ≥ 1 and Γpq[X,ψ] are r×r matrices

for which an explicit expression is going to be determined below.

From (IV.64) and (IV.65) it follows that

Ψ = I − λ

m∑

p,q=1

µq
Tp Γpq T q
λ− µq

, (IV.66)

Ψ = I +
m∑

k,`=1

ε T`Γ
k`
T k

λ− ε/µ̄`
. (IV.67)

Here we omitted the index m in Ψm and Ψm. In accordance with (IV.58) we have to choose Γpq

in such a form that ΨΨ will be independent of λ. A splitting into partial fractions yields

ΨΨ = I +
∑

k,`

εT`Γ
k`
T k

λ− ε/µ̄`
− λ

∑

p,q

µq
TpΓ

pqT q
λ− µq

−
∑

p,q,k,`

(λ− µq + µq)εµq
TpΓ

pqT q T`Γ
k`
T k

(λ− µq)(λ− ε/µ̄`)

= I +
∑

k,`

εT`Γ
k`
T k

λ− ε/µ̄`
− λ

∑

p,q

µq
TpΓ

pqT q
λ− µq

−
∑

p,q,k,`

εµqTpΓ
pqT q T`Γ

k`
T k

λ− ε/µ̄`

−
∑

p,q,k,`

εµ2
qµ̄`

µqµ̄` − ε

(
1

λ− µq
− 1

λ− ε/µ̄`

)
TpΓ

pqT q T`Γ
k`
T k .

(IV.68)

This motivates us to define

Γ̃q` := −εµq
T qT`

µqµ̄` − ε
, (IV.69)
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and, as the matrix Γ = (Γpq) has not yet been specified, to take it to be inverse to Γ̃ = (Γ̃q`),

m∑

q=1

ΓpqΓ̃q` = δp`I . (IV.70)

Upon insertion of eqs. (IV.69) and (IV.70) into (IV.68) nearly all terms cancel each other and

we are left with

ΨΨ = I −
∑

p,q

µqTpΓ
pqT q = e−Φ . (IV.71)

This expression is independent of λ and, therefore, we can identify it with e−Φ as in (IV.58).

We see that for the above choice of the Γ-matrices the reality condition is satisfied, and the

solution eΦ of eq. (III.79) is parametrized by the matrix-valued string fields Tk, k = 1, . . . ,m.

Note that (IV.71) coincides with ΨΨ|λ=∞ = Ψ|λ=∞.

Pole structure. We are now going to exploit eq. (IV.59) in combination with the ansatz (IV.66).

First, it is easy to show that

Ψ|λ= ε
µ̄k

Tk =

(
I +

∑

p,q

εµq
TpΓ

pqT q
µqµ̄k − ε

)
Tk = Tk −

∑

p,q

TpΓ
pqΓ̃qk = 0 (IV.72)

and

Tk Ψ|λ=µk
= T k

(
I +

∑

p,q

ε
µ̄qTqΓpq T p
µkµ̄q − ε

)
= T k −

∑

p,q

Γ̃qkΓ
pq
T p = 0 . (IV.73)

Second, note that the right hand side of eq. (IV.59) is independent of λ and therefore the poles

on the left hand side have to be removable. Putting to zero the corresponding residue at λ = ε
µ̄k

we obtain, due to (IV.72),

Ψ|λ= ε
µ̄k

{
(εµ̄kG̃

+ +G+)Tk

}∑

`

Γ
`k
T ` = 0 . (IV.74)

Obviously, a sufficient condition for a solution is
(
G̃+ +

ε

µ̄k
G+

)
Tk = TkZk , (IV.75)

with an operator Zk having the same Grassmann content as the operator G̃+
(
ε
µ̄k

)
. Nilpotency

of G̃+
(
ε
µ̄k

)
implies that9

G̃+
(
ε
µ̄k

)
Zk = ZkZk . (IV.76)

In the same way, the residue at λ = µk should vanish,

(∑

p

µkTpΓ
pk

){(
1

µk
G̃+ +G+

)
T k

}
Ψ|λ=µk

= 0

⇒ (G̃+ + µkG
+)T k = Z ′

kT k , (IV.77)

9This is suggestive of another “dressing-like” procedure: Start from some trivial Zk (e. g., constant or nilpotent)

and determine Tk from eq. (IV.75). Then define Z ′
k := Tk and plug this into eq. (IV.75) to get a new T ′

k and so

on. (I am grateful to Prof. Lechtenfeld for this suggestion.)
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with another Grassmann-odd operator Z ′
k. Comparing eqs. (IV.75) and (IV.77), we learn that

Zk T k = εZ ′
kT k ⇒ Z ′

k = εZk . (IV.78)

In other words, eqs. (IV.77) are not independent but follow from eq. (IV.75) by conjugation.

For every collection {Tk, k = 1, . . . ,m} of solutions to eqs. (IV.75) we can determine a solution

to eq. (III.79) from eqs. (IV.69)–(IV.71).

Projectors. Now let us consider the simplest case m = 1. Then, eq. (IV.66) simplifies to

Ψ = I +
λε(|µ|2 − ε)

λ− µ
P , (IV.79)

where P := T (TT )−1T is a hermitian projector, P 2 = P = P , parametrized by an n× r matrix

T . In the abelian (n = 1) case r is the rank of the projector P in the Hilbert space H of string

field theory. In the nonabelian (n > 1) case r ≤ n can be identified with the rank of the projector

in the u(n) factor of the u(n) ⊗H Hilbert space.

From the extended solution Ψ we obtain the solution

e−Φ = Ψ|λ=∞ = I − (1 − ε|µ|2)P (IV.80)

of the equation of motion (III.79). Thus, the simplest solutions are parametrized by projectors

in the string field theory Hilbert space.

To conclude this section, we summarize the main idea of the dressing approach as follows:

One has to extend the string field theory Hilbert space u(n)⊗H to u(n)⊗H⊗C[λ, λ−1], there

solve the equations on the extended string field Φ[X,ψ, λ] such that Ψ−1[X,ψ, λ] = eΦ[X,ψ,λ],

and then project back onto u(n) ⊗ H. In this way, one obtains a solution eΦ = Ψ−1(λ = ∞)

of the initial equation of motion (III.79), where the extended solution Ψ is parametrized by

Tk[X,ψ, λ = εµ̄−1
k ] with k = 1, . . . ,m.

IV.6 Solutions of the linear equations

G̃+(λ)-exact solutions. In the previous section we have shown that in the dressing ap-

proach solving the nonlinear string field equation (III.79) reduces to solving the linear equa-

tions (IV.75). Solutions Tk, k = 1, . . . ,m, of these equations parametrize solutions eΦ of

eq. (III.79) (cf. (IV.71)). Obviously, for obtaining some examples of solutions it is sufficient

to find solutions for Zk = 0,

G̃+(εµ̄−1
k )Tk ≡

(
G̃+ +

ε

µ̄k
G+

)
Tk = 0 . (IV.81)

Here, we present two classes of solutions to these equations.

Recall that (G̃+(λ))2 = 0 and, therefore,

Tk = G̃+(εµ̄−1
k )Wk (IV.82)
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is a solution of eq. (IV.81) for any string field Wk ∈Mat(n × r,C) ⊗H. These solutions are in

general nontrivial because they are not annihilated by G+ and G̃+ separately.

This discussion is valid for both N=1 strings (ε = −1) and N=2 strings (ε = 1). Sub-

stituting (IV.82) into (IV.71), we get explicit solutions eΦ. In the N=1 case, other obvious

solutions are all BRST-closed vertex operators Tk in the small Hilbert space of [52] as they

satisfy [Q,Tk] = 0 and [η0, Tk] = 0 separately.

For the case of N=2 strings we will discuss two classes of explicit solutions of (IV.75) (for

both Zk = 0 and Zk 6= 0) which in general do not have the form (IV.82).

N=2 string solutions for Zk = 0. The realization of G+ and G̃+ in terms of the constituents

of an N=2 matter multiplet is presented in eqs. (B.35) and (C.3). Using this realization, one

can factorize the “G-matrix” in (IV.4) according to

(
G+ G̃+

G̃− G−

)
=

(
ψ+1 −ψ+0

−ψ−0̄ ψ−1̄

)(
∂Z̄ 1̄ ∂Z0

∂Z̄ 0̄ ∂Z1

)
. (IV.83)

As in section IV.2, this matrix transforms under current SU(1, 1)-rotations acting from the

left (note that the world-sheet fermions are charged under the current group) and under the

additional SU(1, 1)-rotations as in (IV.9) acting from the right. The latter transform (IV.83) to

(
G+(u) G̃+(u)

G̃−(u) G−(u)

)
=

(
ψ+1 −ψ+0

−ψ−0̄ ψ−1̄

)(
∂Z̄ 1̄ ∂Z0

∂Z̄ 0̄ ∂Z1

)(
u1 ū2

u2 ū1

)
. (IV.84)

By right-multiplication with
(
u−1
1 0

0 ū−1
1

)
as in (IV.11) we can express everything in terms of λ,

(
G+(λ) G̃+(λ)

G̃−(λ) G−(λ)

)
=

(
ψ+1 −ψ+0

−ψ−0̄ ψ−1̄

)(
∂Z̄ 1̄(λ) ∂Z0(λ)

∂Z̄ 0̄(λ) ∂Z1(λ)

)
, (IV.85)

where the coordinates

Z0(z, z̄, λ) := Z0(z, z̄) + λZ̄ 1̄(z, z̄) and Z1(z, z̄, λ) := Z1(z, z̄) + λZ̄ 0̄(z, z̄) (IV.86)

define a new complex structure on the target space C
1,1 [28, 106]. From eq. (B.34a) we derive

that Za(z, z̄, λ) are null coordinates:

Za(z, z̄, λ)Zb(w,w, λ) ∼ 0 . (IV.87)

The derivation of the string field algebra in (IV.75) can be written entirely in terms of Za(z, z̄, λ),

G̃+(z, λ) = G̃+(z) + λG+(z) = −εabψ+a(z) ∂Zb(z, λ) , (IV.88)

and from (IV.87) it follows that

∮
dw

2πi
G̃+(w, λ)Zc(z, z̄, λ) = 0 (IV.89)
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with the integration contour running around z. This equation implies that every analytic func-

tional Tk of the new spacetime coordinates Z0(z, z̄, µ̄−1
k ) and Z1(z, z̄, µ̄−1

k ) solves (IV.81). Indeed,

it can be easily checked that for any integer p, q, we have

∮
dw

2πi
G̃+

(
w,

1

µ̄k

)
: (Z0)p(Z1)q(z, z̄, µ̄−1

k ) : = 0 . (IV.90)

The functional Tk may also depend on arbitrary derivatives ∂`Za(z, µ̄−1
k ) (note that, for ` = 1,

∂Za(z, µ̄−1
k ) is G̃+(µ̄−1

k )-exact). Due to (B.34b), it may furthermore depend on ψ+a(z) or its

derivatives. Given some analytic functionals Tk[Z
a(z, z̄, µ̄−1

k ), ∂`Za(z, µ̄−1
k ), ψ+a(z), ∂pψ+a(z)]

with values in Mat(n× r,C) for k = 1, . . . ,m, we can determine a solution of (III.79) with the

help of eq. (IV.71). Note that we do not claim to have found all solutions.

N=2 string solutions for Zk 6= 0. We restrict ourselves to the abelian case n = 1. In

addition to the coordinates Za(z, z̄, µ̄−1
k ) from above, we introduce vertex operators

Y 0(z, z̄, µ̄−1
k ) := 1

2

(
Z̄ 1̄(z, z̄) − 1

µ̄k
Z0(z, z̄)

)
and Y 1(z, z̄, µ̄−1

k ) := 1
2

(
Z̄ 0̄(z, z̄) − 1

µ̄k
Z1(z, z̄)

)
.

(IV.91)

They satisfy the following OPE with Za(z, z̄, µ̄−1
k ):

Za(z, z̄, µ̄−1
k )Y b(w,w, µ̄−1

k ) ∼ −2εab ln |z − w|2 . (IV.92)

From this, we immediately derive

∮
dw

2πi
G̃+

(
w,

1

µ̄k

)
: eα

k
aY

a

(z, z̄, µ̄−1
k ) : = −2 : eα

k
aY

a

(z, z̄, µ̄−1
k ) : αkbψ

+b(z) , (IV.93)

where αka are complex constants. We see that for k = 1, . . . ,m,

Tk = : eα
k
aY

a

(z, z̄, µ̄−1
k ) : (IV.94)

satisfy eq. (IV.75) and therefore produce a solution of (III.79) via (IV.71).
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Chapter V

Vacuum superstring field theory

V.1 Introduction

In the last chapter, it was shown that Berkovits’ string field theory is integrable in the sense

that its equation of motion derives from a system of linear equations. In this chapter, we will

see that this idea carries over to cubic superstring field theory and the vacuum versions of both

superstring field theories. This chapter is based largely upon [III, IV].

In analogy with gauge field theory, we write down a linear system for cubic as well as

nonpolynomial open superstring field theory (in the NS sector) by introducing an auxiliary

string field Ψ(λ) depending on a “spectral” parameter λ ∈ CP 1. A single-pole ansatz for Ψ(λ)

leads to a hermitian projector, whose building block is merely subject to a linear equation

which can be solved in generality. From it all string fields can be reconstructed. Employing

dressing transformations analogous to those in noncommutative field theories [108], we shift the

background to the tachyon vacuum and propose a linear equation which governs classical vacuum

superstring field theory. As a simple example, the supersliver [126, 6] is based on a trivial solution

to this equation. Finally, we propose a strategy to reconstruct classical superstring fields from

their building blocks in more detail by taking advantage of the Moyal formulation for superstring

field theory.

V.2 Zero-curvature and linear equations for string fields

In cubic open bosonic string field theory [186], the equation of motion for the string field A has

a zero-curvature form,

F (A) = QA+A2 = (Q+A)2 = 0 , (V.1)

where Q denotes the BRST operator (a nilpotent derivation) and Witten’s star product is

implicit in all string field products. For any string field A one may look for solutions of the

linear equation

(Q+A) Ψ = 0 (V.2)
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on an auxiliary string field Ψ possibly carrying some internal indices. Equation (V.1) is the

compatibility condition of the linear equation (V.2). If we let Ψ take values in the Chan-Paton

group, then from (V.2) one may obtain solutions of (V.1) via A = ΨQΨ−1 which are, however,

pure gauge configurations. The cohomology of Q captures all other solutions.

This situation may change when a parametric dependence is introduced: Let (Q,A,Ψ) →
(Q(λ), A(λ),Ψ(λ)) with λ ∈ CP 1. We demand Q(λ) and A(λ) to be linear in λ,1

A(λ) = a+ λA and Q(λ) = η0 + λQ with η2
0 = Q2 = η0Q+Qη0 = 0 . (V.3)

In other words, we extend the string configuration space, thereby adding a second string field a

and a second BRST-like operator η0. This case arises for a one-parameter family of N=2 super-

conformal algebras embedded into a small N=4 algebra and their string field realizations [28, 29].

The extended zero-curvature condition

F
(
A(λ)

)
=
(
Q(λ) +A(λ)

)2
=
(
η0a+ a2

)
+ λ
(
η0A+Qa+ {A, a}

)
+ λ2

(
QA+A2

)
= 0 (V.4)

is the compatibility condition of the associated linear equation

(
Q(λ) +A(λ)

)
Ψ(λ) = 0 . (V.5)

If Ψ(λ) is group-valued, it follows that a+λA = Ψ(λ)
(
η0 +λQ

)
Ψ(λ)−1. As was shown in [107]

and in the last chapter, this equation yields nontrivial solutions to the equations of motion for

a and A.

Exploiting the gauge freedom in (V.4) allows one to gauge away a. Then, the ensuing

equations,

η0A = 0 and QA+A2 = 0 (V.6)

are the (NS-sector) equations of motion in Witten’s cubic open superstring field theory in the zero

picture [150, 9]: Bosonizing the fermionic reparametrization ghosts as in eq. (B.18), γ = ηeφ

and β = e−φ∂ξ, we take η0 above to be the zero mode of η, which indeed is nilpotent and

anticommutes with Q. Then, the first equation in (V.6) simply denies any ξ0 content in A

(originally defined in the large Hilbert space), and the second one is the field equation in the

small Hilbert space.2 Of course, all fields are now NS-sector open superstring fields.

The system (V.6) may be reduced further.3 Since both η0 and Q have trivial cohomology in

the large Hilbert space H (cf. appendix D), we may either solve the first equation or alternatively

the second one:

A = η0 Υ =⇒ Qη0 Υ + (η0 Υ)2 = 0 , (V.7)

1Formally A(λ) is a section of the bundle O(1) over CP 1 with values in the string field Hilbert space H, and

Q(λ) can be considered as an End(H)-valued section of this bundle.
2Strictly speaking, it is even better than the field equation for the modified cubic superstring field theory which

inludes an unwanted Y−2. – Note that Q and η0 act via (anti)commutator on world-sheet fields, or, equivalently,

via contour integration of the respective currents.
3For gauge theory the following goes back to Leznov and to Yang, respectively.
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A = e−ΦQeΦ =⇒ η0

(
e−ΦQeΦ

)
= 0 . (V.8)

Despite appearance, A is not pure gauge (in the small Hilbert space) unless η0e
Φ = 0 [140].

The second equation in (V.8) is precisely Berkovits’ nonpolynomial equation of motion for the

NS string field Φ.

All nonlinear superstring field equations, i. e. (V.6), (V.7) and (V.8), follow from the zero-

curvature equation (V.4) (with a=0). Because both Q and η0 have empty cohomology in the

large Hilbert space we can in fact construct all solutions from the associated linear system

(
Q+ 1

λη0 +A
)
Ψ(λ) = 0 (V.9)

for the string fields A and Ψ(λ).4 This equation is the key to generating classical superstring

configurations.

Of course, one always has the “trivial” λ-independent solution

Ψ = e−Λ with ∂λΛ = 0 =⇒ η0 e
−Λ = 0 = (Q+A) e−Λ (V.10)

which leads to a pure gauge configuration A0 = e−ΛQeΛ. Since CP 1 is compact, the λ depen-

dence of a nontrivial Ψ(λ) cannot be holomorphic. Hence, we consider a meromorphic Ψ(λ). If

we require its regularity for λ→ 0 and for λ→ ∞, then one may choose such a gauge that the

asymptotics will relate Ψ with the prepotentials Φ and Υ as follows:5

Ψ(λ) −→




I − λΥ +O(λ2) for λ→ 0

e−Φ +O( 1
λ) for λ→ ∞

. (V.11)

Clearly, e−Φ, Υ, and A = Ψ(∞)QΨ(∞)−1 = −η0 ∂λΨ(0) are computable once an appropriate

Ψ(λ) has been found.

V.3 Single-pole ansatz and solutions

Let us employ the linear system (V.9) to solve Witten’s or Berkovits’ superstring field equations

(in the NS sector). We briefly recall the procedure from chapter IV. In contrast to the non-

parametric linear equation (V.2), the λ dependence of (V.9) imposes two constraints on Ψ(λ).

Firstly, isolating A in (V.9),

A = Ψ(λ)
(
Q+ 1

λη0

)
Ψ(λ)−1 , (V.12)

we notice that the right-hand side must not depend on λ, hence all its poles must have vanishing

residues. Although the above expression is pure gauge from the point of view of the λ-extended

string configuration space, the string field A is nontrivial on the small Hilbert space. A second

condition follows from the reality of the string fields. To formulate it one must extend star

conjugation (III.30) to an antilinear mapping (which we denote by a bar) on the CP 1 family of

4Formally Ψ(λ) can be seen as an element of the space H⊗ C[λ, λ−1] carrying Chan-Paton labels.
5I denotes the identity string field.
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N=2 superconformal algebras where it sends Q 7→ −η0 and η0 7→ Q but λ 7→ λ̄ (cf. eq. (IV.6)).

It can be shown that the reality condition requires

e−Φ = Ψ(λ) Ψ(−1/λ̄) . (V.13)

Again, the poles on the right-hand side must be removable.

The simplest nontrivial solution displays a single pole in λ,6

Ψ(λ) = I − λ(1+µµ̄)

λ− µ
P , (V.14)

whose location µ is a moduli parameter. P is a λ-independent string field to be determined.

Let us investigate for our ansatz (V.14) the consequences of (V.13) and (V.12), in that order.

The residues of the λ-poles of ΨΨ at λ=µ and λ= − 1/µ̄ are proportional to P (I−P ) and

(I−P )P (for µ ∈ CP 1 arbitrary and fixed), respectively, implying the projector property

P 2 = P = P . (V.15)

This is achieved by parametrizing

P = T (TT )−1T (V.16)

with some string field T . Similarly, the absence of poles in (V.12) yields

P
(
µQ+ η0

)
P = 0 and (I − P )

(
Q− µ̄η0

)
P = 0 (V.17)

which are conjugate to one another. Since PT = T by construction these equations are satisfied

if
(
Q− µ̄η0

)
T = 0 . (V.18)

It is important to note that T is only subject to a linear equation and otherwise uncon-

strained. An obvious solution to (V.18) is

T =
(
Q− µ̄η0

)
W (V.19)

for an arbitrary string field W . Every choice of W or solution to (V.18) yields a classical

Berkovits string field,

e−Φ = I − (1+µµ̄)P , eΦ = I − (1+ 1
µµ̄)P (V.20)

and, from λ→ 0,7

A = −1+µµ̄
µ η0 P . (V.21)

6For more general multi-pole ansätze see chapter IV.
7An alternative representation is A = − 1+µµ̄

µµ̄

ˆ
QP − PZ(I−P )

˜
where Z is defined by

`
Q− µ̄η0

´
T =: T Z.
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V.4 Shifting the background

The form of the string field equations does not depend on the choice of background (termed

“vacuum”). However, the explicit structure of the kinetic operator Q is determined by this

choice. For the open-string vacuum,

A0 = 0 , P0 = 0 , Ψ0 = I , (V.22)

one has the familiar BRST operator, Q = QB. Now, one may think of the solution (Ψ, A)

to (V.9) as the result of a dressing map 8

Ψ0 = I 7−→ Ψ = Ψ(λ) Ψ0 and A0 = 0 7−→ A = AdΨA0 (V.23)

applied to a “seed solution” (Ψ0, A0). This process can be iterated. Since any two classical su-

perstring configurations are related by such a dressing transformation, a shift of the background

(Ψ0, A0) to a new reference configuration (Ψ1, A1) is exactly of the same nature. The difference

is only semantical.

We study the result of shifting the background by a dressing transformation according to

background:

deviation:

Ψ0=I Ψ1−−−−→ Ψ1yΨ

yΨ′

Ψ −−−−→ Ψ̃

A0=0
AdΨ1−−−−→ A1yAdΨ

yAdΨ′

A0+A −−−−→ Ã

(V.24)

where horizontal arrows represent the dressing map to the new background and vertical ar-

rows turn on a deviation via dressing. Composing the two dressing transformations, the linear

equation becomes (Ψ̃ = Ψ′Ψ1 and Ã = A1+A
′)

0 =
(
Q+ 1

λη0 + Ã
)
Ψ̃

=
[
QΨ′ +A1Ψ

′ − Ψ′A1 + 1
λη0Ψ

′ + (Ã−A1)Ψ
′]Ψ1

=
[(
Q′ + 1

λη0 +A′)Ψ′]Ψ1 , (V.25)

where we used (Q + 1
λη0)Ψ1 = −A1Ψ1 and defined Q′Ψ′ := QΨ′ + A1Ψ

′ − Ψ′A1. Hence,

measuring our string fields from the new vacuum A1, the relevant linear system,

(
Q′ + 1

λη0 +A′)Ψ′ = 0 , (V.26)

has the same form as the original (V.9), but Q has changed into Q′. For the nonlinear string field

equations the corresponding form invariance has been observed in [126], a fact almost trivial in

our framework.

8We abbreviate AdΨA0 := Ψ(Q+ 1
λ
η0 +A0)Ψ

−1.
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V.5 Tachyon vacuum superstring fields

Of special interest is the form of the theory around the tachyonic vacuum (for a general discus-

sion, we refer to section III.4). Deviations from the tachyon vacuum are governed by (V.26),

and all equations pertaining to the open-string vacuum simply carry over (with primes added).

However, this is not the whole story. As discussed in section III.4.2, a new kinetic operator built

entirely from ghosts can be “derived” via a redefinition of the new (tachyon vacuum) superstring

fields,

A′ 7→ Uεr A
′ =: Â and Ψ′ 7→ Uεr Ψ′ =: Ψ̂ , (V.27)

such that

Q′ 7→ Uεr Q
′ U−1

εr
=: Q̂ (V.28)

yields the proper zero-cohomology “vacuum” kinetic operator. The field redefinition (V.27) is

induced by a world-sheet reparametrization which is singular for εr → 0. As η has conformal

spin one, its zero mode η0 is inert under the reparametrization. From now on, a hat indicates

the presence of internal 2×2 Chan-Paton matrices distinguishing the GSO(±) sectors, e. g.,

Â = A+ ⊗ σ3 + A− ⊗ iσ2 (odd ghost number) , (V.29)

Φ̂ = Φ+ ⊗ 1 + Φ− ⊗ σ1 (even ghost number) . (V.30)

The kinetic operator of this vacuum superstring field theory (VSSFT) is conjectured to have

the form III.105 [2, 141],

Q̂ = Qodd ⊗ σ3 + Qeven ⊗ iσ2 , (V.31)

where the subscript refers to the Grassmann parity and

Qodd = 1
2iε2r

[
c(i) − c(−i)

]
+ 1

2

∮
dz
2πibγ

2(z) , (V.32)

Qeven = 1
2iεr

[
γ(i) − γ(−i)

]
Π+ + 1

2iεr

[
γ(i) + γ(−i)

]
Π− (V.33)

with projectors Π+ and Π− onto the GSO(+) and GSO(−) sectors, respectively. These terms

prevail in the limit εr → 0. Consequently, the linear system for VSSFT reads

(
Q̂ + 1

λ η̂0 + Â
)
Ψ̂(λ) = 0 , (V.34)

where η̂0 = η0⊗σ3 and Ψ̂ = Ψ+⊗1+Ψ−⊗σ1. Again, solutions to Berkovits’ VSSFT or to the

cubic VSSFT are obtained from (V.20) or (V.21) by firstly solving the linear equation (V.18)

after replacing Q→ Q̂ and secondly composing the projector via (V.16).

It is usually assumed that the D-brane solutions of VSSFT factorize into a ghost and a

matter part, Â = Âg ⊗Am. Then, the cubic VSSFT equation,

Q̂ Â + Â2 = 0 with η̂0 Â = 0 , (V.35)

splits into

A2
m = Am and Q̂ Âg + Â2

g = 0 with η̂0 Âg = 0 (V.36)
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which turns Am into a projector. Within our single-pole ansatz (V.14), the full Â is already

proportional to a projector P̂ = P̂g ⊗ Pm, hence we must simply factorize (V.21) and have

Am = Pm and Âg = −1+µµ̄
µ η̂0 P̂g with P2

m = Pm and P̂2
g = P̂g . (V.37)

Since Q̂ is pure ghost the projector equation (V.17) factorizes, and (V.36) reduces to (V.37)

plus

(Îg − P̂g)
(
Q̂ − µ̄η̂0

)
P̂g = 0 , (V.38)

which is solved by (we omit hats over Tg)

P̂g = Tg (T gTg)−1T g and
(
Q̂ − µ̄η̂0

)
Tg = 0 . (V.39)

In the nonpolynomial formulation, a different ansatz, Φ̂ = Φ̂g ⊗ Φm with Φ2
m = Φm, was

advocated by Mariño and Schiappa [126]. It allows one to factorize Berkovits’ equation (V.8)

since one gets

e±
bΦ = Î −

(
Îg − e±

bΦg
)
⊗ Φm = Îg ⊗

(
Im−Φm

)
+ e±

bΦg ⊗ Φm . (V.40)

However, comparison with our solution (V.20),

e±
bΦ = Î −

(
1+(µµ̄)∓1

)
P̂g ⊗ Pm , (V.41)

implies Φm = Pm and Φ̂g = −(lnµµ̄+ iπ) P̂g which is not compatible with the reality of Φ.

Hence, our ansatz differs from the one of [126].

A more important distinction of our single-pole ansatz (V.14) from previous work is visible

from (V.39): The cohomology problem for Tg is not based on Q̂ but on Q̂−µ̄η̂0. Motivated by the

freedom to choose a particular embedding of an N=2 superconformal algebra into a small N=4

superconformal algebra, such a coboundary operator (in the case of the open string vacuum)

was proposed initially in [28, 29].

V.6 Ghost picture modification

As it stands, the linear equations (V.34) and (V.39) face a problem due to the ghost picture

degeneracy of the NSR superstring. If our string fields are to carry a definite picture charge,

they must reside in the zero-picture sector. Since η0 lowers the picture charge by one unit, the

above-mentioned coboundary operator is not homogeneous in picture. Therefore, from (V.34)

or (V.39) one concludes that any string field, including Â and Tg, must in general be an infinite

sum over all picture sectors. Obviously, any such field may be expanded into a formal series

Tg =
∑

n∈Z
(−µ̄)−nTn, where Tn carries picture number n. From (V.39) we then obtain the

recursion relations η̂0Tn+1 = −Q̂Tn. If we want to maintain Berkovits’ original proposal that

all string fields have picture number zero (e. g., Tn6=0 = 0) then only the trivial solutions of (V.34)

with Q̂T0 = 0 = η̂0T0 emerge. Clearly, this implies Q̂ P̂g = 0 = η̂0 P̂g and therefore Â = 0.

The supersliver [126, 6] is gauge equivalent to this vacuum [140].
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To obtain nontrivial solutions, we have two possibilites: Either we admit string fields inhomo-

geneous in picture, or we modify our linear equation. In the following we shall pursue the second

option and restrict all string fields to the zero picture. The obvious cure then is to introduce a

picture-raising multiplier, η̂0 → X̂ (i)η̂0. This is admissible as long as X̂ (i) commutes with both

η̂0 and Q̂ and can be pulled through the star product.9 We propose to take X̂ (i) := {Q̂, ξ̂(i)},
i. e. the picture-raising operator X̂ of VSSFT evaluated at the string midpoint.10 With this

modification, our master linear equation becomes

(
Q̂ + 1

λ X̂ (i)η̂0 + Â
)
Ψ̂(λ) = 0 , (V.42)

and all subsequent equations continue to hold after the obvious insertions of X̂ (i). In particular,

the ghost picture modification changes Berkovits’ string field equation (V.8) to

X̂ (i) η̂0

(
e−

bΦQ̂ e
bΦ) = 0 . (V.43)

Any solution Â in the form of (V.21) will, however, automatically be annihilated by η̂0 so that

it fulfills also Berkovits’ equation of motion without X̂ (i). Note that the action will remain

unchanged; we use X̂ (i) only as a means to solve our linear equations.

V.7 Towards explicit solutions

In order to extract the physical properties of classical VSSFT configurations, e. g., a D-brane

interpretation or the role of our moduli parameter µ, it is desirable to construct solutions to

the field equations in a more explicit manner. In keeping with the paradigm of matter-ghost

factorization (see (V.36)) we are asked to solve eq. (V.39) with X̂ (i) inserted. Because Q̂ −
µ̄X̂ (i)η̂0 can be “inverted” the general solution of VSSFT may be constructed from

Tg =
(
Q̂ − µ̄X̂ (i)η̂0

)
Ŵg (V.44)

for an arbitrary ghost string field Ŵg.

For cubic VSSFT, the εr expansion of [141] can be reproduced in this framework.11 In

particular, since the leading term of Q̂−µ̄X̂ (i)η̂0 is identical to QGRSZ⊗σ3 [59], the lowest

order in εr involves only the “natural” Grassmann assignments of all quantities.

Certain special solutions can be seen directly. When µ̄ = 1, for instance, one may employ

the picture-lowering operator Ŷ (i) to write Tg = Ŷ (i) ξ̂(i) Ξ̂g where Q̂ Ξ̂g = 0 = η̂0 Ξ̂g. At

leading order in εr we may identify Ξ̂g with the ghost supersliver Ξg⊗1.

9Any midpoint insertion of conformal spin zero commutes with Witten’s star product, as can be seen by its

definition in terms of correlation functions of the disk.
10Due to the explicit form (V.31)–(V.33) of the kinetic operator, bX (i) consists of Grassmann-even and -odd

parts. The Grassmann-even part simply reads −∂(bηe2φ)(i) − b∂ηe2φ(i); the Grassmann-odd part has to be

regularized due to the pole in the OPE of γ with ξ. Around the open-string vacuum, we may simply take

X (i) = {Q, ξ(i)}. Note that bX is not simply X with internal Chan-Paton labels.
11Our Qodd in (V.32) has a different εr-dependence (coinciding with that of [2]), but this is irrelevant here.
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In any case, the main difficulty arises in the composition of P̂g from a given Tg since Witten’s

star product is implicit in (V.39). In order to circumvent this technical obstacle we propose to

make use of the (discrete [13] or continuous [45]) Moyal formulation of Witten’s star product.

In such a situation, the Moyal-Weyl map can be inferred to encode the non(anti)commutativity

into Heisenberg or Clifford algebras, which are represented in auxiliary Fock spaces.12 The

advantage of this (auxiliary) operator formulation is its calculational ease. As an example, the

basic projector for a single Moyal pair can be expressed as follows:

[a, a†] = 1 =⇒ |0〉〈0| =: e−a
†a : = 1 − a†(aa†)−1a , (V.45)

{c, c†} = 1 =⇒ |0〉〈0| =: e−c
†c : = 1 − c†c = 1 − c†(c c†)−1c , (V.46)

displaying a simple connection between the Gaussian form and the “fractional” form (cf. (V.16))

of a projector. Of course, for the application to VSSFT infinite tensor products of Heisenberg

and Clifford algebras have to be considered [13, 45, 4, 49]. However, (V.45) and (V.46) suggest

the possibility to take Tg not to be an operator but a state |Tg〉 in the auxiliary Fock space.

This would be in tune with the construction of noncommutative abelian solitons [108]. Finally,

a direct comparison with results in the conventional string oscillator basis requires the reverse

basis transformation to be applied to the string field configurations constructed in the Moyal

basis.

In closing, we should like to stress that we have reduced the problem of solving the su-

perstring field equations (in cubic or nonpolynomial form) to the easier task of considering a

linear equation, whose solution T then serves as a building block for the string field config-

uration. Although demonstrated here with the simplest (single-pole) ansatz for the auxiliary

string field Ψ(λ), this strategy generalizes to the universal (multi-pole) case. Projectors emerge

naturally only in the single-pole setup while T (rather a collection of such) continues to play the

decisive role. The formalism is ideally suited to handle the superposition of solitonic objects in

integrable systems. We therefore expect it to yield multi-brane configurations automatically.

12Such Fock spaces are not to be confused with the string oscillator Fock space.



88 Vacuum superstring field theory



Chapter VI

The fermionic vertex in N=2 string field theory

VI.1 Introduction

In the last two chapters solution-generating techniques known from integrable field theories were

transferred to (open as well as vacuum) superstring field theories. This reduces the search for

solutions to the string field equations to finding string fields T which satisfy a certain linear

equation. Equivalently, one can try to solve a (generalization of a) linear differential equation

on a hermitean projector string field P . The computation of P from T requires the evaluation

of star products which is facilitated considerably by going to the Moyal basis in the star algebra,

cf. appendix E.1. Alternatively, one can try to classify all projectors in the star algebra and

test which of them lead to solutions of the string field equations. Again, this task is rather

straightforward in the Moyal basis. Such a basis is known for all N=1 world-sheet fields.

String field theory for N=2 strings shares many characteristic properties with nonpolynomial

superstring field theory around the open string vacuum, see chapter III. One of these properties

is the mixing of world-sheet fields by the kinetic operators – this was a major problem for solving

the string field equations in open string field theory and ultimately lead to the proposal of vacuum

string field theory. In the latter, one gets rid of this complication by considering a singular world-

sheet reparametrization which changes the BRST charge into a pure ghost operator. However,

this cannot be the final answer; it should be possible to find solutions with the full kinetic

operator, i. e., without a singular world-sheet reparametrization. Due to this problem, it seems

worthwhile to take an apparent sidestep and to consider alternative approaches to this problem.

In order to study the properties of string field theory solutions with such mixing properties,

one may resort to string field theory for N=2 strings. The main advantage of this model is its

simplicity; no ghosts are needed in addition to the matter fields. The equality of the structure

and the simplicity of the field realization of the BRST-like operators turn this theory into a

viable candidate for studying the intricacies which general solutions to the equation of motion

for nonpolynomial string field theory bring about.

Hence, we are finally interested in the classification of the projectors in the 1-string Fock

space of N=2 string field theory. Whereas the Moyal formulation for the bosonic sector carries
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over unchanged from bosonic string field theory, such a formulation is hitherto unknown for

the world-sheet fermions in string field theory for self-dual strings. Namely, after twisting

(see section III.3.3), these fermions are conformal fields of weights 0 and 1, respectively (and

therefore different from world-sheet fermions in superstring (field) theories). It is the goal of

this chapter to commence the study of the fermionic world-sheet sector. Since the ψ± system

is a first order system with weights 0 and 1, the results of this chapter find their application

in the computation of ηξ vertices in superstring field theories1, Berkovits’ hybrid formalism for

covariant N=1 superstring field theory (see, e. g., [28, 19, 12]), and the twisted bc system which

is reviewed in section III.5.3.

In this chapter we construct the vertices needed to formulate N=2 string field theory in

the twisted fermionic sector from scratch using the operator language. In particular we pay

attention to the anomaly of the U(1) current J contained in the N=2 superconformal algebra.

Together with the overlap equations for the zero-modes this fixes the choice of vacuum for the

vertices when one avoids midpoint insertions. For the identity vertex and the reflector the

construction is accomplished using δ-function overlap conditions. The reflector is shown to

implement BPZ conjugation as a graded antihomomorphism on the algebra of modes. To obtain

the explicit form of the interaction vertex we have to invoke the Neumann function method.

Supplemented with the above-mentioned conditions on the vacuum the vertex is fixed. The

Neumann coefficients are expressed in terms of coefficients of generating functions. We find an

intimate relationship between the coefficients for the fermions and those for bosons allowing us

to employ known identities from the boson Neumann matrices. Resorting to this relationship

we show that the contribution of the (0, 1) system to the reparametrization anomaly cancels this

of two real bosons. This is in accordance with their contribution c = −2 to the central charge.

Finally, we explicitly check that the overlap equations for the interaction vertex are fulfilled.

The chapter is organized as follows. In the next section we review the construction of

bosonic matter vertices. In section VI.3 the identity vertex for the world-sheet fermions is

constructed. As a starting point δ-function overlap conditions for arbitrary N -string vertices

are considered. After deducing the form of the identity vertex from the corresponding overlap

equations its symmetries are discussed in detail with particular emphasis on the anomaly of the

U(1) current. In section VI.4 the 2-string vertex is considered. Starting from general N -string

overlap equations formulated in terms of ZN -Fourier-transformed fields we discuss constraints

on the vacua arising from the zero-mode overlap conditions. Avoiding midpoint insertions these

conditions fix the vacuum on which the N -string vertex is built. The reflector is constructed as

an application of the tools described in this section. A detailed discussion of BPZ conjugation

as implemented by the 2-vertex completes this section. We define BPZ conjugation and its

inverse via the the bra-reflector and the ket-reflector, respectively, and their compatibility is

shown. The interaction vertex is constructed in section VI.5. The Neumann coefficients of the

1Recall that the ηξ system plays a distinguished role in these theories. Cubic superstring field theory features

insertions of picture changing operators whilst nonpolynomial superstring field theory is formulated in large

Hilbert space.
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3-string vertex are expressed in terms of generating functions constructed out of the conformal

transformations which map unit upper half-disks into the scattering geometry of the vertex.

The so obtained Neumann matrices are shown to be closely related to the Neumann matrices for

bosons. Therefore, identities for the bosonic Neumann matrices entail corresponding identities

for the fermionic ones. In this way, the anomaly of midpoint preserving reparametrizations

is shown to cancel the contribution of two real bosons, which is in agreement with conformal

field theory arguments. Finally, the overlap conditions for the interaction vertex are checked

explicitly. Parts of this calculation are relegated into appendix F where also formulas for the

bosonic vertices and Neumann coefficients are collected. This chapter concludes with a short

summary and a discussion of possible applications and further developments. The main reference

for this chapter is [V].

VI.2 Bosonic matter vertices

In this section, we briefly review the computation of the matter vertices in the operator for-

mulation. The graphical prescription for the product between string fields [186] was originally

translated into an operator formalism based on a 3-vertex 〈V3| in [66, 67, 159] for bosonic strings

and in [68] for superstrings. These results relied on the Neumann function method, which was

developed before in the framework of light-cone string field theory in [122] and presented in the

light of conformal field theory in [114, 115].

The results for real bosons in this section are valid for all string field theories based on

the Witten star product, in particular also for the real and imaginary parts of the spacetime

coordinate fields Za in N=2 string field theory. They will turn out to be useful in section VI.5.

We will (very briefly) expound upon overlap equations and their solution via the Neumann

function method. Additional details will be explained in the subsequent and more involved case

of the fermionic vertex in N=2 string field theory. The discussion is restricted to one real boson

X and can be easily generalized to D spacetime dimensions.

Integration vertex. The integration vertex glues the left and right halves of one string,

resulting in a number. As explained in section III.2, it may be expressed as an element 〈I| ∈ H∗.

This dual vector is determined by the overlap equation

〈I|X(σ) = 〈I|X(π − σ) (VI.1)

at the interaction time τ = 0. Assuming the mode expansion

X(σ) = x0 +
√

2

∞∑

m=1

xn cosnσ with xn = i

√
α′

n (an − a†n) , x0 = i

√
α′

2 (a0 − a†0) , (VI.2)

a squeezed state ansatz for the integration vertex leads to the solution

〈I| = 〈0| exp
[
− 1

2

∞∑

k,l≥0

akCkl ak

]
(VI.3)
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z2z1 z3
Q Q Q

A B B C C A

Figure VI.1. The three local half-disks are parametrized by zr coordinates.

Local operators are inserted at the midpoints; at the interaction time τr = 0 (i. e.,

|zr| = 1), the three half-disks are glued together.

with Ckl = (−1)kδkl. The bra-vacuum used in this expression is the oscillator vacuum which is

annihilated by all a†k.

Reflector state. The reflector state glues two strings with opposite orientation together; it is

implemented by an element 〈V2| ∈ H∗ ⊗H∗. The overlap equations

〈V2|X(1)(σ) = 〈V2|X(2)(π − σ) (VI.4)

for σ ∈ [0, π] are solved by

〈V2| = 1〈0| ⊗ 2〈0| exp
[
− 1

2

∞∑

k,l≥0

a
(1)
k Ckl a

(2)
l

]
(VI.5)

with the same matrix C. This state is Grassmann-even and implements BPZ conjugation.

Interaction vertex. The overlap conditions for 〈I| and 〈V2| can be solved directly. This will no

longer be possible for all higher vertices, although one can decouple the equations by making N

Fourier transforms. Inserting an appropriate ansatz for the N -vertex into the overlap equations,

the infinite-dimensional matrices appearing in this ansatz have to be inverted, which is in general

very complicated. Therefore one resorts to the Neumann function method; it relies on the fact

that the contraction of 〈VN | with N 1-string states |Φ〉r can be interpreted as a correlation

function of the corresponding vertex operators Φr in the N -string scattering geometry. For our

purposes, we restrict to N = 3 and Φr = i∂X(r) for r = 1, 2, Φ3 = (i. e. the unit operator).

To this aim, consider the vertex operator Φr inserted at zr = 0 on its local upper half-disk

{|zr| ≤ 1, Im zr ≥ 0}. The Witten-vertex can then be implemented as follows: The local upper

half-disks are mapped via

hr(zr) =
1 + izr
1 − izr

(VI.6)

to vertical half-disks in the hr(zr)-plane, lying in the region Re hr(zr) ≥ 0, |hr(zr)| ≤ 1. The

puncture z = 0 is mapped to h(0) = 1 at the curved side of the half-disk. This half-disk is now

squeezed by the map wr = (hr(zr))
2/3 into a wedge of 120◦; the three wedges are subsequently

rotated by phase factors and glued along their radial edges to a full unit disk. This exactly
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QA

C

B

Figure VI.2. The maps fr glue the three local half-disks together into the scat-

tering geometry, a three-punctured unit disk.

matches the definition of the interaction vertex by Witten: The left half of the first string is

glued to the right half of the second string2. Hence, the full map implementing the 3-vertex

scattering geometry is

fr(z) = −eiπ 1−2r
3 f(z) , f(z) =

(
1 + iz

1 − iz

)2/3

. (VI.7)

If we now insert the mode expansion (cf. appendix B.1)

i∂X(z) =

√
α′

2

∑

n

αn
zn+1

(VI.8)

and the ansatz

〈V3| = 1〈0| ⊗ 2〈0| ⊗ 3〈0| exp
(
− 1

2

∑

r,s

∑

n,m≥1

a(r)
m V rs

mna
(s)
n

)
(VI.9)

into the expression

M = 〈V3|i∂X(r)(z) i∂X(s)(w)|0〉1 ⊗ |0〉2 ⊗ |0〉3 , (VI.10)

we obtain

M = −α
′

2

∑

m,n≥1

zm−1wn−1√mnV rs
mn . (VI.11)

Note that this expression holds barring complications from the zero-modes. Reinterpreting M

as a correlation function on the disk,

M =
〈
fr ◦

(
i∂X(0)

)
fs ◦

(
i∂X(0)

)〉
, (VI.12)

this yields

−α
′

2

∑

m,n

zm−1wn−1√mnV rs
mn =

α′

2

f ′r(z)fs(w)

(fr(z) − fs(w))2
. (VI.13)

The Neumann coefficients are therefore given by

V rs
mn = − 1√

mn

∮
dz

2πi

∮
dw

2πi

1

znwm
f ′r(w)f ′s(z)

(fs(z) − fr(w))2
(VI.14)

2For the nomenclature, cf. section III.5.1.
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in momentum basis. The contour integrals can be evaluated to give the values in appendix F.1.

Overlap equations. It is a technically demanding but feasible task to show that the Neumann

coefficients given in appendix F.1 satisfy the overlap equations

X(r)(σ) = X(r−1)(π − σ) for 0 ≤ σ ≤ π

2
, r cyclic , (VI.15)

for the 3-string vertex. The latter are most conveniently formulated in terms of Z3-transformed

string oscillators A
(a)
k (cf. section (VI.4), not to be confused with the coefficients Ak defined

in (F.3)):

A
(a)
k =

1√
3

3∑

r=1

a
(r)
k e

2πia
3 . (VI.16)

Using

〈V3| = 〈0| exp
[
−

∞∑

k,l≥0

(
1
2A

(3)
k CklA

(3)
l +A

(1)
k UklA

(2)
l

)]
, (VI.17)

as an ansatz for the vertex, we can write the overlap equations in matrix form as

( − Y )E( + U) = 0 , ( + Y )E−1( − U) = 0 . (VI.18)

Here the matrix E has components Emn = δm,0δn,0 +
√

2
nδmn , and the matrix Y is given by the

Fourier components of the operator

Y (σ, σ′) = (−1
2 +

√
3

2 [i Θ(π2 −σ)− i Θ(σ− π
2 )])δ(σ+σ′−π) =: −1

2C(σ, σ′)+
√

3
2 X(σ, σ′) . (VI.19)

Rewritten in terms of the original one-string oscillators the vertex takes the form3

〈V3| = 〈0| exp
[
− 1

2

∑

r,s

∞∑

m,n≥0

a(r)
n V ′rs

nm a
(s)
m

]
(VI.20)

with the matrices (r = 1, 2, 3)

V ′r r
nm = 1

3(C + U + Ū) , (VI.21a)

V ′r r+1
nm = 1

3(C − 1
2(U + Ū) +

√
3

2 (U − Ū)) , (VI.21b)

V ′r r−1
nm = 1

3(C − 1
2(U + Ū) −

√
3

2 (U − Ū)) . (VI.21c)

After transformation to momentum basis, these matrices can be identified with the Neumann

coefficients.

Reparametrization anomaly. Reparametrizations generated by Kn = Ln − (−1)nL−n leave

the string midpoint invariant and are classical symmetries of string field theory. However, these

reparametrizations are potentially anomalous. This usually puts a restriction on the critical

dimension; the anomaly of the full system (e. g., ghost plus matter) has to vanish. In the

3We stick to the notation of [152] and denote the matrices in the oscillator basis with a prime while those in

momentum basis are unprimed.
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operator formulation the anomaly arises from operator orderings when two creation operators

act on the vertex, i.e., from terms such as

−(−1)m 1
2

m−1∑

k=1

√
k(m− k)a†k · a

†
m−k (VI.22)

contained in Km. In [67] it was shown that a single boson contributes (see also [162])

〈V3|(K(1)
2n +K

(2)
2n +K

(3)
2n ) = − 5

18n(−1)n〈V3| . (VI.23)

However, due to a nontrivial relation between the Neumann coefficients for the bosons and the

fermions in the twisted theory we will be able show that in the full theory this anomaly is

canceled in any even dimension. To this end let us derive the contribution of D bosons to the

anomaly in terms of the Neumann coefficients. The application of
∑3

t=1K
(t)
m to the 3-vertex

yields

3∑

t=1

〈V3|K(t)
m = −(−1)m

1

2

3∑

t=1

m−1∑

k=1

√
k(m− k)〈V3|a†(t)k · a†(t)m−k + . . .

= (−1)m
1

4

3∑

t=1

m−1∑

k=1

√
k(m− k)〈V3|a(r)

n (V rt
nk + V tr

kn) · a
†(t)
m−k + . . .

= (−1)m
D

4

3∑

t=1

m−1∑

k=1

√
k(m− k)〈V3|(V tt

m−k,k + V tt
k,m−k)

= (−1)m
3D

2

m−1∑

k=1

√
k(m− k)V tt

k,m−k〈V3| .

(VI.24)

VI.3 Fermionic identity vertex

The identity vertex defines the integration in eq. (III.77) in the N=2 case; it is an element

|I〉 of the one-string Hilbert space corresponding to the identity string field I. The identity

vertex glues the left and right halves of a string together; therefore it can be defined via the

corresponding overlap equations.

Overlap equations. In general, the overlap equations for an N -vertex can be determined from

conformal field theory arguments [68]: On the world-sheet of the r-th string (r ∈ {1, . . . , N}),
a strip, we introduce coordinates ξr = τr + iσr. The strip can be mapped into an upper half-

disk with coordinates zr = eξr ; the upper half-disks are then glued together in the scattering

geometry in a such a way that

zrzr−1 = −1 for |zr| = 1 , Re(zr) ≥ 0 , i. e., 0 ≤ σr ≤
π

2
, τr = 0 . (VI.25)

This is achieved by the conformal map

fr(z) = −eiπ 1−2r
N f(z) , f(z) =

(
1 + iz

1 − iz

)2/N

, (VI.26)
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where the phases have been chosen so as to give a symmetric configuration when mapping back

to the upper half-plane.

A primary field φ(r) of conformal weight h in the boundary conformal field theory on the

strip is glued according to

φ(r)(σr, τr = 0) ≡ φ(r)(ξr) = zhr φ
(r)(zr)

=

(
zr
∂zr−1

∂zr

)h
φ(r−1)(zr−1) =

(
zr
zr−1

∂zr−1

∂zr

)h
φ(r−1)(σr−1, τr−1 = 0)

= (−1)hφ(r−1)(π − σr, τr = 0) for 0 ≤ σr ≤
π

2
.

(VI.27)

In the last two lines we have used (VI.25). This equality is required to hold when applied

to the N -string vertex 〈VN |. If we insert the open string mode expansion for τ = 0, φ(r)(σ) =

φ
(r)
0 +

∑
n(φ

(r)
n +φ

(r)
−n) cosnσ, we obtain a condition on the modes. ForN ≤ 2, the above condition

extends to 0 ≤ σ ≤ π, so that one can take advantage of the orthogonality of the cosine to obtain

the diagonal condition 〈VN |
(
φ

(r)
n +φ

(r)
−n+(−1)n+h(φ

(r−1)
−n +φ

(r−1)
n )

)
= 0. Instead, we will impose

the stricter condition 〈VN |
(
φ

(r)
n + (−1)n+hφ

(r−1)
−n )

)
= 0. For N > 2, the overlap equations in

general mix all modes.

Construction of the identity vertex. For the ψ±-system4, we demand the stricter conditions

〈I|
[
ψ+
n − (−1)nψ+

−n
]

= 0 =⇒ 〈I|ψ+(σ) = 〈I|ψ+(π − σ) , (VI.28a)

〈I|
[
ψ−
n + (−1)nψ−

−n
]

= 0 =⇒ 〈I|ψ−(σ) = −〈I|ψ−(π − σ) , (VI.28b)

from which the gluing conditions (VI.27) follow. The conditions on 〈I| are compatible since

{ψ+
n − (−1)nψ+

−n, ψ
−
n + (−1)nψ−

−n} = 0. The obvious solution to eqs. (VI.28) reads

〈I| = 〈↓|
∞∏

n=1

1

2

[
ψ+
n − (−1)nψ+

−n
][

(−1)nψ−
n + ψ−

−n
]

= 〈↓|
∞∏

n=1

[
1 +

1

2
(−1)nψ+

n ψ
−
n

]
= 〈↓| exp

[1
2

∞∑

n=1

(−1)nψ+
n ψ

−
n

]
,

(VI.29)

where the SL(2,R)-invariant vacuum 〈↓| is annihilated by ψ−
0 .

Symmetries of the vertex. Applying the gluing conditions (VI.27) to the complex spin 1

fields

∂Z = −i

√
α′

2

∑

k

αkz
−k−1 and ∂Z̄ = −i

√
α′

2

∑

k

ᾱkz
−k−1 , (VI.30)

we obtain

〈I|(αn + (−1)nα−n) = 0 , 〈I|(ᾱn + (−1)nᾱ−n) = 0 . (VI.31)

4Here and in the following, we sometimes omit spacetime labels on ψ± if the statement refers to any of the

ψ+a, ψ−ā.
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Together with (VI.28), this entails that the gluing conditions for the BRST-like spin 1 currents

G+ and G̃+,

〈I|(G+
n + (−1)nG+

−n) = 0 , 〈I|(G̃+
n + (−1)nG̃+

−n) = 0 , (VI.32)

are satisfied. In general, anomalies can only appear if the current contains pairs of conjugate

oscillators. Thus, it is clear that the spin 2 currents J−−, G− and G̃− are anomaly-free, just like

the spin 0 current J++. More interesting are the (twisted) energy-momentum tensor and the

U(1) current J (when treated as primary fields).

The modes of the twisted energy-momentum tensor T ′ = − 1
α′∂Z · ∂Z̄ − 1

2ψ
− · ∂ψ+ can be

written as

Ln =
1

2

∑

m

αm · ᾱn−m +
1

2

∑

m

(n−m)ψ−
m · ψ+

n−m . (VI.33)

According to (VI.27) these modes have to satisfy5

〈I|Kn = 〈I|(Ln − (−1)nL−n) = 0 (VI.34)

for the vertex to be reparametrization invariant. In D/2 complex dimensions, the contribution

of the bosons to the left hand side of eq. (VI.34) can be easily shown to be

〈I|Kα
2n =

D

2
(−1)nn 〈I| , (VI.35)

which is canceled by the fermionic contribution

〈I|Kψ
2n = −D

2
(−1)nn 〈I| . (VI.36)

These contributions arise from terms 1
2αn · ᾱn and n

2ψ
−
n ·ψ+

n in Kα
2n and Kψ

2n, respectively. Due

to the absence of such terms, the K2n+1 are automatically anomaly-free.

Before considering the U(1) current J , let us first recall the discussion in [186] of the U(1)-

anomaly of N -vertices: If the current J is bosonized as J = ∂ϕ, the action for this boson

reads

S = − 1

4π

∫
dz ∧ dz̄ (∂ϕ∂̄ϕ+QRϕ) . (VI.37)

The operator product expansion is that of the free action, ϕ(z)ϕ(w) ∼ ln(z − w). The energy-

momentum tensor for ϕ reads Tϕ = 1
2J

2 − Q∂J , where Q is the background charge, i. e., the

coefficient of the third order pole in the operator product expansion T (z)J(w). For the ψ+ψ−-

system in D/2 complex dimensions, Q = −D/2.

In a general gluing geometry the curvature is concentrated in one point, namely the midpoint

of the string (σ = π/2). On such surfaces the term linear in ϕ contributes an anomalous factor

of

exp
( Q

2π
ϕ(π/2)

∫
d2σR

)
(VI.38)

5Treating the energy-momentum tensor as a primary field is justified iff the central charge vanishes. In this

sense, one can understand eq. (VI.34) as a condition on the central charge. Note that the N -string variant

〈VN |
PN

r=1(L
(r)
n − (−1)nL

(r)
−n) = 0 of eq. (VI.34) does not follow from eq. (VI.27) for N > 2.
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in the path integral6. This integral measures the deficit angle of this surface when circum-

navigating the curvature singularity at the string midpoint and contributes −(N − 2)π for an

N -string vertex. Hence, the factor (VI.38) produces a U(1)-anomaly of (N − 2)D4 in the path

integral. Since the U(1)-charge7 of 〈↓| is −D
4 , an N -vertex constructed from N 〈↓|-vacua requires

(N − 2)D4 − N
(
−D

4

)
= D

2 (N − 1) ψ+-insertions (the exponential factor is neutral).8 This is

consistent with (VI.29) for N = 1.

Therefore, we do not expect the U(1)-current J to be anomaly-free;

〈I|(Jn + (−1)nJ−n) 6= 0 (VI.39)

in general. Since its zero-mode measures the fermion number of the vertex, we instead expect

〈I|J0 = D
4 〈I|. This relation holds trivially. For n 6= 0 in eq. (VI.39), one obtains 〈I|(J2n +

J−2n) = (−1)nD2 〈I|.

VI.4 Reflector

In this section we construct the 2-string vertex for the fermionic (1, 0) system (ψ−, ψ+). It is

convenient to introduce N -Fourier-transformed fields as a tool to diagonalize general N -string

overlap equations. The overlap equations fix the zero-mode part of the 2-vertex up to a sign. A

discussion of BPZ conjugation motivates our choice for this sign.

N -transforms. Introducing the combinations
∑

n

ψ−
n e

±inσ = πψ+(σ) ± iψ−(σ) ,
∑

n

ψ+
n e

±inσ = ψ+(σ) ± iπψ−(σ) (VI.40)

of left and right movers, the conditions imposed on the fermions following from the δ-function

overlap of N strings are

ψ+(r)(σ) =




ψ+(r−1)(π − σ), σ ∈ [ 0 , π2 ] ,

ψ+(r+1)(π − σ), σ ∈ [π2 , π] ,
(VI.41a)

π
(r)
ψ+(σ) =




−π(r−1)

ψ+ (π − σ), σ ∈ [ 0 , π2 ] ,

−π(r+1)
ψ+ (π − σ), σ ∈ [π2 , π] .

(VI.41b)

For ψ−(σ) and πψ−(σ) similar equations have to be fulfilled. The conditions (VI.41) are easily

diagonalized if we introduce N -Fourier-transformed fields [66],

Ψa(σ) =
1√
N

N∑

r=1

ψ+(r)(σ)e
2πira

N , Πa(σ) =
1√
N

N∑

r=1

π
(r)
ψ+(σ)e

2πira
N , (VI.42a)

6In the integral of the Ricci scalar over this surface we have used dz ∧ dz̄ = 2dσdτ . – An analogous argument

in the case of the bc system shows that #bc(
R

) = −#bc(?) = − 3
2
, cf. eqs. (III.40) and (III.44).

7The U(1) charge of a bra vector is measured by J
†
0 ; we use conventions where J0 = 1

2

P∞
m=1(ψ

+
−m · ψ−

m −

ψ−
−m · ψ+

m) + 1
2
ψ+

0 · ψ−
0 − D

4
= −J†

0 , cf. eq. (C.7).
8Alternatively, we could use midpoint insertions to adjust the anomaly of the vertex. However, in our cases,

they make life unnecessarily complicated. Since the value of the anomaly, (N − 2) D
4
, never exceeds the maximal

charge of 〈ΩN |, i. e. N D
4

for 〈ΩN |max = 〈↑|⊗N , we can avoid midpoint insertions.
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where a ∈ {1, . . . , N}. Note that now (Ψa,ΠN−a) form canonically conjugate pairs (the upper

index is taken modulo N). We choose the following ansatz for the N -vertex in terms of N -

transformed oscillators

〈VN | = 〈ΩN | exp
(

1
2

N∑

a=1

∑

m,n

Ψa
mV

a
mnΠ

N−a
n

)
(VI.43)

with Neumann matrices V a and a vacuum state 〈ΩN |. The vacuum state will be determined

below from the zero-mode overlap conditions; the summation range of m,n should then be

adjusted in such a way that only creation operators w. r. t. this vacuum appear in the exponential.

In application to 〈VN |, eqs. (VI.41) now read

〈VN |Ψa(σ) =




e

2πia
N 〈VN |Ψa(π − σ) ,

e
−2πia

N 〈VN |Ψa(π − σ) ,
(VI.44a)

〈VN |Πa(σ) =




−e 2πia

N 〈VN |Πa(π − σ) ,

−e−2πia
N 〈VN |Πa(π − σ) .

(VI.44b)

As already discussed in section VI.3, the overlap conditions will only contain a sum of two

oscillators (rather than infinitely many), if after inserting the mode expansions the cosines can

be integrated over [ 0, π]. This is obviously possible also for N > 2 if 2a
N ∈ . Therefore,

(ΨN ,ΠN ) and, if N is even, (ΨN/2,ΠN/2) appear in the vertex (VI.43) with Neumann matrices

V N = −C and V N/2 = C, respectively. Here, C denotes the twist matrix with components

Cmn = (−1)mδmn.

Before we turn to the 2-string vertex, let us briefly discuss the overlap conditions for the

zero-modes of the N -transformed oscillators. It is consistent with (VI.44) to demand

〈ΩN |Ψa
0 = 0 for 1 ≤ a ≤ N − 1 , (VI.45a)

〈ΩN |ΠN
0 = 0 . (VI.45b)

Note that eqs. (VI.45a) entail that no Ψa
0 (for a ∈ {1, . . . , N−1}) may appear in the exponential

of the vertex (VI.43). The appearance of ΨN
0 is forbidden by eq. (VI.45b) since V N = −C is

diagonal. In terms of the original one-string oscillators, this means that no ψ+
0 appears in the

exponential of the vertex.

It is easy to see that the conditions on the vacuum (VI.45) are solved by9

〈ΩN | = ±
N∑

k=1

1〈↑| ⊗ . . . k−1〈↑| ⊗ k〈↓| ⊗ k+1〈↑| ⊗ . . .N 〈↑| . (VI.46)

9Here one has to use the fact that 〈↑| is Grassmann even while 〈↓| is Grassmann odd, i.e., the bra-vacua have

opposite Grassmannality compared to the corresponding ket-vacua. This is a consequence of the odd background

charge.
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The subscripts indicate in which string Hilbert space the corresponding vacuum state lives. The

vacuum (VI.46) already features the U(1) charge required by the J-anomaly, namely (N − 2)D4 .

This choice allows us to avoid midpoint insertions.

Overlap equations for the reflector. Expressed in terms of Z2-transforms, the overlap

conditions for the reflector simply become

〈V2|Ψ1(σ) = −〈V2|Ψ1(π − σ) , 〈V2|Ψ2(σ) = 〈V2|Ψ2(π − σ) , (VI.47a)

〈V2|Π2(σ) = −〈V2|Π2(π − σ) , 〈V2|Π1(σ) = 〈V2|Π1(π − σ) , (VI.47b)

which can be rewritten in terms of modes acting on 〈V2| as

(Ψ1
m + Ψ1

−m) = −(−1)m(Ψ1
m + Ψ1

−m) , (Ψ2
m + Ψ2

−m) = (−1)m(Ψ2
m + Ψ2

−m) , (VI.48a)

(Π1
m + Π1

−m) = (−1)m(Π1
m + Π1

−m) , (Π2
m + Π2

−m) = −(−1)m(Π2
m + Π2

−m) , (VI.48b)

for the nonzero-modes. The conditions for the zero-modes read

〈V2|Ψ1
0 = 0 , 〈V2|Π2

0 = 0 . (VI.49)

The zero-modes Ψ2
0 and Π1

0 put no restrictions on the vertex. Along the lines of [66], one finds

〈V2| = 〈Ω2| exp
(

1
2

∞∑

m=1

[
Ψ2
m(−1)mΠ2

m − Ψ1
m(−1)mΠ1

m

])
(VI.50a)

= 〈Ω2| exp
(

1
2

∞∑

m=1

[
ψ+(1)
m (−1)mψ−(2)

m + ψ+(2)
m (−1)mψ−(1)

m

])
(VI.50b)

as a solution to eqs. (VI.48). Since no zero-modes appear in the vertex, the vacuum 〈Ω2| has to

be annihilated by Ψ1
0 and Π2

0 in order to satisfy eq. (VI.49). Thus the vacuum is a symmetric

combination of up- and down-vacua in the two-string Hilbert space,

〈Ω2| = ±(1〈↑| ⊗ 2〈↓| + 1〈↓| ⊗ 2〈↑|) =: ±(〈↑↓| + 〈↓↑|). (VI.51)

This is consistent with eq. (VI.46). In the last expression it is understood that the first entry

corresponds to string 1, while the second corresponds to string 2. The overall sign is determined

by requiring that 〈V2| implements BPZ conjugation.

BPZ conjugation. On a single field φ(z) BPZ conjugation (cf. the discussion in section III.2)

acts as I ◦ φ(z) with I(z) = −1/z; since I inverts the time direction, it is suggestive that on a

product of fields, BPZ conjugation should reverse the order of the fields. This statement will

be put on a more solid ground below. The action of BPZ on fields induces an action on states:

bpz(|φ〉) defines the out-state 〈φ| which is created by limz→∞〈0|I ◦φ(z). In terms of modes this

prescription yields

bpz(φn) = (−1)n+hφ−n (VI.52)
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for a field of conformal weight h. To fix the choice of vacuum in (VI.50), recall that 〈V2| is an

element of the tensor product of two dual string Hilbert spaces 〈V2| ∈ H∗⊗H∗ and thus induces

an odd linear map from H to H∗, which is nothing but BPZ conjugation [58]

〈V2|φ〉1 = 2〈bpz(φ)| . (VI.53)

In order to be compatible with the usual definitions of BPZ conjugation, we demand in particular

that the SL(2,R) invariant vacuum |↓〉 is mapped into 〈↓| under BPZ conjugation. Therefore

we fix the vacuum 〈Ω2| to be

〈Ω2| = 1〈↑| ⊗ 2〈↓| + 1〈↓| ⊗ 2〈↑| =: 〈↑↓| + 〈↓↑| . (VI.54)

Note that choosing this vacuum and using eq. (VI.53), one finds bpz(|↓〉) = 〈↓| and bpz(|↑〉) =

〈↑|.

Now consider the corresponding ket state |V2〉. Observe that the conformal transformation

I maps (τ, σ) to (−τ, π − σ). Therefore, the overlap equations for 0 ≤ σ ≤ π/2 for a field φ of

conformal weight hφ , φ(r)(σ) = (−1)hφφ(r−1)(π−σ) , transform into φ(r)(σ) = (−1)−hφφ(r+1)(π−
σ). This implies that the overlap equations for the N = 1 and N = 2 vertices are invariant under

BPZ conjugation for fields of integral conformal weight. Indeed, this can be verified for (VI.48)

using (VI.52) on the level of modes, and we can immediately write down the solution

|V2〉 = exp
(

1
2

∞∑

m=1

[
Π2

−m(−1)mΨ2
−m − Π1

−m(−1)mΨ1
−m
])

|Ω2〉 (VI.55a)

= exp
(

1
2

∞∑

m=1

[
ψ
−(1)
−m (−1)mψ

+(2)
−m + ψ

−(2)
−m (−1)mψ

+(1)
−m

])
|Ω2〉 . (VI.55b)

It is easy to see that eqs. (VI.48), now taken to act on the ket vertex, are fulfilled. Eventually

we have to fix our choice of vacuum. In order to fulfill the zero-mode overlap equations (VI.49),

|Ω2〉 has to be an antisymmetric combination of up and down vacua

|Ω2〉 = ± (|↑〉1 ⊗ |↓〉2 − |↓〉1 ⊗ |↑〉2) = ± (|↑↓〉 − |↓↑〉) . (VI.56)

We fix the overall sign of |Ω2〉 to be a plus sign by requiring

bpz−1(〈φ|) := 2〈φ|V2〉12(−1)|φ|+1 = |bpz−1(φ)〉1 , (VI.57)

where |φ| denotes the Grassmannality of the state |φ〉. Moreover one finds

bpz(ψ+
−kψ

−
−l|↓〉) = 12〈V2|ψ+(1)

−k ψ
−(1)
−l |↓〉1 = 12〈V2|ψ+(2)

k (−1)kψ
−(1)
−l |↓〉1

= 12〈V2|ψ−(1)
−l ψ

+(2)
k (−1)k(−1)|ψ

+||ψ−||↓〉1 (VI.58)

= 2〈↓|ψ
−(2)
l ψ

+(2)
k (−1)k+l+1(−1)|ψ

+||ψ−| ,

which can be checked using (VI.50). Eq. (VI.58) is the statement that BPZ conjugation acts as

a graded antihomomorphism on the algebra of modes. To emphasize the gradation we explicitly
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kept the sign stemming from the anticommutation of the modes. Note that there is no problem

in commuting the modes since after acting on the vertex they belong to different Hilbert spaces,

so the only effect is an additional sign. Finally, it is straightforward to check that

12〈V2|V2〉23 =
(
|↑〉3 1〈↓| + |↓〉3 1〈↑|

)
exp

(
1
2

∞∑

m=1

[
ψ

+(3)
−m ψ−(1)

m + ψ
−(3)
−m ψ+(1)

m

])
= 3 1 , (VI.59)

by using standard coherent state techniques (cf. [94, 31, 102]) and eq. (VI.50). One can then

check that bpz◦bpz−1 = bpz−1 ◦bpz = . This completes the construction of the reflector state

from the overlap equations.

VI.5 Interaction vertex

In this section, we set up the Neumann function method [122, 124, 123, 90, 36, 37, 114, 115] for

general N -string vertices, since even in terms of the N -Fourier-transforms the overlap equations

are not directly soluble forN ≥ 3. In the case of the 3-string vertex, the Neumann coefficients are

computed explicitly in terms of generating functions. The observation that they are intimately

related to the bosonic Neumann coefficients (VI.14) helps us to show that the Kn-anomaly of

the (bosonic and fermionic) 3-vertex vanishes in any even dimension D. Furthermore, it will be

shown that the 3-vertex for the ψ+ψ− system satisfies its overlap equations.

Neumann function method. The Neumann function method is based on the fact that the

large time transition amplitude is given by the Neumann function of the scattering geometry

under consideration. To find the Fock space representation of the interaction vertex one makes

an ansatz quadratic in the oscillators,

〈VN | = NN 〈ΩN | exp
[

1
4

∑

r,s

∑

k,l

ψ
+(r)
k N rs

kl ψ
−(s)
l

]
, (VI.60)

where NN is a normalization factor which is determined below.10 The sum over the string labels

r and s runs from 1 to N and the restrictions on the summation range of the oscillator modes has

to be determined from the choice of vacuum 〈ΩN | (cf. (VI.46)) so that only creation operators

appear in the vertex. As derived in section VI.4, ψ+
0 does not occur in the exponential. The

normalization factor NN is determined by taking the matrix element 〈VN |Ω̃N 〉 where |Ω̃N 〉 is the

dual vacuum satisfying 〈ΩN |Ω̃N 〉 = 1. Since this matrix element corresponds to a ψ+ one-point

function and ψ+ has conformal weight zero this yields NN = 〈VN |Ω̃N 〉 = 〈ψ+〉 = 1.

To obtain an explicit expression for the coefficients we look at matrix elements of the form

G(z, w) = 〈VN |ψ+(s)(z)ψ−(r)(w)|Ω̃N 〉 (VI.61)

and reinterpret the result as a correlation function on the disk (or, thanks to PSL(2,R) invari-

ance, equivalently on the upper half plane). Note that, in this expression, the J-anomaly has to

10The factor of of 1
4

in the exponent will take care of the nonstandard normalization of the correlation function

for the complex fermions.
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be saturated in each string separately, i. e., in each Hilbert space we need one ψ+
0 (which can be

attributed to either 〈ΩN | or |Ω̃N 〉). Inserting the mode expansions for ψ+(z) and ψ−(w) into

eq. (VI.61), one obtains by virtue of eq. (VI.60)

G(z, w) =
∑

mn

znwm−1N rs
mn . (VI.62)

Following [114], we equate this with

G(z, w) = 〈fs ◦ ψ+(z)fr ◦ ψ−(w) 1
N

N∑

i=1

fi ◦ ψ+(0)〉 , (VI.63)

where the sum on the right hand side was chosen to distribute the background charge symmetri-

cally among the N strings. In principle, any other choice of ψ+(0)-insertions is admissible as long

as the J-anomaly on the scattering geometry is saturated, i. e., we need a total U(1) charge of +1

in the correlation function. The fr map the unit upper half-disk into the corresponding wedge

of the scattering geometry, as defined in (VI.26). The pole structure of the correlation function

(VI.63) is easily evaluated; first order poles arise from ψ+ψ−-contractions, first order zeros from

ψ+ψ+-contractions. Since the conformal weights of ψ+ and ψ− are 0 and 1, respectively, we

obtain

〈fs ◦ ψ+(z)fr ◦ ψ−(w) 1
N

N∑

i=1

fi ◦ ψ+(0)〉 =
2f ′r(w)

fs(z) − fr(w)

1

N

N∑

i=1

fs(z) − fi(0)

fr(w) − fi(0)
. (VI.64)

Here the unusual factor of 2 appears due to the normalization of the fermionic correlator. From

eqs. (VI.61) to (VI.64) one readily finds the expression for the Neumann coefficients in terms of

contour integrals,

N rs
mn =

∮
dz

2πi

∮
dw

2πi

1

zn+1wm
2f ′r(w)

fs(z) − fr(w)

1

N

N∑

i=1

fs(z) − fi(0)

fr(w) − fi(0)
. (VI.65)

Neumann coefficients and generating functions. In this paragraph we work out explic-

itly the integral formula for the Neumann coefficients for the (bra-)interaction vertex and find

expressions in terms of the coefficients of generating functions. The vertex will take the form11

〈V3| =
(
〈↑↑↓| + 〈↑↓↑| + 〈↓↑↑|

)
exp

[
1
4

∑

r,s

∞∑

k=1,l=0

ψ
+(r)
k N rs

kl ψ
−(s)
l

]
. (VI.66)

The maps involved in (VI.65) for N = 3 can be gleaned from (VI.26),

fi(z) = e
2πi
3 (2−i)

(
1 + iz

1 − iz

)2
3

= ω2−if(z) (VI.67)

11Recall that no ψ
+(r)
0 appears in the exponent as substantiated in section VI.4.
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with ω = e
2πi
3 . Using these maps one can rewrite eq. (VI.65) as

N rs
mn = 2

∮
dz

2πi

∮
dw

2πi

1

zn+1wm
f ′r(w)

fs(z) − fr(w)

fs(z)fr(w)2 − 1

fr(w)3 − 1

=

∮
dz

2πi

∮
dw

2πi

1

zn+1wm+1

2

3

(
1

1 + zw
− w

w − z

)[
1 + U rs(z, w) + U sr(−z,−w)

]
,

(VI.68)

where

U rs(z, w) = ω(s−r)w
z

(
1 + iz

1 + iw

)2

f(w)f(−z) . (VI.69)

Introducing the generating functions

G(z) =
f(z)

(1 + iz)2
=

∞∑

n=0

Gnz
n , (VI.70a)

H(z) = (1 + iz)2f(−z) =
∞∑

n=0

Hnz
n , (VI.70b)

we can write

N rs
mn =

2

3

∮
dz

2πi

∮
dw

2πi

[
Cmn(z, w) + ω(s−r)Umn(z, w) + ω̄(s−r)Ūmn(z, w)

]
, (VI.71)

with

Cmn(z, w) =
1

zn+1wm+1

(
1

1 + zw
− w

w − z

)
, (VI.72a)

Umn(z, w) =
1

zn+2wm

(
1

1 + zw
− w

w − z

)
G(w)H(z) , (VI.72b)

Ūmn(z, w) =
1

zn+2wm

(
1

1 + zw
− w

w − z

)
G(−w)H(−z) . (VI.72c)

Performing the contour integrals12, one finds the Neumann coefficients in terms of the coefficients

of the generating functions,

N rs
mn =

2

3

(
Cmn + ω(s−r)Umn + ω̄(s−r)Ūmn

)
, (VI.73)

where

Umn =
n∑

k=0

[
(−1)n+1−kGm−n−2+k −Gm+n−k

]
Hk , (VI.74a)

Ūmn = (−1)m+n
n∑

k=0

[
(−1)n+1−kGm−n−2+k −Gm+n−k

]
Hk . (VI.74b)

In these formulas, it is implicitly understood that coefficients with negative index are zero, and,

as usual, Cmn = (−1)mδmn for m,n > 0. Since ψ+ does not appear in the exponential of the

vertex, we require N rs
0m = 0 for m ≥ 0. Note that the Neumann coefficients are real since the

12Note that one can choose the contour always so that only the poles at zero contribute.
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Gn and Hn are real for n even and purely imaginary for n odd. Obviously, Ū is the complex

conjugate of U , and Ū = CUC. Eq. (VI.73) makes the cyclic symmetry of the vertex manifest.

Recursion relations. To find recursion relations for the generating functions (VI.70a), we

observe that G(z) can be expressed in terms of its derivative:

G(z) = −3

2

z2 + 1

3z + i
G′(z) . (VI.75)

Inserting the mode expansion, one finds

Gk = −
∮

dz

2πi

1

zk+1

3

2

z2 + 1

3z + i

∂

∂z
G(z) . (VI.76)

Partially integrating and evaluating the resulting contour integral leads to the following recursion

formula for Gn:

Gk+2 = − 2i

3(k + 2)
Gk+1 −Gk . (VI.77)

Note that this complies with the observation that the Gk are alternatingly real and imaginary.

From (VI.77) and the initial condition G0 = G(0) = 1 (and G−1 := 0), the first coefficients are

easily computed to be G1 = −2i
3 , G2 = −11

9 , and G3 = 76i
81 .

Similarly, we can use

H(z) =

(
− i

6
+
z

2
+

4/3

3z + i

)
H ′(z) (VI.78)

to find recursion relations for the Hk,

(k + 2)Hk+2 =
2i

3
Hk+1 − (k − 2)Hk , (VI.79)

and with the initial condition H0 = H(0) = 1 (and H−1 := 0), the first coefficients are found to

be H1 = 2i
3 , H2 = 7

9 and H3 = 32i
81 . One readily verifies that

n∑

k=0

GkHn−k = 0 for all n ∈ , (VI.80)

since G(z) = 1/H(z).

Relation to bosonic coefficients. Exemplarily, the first few Neumann coefficients N 11
mn can

be computed via eqs. (VI.73), (VI.74) and the recursion relations (VI.77) and (VI.79):

(N11)mn =




10
27 0 − 64

729 0 832
19683 . . .

0 − 26
243 0 1024

19683 0 . . .

− 64
243 0 1786

19683 0 − 3008
59049 . . .

0 2048
19683 0 − 10250

177147 0 . . .

4160
19683 0 − 15040

177147 0 82330
1594323 . . .

...
...

...
...

...
. . .




mn

. (VI.81)
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The above expression holds for m,n ≥ 1. This suggests that, for these values of m,n, the

Neumann coefficients for the ψ+ψ−-system agree with those for the bosons in the momentum

basis (cf. eq. (VI.14)) up to some factor; the same can be checked for all other r, s:

N rs
mn = 2

√
m

n
V rs
mn . (VI.82)

A posteriori, one can easily find a proof for this relation. Comparing with (VI.14) and (VI.68),

we have to show

2

∮
dz

2πi

∮
dw

2πi

1

zn+1wm
f ′r(w)

fs(z) − fr(w)

fs(z)fr(w)2 − 1

fr(w)3 − 1
= − 2

n

∮
dz

2πi

∮
dw

2πi

1

znwm
f ′r(w)f ′s(z)

(fs(z) − fr(w))2
.

(VI.83)

Since the right hand side can be rewritten as

2

n

∮
dz

2πi

∮
dw

2πi

1

znwm
∂

∂z

f ′r(w)

(fs(z) − fr(w))
= 2

∮
dz

2πi

∮
dw

2πi

1

zn+1wm
f ′r(w)

fs(z) − fr(w)
, (VI.84)

the difference of the left hand and the right hand sides of eq. (VI.83) is proportional to

∮
dz

2πi

∮
dw

2πi

1

zn+1wm
f ′r(w)fr(w)2

fr(w)3 − 1
. (VI.85)

This expression vanishes for n > 0 due to the absence of poles in the z-contour. This establishes

the proof of eq. (VI.82).

Properties of the Neumann matrices. In view of the close relation of the fermionic to

the bosonic Neumann matrices one immediately obtains identities for N rs
mn , m, n ≥ 1 from the

bosonic ones. Defining CN r r =: N , CN r r+1 =: N+ and CN r r−1 =: N−, one finds that N , N+

and N− mutually commute and

N +N+ +N− = 2 , N+N− = N(N − 2) , N2 +N2
+ +N2

− = 4 ,

N N+ +N+N− +N−N = 0 , N2
± −N± = N N∓ , (VI.86)

C N = N C , C N+ = N−C .

The proof of eq. (VI.82) breaks down for n = 0. We have N rs
00 = 0; the Neumann coefficients

for the case n = 0 and m > 0 are given by

N rr
m0 =




− 8i

9mGm−1 for m even,

0 for m odd,
(VI.87)

N r r+1
m0 =





4i
9mGm−1 for m even,

− 4
3
√

3m
Gm−1 for m odd,

(VI.88)

N r r−1
m0 =





4i
9mGm−1 for m even,

4
3
√

3m
Gm−1 for m odd.

(VI.89)
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The indices r, s are cyclic. From this it is obvious that

CnmN
rt
m0 = N tr

n0 ,
∑

t

∑

m

N rt
m0 =

∑

t

∑

m

N tr
m0 = 0 . (VI.90)

Exploiting that the generating function G(z) is proportional to the derivative of

((1 − iz)/(1 + iz))
1
3 one sees that the coefficients Gk are related to the coefficients an (or equiv-

alently An) defined in appendix F.1 [66] via

Gm−1 = 3
2m(−i)(m−1)am . (VI.91)

Evaluating the generating function for the coefficients A2n (cf. eq. (F.3)),

1

2

[(1 − i z

1 + i z

)1/3
+
(1 + i z

1 − i z

)1/3
]
, (VI.92)

at z = 1 yields
∞∑

m=1

N11
m0 =

4

3

∞∑

n=1

A2n =
4

3

( 2√
3
− 1
)
. (VI.93)

The contour integral around z = 0 computes

∞∑

n=0

(A2
2n −A2

2n+1) =

∮
dz

2πi

1

z

(
1 + i z

1 − i z

)1/3(1 + i 1
z

1 − i 1
z

)1/3

=
1

2
, (VI.94)

which establishes that

∑

t

∞∑

m=1

N1t
m0N

t1
m0 =

8

3

( ∞∑

n=0

(A2
2n −A2

2n+1) − 1
)

= −4

3
. (VI.95)

Having at hand fermion Neumann coefficients for the nonzero-modes expressed in terms the

boson Neumann coefficients puts us in the position to compute the Kn-anomaly of the fermionic

3-vertex in a very simple way. Similarly, the overlap equations can be checked more easily than

with the original expression (VI.73). This will be done in the next two paragraphs.

Anomaly of the ψ±-vertex. We will now demonstrate that the contribution of one ψ+ψ−-

pair to the Kn-anomaly of the 3-vertex cancels the contribution of two real (or one complex)

bosons. This agrees with the fact that a (1, 0)-first order system contributes c = −2 to the

central charge. Thus, in contrast to bosonic and N=1 strings, no restriction on the critical

dimension follows from the Kn-anomaly.

Namely, let
∑3

r=1K
(r)ψ
m =

∑3
r=1

(
L
ψ(r)
m − (−1)mL

ψ(r)
−m
)

act on the 3-vertex (VI.66). The only

contribution to the c-number anomaly comes from the terms in

−(−1)mL
ψ(r)
−m = −(−1)m

1

2

∑

k

(m− k)ψ
+(r)
k−m · ψ−(r)

−k (VI.96)
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containing two creation operators, i. e., from 1
2

∑m−1
k=0 (m− k)ψ

+(r)
k−m · ψ−(r)

−k . The action of ψ
+(r)
k−m

on the bra-vertex pulls down a sum over annihilation operators, and from the interchange of

ψ
−(r)
−k with these creation operators we get a c-number term:

〈V3|K(3)ψ
m = −(−1)m

1

2

3∑

r=1

m−1∑

k=0

(m− k)〈V3|ψ+(r)
k−m · ψ−(r)

−k + . . .

= −(−1)m
1

4

3∑

r,s=1

m−1∑

k=0

(m− k)

∞∑

l=0

〈V3|N sr
l,m−kψ

+(s)
l · ψ−(r)

−k + . . .

= −(−1)m
3D

4

m−1∑

k=1

(m− k)N rr
k,m−k〈V3| .

(VI.97)

In the third equality we have used that N 11 = N22 = N33 due to cyclicity and that N rr
0,m−k = 0,

i.e., the exponential in the vertex contains no ψ+
0 . The dots indicate terms which do not

contribute to the c-number anomaly. From (VI.24), this equals twice the negative contribution

of one real boson; the total anomaly vanishes if we pair each ψ+aψ−ā-system with a complex

boson field Za, Z̄ ā in any even dimension.

Overlap conditions. According to the general method outlined in section VI.4 we introduce

Z3-Fourier-transforms

Ψa =
1√
3

3∑

r=1

ψ+(r)ωra , (VI.98a)

Πa =
1√
3

3∑

r=1

ψ−(r)ωra , (VI.98b)

where ω = e
2πi
3 and the index a runs from 1 to 3. This diagonalizes the overlap equations which

then read

〈V3|Ψ1(σ) =




ω 〈V3|Ψ1(π − σ) , σ ∈ [0 , π2 ] ,

ω̄ 〈V3|Ψ1(π − σ) , σ ∈ [π2 , π] ,
(VI.99a)

〈V3|Ψ2(σ) =




ω̄ 〈V3|Ψ2(π − σ) , σ ∈ [0 , π2 ] ,

ω 〈V3|Ψ2(π − σ) , σ ∈ [π2 , π] ,
(VI.99b)

〈V3|Ψ3(σ) = 〈V3|Ψ3(π − σ) , (VI.99c)

and

〈V3|Π1(σ) =




−ω 〈V3|Π1(π − σ) , σ ∈ [0 , π2 ] ,

−ω̄ 〈V3|Π1(π − σ) , σ ∈ [π2 , π] ,
(VI.100a)

〈V3|Π2(σ) =




−ω̄ 〈V3|Π2(π − σ) , σ ∈ [0 , π2 ] ,

−ω 〈V3|Π2(π − σ) , σ ∈ [π2 , π] ,
(VI.100b)

〈V3|Π3(σ) = −〈V3|Π3(π − σ) . (VI.100c)
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These overlap equations can be written in terms of the Fourier modes of the operator (VI.19) [66]

as

∞∑

l=0

(Ẽkl +
1
2 C̃kl −

√
3

2 X̃kl)〈V3|Ψ̃1
l = 0 , (VI.101a)

∞∑

l=0

(Ẽkl +
1
2 C̃kl +

√
3

2 X̃kl)〈V3|Ψ̃2
l = 0 , (VI.101b)

∞∑

l=0

(Ẽkl − 1
2 C̃kl +

√
3

2 X̃kl)〈V3|Π̃1
l = 0 , (VI.101c)

∞∑

l=0

(Ẽkl − 1
2 C̃kl −

√
3

2 X̃kl)〈V3|Π̃2
l = 0 , (VI.101d)

where here and in the following the indices k, l, j ∈ 0 while m,n ∈ . The matrices Ẽ and C̃

are given by

Ẽkl = 2 δ0kδ0l + δkl , C̃kl = (−1)kẼkl . (VI.102)

The matrices X̃kl can be found in appendix F.2. The redefined oscillators are Ψ̃a
m = Ψa

m + Ψa
−m

and Π̃a
m = Πa

m + Πa
−m for the nonzero-modes and Ψ̃a

0 = Ψa
0 and Π̃a

0 = Πa
0 for the zero-modes,

respectively.

We make the following ansatz for the interaction vertex in terms of the Z3-transformed

oscillators (recall the range of the indices defined above!)

〈V3| = 〈Ω3| exp
[

1
2

∑

m,n

Ψ3
mCmnΠ

3
n +

∑

m,k

(Ψ2
mŨmkΠ

1
k + Ψ1

m
˜̄UmkΠ

2
k)
]
. (VI.103)

Note that the exponential does not contain any Ψ0 modes. The vacuum 〈Ω3| is given by

〈Ω3| =
〈
Π3

0 = 0,Ψ1
0 = 0,Ψ2

0 = 0
∣∣ , (VI.104)

which in terms of one string Hilbert space vacua is expressed as13

〈Ω3| = 1〈↑| ⊗ 2〈↑| ⊗ 3〈↓| + 1〈↓| ⊗ 2〈↑| ⊗ 3〈↑| + 1〈↑| ⊗ 2〈↓| ⊗ 3〈↑| . (VI.105)

It is straightforward to see that (VI.103) satisfies the overlap equations for the Ψ3
m’s and the

Π3
m’s. Comparing the Z3-transformed version of the interaction vertex with eq. (VI.66) one can

identify

Ũml = Uml ,
˜̄Uml = Ūml. (VI.106)

13The overlap equations fix the vacuum up to an overall sign factor.
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After using (VI.103), the overlap equations for the oscillators Π1, Π2 and Ψ1, Ψ2 become

∞∑

l=0

(Ẽkl − 1
2 C̃kl +

√
3

2 X̃kl)(δlj − Ulj) = 0 , (VI.107a)

∞∑

l=0

(Ẽkl − 1
2 C̃kl −

√
3

2 X̃kl)(δlj − Ūlj) = 0 , (VI.107b)

∞∑

l=0

(Ẽkl +
1
2 C̃kl −

√
3

2 X̃kl)(δlm + ŪTlm) = 0 , (VI.107c)

∞∑

l=0

(Ẽkl +
1
2 C̃kl +

√
3

2 X̃kl)(δlm + UTlm) = 0 . (VI.107d)

Let us now exemplify that these overlap conditions are indeed fulfilled by the matrices given in

eq. (VI.74). In particular we consider the parts of the overlap equations involving zero-modes.

We start with the k = 0 overlap equation for Π1
0, which is the zero-zero component of

eq. (VI.107a):

1 −
√

3
2

∞∑

m=1

X̃0mUm0
!
= 0 . (VI.108)

Inserting the Um0 component

Um0 = −(−i)m am (VI.109)

into (VI.108) allows us to use known summation formulas for the coefficients [66, 34] to obtain

∞∑

m=1

X̃0mUm0 =
4

π

∞∑

k=0

a2k+1

2k + 1
=

2√
3

(VI.110)

proving eq. (VI.108). Consider now the overlap equations for k 6= 0. Setting k = 2l for k even

and k = 2l + 1 for k odd yields

− 1
2U2l,0 −

√
3

2

∞∑

m=1

X̃2l,mUm0
!
= 0 , (VI.111a)

− 3
2U2l+1,0 +

√
3

2 X̃2l+1,0 −
√

3
2

∞∑

m=1

X̃2l+1,mUm0
!
= 0 . (VI.111b)

The first of these equations is proven by
√

3

2

∞∑

m=1

X̃2l,mUm0 =

√
3

π

∞∑

k=0

(−1)l
(

a2k+1

2k + 1 + 2l
+

a2k+1

2k + 1 − 2l

)
=

1

2
(−1)la2l . (VI.112)

The second equation in (VI.111) is fulfilled due to
√

3

2

∞∑

m=1

X̃2l+1,mUm0 = −
√

3i

π

∞∑

k=0

(−1)l
(

a2k

2k + 2l + 1
− a2k

2k − 2l − 1

)
+

√
3i

π
(−1)l

2 a0

2k + 1

= −3i

2
(−1)la2l+1 +

√
3i

π
(−1)l

2 a0

2k + 1
. (VI.113)

More involved overlap conditions can be proven using techniques developed in [66, 34]. We

postpone their discussion to appendix F.2.
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VI.6 Conclusions

In this chapter we explicitly constructed the string field theory vertices for a fermionic first order

system ψ± with conformal weights (1, 0) in the operator formulation. The technical ingredients

needed to construct general N -string vertices were presented in detail. The identity vertex,

the reflector and the interaction vertex were discussed with emphasis on their charge under the

anomalous U(1) current J and their zero-mode dependence. The identity vertex and the reflector

were derived from the corresponding δ-function overlap conditions. The reflector was shown to

implement BPZ conjugation as a graded antihomomorphism, and some consistency conditions

on the gluing of the reflector were checked. The construction of the interaction vertex was

achieved by invoking the Neumann function method. The coefficients of the Neumann matrices

are given in terms of coefficients of generating functions; recursion relations for these coefficients

were derived. The Neumann coefficients for the ψ± system can be neatly expressed in terms

of those for the bosons. This allowed us to infer identities for the fermion Neumann matrices

directly from those for the bosons. Moreover, the c-number anomaly of midpoint preserving

reparametrizations for a ψ± pair was straightforwardly shown to cancel the contribution of two

real bosons. This agrees with the fact that a (0, 1) first order system contributes c = −2 to the

central charge. Eventually, it was shown that the overlap equations following from the δ-function

overlap conditions are satisfied by the Neumann matrices.

Clearly, the work presented is meant to be a starting point for further investigations. Diag-

onalizing the vertex is a straightforward task and will be a project in the future. This should

pave the way for studying solutions to string field theory in several contexts. Firstly, one might

examine how the solution generating techniques proposed in chapters IV and V perform in the

more controlled setting of N = 2 SFT. This can be expected to give valuable information about

how solutions to string field theory can be constructed dropping the factorization assumption of

vacuum string field theory. As a direct application to N=1 superstring field theory it appears

to be worthwhile to investigate the dependence of solutions on the ηξ-system more closely. This

fermionic (0, 1) first order system emerges in the bosonization of the superconformal ghosts. The

related picture changing operation is a delicate subject in string (field) theory and deserves to

be examined with minuteness. Finally, we want to point out the similarity of the fermionic first

order system considered in this chapter and the twisted bc-system presented in section III.5.3.

This auxiliary boundary conformal field theory is used in vacuum string field theory to construct

solutions to the ghost part of the equation of motion. The solutions to these equations become

projectors in the twisted theory. It is tempting to speculate that this similarity can be traced

to a deeper interrelation.
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Chapter VII

Conclusions

In this work it was shown that superstring field theories are integrable in the sense that their

equations of motion can be written as compatibility conditions for certain linear equations. This

made it possible to transfer powerful solution generating techniques for integrable field theories

to (open and vacuum) superstring field theories.

As a preparation for the string field theory discussion, one particular solution generating

technique, the dressing approach, was introduced in a field theory setting, namely, in non-

commutative self-dual Yang-Mills theory in 2+2 dimensions. Since this theory arises in the

low-energy limit of open N=2 string theory in a B-field background, the connection of these

considerations to string (field) theory was apparent. In this part, new soliton-like solutions

could be constructed, amongst others, an abelian solution resulting from GMS-like projectors,

noncommutative U(2) soliton-like configurations and interacting plane waves.

After a short introduction to the topic of string field theory (including some recent devel-

opments), this dressing approach was transferred to Berkovits’ WZW-like string field theory.

Additionally, a second method for the construction of exact classical solutions was introduced,

the splitting technique. In essence, both procedures reduce the nonpolynomial equation of mo-

tion to some linear equations. The solutions of these linear equations give us nonperturbative

solutions of the original equations of motion. Our discussion was kept general enough to apply

to the case of N=1 superstrings as well as to the case of N=2 strings.

In order to demonstrate the power of these methods we explicitly constructed some solutions

to the linear equations via the dressing approach. For N=1 superstrings, a quite general class

of solutions was presented; for N=2 strings, the same and additional classes of solutions were

found. Following the recipe given in section IV.5, one can easily translate all these to classical

configurations of Berkovits’ (super)string field theory.

With a suitable relation between the Witten and the Berkovits string fields, the condition

that the Witten string field is contained in the small Hilbert space (which does not contain

the ξ zero-mode) may be reinterpreted as the equation of motion to Berkovits’ superstring field



114 Conclusions

theory. Assuming this relation, the equation of motion for Witten’s cubic string field theory is

trivially satisfied. This observation makes it possible to generalize the above ideas also to cubic

superstring field theory. The transition from the description of string field theory around the

open string vacuum to a description around the closed string vacuum is embedded in a natural

way into the framework of the dressing approach. A strategy for the computation of solutions

to the string field equations, based on the Moyal formulation for superstring field theory, was

proposed.

As a (in some respects) simplified model for a string field theory with kinetic operators

which mix different world-sheet sectors, N=2 string field theory seems to be a viable candidate.

It shares many characteristic properties with Berkovits’ nonpolynomial superstring field theory.

However, little is known in the literature about this theory, in particular, the vertex for the

world-sheet fermions of this theory was only graphically defined. As a first step to the concrete

computation of solitonic solutions in nonpolynomial string field theory for N=2 strings, the

integration and reflector states as well as the 3-string vertex for the world-sheet fermions were

determined. This sets the stage for forthcoming investigations, e. g., the Moyal formulation of

this sector. Amongst others, our results have applications in Berkovits’ hybrid formulation of

a covariant superstring field theory in D = 4, in the ηξ system from the bosonization of N=1

world-sheet ghosts and the twisted bc system used in bosonic vacuum superstring field theory.

A lot of work remains to be done: The Moyal formulation of the world-sheet fermion system

should put us into the position to classify all projectors of the star algebra. These were partic-

ularly important in the dressing approach – and naturally in vacuum string field theory, where

they deliver solutions of the ghost part of the string field equations.

In order to establish which among the proposed solutions represent soliton-like objects within

the theory, one has to evaluate their energy. It would be interesting to find criteria on the Tk

for the solution to be a soliton, an instanton, or a monopole. In the case of N=2 strings explicit

solitonic solutions to the corresponding field theory equations have been constructed earlier [108,

112, 109]; it is plausible that they can be promoted to the string level. An examination of the

fluctuations around these nonperturbative solutions should determine what kind of object they

represent in string theory. If some of these solutions turn out to describe D-branes, perhaps

another check of Sen’s conjecture on the relation between the tension of D-branes and the string

field theory action is feasible. Due to our choosing the simplest ansätze for the splitting and the

dressing methods, we have obtained not the broadest classes of field configurations. However,

nothing prevents one from employing more general ansätze and thereby creating more general

solutions for N=1 superstring field theory.



Appendix A

Mathematical background for the field theory

part

A.1 Self-duality, twistor space and holomorphicity

In this section, we explain the geometric setup underlying the method we use to solve the

self-duality equations of Yang-Mills theory on R
2,2. We mostly restrict ourselves to the commu-

tative case, comments on the noncommutative generalization are added where appropriate.1 For

our purposes, U(N) Yang-Mills theory is formulated in terms of a GL(N,C) principal bundle

P ∼= R
2,2 ×GL(N,C) over the (pseudo-)Riemannian “space-time” manifold R

2,2. This principal

bundle should be endowed with an irreducible GL(N,C) connection A and its respective curva-

ture F . We will impose a reality condition on A below. The self-duality equations F = ∗F are

tackled with the help of a Lax pair, whose geometrical meaning will now be described.

A.1.1 Isotropic coordinates

We will see in section A.1.4 that the self-duality equations on R
2,2 can be written in real coor-

dinates xµ as

W
µ
1W

ν
2Fµν = 0 (A.1)

for certain 4-vectors W i. To derive constraints on the W i, it turns out to be useful to switch to

a spinor notation. Exploiting that so(2, 2) ∼= sl(2,R) × sl(2,R), we can rewrite W i as

(W
α̇α
i ) = (τ α̇αµ W

µ
i ) =

(
W

4
i +W

2
i W

1
i −W

3
i

W
1
i +W

3
i W

4
i −W

2
i

)
(A.2)

with the help of SL(2,R)-generators τ a, a = 1, 2, 3 and τ 4 = 1. If we define as for the Pauli

matrices τµ
ββ̇

= ηµντ α̇αµ εα̇β̇εαβ with ε12 = −1, eq. (A.1) can be rewritten as

W
α̇α
1 W

β̇β
2 (Fαβεα̇β̇ + Fα̇β̇εαβ) = 0. (A.3)

1For a description of twistors in the noncommutative case, see [91, 175, 110].
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These are the self-duality equations Fα̇β̇ = 0 iff we choose

W
α̇α
1 = ξαπα̇ and W

β̇β
2 = χβπβ̇ , (A.4)

with arbitrary commutative spinors ξα, χα, and πα̇. That is, W 1 and W 2 have to span a null

plane in R
2,2.

On R
2,2, there are two possibilities to satisfy (A.4), related to the existence of Majorana-

Weyl spinors in 2+2 dimensions: One can choose complex or real spinors. Since the τ -matrices

in (A.2) are real, this will lead to complex and real coordinates on R
2,2.

A.1.2 Complex coordinates

Almost complex structures on R
2,2. To elucidate the meaning of the W i it is necessary to

introduce an almost complex structure on R
2,2. An almost complex structure is a tensor field J

of type (1,1) such that Jµ
νJν

λ = −δµλ. We shall consider translationally invariant (constant)

and therefore integrable almost complex structures, i.e., complex structures. It is easy to see that

complex structures on R
2,2 are parametrized by the coset SO(2, 2)/U(1, 1) ∼= SO(2, 1)/SO(2).2

Without loss of generality, we can restrict the discussion to almost complex structures compatible

with the metric (so that the metric is hermitean). Then, (anti)holomorphic basis vectors are

automatically null vectors.

One can realize [81] this coset space on so(2, 1) in the following way [86]: We start from a

matrix representation of so(2, 1),

I1 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



, I2 =




0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0



,

I3 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



, (A.5)

satisfying IaIb = gab + fab
cIc with structure constants f12

3 = −f23
1 = −f31

2 = 1 and metric

(gab) = diag(1, 1,−1) on so(2, 1). Then we can write a general complex structure in the form

J = −saIa (A.6)

2For a given almost complex structure J one can choose coordinates x1, x2, y1, y2 such that in this basis,

J as an endomorphism of the tangent bundle maps J( ∂

∂xk ) = ∂

∂yk and J( ∂

∂yk ) = − ∂

∂xk for k = 1, 2. A linear

combination ∂xk − iJ∂yk =: ∂zk (as a section of the complexified tangent bundle to R
2,2) obviously has eigenvalue

i, it only rotates homogeneously under rotations Mn
k of the structure group SO(2, 2) if J and M commute. This

singles out a subgroup U(1, 1) of SO(2, 2) which leaves the fixed complex structure invariant.
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for s1, s2, s3 ∈ R. We easily read off

J2 = gabs
asb

!
= −1 ⇔ (s1)2 + (s2)2 − (s3)2 = −1. (A.7)

Obviously, the {sa} parametrize a two-sheeted hyperboloid H2. We can map the upper half H2
+

of H2 onto the interior of the unit disk in the y-plane by a stereographic projection

s1 :=
2y1

1 − r2
, s2 :=

2y2

1 − r2
, s3 :=

1 + r2

1 − r2
, r2 := (y1)2 + (y2)2. (A.8)

Simultaneously, the lower half H2
− is mapped onto the exterior of the unit disk. If we define

λ := −(y1 + iy2), both regions are related by the map

σ : λ 7→ 1/λ̄. (A.9)

Note that for |λ| 6= 1, σ has no fixed points. Recapitulating, we can state that the moduli space

of complex structures on R
2,2 is CP 1\S1 (the S1 being given by |λ| = 1).

(Anti)holomorphic vector fields. A given complex structure J on R
2,2 as in (A.6) has

holomorphic and antiholomorphic eigenvectors with eigenvalues i and −i; as a (local) basis for

antiholomorphic vector fields, we can choose

W 1 = W
µ
1∂µ =

1

2
(∂1 + i∂2) −

λ

2
(∂3 − i∂4) = ∂z̄1 − λ∂z2 , (A.10a)

W 2 = W
µ
2∂µ =

1

2
(∂3 + i∂4) −

λ

2
(∂1 − i∂2) = ∂z̄2 − λ∂z1 . (A.10b)

Their components, W
µ
1 = (1

2 ,
i
2 ,−λ

2 ,
iλ
2 ) and W

µ
2 = (−λ

2 ,
iλ
2 ,

1
2 ,

i
2) satisfy Jµ

νW
µ
1 = −iW

ν
1 ,

Jµ
νW

µ
2 = −iW

ν
2 , and ηµνW

µ
iW

ν
j = 0 for i, j = 1, 2, respectively. The vector fields (A.10)

will become our Lax operators subsequently (cf. eqs. (II.72)). The definitions of z1, z2 coincide

with those given in (II.7). We can introduce coordinates η1 = z1 + λz̄2 and η2 = z2 + λz̄1

(cf. eq. (II.81)) in the kernel of (A.10).

Almost complex structure on H2. If we introduce the standard complex structure ε on H2,

εki ε
j
k = −δji , ε21 = −ε12 = 1, ε11 = ε22 = 0 (A.11)

for i, j, k = 1, 2, we can give explicit expressions for the (local) antiholomorphic vector field on

H2
+ ⊂ CP 1:

W 3 = −1

2

(
∂

∂y1
+ i

∂

∂y2

)
=

∂

∂λ̄
. (A.12)

Noncommutative description. In the noncommutative framework, one has to incorporate

some modifications to the above description. All functions now have to be multiplied by a

deformed product; alternatively, the Moyal-Weyl map may be used to transform them into

operators with the usual operator product. In this interpretation, the space-time manifold

R
2,2 has to be replaced by the Heisenberg algebra R

2,2
θ generated by operators x̂µ subject to

[x̂µ, x̂ν ] = iθµν . The (Lie algebra of) inner derivations of R
2,2
θ corresponds to the (Lie algebra
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of) sections of the tangent bundle TR
2,2. If we denote by R a four-dimensional representation

of SO(2, 2), the Lie algebra of inner derivations can be understood as a free R-module. From

these arguments it is clear that the construction of the moduli space of complex structures on

R
2,2
θ can be treated analogously to the commutative setup. Note that H2 remains commutative.

Let us reconsider the noncommutative setup from a different point of view. To this aim,

we assume without loss of generality that θ = θ̃ > 0. Then, just as z1 and z2 are mapped

to annihilation operators (II.15a) under the Moyal-Weyl map, η1 and η2 are mapped to new

annihilation operators

c1 := (1 − λλ̄)−1/2
(
a1 + λa†2

)
and c2 := (1 − λλ̄)−1/2

(
a2 + λa†1

)
, (A.13)

where |λ| < 1. The SO(2, 2) rotation of the commutative discussion above transforming old

coordinates zi to new coordinates ηi after transition to operators takes the form of a Bogoliubov

transformation (A.13). In general, transformations c1 = Ua1U
†, c2 = Ua2U

† yield equivalent

representations of the Heisenberg algebra R
2,2
θ if U is unitary. One can easily show that this

is the case for |λ| 6= 1 for (A.13). Obviously, the Bogoliubov transformations leaving a given

representation invariant are parametrized by the maximal pseudo-unitary subgroup U(1, 1) of

SO(2, 2) leading again to the same coset space as in the commutative case.

A.1.3 Real isotropic coordinates

Although |λ| = 1 according to the preceding discussion will not correspond to a complex struc-

ture on R
2,2, the vector fields (A.10) in this case still span a null plane in R

2,2 [106]. Using that

now λ = λ̄−1, one readily sees that complex conjugation maps W 1 to a multiple of W 2 and vice

versa, i.e., the isotropic plane is real. One is free to choose a real basis for this plane, which is

most easily accomplished with the help of the map (II.64) sending the unit circle to the real axis

in the ζ-plane.

Real isotropic planes, being parametrized by S1 = {λ ∈ C
∣∣ |λ| = 1}, supplement the moduli

space of complex isotropic two-planes (or complex structures) to CP 1 ∼= H2 ∪ S1 [85, 106].

So, CP 1 can be considered as the moduli space of all null two-planes (or extended complex

structures) in R
2,2.

A.1.4 Extended twistor space for R
2,2

Extended twistor space. In this section, Ward’s theorem [184] on a one-to-one correspon-

dence between vector bundles E with self-dual connections over euclidean R
4 and holomorphic

bundles E′ over the so-called twistor space is rephrased for the case of R
2,2. The twistor space

for R
2,2 is the bundle R

2,2 × H2 → R
2,2 of all constant complex structures on R

2,2. It can be

endowed with the direct sum J of the complex structures J and ε. The vector fields (A.10)

and (A.12) for |λ| 6= 1 are the J -antiholomorphic vector fields on R
2,2 ×H2 with respect to this
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complex structure. Admitting |λ| = 1 in (A.10) and (A.12), we can extend these vector fields

naturally to Z := R
2,2 × CP 1.

Vector bundle over Z. Now, we can use the canonical projection π : Z → R
2,2 to lift

the vector bundle E := P ×GL(N,C) C
N to a bundle π∗E over the extended twistor space Z.

By construction, the connection on π∗E is flat along the fibers CP 1 of Z, so that the lifted

connection π∗A on π∗E can be chosen to have only components along R
2,2, π∗A = Aµdx

µ.

Thus, the lift takes the covariant derivative Dµ = ∂µ +Aµ on E to

π∗D = dxµDµ + dyi
∂

∂yi
(A.14)

on π∗E. Now, the J -antiholomorphic components of (A.14) are the (0, 1) components of π∗D

along the antiholomorphic vector fields W i on Z:

D
(0,1)
1 ≡ W

µ
1Dµ = W 1 +

1

2
(A1 + iA2) −

λ

2
(A3 − iA4), (A.15a)

D
(0,1)
2 ≡ W

µ
2Dµ = W 1 +

1

2
(A3 + iA4) −

λ

2
(A1 − iA2), (A.15b)

D
(0,1)
3 ≡ W

i
3∂yi = W 3. (A.15c)

Holomorphic sections. Local sections ϕ of the complex vector bundle π∗E are holomorphic

if

D
(0,1)
1 ϕ = 0, (A.16a)

D
(0,1)
2 ϕ = 0, (A.16b)

D
(0,1)
3 ϕ = 0. (A.16c)

We can also view this as the local form of meromorphic sections of E ′ := π∗E in a given

trivialization of the bundle. One can combine N such sections (as columns) into an N × N

matrix to obtain the matrix-valued function ψ used in (II.65). Using (A.15), a comparison

with (II.65) shows that after solving (A.16c) these are exactly the linear equations (Lax pair)

for self-dual Yang-Mills theory. In this framework, the self-duality equations (II.66) emerge as

the condition that eqs. (A.16) are compatible, i.e., the (0, 2) components of the curvature of E ′

vanish.

A.1.5 Reality condition

So far, we have been working with a complex vector bundle associated to a GL(N,C)-principal

bundle P to describe U(N) self-dual Yang-Mills theory. Therefore, we have to implement a

reality condition on our gauge fields, i.e., impose the additional constraint A†
µ = −Aµ.

Let us now scrutinize the action of hermitean conjugation on the linear equations (II.65).

Eq. (II.65a) is equivalent to

(∂z̄1 − λ∂z2)ψ
−1(λ) = ψ−1(λ)(Az̄1 − λAz2), (A.17)
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where we suppress the additional dependence of ψ of the space-time coordinates zi, z̄i. Since

we demand this to hold for all λ, we can as well first apply σ from (A.9) and then take the

hermitean conjugate,

(∂z̄2 − λ∂z1)
[
ψ−1(λ̄−1)

]†
= −(Az̄2 − λAz1)

[
ψ−1(λ̄−1)

]†
. (A.18)

This coincides with (II.65b) if we choose ψ(λ) =
[
ψ(λ̄−1)†

]−1
, i.e., eq. (II.67). With these

restrictions, the gl(N,C)-curvature F naturally descends to a u(N)-valued curvature.

In the noncommutative case, the vector bundle E has to be replaced by a free module over

R
2,2
θ . Accordingly, D = d+A is chosen to be a connection on the module E [99]. It is understood

that the above discussion can be applied analogously, taking into account that multiplication of

A and ψ becomes noncommutative.

A.2 Abelian pseudo-instantons

This appendix concludes our considerations with the discussion of a special class of abelian, i.e.,

U(1) solutions with finite action (in contrast to their commutative counterparts).3 We work in

the operator formalism. Let us introduce “shifted” operators acting on the two-oscillator Fock

space H:

Xµ := Aµ + i(θ−1)µνx
ν , (A.19)

where (θ−1)µσθ
σν = δνµ. The operator-valued field strength Fµν can be expressed in terms of the

shifted operators Xµ as

Fµν = [Xµ, Xν ] − i(θ−1)µν . (A.20)

The incarnation of the ncYM equations in this context is

[Xµ, [Xµ, Xν ]] = 0. (A.21)

They are, of course, automatically satisfied by Xµ subject to the ncSDYM equations (cf. [51])

[Xµ, Xν ] =
1

2
εµνρσ[X

ρ, Xσ] + i(θµν −
1

2
εµνρσθ

ρσ). (A.22)

Observe that the last term of the ncSDYM equations vanishes for self-dual θµν , i.e., θ = θ̃.

Switching to complex coordinates4 and assuming self-dual θµν from now on, eqs. (A.22) become

[Xz1 , Xz2 ] = [Xz̄1 , Xz̄2 ] = 0, (A.23a)

[Xz1 , Xz̄1 ] − [Xz2 , Xz̄2 ] = 0, (A.23b)

where Xzi := Azi + i(θ−1)i̄z̄
j and Xz̄i := Az̄i + i(θ−1)ı̄jz

j , i ∈ {1, 2}. It is easily checked that

X0
z1 = i(θ−1)11̄z̄

1, X0
z̄1 = i(θ−1)1̄1z

1, (A.24a)

X0
z2 = i(θ−1)22̄z̄

2, X0
z̄2 = i(θ−1)2̄2z

2, (A.24b)

3Noncommutative instantons in euclidean space were introduced in [136].
4We denote [zi, z̄j ] = iθi̄ and (θ−1)ı̄kθ

k̄ = δ
̄
ı̄ .
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i.e., Azi = Az̄i = 0 yields a (trivial) solution of (A.23).

New solutions X1 may be obtained by shift operator “dressing” of the solutions X0, namely

X1
z1 = SX0

z1S
†, X1

z̄1 = SX0
z̄1S

†, (A.25a)

X1
z2 = SX0

z2S
†, X1

z̄2 = SX0
z̄2S

†. (A.25b)

In these expressions, S and S† are shift operators acting on the two-oscillator Fock space H
according to

S†S = 1, SS† = 1 − P0, P0S = S†P0 = 0. (A.26)

Apparently, the representation of S on H is not unique (see, e.g., [1, 110] for various explicit

forms of S and S†). Here, P0 denotes the projector onto the ground state |0, 0〉 of the Fock space

H:

P0 = |0, 0〉〈0, 0|. (A.27)

The field strength for such configurations turns out to be of the form

Fziz̄i = [X1
zi , X

1
z̄i ] − i(θ−1)īı = −i(θ−1)īıP0 = − 1

2θ
P0, i ∈ {1, 2}. (A.28)

This coincides with the solution first presented in [1] for the euclidean case, namely on R
4. The

action for this type of solution is known to be finite; this is also the case here:

S1 = − 1

2g2
YM

(2πθ)2TrH Fziz̄jF z
iz̄j

=
4π2

g2
YM

. (A.29)

In the context of D-branes, solutions of type (A.28) have been interpreted as a D-brane of

codimension four sitting at the origin of a space-time filling D-brane [1]. This may be transferred

to our case.
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Appendix B

String theory conventions

B.1 Bosonic and N=1 string theories

In this section, we note the conventions used for bosonic and N=1 strings throughout the text.

In general, references [64, 65, 121, 146, 147, 93] provide detailed introductions into the basics of

(super)string theory.

Spacetime and world-sheet conventions. We formulate critical string theory on flat R
1,D−1

with D = 26 in the case of bosonic string theory and D = 10 in the case of N=1 superstring

theory. The metric on these spacetimes is taken in the “mostly plus” convention,

(ηµν) = diag(−1,+1, . . . ,+1) , (B.1)

the spacetime indices µ, ν running from 0 to D − 1. Spacetime indices are lowered and raised

with the help of ηµν and its inverse ηµν .

The Minkowski world-sheet is parametrized locally by coordinates σ and τ ; in superconformal

gauge, the metric on the world-sheet is ds2 ∝ −dτ2 + dσ2. The light-cone coordinates are

σ± = τ ± σ. The Wick rotation τ 7→ −iτ maps

σ+ 7→ −i(τ + iσ) =: −iz′ , (B.2a)

σ− 7→ −i(τ − iσ) = −iz̄′ ; (B.2b)

in coordinates z := ez
′
on the complex plane the world-sheet of an open string is mapped into

the upper half plane (points (σ, τ) with σ ∈ [0, π] are mapped to points z ∈ {ζ ∈ C| Im ζ ≥ 0}).

World-sheet actions. In this thesis, we restrict to open strings. In the case of superstrings,

they should be in the Neveu-Schwarz sector. We apply the doubling trick so that all fields are

(holomorphically) defined on the double cover Σ̃ of the world-sheet Σ. On Euclidean world-

sheets, the matter action for N=1 supersymmetric strings in superconformal gauge takes the

following form:

Smat =
1

4π

∫

Σ̃

dz ∧ dz̄
(

2

α′∂X
µ∂̄Xµ + ψµ∂̄ψµ

)
. (B.3)
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As usual, Xµ is the bosonic embedding coordinate (formally of weight 0), ψµ is its superpartner,

a Majorana-Weyl spinor1 of weight 1
2 . The ψµ form a fermionic first order system with λ = 1

2 .2

Each boson Xµ contributes +1 to the central charge of the conformal field theory, each fermion

ψµ contributes +1
2 . For an anomaly-free theory, the central charge of the matter system has to

be compensated by the central charge of the Faddeev-Popov ghosts for the reparametrization

symmetry on the world-sheet; their action reads

Sgh =
1

2π

∫

Σ̃

dz ∧ dz̄
(
b∂̄c+ β∂̄γ

)
. (B.4)

The reparametrization ghosts b and c also make up a fermionic first order system with λ = 2,

i. e., their respective weights are 2 and 1, respectively. Their world-sheet superpartners β and γ

similarly make up a bosonic first order system with λ = 3
2 , their respective weights are 3

2 and

−1
2 . The action for bosonic strings in conformal gauge can be obtained from (B.3) and (B.4)

by setting ψµ, β, and γ formally to zero. Since the central charge of the bc system is −26 and

of the βγ system is +11, we obtain the above critical dimensions D from the condition that the

total central charge should vanish.

Mode expansions. The Minkowski counterparts of both actions are real, if we choose all fields

to be hermitean. The doubling trick implies that all fields are holomorphically (apart from

the punctures) defined on the entire world-sheet Σ̃. We will need the mode expansions of the

following fields in σ, τ :

Xµ(σ, τ) = xµ0 − 2iα′pµ0τ + i
√

2α′
∑

m∈Z,m6=0

αµm
m
e−mτ cosmσ , (B.5a)

c±(σ, τ) =
∑

m∈Z

cme
−m(τ±iσ) = c(σ, τ) ± iπb(σ, τ) , (B.5b)

b±(σ, τ) =
∑

m∈Z

bme
−m(τ±iσ) = πc(σ, τ) ± ib(σ, τ) . (B.5c)

The c± are left- and right-movers of the c-ghosts, respectively; the same holds true for the b±

in the case of the b-antighosts. The πb and πc are canonically conjugate momenta to the b and

c. The mode expansion for Xµ is chosen such that the Xµ-direction is a Neumann-Neumann

direction. As usual, the momentum eigenstate is denoted by |0, p〉 with αµm>0|0, p〉 = 0. For the

formulation of overlap equations in string field theory, eq. (B.5a) is often rewritten as

Xµ(σ) = xµ0 +
√

2
∑

m∈Z,m6=0

xµm cosmσ (B.6)

at τ = 0. Obviously, xµm = i
√
α′

m

(
αµm − αµ−m

)
.

1Strictly speaking, they are only Majorana-Weyl spinors on a Minkowskian world-sheet.
2The parameter λ is equal to the conformal weight of the conformal field b in a first order system bc.
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Operator product expansions. The actions are normalized in such a way that the funda-

mental operator product expansions (OPEs) for the fields read

Xµ(z)Xν(w) ∼ −α
′

2
ln(z − w) , (B.7a)

ψµ(z)ψν(w) ∼ ηµν

z − w
, (B.7b)

c(z)b(w) ∼ 1

z − w
, (B.7c)

γ(z)β(w) ∼ 1

z − w
, (B.7d)

all other OPEs are regular. In terms of the oscillators from eq. (B.5), the OPEs (B.7a) and (B.7c)

correspond to the (anti-)commutation relations [αµm, ανn] = mδm+n,0η
µν , [xµ0 , p

ν
0 ] = iηµν , and

{bm, cn} = δm+n,0. It is common practice to introduce oscillators aµm :=
√
mαµm and a†µm :=√

mαµ−m for m > 0 with normalized commutation relations [aµm, a
†ν
n ] = ηµνδmn; the zero-modes

are splitted as xµ0 = i
√

α′

2 (aµ0 − aµ†0 ) and pµ0 = 1√
2α′

(aµ0 + aµ†0 ).

Ghost currents and vacua. W.r.t. to the U(1) current for the bc system,3

Jbc = −bc , (B.8)

the field b has charge −1, whereas c has charge +1. Similarly, β and γ have charges −1 and +1

w.r.t.

Jβγ = −βγ . (B.9)

The background charge for the fermionic bc system is Qbc = 1 − 2 × 2 = −3, the bosonic βγ

system has background charge Qβγ = −(1 − 2 × 3
2) = 2. The charges of the operators in a

correlation function on a disk have to add up to −Q in both conformal field theories in order to

give a nonvanishing result.

The SL(2,R) invariant vacuum |0〉bc is annihilated by bm≥−1 and cm≥2. The vacuum |↓〉bc :=

c1|0〉bc is killed by bm≥0 and cm≥1; and the vacuum |↑〉bc := c0|↓〉bc is annilihated by bm≥1 and

cm≥0. The easiest way to deal with the anomalies of interaction vertices in string field theory is

by using the following convention for normal ordering the zero-mode of Jbc:

Jbc,0 =
∞∑

m=1

(c−mbm − b−mcm) + c0b0 − 1
2 . (B.10)

If we denote the Jbc,0-eigenvalue of ket-states by #bc, this is a “symmetric” choice with

#bc(|↑〉bc) = 1
2 , #bc(|↓〉bc) = −1

2 and #bc(|0〉bc) = −3
2 . Since b and c are Grassmann-odd,

the Grassmannality of a state which consists of αµ−m and b−m, c−m acting onto |0〉bc is given by

its #bc-grading plus 3/2. Note, however, that the charge of an operator (rather than a state) is

measured by the commutator of #bcwith this operator (or, alternatively, by the contour integral

of Jbc around this operator); therefore, the choice of different normal ordering constants does

3We always assume normal ordering for composite operators.
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not affect ghost numbers of operators. An operator in the combined X-bc conformal field theory

is Grassmann-even if and only if its bc-charge is even.

The “symmetric” choice (B.10) is the unique choice for which the zero-mode of the current

Jbc is antihermitean. Choosing a particular normal ordering constant in Jbc,0 basically fixes the

ghost number of dual states. Let us briefly review this argument for a general fermionic first

order system with U(1) current J , energy-momentum tensor T and background charge Q:

Using the mode expansions

T (z) =
∑ Ln

zn+2
, (B.11)

J(z) =
∑ Jm

zm+1
, (B.12)

one can show that the commutation relations between the modes read [121]

[Ln, Jm] =
Q

2
m2δm+n,0 −mJm+n . (B.13)

The normalization of J0 here is chosen in such a way that the SL(2,R) invariant vacuum has

ghost number Q
2 . This is the above symmetric choice generalized to arbitrary fermionic first

order systems. For such systems, L†
n = L−n and J†

m = −J−m for m 6= 0. The antihermiticity of

J0 can then be inferred from eq. (B.13):

J†
0 = −[L−1, J1]

† +
Q

2
= −[L1, J−1] +

Q

2
= −J0 . (B.14)

Now let Op be an operator with U(1) charge p, i. e., [J0,Op] = pOp, and |q〉 and |q′〉 two states

of charge q and q′, respectively. Then from

p 〈q′|Op|q〉 = 〈q′|[J0,Op]|q〉 = −(q + q′)〈q′|Op|q〉 (B.15)

we can conclude that we have to insert an operator of charge p = −q − q ′ in order to get a

nonvanishing result. Thus, we can normalize the nonvanishing inner products as 〈−q|q〉 = 1,

e. g. 〈↓|↑〉 = 1.

Bosonization of superghosts. For many purposes it turns out to be useful to reexpress the

βγ system in terms of a bosonic field φ of weight 0 and the OPE

φ(z)φ(w) ∼ − ln(z − w) (B.16)

and a fermionic first order system with λ = 1 consisting of a weight 0 field ξ and a conjugate

field η of weight 1; their OPE is given by

η(z)ξ(w) ∼ 1

z − w
. (B.17)

Then it is easy to check that the βγ sytem can be reproduced by setting

β = e−φ∂ξ , γ = ηeφ . (B.18)
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The U(1) current associated to the boson φ is Jφ = −∂φ. The ηξ system has its own U(1) current

Jηξ = ξη under which ξ carries one positive and η one negative unit of charge. It features a

background charge Qηξ = 1 − 2 × 1 = −1; on a disk, e. g., one ξ0-insertion (and no explicit

further ξ- and η-insertions) saturates the anomaly of Jηξ. Vertex operators constructed from

β and γ do not contain ξ0 (cf. eq. (B.18)); therefore, we have effectively enlarged the so-called

small Hilbert space to the large Hilbert space containing ξ0 [52]. Witten’s cubic superstring field

theory can be formulated in the small Hilbert space, Berkovits’ nonpolynomial superstring field

theory, however, requires the large Hilbert space. With the help of these two new currents, we

can define linear combinations

Jgh = Jbc − Jηξ = −bc− ξη , (B.19)

Jpic = Jφ + Jηξ = −∂φ+ ξη . (B.20)

They measure the total ghost number and the picture charge, respectively. The weights, ghost

and picture numbers of the world-sheet fields are collected in table B.1.

The mode expansions for η and ξ read

ξ±(σ, τ) =
∑

m∈Z

ξme
−m(τ±iσ) = ξ(σ, τ) ± iπη(σ, τ) , (B.21a)

η±(σ, τ) =
∑

m∈Z

ηme
−m(τ±iσ) = πξ(σ, τ) ± iη(σ, τ) . (B.21b)

The interpretation of the ξ±, η±, πη, and πξ are as in the case of the bc system. In terms of

the above oscillators, the OPE (B.17) takes the form {ξm, ηn} = δm+n,0. There are two vacua of

the same energy, the SL(2,R) invariant vacuum |0〉ηξ =: |↓〉 with ξm>0|↓〉 = 0 and ηm≥0|↓〉 = 0,

and the vacuum |↑〉 := ξ0|↓〉 with ξm≥0|↓〉 = 0 and ηm>0|↓〉 = 0. For the zero-mode of Jηξ, we

choose the following normal ordering:

Jηξ,0 =

∞∑

m=1

(ξ−mηm − η−mξm) + ξ0η0 − 1
2 . (B.22)

We denote its eigenvalue on ket-states by #ηξ. Then, the above choice is symmetric in the sense

that #ηξ(|↓〉) = −1
2 and #ηξ(|↑〉) = 1

2 .

N=1 superconformal algebras and picture changing. The energy-momentum tensor for

the matter and ghost parts are

Tmat = − 1
α′∂X

µ∂Xµ − 1
2ψ

µ∂ψµ , (B.23)

Tgh = −(∂b)c− 2b∂c− 1
2(∂β)γ − 3

2β∂γ . (B.24)

Together with

Gmat = i
√

2
α′ψ

µ∂Xµ , (B.25)

Ggh = (∂β)c+ 3
2β∂c− 2bγ (B.26)
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operator ∂Xµ ψµ b c β γ e`φ ξ η T G Q X Y

weight h 1 1
2 2 −1 3

2 −1
2 −1

2`
2 − ` 0 1 2 3

2 0 0 0

ghost no. #gh 0 0 0 0 −1 +1 0 −1 +1 0 0 +1 0 0

pict. no. #pic 0 0 0 0 0 0 ` +1 −1 0 0 0 +1 −1

ws. statistics B F F F B B
F (` odd)

B (` even)
F F B F F B B

Table B.1. Weights, ghost and picture numbers and world-sheet statistics of

fields and operators for N=1 strings.

they form N=1 superconformal algebras (SCAs). The combined matter-ghost system has a

residual BRST symmetry under transformations generated by

JBRST = cTmat + γGmat + bc∂c+ 3
4(∂c)βγ + 1

4c(∂β)γ − 3
4cβ∂γ − bγ2 . (B.27)

Its zero-mode is the BRST-operator Q. The picture raising operator is defined as

X (z) =

∮
dw

2πi
JBRST(w)ξ(z)

= eφGmat(z) + be2φ∂η(z) + ∂(be2φη)(z) + c∂ξ(z) .

(B.28)

The integration contour in the first line encircles z. The picture raising operator is a conformal

field of weight 0. In the large Hilbert space, it has an inverse [133]

Y (z) = c∂ξe−2φ . (B.29)

It satisfies limz→w X (z)Y (w) = limz→w Y (z)X (w) = 1.

B.2 N=2 string theory

In this section, we note the conventions for string theory with extended N=2 world-sheet su-

persymmetry used throughout the text. In general, [125, 104, 89, 105, 137] provide detailed

introductions to this topic. However, we will mostly deal with nonpolynomial string field theory

for N=2 strings in this thesis, for which a twisted version of the N=2 string is needed. There-

fore, we omit N=2 superconformal ghosts and many of the intricacies connected to them almost

completely from our discussion.

It should, however, be mentioned that just as for bosonic and for superstrings, the critical

dimension of untwisted N=2 string theory can be determined from anomaly considerations.

Namely, the N=2 world-sheet reparametrization superghost system has a central charge of −6,

which has to be compensated by matter fields. It turns out that this is the case for four real

bosons Xµ and four so(1, 1) Dirac spinors ψµ (their four NSR partners, µ ∈ {1, . . . , 4}). It was

shown that an anomaly-free quantization is only possible in signature (2, 2) or (4, 0) [38]. The
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theory in 4 + 0 dimensions does not possess any on-shell degrees of freedom. Therefore, we

restrict in this thesis to N=2 string theory on R
2,2 or, equivalently, on C

1,1.

Spacetime conventions. As stated above, we work on flat C
1,1 with hermitean metric

(ηaā) = diag(−1,+1) , (B.30)

for a = 0, 1 and ā = 0̄, 1̄. We will see, however, that nonpolynomial N=2 string field theory

can be formulated in any even dimension, irrespective of the signature. Therefore, we mostly

formulate twisted N=2 string field theory in an arbitrary even dimension D. In this case, η

denotes an arbitrary Kähler metric on the spacetime manifold, which satisfies ηaāη
aā = D

2 . All

indices now run from 0 to D
2 − 1.

The world-sheet conventions agree with those for N=1 string theory.

World-sheet action. The Kähler spacetime is naturally parametrized by D/2 complex bosons

Za,

Z0 := X1 + iX2 , Z1 := X3 + iX4 , . . . ,

Z̄ 0̄ = X1 − iX2 , Z̄ 1̄ := X3 − iX4 , . . . .
(B.31)

Their NSR supersymmetry partners can be combined into

ψ+0 := ψ1 + iψ2 , ψ−0̄ := ψ1 − iψ2 , ψ+1 := ψ3 + iψ4 , ψ−1̄ := ψ3 − iψ4 , . . . . (B.32)

In superconformal gauge, the world-sheet action for the matter fields reads (on a Euclidean

world-sheet Σ with double cover Σ̃)

S =
1

4πα′

∫

Σ̃

dz ∧ dz̄ (∂Z · ∂̄Z̄ + ∂̄Z · ∂Z̄) +
1

8π

∫

Σ̃

dz ∧ dz̄ (ψ+ · ∂̄ψ− + ψ− · ∂̄ψ+) . (B.33)

Here, the dots denote a contraction with ηaā, e. g., ∂Z · ∂̄Z̄ = ηaā∂Z
a∂̄Z̄ ā. For convenience, we

will often omit the spacetime indices on fields.

Operator product expansions. The action is normalized in such a way that the operator

product expansions are the ones which should be expected from the transition from real to

complex coordinates:

Za(z)Z̄ ā(w) ∼ −α′ηaā ln |z − w|2 , (B.34a)

ψ+a(z)ψ−ā(w) ∼ 2 ηaā

z − w
, (B.34b)

cf. eqs. (B.7a) and (B.7b). With their help, it is easy to see that

T = − 1

α′∂Z · ∂Z̄ − 1

4
(ψ+ · ∂ψ− + ψ− · ∂ψ+) ,

G+ =
i√
2α′ψ

+ · ∂Z̄ , G− =
i√
2α′ψ

− · ∂Z , (B.35)

J =
1

2
ψ+ · ψ−
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form an N=2 superconformal algebra with central charge c = 3D/2 (i. e., c = 6 in D = 4,

as required from the ghosts).4 The next step will be to embed this algebra into a small N=4

superconformal algebra and subsequently twist it such that the central charge of the twisted

algebra vanishes. This will be done in appendix C.

4Note that the superscripts ± on each quantity label the charge under the U(1) current J .
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Small N=4 superconformal algebra

C.1 Realization in terms of N=1 multiplets

Generators of the N=2 SCA. For the construction of an anomaly-free N=1 superstring

theory, ten massless matter multiplets are needed. A massless N=1 matter multiplet (X,ψ)

consists of real bosons X (the ten string coordinates) and so(1, 1) Majorana spinors ψ (their

superpartners, each splitting up into a left- and a right-handed Majorana-Weyl spinor). Due

to the reparametrization invariance of the related supersymmetric sigma model its covariant

quantization entails the introduction of world-sheet (anti)ghosts b and c and their superpartners

β and γ as described in appendix B.1. The superghosts are bosonized according to (B.18). The

realization of the previously mentioned N=2 superconformal algebra in terms of these multiplets

is given by [28]

T = TN=1 +
1

2
∂(bc+ ξη) ,

G− = b , G+ = JBRST + ∂2c+ ∂(cξη) ,

J = Jgh ,

(C.1)

where Jgh is the total ghost number current (B.19) and TN=1 = Tmat + Tgh is the energy-

momentum tensor given in (B.23) and (B.24). TN=1 spans a Virasoro algebra with central

charge c = 0 and JBRST is the BRST current. These generators make up an N=2 superconformal

algebra with c = 6, i. e., with the same central charge as the critical N=2 superstring.

Generators of the N=4 SCA. A straightforward method for calculating scattering amplitudes

would be to introduce an N=2 superghost system with cgh = −6 compensating the positive

central charge [27]. However, there is a more elegant method [28]: One can embed the N=2

algebra into a small N=4 algebra (as described above) and afterwards twist by the U(1) current

J . Then,

G̃− = [Q, bξ] = −bX + ξTN=1 , G̃+ = η ,

J−− = bξ , J++ = cη ,
(C.2)
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where X denotes the picture raising operator and Q is the BRST-operator of the original N=1

string theory. These generators together form a small N=4 superconformal algebra with c = 6.

The twist [29] T → T + 1
2∂J in this case amounts to removing the term 1

2∂(bc + ξη) from T ,

thereby reproducing the original TN=1 with c = 0. It shifts the weight of each conformal field

by −1/2 of its U(1) charge — in particular, G+ and G̃+ after twisting become fermionic spin 1

generators which subsequently serve as BRST-like currents. Their zero-modes are exactly Q

and η0, respectively.

C.2 Realization in terms of N=2 multiplets

Generators of the N=4 SCA. In the critical dimension, the generators (B.35) form an N=2

superconformal algebra of central charge 6. As above, one way to obtain an anomaly-free theory

would be to introduce N=2 superghosts compensating this central charge. Equivalently, the

N=2 super Virasoro algebra can be embedded into a small N=4 superconformal algebra [28]

which after twisting has vanishing central charge. Note that in this approach, contrary to the

N=1 case, we do not need to introduce reparametrization ghosts. The N=4 extension is achieved

by adding the currents

J++ =
1

4
εab ψ

+aψ+b , J−− =
1

4
εāb̄ ψ

−āψ−b̄ ,

G̃+ =
i√
2α′ εab ψ

+a∂Zb , G̃− =
i√
2α′ εāb̄ ψ

−ā∂Z̄ b̄ ,
(C.3)

where we choose the convention that ε01 = ε0̄1̄ = −ε01 = −ε0̄1̄ = 1. In checking the operator

product expansions, the identity

εabη
bāεāb̄ = ηab̄ (C.4)

turns out to be useful. If the theory is formulated on general hyperkähler manifolds,1 εab and εāb̄
have to be replaced by the components of nondegenerate (2, 0)- and (0, 2)-forms in such a way

that a similar relation is satisfied. Twisting T → T ′ := T + 1
2∂J , the new energy-momentum

tensor takes the form

T ′ = − 1

α′ ηaā∂Z
a∂Z̄ ā − 1

2
ηaāψ

−ā∂ψ+a . (C.5)

W.r.t. the twisted energy-momentum tensor, ψ+ now has weight 0, and ψ− has weight 1. They

form a fermionic first order system with λ = 1, just as ξ and η in the N=1 case. In fact, our

vertex constructions for the ψ+ψ− system in chapter VI remain valid for the ηξ system upon

substitution ψ+ 7→
√

2ξ and ψ− 7→
√

2η. The rescaling is necessary because of the different

normalizations of the OPEs (B.17) and (B.34b).

1Untwisted N=4 world-sheet supersymmetry requires that the spacetime manifold is hyperkähler. It is unclear

to me which properties the spacetime manifold has to satisfy for twisted N=4 supersymmetry. For the introduction

of the nondegenerate (2, 0)- and (0, 2)-forms it is (naturally) necessary that its (real) dimension D is at least 4.

String field theory anomalies for N=2 strings do not seem to impose further constraints on the dimension.
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In analogy to the bc and the ξη systems, we can introduce momenta πψ± conjugate to ψ±.

As fields of integral weight, both ψ+ and ψ− are now integer moded:

ψ+(σ, τ) ± iπψ−(σ, τ) =
∑

m∈Z

ψ+
me

−m(τ±iσ) , (C.6a)

πψ+(σ, τ) ± iψ−(σ, τ) =
∑

m∈Z

ηme
−m(τ±iσ) . (C.6b)

The OPE (B.34b) implies {ψ+a
m , ψ−ā

n } = δm+n,0η
aā. The spin 0 field ψ+ has a zero-mode on

the sphere. Thus, in analogy to the ηξ system (and the bc system) there are two vacua at

the same energy level: the bosonic SL(2,R)-invariant vacuum |0〉 =: |↓〉 is annilihated by the

Virasoro modes Lm≥−1 and ψ+
m>0, ψ

−
m≥0; its fermionic partner, |↑〉 := ψ+

0 |↓〉, is annihilated by

ψ+
m≥0, ψ

−
m>0. To get nonvanishing fermionic correlation functions, we need one ψ+-insertion,

i.e., 〈↓|↓〉 = 〈↑|↑〉 = 0, 〈↓|↑〉 = 1.

For the zero-mode of J in (B.35), we choose the following normal ordering:

J0 = 1
2

∞∑

m=1

(ψ+
−mψ

−
m − ψ−

−mψ
+
m) + 1

2ψ
+
0 ψ

−
0 − D

4 . (C.7)

We denote its eigenvalue on ket-vectors by #ψ. Then, the above choice is symmetric in the

sense that #ψ(|↓〉) = −D
4 and #ψ(|↑〉) = D

4 . Since the normal ordering constant is immaterial

in commutators, operators will still have integral #ψ-charge. This charge modulo two measures

the Grassmannality of the operator.

Twisted action. The world-sheet action for the twisted conformal field theory takes the same

form as the untwisted action in superconformal gauge, but now, the field contents is different:

S′ =
1

4πα′

∫

Σ̃

dz ∧ dz̄ (∂Z · ∂̄Z̄ + ∂̄Z · ∂Z̄) +
1

4π

∫

Σ̃

dz ∧ dz̄ ψ+ · ∂̄ψ− . (C.8)

Now, ψ+ and ψ− are fields of conformal weights 0 and 1, respectively. Again, the action is

normalized in such a way that the operator product expansions are (B.34). To prove the reality

of this action, we consider the fermionic part of its counterpart in Minkowski space,

S′
M = − i

2π

∫

Σ

dσ ∧ dτ
(
ψ+(σ−)∂+ψ

−(σ−) + ψ̃+(σ+)∂−ψ̃
−(σ+)

)
. (C.9)

This is indeed real if we choose all fields to be hermitean. The fact that ψ+ and ψ− are no

longer connected via complex conjugation dovetails with the different shifts of their respective

weights.

It is easy to check that the action (C.8) is invariant under transformations generated by the
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currents in the twisted small N=4 SCA. On flat R
2,2, they are seen to be:

T ′ = − 1

α′∂Z · ∂Z̄ − 1

2
ψ− · ∂ψ+ :

δψ+a = ∂ψ+a ,

δψ−ā = ∂ψ−ā ,

δZa = ∂Za ,

δZ̄ ā = ∂Z̄ ā ;

(C.10a)

J =
1

2
ψ+ · ψ− :

δψ+a = ψ+a ,

δψ−ā = −ψ−ā ;
(C.10b)

J++ =
1

4
εab ψ

+aψ+b :
δψ−0̄ = ψ+1 ,

δψ−1̄ = ψ+0 ;
(C.10c)

J−− =
1

4
εāb̄ ψ

−āψ−b̄ :
δψ+0 = ψ−1̄ ,

δψ+1 = ψ−0̄ ;
(C.10d)

G+ =
i√
2α′ψ

+ · ∂Z̄ :
δψ−ā = i

√
2
α′∂Z̄

ā ,

δZa = −i

√
α′

2 ψ
+a ;

(C.10e)

G− =
i√
2α′ψ

− · ∂Z :
δψ+a = i

√
2
α′∂Z

a ,

δZ̄ ā = −i

√
α′

2 ψ
−ā ;

(C.10f)

G̃+ =
i√
2α′ εab ψ

+a∂Zb :

δψ−0̄ = −i
√

2
α′∂Z

1 ,

δψ−1̄ = −i
√

2
α′∂Z

0 ,

δZ̄ 0̄ = −i

√
α′

2 ψ
+1 ,

δZ̄ 1̄ = −i

√
α′

2 ψ
+0 ;

(C.10g)

and G̃− =
i√
2α′ εāb̄ ψ

−ā∂Z̄ b̄ :

δψ+0 = −i
√

2
α′∂Z

1 ,

δψ+1 = −i
√

2
α′∂Z

0 ,

δZ0 = −i

√
α′

2 ψ
−1̄ ,

δZ1 = −i

√
α′

2 ψ
−0̄ .

(C.10h)

This might reassure us that the action (C.8) is indeed the correct one.

C.3 Twisted N=4 superconformal algebra

In this section, we give the operator product expansions of a twisted small N=4 superconformal

algebra. This algebra is an essential ingredient of Berkovits’ superstring field theory. The twist

T 7→ T ′ = T + 1
2∂J reduces the conformal weights of all operators by half of their U(1) charge,

since an operator O of conformal weight h w.r.t. T and charge q has conformal weight h − 1
2q
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w.r.t. T ′,

T ′(z)O(w) ∼ h

(z − w)2
O(w) +

1

z − w
∂O(w) +

1

2

∂

∂z

(
q

z − w
O
)

=
h− 1

2q

(z − w)2
O(w) +

1

z − w
∂O(w) .

(C.11)

Therefore, the operator product expansions with T ′ read:

T ′(z)T ′(w) ∼ 2T ′(w)

(z − w)2
+
∂T ′(w)

z − w
, (C.12a)

T ′(z)G+(w) ∼ G+(w)

(z − w)2
+
∂G+(w)

z − w
, (C.12b)

T ′(z) G̃+(w) ∼ G̃+(w)

(z − w)2
+
∂G̃+(w)

z − w
, (C.12c)

T ′(z)G−(w) ∼ 2G−(w)

(z − w)2
+
∂G−(w)

z − w
, (C.12d)

T ′(z) G̃−(w) ∼ 2G̃−(w)

(z − w)2
+
∂G̃−(w)

z − w
, (C.12e)

T ′(z) J++(w) ∼ ∂J++(w)

z − w
, (C.12f)

T ′(z) J−−(w) ∼ 2J−−(w)

(z − w)2
+
∂J−−(w)

z − w
, (C.12g)

Since J is not a conformal field, the OPE between T ′ and J is anomalous:

T ′(z)J(w) ∼ − D/2

(z − w)3
+

J(w)

(z − w)2
+
∂J(w)

z − w
. (C.12h)

Checking this OPE for N=2 matter multiplets, each ψ+ψ− first order system contributes −1 to

the coefficient of the anomalous third order pole.2

Operator product expansions with the U(1) current J determine the U(1) charge of the

generators, which is labeled by the superscripts ±:

J(z)G±(w) ∼ G±(w)

z − w
, (C.13a)

J(z) G̃±(w) ∼ ±G̃±(w)

z − w
, (C.13b)

J(z) J±±(w) ∼ ±2J±±(w)

z − w
. (C.13c)

2We remark that the central charge of the twisted superconformal algebra is indeed zero, since the fourth

order pole in the T ′T ′ OPE vanishes. For an untwisted superconformal algebra, the central charge also appears

as the third order pole in the TJ , the G+G−, and the eG+ eG− OPEs and the second order pole in the JJ and the

J++J−− OPEs. The fact that these poles do not vanish in the twisted superconformal algebra is a remnant of

its untwisted ancestor. Since the G+G− OPE, e. g., does not change under the twist, one can read off the central

charge of the original untwisted algebra from the third order pole of this OPE. The same holds true for all other

OPEs which do not contain the energy-momentum tensor (as a factor); in fact, all these OPEs are identical to

the OPEs in the untwisted algebra, with the additional replacement D
2
→ c

3
.
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Eq. (C.13c) together with

J(z) J(w) ∼ D/2

(z − w)2
, (C.14a)

J++(z) J−−(w) ∼ D/4

(z − w)2
+
J(w)

z − w
(C.14b)

is the statement that J, J++, and J−− form an affine su(2) Kac-Moody algebra of level 2 (for

N=1 strings) or an affine su(1, 1) Kac-Moody algebra of level D
2 (for N=2 strings), respectively.

Taking the operator product with J++ raises the U(1) charge by two units:

J++(z)G−(w) ∼ G̃+(w)

z − w
, (C.15a)

J++(z) G̃−(w) ∼ G+(w)

z − w
; (C.15b)

likewise, the operator product with J−− lowers the U(1) charge by two units:

J−−(z)G+(w) ∼ G̃−(w)

z − w
, (C.16a)

J−−(z) G̃+(w) ∼ G−(w)

z − w
. (C.16b)

The operator products of J++ with G+, G̃+ and of J−− with G−, G̃− are regular.

Finally, we have

G+(z)G−(w) ∼ D/2

(z − w)3
+

J(w)

(z − w)2
+
T ′(w)

z − w
, (C.17a)

G̃+(z) G̃−(w) ∼ − D/2

(z − w)3
− J(w)

(z − w)2
− T ′(w)

z − w
, (C.17b)

G+(z) G̃+(w) ∼ −2J++(w)

(z − w)2
− ∂J++(w)

z − w
, (C.17c)

G−(z) G̃−(w) ∼ −2J−−(w)

(z − w)2
− ∂J−−(w)

z − w
. (C.17d)

The operator products of G+ with G̃− and of G− with G̃+ are regular.



Appendix D

A cohomology theorem

In this appendix, we want to prove a theorem on the cohomology of a complex of vector spaces. It

assures that the cohomology is trivial iff there exists a contracting homotopy map. The theorem

in this thesis applies to the cases of BRST cohomology in the large Hilbert space, the cohomology

of η0 in the large Hilbert space, the (nonvanishing) cohomology of linear combinations of Q and

η0, the vanishing cohomology of the vacuum BRST operator (already in the small Hilbert space),

and many more. It is based on ideas in [48].

D.1 Proof of the theorem

Theorem. Let (V, d) denote the complex

. . . −→ Vn−1
dn−1

−→ Vn
dn

−→ Vn+1
dn+1

−→ Vn+2
dn+2

−→ . . .

of vector spaces. Then the cohomology of V is trivial iff there exists a homomorphism k = (kn)

of complexes of vector spaces, kn : Vn −→ Vn−1 such that

kd+ dk = id (D.1)

holds.

The statement (D.1) is the customary abbreviation for

kn+1dn + dn−1kn = idVn . (D.2)

Proof. Let us denote the vector space of dn-closed vectors by Zn(V ). The quotient of Vn by

Zn(V ) will be abbreviated by Nn(V ); it consists of those vectors in Vn which are not dn-closed

and decomposes Vn into Vn = Zn(V ) ⊕Nn(V ).

“⇐=”: First, let us assume that there exists a homomorphism k with the specified properties.

Obviously, this guarantees that each element v ∈ Zn(V ) is in the image of dn−1 since

v = (kn+1dn + dn−1kn)(v) = dn−1
(
kn(v)

)
.
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Thus, Zn(V ) = dn−1Vn−1, and the cohomology Hn(V ) is trivial.

“=⇒”: Now, let us assume that the cohomology of the complex is trivial. Then we have to

construct a map kn : Vn −→ Vn−1 satisfying eq. (D.2). By definition of Nn−1(V ), the restriction

dn−1|Nn−1(V ) : N
n−1(V ) −→ Zn(V ) has trivial kernel. Furthermore, it is also surjective since

Hn(V ) = {0}, i. e., Zn(V ) = dn−1Vn−1. Thus, it is an isomorphism; we call the inverse map

kn|Zn(V ) : Z
n(V ) −→ Nn−1(V ). The claim is now that on Zn(V ), the homomorphisms kn|Zn(V )

will satisfy eq. (D.2). Indeed, for an arbitrary v ∈ Zn(V ), we have

(kn+1dn + dn−1kn)(v) = dn−1kn(v) = v .

Finally, we have to extend this map to Nn(V ). There is some freedom in doing this; we can

choose any homomorphism kn|Nn(V ) : N
n(V ) −→ Zn−1(V ). In principle, kn|Nn(V ) := 0 will do

the job. Namely, for an arbitrary v′ ∈ Nn(V ) we have

(kn+1dn + dn−1kn)(v′) = v′ + dn−1dn−2(w) = v′ ,

where we have used that kn(v′) ∈ Zn−1(V ) and since Hn−1(V ) = {0}, there exists a w ∈ Vn−2

with kn(v′) = dn−2(w). 2

As a side remark, it should be mentioned that this ties in neatly into the mathematical

terminology of homological algebra: What we have just proven is the statement that the identity

on V is homotopy equivalent to the zero-map: Let (V, d), (W, d̃) be two complexes of objects

in an abelian category and f, g : V −→ W two morphisms between these complexes. Then, f

and g are called homotopy equivalent if there exists a morphism k = (kn) with kn : Vn −→ Vn−1

such that

kd+ dk = f − g . (D.3)

The corresponding diagram reads:

. . .
dn−1

- Vn
dn

- Vn+1
dn+1

- Vn+2
dn+2

- . . .

ª¡
¡
¡
¡
¡

kn+1

ª¡
¡
¡
¡
¡

kn+2

. . .
d̃n−1

- Wn

fn gn

? d̃n

- Wn+1

fn+1 gn+1

? d̃n+1

- Wn+2

fn+2 gn+2

? d̃n+2

- . . .

Whenever eq. (D.3) holds, f and g induce the same maps on the cohomology since cycles are in

the kernel of d, therefore (D.3) reduces to f − g = dk.

The above theorem shows that for two identical complexes of vector spaces, V = W , the

maps induced by f = id and g = 0 on the cohomology are the same: id∗ = 0∗ : H∗(V ) −→
H∗(V ) shows that the cohomology is indeed trivial. This means that f and g in this case are

quasi-isomorphisms. In general abelian categories, quasi-isomorphic complexes have the same

cohomology, but the converse is in general not true [179].
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D.2 Applications

The theorem applies (amongst others) to the following cases:

• Since {Cn,Bn} = 1 (cf. eq. (III.87)), it is guaranteed that the vacuum BRST operator in

cubic string field theory has vanishing cohomology. Therefore, there are no open string

excitations around the tachyon vacuum.

• Since there exists an operator K(z) := ξY (z) in the large Hilbert space with {K,Q} = 1

[133], the cohomology of the open superstring BRST operator is empty (only in the large

Hilbert space). In particular, the cohomology of G+ in Berkovits’ superstring field theory

is trivial.

• By virtue of {η0, ξ0} = 1 the cohomology of G̃+ in Berkovits’ superstring field theory is

empty.

• Non-trivial linear combinations G̃+ + λG+ of G+ and G̃+ in Berkovits’ superstring field

theory have non-trivial cohomology since there is no operator K with {K, G+ +λG̃+} = 1.

This can be seen from the following argument: The only possible candidate is a non-trivial

linear combination K = αK + βξ0. This ansatz leads to the requirement {η0 + λQ,αK +

βξ0} = αY + λβX + β + αλ
!
= 1. Due to the picture gradings of the involved operators,

this equation possesses no solution.
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Appendix E

Connections between field theory and string

field theory

In this appendix, we display some connections between noncommutative field theories and string

field theory. We review briefly the results of Douglas, Liu, Moore, and Zwiebach which show that

the star algebra is isomorphic to a continuous tensor product of Heisenberg algebras. Therefore,

star products may be computed just as ordinary Moyal products in a certain basis of the string

field algebra. This facilitates the computation of star products considerably. The projectors

introduced in section III.5 take a particularly simple form in this basis which can often be

recognized from their field theory counterparts.

Furthermore, we show that the zero-mode part of the string field equation for N=2 strings

contains the field theory self-duality equation. To this aim, string field theory in a B-field

background is discussed (but without developing this theory much further); it turns out that,

in the Seiberg-Witten limit, a discussion of the dressing approach leads to Lax operators acting

only on the oscillator (nonzero-mode) part of a string field.

E.1 Witten and Moyal star products

In this section, we briefly review the main ideas of [45], where a Moyal formulation of the Witten

vertex was introduced. It was shown that the star algebra is isomorphic to a continuous tensor

product of Heisenberg algebras; in a certain basis of the string field algebra, the star product can

be computed via ordinary Moyal products (cf. chapter II). These considerations were transferred

to the world-sheet fermion, ghost and superghost sectors in [17, 4, 49, 18, 14, 15] and can

be applied literally to the real and imaginary parts of the complexified world-sheet bosons in

N=2 string field theory. Here, we omit spacetime indices and consider only one real boson for

simplicity. To stress their operator properties, position and momentum operators are denoted

with hats in this section.
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E.1.1 Continuous basis

Discrete Fock space basis. The oscillator modes x̂n and p̂n of the open bosonic field opera-

tor (B.6) and its conjugate momentum,

X(σ) = x̂0 +
√

2

∞∑

n=1

x̂n cosnσ , πP̂ (σ) = p̂0 +
√

2

∞∑

n=1

p̂n cosnσ , (E.1)

can be related to the usual creation and annihilation operators an and a†n (with [an, a
†
m] = δnm)

through

x̂n = i

√
α′

n

(
an − a†n

)
, p̂n =

1

2

√
n

α′
(
an + a†n

)
(E.2)

for n 6= 0, and through

x̂0 = i

√
α′

2

(
a0 − a†0

)
, p̂0 =

1√
2α′
(
a0 + a†0

)
(E.3)

for the zero-modes. From the vacuum |0〉 annihilated by all an, n ≥ 0, one can construct a

p̂0-eigenstate by

|p〉 =
1

π1/4
exp

[
− α′

2
p2 +

√
2α′a†0p−

1

2
(a†0)

2
]
|0〉 (E.4)

so that |0〉 is the Bogoliubov transform of the vacuum |p0=0〉 annihilated by all an, n > 0, and

p0. Let H denote the bosonic string theory Fock space created by the a†n, n > 0, on the vacuum

|p0=0〉 endowed with the Witten star product. In terms of these oscillators, the star product of

two zero-momentum states can be realized through the three-string vertex

|V3〉 = exp
[
− 1

2

∑

r,s

∑

m,n≥1

ar†m(CM rs)mna
s†
n

]
|p=0〉1 ⊗ |p=0〉2 ⊗ |p=0〉3 , (E.5)

where r, s = 1, 2, 3 label the strings, Cmn = (−1)mδmn, and the explicit form of the matrices

V rs = CM rs is given in F.1 [66, 152]. The matrices (M rs)mn were diagonalized in [155], the

corresponding eigenvectors were used in [45] to define a new basis for H in which the Witten

star product is computable through simple Moyal products:1

Eigenvectors of Mrs

mn
. The eigenvectors v(κ) = (vm(κ)) of (M rs)mn are labeled by a contin-

uous parameter −∞ < κ <∞, i.e.,

∞∑

n=1

M rs
mnvn(κ) = µrs(κ)vm(κ) , (E.6)

and given by the generating function

fκ(z) =
∞∑

n=1

vn(κ)√
n
zn =

1

N(κ)1/2
1

κ
(1 − e−κ tan−1 z) (E.7)

1In [17], this program was carried out for the three-string vertex of nonzero momentum constructed from the

|0〉-vacuum.
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with N(κ) = 2
κ sinh πκ

2 and eigenvalues

µ(κ) = µ11(κ) = − 1

1 + 2 cosh πκ
2

,

µ12(κ) =
1 + 2 cosh πκ

2 + sinh πκ
2

1 + 2 cosh πκ
2

,

µ21(κ) =
1 + 2 cosh πκ

2 − sinh πκ
2

1 + 2 cosh πκ
2

.

(E.8)

Under the action of the twist matrix C, the eigenvectors transform as

∞∑

n=1

Cmnvn(κ) = −vm(−κ) , (E.9)

which suggests a separation of even and odd components according to

v2n(−κ) = −v2n(κ) , v2n+1(−κ) = v2n+1(κ) . (E.10)

The eigenvectors can be shown to be orthogonal and complete,

∞∑

n=1

vn(κ1)vn(κ2) = δ(κ1 − κ2) , (E.11)

∞∫

−∞

dκ vm(κ)vn(κ) = δmn . (E.12)

These relations allow for a separation of even and odd modes, respectively,

2
∞∑

n=1

v2n(κ1)v2n(κ2) = δ(κ1 − κ2) , 2
∞∑

n=1

v2n−1(κ1)v2n−1(κ2) = δ(κ1 − κ2) , (E.13)

2

∞∫

0

dκ v2m(κ)v2n(κ) = δmn , 2

∞∫

0

dκ v2m−1(κ)v2n−1(κ) = δmn , (E.14)

holding for κ1, κ2 > 0.

Continuous Fock space basis. In the above-mentioned basis in H, a†n and an are replaced by

e†κ :=
√

2
∞∑

n=1

v2n(κ)a
†
2n , o†κ := −

√
2i

∞∑

n=1

v2n−1(κ)a
†
2n−1 , (E.15)

and their hermitean adjoints. Either eq. (E.11) or eqs. (E.13) may be used to invert these

relations:

a†2n =
√

2

∞∫

0

dκ v2n(κ)e
†
κ , (E.16)

a†2n−1 =
√

2i

∞∫

0

dκ v2n−1(κ)e
†
κ . (E.17)
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The new oscillators satisfy the commutation relations

[eκ, e
†
κ′ ] = [oκ, o

†
κ′ ] = δ(κ− κ′) , [oκ, eκ′ ] = [oκ, e

†
κ′ ] = 0 . (E.18)

It should be noted that {κ ≥ 0} is a “fundamental region” for the κ-indices; only in this region

we have a pair of one annihilation and one creation operator eκ, e
†
κ (or oκ, o

†
κ), cf. (E.15). The

vacua for the eκ and oκ oscillators can be identified with the vacua for the an. Just as one can

combine conjugate position and momentum operators (x̂n, p̂n) out of harmonic oscillators an, a
†
n

(cf. (E.2)), we can form new position and momentum operators (x̂κ, q̂κ), (ŷκ, l̂κ) out of the new

oscillators (E.15) and their hermitean adjoints:

x̂κ :=
i√
2
(eκ − e†κ) , q̂κ :=

1√
2
(eκ + e†κ) , (E.19)

ŷκ :=
i√
2
(oκ − o†κ) , l̂κ :=

1√
2
(oκ + o†κ) . (E.20)

The eigenvalues of the new position operators will be denoted by x(κ) and y(κ), respectively.

In analogy to eigenstates of the position operator x̂0 the eigenstates of x̂κ, ŷκ take the following

form:

〈x, y| ≡ 〈x(κ), y(κ)| = 〈p0=0| exp
(
−

∞∫

0

dκ
[1
2
~X(κ) · ~X(κ) −

√
2i ~Aκ · ~X(κ) − ~Aκ · ~Aκ

])
(E.21)

with ~X(κ) = (x(κ), y(κ)) and ~Aκ = (eκ, oκ). Note that these position eigenstates are indepen-

dent of κ and satisfy

〈x, y|x′, y′〉 = δ
[
x(κ) − x′(κ)

]
δ
[
y(κ) − y′(κ)

]
. (E.22)

As mentioned in section III.2, string functionals are associated to states via

Ψ[x, y] = 〈x, y|Ψ〉 . (E.23)

By a comparison of the three-string vertex (E.5) in terms of the new oscillators with the

integral kernel representation of the Moyal product between two (noncommutative) spacetime

coordinates the authors of [45] identified the Witten star product with a continuous tensor

product (over κ) of Moyal products (between x(κ) and y(κ)) so that the following commutation

relation holds:

[x(κ), y(κ′)]? = 2i tanh
πκ

4
δ(κ− κ′) ≡ i θ(κ)δ(κ− κ′) . (E.24)

This identification works in the bosonic matter sector only up to an (infinite) proportionality

constant.

E.1.2 Projectors in the continuous basis

Sliver state. The sliver state in the matter sector was introduced in section III.5.1. Since

eqs. (E.8) and (E.24) yield µ(κ) = θ2−4
12+θ2

, the sliver state can be rewritten [35] in the continuous
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basis (E.15) as

|Ξ〉 = N ′ exp


−1

2

∞∫

0

dκ
θ − 2

θ + 2
(e†κe

†
κ + o†κo

†
κ)


 |p0=0〉 (E.25)

with a (divergent) normalization constant N ′. Via (E.23), this corresponds to a functional

Ξ[x(κ), y(κ)] ≡ 〈x(κ), y(κ)|Ξ〉 = ND exp


−

∞∫

0

dκ
x(κ)2 + y(κ)2

θ(κ)


 , (E.26)

where the normalization factor N is given by

N = exp

(
logL

2π

∞∫

0

dκ log
16

12 + θ2

)
(E.27)

in D spacetime directions if one approximates the infinite K1 matrix in [155] by an L×L-matrix.

Butterfly states. The family of butterfly states was introduced in section III.5.2. The corre-

sponding functional of ~X(κ) =
(
x(κ), y(κ)

)
is given by [53]

Bα[x(κ), y(κ)] ≡ 〈x(κ), y(κ)|Bα〉 = Ñ exp
(
− 1

2

∞∫

0

dκ ~X(κ)L(κ) ~X(κ)
)

(E.28)

with some infinite normalization constant Ñ and the matrix

L(κ) = coth
(πκ

4

)(tanh(πκ(2−α)
4α ) 0

0 coth(πκ(2−α)
4α )

)
. (E.29)

In the limit α→ 0 we get

L(κ) = coth
(πκ

4

)(1 0

0 1

)
(E.30)

in agreement with eqs. (E.24) and (E.26).

Translating the Moyal product for each κ to the operator formalism, cf. chapter II, it should

be possible to classify all matter projectors in the star algebra.

E.2 Relation between field theory and string field theory discussions

In this section, we want to clarify the relation of the field theory discussion in chapter II to N=2

string field theory in the presence of a B-field. In the next paragraph, we will show that the

zero-mode part of the string field theory equation of motion contains the field theory self-duality

equation. After that, it will be argued that, in the Seiberg-Witten limit, an analogous discussion

of the dressing approach (see chapter IV) leads to Lax operators acting only on the oscillator

(nonzero-mode) part of a string field.2

2Since no special form of the star product was demanded in chapter IV, the discussion there is equally well

valid in the case of nonvanishing B-field.
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Field theory content of string field theory. Let us first briefly show that the gauge-fixed

self-duality equation (II.74) is contained in the equation of motion of nonpolynomial string field

theory for N=2 strings [19, 26, 107] (for finite α′). Its equation of motion is given in eq. (III.79).

Recall the implementation of G+ and G̃+ in terms of world-sheet fields Z, Z̄ and ψ±,

G+ =
i√
2α′ ηi̄ψ

+i∂Z̄j and G̃+ =
i√
2α′ εijψ

+i∂Zj . (E.31)

Here, ηi̄ denotes the (pseudo-)Kähler spacetime metric with non-vanishing components η11̄ =

−η22̄ = 1; for the antisymmetric tensor we choose the convention that ε12 = −1. For compati-

bility with our field theory conventions, we have chosen to denote holomorphic spacetime indices

by i, j ∈ {1, 2}; the 2-direction is the time direction. Taking into account the bosonic operator

product expansions

Zi(w,w)Z̄j(w′, w′) ∼ −2α′ηi̄ ln |w − w′|2, Zi(w,w)Zj(w′, w′) ∼ 0, Z̄i(w,w)Z̄j(w′, w′) ∼ 0,

(E.32)

we see that due to (III.71) G+ and G̃+ act as derivatives on string fields containing only world-

sheet bosons. Concretely, the equations of motion (III.79) for such string fields can be written

as

ψ+1
0 ψ+2

0 ηi̄∂z̄j

(
e−Φ∂zieΦ

)
+ . . . = 0. (E.33)

Here, the bosonic zero-modes zi and z̄j coincide with the spacetime coordinates used in sec-

tion II.4.3; ψ+i
0 denote the zero-modes of ψ+i. The dots indicate the oscillator-dependent part

of the equation of motion. The zero-mode part in (E.33) coincides with the remaining self-duality

equation (II.74) in the Yang gauge (II.71) if we identify h(zi, z̄i) = eΦ(zi,z̄i) (cf. (II.71b)).

In the same way, the linear equation given in (IV.18) includes the field theory Lax pair (II.72).

For A = e−ΦG+eΦ, it can be written as

0 = {G̃+ + λG+ + λA}Ψ (E.34)

=
1

2

{
ψ+1

0

(
∂z̄2 − λ∂z1 − λe−Φ∂z1e

Φ
)

+ ψ+2
0

(
∂z̄1 − λ∂z2 − λe−Φ∂z2e

Φ
)

+ . . .
}

Ψ.

Because ψ+1
0 and ψ+2

0 are mutually independent, the zero-mode part coincides with (II.72).

Star product in the Seiberg-Witten limit. Now we will scrutinize the Seiberg-Witten limit

of string field theory in a B-field background and argue that, in this limit, the above BRST-like

operators G+ and G̃+ act only on the oscillator-part of a string field eΦ.3 In order to avoid

clumsy notation, we decompose the bosons Z i into their real and imaginary parts again. The

fermions will be left in complex notation since they cannot easily be decomposed in a similar way

(recall that they have different weight after twisting). The metric will be taken either in real or

in complex coordinates and denoted by the same symbol. In covariant string field theory, strings

are glued with Witten’s star product identifying the left half of the first string with the right half

of the second string. This product is noncommutative even without a B-field background, but

3This argument is along the lines of [188, 160].
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in order to make contact with the discussion of ncSDYM in this thesis, we switch on a constant

B-field.4 Witten’s star product for our purposes will be computed in an oscillator representation

of the three-vertex 123〈V3| joining two string states |A〉1 and |B〉2 according to

3〈C| = 123〈V3||A〉1|B〉2 (E.35a)

with 123〈V3| =

∫
d4p(1)d4p(2)d4p(3)δ(p(1) + p(2) + p(3))(〈0, p| ⊗ 〈0, p| ⊗ 〈0, p|) ⊗
(
〈↑↑↓| + 〈↑↓↑| + 〈↓↑↑|

)
exp(−Emat) (E.35b)

with

Emat =
1

2

∑

m,n≥1

Gµνa
(r)µ
m V rs

mna
(s)ν
n +

√
α′
∑

n≥1

Gµνp
(r)µV rs

0na
(s)ν
n +

α′

2
p(r)µV rr

00 p
(r)νGµν

+
i

2
θµνp

(1)µp(2)ν +
1

4

∞∑

k=1,l=0

ψ
+(r)i
k N rs

kl ψ
−(s)̄
l Gi̄ ,

(E.35c)

where V rs
nm and N rs

nm are the Neumann coefficients for world-sheet bosons and fermions and a
(r)µ
n

and ψ
±(r)µ
n denote the bosonic and fermionic oscillators of the r-th string in the µ-direction,

respectively. The open string metric Gµν was introduced in eq. (II.2). A summation over

r, s = 1, 2, 3 and over µ, ν = 1, . . . , 4 is implicit. This expression is valid for N=2 strings in a

B-field background and is constructed analogously to [160, 32, 33].

We will now consider the properties of this vertex in the Seiberg-Witten limit B → ∞ keeping

fixed all other closed string parameters. For this purpose, we set B = tB0 and take t → ∞;5

then, the effective open string parameters scale as [160]

Gµν ∼ G0µνt
2, θµν ∼ θµν0 t−1. (E.36)

In checking the operator product expansions for the N=4 superconformal algebra, the rela-

tions (C.4),

εijη
j̄ε̄̄ı = ηīı , (E.37)

are needed. Since ηi̄ in eq. (E.31) has to be replaced by Gi̄ in the case of a nonvanishing B-field,

the “(anti)holomorphic part of the volume element” εij is changed to εij with the same scaling

behavior as Gij (cf. (E.37)).

For the commutation relations

[aµm, a
ν
n] = δm+n,0G

µν , (E.38a)
[
xµ, xν

]
= iθµν , (E.38b)

[
pµ, xν

]
= −iGµν , (E.38c)

{ψ+i
m , ψ−̄

n } = δm+n,0G
i̄ (E.38d)

4For N=2 strings, the B-field must be a (pseudo-)Kähler two-form [111].
5This limit is not to be confused with the large time limit in section II.6.
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to be invariant in the large B-field limit, we have to introduce rescaled oscillators

ãµm = taµm for m 6= 0, (E.39a)

p̃µ = t3/2pµ, (E.39b)

x̃µ = t1/2xµ, (E.39c)

ψ̃+i
m = tψ+i

m , (E.39d)

ψ̃−̄
m = tψ−̄

m . (E.39e)

In terms of these modes, the matter part of the three-vertex (E.35c) takes the form

Emat =
∞∑

m,n=1

1

2
ã(r)µ
n V rs

nmã
(s)ν
m G0µν +

i

2
θ0µν p̃

(1)µp̃(2)ν +
1√
t

∞∑

n=1

√
α′ p̃(s)µV rs

0n ã
(r)ν
n G0µν

+
α′

2t
p̃(r)µV rr

00 p̃
(r)νG0µν +

∞∑

m=1,n=0

1

4
ψ̃+(r)i
n N rs

nmψ̃
−(s)̄
m G0i̄ . (E.40)

Observe that, for t → ∞, the terms coupling a-oscillators and momenta p vanish. Thus, the

string star algebra A factorizes into a zero-momentum part A0 spanned by p̃-, ã-, and ψ̃-

oscillators and a spacetime part A1 generated by x̃µ [188]. The star product in A1 “degenerates”

to the usual Moyal-Weyl product with constant noncommutativity parameter θ0.

To read off the scaling behavior of the BRST-like operators G+ and G̃+ , we switch back

to complex coordinates (labeled by roman spacetime indices) and exemplarily pick two typical

terms from G+ (up to an overall constant):

ψ+i
0 p̄Gi̄ =

1√
t
ψ̃+i

0 p̃̄G0i̄ (E.41)

and

ψ+i
1 a̄−1Gi̄ = ψ̃+i

1 ã̄−1G0i̄. (E.42)

Eq. (E.41) is the only term in G+ acting onto A1; obviously it is suppressed for large t. Eq. (E.42)

exemplifies a term in G+ acting onto A0; it is independent of t. This affirms the claim that, in

the large B-field limit, G+ and G̃+ act only onto A0.

As a consequence, all BRST-like operators in the equations of chapter IV in the Seiberg-

Witten limit act only onto the oscillator algebra A1. Thus, if we assume a factorized solution

Φ = Φ0 ⊗ Φ1 with Φ0 ∈ A0 and Φ1 ∈ A1, the equation of motion can be restricted to A0 if Φ1

is chosen to be a projector (i.e., Φ1 ? Φ1 = Φ1):

0 = G̃+(e−ΦG+eΦ) = G̃+(e−Φ0G+eΦ0) ⊗ Φ1. (E.43)

Nevertheless, for finite B, the string field theory equation of motion contains the ncSDYM

equation of motion. Therefore, the solutions constructed in sections II.5 and II.6 can serve as a

guide in the search for nonperturbative solutions to string field theory. Note that some proposals

for string functionals T were made in chapters IV and V; indeed, these solutions were motivated

by the above ideas.



Appendix F

Fermionic overlap equations

F.1 Bosonic Neumann coefficients

In this appendix we give a list of the boson Neumann coefficients. These are results of [66] but

presented in the notation of [152]. The interaction vertex in momentum basis is given by

〈V3| =

∫
dDp(1)dDp(2)dDp(3)δD(p(1) + p(2) + p(3))123〈p, 0| exp

[
− V

]
, (F.1)

where

V =
1

2

∑

r,s

∑

m,n≥1

ηµνa
(r)µ
m V rs

mna
(s)ν
n +

√
α′
∑

r,s

∑

n≥1

ηµνp
(r)µV rs

0na
(s)ν
n +

α′

2

∑

r

ηµνp
(r)µV rr

00 p
(r)ν .

(F.2)

The Neumann matrices are expressed in terms of coefficients An and Bn which are defined as

(
1 + i z

1 − i z

)1/3

=
∑

n even

An z
n+i

∑

n odd

An z
n ,

(
1 + i z

1 − i z

)2/3

=
∑

n even

Bn z
n+i

∑

n odd

Bn z
n . (F.3)

The Neumann coefficients read

V r r
mn = −√

mn
(−1)n + (−1)m

6

(AmBn +AnBm
m+ n

+
AmBn −AnBm

m− n

)
, m 6= n, m, n 6= 0 ,

(F.4a)

V r r+1
mn =

√
mn

(−1)n + (−1)m

12

(AmBn +AnBm
m+ n

+
AmBn −AnBm

m− n

)

−√
mn

√
3

1 − (−1)n+m

12

(AmBn −AnBm
m+ n

+
AmBn +AnBm

m− n

)
, m 6= n, m, n 6= 0 ,

(F.4b)

V r r−1
mn =

√
mn

(−1)n + (−1)m

12

(AmBn −AnBm
m− n

+
AmBn +AnBm

m+ n

)

+
√
mn

√
3

1 − (−1)n+m

12

(AmBn +AnBm
m− n

+
AmBn −AnBm

m+ n

)
, m 6= n, m, n 6= 0 ,

(F.4c)
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The coefficients on the diagonal are given by

V r r
nn = −1

3

[
2

n∑

k=0

(−1)n−kA2
k − (−1)n −A2

n

]
, n 6= 0 , (F.5a)

V r r+1
nn = V r r−1

nn =
1

2

[
(−1)n − V rr

nn

]
, n 6= 0 , (F.5b)

V r r
00 = ln(27/16) . (F.5c)

The coefficients with one index zero are obtained as limits of the coefficients Vmn above

V r r
0n = −

√
2

n

1 + (−1)n

3
An , (F.6a)

V r r+1
0n = −

√
2

n

[
− 1 + (−1)n

6
An −

√
3
1 − (−1)n

6
An

]
, (F.6b)

V r r−1
0n = −

√
2

n

[
− 1 + (−1)n

6
An +

√
3
1 − (−1)n

6
An

]
. (F.6c)

The value of the coefficients for different conventions for α′ are easily obtained absorbing the

explicit α′ into these coefficients.

F.2 More overlap equations

In this appendix we continue the discussion of the overlap equations started at the end of

section VI.5. We adopt the convention about the index range chosen there so that the indices

i, j, k and l start from zero, i, j, k, l = 0, 1, . . . , while m,n = 1, 2, . . . . The matrices X̃kl are

X̃0m = −X̃m0 =
2 i

πm
(−1)

m−1
2 [1 − (−1)m] , (F.7a)

X̃nm =
i

π
(−1)

n−m−1
2 [1 − (−1)n+m]

[ 1

n+m
+

(−1)m

n−m

]
. (F.7b)

Note that compared to the matrices defined in [66] we have X̃nm = XGJ
nm, but for the parts

containing a zero index −
√

2 X̃0m = XGJ
0m! Using the relation to the bosonic coefficients given

in eq. (VI.82) and the definition of N r r+1
mn in (VI.73) one finds for m 6= n

N r r
mn =

2

3
(Umn + Ūmn) = 2

√
m

n
V r r
mn , (F.8a)

N r r+1
mn =

2

3
(ωUmn + ω̄Ūmn) = −1

3
(Umn + Ūmn) +

i√
3
(Umn − Ūmn) = 2

√
m

n
V r r+1
mn , (F.8b)

and hence

Umn = − m

4

[
(−1)n + (−1)m

][AmBn +AnBm
m+ n

+
AmBn −AnBm

m− n

]

+
im

4

[
1 − (−1)m+n

][AmBn −AnBm
m+ n

+
AmBn +AnBm

m− n

]
, m 6= n ,

(F.9)

from which it is once more apparent that CUC = Ū . This prepares the stage to scrutinize the

overlap equations for Π1
m following from eq. (VI.107a). Taking k = 0 and j = 2l gives

∞∑

m=1

X̃0mUm,2l
!
= 0 . (F.10)
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Inserting eqs. (F.7a) and (F.9), we see that

∞∑

m=1

X̃0mUm,2l = − 2

π

∞∑

k=0

(−1)k
[A2k+1B2l −A2lB2k+1

2k + 1 + 2l
+
A2k+1B2l +A2lB2k+1

2k + 1 − 2l

]
, (F.11)

Using the relation between the coefficients An and an,

A2k = (−1)ka2k , A2k+1 = (−1)ka2k+1 , (F.12)

and the summation formulas for the coefficients an derived in [66],

Oak =
∞∑

l=0

a2l+1

(2l + 1) + k
=
π ak√

3
, Oa−n =

∞∑

l=0

a2l+1

(2l + 1) − n
= −1

2

π an√
3
, for k, n even, (F.13a)

Eak =
∞∑

l=0

a2l

(2l) + k
=
π ak√

3
, Ea−n =

∞∑

l=0

a2l+1

(2l + 1) − n
= −1

2

π an√
3
, for k, n odd, (F.13b)

Obk =
∞∑

l=0

b2l+1

(2l + 1) + k
=
π ak√

3
, Ob−n =

∞∑

l=0

b2l+1

(2l + 1) − n
=

1

2

π bn√
3
, for k, n even, (F.13c)

Ebk =
∞∑

l=0

b2l
(2l) + k

=
π bk√

3
, Eb−n =

∞∑

l=0

b2l+1

(2l + 1) − n
=

1

2

π bn√
3
, for k, n odd, (F.13d)

one finds ∞∑

m=1

X̃0mUm,2l = − 2

π

[
Oa2lB2l −Ob2lA2l +Oa−2lB2l +Ob−2lA2l

]
= 0 (F.14)

proving (F.10). Now let us look at k = 2l + 1 and j = 2n+ 1 in eq. (VI.107a):

3
2U2l+1,2n+1 +

√
3

2

∞∑

i=0

X̃2l+1,iUi,2n+1
!
= 0 . (F.15)

If one inserts eqs. (F.7b) and (F.9), the sum can be written in terms of eqs. (F.13) as

∞∑

i=0

X̃2l+1,iUi,2n+1 =(−1)l
2l + 1

π

[Ea2l+1B2n+1 − Eb
2l+1A2n+1

(2n+ 1) − (2l + 1)
+
Ea−2l−1B2n+1 − Eb

−2l−1A2n+1

(2n+ 1) + (2l + 1)

− Eb−2l−1A2n+1 + Ea
−2l−1B2l+1

(2n+ 1) − (2l + 1)
− Ea2l+1B2n+1 + Eb

2l+1A2n+1

(2n+ 1) + (2l + 1)

]

= −
√

3U2l+1,2n+1 ,

(F.16)

proving eq. (F.15). The case k = 2l and j = 2n can be easily treated along the same lines.
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