
__

Reza Sedaghat

Fault Emulation: Reconfigurable Hardware-Based

Fault Simulation Using Logic Emulation Systems

with Optimized Mapping

December 1999
__

? ?

? ?

Fault Emulation: Reconfigurable Hardware-Based Fault Simulation

Using Logic Emulation Systems with Optimized Mapping

Dem Fachbereich Elektrotechnik und Informationstechnik

der Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte Dissertation

von

Dipl.-Ing. Reza Sedaghat Maman

geboren am 9. Februar 1964 in Teheran

1999

1. Referent: Prof. Dr.-Ing. Erich Barke

2. Referent: Prof. Dr.-Ing. Joachim Mucha

Tag der Promotion: 08.12.1999

Acknowledgments

This work originated during my activity as a Research Assistant in the Institute of

Microelectronic Systems at the University of Hanover, Germany.

My thanks to my principle advisor Prof. Dr.-Ing. E. Barke for the opportunity to complete this

work as well as to Prof. Dr.-Ing. J. Mucha for serving as co-advisor and Prof. Dr.-Ing. P.

Pirsch for his chairmanship of the examination committee. In addition I would like to thank

Prof. Dr. rer. nat. D. Müller, Institute of Computer Science, University of Hanover, who

looked at parts of this work and provided helpful comments and suggestions. My appreciation

to my former colleague Dipl.-Ing. Jörn Stohmann and to Dr.-Ing. Jürgen Alt and Dr.-Ing. Jan

Otterstedt whose ideas during our many productive discussions contributed to the success of

this work.

My gratitude to my father-in-law, Prof. Dr. Ulrich Petersen, Harvard University,

Cambridge, USA. I have profited greatly from his academic and personal experiences and am

grateful to him for his invaluable help. I am indebted to my parents for accompanying me along

my journey. They have been a great source of strength for me. Finally, a special thanks to my

son Sam who always managed to amuse me at high-stress times and to my wife Valerie for her

endless patience and support. Without her I would not have been able to complete this work.

Hanover, December 1999

Reza Sedaghat

Abstract Reza Sedaghat Maman

Fault Emulation: Reconfigurable Hardware-Based Fault Simulation Using Logic Emulation

Systems with Optimized Mapping

Various approaches to test vector evaluation exist for ascertaining the effectiveness of a test vector
set for a specific fault model by computing the ratio between the number of faults detected by this
set and the number of modeled faults. The traditional approach to test vector evaluation is
software-based, utilizing programs to simulate the effects of the faults on circuit behavior. The
simplest method, serial fault simulation, simulates faulty circuits one at a time. In the recent past,
more advanced approaches to fault simulation have been proposed and can be categorized, in
general, as either parallel or concurrent. These differ from serial fault simulation in their effort to
minimize the number of simulation passes by processing faults or test vectors simultaneously.
However, the circuit elements must still be processed sequentially in order to simulate the complete
circuit. The fault simulation approach is becoming increasingly impractical nowadays, not only
because the runtime for simulating one test vector increases linearly to quadratically with the
number of circuit elements, but also because circuit complexity increases faster than computing
speed.

A new approach to fault simulation involves the use of a hardware logic emulator. Logic emulation
represents a new method of design validation utilizing a reprogrammable prototype of a digital
circuit. In contrast to fault simulation, all circuit elements can be emulated in parallel by the
emulation hardware. Therefore, emulation runtime is based solely on the number of faults, which of
course also depends on circuit size, and the number of test vectors. Emulation runtime increases
only linearly with circuit size making it possible to attain a speedup over software fault simulation.
With the goal of satisfying the requirements of rapid fault injection including fault activation,
emulator technology independence, optimal fault emulation runtime, minimal hardware overhead,
and optimized mapping into reconfigurable hardware, two approaches to fault emulation, FES/1
and FES/2, were developed and implemented. Both approaches use identical methods of fault
injection and fault activation in the FPGAs. However, FES/1 uses the so-called in-circuit mode of
the emulator, in which test generation and emulation analysis are made feasible through the
expansion of the logic emulator by additional hardware modules. FES/2, in contrast, operates in
emulator acceleration mode and does not require additional hardware for test vector evaluation.

An objective of hardware-based fault injection is the reduction of the FPGA overhead, which results
from the fault emulation mapping procedure. This method of fault injection includes mapping the
faulty circuit for an optimized partitioning, technology mapping, and placement and routing. The
Delta-Path algorithm was developed and utilized in the course of this research for the node
assignment optimization problem. The problem is described here as a quadratic assignment problem
and its solution using the Delta-path algorithm results in a reduction in FPGA overhead through an
improved usage of FPGA resources. In contrast to previously published fault emulation approaches,
FES/1 and FES/2 use additional logic functions for fault injection and decoders for fault activation.
Faster fault injection is feasible without reconfiguration of the emulator hardware and without
dependency on a specific logic emulator technology.

In addition, the dependability of a system can be evaluated using a logic emulator for hardware-
based fault injection. Real time fault injection into a target system hardware is an important
application of fault emulation for the evaluation of system behavior and involves fault injection into
the system for the identification of dependability deficiencies of the system, the observation of
system behavior with the given faults, as well as the determination of the degree of fault coverage.

Keywords: FPGA, Fault Injection, Fault Simulation

Abstract Reza Sedaghat Maman

Fault Emulation: Reconfigurable Hardware-Based Fault Simulation Using Logic

Emulation Systems with Optimized Mapping

Mehrere Methoden der Testmusterevaluierung existieren, welche die Effektivität eines
Testmustersatzes für einen spezifischen Fehlermodell feststellen können, indem das Verhältnis
zwischen der Anzahl der entdeckten Fehler und der Anzahl der modellierten Fehler berechnet
wird. Das traditionelle softwarebasierte Verfahren der Testmusterevaluierung setzt Programme
ein, die die Wirkung von Fehlern auf das Verhalten der Schaltung simulieren. Die einfachste
Methode, Serielle Fehlersimulation, simuliert Fehler einen nach dem anderen. In den letzten
Jahren wurden Methoden der Fehlersimulation vorgestellt, die im allgemeinen als "Parallel"
und "Concurrent" bezeichnet werden. Diese unterscheiden sich von serieller Fehlersimulation
indem versucht wird, die Anzahl der Simulationsabläufe durch eine gleichzeitige Bearbeitung
von Fehlern oder Testmustern zu minimieren. Um die komplette Schaltung simulieren zu
können, müssen aber die Schaltungselemente immer noch sequentiell bearbeitet werden.
Heutzutage werden Fehlersimulationsmethoden zunehmend unpraktisch, nicht nur weil die
Simulationslaufzeit mit der Anzahl der Schaltungselemente linear bis quadratisch steigt,
sondern auch weil die Schaltungskomplexität schneller als die Rechengeschwindigkeit wächst.

Logikemulation ist eine neue Methode der Designverifikation, die einen reprogrammierbaren
Prototypen einer digitalen Schaltung darstellt. Fehlersimulation mittels eines hardwarebasierten
Logikemulators (Fehleremulation) repräsentiert ein neues Verfahren der Schaltungsvalidierung.
Im Gegensatz zur softwarebasierten Fehlersimulation können mit Fehleremulation alle
Schaltungselemente in einem Emulationstakt durch die Emulationshardware berechnet werden.
Die Emulationslaufzeit ist lediglich abhängig von der Anzahl der Fehler, welche natürlich von
der Schaltungsgröße und der Anzahl der Testmuster abhängt. Die Emulationslaufzeit steigt nur
linear mit der Schaltungsgröße und ermöglicht daher ein Speed-up über softwarebasierte
Fehlersimulation. Zwei Verfahren der Fehleremulation, FES/1 und FES/2, wurden entwickelt
und implementiert, welche die Bedingungen der schnellen Fehlerinjektion, einschließlich der
Fehleraktivierung, Unabhängigkeit von Emulatortechnologie, optimaler Fehleremulations-
laufzeit und minimalen Hardware-Overhead sowie optimierter Abbildung in rekonfigurierbarer
Hardware, erfüllen. FES/1 verwendet der sogenannten In-Circuit-Mode des Emulators, in der
Testgenerierung und Analyse der Emulationsergebnisse durch die Erweiterung des
Logikemulators mit zusätzlichen Hardwaremodulen ermöglicht werden. FES/2 benutzt den
Emulator-Acceleration Mode, welcher keine zusätzliche Hardware für die Generierung und
Auswertung von Testmustern benötigt. Die beiden Verfahren setzen identische Methoden der
Fehlerinjektion und Fehleraktivierung in den FPGAs ein.

Ein Ziel der hardwarebasierten Fehlerinjektion ist die Reduzierung des FPGA-Overheads, der
aus dem FES Verfahren resultiert. Hardwarebasierte Fehlerinjektion schließt die Abbildung der
fehlerhaften Schaltung für eine optimierte Partitionierung, Technologiemapping, Plazierung
und Routen ein. Das Delta-Path Algorithmus wurde im Laufe dieser Forschung für die
Zuordnung von Fehlerknoten der Schaltung in dem Fehleraktivator entwickelt und
implementiert. Das Problem wird in dieser Arbeit als ein quadratisches Zuordnungsproblem
beschrieben. Eine suboptimale Lösung des Problems ist mit dem Delta-Path Algorithmus
möglich und führt durch den optimierten Verbrauch von FPGA-Ressourcen zu einer
Reduzierung des FPGA-Overheads. Im Gegensatz zu früheren veröffentlichten Verfahren der
Fehleremulation, setzten FES/1 und FES/2 zusätzliche Logikfunktionen für die Fehlerinjektion,
sowie Zeilen- und Spaltendekoder für die Fehleraktivierung ein. Schnellere Fehlerinjektion ist
möglich ohne Rekonfiguration der Emulatorhardware und ohne von einer spezifischen
Logikemulatortechnologie abhängig zu sein.

Über die Testvektorevaluierung hinaus bieten die in dieser Arbeit beschriebenen Verfahren
große Vorteile bei der Beurteilung der Zuverlässigkeit von Systemen. Diese kann mittels eines
Logikemulators für hardwarebasierte Fehlerinjektion evaluiert werden. Echtzeitfehlerinjektion
in eine Zielsystemhardware ist für die Evaluierung des Systemverhaltens einer wichtige Aspekt
der Fehleremulation, welcher Fehlerinjektion in ein System für die Identifizierung von
Systemzuverläßigkeitsdefiziten, sowie die Beobachtung des Systemverhaltens mit den
gegebenen Fehlern, und die Feststellung des Fehlerüberdeckungsgrades einschließt.

Schlagwörter: FPGA, Fehlerinjektion, Fehlersimulation

Contents I

Contents

Notation Index... III

List of Figures and Tables..VI

1. Introduction ...1

2. Logic Emulation...4

2.1 Logic Validation Techniques..4

2.1.1 Logic Simulation ..4

2.1.2 Formal Verification...5

2.1.3 Logic Emulation ...6

2.1.4 Design Prototyping...8

2.1.5 Comparison ..9

2.2 FPGA-based Logic Emulation Design Flow ... 11

3. Fault Simulation .. 13

3.1 Fault Models.. 13

3.2 Fault Redundancy, Equivalence, and Dominance.. 16

3.3 General Approach to Fault Simulation ... 19

3.4 Fault Simulation Techniques .. 20

3.5 Test Generation ... 28

4. Fault Emulation ... 33

4.1 State of the Art.. 33

4.1.1 Timoc Approach... 33

4.1.2 Fault Grading Method .. 35

4.1.3 Serial Fault Emulation (SFE) .. 37

4.1.4 KRONE ... 40

4.1.5 Objectives of this Work .. 42

4.2 Fault Emulation System (FES)... 43

4.2.1 FES/1 ... 44

4.2.2 FES/2 ... 47

4.2.3 Fault Injection .. 48

4.2.4 Fault Activation.. 50

Contents II

4.2.5 Combinational Circuits ... 52

4.2.6 Sequential Circuits.. 53

5. Node Assignment ... 61

5.1 Introduction... 61

5.2 Placement and Quadratic Assignment Problems ... 63

5.3 Fault Activator and Node Assignment.. 67

5.3.1 Partitioning of an Expanded Circuit .. 69

5.3.2 Technology Mapping of an Expanded Circuit.. 73

5.3.3 Placement and Routing of an Expanded Circuit... 74

5.4 Optimized Node Assignment.. 77

5.4.1 Algorithms.. 79

5.4.1.1Simulated Annealing .. 80

5.4.1.2Min-Cut ... 81

5.4.1.3Delta-Path.. 83

6. Experimental Results ... 90

6.1 CLB-Overhead .. 90

6.2 Fault Emulation Runtime ... 95

7. Conclusion and Future Work.. 104

8. References .. 107

Notation Index III

Notation Index

CLB Configurable Logic Blocks

LUT Look-Up Table

PI primary input of a circuit

fd delay fault

δ additional delay (delay fault)

Del delay

∆Del slack

TN nominal time

ft transition fault

V test vector set

v1,v2,...,vn test vectors

Bf(v) logical function of faulty circuit

B(v) logical function of fault-free circuit

F={f1, fi, ..., fn} set of faults

f fault

s-a-0 stuck-at- 0 fault

s-a-1 stuck-at-1 fault

γ fault coverage

val value of a signal

mask1, mask2 parallel fault simulation masks

Ê number of gate calculations per simulation run

g gates are evaluatuation per second

sp seril fault emulation speed

GT gate

m1, m2, ..., mr, PRTG feedback connections

P(a) polynomial function of a PRTG

Rf fault emulation runtime (Cheng&Dai)

Rt total runtime of fault emulation (Cheng&Dai)

Treconf time required for reconfiguration of a BLP (SFE)

AN average number of test vectors necessary for fault detection
(SFE)

SP speed of SFE approach

FLO={flo1, floi, ..., flon} set of fault locations

FI={fi1, fii, ..., fin} set of Fault Injectors

L control signal of the line in the Fault Activator

C control signal of the column in the Fault Activator

Notation Index IV

Nin data input of the Fault Injector

Nout data output of the Fault Injector

EN control signal of the Fault Injector

SF control input of the Fault Injector to select the stuck-at fault
model

A={A1, ..., An} input data of the Fault Activator

Nf number of faults

i number of line decoders

j number of column decoders

t clock period

ξ state variables of a sequential circuit

It inputs of a sequential circuit

r next clock period of a sequential circuit

η function of dependency of the state variables ξt+r on the
inputs It

VS test vector sequence

vInitial initial test vector

IS initial state of a sequential circuit

x feasible point of a cost function
~n neighborhood of x
~ ~N x n(,) set of neighborhoods of x

xlocal local minimum of a cost function

xglobal global minimum of a cost function

dlk i lk j() () distance of the locations of modules i and j

lk i lk i lk ix y() [() , ()]= locations of module i

lk j lk j lk jx y() [() , ()]= locations of module j

π permutation

Π the set of permutations

πopt optimized permutation

MD={md1, md2, ..., mdn} set of modules

SG= {sg1, sg2, ..., sgk} set of signals

LK={lk1, lk2, ..., lkn} set of locations

G(UI/O,UN,UI,E) extra node graph

UI/O set of I/O nodes

UN set of extra nodes

UI set of instance nodes

E set of edges

Notation Index V

w(e) weight of an edge

Φ cutsize

 ρ placement

 εi switch block side i

ψρ ε() capacity of the switch block side

ηρ ε() number of nets on each side of a switch block

$ (,)F W D cost function of the node assignment problem.

NA node assignment

QAP quadratic assignment problem

 D distance matrix

 En energy

Temp Temperature

P probability

Θ partition of a graph

us source nodes

Γ()u
−

set of predecessor node u

Γ()u
+

set of successor node u

Λ Λ Λ1 2, , ..., k subsets of U

deg()+u v() number of successor nodes of v

∆ z delta path

∆ set of delta paths

u fia node u ∈ ∆ is assigned to a Fault Injector fi lk∈

Freq the emulation frequency

RTFE
FES /1

total fault emulation runtime for FES/1

RTFE
FES /2

total fault emulation runtime for FES/2

Pavg average number of test vectors necessary to detect a fault

Ô number of test vectors

RTF fault emulation runtime (FES)

RTG good emulation runtime (FES)

RTtotal total runtime of fault emulation (FES)

List of Figures and Tables VI

List of Figures and Tables

Fig. 1.1 Y-diagram of digital circuit

Fig. 1.2 Overview of fault simulation approaches

Fig. 2.1 A typical logic emulator

Fig. 2.2 Time frames

Fig. 2.3 A typical design flow of FPGA-based emulation system

Fig. 3.1 CMOS INVERTER at electrical and logic level

Fig. 3.2 Stuck-at fault model

Fig. 3.3 Modeling of bridging fault as wired-AND

Fig. 3.4 Fault free (a) and faulty (b) signal delay

Fig. 3.5 Undetectable fault

Fig. 3.6 Redundancy

Fig. 3.7 Equivalence fault collapsing

Fig. 3.8 Fault coverage curve

Fig. 3.9 Parallel fault simulation

Fig. 3.10 Fault injection on signal h

Fig. 3.11 Fault list propagation

Fig. 3.12 Concurrent fault simulation

Fig. 3.13 Fault propagation of f1 to output p

Fig. 3.14 Principle of two-valued Parallel Pattern Single Fault Propagation

Fig. 3.15 Classification of test generation

Fig. 3.16 Backward trace and forward trace along a sensitive path

Fig. 3.17 Conceptual Linear Feedback Shift Register (LFSR)

Fig. 3.18 Hardware realization of a LFSR as a pseudo-random test generator

Fig. 3.19 Test generation of Fig. 3.18

Fig. 4.1 Hardware fault simulator for an AND gate [Timo79]

Fig. 4.2 Primitive serial fault emulation process [ChHu95]

Fig. 4.3 Fault injection and activation of fault grading method [ChHu95]

Fig. 4.4 SFE flowchart [BuRe96]

Fig. 4.5 An example of FPGA reconfiguration [BuRe96]

Fig. 4.6 Delay lines [Kron96]

Fig. 4.7 FPE-cell [Kron96]

Fig. 4.8 FES/1 flow diagram

Fig. 4.9 Fault emulation hardware

Fig. 4.10 Comparison hardware module

Fig. 4.11 FES/2 flow diagram

List of Figures and Tables VII

Fig. 4.12 Stuck-at-0 Fault Injector

Fig. 4.13 Stuck-at-1 Fault Injector

Fig. 4.14 Stuck-at-0/1 Fault Injector

Fig. 4.15 Fault Activator

Fig. 4.16 Combinational circuit in a CLB

Fig. 4.17 Fault Injector s-a-0 in a CLB

Fig. 4.18 Generic schematic of sequential circuits

Fig. 4.19 State transition graph

Fig. 4.20 Initialization of storage element with 3- and 4-valued logic

Fig. 4.21 Fault emulation for a sequential circuit

Fig. 4.22 Mapping of the sequential circuit into an FPGA

Fig. 4.23 Hardware initialization of individual storage elements

Fig. 5.1 Local versus global optima

Fig. 5.2 Wirelength estimation methods

Fig. 5.3 An example of the placement problem

Fig. 5.4 Model of a symmetrical FPGA

Fig. 5.5 Node assignment model

Fig. 5.6 Circuit without Fault Injectors (left) modeled as extra node graph

Fig. 5.7 Circuit partitioning of expanded circuit

Fig. 5.8 Circuit with Fault Injectors

Fig. 5.9 Bipartition with optimized node assignment and cutsize Φ=7

Fig. 5.10 Bipartition with non-optimized node assignment and cutsize Φ=9

Fig. 5.11 Technology mapping of an expanded circuit

Fig. 5.12 Placement of circuit with non-optimized node assignment in an FPGA

Fig. 5.13 Placement of circuit with optimized node assignment in an FPGA

Fig 5.14 Optimized node assignment compared to random node assignment

Fig. 5.15 Vertical and horizontal cut lines

Fig. 5.16 Cut tree

Fig. 5.17 Slice/Bisection procedure

Fig. 5.18 Dividing of U into k subsets Λ Λ Λ1 2, , ..., k

Fig. 5.19 One-dimensional symbolic placement

Fig. 5.20 Assignment of u to fi

Fig. 5.21 Node assignment with Delta-Path algorithm

Fig. 5.22 One-dimensional symbolic placement

Fig. 5.23 Super node splitting

Fig. 6.1 Comparison of node assignment runtime for different algorithms

Fig. 6.2 Reduction of CLB number for s-a-0

Fig. 6.3 Reduction of CLB number for s-a-1

List of Figures and Tables VIII

Fig. 6.4 Runtimes of fault emulation FES/1 and FES/2 and Comsim

Fig. 6.5 Speedup of fault emulation FES/1 and FES/2 over fault simulation with

Comsim

Fig. 6.6 Simulated runtime of VED and calculated runtime of fault emulation FES/1

Fig. 6.7 Speedup of fault emulation FES/2 over fault simulation with VED

Fig. 7.1 Evaluation of system dependability using logic emulation

Table 4.1 Comparison of available hardware-based fault simulation approaches

Table 4.2 State transition table

Table 4.3 Emulation results for initial states (A) and (D)

Table 6.1 Comparison of node assignment results for stuck-at-0 faults

Table 6.2 Comparison of node assignment results for stuck-at-1 faults

Table 6.3 Logic emulation of circuit without Fault Injectors

Table 6.4 Fault emulation with stuck-at-0 Fault Injectors

Table 6.5 Fault emulation with stuck-at-1 Fault Injectors

Table 6.6 Comparison of fault emulation and Comsim

Table 6.7 Comparison of fault emulation FES/1 and VED

Table 6.8 FES/1 and FES/2 approaches based on the comparison of Table 4.1

Table 6.9 Overview of existing approaches

Introduction 1

1. Introduction

An essential part of modern electronic systems are Very Large Scale Integrated (VLSI)

circuits. These circuits contain between thousands and millions of transistors, diodes, and other

components such as resistors, capacitors, and interconnections within a very small area. The

design of such circuits is a complicated and time-consuming process. During the design

process an integrated circuit is modeled on different abstraction levels. These abstraction levels

represent the information necessary for the actual step in the design process. The "Top-Down"

design begins at a high level and precedes downwards to the next level where more detailed

information of the circuit is examined. The level of abstraction can be characterized by the type

of information processed, as shown in Fig. 1.1. A circuit design can generally be subdivided

into three main categories according to the view from which a circuit is considered. These

include the design with which the behavior of a circuit is observed, the design in which the

structure of a circuit is established, and the physical design (geometry).

StructureBehavior

System Level

Algorithmic Level

Logic Level

Register

Transfer Level

Electrical Level

Transistors

Gates

Modules

Subsystems

CPU, Memory

Differential Equations

Boolean Equations

Register Transfers

Algorithms

System Specification

Geometry

Floorplan

Partitioning

Mask, Polygons

Basic Cells

Macro Cells

Fig. 1.1: Y-diagram of digital circuit

Starting with an idea about the design of the circuit, a behavioral description of the circuit is

written in a high-level language like VHDL [Waxm89] [Lips89] [Coel89]. The behavioral

specification is then converted into a register transfer level (RTL) description of the circuit

using a synthesis tool. After a register transfer level description has been obtained it is mapped

into logic equations. Typically, a structural register transfer level description is an

interconnection of predefined modules such as adders, multipliers, memory, etc. At logical

Introduction 2

level the design is represented by a combination of primitives, for example AND-, OR- , XOR-

gates, Flip-Flops etc. which are present in a library. The characteristics of these basic elements

are defined in the library and reproduce in a simplified form the characteristics of the target

technology. The behavioral aspects at the logical level of the circuit can be represented using

Boolean equations. The next step in the process is the production of a mask level description

or a layout of the circuit in a given technology. Module generators [OnLL89] can be used to

produce a layout for each module in the design. The modules or gates are placed and routed

using placement and routing tools [Leng90]. The mask level description is used to manufacture

the integrated circuit (IC). Since no manufacturing process can not guarantee 100% yield,

manufacturing defects are usually introduced during the manufacturing process. The actual

type of defect is technology dependent. The larger the circuit in terms of area, the higher the

probability of defects. Clearly, testing is crucial to the VLSI manufacturing process.

As described in Chapter 3, one application of fault simulation includes the simulation of a

circuit in the presence of faults. Faults are detected in a circuit by comparing the results of a

fault simulation to the results of a fault-free or good simulation using a test vector set.

Differing results indicate the detection of a fault. Hence, fault simulation is implemented for the

evaluation of a test vector set. Furthermore, fault simulators are also used to increase the

efficiency of programs used for test vector calculation [ScTr87]. Fault simulation is generally

divided into two approaches: software-based and hardware-based fault simulation.

Fault Simulation

Software Approaches Hardware Approaches

Hardware AcceleratorLogic Emulator

Chang&Dai

Serial Fault Emulation (SFE)

Fault Emulation System (FES)

Concurrent Fault Simulation

Deductive Fault Simulation

Parallel Fault Simulation

PPSFP

Dedicated Hardware

XP-100(ZYCAD)

Fig. 1.2: Overview of fault simulation approaches

Due to the increasing complexity of integrated circuits as well as the competition-based

requirement for a shorter time-to-market of the product, software-based approaches can not

satisfy the present demand for fault simulation. A significant amount of time, anywhere from

minutes to days, is required by the simulation process of a complex circuit with millions of

Introduction 3

gates. Efforts have been made to shorten the necessary simulation time by developing

specialized simulation accelerators [Zyca94a], logic emulators [BuBa90], and the first

hardware-based fault simulator [Timo79]. In the past years various methods have been

presented for the generation of hardware-based faulty circuits, each with its own approach to

fault injection. A common feature of each of these methods is the execution of hardware-based

fault simulation at gate level and the modeling of faults using a stuck-at fault model. Different

techniques involving the use of a circular shift register or the reprogrammability of field

programmable gate arrays (FPGAs) are utilized for the activation of faults in the circuit.

Various logic validation techniques are presented in Chapter 2, followed by a discussion of

their advantages and disadvantages as well as the application of a logic emulator in the design

phase. Chapter 3 introduces the most widely used fault simulation and test vector generation

techniques and in addition, a hardware-based pseudo-random test vector generator utilized for

hardware-based fault simulation.

In Chapter 4 the requirements for a novel approach to hardware-based fault simulation using a

logic emulator (fault emulation) are described. A Fault Emulation System FES is presented,

characterized by rapid fault injection and fault activation through a Fault Activator. Chapter 5

presents procedures for mapping faulty circuits while focusing on optimal partitioning,

technology mapping, placement, and routing. A new algorithm for the optimized mapping of a

faulty circuit is detailed in Chapter 5. Chapter 6 presents and discusses the experimental results

of fault emulation FES in comparison to existing fault simulation and fault emulation

approaches. A discussion follows on the optimized mapping of faulty circuits into logic

emulators compared to existing algorithms such as simulated annealing. Chapter 7 concludes

this thesis and discusses future work in this area.

Logic Emulation 4

2 Logic Emulation

2.1 Logic Validation Techniques

A comparison between the specification and the implementation of a digital circuit design is

necessary in order to recognize design errors and to attain a correct implementation.

Generally, such a comparison is referred to as logic validation. Rather than using the final

version of a design, logic validation is usually carried out on more abstract levels of a

design, often utilizing a high-level description of the circuit's functionality. Validating such

high-level implementations is desirable for locating and correcting errors early, rather than

identifying errors at the end of the implementation procedure when the design has

developed more detail and complexity. Various logic validation methods are presented in

the following sections along with a discussion of their advantages and disadvantages. As

discussed in the final section of this chapter, the proper method of logic validation is not a

single technique, but rather a combination of techniques that takes advantage of the

different strengths of each validation technique.

2.1.1 Logic Simulation

Software simulation is perhaps the most widespread and effective method of logic

validation and is preferred mainly due to its ease of signal observability and controllability.

Software simulation is used to model and observe the functional behavior of a circuit

[RuSa89] [Brew77]. A unit-delay simulator disregards all electrical characteristics of a

circuit, with each gate requiring one time unit for each new input. The simulator examines

all input to the gates and then calculates the correct value for each output. The behavior of

the circuit can be observed by varying the values at the inputs. Other types of software

simulators may also be utilized, which allow for more detailed modeling of the circuit

[BARZ87][Spir85].

During the simulation process the software registers each signal value as well as changes to

these values and follows the changing values over time. This information is made available

to the user at all times. For various reasons the designer may want to alter the values of a

net during a simulation. This is easily done because the values have been stored in the

simulator. The designer may want to observe the behavior of a circuit in a specific

configuration, even though in the final hardware implementation it can be difficult to force

Logic Emulation 5

the circuit into this configuration. The user of a software simulator can simply instruct the

simulator to make the desired changes to the circuit and then study the resulting behavior.

Circuit changes carried out this early in the design process save effort and time that would

otherwise be spent later to locate and fix errors which are more complicated in the final

implementation.

The flexibility of software simulation described above also has major disadvantages. The

simulation process requires a significant amount of time to evaluate a complex circuit with

millions of gates, anywhere from minutes to days. Through the development of specialized

simulation accelerators [Zyca94a] [Zyca94b] [Zyca94c] the runtime required by simulation

has been reduced. However, software simulation with accelerators still requires more time

to execute than a hardware implementation of the circuit, even when factors such as

detailed timing are not considered. On the other hand, software simulation provides the

ability to experiment with the logic with the goal of gaining useful information about the

circuit and analyzing circuit behavior early in the design cycle.

2.1.2 Formal Verification

Formal verification is a proof for determining whether two circuit descriptions at different

abstraction levels are identical, as well as a technique for deciding whether a specific

behavior is implemented by a given circuit. For instance, when a designer specifies a circuit

by a high-level description formal verification techniques can examine both the specification

and implementation to determine whether their behavior is exactly the same [Evek91]. The

majority of formal verification methods, however, only verifies the logical function and not

the timing of the circuit. Circuits with up to ten thousand gates can be evaluated effectively

with formal verification techniques [Evek91], Currently existing formal verification

algorithms cannot handle a complex circuit with millions of gates. However, formal

verification techniques can be utilized when a complex circuit is divided into smaller

subcircuits, which after the verification of the individual subcircuits, form a complete

circuit. In this form, the possibility of failures still exists due to the interactions of

subcircuits.

2.1.3 Logic Emulation

A logic emulator is actually a reprogrammable compute engine that can be configured to

implement the function of a circuit [BrFr92a]. As with a prototype, this hardware

implementation is created in order to attain accurate evaluation results. In addition, design

errors can be located and isolated by observing and altering an emulation, similar to

Logic Emulation 6

software simulation. In many cases, however, a speed 103 to 106 faster than software

simulation [KhHu93] can be attained with logic emulators. A complex circuit can not be

mapped into a single programmable chip, thus an emulator consists of a multitude of

programmable components. The programmable hardware is generally constructed

hierarchically. Several of the programmable components and the corresponding routing

resources are present on a board typically having an emulation capacity of 250K gates.

Generally, an emulator contains several such boards interconnected through a

programmable backplane in order to facilitate communication between components on

different boards. Capacities of up to one or two million gates on one board can be reached.

For the emulation of a complete circuit, several emulators can be cascaded in order to attain

emulation systems with a capacity of several million gates. A logic emulator can contain

either standard-FPGAs [Quick96a] or specially developed Full Custom Chips [BuRe96]. In

general, logic emulation can be divided into two approaches involving Field Programmable

Gate Array (FPGA)-based and multiprocessor-based logic emulators.

The basis of the FPGAs, such as the XILINX FPGAs, are the configurable logic blocks

(CLBs). A CLB contains logic blocks for the representation of logical functions as well as

flip-flops for the realization of storage elements. Logical functions are organized as look-up

tables, consisting of SRAM memory. The connection between the look-up tables and

storage elements of a CLB is established using programmable multiplexers. An FPGA

consists of a regular array of programmable logic blocks (CLBs) as well as horizontal and

vertical routing channels between the CLBs. Figure 2.1 displays a typical FPGA-based logic

emulator [BuBa90] composed of emulation boards. A single emulation board is composed

of multiple FPGAs (Fig.2.1a), each of which contains a multitude of CLBs (Fig.2.1b) and

each CLB uses LUTs [BrFr92b] and flip-flops (Fig.2.1c).

CLB CLB

CLB

FPGA FPGA

FPGA FPGA

FPGA

LUT

LUT
D

D Q

Q

FF

FF

S/R

S/R

Clock

Set/Reset

1
2

a) Emulator board b) FPGA c) CLB

Fig. 2.1: A typical logic emulator

Logic Emulation 7

In an FPGA-based logic emulator the conversion of the circuit description into a form that

is suitable for mapping to the logic emulator may take several or more hours. The emulator

software completely automates the mapping process. After the circuit is mapped to the

logic emulator, circuit functionality is completely implemented by the emulator.

A multiprocessor-based logic emulator operates with a dedicated architecture based on

parallel processing and is basically a parallel logic computer. The basic components of the

processors are also programmable logic blocks, which however are constructed

considerably simpler than CLBs of the FPGAs. The multiprocessor-based logic emulator is

composed of an array of custom multiprocessing ICs that operate collectively to emulate

complex logic circuits. Each processor emulates a small portion of the circuit by performing

a sequence of operations during every target system clock cycle.

During parallel processing the logical function (gates) are no longer mapped one-to-one

into the physical gates of the emulator. Rather, the design is divided into several time frames

and a logic block of the emulator emulates a different logical function in each time frame.

Before the design is mapped into the emulator each logical function is assigned to a specific

time frame. The value of the assigned logical function is calculated in each time frame.

Several time frames are grouped together. These groups are processed sequentially during

emulation.

a

b
c d

e

f

time frame1 time frame 2 time frame 3

Fig. 2.2: Time frames

Each logic block and its interconnection to other logic blocks must be reconfigured for

each time frame. Therefore, all program data of processor systems are loaded into the

internal memory before the emulation starts. At the beginning of each time frame the logic

blocks' look-up tables are configured with data of the internal memory. During a time

frame, a logic block requires not only the output values of the other blocks in the same time

frame, but usually also the results from the preceding time frames. The preliminary results

of a time frame must be stored into memory and made available to the appropriate logic

blocks' look-up tables when necessary. Thus, the logic blocks and their interconnections are

processed by dynamic programming, which is similar to the processing of a program in a

microprocessor.

Logic Emulation 8

The maximum number of time frames that can be processed in parallel is determined by the

longest combinational path within the design. A large number of time frames leads to a low

emulation frequency. Due to parallel processing, the emulation frequency is generally a

factor of two to three times lower than with FPGA-based emulators. Today, a

multiprocessor-based logic emulation system [Quick98] is capable of emulating circuits

with up to 20 million gates. Because the logic emulator can implement the functionality of

the complete circuit in parallel, the evaluation of millions of circuit cycles per second is

possible.

Logic emulation of a circuit can be executed in two modes: logic simulation acceleration

and in-circuit emulation. Applying the first mode to the mapped design, a vector set can be

evaluated at an emulation speed of several MHz and is up to 106 times faster than software

simulation. The second mode involves plugging the logic emulator into the target system.

The emulated chip operates as a prototype in the target system. The logic emulator is

inserted into the target environment to provide a more realistic evaluation of the system.

The debugging process now includes evaluating the circuit in its real environment. Such is

the case with the concurrent development of a custom ASIC and the circuit board, where

the ASIC will be later inserted. By connecting the emulated ASIC to the circuit board with

appropriate interfaces, the ASIC functionality can be evaluated in the board.

One restriction of the logic emulation procedure is that only the functional behavior of the

circuit can be emulated. The validation of circuit timing characteristics, which is an

important aspect of logic validation, is not possible. However, when combined with both

software simulation and prototyping, logic emulation plays an important role in the logic

validation process.

2.1.4 Design Prototyping

The process of developing a hardware implementation as a prototype of the circuit under

validation is referred to as prototyping. A prototype can be completed, for example, with

breadboarding and wire-wrap techniques (methods for wiring together standard

components to implement the circuit) or as a first silicon, i.e. the first series of chip

production. The prototype, evaluated under normal operating conditions, gives results that

are most accurate without regard to modeling, abstraction or any other factors involved

with software simulation [Micz87]. When the evaluation phase is completed, the prototype

can be sent to users to determine whether the circuit is appropriate for their needs in a real

Logic Emulation 9

target system. Another feature of prototypes is that the complete evaluation process runs

much faster than with software simulation, due to operation at or near target system speeds.

While a high level of accuracy and high-speed evaluation are certainly advantages of

prototyping, disadvantages must also be considered. The complete circuit must exist not

only as a concept or specification but also as a finished design before the prototype can be

constructed. For this reason, the implementation of a prototype for logic validation is only

meaningful rather late in the design process. Prototype manufacture can be a costly process

considering ASIC fabrication [Benn82] [NaBi88], as well as construction time involved.

Since it is difficult to make alterations to a prototype as many errors as possible should be

detected early in the design process in order to avoid incurring new costs for the

manufacture of multiple prototypes.

2.1.5 Comparison

Software simulation as described in Section 2.1.1 allows for levels of circuit evaluation that

are difficult to achieve with a prototype, where access to the internal states of the circuit is

almost impossible and their values can not be easily altered. With software simulation, the

values of the internal states are able to be displayed as well as altered, resulting in easily

observable circuit behavior. Because this is not usually possible with prototypes it becomes

relatively difficult to locate and isolate circuit errors. Although the production of prototypes

is relatively expensive and their use difficult, prototyping is the more accurate method of

logic validation. Today, evaluating a prototype as a first silicon is a necessary part of the

logic validation process, although it occurs relatively late in the design process. Locating

and correcting most circuit errors is handled by other validation techniques.

Logic emulation combines the flexibility of software simulation with the speed of design

prototyping. Measured against software simulation, higher execution speeds can be

achieved with emulation. However, software simulation is the better method for evaluating

circuit abstractions or a small amount of test vectors. The operational simplicity as well as

flexibility of the simulation overrides its negative performance results, e.g. long runtimes.

Simulation is usually not an issue in the area of software development for the target system

because simulation of a circuit can not be executed within an acceptable time period. When

compared to a prototype, an emulation is easier and faster to create; circuit behavior can

also be observed, controlled and modified better than with a prototype. Moreover, the

evaluation of the circuit is possible while running with hardware and software target

systems. Emulation is the more effective tool for the location and eventual detection of

Logic Emulation 10

system errors because it can be implemented earlier in the design process using a high-level

circuit specification, whereas a prototype can only be activated at the end of the design

phase. As with prototypes, it is possible to give an emulation to an end-user for evaluation

purposes before completion of the design process. Finally, emulation saves much of the time

and material that would otherwise be devoted to the manufacture of multiple prototypes.

Logic emulation as well as software simulation are not to be disregarded once a prototype

has been developed. For instance, when an error is detected in the prototype it is often

difficult this late in the design process to isolate the error in the circuit. An emulator can be

used to reproduce the error since it can execute nearly as many cycles as the prototype. The

emulator's observability can also be utilized to isolate the error.

In an ideal validation environment, the validation methodology would utilize the strengths

of each approach while combining multiple approaches to overcome individual weaknesses.

The design phase begins with the specification of the circuit to be designed. Next, software

simulation attempts a quick evaluation of the circuit and formal verification techniques are

added for the detection of errors in the specification. During this process, software

simulation detects the simple errors, further errors are detected by using a large quantity of

test vectors. At this point, emulation, rather than software simulation, becomes the better

validation method. Early in the design phase logic emulation provides a platform for parallel

software development for the target hardware. When designers determine that the design is

relatively fault-free, the time-consuming and costly manufacture of a prototype can

commence. The prototype is actually a fabrication of the circuit that can be analyzed in a

real operating environment. When failures have been detected by the prototype, emulation

as well as software simulation can be applied to isolate and remove the errors.

It can be concluded then, that when the benefits of software simulation, emulation, formal

verification, and prototyping are combined the result is an ideal validation methodology.

Software simulation is for designers particularly useful as a tool for the detection of errors

in small circuits. Emulation takes this one step further by enabling designers and end-users

to observe the entire system in operation. Formal verification techniques prove whether two

circuit descriptions are identical at different abstraction levels. The final check is provided

with prototyping, where real system behavior is not affected by errors caused by incorrect

modeling or abstractions.

Logic Emulation 11

2.2 FPGA-based Logic Emulation Design Flow

After the previous discussion of the advantages and disadvantages of the various

approaches to logic validation, this section focuses on mapping a circuit into an FPGA-

based logic emulator. Figure 2.3 illustrates the typical design flow of an FPGA system

including the three steps generally required for the preparation of a circuit for emulation.

Circuit
Description

Partitioning,
Global Placement

and Routing

Technology
Mapping

FPGA Placement
and Routing

Programming
Unit

Fig. 2.3: A typical design flow of FPGA-based emulation system

Circuits are usually described in a hardware description language like Verilog or VHDL.

For instance, at gate level the logic is represented by primitives such as ANDs, ORs, flip-

flops etc. or at register transfer level (RTL) by adders, substractors, multipliers, counters

etc. The compilation process of converting a structural circuit description to FPGAs

includes partitioning, technology mapping, FPGA-system placement and routing, which

involves the placement and routing of single FPGAs in the logic emulator and FPGA

placement and routing. FPGA placement and routing are implemented in the same manner

with single FPGAs. The compilation process is explained in more detail in Chapter 5.

Partitioning is generally the first step in the mapping process and involves dividing the

circuit description into sections which then fit into the individual FPGAs of the logic

emulator. The tool that divides the logic into partitions is called a partitioner. Routing

between FPGAs must be accommodated within the board's routing topology. FPGA-system

placement, combined with the partitioning process, is a procedure which allocates partitions

Logic Emulation 12

to individual FPGAs in the logic emulator. The next step is FPGA-system routing, a method

for routing signals between partitions, i.e. FPGAs within the emulator.

After completion of the partitioning procedure technology mapping reorganizes the logic

for an optimal fit in the CLBs [HeRo94]. For the most part, smaller gates are brought

together to form larger functions for the best possible utilization of individual configurable

unit resources. In order to attain optimum results fanout gates may need to be split, logic

resynthesized, and functions duplicated.

The final steps in the mapping procedure include the placement and routing of each FPGA

in the system. Configuration files are then created and subsequently downloaded to the

FPGA system, providing a thorough realization of the circuit's desired functionality.

Fault Simulation 13

3. Fault Simulation

During the manufacturing process manufacturing defects are introduced since no

manufacturing process can guarantee 100% yield. The actual type of defect is technology

dependent. Types of defects common to various technologies are open interconnections, bulk

shorts, and missing transistors [TiBu83]. The larger the circuit in terms of area, the greater the

probability of defects.

Fault detection and fault diagnosis are two important aspects of testing. Fault detection detects

the presence of a fault, whereas the exact location of a fault is identified through fault

diagnosis. By applying test vectors to a circuit during the testing process the response of the

circuit can be compared to an expected response computed using logic simulation tools.

Differing results indicate an fault, the cause of which is referred to as a physical fault [TiBu83].

When dealing with digital circuits, physical faults can be categorized as logic or parametric

[TiBu83]. A logic fault can affect a change in the logic function of the circuit. By altering the

magnitude of a circuit parameter, parametric faults cause changes in the circuit, such as circuit

speed, current, or voltage levels. In this work, only logic fault detection is considered and will

be described in greater detail in the following sections.

3.1 Fault Models

Faults in digital circuits can generally be divided into two groups [Muth75]: design errors and

physical faults. It will be assumed here that design errors are no longer present in the circuit at

the end of the design process. Therefore, only physical faults will be considered in this section.

A physical fault can occur, for example, as a result of dust, contamination, or mask faults

during the production process. Effects of physical faults can take the form of static, dynamic,

or intermittent faults. Examples of static faults are defective connections between transistors or

defective transistors. A dynamic fault on the other hand is, for example, the dynamic coupling

between wires in the IC. Intermittent faults are those which do not occur permanently, such as

loose connections, voltage breakdowns, or temporary internal warming up of a specific area of

the IC.

Fault Modeling at Various Abstraction Levels

While the design of a circuit usually begins at the system level and ends at the mask level, the

procedure involved for fault modeling begins at the mask level and ends at the system level. Of

interest in the fault modeling process are the physical faults that occur in manufacturing and

Fault Simulation 14

lead to faulty electrical behavior. Because simulation is too complex and time consuming at the

lower levels, the faults are modeled at a higher level. When using a higher abstraction level of

the fault model some faults of the lower levels are combined, as illustrated by the example in

Fig. 3.1. Here an INVERTER is represented at the logic and electrical level. While the

INVERTER can be modeled at the electrical level with 16 stuck-at faults (described in next

section), at the logic level these faults can be reduced, i.e. combined to 4 stuck-at faults.

A B
BA

S-a-1/0

Fig. 3.1: CMOS INVERTER at electrical and logic level

With the goal of reducing the quantity of faults, many faults at the lower level are mapped to a

fault at a higher level. Limited accuracy results during the transition from a fault model at a

lower level to a model at a higher level (Fig. 3.1). A differentiation between the various faults

is not possible at the higher levels, hence the possibilities for exact fault location are restricted.

The more accurate the abstraction levels, the higher the magnitude of the circuit description.

Thus, the accuracy of a fault model is dependent on the abstraction level where the model is

defined. Due to this dependency, the complexity for fault simulation and test vector

calculation, which will be described in Sections 3.4 and 3.5, increases with the accuracy of the

fault model. A suitable compromise between accuracy and complexity is the stuck-at fault

model, defined at logic level, which was introduced in [Eldr59].

The effects of physical faults on the behavior of the modeled circuit can be represented as

logical faults [TiBu83]. By modeling physical faults as logical faults the fault analysis problem

becomes a logical rather than a physical problem. The complexity involved in the analysis of

the logical faults is reduced greatly since a logical fault can model many different physical

faults. Additionally, due to the technology independence of some logical fault models, it is

possible to apply the same fault model to various technologies [TiBu83]. The stuck-at fault

model models various types of physical faults at logic level. It is the first and most widely used

model and is also referred to as the standard or classical fault model. In a faulty circuit, it is

assumed that an input or output of a logical gate is always set to logical "1" for stuck-at-1 or

Fault Simulation 15

logical "0" for stuck-at-0. As illustrated in Fig. 3.2, for example, a stuck-at-1 fault is modeled

at input I1 of the NAND gate. Therefore, input I1 has the value "1" and causes at output O1

the faulty value "0" with the input vector (I1, I2)=(0, 1). The input vector (0, 1) is a test vector

for the stuck-at fault at I1(s-a-1).

I1

I2

O1

s-a-1

Fig. 3.2: Stuck-at fault model

In addition to the classical stuck-at fault model, bridging faults [Mei74] as well as various

delay fault models are defined at logic level. Bridging faults result from shorts between two or

more signals in the circuit. The nodes involved in a short become equipotential, i.e. they all

have the same logic value. The characteristics of shorts between nodes at logic level for bipolar

technologies have been examined in [Mei74]. For example, shorts are simulated either as

"wired-AND" or "wired-OR". A bridging fault, then, can be modeled as a logical AND or OR

connection of the shorted wire, as shown in Fig. 3.3. These models are not valid however, for

CMOS technologies, where electrical resistance conditions resulting from the short-circuit

must be considered in order to determine the logical behavior in the presence of a bridging

fault [Wads71].

a

b
c

d

e

f

g

I1

I2

I3

I4
I5

O1

Bridging fault

⇒

a

b
c

d

e

f

g

I1

I2

I3

I4
I5

O1

Bridging fault

Fig. 3.3: Modeling of bridging fault as wired-AND

The stuck-at fault model can also be used to model other types of faults, such as delay faults fd
[AbBF90a]. A model of a delay fault can be applied to a single gate [Wund91a] or to paths

from the inputs to the outputs of the circuit [Wund91b]. It should be noted that these gates and

paths within the circuit must be described logically with timing characteristics. A gate- or path-

delay-fault can be an arbitrary deviation from the predefined timing for the gates and paths,

which is dependent on the applied technology, such as CMOS, TTL etc. A delay fault is

specified by a pair of input vectors (initialization and test vector) and a delay δ, and indicates

when an additional delay δ exceeds the slack ∆Del of the sensitized path as shown in Fig. 3.4.

Fault Simulation 16

Slack ∆Del is defined as the difference between the nominal time TN, which is the signal value

steady-state, and the propagation delay Del of a signal along a path [HiSC82][Mahl95]. A

specific type of delay fault is the transition fault ft. A fault of this type can also be interpreted

as a delay fault fd of the magnitude δ =∞ . For this reason, the transition fault model can be

simulated with the same algorithms that are applied to delay faults.

0 0

Del ∆Del

TN
t t

TN

Del+δ
VDDVDD

a) b)

Fig. 3.4: Fault free (a) and faulty (b) signal delay

In addition to stuck-at faults, bridging faults, and delay faults, a variety of other fault models

developed for various abstraction levels also exist, such as functional fault models [Haye72] at

the algorithmic or system level, stuck-open and stuck-on fault models [Wade71] [Haye72], and

hard and soft fault models [DuRa79] [Plic79] at the electrical level.

3.2 Fault Redundancy, Equivalence, and Dominance

An evaluation of the test vector set V containing the test vectors v1,v2,...,vn is followed by a

comparison of the actual output response of the faulty circuit Bf(v) to the precomputed output

response of the fault-free circuit B(v). A fault is defined as being detectable if a test vector or a

test vector sequence exists for detecting the fault. In other words, a test vector v detects a fault

f if the function of the fault-free circuit B(v) differs from the function of the faulty circuit Bf(v)

with fault f. Assuming that a circuit has a single output, a test vector that detects a fault f

causes B(v)=0 and Bf(v)=1 or vice versa. Thus, all test vectors that detect f are represented by

the equation B(v)⊕ Bf(v)=1.

When the behavior of the fault-free circuit B(v) and the faulty circuit Bf(v) is identical for all

possible test vectors, the injected fault is undetectable. In this case, there is no test vector for

the creation of a sensitized path, i.e. for the propagation of this fault to the primary output of

the circuit. The goal of test vector calculation (test generation) for a circuit is to create a

complete detection test vector set capable of detecting all detectable faults.

As illustrated in the following example, when an undetectable fault is present in the circuit, a

complete test vector set may be insufficient for detecting all detectable faults [Frie67]. Fig. 3.5

Fault Simulation 17

shows how the fault s-a-0 at net a is detected by (I1,I2,I3)=(1,1,0). This fault is no longer

detected by the test vector (1,1,0) if the undetected fault s-a-1 at the net b is also present.

a

b

I1

I2

I3

O1

1

1

0

undetectable s-a-1fault

a (s-a-0)

Fig. 3.5: Undetectable fault

Fault Redundancy

A combinational circuit containing an undetectable fault is referred to as redundant because the

circuit can always be simplified by removing a subcircuit. For example, in Fig. 3.6 an s-a-1

fault is modeled in net c. In order to detect s-a-1 in net c, the inputs a and d of the OR gate

must be set to 0. No test vector exists, however, that would make this possible. In this

example, the net c is permanently set to 1. Thus, the behavior of the circuit is identical to that

of an INVERTER, i.e. the circuit can be simplified or reduced to an INVERTER with input I3,

which results in net c being redundant.

a

b cI1

I2

I3 O1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0

0
0

0
1

1
1

1

1

1
1

1
0

0
0

0

I1 I2 I3 O1

⇒ I3 O1

Fig. 3.6 Redundancy

In practice, a complete test vector set cannot be generated for the detection of all faults in a

large combinational circuit even if no redundant faults are present in the circuit. This is due to

the fact that test generation for some faults may be too time-consuming and all existing test

generation tools are designed to interrupt the test generation process for a fault when it

becomes too time consuming, e.g. when fault detection becomes too costly. Therefore, an

undetectable fault can not be differentiated from a detectable fault that has not been detected

by an applied test vector set.

Fault Simulation 18

Fault Equivalence

A classical method for decreasing the quantity of modeled faults is the use of dominant

[McCl71] and equivalent faults [ScMe72]. Two faults f1 and f2 are functionally equivalent

when the functional behavior of the faulty circuit Bf1(v) with f1 is equal to the functional

behavior of the faulty circuit Bf2(v) with f2, i.e. Bf1(v)=Bf2(v) . The two faults f1 and f2 are

distinct when a test vector v is able to differentiate between them, i.e. Bf1(v)≠ Bf2(v). No test

vector however, can distinguish between two functionally equivalent faults. Faults which are

functionally equivalent can be separated from the set of all possible faults and grouped into

functional equivalence classes [McCl71][ScMe72]. Observing a single fault from each

equivalence class is sufficient for fault analysis. Equivalence fault collapsing refers to the

reduction of the set of faults to be analyzed based on their equivalence relations and is

illustrated in Fig. 3.7 for a NAND gate.

The NAND gate with the inputs I1 and I2 and the output O1 has four fault equivalence classes

{I1(s-a-0), I2(s-a-0), O1(s-a-1)}, {I1(s-a-1)}, {I2(s-a-1)}, {O1(s-a-0)} since each test vector

that is able to detect I1(s-a-0) can also detect I2(s-a-0) and O1(s-a-1) and vice versa.

I1
I2

O1

S-a-1/0

S-a-1/0

I1
I2

O1

S-a-1

S-a-1

S-a-1/0 S-a-1/0

Fig. 3.7: Equivalence fault collapsing

Therefore, it is always sufficient to observe a single fault from each equivalence class. The n

input gates of NOT, NAND, NOR, AND, OR is n>1 and have 2(n+1) single stuck-at faults,

with s-a-1 and s-a-0 faults at the output and at all inputs. Using equivalence fault collapsing

the set of faults is reduced to only (n+2) faults for any n input gate.

Fault Dominance

Given that Vf1 is the set of test vectors for detecting the fault f1, fault f2 dominates fault f1 if f2
and f1 are functionally equivalent under Vf2. In other words, if f2 dominates f1, a test vector v

that detects f1, on the primary outputs can also detect f2 on the same outputs since the

functional behavior of the faulty circuit with f1 is equal to the functional behavior of the faulty

circuit with f2. For purposes of fault detection, then, it is not necessary to consider the

dominating faults. Dominance fault collapsing can be defined as a reduction of the set of faults

to be analyzed based on dominance relations Vf1⊆Vf2. For example in the NAND gate in Fig.

3.7, the stuck-at faults I2(s-a-1) and O1(s-a-0) can be detected with the test vector v (I1=1 and

Fault Simulation 19

I2=0). In this case, O1(s-a-0) dominates I2(s-a-1). For other primitives such as an AND gate,

the output s-a-1 dominates any input to the gate s-a-1 just as the output s-a-0 for an OR gate

dominates any input s-a-0. Likewise, for NOR (NAND) gates the output s-a-0 (s-a-1) fault

dominates any input s-a-1 (s-a-0).

For complete fault collapsing using both dominance and equivalent fault collapsing it is

possible to considerably reduce the number of faults for an n input gate from 2(n+1) to (n+1)

faults.

3.3 General Approach to Fault Simulation

Fault simulation is the process of simulating a circuit in the presence of faults. Using a test

vector set V, faults are detected by comparing the fault simulation results to the results from a

fault-free simulation of the same circuit, i.e. good simulation. Fault simulation can be

implemented to evaluate test vector set V. Generally, the grade or quality of V is determined by

its fault coverage γ, defined by the ratio of the number of faults detected by V to the number of

modeled faults.

γ =
number of detected faults

number of modeled faults (3.1)

The typical fault coverage curve is depicted in Fig. 3.8 by the evaluation of a test vector set. A

linear slope is shown at the beginning of the fault simulation, which then ends in the area

between 70-80% of the maximum fault coverage (100%). This linear area of the curve usually

ends after just a small quantity of test vectors, with which the easily detectable faults are

detected. Faults which are difficult to detect are processed in the saturation area, where only a

few test vectors exist for the detection of these faults.

100[%]

Number of test vectors

Fault coverage

Fig. 3.8: Fault coverage curve

Fault simulators are also used to increase the efficiency of programs used for test vector

calculation [ScTr87]. For each modeled fault a program for test vector calculation determines

a test vector or, for sequential circuits, a sequence of test vectors. Due to the complexity of

Fault Simulation 20

test generation, a single test vector or test vector sequence is calculated for the detection of a

fault and can be used with a fault simulator to detect further faults. The total runtime for test

generation is thereby greatly reduced. By evaluating randomly generated test vectors using a

fault simulator, easily detectable faults can be detected, which leads to a reduction in the fault

list before use of a test generator. Additionally, by combining the fault simulator with the test

generator the quantity of test vectors can be kept to a minimum.

Another classical use of fault simulators is fault diagnosis [AbBF90b], which determines which

faults are present by creating a fault dictionary with the help of a fault simulator. The fault

dictionary contains information about the faults detected by a test vector. In order to attain the

best possible results from the fault dictionary, each test vector must be evaluated for all faults.

Therefore, fault dropping, i.e. the removal of faults from the fault list as soon as they are

detected, cannot be applied to fault diagnosis.

3.4 Fault Simulation Techniques

For the fault simulation process both the compiler-driven and the table-driven approaches to

logic simulation can be applied. A simulator carrying out a compiled-code model is referred to

as a compiler-driven simulator or a compiled simulator. The compiled code can be produced,

for example, from a structural model, or from a functional model written in a conventional

programming language. A compiler-driven simulation has several advantages, such as the

simplicity of the applied simulation algorithm and low memory usage. The disadvantages

include the time-consuming compilation of the circuit into a processable code, which must

occur before the simulation. Compiler-driven simulation deals mainly with functional

verification rather than with the timing of the circuit.

A table-driven simulator interprets a model based on data structures that are generated, for

example, from a structural model. Table-driven simulation, as opposed to compiler-driven

simulation, allows for modeling the timing of the circuit as well as for a higher degree of

flexibility. Complicated data structures and larger memory usage are, however, both

consequences of this method of simulation.

The table-driven approach can usually be applied to event-driven simulation. Here, an

alteration in the value of a signal is referred to as an event. The input of a logic element is

activated by the presence of an event. The generation of new events resulting from changes in

the output values by the activated logic elements is referred to as event-driven simulation. In

order for events to be propagated along the interconnections among the logic elements of a

Fault Simulation 21

circuit, a structural model of the circuit is required by the event-driven simulator. Because of

this, event-driven simulation is usually table-driven.

Serial Fault Simulation

The simplest method of fault simulation is known as serial fault simulation. Using this method,

the simulation process is repeated for each fault. Serial fault simulation is based upon a

comparison between the simulation results attained from faulty circuits Bf(v) and fault-free

circuits B(v). A disadvantage of serial fault simulation is that for a circuit with a set of faults F,

|F|+1 simulation runs must be executed, one fault-free run plus one for each fault. Fault

collapsing is a technique which can be applied to reduce the number of faults to be simulated

and is described in more detail in the previous section 3.2. In addition, fault dropping can be

used to remove faults from the fault list. For large circuits, however, serial fault simulation is

impractical due to the amount of computation required for the simulation runs and for the

comparisons of faulty and fault-free signal values.

Parallel Fault Simulation

Using the parallel fault simulation method [Sesh65], a fault-free circuit and a predetermined

quantity of faulty circuits are simulated simultaneously. The signal values of the fault-free

circuit and those of the corresponding faulty circuits are simulated in one or more words W.

As illustrated in Fig. 3.9, if a 2-valued logic and an 8-bit word is used each of the bits

contained in the word is associated with a signal value in different circuits. Bit 0 usually

symbolizes a signal value from the fault-free circuit. Given an AND gate with the inputs I1 and

I2, a logical AND instruction is used between the words associated with I1 and I2. The AND

gate can then be evaluated in parallel for the fault-free as well as for each of the 7 faulty

circuits.

07 6 5 4 3 2 1

Value of fault-free circuit

Value of 7th faulty circuit Value of 1st faulty circuit

Signal i

Fig. 3.9: Parallel fault simulation

The equation

val val mask mask maski i i= ⋅ + ⋅1 1 2 []mask i1 =


0

1
inactive fault
active fault

(3.2)

Fault Simulation 22

represents the process of fault injection, where val is the value of an arbitrary signal. The

simulation process is carried out in parallel using two mask words that store the values mask1

and mask2 in the bit position associated with fault f. Mask1 corresponds to a signal and

specifies if, and at which bit positions, faults are to be injected. The stuck-at fault values of

these faults are defined by mask2. A fault f on bit position i of mask2 can only then be detected

at a word of the signal val when the value on bit position i of val[i] differs from the value on

the first bit position in the same word (val[1]), i.e. val[1]⊕val[i]=1 and if the fault f is active on

bit position i of mask1, i.e. mask1[i]=1.

Fig. 3.10 shows an AND gate which is part of the circuit and the masks used for fault injection

on output h. Before evaluating h, fault injection is executed for inputs c and d of the AND

gate. When the evaluation of signal h by h=c.d is completed, the effect of fault insertion on h

can be calculated by

h h mask mask maskh h h= ⋅ + ⋅1 1 2 (3.3)

a

b
c

d

e

h

g

I1

I2

I3

I4
I5

O1
7 6 5 4 3 2 1

Fault-free circuit
c

(s
-a

-1
)

d
(s

-a
-1

)

h
(s

-a
-0

)

h
(s

-a
-1

)

..........

1101

01

01

1

0

1

0
7 6 5 4 3 2 1 0

000 mask1

mask2

val (signal h after fault injection)0 1

signal h before fault injection0 1

0

00

[h]

[h]

Fig. 3.10: Fault injection on signal h

The signal for a 3-valued logic 1, 0, u (unknown logic value) is represented by two words w1

and w2, which are encoded. The values 1,0, and u are coded respectively as "1:=11" (w1=1,

w2=1), "0:=00" (w1=0, w2=0), and "u:=01" (w1=0, w2=1). Therefore, the equations y1=a1
.b1

and y2=a2
.b2 are used rather than y= a.b when evaluating an AND gate with inputs a and b

and output y. Evaluation methods become more complex with an increase in the quantity of

logic values. Therefore, for a more than 3-valued logic parallel fault simulation becomes

impractical for large circuits.

Fault Simulation 23

Deductive Fault Simulation

Deductive fault simulation [GoVo71] is based on the algorithm that in order to observe faults

and their effect on a circuit, the simulation process is not repeated for a circuit which has

already been simulated. Instead of the calculation of many faulty circuits in parallel, all faults

are calculated in one simulation run. Using the deductive method of fault simulation the fault-

free circuit is simulated and the behavior of all faulty circuits is deduced. In practice, the

deduction of all faulty circuits depends on the amount of memory available for this purpose. A

data structure referred to as a fault list, Fi, represents the fault effects and corresponds to each

signal i. During the simulation, Fi is the set of all faults, which are responsible for changes in

the values of signal i in the fault-free circuit and the faulty circuit at the prevailing moment in

the simulation.

The computation of fault lists is the basic task in deductive simulation and involves the

calculation of the fault-free output value from the given fault-free input values, as well as the

calculation of the output fault list from the given fault lists of the inputs of the logic elements.

This procedure is referred to as fault-list propagation. In addition to the propagation of logic

events, representing alterations in signal values, list events resulting from additions or deletions

of faults from a fault list are also propagated by a deductive fault simulator.

F = {r , m , n , a }

F = {m , n , p , b }

F = {n , p , c }

F = {n , p , b , d }
a = 11 1

1 1

1

1 1 1

0 0

0 0

0 0

0
b = 0
c = 1

d = 0
A

B

C

D

Fig. 3.11: Fault list propagation

Illustrated above is an AND gate d with inputs a, b, and c as well as the corresponding fault

lists (FA , FB , FC). The input values are a=1, b=0, and c=1, therefore d=0. The value of d

changes for each fault which causes a change in the value of b, but which does not affect the

values of a and c. The faults in FB that are not in FA and FC are

{ } { }F F F F d F F F dD B A C B A C= ∩ ∪ ∪ = − ∪ ∪() ()1 1

where FA and FC are the set of all faults not in FA and FC . The fault lists from Fig. 3.11

contain the following faults, with letters referring to nodes and an index representing the stuck-

at value.

{ } { } { }F r m n F m n p F n pA B C= = =1 0 1 0 0 1 1 0, , ; , , ; ,

The faults, added to the nodes a, b, and c, affect a change at the nodes from which the

following lists are generated:

Fault Simulation 24

{ } { } { }F r m n a F m n p b F n p cA B C= = =1 0 1 0 0 0 1 1 1 0 0, , , ; , , , ; , ,

From these values it can be concluded that

{ }F n p bD = 0 1 1, ,

The faults n0 , p1, and b1 are propagated to the output of the logic element. Now d1 must be

added to the fault list since these faults influence the value of d. It follows then for d that

{ }F n p b dD = 0 1 1 1, , ,

The deductive fault simulation algorithms require a huge memory capacity for simulation. A

further disadvantage is the propagation of list events, which occur even when additional input

to the circuit does not change the logical values at the logic element's inputs, i.e. when a fault is

added or removed from the fault list. Therefore, the propagation of list events results in many

long fault list computations.

Concurrent Fault Simulation

The most common fault simulator is the concurrent fault simulator [UlBa74]. Simulated are

only the specific logic elements in the faulty circuit which differ from the corresponding ones in

the fault-free circuit. These differences for every logic element in the fault-free circuit are

maintained in a concurrent fault list.

With concurrent fault simulation, a replication is produced for each fault in the circuit which

causes a faulty signal or its propagation through a logic element (gate). Here, the actual logic

elements as well as the replications are simulated. The basic idea of concurrent fault simulation

is that a simulation should only be executed at the gates or replications where the events occur.

The gate replications are represented in the concurrent fault list as follows: GT is a gate with n

inputs a af
n
f

1 ,..., and the output c. FGT represents the set of faults which affect GT. During the

simulation of each fault f with a test vector, the gate GT has the values a af
n
f

1 ,..., on its inputs

and cf on its output. Additionally, f =0 refers to the fault-free gate. The concurrent fault list for

c consists of a list of entries in the form of

f a a cf
n
f f; ,..., ;1 . (3.4)

In Fig. 3.12 output c is contained in the concurrent fault list. The first replicated gate in the

fault list is f1; 1, 1;0 (In other words, fault f1 has the input values 1, 1, and the output value 0).

All gates in the fault list are arranged in a fault index. When the output values for a fault-free

and a faulty gate are different, a fault f is said to be visible on this output. In Figure 3.12, for

example, fault f1 is a visible fault.

Fault Simulation 25

0
1

c
a

b

1

0
0

1

0
1

1

1
1

0

Fault index

Fault-free gate

f

f

f

1

2

9

Fault list of c

f

f

f

1

2

9

1 1 0

1 0 1

0 0 1

; , ;

; , ;

; , ;

M











Fig. 3.12: Concurrent fault simulation

The concurrent fault simulation method can be explained using the example in Fig. 3.13, which

represents a circuit as well as the influence of the faults f1:b(s-a-0), f2:k(s-a-0), and f3:c(s-a-0)

on the circuit. The fault status associated with each fault is represented by a replicated gate

under the fault-free gate. The local fault f1 affects a change in the value of all gates on the path

to the primary output, therefore, the fault is included in the corresponding fault lists. Using the

selected test vector, this fault can be detected at the output p. Fault f2 however, does not cause

a change in the output of the gate l. Therefore, fault f2 is contained in the fault list of gate l as

a local fault and is not visible on the output of this gate. The faults f1 and f3 are visible on many

gate outputs but only f1 can be detected at the output p.

e

fc

a

b

1

1
0 0

0

1
1 1

1

1

1

1
1

1 1

11
1

1

00

0
0

00
0

00
0

0

0
0

0

d

j

k

g

h i

n

m

p

b (s-a-0)

k (s-a-0)

c (s-a-0)

f1

f1

f1

f1

f2

f3

f3

f3

Fig. 3.13: Fault propagation of f1 to output p

Fault Simulation 26

Parallel Pattern Single Fault Propagation (PPSFP)

PPSFP is an important and frequently applied method of simulation, which takes advantage of

the word-oriented operations in a computer [WaEi85]. Simulation efficiency is dependent on

the word length i, which is usually 24 to 28 bit. A word with length i can simulate parallel i test

vectors in one simulation run and therefore the total number of simulation runs SIM is reduced

to

SIM
n

iPPSFP = (3.5)

for a test vector set containing n test vectors.

The simulation process is based on the logic operation of individual test vectors, whereby each

vector can represent, for instance, one word. In general, the calculation for a logic element

with two inputs a and b and an output d can be described as

vec(d) = vec(a) o vec(b) (3.6)

where o represents an arbitrary logical operation for every bit of the input word. The i-th bit of

the first input word vec(a) is always logically operated to the i-th bit of the second input word

vec(b) and the result can be found in the i-th bit of the output word vec(d). The example in

Figure 3.14 uses an AND gate to illustrate a two-valued fault-free simulation using PPSFP.

Assuming that the word length is 4 bit i=4, then vec(a)=(0,1,0,1) and vec(b)=(0,0,1,1) can be

selected. The AND-operation for every bit of the vectors vec(a) and vec(b) gives the result

vec(d)=(0,0,0,1).

a

b
d

vec(a) . vec(b) = vec(d)

0

1

0

1

0

0

1

1

0

0

0

1

Fig. 3.14: Principle of two-valued Parallel Pattern Single Fault Propagation

The examination process involves injecting a fault at the fault location in a manner similar to

parallel fault simulation. In the case of parallel fault simulation, the mask for a fault affected

only a single word w, whereas two words are used with Parallel Pattern Single Fault

Propagation. One of these words represents the fault-free value in each bit and is produced by

a good simulation while the other word represents the value of the faulty circuit and is referred

to as a fault-word. A fault-word will only be stored at the output of the gate when it differs in

Fault Simulation 27

at least one bit from the word produced by a good simulation. The two-valued logic method

can be easily expanded to a more-valued logic when further words are used in parallel.

The simulation runtime TPPSFP is derived from the number of gate calculations per simulation

run Ê (average activity), the value g, which indicates how many gates are evaluated per second

(GEPS), and SIM=SIMg+SIMf, the number of simulation runs for fault-free SIMg (Equation

(3.5)) and faulty SIMf circuits. The size of Ê depends on the evaluated circuit, the test vector

set, and the modeled faults, whereas value g is hardware-dependent (workstation).

T
E SIM

gPPSFP =
⋅$

(3.7)

Using PPSFP techniques for sequential circuits an average number of iterations Î must be

executed for each simulation run. The size of Î indicates how often a storage element must be

calculated per simulation run. Further events are generated with each iteration at the

combinational part of the circuit. Therefore, the number of gates that must be calculated for

each simulation run increases, resulting in a runtime calculated with Equation (3.8). Factor ñ

depends on average circuit activity, the average number of iterations Î, word length i,and the

average number of events produced per iteration.

$
~

, ~ ($, $,)T
n SIM

g
n f E I iPPSFP =

⋅
= (3.8)

When applied to combinational circuits this approach represents the fastest method of

simulation. For sequential circuits, additional events are generated at the combinational part of

the circuit where new storage elements can be activated through the iterations. Hence, an

increase in ñ leads to a significant increase in runtime. Because this approach is not appropriate

for sequential circuits the use of other methods is required. For example, the PPSFP method

has been used successfully for the evaluation of a large test vector set with 1 million test

vectors.

Test Generation 28

3.5 Test Generation

The process of test generation involves determining the stimuli necessary to test a digital

circuit. The two fundamental steps in generating a test vector for a fault s-a-f are first, the

activation of the fault f, and second, the propagation of the resulting error to a primary output.

When activating a fault, the values of the primary input are set to cause a signal with the value

f at the fault location.

Test generation can be carried out manually or automatically. The most common methods of

automatic test generation for digital circuits are classified in Fig. 3.15.

Automatic
Test Generation

DeterministicPseudo-random

Functional Structural

Fig. 3.15: Classification of test generation

In general, test generation can be divided into two specific approaches: deterministic and

random. The first approach can be classified as functional for the evaluation of the boolean

function of a circuit, or structural, for the extraction of test vectors from the topology of the

circuit to sensitize specific paths. With the second approach, test vectors are generated pseudo-

randomly. Hence, test vectors generated in this manner must be evaluated with fault

simulation. Random test generation does not take into account the function or the structure of

the circuit. While the deterministic method is on the one hand extremely time-consuming, the

generated test vectors are on the other hand of a higher quality (fault coverage) than those

generated by random test generation.

Test Generation 29

In this work hardware-based random generation of test vectors by a logic emulator is used. A

detailed discussion of pseudo-random test vector generation as well as the corresponding

hardware realization is included at the end of this section.

Deterministic Test Vector Generation

Deterministic test vector generation methods use a logical description of a circuit or a circuit

structure for the determination of test vectors. The functional methods of test generation are

based on the calculation of a node's function using boolean differences or fault matrix. The

simplest approach for generating test vectors consists of constructing a fault matrix. The fault

matrix technique developed by Kautz [Kaut68] [Chan65] uses a boolean matrix, called an F-

matrix, to represent the relation between the set of all possible test vectors of the primary

inputs for a given circuit, to their associated faults. The output values resulting from the

application of the given test vectors under specified fault conditions are then entered into the

F-matrix containing the results of all primary outputs for each fault with all input combinations.

An evaluation of the matrix determines which faults are detected with which input

combinations. The boolean difference [Selle68] is a formal method for the analysis of the

operation of a circuit when faults occur at its primary inputs. The method is based on the

exclusive OR operation between two boolean functions, one representing a faulty circuit and

the other a fault-free circuit. A disadvantage of this technique is the highly complex calculation

of the boolean difference. Since the calculation of the boolean difference and fault matrix

becomes more complex with an increase in circuit size, the application of functional methods

for increasingly complex digital circuits is becoming less frequent.

Structure-based approaches to test generation, referred to as path sensitization, are

characterized by the attempt to find paths through a circuit so that a primary output is

dependent on at least one primary input of the circuit, as well as by the evaluation of all nodes

on this sensitive path. The basic path sensitization method [Arms66] is based on the activation

of a specific fault within the circuit structure as illustrated in Fig. 3.16. The propagation of this

fault to the primary output of the circuit along a sensitive path is referred to as forward trace,

whereas the propagation of a fault along the sensitive path to the primary input is referred to as

backward trace.

Test Generation 30

I1

I2

I3

O1

I4

1

1

1
0

0

1

a (s-a-1)

1a

b

Fig. 3.16: Backward trace and forward trace along a sensitive path

The D-Algorithm [Roth66] is a standard method serving as the basis for the development of

more efficient algorithms such as the PODEM-Algorithm. Test generation belongs to the class

of NP-complete problems. In the case of combinational circuits, the complexity of the

deterministic method grows quadratically to cubically [Goel80] with circuit size.

Testability is defined by [AbBF90c] as a design characteristic that affects various costs

associated with testing. "Design for testability" are methods implemented during the design

phase to establish that a circuit is testable. Two attributes related to testability are

controllability and observability [Rutm72] [StGr76]. Controllability is the ability to establish a

specific value at each node in the circuit by setting values on the circuit's inputs while

observability is the ability to drive the specific value of a node to the circuit's primary outputs.

These values are intended to represent the relative degree of difficulty for computing an input

test vector or sequence for setting node a to the value 1, i.e. 1-controllability or to the value 0,

i.e. 0-controllability, and propagating a fault to the primary output of the circuit. Controllabilty

and observability measures are used with the goal of estimating the difficulty of generating test

vectors for specific faults or for the entire circuit [AgMe82].

Random Test Vector Generation

A large set of random vectors is required to attain a test vector set of high quality, i.e. a high

degree of fault coverage. Recall from Section 3.3 that fault coverage can be calculated by a

fault simulator. Although random test vectors may be easily and rapidly generated, the use of

fault simulation to determine the quality of random test vectors may be a time-consuming

process dependent on the complexity of the circuit and the fault simulation algorithm.

One method of pseudo-random test generation uses a Linear Feedback Shift Register (LFSR)

for the generation of test vectors [AbBF90]. With this technique, the number of inputs to the

circuit determines the number of stages in the shift register. The feedback connections are

selected with the goal of attaining maximum length. The r-stage LFSR is examined in Fig.

Test Generation 31

3.17, which displays the r-stage LFSR with feedback connections from all r-stages using a

modulo-2 sum circuit (exclusive-OR). At each stages of the register the sequence is delayed by

a single time interval compared to the previous stage. Depicted in Fig. 3.17 are the feedback

connections m1, m2, ..., mr and the storage elements FF2 to FFr, which receive their values

from the preceding storage elements.

a a a a1 2 r-1 r

..............m1 m2 mr-1 mr

D Q D Q D Q D Q

Σ modulo-2

FF1 2 r-1 rFF FFFF

Fig. 3.17: Conceptual Linear Feedback Shift Register (LFSR)

The LFSR behavior is determined by the sequence of values generated at the inputs aj and the

feedback connections mj and is expressed as a characteristic polynomial

P a m aj
j

j

r

() = +
=

∑1
1 (3.9)

An all-zero state generates an all-zero sequence occurring with every LFSR regardless of the

feedback connections. The maximum number of additional sequences possible is reduced by

the zero sequence to 2r-1.

Hardware Realization

Figure 3.18 illustrates an LFSR as a pseudo-random test generator with a length of 4 bit, which

can be built in hardware by flip-flops for the r-stages (r=4) and an exclusive-OR for the

modulo-2 sum. Note, that the outputs of LFSR are the value of flip-flops (Q).

Test Generation 32

a a a a
1 2 3 4

m =1
1

D Q

m =1
4

D Q D Q D Q

Fig. 3.18: Hardware realization of a LFSR as a pseudo-random test generator

The corresponding polynomial is indicated below as

P a m a m a m a m a

a a

() = + + + +

= + +

4
4

3
3

2
2

1

4

1

1 (3.10)

The sequence corresponding to this pseudo-random test generator is illustrated in Fig. 3.19,

where the initial state is depicted as {a1, a2, a3, a4}={1,0,0,0} and the feedback connections as

{m1, m2, m3, m4}={1,0,0,1}.

0001

1000

1100

1110

0111

1111

1011

01011010

1101

0110

0011

1001

0100

0010

a a
1 4

0000

Fig. 3.19: Test generation cycle of Fig. 3.18

Fault Emulation 33

4. Fault Emulation

4.1 State of the Art

Traditional software-based approaches to fault simulation as well as hardware-based methods

are introduced in Chapter 1. In the past years various methods have been presented for the

generation of a hardware-based faulty circuit, each with its own approach to fault injection.

Timoc [Timo79] and Cheng&Dai [ChHu95], for example, insert additional functions at the

fault location, while SFE [BuRe96] and Krone [Kron96] utilize the reconfigurability of

FPGAs. A common feature of each of these methods is the execution of hardware-based fault

simulation at gate level and the modeling of faults using a stuck-at fault model. Different

techniques utilized for the activation of faults in the circuit, such as a circular shift register and

the reprogrammability of FPGAs, are discussed in greater detail in the next sections.

For fault detection and analysis processes Timoc applies a standard LSI-Tester, while the

approaches of Cheng&Dai, SFE, and Krone are FPGA-based approaches, which use a logic

emulator for the analysis of detected faults. Each method of hardware-based fault simulation,

however, must handle the following tasks:

1. Fault injection

2. Fault activation

3. Fault detection and analysis.

The motivation behind hardware-based fault simulation is the reduction of the runtime of

software-based fault simulation described in Chapter 3 in order to attain a speedup. Each

hardware-based fault simulation technique achieves a different speedup, which is dependent on

the applied technology, such as breadboarding or FPGA. A description and comparison of the

various hardware-based fault simulation approaches is the focus of the following sections.

4.1.1 Timoc Approach

The first hardware-based approach to fault simulation was introduced in 1979 by Timoc

[Timo79] and consists of expanding the circuit with fault simulation capabilities implemented

by breadboarding and wire-wrapping techniques. In order to execute a hardware-fault

simulation, the circuit must be prepared in the following manner:

Fault Emulation 34

Phase 1: Construction of a fault-free breadboard to execute the function of the

circuit.

Phase 2: Addition of fault simulation capabilities to the fault-free breadboard.

Phase 3: Evaluation of the stuck-at-fault detection using a commercial LSI-Tester.

In order to model stuck-at-faults, the appropriate fault locations in the circuit are expanded by

additional functions, such as OR and NOR. The following example in Fig. 4.1 illustrates a

hardware fault simulator for a two-input AND gate with expanded functions on its primary

inputs X1 and X2 [Timo79]. With fault collapsing the only faults to be injected are input X1

stuck-at-one (X1-1), input X2 stuck-at-one (X2-1), and input X1 or X2 stuck-at-0 (X1-0),

(X2-0). The circuit represented below can simulate a good two-input AND gate as well as any

of the single stuck faults associated with an AND gate.

Fig. 4.1: Hardware fault simulator for an AND gate [Timo79]

The objective of Phase 2 is to enhance the fault-free breadboard constructed in Phase 1 with

fault simulation capabilities by modeling a stuck-at fault for each primitive gate. Figure 4.1

illustrates the implementation of the fault simulation capability. After the substitution of fault

simulation capabilities for all gates, the shift registers for these capabilities are cascaded,

forming a long shift register. When a "1" is contained at the appropriate position of the shift

register, the particular gate's inputs and outputs are selected and the stuck-at- fault can be

simulated.

This approach was applied for the evaluation of an IBM microprocessor [Timo79] and resulted

in a speedup of 2 in comparison to the IBM Deductive Fault Simulator [Cha76]. However,

Fault Emulation 35

complicated construction as well as the high cost involved in the development of a breadboard

are factors that must be considered before its implementation.

4.1.2 Cheng&Dai Method

The first FPGA-based method of fault simulation (fault emulation), was developed by

Cheng&Dai in 1995 and does not differ greatly from the approach presented by Timoc. The

Cheng&Dai method uses the reprogramming feature of the FPGAs and utilizes additional logic

for the modeling of stuck-at faults. This fault injection and fault activation techniques in the

expanded circuit lead to mapping problems in the emulator. The Cheng&Dai approach is

described below, followed by a thorough discussion of the mapping problem. Cheng&Dai

present a solution to this problem, which, however, results in a higher fault emulation runtime.

The Cheng&Dai method is presented in Fig. 4.2 and involves the serial injection and emulation

of faults. Prerequisites to this process are recompilation, the preparation of new data resulting

from the partitioning, technology mapping, placement, and routing processes for the

reprogramming of FPGAs, as well as reconfiguration, involving the reprogramming of FPGAs.

FPGAs are reprogrammed by downloading the bitstream files created during recompilation.

The selected fault can be injected by reconfiguring the FPGA in order to convert a fault-free

circuit into a faulty circuit. The test vector is then applied to the logic emulator that

implements the faulty circuit and the results are compared to the expected output of the fault-

free circuit. When the results differ, a fault has been detected and the process is reiterated until

all faults have been injected. Before a fault emulation process the implementation of the fault-

free design to the logic emulator as well as fault collapsing for the creation of a collapsed fault

list is required.

Fault Emulation 36

Compilation Fault list generation

FPGA-implementation
of fault-free circuit

Fault list

Fault injection

Reprogramming

Fault EmulationTest vector

more Faults
yes

no

Coverage report

ASIC Netlist

Fig. 4.2: Flow diagram of Cheng&Dai method [ChHu95]

An example of fault injection is shown in Fig. 4.3, with Fig. 4.3a displaying the mapping of a

circuit section to an FPGA. An additional controller with two outputs, x and y, as well as an

additional gate (GT1 or GT2) for each fault is added to the nets a and g in Fig. 4.3b. An OR

gate, GT1, is added for the injection of the stuck-at-1 fault. When x=1, the fault is present, i.e.

activated, whereas when x=0 no fault is activated and CLB1 is in a fault-free state. In the same

manner, an AND gate, GT2, is added for the injection of the stuck-at-0 fault, which is active

when y=1 and inactive when y=0, indicating the fault-free state for CLB2. Similar to the

Timoc approach, a shift register (SR) is used for the activation of a single fault for each

emulation process.

GT

GT

Fig. 4.3: Fault injection and activation of Cheng&Dai method [ChHu95]

Fault Emulation 37

The FPGA-system routing and FPGA routing problems are extremely complex due to the

mapping problems caused by the shift register. When a large number of dependent faults are to

be simulated in the circuit, extremely long shift register chains are required. Since each flip-flop

of the shift register is mapped to flip-flops in the CLBs an increase in logic density and thus a

decrease in flexibility in the FPGA is expected and therefore routing resources are insufficient

for the mapping of complete circuits [BrFr92c].

As a solution, Cheng&Dai suggest that no more than 10% of all flip-flop resources of an

FPGA are utilized. For instance, with an emulator consisting of Xilinx 4010 FPGAs, a

maximum of 20 faults can be emulated in each FPGA. In order to map a circuit with a fault set

F of 100k faults into an emulator with 100 FPGAs, 20 replications each with D=5000 faults

are created from the original circuit. Because each circuit must be downloaded to the emulator,

the reconfiguration time for the complete FPGA system amounts to approximately 1 minute.

According to the manufacturer of the Xilinx 4000 series FPGA [Xili94], the reconfiguration

time R required for each FPGA varies between 0.5 and 1 second. Thus, the reconfiguration

time for all 100k faults amounts to 20 minutes, which must still be added to the fault emulation

runtime Rf for the total runtime Rt. Hence, the total runtime can be calculated as:

Rt
F

D
R Rf= ⋅ +

 (4.1)

The additional functions necessary for fault injection, as well as for the control of the injection

process, lead to the generation of a hardware overhead. As stated in [ChHu95], each of the

replicated expanded circuits has an average CLB-overhead of 1.3 - 2 when compared to the

original circuit. This technique was never fully implemented in a logic emulator due to the

mapping problem and long emulation runtimes, therefore, emulation results are not available.

4.1.3 Serial Fault Emulation

Serial Fault Emulation (SFE), a further variation of hardware-based fault simulation was

developed in 1996 by Meta Systems [BuRe96]. SFE was developed specifically for the logic

emulator from Mentor-Meta Systems and represents a completely new method of fault

emulation. The rapidly reconfigurable FPGAs from Meta Systems play a key role in the fault

emulation process by allowing direct access to, as well as by changing the function of logic

blocks (BLP) during an emulation process. The calculation of FPGA reconfigurations using the

CAP (Computer-Aided Prototyping) software from Meta Systems is described on the left side

of Fig. 4.4. A collapsed fault list is created by a fault generator using a netlist at gate level. The

first step involves the generation of a fault specification file, which determines those logic

blocks into which faults will be inserted for fault emulation.

Fault Emulation 38

Fig. 4.4: SFE flowchart [BuRe96]

The next step in the reconfiguration process includes computing the FPGA reconfiguration

corresponding to individual faults. This is a prerequisite for designing a hardware prototype of

the faulty circuit. An FPGA reconfiguration is associated with a list of BLPs that are

reprogrammed in order to generate a faulty circuit from a fault-free circuit. Each BLP in the

reconfiguration corresponds to a list of the functions for each BLP for the fault-free and the

faulty circuit as well as a logical address in the emulator (bo, fp, bl) which is a specific

reference to the board number bo in the emulator, the FPGA number fp on the board, and the

BLP number bl within the FPGA.

By reconfiguring an FPGA for single-stuck-at faults (SSF) at a gate only the 4-input function

of the BLP is influenced. An example of FPGA reconfiguration is given in Fig. 4.5. The three

gates GT0, GT1 and GT2 of the circuit are mapped into a BLP with the logical address (0,0,0)

(indicating board 0, FPGA 0 and BLP 0) and the fourth gate, GT3, to the BLP (0,0,1). The

equation Z=A.B + C.D represents the 4-input function of the BLP (0,0,0). When signal x in

the circuit is stuck-at-0, the BLP must be reconfigured to implement the function Y=C.D.

Fault Emulation 39

GT

GT

GT

GT

Fig. 4.5: An example of FPGA reconfiguration [BuRe96]

The runtime required for SFE is determined by the number of emulation cycles to be executed

as well as the maximum clock speed (MCS), i.e. operating frequency, of the circuit in the

emulator. Given that Treconf represents the time required for reconfiguration of the FPGA-

system and AN is the average number of test vectors necessary for fault detection, serial fault

emulation (SFE) speed SP can be defined as:

SP
MCS

AN T MCSSFE
reconf

=

+ ⋅
(4.2)

The time required for the reconfiguration of the BLPs is the most important factor in Treconf.

Reconfiguring a Xilinx FPGA involves reprogramming the complete FPGA, whereas direct

access to the Meta FPGA allows individual sections of the FPGA to be read or modified.

Generally, the reconfiguration time Treconf is equal to 0.8 milliseconds [BuRe96]. Assuming

that all faults are detected by the first test vector in a test vector set, i.e. AN=1, then a

maximum of 1.200 faults can be emulated per second. The reconfiguration time is negligible

when the average number of test vectors for each fault is over 10,000. However, experimental

results [BuRe96] indicate that 90% of all faults are detected by the first hundred test vectors.

Results obtained with SFE have been compared to those from the fault simulator HOPE

[LeHa92][LeHa93]. HOPE, which combines fault simulation approaches such as single fault

propagation and parallel fault processing, was evaluated previously under similar conditions

with an identical fault model and test vector set. A Sparc 10 workstation was also used to

evaluate the performance of the HOPE simulator. During fault injection, i.e. reconfiguration of

the emulator, an interruption in the emulation process, as described above, leads to a reduction

in emulation speed. These SFE characteristics play an important role in the relatively low

speedup from 8 to 20 of SFE over HOPE when fault emulation is carried out using the

ISCAS´89 Benchmark circuits.

Fault Emulation 40

4.1.4 KRONE

The KRONE AG developed a reprogrammable prototyper in 1996 capable of modeling the

timing of logic modules in the circuit as well as stuck-at faults [Kron96], which however was

never actually constructed. Additional publications on this subject are not available, therefore,

this discussion focuses only on the function blocks of the KRONE prototyper and the modeling

of stuck-at faults. A Field Programmable Emulation Chip (FPEC) contains an array of 32 by 32

emulation cells (FPE-cells). These cells model the logic function of a gate-level netlist.

Modeling a 4/1 Multiplexer, a D-flip-flop (Fig. 4.6) or a 4-input logic function is also feasible

(Fig. 4.6). In addition, timing elements such as wiring- and load-delays are modeled by using

adjustable delay lines(Fig. 4.6).

Switches for modeling
of delay

Fig. 4.6: Delay lines [Kron96]

As with simulation, during the emulation process all internal nodes of an FPE-cell are

observable and controllable at any time during the emulation process. The controllability of the

FPE-cell system allows the stuck-at fault to be modeled with an embedded switch (Fig. 4.7).

Faults can be inserted and their effects analyzed due to the implementation of the

reprogrammable prototyper as a fault emulator.

Modeling of stuck-at-fault

Fig. 4.7: FPE-cell [Kron96]

Fault Emulation 41

Comparison

The ability to model stuck-at faults is a common feature of all previously described

hardware-based fault simulation methods. Differences, however, exist in the areas of fault

injection, fault activation, evaluation of emulation results, hardware overhead, emulator

technology dependency, and runtime. The fault injection methods of Timoc and Cheng&Dai

involve expanding the circuit description by additional functions, such as AND for s-a-0 and

OR for s-a-1. Both techniques also utilize a shift register (SR) for fault activation. For the

evaluation of results, Timoc uses a commercial LSI-Tester, whereas Cheng&Dai propose

utilizing a logic emulator as a comparator for good and fault emulation results. The

consequence of both approaches is an extremely high hardware overhead.

The approaches presented in the previous sections are listed in Table 4.1 based on a

comparison of the following aspects of hardware-based fault simulation:

• Method of fault injection at gate-level.

• Hardware implemented for the activation and deactivation of fault for fault-free and
faulty circuits.

• Evaluation of emulation results; calculation of fault coverage; observation and analysis of
the circuit after fault injection.

• Ramifications of additional hardware; hardware overhead including fault injection, fault
activation and comparison modules.

• Dependency on specific hardware technology, such as breadboarding and FPGAs.

• Runtime.

Approach Fault Injection Fault
Activation

Evaluation of
Results

Hardware
Overhead

Technology
Dependency

Runtime

Timoc
(1979)

additional logic
functions OR /

NOR/...
shift register LSI-Tester n/a

breadboarding
and

wire-wrapping
high

Cheng&Dai
(1995)

additional logic
functions AND /

OR/...
shift register emulator

1.3 - 2 for
each

replication
none n/a

SFE
(1996)

reconfiguration of
logic blocks (BLP)

emulator
software

additional
hardware

n/a Meta FPGAs low-high

KRONE
switch modules

embedded in
FPE-cells

emulator
software emulator n/a KRONE FPEC n/a

Table 4.1: Comparison of available hardware-based fault simulation approaches

Fault Emulation 42

4.4 Objectives of this Work

As explained in previous sections, the various hardware-based fault simulation methods differ

in the areas of fault injection, fault activation, evaluation of emulation results, hardware

overhead, emulator technology dependency, and runtime. Taking into account the above-

mentioned aspects of hardware-based fault simulation, a new approach to fault emulation can

be developed, which, for optimum fault emulation results, should fulfill the following list of

requirements :

• Rapid fault injection.

• Aspects of fault injection and fault activation to be considered with the objective of
minimizing the hardware overhead.

• Mapping of the faulty circuit with optimized partitioning, technology mapping,
placement, and routing.

• Independence from specific emulator technology.

• Use of the logic emulator speed as a result of parallel execution of the logic blocks.

• Implementation quality to be increased, including minimal FPGA usage leading to
improved circuit timing characteristics in the emulator resulting in optimized fault
emulation runtimes.

• Runtime reduction of fault simulation in order to attain a speedup.

These are the requirements for a novel approach, which is the focus of this work. The next

section introduces Fault Emulation System FES, which is characterized by its method of rapid

fault injection approach including fault activation through a fault activator. Also shown is a

calculation of fault coverage from the fault emulation results. Chapter 5 presents various

procedures for mapping faulty circuits while focusing on optimal partitioning, technology

mapping, placement, and routing.

Fault Emulation System (FES) 43

4.2 Fault Emulation System (FES)

Two new approaches to fault emulation are presented, FES1/1 and FES/2. Although both

approaches utilize the same method of fault injection and fault activation in the FPGAs, fault

emulation FES/1 [SeBa97] [Seda97] uses the in-circuit mode and involves expanding the logic

emulator by additional hardware modules for test generation and test analysis, whereas fault

emulation FES/2 [SeBa98] [Seda97a] uses the acceleration mode and evaluates the test vector

set without additional hardware. In contrast to the previously presented methods of fault

emulation, these new approaches involve no reprogramming or reconfiguration of the FPGAs

and allow for faster fault injection into any node of the circuit without dependency on a specific

logic emulator technology.

4.2.1 FES/1

The new fault emulation approach FES/1 utilizes the in-circuit emulation mode of the logic

emulator. Figure 4.8 displays the FES/1 flowchart beginning with a circuit represented as a

netlist, which is expanded by additional functions for fault injection, referred to as Fault

Injectors. The faultlist F={f1, f2,..., fi, ..., fn} for this circuit indicates the set of fault locations

in the circuit FLO={flo1, flo2,..., floi, ..., flon}, i.e. the nets where the Fault Injectors FI={fi1,

fi2,..., fii, ..., fin} should be inserted. Each Fault Injector fii has a corresponding logical address

and is controlled by the Fault Activator. The expansion of a circuit using Fault Injectors and a

Fault Activator results in an overhead of FPGA resources in the logic emulator. The node

assignment method described in the following chapter leads to an optimum usage of FPGA-

resources for fault emulation, i.e. a reduction of FPGA overhead. Compilation, which is the

process of partitioning, technology mapping, placement and routing precedes the mapping of

the expanded circuit into the logic emulator.

After the expanded circuit has been mapped into the emulator both the faulty and the fault-free

circuits are present in the emulator. If the Fault Injectors are deactivated the circuit is fault-free

indicating a good emulation. A good emulation is performed for all test vectors of the test

vector set V={v1, v2, ..., vj, ..., vm}, and the good results are stored. The fault emulation

involves the activation of Fault Injectors, therefore, the process begins with the activation of

the first Fault Injector fi1 with the address 0 and applies the first test vector v1 at the primary

inputs of the circuit.

Fault Emulation System (FES) 44

Add
Fault Injectors
Fault Activator

Netlist

Compilation
(Partitioning

Mapping
Place and Route)

Fault Coverage

Faultlist

First
Fault

First
Test Vector

More
faults?

Next fault

No

No

Last
Test Vector?

Fault Emulation
Mux=1 Next

Test Vector

First
Test Vector

Good Emulation

Fault Emulation
B Bfv v((=))⊕ 1

No

Assignment of
Circuit Nodes

Good Emulation

Good-Results

Mux=0

Last
Test Pattern?

Next
Test Pattern

No

Fault Detection
Counter

Fig. 4.8: FES/1 flow diagram

An internal and an external loop are included in the fault emulation process (Fig. 4.8). The

purpose of the internal loop is to apply test vectors from the test vector set V to the primary

inputs of the circuit for each activated fault, while the external loop injects, i.e. activates faults

Fault Emulation System (FES) 45

from the faultlist. A test vector vj detects a fault fi if the fault-free function of the emulated

circuit B(vj) , i.e. good emulation, differs from the faulty functions of the emulated circuit

Bf(vj), i.e. fault emulation. If the fault emulation process for the test vector vj results in B(vj)⊕

Bf(vj)=0, the next test vector vj+1 is applied to the primary inputs of the circuit with the same

activated Fault Injector fii. This process is repeated until the fault is detected (B(vj)⊕Bf(vj)=1),

leading to an interruption of the internal loop, or until the test vectors are exhausted in the test

vector set. At this point the fault is dropped and the next Fault Injector fii+1 is activated. With

the detection of a fault f the fault detection counter is incremented in the fault emulation

process. The calculation of fault coverage follows once the fault set F has been processed.

Fault Emulation Hardware

The process of hardware-based fault emulation FES/1 is illustrated in Fig. 4.9. The complete

system consists of the logic emulator hardware and two additional hardware modules, the test

vector hardware module and the comparison hardware module. The former is connected to the

primary inputs of the mapped circuit, i.e. the inputs of the emulator hardware, the latter to their

outputs. The test vector hardware module can be used to load external test vectors or as a

pseudorandom test generator (PRTG) [Hart96], as described in Section 3.5. The comparison

hardware module evaluates the results of the good/fault emulation and indicates the number of

detected faults, enabling the calculation of fault coverage.

Workstation

Test Vector
Module

Test Vectors
from Designer

PRTG or External Test Vectors Fault Detection and Fault Coverage

Logic Emulator: Good and Fault Emulation

Fault
Activator

Counter

PIx

PI1

MUX

RESET
COCLK

L

C

i

j

Design + Fault
I
n
j
e
c
t
o
r
s

(X/Y-Decode r)

PO1

yPO

Comparison
Module

Fig. 4.9: Fault emulation hardware

Fault Emulation System (FES) 46

Test Vector and Comparison Hardware Modules

A 16-bit microcontroller is responsible for the control of all hardware modules, the loading of

external test vectors [Hart96], and the generation of all fault emulation control signals, which

involves expanding the primary input of the circuit (PI1, ..., PIx) by the following three control

signals:

• The signal MUX controls the emulation process: good emulation (MUX=0), i.e.

emulation of fault free-circuit, and fault emulation (MUX=1), i.e. emulation of faulty

circuit.

• The faults are activated by a two-dimensional array of x-y address decoders. Driven

by the COCLK signal, a synchronous binary counter is utilized to increment the

addresses of Fault Injectors in the decoder.

• The RESET signal initializes all fault emulation hardware; the logic emulator, the test

vector hardware module, and the comparison hardware module.

An important component of the test vector module is the PRTG, a multi-output device

implemented using a linear feedback shift register (LFSR, described in Chapter 3) capable of

generating up to 0.5 million test vectors with 64 bits with 4x16 bit word width memorys and

can be configured with up to 128 bits with 8x16 bit word width memorys for 8 million test

vectors.

The comparison hardware module [Seda97b] consists of memory and XORs and is connected

to the outputs of the emulator, i.e. the mapped circuit. The good emulation results B(v) are

stored in the memory. The XORs are used to compare the results of good/fault emulations.

Detected faults are counted if B(v)⊕ Bf(v)=1 as illustrated in Fig. 4.10.

Test Vector
Module

Good / Fault
Emulation

Mem
Counter

B Bfv v((=))⊕ 1

B Bfv v(())⊕ = 0

⊕

B v()

Bf v()

Fig. 4.10: Comparison hardware module

Fault Emulation System (FES) 47

4.2.2 FES/2

The processes of expanding the circuit, node assignment, compilation, and good emulation are

identical in the FES/1 and FES/2 approaches. In contrast to FES/1 however, FES/2 utilizes the

acceleration mode of the logic emulator and the good emulation results from FES/2 are stored

as a file in the host of the logic emulator rather than in the memory of a hardware module.

Additionally, the fault emulation procedure for the FES/2 approach includes the external loop

for applying test vectors to the primary input of the circuit and the internal loop for the

activation of Fault Injectors.

Add
Fault Injectors,
Fault Activator

Netlist

Compilation
(Partitioning

Mapping
Place and Route)

Fault Detection
Counter

Fault Coverage

Faultlist

First
Test Vector

First Fault

No

No

Last Fault

Fault Emulation
Mux=1

Good Emulation

Good-Results

Mux=0

Last
Test Vector?

Next
Test Vector

No
Next Fault

First
Test Vector

Assignment of
Circuit Nodes

Next
Test Vector

Last
Test Vector?

Fault-Results

Mux=0
No

B Bfv v((=))⊕ 1

Fig. 4.11: FES/2 flow diagram

Fault Emulation System (FES) 48

As shown in Fig. 4.11, at the beginning of FES/2 a test vector vj is applied to the circuit's

primary inputs (PI1, ..., PIx) and all faults in the internal loop are injected serially until the fault

set F of the faultlist is completed. The next test vector vj+1 is then applied, followed by the

serial injection of all faults of the faultlist. This process is repeated until the test vector set V

has been evaluated. Fault emulation results are stored in a file in the host of the logic emulator.

Fault coverage δ can now be calculated by comparing the good and faulty emulation results.

With the FES/2 approach it is feasible that a fault f will be detected several times in a test

vector set, which results in an increase in fault emulation runtime when compared to FES/1. In

acceleration mode the test vector set V will be compiled as a binary code[Quic96], which

cannot be interrupted during the emulation process, therefore, fault dropping is not possible in

accelerator mode. Therefore, the data of the control signals (MUX, COCLK, and RESET) for

fault injection and fault activation are included in the test vector set.

4.2.3 Fault Injection

Fault injection in FPGAs is one of the main problems of fault emulation. Recall that a rapid

hardware-based fault injection requirement was established in Section 4.5 in addition to the

requirement that fault injection be independent of specific emulator technology. As shown by

the fault injection techniques described in Section 4.1 the processes of reconfiguration and

reprogramming of FPGAs are too time consuming. Therefore, the rapid fault injection

requirement presented in Section 4.5 cannot be satisfied. Inherent in the processes of

reconfiguration and reprogramming of FPGAs is the dependency on a particular technology,

such as the SFE and Cheng&Dai approaches. Therefore, the requirement of technology

independence also cannot be fulfilled.

In order to satisfy these requirements the fault injection process is enhanced by the addition of

Fault Injectors. Fault Injectors expand the fault location in the circuit by additional boolean

functions and are also used for modeling stuck-at-0 and stuck-at-1 faults. In general, every

Fault Injector consist of two control inputs, a data input and a data output. The

activation/deactivation of the Fault Injector, which causes the faulty/fault-free circuit, is

controlled by signals Li and Cj and determined in the Fault Injector by the signal EN

(EN=Li
.Cj). These signals are generated by a Fault Activator. The data input Nin and data

output Nout of the Fault Injector are linked to the fault location in the circuit. The values of Nin

and Nout are equal in a fault-free circuit, while in a faulty circuit the value of Nout is

Fault Emulation System (FES) 49

independent of Nin, but depends on the modeled fault, which is predefined by the Fault

Injector.

Stuck-at-0 Fault Injector

To model a stuck-at-0 fault the fault location in the circuit is expanded by the function

N L C Nout ini j= ⋅ ⋅ , which corresponds at gate level to two primitive gates, as shown in Fig.

4.12. If the control signal EN L Ci j= ⋅ = 1, the stuck-at-0 Fault Injector is deactivated causing

N Nin out= and a fault-free circuit B results. In contrast, when the value of the control signal of

the Fault Injector is EN L Ci j= ⋅ = 0, then N L C Nout ini j= ⋅ ⋅ = 0, i.e. the Fault Injector is in an

active state, modeling the stuck-at-0 fault and resulting in the faulty circuit Bf.

N L C Nout i j in= ⋅ ⋅ ⇒ ENL i

C j

N in

outN

Fig. 4.12: Stuck-at-0 Fault Injector

Stuck-at-1 Fault Injector

Comparable to a stuck-at-0 Fault Injector, modeling a stuck-at-1 fault entails expanding the

fault location in the circuit with the function N L C Nout ini j= ⋅ + . This corresponds at gate

level to two primitive gates as shown in Fig. 4.13. In the case of fault-free circuit B, the control

signal has the value EN L Ci j= ⋅ = 0. With EN=0 the Fault Injector is deactivated and leads to

a fault-free circuit, therefore N Nin out= . In the activated state the stuck-at-1 Fault Injector has

the value EN L Ci j= ⋅ = 1, which results in N L C Nout ini j= ⋅ + = 1. Thus, the modeled stuck-

at-1 fault generates a faulty circuit Bf.

N L C Nout i j in= ⋅ + ⇒ ENL i

C j

N in

outN

Fig. 4.13: Stuck-at-1 Fault Injector

Stuck-at-0/1 Fault Injector

The expansion of the fault location in the circuit by the function N EN SF N ENout in= ⋅ + ⋅

involves modeling both stuck-at faults, stuck-at-0 and stuck-at-1. Fig. 4.14 depicts the stuck-

at-0/1 Fault Injectors at gate level, which have an additional input SF. The value of SF

Fault Emulation System (FES) 50

determines the function of the Fault Injector when EN L Ci j= ⋅ = 1. When the value of SF is set

to logical 1, (SF=1) the Fault Injector models the stuck-at-1 fault, i.e.

N L C SF N L Cout i j in i j= ⋅ ⋅ + ⋅ ⋅ =() () 1. In the case of input SF=0 the output of the Fault Injector

models the stuck-at-0 fault and the value of N L C SF N L Cout i j in i j= ⋅ ⋅ + ⋅ ⋅ =() () 0 .

N EN SF N ENout in= ⋅ + ⋅ ⇒

ENLi

C j

N in

outN
SF

Fig. 4.14: Stuck-at-0/1 Fault Injector

A symmetrical FPGA (such as XILINX) consists of several CLBs, each of which contains two

look up tables (LUT). A boolean function depending on four boolean variables can be mapped

into each LUT. The function of Fault Injectors to model stuck-at-0 and stuck-at-1 faults

depends on three or four boolean variables (Li, Cj , SF, and Nin). Therefore, the mapping of

Fault Injectors requires a complete LUT, which leads to higher FPGA usage, referred to in this

work as FPGA-overhead.

4.2.4 Fault Activation

Fault activation presents an additional problem for fault emulation. The requirements for fault

emulation presented in Section 4.5 include minimizing hardware overhead with optimized

compilation of the expanded circuit, maximum fault emulation speed, and independence from

specific emulator technology.

Fault activation through use of a shift register in an emulator [ChHu95] leads to difficulties

mapping the circuit into the logic emulator. Cheng&Dai's solution to the mapping problem

causes a high hardware overhead and results in a drastic incres in fault emulation runtime

(Section 4.1.2). An alternative approach to fault activation can be executed with

reconfiguration and reprogramming of the FPGAs, and is applied in the SFE and Cheng&Dai

methods. However, these approaches are technology dependent as well as time consuming

(Section 4.1.2 and 4.1.3) and thus do not satisfy the previously listed requirements for fault

emulation.

Fault Emulation System (FES) 51

Fault activation through use of the Fault Activator introduced in this work differs from the

previous techniques in that neither a shift register nor reconfiguration of FPGAs is utilized. The

Fault Activator arranges the fault locations in an addressable array. Thus, each addressed fault

location, i.e. Fault Injector, is directly accessible, and in contrast to a shift register, processing

a data sequence is not a prerequisite to fault injection. A two-dimensional address decoder can

be utilized to address the fault location. Direct access to the fault location enables a faster fault

injection. Furthermore, optimal mapping of the expanded circuit into the logic emulator can be

attained using a symmetrical FPGA, which is also structured as a two-dimensional array.

However, utilizing the two-dimensional address decoder as a Fault Activator leads to FPGA

overhead.

The Fault Activator depicted in Fig. 4.15 addresses the Fault Injectors, which are then

controlled by X- and Y-decoders. The address data AD={A1, ..., Ak, ..., An} for the primary

input of the Fault Activator is the binary representation of the address of each fault. In other

words, the first fault is activated when the decoder input has the address 1, {A1, A2 ..., Ak, ...,

An}={1, 0, ..., 0, ...,0}. When the faults are arranged in a consecutive order, an n+1-bit

counter can be used to control the address decoder and activate the Fault Injectors. The Fault

Activator can be activated/deactivated with an additional input signal MUX, thereby controlling

the fault and good emulation processes.

In order to generate the Fault Activator size the address area of the decoder must be

calculated, which depends on the number of faults Nf. A decoder generator, DecGen, is

developed in this work for the calculation and generation of the Fault Activator at gate level.

L

inj
(ij)

A

A

A
C C C j

A Ak+1 Ak+2 n

Mux

L

L

1

i

1

2

k

C j

Nin

Nout

i

X
-D

ec
od

er

Y-Decoder

L

Fig. 4.15: Fault Activator

Fault Emulation System (FES) 52

When calculating the decoder size the quadratic array structure of the Fault Activator must be

considered for an optimized mapping of the expanded circuit into the array structure of the

FPGAs. Therefore, the following calculation is suggested:

Given a number of faults Nf, the number of lines i in the fault activator is calculated as

  i Nf= . (4.3)

The number of addressbits for the X-decoder k+1, which depends on the number of line

decoders i in equation (4.3), is calculated as

 k ld i+ =1 . (4.4)

The number of columns j in the fault activator is equal to i, i=j. The number of columns j is

used to calculate the number of addressbits for the Y-decoder n-k and is calculated as

 n k ld j− = . (4.5)

The address area of the X-decoder is 2k+1 and of the Y-decoder 2n-k. The total address area of

the Fault Activator is then calculated as 2(k+1)+(n-k)=2(n+1). With equation (4.3), (4.4), and

(4.5) the quadratic array structure of the Fault Activator can be generated.

4.2.5 Combinational Circuits

The process of fault emulation described in Sections 4.2.1 and 4.2.2 is implemented for the

evaluation of combinational circuits. This section discusses fault injection for a combinational

circuit in an FPGA. The function of a circuit can be mapped into several functional blocks of

FPGAs, such as LUTs, i.e. combinational blocks in FPGAs. Only the combinational parts of

the circuit are mapped into the LUTs. Since a LUT consists of four inputs and one output, only

a boolean function dependent on four variables can be modeled. In order to enable fault

injection, the function of the LUT is altered using a Fault Injector. Two inputs of the LUT are

utilized to activate/deactivate the Fault Injector using the control signals Li and Cj. Changing

the function of a fault-free LUT to a faulty LUT involves setting the control signal

EN L Ci j= ⋅ = 1.

Fault Emulation System (FES) 53

An example of fault injection is illustrated in Fig. 4.16. Modeling a stuck-at-0 fault in net α,

involves expanding the function of α with the corresponding function of the stuck-at-0 Fault

Injector α (s-a-0). The circuit displayed below is mapped into a CLB with two LUTs. Gate

GT1 is mapped with four variables α = i i i i1 2 3 4. . . in LUT1 and gate GT2 with two variables

o i= +5 α in LUT2.

α
s-a-0

o

o

α+

LUT 1 LUT 2GT1

GT2

i
i
i1
2

3

α

i4

i5

i
i
i1
2

3
i4

i5

i
5iii

1 2 3
i4

. . .

Fig. 4.16: Combinational circuit in a CLB

As a result of fault injection in net α, the function of LUT2 o i= +5 α is affected such that net

α is expanded, i.e. replaced, by the function o i L Ci j= + ⋅ ⋅5 α , as shown in Fig. 4.17. In this

case additional CLBs are not required for the mapping of the Fault Injector. Both the FES/1

and FES/2 approach can be utilized to detect the stuck-at-fault α (s-a-0). The Fault Injector

controls the inputs of LUT2 with the values Li=Cj=0 characterizing the fault-free circuit B(v)

in the good emulation process. Assume that the test vector set V contains a single test vector

V={v}. An arbitrary test vector such as v=11110 is applied to the primary inputs of the circuit

i1, i2, i3, i4, i5. Storing the output value of LUT2 o(v)=1 from the good emulation precedes the

fault emulation process, where the value of Li=Cj=1 results in the faulty circuit Bf(v) with the

output value o(v)=0. If B(v) ⊕ Bf(v)=1, the stuck-at-0 fault at α is detected by test vector v.

oLUT 1 LUT 2

i +α.L .Ci j

L
i

j
C

α

i
i
i1
2

3

i4

i5

iii1 2 3
i4. . .

5

Fig. 4.17: Fault Injector s-a-0 in a CLB

4.2.6 Sequential Circuits

The basic characteristics that distinguishes a sequential circuit from a combinational circuit is

that a particular set of outputs is dependent not only on the inputs, but also on the current state

of the circuit. The state variables ξ1, ξ2, ..., ξk describe the previous states of the circuit's

storage elements, which may vary with every clock period. A new state at clock period t+r,

Fault Emulation System (FES) 54

r=1, ..., n, results from the state of clock period t and the input values, ξ η ξt r t tI+ = (,). The

value η represents a function with which the dependency of the state variables ξt+r on the

inputs It and the previous state is expressed in terms of ξt. In order to describe sequential

circuits schematically, the state variables generated from η are delayed by time interval r and

have feedbacks to the input of the combinational part of the circuit as illustrated in Fig. 4.18.

i

i1

x o

o1

ycombinational
circuit

storage
elements

ξ1
t r+

ξ1
t

ξk
t ξk

t r+

Fig. 4.18: Generic schematic of sequential circuits

The description of sequential circuits includes timing dependencies for registering the memory

characteristics of the circuit. The primary outputs, Ot, of the circuit in Fig. 4.18 may be a

function of the present state only, O Ft t= ()ξ , or a function of the present states and the

inputs, O F It t t= (,)ξ . Circuits meeting these conditions are known respectively as Moore

machines [Moor56] and Mealy machines [Meal55].

There are two classes of sequential circuits, synchronous and asynchronous. The inputs of

synchronous circuits are synchronized in predefined time periods. Sampling the input during

each period, as in circuits where the storage elements (FFs) have a common clock, precedes

the entering of a new state, which in turn produces the new output values. In contrast,

asynchronous circuits change state in response to changes at the inputs of logic elements, such

as circuits whose storage elements do not contain common clocks. The fault emulation

approach for sequential circuits introduced here focuses on synchronous circuits.

One approach to the representation of a sequential circuit involves the use of a state transition

table. The entries in the table are the next states reached by the circuit following any given

change of the input. A sequential circuit should be developed implementing the characteristics

in Table 4.2. The state table depicts the state transition of one primary input i and two storage

elements with outputs Q1 and Q2, having 2n=4 states. When the circuit is in the initial state A

and receives the input i=1, a transition from state A to state D occurs producing an output

Q1=1, Q2=1.

Fault Emulation System (FES) 55

States of the
circuit

Input of the circuit, i
0 1

Output of the storage
elements Q , Q

A A D 0, 0
B C C 0, 1
C B A 1, 0
D A B 1, 1

Table 4.2: State transition table

Another approach to describing a sequential circuit uses a state transition diagram, a directed

graph which represents the states of the circuit by nodes connected by directed edges to indicate

the transition paths. Two commonly applied approaches are the Mealy model and the Moore

model. Using the Mealy model of a state diagram, each transition path is labeled with the input

affecting the transition and the resulting output state ξt+r. The actual state ξt is contained in the

node. The Moore model also labels the paths with the inputs causing the transition, but differs in

that the nodes contain the previous states ξt as well as the next states ξt+r. As a result, the

output state ξt+r is solely a function of the previous state ξt.

1

1

1

1 0

0

0

0

A

B

C

D

Fig. 4.19: State transition graph

The state transition graph in Fig. 4.19 is based on the Mealy model. Similar to the state table in

Table 4.2, if the initial state is A with circuit input i=1, a transition path to D results. The initial

state A is distinguished as the reset state in which sequential circuits are set before the

beginning of operation. In practice, this state is easily attained by the activation of a RESET

signal which sets the logical value of all outputs of the storage elements to logical 0. This

RESET signal in the circuit is not always available, therefore, for the simulation of a sequential

circuit, it is assumed that all outputs of the storage elements have the unknown value U.

Fault simulation for sequential circuits is executed in at least a 3-valued logic {0,1,U}. At the

beginning of the simulation, all circuit nodes are in an unknown state and have therefore the

Fault Emulation System (FES) 56

logical value U. In contrast, the primary inputs of the circuit acquire either the defined logical

value 0 or 1, dependent on the test vector. During the simulation of a sequential circuit the

storage elements can prevent the internal signals from setting a defined value. Figure 4.20

displays a subcircuit exemplifying the storage element's inability to be initialized with a 3-

valued logic.

U
GT1

GT2

GT3

FF1
U / U

U / 0
U / 0

3-valued logic / 4-valued logic

U

0
D Q1

Fig. 4.20: Initialization of storage element with 3- and 4-valued logic

Here, the output of gate GT3 has the unknown value U, preventing the initialization of the

storage element FF1 to a defined logical value. Initialization is possible, however, when the

logical values are expanded to a 4-valued logic {0,1,U,U }, the fourth value representing the

negation of the unknown logical value U. It follows then, that the storage element FF1 can be

initialized with the defined logical value 0.

At first it seems that the initialization problem can be solved by using the values U and U with

the corresponding rules U U⋅ = 0 and U U+ = 1. However, only when one storage element is

set to U is this a correct solution. The use of U and U for more than one storage element may

lead to incorrect results. A correct solution is to use several unknown values U1, U2, ...,Un,

one for each storage element, with U Ui i⋅ = 0 and U Ui i+ = 1. When dealing with large

circuits, this is a complex method using large boolean expressions of ui variables.

The logical values in logic emulators are represented in terms of voltage levels, which are

predefined for logic values. Therefore, logic emulators can model the circuit only with a

2-valued logic {0,1}. Due to this characteristic of logic emulators, the following concept of

fault detection is introduced for fault emulation.

The evaluation process for sequential circuits involves the application of a 2-valued test vector

sequence, i.e. test sequence VS∈ {0,1}, as opposed to the single test vector v applied to

combinational circuits. The test sequence consists of several test vectors, VS={v1, ..., vi, ...,

vm}. The value of the circuit's output is a function of its initial state IS∈ {0,1}, which may be

Fault Emulation System (FES) 57

the result of several individual test vectors. Generally, the initial state IS=vInitial is reached by

one test vector vInitial, such as the reset test vector, IS=vRESET. Assume that VS is a test

sequence for the detection of faults in a sequential circuit and B(IS,VS) represents the function

of a fault-free sequential circuit with test sequence VS and the initial state IS. Similarly, the

function of a faulty circuit with the test sequence VS at the initial state IS can be represented as

Bf(IS,VS).

The complete evaluation process for fault detection is divided into two steps. The first involves

the initialization of the fault-free and the faulty circuits. This step precedes the application of a

test sequence VS. The fault f can be detected by a test sequence VS when, for some specific

test vector vi in the test sequence VS, vi∈VS, the output sequence of the fault-free circuit

B(IS,vi) differs from the output sequence of the faulty circuit Bf(IS,vi).

During circuit design consideration is given to an initialization by inserting a common SET

and/or RESET signal to every storage element. Circuit initialization then requires only a single

test vector, for example IS={vRESET}. Compared to fault emulation for combinational circuits,

fault emulation for sequential circuits is more complicated. Using the 2-valued logic {1, 0} of

the logic emulator and the definition of fault detection with a 2-valued logic, an example of

fault emulation is given in Fig. 4.21.

D

D Q1

/Q1

Q1

i=10111

CLOCK

O

s-a-0

GT1

GT2

GT3
GT4

GT6

GT5

GT7

FF1

FF2a

b

c

d

b1

Fig. 4.21: Fault emulation for a sequential circuit

The circuit above with the state transition graph from Fig. 4.19 is mapped into two CLBs as

shown in Fig. 4.22. Each CLB contains two combinational elements (LUTs) and two

sequential elements (flip-flops) as depicted in the Fig. 4.22. In order to model a stuck-at-0 fault

in net b1, the corresponding Fault Injector is inserted, i.e. the corresponding function of LUT3

is expanded. Gates GT2, GT3, GT4, GT4 and GT6 are mapped into LUT2 with the function

Fault Emulation System (FES) 58

c=f2(i, a, b), which is dependent on three variables. Gate GT1 with the function e=f1(i, a),

dependent on two variables, is mapped into LUT1. Both flip-flops are mapped into the

flip-flops of CLB1 and the last gate GT7 with the function O= d+b1 is mapped into LUT3. As

a result of fault injection in net b1 the function of LUT3 O d b L Ci j= + ⋅ ⋅1 is changed such that

net b1 is replaced by the function b L Ci j1 ⋅ ⋅ .

o

LUT 1 LUT 3

d +b.L .Ci j

L
i

jC

i

LUT 2
i

D

D Q1

Q2

FF1

FF2

d

f (i,a)1

b

CLB2CLB1

a

a
b

f (i,a,b)2

S/R

S/R

Set/Reset

Clock

D

D Q

Q

FF

FF

S/R

S/R

LUT 4

1

1

b

Fig. 4.22: Mapping of the sequential circuit into an FPGA

The first step of a good emulation is the initialization of the mapped circuit to a known state

and is easily accomplished when all flip-flops have the same state. All flip-flops in the FPGAs

can have common set and reset inputs and can therefore be initialized with a logical 1 or 0

using the initialization IS={1}or IS={0}. Thus, an initialization of individual storage elements

with set and reset inputs is not possible without the addition of extra primary inputs for every

set and reset input of each flip-flop in the circuit. Therefore, the initialization sequence must be

calculated. However, the calculation of the initialization sequence is very complicated for large

complex circuits. A technique is described at the end of this section, which allows for rapid

initialization of the individual flip-flops at various states in the logic emulator.

Using the FES/1 approach a good emulation is executed by initializing the circuit by the initial

vector IS={0}, i.e. resetting all flip-flops so that the outputs of the flip-flops are Q1=Q2=0. In

a good emulation the Fault Injector of stuck-at-fault b1(s-a-0) is deactivated, Li=Cj=0,

resulting in the fault-free circuit B(IS,VS). With the application of a test sequence VS to the

primary input i of the circuit, the logical value of the circuit's primary output O is stored. The

fault emulation process of FES/1 begins with the activation of the Fault Injector, i.e. Li=Cj=1.

Therefore, the function of LUT3 is changed, its output has the logical value 0, and the faulty

circuit Bf(IS,VS) results. This faulty circuit is initialized by the same initial vector IS={0} from

Fault Emulation System (FES) 59

the good emulation, Q1=Q2=0. The stuck-at-0 fault at b1 is detected if for some specific test

vector vi in the test sequence VS, vi∈VS, the output sequence of the fault-free circuit B(IS,vi)

differs from the output sequence of the faulty circuit Bf(IS,vi). At this point, the fault emulation

process is interrupted and the next fault evaluated.

Table 4.3 shows the emulation results of the circuit in Fig. 4.22 including the output sequence

of the fault-free and the faulty circuit with the stuck-at-0 fault b1(s-a-0), obtained in response

to the test sequence VS={1,0,1,1}.

Initial state
Q1, Q2

Output sequences
of Q1, Q2

Output O of
fault-free circuit B

Output O of
faulty circuit Bf

0, 0(A)
1, 0(D)
0, 0(A)
1, 0(D)
0, 1(B)

0
1
0
1
1

0
1
0
1
0

1, 0(D)
0, 1(B)
1, 1(C)
0, 0(A)
1, 0(D)

1
1

1

1
0

1
0

0

1
0

Table 4.3: Emulation results for initial states (A) and (D)

As indicated in Table 4.3, setting the common reset inputs of all storage elements to the logical

value 0 initializes the circuit to a defined state Q1={0}, Q2={0}. The fault emulation process

commences at the initial state IS={A}, leading to a transition to state D when the circuit's

primary input is i=1. Every test vector vi∈VS causes a transition to the next state. The process

is repeated until the emulation results of the fault-free circuit B(v4) differ from those of the

faulty circuit Bf(v4) whereby the fourth test vector v4=1 in the test sequence VS results in

B(IS,v
4
)⊕ Bf(IS,v

4
)=1. At this point the fault emulation process is interrupted, as indicated by

the last test vector of the test sequence in Table 4.3. Given the initial state IS={D}, the fault is

detected by the second test vector v2=0 in the test sequence VS.

Rapid Initialization of Individual Storage Elements

Various methods are available for the initialization of individual storage elements, one of which

uses an initial sequence to set the circuit into a defined state. Generally, this approach is

applied to circuits containing storage elements with reset and set inputs. A hardware-based

approach can also be implemented to set the circuit into a defined state by setting and resetting

the storage elements.

Fault Emulation System (FES) 60

A hardware-based technique for the individual initialization of storage elements is presented in

Fig. 4.23. All flip-flops in the FPGAs contain a reset and a set input, which can be expanded

with additional logic for an individual initialization. Initializing the selected flip-flops to a

defined state involves expanding the set input by a stuck-at-1 Fault Injector (Set-Fault Injector)

for the initial state of logical value 1 and expanding the reset input by a stuck-at-0 Fault

Injector (Reset-Fault Injector) for the initial state of logical value 0. The setting and resetting

of the selected flip-flops involves setting the corresponding addresses of the Set-Fault Injectors

and Reset-Fault Injectors in the Fault Activator. The initialization is divided in two phases;

• MUX=0, initialization of all flip-flops in a defined state

• MUX=1, initialization of selected flip-flops by setting the corresponding addresses

Figure 4.23 depicts a circuit with initialization state IS={Q1=0, Q2=0, Q3=1}. The first phase

of the initialization process entails initializing all flip-flops in the FPGA with the common reset

input with the reset signal RESET=0 and results in Q1=0, Q2=0, Q3=0. The second phase

completes the initialization process when the corresponding address of the Set-Fault Injector

(Inj3) is set, leading to Q1=0, Q2=0, Q3=1.

INJ3

RESET

Address 3

SET

Combinational
circuit

FF1

CLK

QD 1
FF2

CLK

QD 2
FF3

CLK

QD 3

INJ2

Address 2

IN12
Address 1

1 2 3

Fig. 4.23: Hardware initialization of individual storage elements

Node Assignment 61

5. Node Assignment

The expansion of a circuit using Fault Injectors and a Fault Activator results in an overhead of

FPGA resources in the logic emulator. The node assignment method described in the following

chapter leads to an improved usage of FPGA-resources for fault emulation, hence a reduction

of FPGA overhead [Seda98a]. Compilation, which is the process of partitioning, technology

mapping, and placement and routing precedes mapping the expanded circuit into the logic

emulator. An optimized partitioning and a routable placement is difficult to achieve due to the

generation of additional connections between the fault locations by the control signals L and C

of the Fault Injectors. Therefore, assigning the fault locations in the circuit to the Fault

Injectors is an important aspect in the compilation process of the logic emulation.

5.1 Introduction

Beginning with a set of independent variables or parameters, an optimization problem generally

includes conditions or restrictions that define acceptable values for the variables, and are

defined as the constraints of the problem. Defining the cost function is another important

aspect of the optimization problem. The set of values of the variables from which the cost

function assumes an optimal value represents the solution to an optimization problem.

Optimization involves maximizing or minimizing, e.g. maximizing yield or minimizing costs.

The optimization problem can be expressed as:

min

) , , ,..., ;

) , ,..., .

x

i

i

n
F x

x i m

x i m m

∈ℜ

= = ′

≥ = ′ +

()

 subject to (

(

φ

φ

0 1 2

0 1

(5.1)

An optimization problem with m conditions can be expressed mathematically by a cost function

F(x) and a constraint function φi x() . Depending on the type of cost and constraint function

used, a differentiation is made between linear and non-linear optimization problems, the latter

of which includes the quadratic optimization problem.

When all the constraints of equation (5.1) are satisfied, any point x is defined as feasible. A

feasible region refers to the set of all feasible points, such as in a two-dimensional problem with

the single constraint x x1 2 0+ = , representing a line. The feasible regions consists of all points

Node Assignment 62

of this line. Given the constraint x x1
2

2
2 1+ ≤ , which represents a unit circle, the feasible regions

consist of the interior as well as the boundary of this circle.

Before considering methods for solving optimization problems, the "solution" to a problem

must first be defined for equation (5.1). Only feasible points may be an optimal solution.

Furthermore, the relationship of a point x to its neighboring points defines the optimality of a

point x, F x() ≠ 0 . A set of points can be defined as the set of feasible points
~ ~N x n(,)

contained in a neighborhood ~n of x where x indicates a feasible point for the problem in

equation (5.1). In general, optimal feasible points can be defined as either a local or global

minimum. The point xlocal is a local minimum if ~n > 0 such that F(x) is defined in
~ ~N x nlocal(,) ,

and F(xlocal)<F(x) for all x N x n x xlocal local∈ ≠~
(, ~), . In some applications it may be necessary to

find the feasible point at which F(x) assumes its minimal value. This point is referred to as the

global minimum. The point xglobal is a global minimum if F(xglobal)<F(x), x xglobal local≠ .

A minimization problem is assumed and, as shown in Fig. 5.1, an iterative algorithm examines

the set of neighboring points
~ ~N x n(,) for a minimum beginning at a initial state xinitial. A set of

neighboring points
~ ~N x n(,) of point xinitial is reached after a minor alteration to point xinitial,

which represents a cost calculated from equation (5.1). If the costs for the set of neighboring

points
~ ~N x n(,) are lower than a feasible point such as xinitial in Fig. 5.1, then the algorithm has

converged to a local optimum, such as local minimum xlocal.

F(x)

x

x

x

x

initial

local

global

Fig. 5.1: Local versus global optima

The cost curve presented here is non-convex [Papa91] due to its multiple minima. Finding the

global minimum xglobal requires "climbing the hill" at the local minimum xlocal. If an algorithm

accepts only inferior costs it will not deviate from the local optimum xlocal. As a result, the

global minimum xglobal can not be found.

In general optimization problems the feasible region includes x, with some of the variables

restricted to being members of a set of values for minimizing the cost function. Many practical

Node Assignment 63

problems occur in which some of the variables are restricted to being members of a finite set of

values. This type of limitation defines the combinatorial optimization problem. An example of

such as the number of journeys made by a traveling salesman. Given the classical example of a

traveling salesman, the problem consists of an number of cities C={c1,c2,c3,...,cm} and

distances d(ci,cj) between each pair of cities (ci,cj), where each city is visited only once. The
solution to the problem is formed by the permutation {cπ (1),cπ (2),cπ (3),...,cπ (m)} the cost

function of which is given by the following equation:

 F dc ci i m
i

m

()
(), (mod)

π
π π

=
+

=
∑ 1

1

(5.2)

5.2 Placement and Quadratic Assignment Problems

The placement problem can be defined as an optimization problem, which, for instance,

involves optimizing the connection-cost between modules. The objective of connection-cost

optimization is to minimize the amount of wiring required for the placement process. One of

the main hindrances to an optimized placement is the difficulty in estimating the wiring

requirements of subsequent routing phases. The wiring estimates included in the cost function

for the placement may deviate from the wiring requirements during the ensuing routing phase.

Consequently, the proper selection of the cost function minimized in placement is of utmost

importance. Some of the prevailing cost functions are minimize maximum cut, and minimize

maximum density, as well as minimize total wire length, a frequently applied cost function

[SaYo95b] described in detail in this section.

Some commonly applied techniques [SaYo95b] for estimating the wirelength required by a

given placement are semi-perimeter, source to sink, Steiner tree, and spanning tree (Fig. 5.2).

The speed with which estimation is carried out is an important aspect of the performance of the

placement algorithm. Hence, a good method of rapid estimation is key to any placement

algorithm. When estimating total wirelength it is assumed that routing follows the Manhattan

geometric model, running either horizontally or vertically. To connect module i to module j,

the Manhattan length of the interconnection is

d lk i lk j lk i lk jlk i lk j
x x y y

() (): () () () ()= − + −
(5.3)

Here, lk i lk i lk ix y() [() , ()]= and lk j lk j lk jx y() [() , ()]= are the locations of modules i and j on

the coordinates x and y separated by the Manhattan distance dlk i lk j() () .

Node Assignment 64

One of the most widely used approximation methods for estimating the wirelength of a net is

the semi-perimeter method, which attempts to find the smallest bounding rectangle enclosing

all pins and nets. Half the perimeter of this bounding rectangle is the estimated wirelength of

the interconnects. Wirelength is underestimated when the wiring area is heavily congested.

a) Semi-perimeter length =7 b) Source to sink length =13

c) Steiner tree length =8 d) Spanning tree length =9

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5.2: Wirelength estimation methods

Using the Steiner tree method a wire can branch from any point along its length to connect to

other pins of the net. The problem of finding the optimal branching point, i.e. the minimum

Steiner tree, is NP-complete [Leng90]. In contrast to the Steiner tree, a minimum spanning

tree permits branching only at the module locations.

In a source to sink connection the output of a module is assumed to be connected to all the

other module inputs by separate wires in a star configuration. This easily implemented method

results in extremely long wirelength estimations. While providing a reliable approximation for a

heavily congested wiring area, this type of connection is seldomly used for the estimation of

wirelength in a lightly congested wiring area.

Formulation of placement as QAP

The quadratic assignment problem (QAP) is related to the placement problem and, beginning

with the definition of the quadratic function, can be illustrated as follows:

A function F is quadratic when it has the matrix form in equation (5.4) for a matrix G, vector

c, and scalar α. Multiplication by 1/2 is included in the quadratic term to avoid the occurrence

Node Assignment 65

of a factor of two in the derivatives. The matrix G is a Hessian matrix of F and is defined as a

symmetric matrix.

F a a Ga c aT T(~) ~ ~ ~= + +
1

2
α (5.4)

The quadratic assignment problem QAP(E,H) with the two nxn matrices E=(eij), H=(hij) and

the set {1,2,...,n}, can be stated as

min $
() ()π π π∈ ==

∑∑
S

ij i j
j

n

i

n

n

F E H h e(,) =
11

(5.5)

An optimal solution to QAP(E,H) refers to a permutation πopt∈Sn which minimizes the cost

function $ (,)F E H over Sn (Equation (5.5)). Sn is the set of permutations of {1,2,...,n}. Given a

permutation π∈Sn and an nxn matrix E=(eij), the matrix E eij
π π= () is obtained from E by

permutating its rows and columns according to permutation π, i.e. e eij i j
π

π π= () () , for 1≤i,j≤n.

The size of QAP(E,H) is determined by the size n of the coefficient matrices E and H.

An alternative formulation of the QAP was presented by Koopmans and Beckmann [KoBe57].

Here the relation between the set of permutations Sn and the set of all nxn permutation

matrices Πn is defined when X xij= () is an nxn matrix. If the entries xij fulfill the following

conditions in equation (5.6), then X is called a permutation matrix.

{ }

x j n

x i n

x i j n

ij
i

n

ij
j

n

ij

=

=

∑

∑

= ≤ ≤

= ≤ ≤

∈ ≤ ≤

1

1

1 1

1 1

0 1 1

,

,

, , , (5.6)

The relation described above is attained by associating a permutation π Ã∈ Sn to each

permutation matrix X ij n= (x) ∈Π , where πX(i)=j if and only if xij = 1 . Thus, on the set of

permutation matrices, QAP(E,H) is equivalent to the following minimization problem.

Node Assignment 66

{ }

 min

subject to

e h x x

x j n

x i n

x i j n

ij kl ik jl
l

n

k

n

j

n

i

n

ij
i

n

ij
j

n

ij

====

=

=

∑∑∑∑

∑

∑

= ≤ ≤

= ≤ ≤

∈ ≤ ≤

1111

1

1

1 1

1 1

0 1 1

,

,

, , , (5.7)

The similarity of the problems in equation (5.5) and (5.7) becomes more evident in the context

of the assignment of two sets of elements. In other words, xij = 1 when element i is assigned to

element j. Otherwise, xij = 0 . The constraint that each element i should be assigned to exactly

one element j formalizes the restrictions in (5.7). Conversely, to each element j should be

assigned exactly one element i.

A simplified placement problem can be described as a QAP, which, when introduced in 1961

by Steinberg [Stein61], was termed "the backboard wiring problem". In 1972 Hanan and

Kurtzberg [HaKu72] reevaluated the problem. The task here involves the placement of a

quantity of modules on a board where each module pair is connected by a number of wires.

The objective is to find an optimal placement of modules on the board so as to minimize the

length of the connecting wires.

Given a set of modules MD={md1, md2, ..., mdn} and a set of signals SG= {sg1, sg2, ..., sgk},

each module mdr∈MD is associated with a set of signals SGmdr where SGmdr⊆SG. In the same

manner, each signal sgr∈SG is associated with a set of modules MDsgr, where

MD md sg SGsg s r mdr s
= {  ∈ } . LK={lk1, lk2, ..., lkn} indicates a set of locations. The placement

problem consists of assigning each mdr∈MD to a unique location lks for the optimization of a

cost function. The assignment of n modules MD to n positions LK on a board can be expressed

mathematically by a permutation π of {1,2,...,n}. Given the number of signals connecting two

modules i and j represented as wij and the distance between the two locations k and l on the

board expressed as dkl, 1≤k, l≤n, the wirelength needed to connect the modules i at lk i() and j

at lk j() is given by w dij lk i lk j() () . Furthermore, the total wirelength necessary to connect all

module pairs is equal to $(,)F W D , where W=(wij) and D=(dkl). Thus, determining the optimal

assignment that minimizes total wirelength is equivalent to solving QAP(E,H).

 min () ()π∈
==
∑∑

S
ij lk i lk j

j

n

i

n

n

w d
11

(5.8)

Node Assignment 67

An effective method for the elimination of long wires is to punish their use by a

disproportionate factor. This is possible when the distance between the modules i and j in

equation (5.3) is calculated quadratically and results in the cost function

 $() (() ())F lk w lk i lk jij
j

n

i

n

= −
==
∑∑ 2

11

(5.9)

Since w is symmetric (wij=wji) the quadratic function $F lk GlkT= results, where G=T-W and T

is a diagonal matrix of the row sum of W.

Figure 5.3 depicts the placement of five modules MD={a,b,c,d,e} to a set of locations

LK={lk1, ..., lk6}. The goal of placement consists of determining the function $(,)F W D so that

the total wirelength is minimized. Using equation (5.9) the wirelength of the given placement in

Fig. 5.3 amounts to $(,)F W D =19.

. 1 2 3

 5 6

Location 1

ab

cde

Module a

lk a lk b lk c

lk d lk e

w w w

w w

a b a c b d

c d d e

() , () , ()

() , ()

, , ,

,

, , ,

, ,

= = =
= =

= = =

= =

3 2 6

5 4

2 1 1

1 3

Fig.5.3: An example of the placement problem

When applied to the placement problem, Koopmans and Beckmann's definition of QAP

(Equation (5.7)) formalizes the constraint that each module be assigned to exactly one

location. Thus, module i is assigned to location k, lk(i)=k, and module j is assigned to location

l, lk(j)=l, when

x
lk i k

x lk j l

ik

jl

= =



= =



0
1

0
1

else
if

else
if

()

()
(5.10)

5.3 Fault Activator and Node Assignment

In the previous section the placement problem is described as an assignment problem.

According to the definition of the assignment problem (Equations (5.5) and (5.7)), a specific

Node Assignment 68

logic element in a circuit can be assigned to several equivalent locations, for example to CLBs

in an FPGA. Here, the task of the assignment problem is to minimize the cost function. Given

this general description of the assignment problem, it is evident that an association exists

between the node assignment problem and the quadratic assignment problem. The following

description of symmetrical FPGAs is necessary before defining the node assignment problem.

 A model of the general structure of a symmetrical FPGA [Rose91] is shown in Fig. 5.4, which

depicts a conceptual structure of a typical FPGA consisting of a two-dimensional array of logic

blocks (CLBs) connected by general interconnection resources. The routing channels are

composed of wire segments, straight sections of wires varying in length that are used to form a

part of a connection and programmable switch, which consist of two types of blocks, namely

connection C blocks and switch SW blocks. The C blocks contain routing switches for

connecting the logic block pins to the wire segments, whereas the switches housed in the SW

blocks permit the connection from one wire segment to another. Logic circuits are

implemented in the FPGA by mapping the logic into separate logic blocks and then

interconnecting the blocks as necessary using programmable switches.

Horizontal
Routing Channel

Wire Segment

Vertical
Routing Channel

L L L

LLL

L L L

C

C C

CC

C C

CCC

CC

SW

SW SW

SW

Logic Block

Switch Block

Fig. 5.4: Model of a symmetrical FPGA

The node assignment optimization problem is a simplified model of the placement problem in a

symmetrical field programmable gate array [Seda97c]. The symmetrical FPGAs have a regular

array of CLBs, similar to the Fault Activator with its regular array structure. The following

model is defined for the node assignment optimization problem and assumes that the Fault

Activator including the Fault Injectors is mapped into the FPGA. An additional assumption is

that at least one Fault Injector can be mapped into each CLB, such that the array structure of

the Fault Activator corresponds to the array structure of the FPGA as depicted in Fig. 5.5.

Node Assignment 69

The fault location denotes a node in a circuit graph. This process of assignment of nodes, i.e.

node assignment, has the objective of optimized mapping of the expanded circuit into the logic

emulator.

CLB CLB

CLB

FI

FI

FI

L

a) Fault Activator b) FPGA

L

L

C C

1

2

3

1 3
C2

CLB CLB

CLB

c) Mapped Fault Activator / Fault Injectors

C CC

3

FI

FI

FI

L

L

L

1

2

1 32

Fig. 5.5: Node assignment model

A circuit expanded by additional functions for fault injection and fault activation requires

additional FPGA resources. Consequently, the task of node assignment is to minimize this

overhead.

The compilation process in the logic emulator involves partitioning, technology mapping, and

placement and routing, as described in Chapter 2. Discussed in the following sections are the

consequences of a non-optimized node assignment on the compilation process. This results in a

non-optimized partitioning, technology mapping, placement and routing of the expanded

circuit, which leads to an FPGA-overhead or to the inability to map the expanded circuit into

the logic emulator.

5.3.1 Partitioning of an Expanded Circuit

Generally, a single large circuit will not fit into a single FPGA and must therefore be divided

into partitions that can then be fit to several FPGAs. As a result, the signals between FPGAs

must be interconnected. However, connections between FPGAs are problematic since the

amount of I/O resources on the FPGAs tends to be exhausted long before the CLBs are used

up. Thus, the main objective of the partitioner becomes minimizing cutsize, i.e. connections

between partitions.

The expanded circuit is modeled by an extra node graph [AlKa95]. The method of modeling a

circuit by a graph with the use of extra nodes is based on the assumption of a fanout in an

interconnect that connects more than two logic elements. Using the extra node model, a fanout

Node Assignment 70

is represented in a circuit graph as a node, which is termed an extra node. All interconnected

logic elements are connected by the extra nodes through an edge. A connection of two logic

elements does not constitute a fanout, however, an extra node is also generated. It is necessary

to differentiate between three types of nodes in an extra node graph of a circuit. These nodes

include those for the primary inputs, extra nodes for interconnections between logic elements,

and instance nodes for the logic elements of the circuit. The extra node graph

G(UI/O,UN,UI,E) can be described by a set of I/O nodes UI/O, a set of extra nodes UN, a set of

instance nodes UI, and a set of edges E. The circuit in Fig. 5.6 is modeled as an extra node

graph with the logic elements represented by instance nodes UI (square nodes) and the nets by

extra nodes UN (circle nodes).

a

b
c

d

e

f

g

h

i

a

b

c

d

e

f

h i

g

1

2

3

4

5

7

6

8

9

12

11

10

13 14

Fig. 5.6: Circuit without Fault Injectors (left) modeled as extra node graph (right)

The graph partitioning problem for an FPGA-based logic emulator is modeled by the extra

node graph G(UI/O,UN,UI,E) in which each node uI∈UI has a size sz(u
I
) and each edge e E∈

has a weight w(e). The problem here becomes dividing the set of instance nodes UI into k

subsets UI1, UI2, ... ,UIk, such that a cost function is optimized. The size sz(u
I
) of instance

node uI represents the area of the corresponding circuit elements. If a circuit is divided into k

subcircuits, the graph is partitioned into k subgraphs G(j)(UI/O(j),UN(j),UI(j),E(j)), j =1, 2, ... ,

k, G j G G j G j G
j

k

() , () , ()∈ ≠ ∅ =
=1
U and G j sz uI() ()≤ . The interconnections of the circuit

elements are modeled as extra nodes UN in this graph, and are used to divide the graph in

subgraphs G(j). The number of extra nodes to cut the graph is represented by the cutsize Φ.

With an iterative improvement algorithm such as Kernighan-Lin [KeLi70], which addresses the

two-way partitioning problem [ChWe91], the cutsize Φ between two partitions can be

minimized.

The circuit in Fig. 5.7 is partitioned into two subcircuits, with primary inputs I1, I2, I3, I4, and

I5 and gates a, b, c, d, and g in one subcircuit and primary output O1 and gates e, f, h, and i in

the other. Two subgraphs, G1 and G2, result from the partition. Subgraph G1 includes subset

Node Assignment 71

U u u u u uI I a I b I c I d I g1 = { , , , , }() () () () () and subgraph G2 includes subset U u u u uI I e I f I h I i2 = { , , , }() () () ()

resulting in sizes sz(u
I,G1

)=5 and sz(u
I,G2

)=4. Additionally subgraph G1 includes I/O nodes

uI/O(I1), uI/O(I2), uI/O(I3), uI/O(I4), and uI/O(I5), as well as extra nodes uN(1) to uN(5), uN(7), and

uN(9). The subgraph G2 includes the I/O node uI/O(O1) and the extra nodes uN(10), uN(11),

uN(13), and uN(14). The three extra nodes uN(6), uN(8), and uN(12) are cut, thus Φ=3.

a

b

c

d

e

f
h i

g

1

2

3

4

5

7

6

8

9

12

11

10

13 14

Fig. 5.7: Circuit partitioning of expanded circuit

Assigning the fault locations in the circuit to the Fault Injectors is an important aspect of an

optimized partitioning of the expanded circuit in the compilation process of the logic

emulation. An illustration of node assignment in the partitioning problem is followed by a

discussion of the non-optimized and optimized node assignment of the fault location to the

Fault Injectors. First, a non-optimized assignment is described. Second, the optimized node

assignment is discussed as well as its influence on partitioning. The circuit from Fig. 5.6 shown

in Fig. 5.8 as an expanded circuit with fault injection, is modeled with the stuck-at-0 fault

(s-a-0) at the output of each gate.

a1

b1

c1

d1

e1

f1

g1

h1

i1

L1
C2

1

1

L

C

L2
C1

2

2

L

C
L2
C3

3

2

L
C3

1

L

C

L3
C3

1

3

L

C

a

c

b

d
g

f
h

i

e

Fig. 5.8: Circuit with Fault Injectors

In the extra node graph of the expanded circuit every instance node is expanded by a Fault

Injector and builds a new instance node, referred to here as an expanded instance node uI(exp).

In the example below (Fig. 5.8) the Fault Injector is at the output of gate a. Hence, the

Node Assignment 72

function of gates in the circuit, i.e. instance node uI(a) in the extra node graph, generates a new

expanded instance node uI(a1) with the function of a Fault Injector, thus the function of the

expanded instance node is a L C a1 1 1= ⋅ ⋅ .

The expanded circuit is modeled in Fig. 5.9 as an extra node graph G(UI/O,UN,UI,E) with the

following sets:

I/O nodes: UI/O={uI/O(I1), uI/O(I2), uI/O(I3), uI/O(I4), uI/O(I5), uI/O(O1)},

extra nodes: UN={uN(1), ..., uN(14), uN(L1), uN(L2), uN(L3), uN(C1), uN(C2), uN(C3)}.

The instance node uI∈UI is expanded with a Fault Injector generating a new instance node

uI(exp)∈UI(exp), UI(exp)={uI(a1), uI(b1), uI(c1), uI(d1), uI(e1), uI(f1), uI(g1), uI(h1), uI(i1)}.

The partitioning problem becomes one of dividing the set of instance nodes UI into k=2

subsets UI1, UI2. In this example an optimized assignment of fault locations to the Fault

Injectors results in the bipartitioning of the expanded circuit with a cutsize of Φ=7. Subgraph

G1 includes subset UI1={uI(a1), uI(b1), uI(c1), uI(d1), uI(g1)} while subgraph G2 includes subset

UI2={uI(e1), uI(f1), uI(h1), uI(i1)}.

1

a1

2

b1

5

c1

3

d1

4

e1

8

f1 9

h1
7

i1

6

g1

1L

2L

3L

2C

1C

3C

Φ=7

Fig. 5.9: Bipartition with optimized node assignment and cutsize Φ=7

Compared to an optimized node assignment, the cutsize resulting from the bipartitioning of the

expanded circuit is always higher in a non-optimized node assignment of fault locations. The

example below depicts a non-optimized node assignment of fault locations with cutsize Φ=9

through the extra nodes uN(6), uN(8), uN(12), uN(L1), uN(L2), uN(L3), uN(C1), uN(C2), uN(C3). The

extra nodes cut in this process includes those from the circuit uN(6), uN(8), uN(12) and those

Node Assignment 73

from the interconnection of the control signals Ll and Cc of Fault Injectors, uN(L1), uN(L2),

uN(L3), uN(C1), uN(C2), uN(C3). An optimized partitioning of this expanded circuit with Φ<9 is

difficult to attain due to the interconnection of control signals Ll and Cc.

1

a1

2

b1

5

c1
3

d1

4

e1

8

f1
9

h1

7

i1

6

g1

1L

2L

3L

1C

2C3C

Φ=9

Fig. 5.10: Bipartition with non-optimized node assignment and cutsize Φ=9

In the optimized node assignment in Fig. 5.9, seven extra nodes are cut by the partitions. In

this case the circuit is partitioned without cutting the extra nodes uN(C1), uN(C3) of the control

signals C1 and C3. In contrast, with the non-optimized node assignment shown in Fig. 5.10

bipartitioning is not attainable without cutting all extra nodes of the control signals uN(Ll),

uN(Cc). As a result of a non-optimized node assignment, FPGA usage increases and in many

cases expanded circuits can not be mapped in the logic emulator. A solution to this problem,

similar to the Cheng&Dai approach (Section 4.1.2), is found by dividing the set of faults in

order to expand the circuit with only a subset of the faultlist. However, this solution leads to

the compilation and emulation of several expanded circuits as well as an increase in fault

emulation runtime as described in Section 4.1.2. Recall that the amount of I/O resources of

the FPGAs tends to be exhausted long before the CLBs are used up. Thus, an optimized

assignment of fault locations to Fault Injectors is essential for an optimized partitioning which

minimizes cutsize Φ.

5.3.2 Technology Mapping of an Expanded Circuit

The second step in the mapping process, technology mapping converts the input netlist at gate

or RT-level into FPGA logic blocks. The quantity of inputs of the functions may not exactly

correspond to the those of the look-up table, which is carrying out those functions in the

FPGAs. In the case of too many inputs, the logic elements must be split, or decomposed, into

Node Assignment 74

various smaller functions that can then be used by the LUTs. If, on the other hand, the number

of inputs is smaller than those of the LUTs several logic gates are combined to build one LUT.

Technology mapping reorganizes the logic for an optimal fit in the logic blocks of the FPGA.

Various algorithms are available for the optimized technology mapping of circuits for FPGA

implementation. While some methods focus on LUT count [Fran91a] [Fran91b], others seek to

facilitate routing within the FPGA [ScKo94] [BhHi92] [ChWo94].

The logical functions of Fault Injectors are dependent on either three (s-a-1 or s-a-0) or four

(s-a-1/0) variables. Given a 4-input LUT, the function of each expanded node can be mapped

in a LUT, as illustrated in Fig. 5.11. Consequently, five CLBs are necessary to map the

complete circuit. For instance, CLB1 consists of two functions a I I L C1 1 2 1 1= + ⋅ ⋅() () and

c I b L C1 12 2 2= + ⋅ ⋅() () , each of which depends on four variables.

a1

b1

c1

d1

e1

f1

g1

h1

i1

L1
C2

1

1

L

C

L2
C1

2

2

L

C L2
C3

3

2

L

C3

1

L
C

L3
C3

1

3

L
C

CLB1

CLB2
CLB3

CLB4

CLB5

I1
I2

Fig. 5.11: Technology mapping of an expanded circuit

5.3.3 Placement and Routing of an Expanded Circuit

Given a set of logical functions generated by the technology mapping process, the appropriate

locations (logic blocks) for the logical functions are those which minimize given cost functions,

subject to certain constraints imposed by the implementation process. The constraints could

include the requirement that cells fit into a predefined or prefabricated area, such as CLBs and

routing resources in an FPGA. A difference between placement and routing for a single FPGA

and for an FPGA system is that in an FPGA system signal delay resulting from the routing

resources in the emulator must be minimal. In the case of a single FPGA, mapping quality, here

the optimized usage of FPGA resources, has a high priority. Due to the interconnections in an

FPGA system, changes to part of the circuit can affect a multitude of FPGAs.

Node Assignment 75

The placement process for an FPGA involves assigning a set of logic functions formed by

technology mapping to a set of logic blocks in the FPGA and can greatly influence the mapping

quality and performance of the FPGA. Long routing paths between the logic blocks result in

signal delay and the usage of additional resources. Therefore, the objective of placement

becomes minimizing wirelength in the FPGA [SeLe87]. A placement is acceptable if routing

between all logic blocks can be achieved with the available routing resources. Before an

acceptable placement can be found, different solutions must be compared and evaluated.

Performing actual routing for this purpose is impractical, because the placement problem is an

NP-complete problem. Therefore, estimates are used. A technique [SaYo95b] is presented

below for estimating the routability of a given placement.

A measure for estimating the routability of an FPGA placement ρ is the density
~

()d ρ . Within

a given placement ρ , the number of nets that must pass through each side εi of a switch block

can be estimated with ηρ ε()i . If ψρ ε()i represents the capacity of the switch block side εi,

then the density of the switch block side εi can be defined as:

~
d i

i

i

ρ ε ηρ ε
ψρ ε

() =
()

()

(5.11)

A measure of the routability of the placement, where the maximum is taken over all switch

block sides εi of the routing resources, is given by equation (5.12) and must be
~
d () 1ρ ≤ :

 []~
() max

~
()d d

i
iρ ρ ε= (5.12)

Long routing paths between the logic blocks in the expanded circuit can be avoided by

applying the technique of node assignment in the FPGA. The following examples of optimized

and non-optimized node assignment illustrate the placement and routing problems in an FPGA.

Figure 5.12 illustrates the placement of the expanded circuit in the FPGA with non-optimized

node assignment (Fig. 5.10). The portion of the circuit interconnections depicted is sufficient

to explain the placement problem for an expanded circuit. In order to determine the routability

of this placement the cost function (Equation (5.12)) defined for the minimization of maximum

density can be applied. Given that the capacity of each switch block side amounts to four

bidirectional inputs and outputs (ψρ ε()i =4). Inasmuch as max[ηρ ε()i]=5,
~

()d ρ >1 and the

placement in Fig. 5.12 is not routable .

Node Assignment 76

CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

a d h

bce

i f g
max[()] = 5ηρ εi

Fig. 5.12: Placement of circuit with non-optimized node assignment in an FPGA

A routable placement is difficult to achieve with non-optimized node assignment due to the

generation of additional connections between the fault locations by the control signals L and C

of the Fault Injectors. As depicted in Fig. 5.6, before circuit expansion a connection between

nodes e and b does not exist, whereas e1 and b1 are connected by the control signal L2 after

circuit expansion (see Fig. 5.9).

A placement solution to guarantee routablity is high flexibility [BrFr92c], which is a measure

of the connectivity within a routing architecture and is a function of all switch blocks and wire

segments in the FPGA. A balance between flexibility, logic density and circuit speed must exist

when designing a successful FPGA routing architecture. Configuring an FPGA with high

flexibility is simple due to the large number of routing switches and wire segments involved.

However, the area available for routing may be unnecessarily consumed by unused switches,

resulting in less area for logic blocks thus, low logic density. Because each additional switch

block causes a signal delay, high flexibility leads to reduced circuit speed. A further solution to

the routability of a given placement is the optimized node assignment exemplified below, which

depicts a placement of the circuit from Fig. 5.9 in an FPGA with ψρ ε()i =4 and

max[ηρ ε()i]=4, hence
~

()d ρ =1.

Node Assignment 77

CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

a

d h

b c

e i

f

g
max[()] = 4ηρ ε i

Fig. 5.13: Placement of circuit with optimized node assignment in an FPGA

The discussion in this section has shown the necessity of node assignment for the compilation

of the expanded circuit. The routability of the expanded circuit in the logic emulator as well as

a decrease in FPGA overhead can be achieved by optimized node assignment. The following

problems illustrate the necessity of optimized node assignment:

• An optimal cutsize is difficult to attain with non-optimized node assignment due to the

additional connections between fault locations caused by the control signals L and C of

the Fault Injectors. Therefore, the I/O resources on an FPGA are used up long before

CLBs are exhausted.

• The routability of the expanded circuit is not guaranteed with non-optimized node

assignment due to the additional connections between the fault locations caused from

control signals L and C of Fault Injectors. A possible solution to guarantee routablity is

high flexibility. However, high flexibility leads to reduced circuit speed and increased

FPGA usage.

5.4 Optimized Node Assignment

The previous section discussed the node assignment problem and its importance for the

compilation process in the logic emulator. Various algorithms are used for the calculation of an

optimized node assignment, which leads to routability and a reduction in FPGA-overhead. A

new algorithm for optimized node assignment has been developed in this work and is presented

in Section 5.4.1.3.

Node Assignment 78

Defining the node assignment problem as a QAP entails assigning each fault location

flo FL g ng ∈ =O, 1,..., , FL flo flo flonO = , , ..., { }1 2 in the circuit to a Fault Injector fig∈FI,

FI fi fi fin= , , ..., { }1 2 of the Fault Activator in order to optimize the cost function $ (,)F W D .

min $ (,) (() ())

~
()

() ()π π π∈ == ==
= = −

≤

∑∑ ∑∑
Πn

F W D w d w fi i fi j

d NA

ij i j
j

n

i

n

ij
j

n

i

n

11

2

11

1subject to (5.13)

In order to connect node i to node j, their Manhattan length is calculated by

fi i fi i fi ix y() [() , ()]= , fi j fi j fi jx y() [() , ()]= , which are the locations of node i and j on the

coordinates x and y separated quadratically by the Manhattan distance

d fi i fi jfi i fi j() (): (() ())= − 2 .

Node assignment is the problem of finding a permutation π ∈ Πn
 that minimizes the double

sum in equation (5.13). An optimal solution to node assignment refers to the global minima

Xglobal which is the permutation π opt , π opt n∈ Π that minimizes the cost function over Πn.

Given are a number of interconnections between two fault locations i and j represented as wij

and a distance between the two Fault Injectors k and l on the FPGA expressed as dkl,

1≤ ≤k l n, . The wirelength needed to connect the fault location i at fi(i) and j at fi(j) is

expressed as w dij fi i fi j() () . Given a distance matrix D=(dkl) and a permutation π ∈ Πn
, D dkl

π π=

denotes D by permutating, i.e. d dkl fi i fi j
π = () () , 1≤ ≤k l n, . Thus, determining the optimal

solution of node assignment π opt that minimizes total wirelength with the cost function in

equation (5.13) amounts to solving the quadratic assignment problem QAP(E,H). The

restrictions in (5.13) formalize the constraints with the routability condition
~

()d NA ≤ 1 of node

assignment NA.

The fault locations in a circuit are defined as neighboring fault locations when they share a

common interconnection, such as several branches of a fanout. In addition, the fault locations

at the inputs and outputs of a logic element are also defined as neighboring fault locations. For

an optimized node assignment the circuit nodes are assigned to all Fault Injectors so that the

neighboring nodes are mapped to the neighboring Fault Injectors in the Fault Activator. The

distance between two neighboring Fault Injectors in the Fault Activator is measured as one

unit.

The circuit from Fig. 5.9 is shown in Fig. 5.14a with optimized node assignment in the

structural array of the Fault Activator. Using the model of node assignment (see Fig. 5.5) the

Node Assignment 79

assignment problem is related to the simplified model of the placement problem of symmetrical

FPGAs, termed here relative placement. Given the circuit from Fig. 5.9 it is assumed that

connecting one fault location to another uses as many interconnections as the Manhattan

distance between fault locations. For instance, nodes d1 and g1 below necessitate horizontal or

vertical interconnections with a total sum of one unit. The node assignment in Fig. 5.14a has a

total wirelength $ (,)F W D = 114 using equation (5.13).

L

L

L

CC C

e L C⋅ ⋅1 2 i L C⋅ ⋅1 3

b L C⋅ ⋅2 1 c L C⋅ ⋅2 2 f L C⋅ ⋅2 3

d L C⋅ ⋅3 1 g L C⋅ ⋅3 2 h L C⋅ ⋅3 3

a L C⋅ ⋅1 1

1

1

2

2

3

3

a1 e1 i1

f1
c1

b1

g1d1
h1

a1

e1
i1

f1

c1

b1

g1

d1

h1

L

L

L

CC C

i

L C⋅ ⋅1 3

bL C⋅ ⋅2 1

c

L C⋅ ⋅2 2

d

L C⋅ ⋅3 1 g L C⋅ ⋅3 2 h L C⋅ ⋅3 3

a L C⋅ ⋅1 1

1

1

2

2

3

3

f L C⋅ ⋅2 2

e L C⋅ ⋅2 3

a) b)

Fig 5.14: Optimized node assignment (a) compared to random node assignment (b)

The circuit from Fig. 5.10 is shown in Fig. 5.14b with a random node assignment in the

structural array of the Fault Activator. The assignment of nodes b, c, d, e, f, and i to the Fault

Injectors in Fig. 5.14b leads to an increase in the estimated total wirelength. For instance,

nodes d1 and g1 require interconnections having a total sum of three units. The node

assignment in Fig. 5.14b has a total wirelength $ (,)F W D = 210 using equation (5.13).

An optimized node assignment can be calculated by the optimized relative placement described

above. The node assignment problem has the same complexity as the placement problem,

which is NP-complete. A number of heuristic techniques have been developed recently for

solving the QAP. Heuristics use local search to find a good solution (local minima), although

not necessarily the best solution (global minimum). The time requirements of heuristic

algorithms are modest, i.e. a polynomial function of the number of nodes.

5.4.1 Algorithms

In the last decade various polynomial time heuristics have been introduced, including the

simulated annealing and min-cut algorithms, which provide suboptimal solutions, e.g. local

optima. In addition, a new algorithm developed in this work for the calculation of the

optimized node assignment is described in detail in Section 5.4.1.3. A comparison between the

Node Assignment 80

results of optimized node assignment for several circuits with simulated annealing, min-cut, and

the new algorithm is presented in Chapter 6.

5.4.1.1 Simulated Annealing

A heuristic algorithm which attempts to overcome local optimality, i.e. local minima, in solving

the combinatorial optimization problem is the simulated annealing approach [WoLe88]. The

metropolis algorithm [MRRT53] can be used to simulate the behavior of a physical system and

can also be applied as a heuristic method in combinatorial optimization problems [KGVe83]. A

thermal process for obtaining lower energy states of a solid in a heat bath refers to the

annealing process, which includes two phases. The first phase involves melting the solid by

raising the temperature of the heat bath to a maximum value. In the next phase the temperature

of the heat bath is slowly decreased to the minimum value of the temperature until the particles

arrange themselves, which is characterized by a minimum of energy. The evolution of a solid in

a heat bath in thermal equilibrium is simulated by the metropolis algorithm. By applying a small
perturbation of the current state τ1 with Enτ1 to a subsequent state τ2 with energy Enτ2, an

energy difference ∆En En En= −τ τ1 2 results. If ∆En is negative, state τ2 is accepted as the next

current state. When the energy difference is positive, state τ2 is accepted with a certain

probability P given by e
En

k TempB

∆

. Here kB is the Boltzmann constant and Temp represents the

temperature.

 P En e
En

k TempB()∆
∆

=
−

 (5.14)

Simulated annealing can be applied to any combinational optimization problem [BuRe83] when

a neighborhood structure has been introduced on the set of feasible solutions (see Section 5.1).

The metropolis algorithm uses as a new feasible solution $Fnew a neighbor of the current feasible

solution $F .

The simulated annealing algorithm can be used for the node assignment problem [Kupk98].

The pairwise interchange is a simple neighbor function in which two Fault Injectors are

selected and their nodes permutated. Other schemes to generate neighboring states include

displacing a randomly selected node to a random Fault Injector or any interchange of nodes

that may cause a change in estimated wirelength. Let ∆En F Fnew= −($ $) be the change, due to

permutation, in the estimated wirelength of the cost function in equation (5.13), where $F is

the previously calculated wirelength and $Fnew the actual wirelength. If the new wirelength cost

is lower, ∆En < 0, i.e. $ $F Fnew < , then $Fnew is acceptable and the current state is set to

Node Assignment 81

$ $F Fnew= . Otherwise, if the new solution $ $F Fnew > , the metropolis algorithm accepts the new

solution on a probabilistic basis. A comparison between probability P and a random number

Random generated in the range from 0 to 1 results in an acceptable solution $Fnew if

Random e
En

k TempB<
∆

. This simulated annealing process is repeated until the freezing state of the

solid, generally at Temp=0, is attained.

5.4.1.2 Min-cut

The min-cut partitioning procedure is used to generate an optimized node assignment [Li97] as

shown in Fig. 5.15. Consider in an FPGA layout the horizontal line at x=xi dividing, i.e. cutting

the FPGA into a top region TO and a bottom region BO. Let (xi) denote the number of nets

cut by the line xi having at least one connection in TO and at least one connection in BO. The

vertical line at y=yi cuts the FPGA into a left region LF and a right region RI. Furthermore, let

(yi) denote the number of nets cut by the line yi that have at least one connection in LF and at

least one connection in RI.

a
b

c

LF RI

TO

BO

y
i

xi

Fig. 5.15: Vertical and horizontal cut lines

Partitioning the circuit with the cutlines xi and yi, so as to minimize (xi) and (yi) can be

accomplished with several algorithms, one of which is the KL (Kernighan and Lin) algorithm

[KeLi70]. Similar to all versions of the min-cut heuristic algorithm, this heuristic algorithm

generates the cut tree illustrated in Fig. 5.16. Each node on the cut tree represents a subgraph

Gm(Um, Em) of the graph G, and a section Sq to which Gm is assigned. The root of the cut tree

represents the total graph G and the complete section S. A node of the cut tree is processed by

selecting a horizontal or vertical cutline that subdivides S into two subsections S1 and S2. The

subgraph represented by a node of the tree is then bipartitioned into two subsections whose

sizes have the same ratio as the size of S1 and S2. This process continues until each subgraph

consist of a single vertex of the graph G.

Node Assignment 82

S
S

1

2

S1,1 S1,2

S2,1 S2,2

Fig. 5.16: Cut tree

The procedure for the selection of cutlines as well as the sequence in which they are processed

is recommended by Breuer [Breu77a][Breu77b]. Three popular techniques for the generation

of the cut tree are the Quadrature, Bisection, and Slice/Bisection procedures. In this work the

Slice/Bisection procedure is implemented for the node assignment problem. The

Slice/Bisection procedure selects the cutline that slices off a subgraph of the graph G resulting

in an unbalanced bipartition and leading to unequal sizes sz(u) of subgraphs G1 and G2,

G G1 2≠ .

A partitioning algorithm is applied to a given circuit graph for the generation of two

subsections S1 and S2 in the FPGA as illustrated in Fig. 5.17a based on example in Fig. 5.6.

The subgraph G1 is assigned to subsection S1 above the imaginary horizontal cutline x1, and

the subgraph G2 to subsection S2 below x1. Using the Slice/Bisection procedure, n nodes of

the circuit graph are divided by cutline x1 into two set k and n-k nodes, such that (xi) is

minimized. The first k nodes obtained are assigned to the top most row, i.e. first slice of the

FPGA. The procedure is then applied to the remaining n-k nodes dividing them into k and n-2k

nodes of the circuit graph and continues until all nodes have been assigned to their respective

rows (Fig. 5.17b).

a
e

i

b
c

d
g

f

h

a
e

i

b

c

d g

f
h

x1 x1

x2

a
e

i

b

c

d g

f
h

x1

x2

x3

y1(x)1
y2(x)1

y1(x)3
y2(x)3

y1(x)2

a) b) c)

2(x)y
2

Fig. 5.17: Slice/Bisection procedure

The nodes are then assigned to columns using vertical bisection (Fig. 5.17c). Consider

subsection S1, which is separated into three subsections S1,1, S1,2, and S1,3 using two vertical

Node Assignment 83

cutlines y1(x1) and y2(x1). Similarly, subsection S2 is separated into three subsections S2,1, S2,2,

and S2,3 by vertical cutlines y1(x2) and y2(x2). The last cutline x3 is a dummy cutline for

separating the last subsection S3. In every row the smallest section corresponds to a single

node of the circuit graph.

The graph G in Fig. 5.17 is partitioned and assigned to three subsections S1, S2, and S3. A

typical limitation of all min-cut heuristics is that the assignment of the subgraphs Gm to the

subsections is independent of the interconnections between the subgraphs [DuKe85]. For

instance, if node c of section S2 (Fig. 5.17c) is assigned to the left of cutline y2(x2), a higher

estimated total wirelength results than if assigned to the right of cutline y2(x2).

5.4.1.3 Delta-Path

An algorithm for node assignment enabling an optimized compilation in the logic emulator is

developed in this work. The compilation process for circuits with millions of gates is very time-

consuming, therefore it is very important that the node assignment runtime for mapping the

expanded circuit into the logic emulator is kept to a minimum. As illustrated in Section 6.1,

compared with the Delta-Path and simulated annealing algorithms the min-cut algorithm has

the lowest improvement of estimated wirelength in most of the circuits. The simulated

annealing algorithm has the highest runtime and in most of the circuits highest improvement in

estimated wirelength. Therefore, the motivation behind the Delta-Path algorithm is that this

algorithm provides a compromise between runtime and optimized wirelength, and achieves an

acceptable reduction of FPGA overhead as well as routability of the expanded circuit in an

acceptable runtime.

The node assignment problem is represented by a directed graph G(U,E), which models the

combinational circuit. The graph G(U,E) is a directed graph when E consists of the pairs

e={u,v} with the nodes u U∈ and v U∈ . The node u is referred to as the start-node of edge e

and the predecessor node of node v. The node v is referred to as the end-node of edge e and

the successor node of node u (Fig. 5.18). The algorithm consists of four subprocesses.

First Subprocess

The algorithm converts graph G(U,E) to a new graph G'(U',E') by dividing U={u1, u2, ..., un}

into k subsets Λ Λ Λ1 2, , ..., k . The subset Λ1 ⊂ U is defined as the set of source nodes us with

empty predecessor set Γ()u s

− and nonempty successor set Γ()u s
+

. The source nodes us can be the

primary inputs of the circuit and the subset Λ1 is calculated as:

Node Assignment 84

{ }Λ Γ Γ1 = ∈ ∧ = ∅ ∧ ≠ ∅− +u u Us s

u us s() () ()
() () (5.15)

The subset Λ2 ⊂ U contains the set of successor nodes Γ
()u s

+ from subset Λ1 and represents the

union of the sets Γ
()u s

+ .

{ }Λ Γ Λ

Γ
Λ

2 1

1

=

u u u
u

s

u
u

s

s
s

() ()
()

()

∈ ∧ ∈

=

+

+

∈
U (5.16)

This process is repeated until the last set Λ k contains only nodes with empty successor sets

Γ()v
+ = ∅. Since a node in Λ k , k=1...s can be the successor node of several nodes in Λ j ,

j=1...s-1 it can exist in more than one set Λ Λ Λ1 2, , ..., k . To prevent this occurrence it is

defined here that each node of U={u1, u2, ..., un} can exist only once in a set Λ . In each step

the nodes already contained in earlier sets Λ j are eliminated from the newly generated set Λ k .

Λ Γ Λ Λ

Γ Λ
Λ

k u k
j k

j

u
u

j
j k

v v u v

k

= ∈ ∧ ∈ ∧ ∉








=

+
−

<

+

∈ <−

() () ()

\

()

()

1

1

U

U U
(5.17)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Λ k−1

Λk

u1 u2 u3

v1 v2
v3 v4 v5

Γ()u1

+

Γ()u2

+

Γ()u3

+

Fig. 5.18: Dividing of U into k subsets Λ Λ Λ1 2, , ..., k ,

In each Λk a node occurs only once. The grouping of nodes from U into subsets Λk is

performed in order to construct a new graph G'(U',E'). The goal is to obtain a directed graph

G' in which a node v k∈Λ with k>1 has exactly one predecessor u k∈ −Λ 1. In G(U,E) a node

Node Assignment 85

v k∈Λ may have several edges to the predecessor in Λ k−1. The question arises which edges

from E are to be kept in E'. The following solution is presented:

The first subprocess starts with an empty edge set E' and each time when a new set of nodes Λ

is built E' is augmented by a corresponding set Ek
'' of edges. Ek

'' contains for each v only one

edge from a predecessor u k∈ −Λ 1 to v k∈Λ . This edge is selected as follows:

Let deg() =+u uΓ()
+ represent the number of successor nodes of u. The predecessor nodes Γ()v

−

are arranged into a list (, ,...,)() () ()u u uv v
n

v
1 2 with

 deg() deg() deg()() () ()u u uv v
n

v
1 2

+ + +≤ ≤ ≤ (5.18)

and only the first edge (,)()u vv
1 is kept, which is expressed as

 { }E u v vk
v

k
'' = ∈(,)()

1 Λ

and the set of all edges is

E Ek

k

s
'' ''=

=2
U

(5.19)

If the degrees deg()+u v() between u v
1
() and several nodes (,...,)() ()u uv

n
v

2 are equal all but one

edge are deleted randomly.

Second Subprocess

The purpose of the second subprocess is to generate from G' a series of simple paths ∆ z with

maximum length h where h is the number of columns in the Fault Activator and is calculated

using the equation (4.3). The subprocess first generates those paths ∆ z z zU U E= ⊂(,)'' which

start with a node uz
m

m∈ Λ , m=0. Uz and Ez are initialized by { }U u Ez z
m

z= = ∅, . Node sets and

edge sets are augmented gradually by

{ }

{ }

U U u u

E E u u m h

z z z
m

z
m

u

z z z
m

z
m

z
m:

: ,

()
= ∪ ∈

= ∪ = −

+ + +

+

1 1

1 1

 where

 until

Γ

(5.20)

Here Γ+ denotes the successor set with respect to G'. Each node u k∈ Λ used in the

construction of a path ∆ z is removed from Λ k . Thus each node can occur exactly once in a

Node Assignment 86

path. If Γ()uz
m

+ contains more than one node then the node with maximum successor degree

deg() =+ui
m

ui
mΓ

()

+ is selected from Γ
()uz

m
+ . If set Γ

()uz
m

+ contains several nodes u', u'', ... with

maximum successor degree then one of them is selected randomly. If m<h-1 and Γ()uz
m

+ = ∅ then

an arbitrary node from the set Λm is selected although there is no edge in E' connecting these

nodes. If further nodes are not available in Λm a node is selected from Λm+1 to generate the

subgraphs ∆ z as described above. This random selection of nodes is a drawback of the

algorithm, which, when applied to the optimization of the assignment problem results in a

higher value of the cost function when the number of nodes that are randomly selected

increases. Note that all the paths ∆ z are subgraphs of G'. Some paths ∆ z will connect nodes

which are not connected in G'.

Third Subprocess

The set of ∆ is referred to as a super node set. When represented as a graph G(SU,SE) the

nodes are represented by su∈SU and the edges by se∈SE. With the application of this

algorithm to the node assignment problem, the model of a two-dimensional symbolic

placement can be reduced to a one-dimensional symbolic placement as shown in Fig. 5.19.

CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

L1

C1

L2

C2

L3

C3

∆

∆

∆
1

2

3

lk

lk

lk

1

2

3

Fig. 5.19: One-dimensional symbolic placement

The assignment problem entails assigning the set of super nodes SU={su1, su2, ...,suz} to the

set of locations LK={lk1, lk2, ..., lkz}, Location SU LK: → , lk Locationf i: ()= ∆ , such that in

a solution space { }S s i i pi i pp
= = =(,...,) (,..., (,...,)∆ ∆

1 1 1π the cost function $:F S → ℜ is

minimized. As stated in Section 5.4, the assignment of p nodes to p locations LK={lk1, lk2, ...,

lkn} can be expressed mathematically by a permutation π of {1,...,p}. As illustrated in Fig.

5.19, determining the optimal permutation πopt S∈ with ∀π ∈ ≥S F F opt: $ () $ ()π π that

minimizes total wirelength amounts to solving the QAP in equation (5.13). Thus, the super

Node Assignment 87

nodes are assigned to the locations as a one-dimensional symbolic placement problem. Each

π describes a possible assignment. However, the S built by the Delta-Path algorithm does not

contain all the possible node assignments NA, { }S NA possible node assignment⊂ = . S is a

restricted solution space where it is hoped that the restriction is a plausible one and that S

contains a solution not too far from the best solution of NA. Each lk corresponds to one line in

the Fault Activator in the FPGA. In Fig. 5.19 above, the Fault Activator consists of three lines.

Hence, the model above contains three locations LK={lk1, lk2, lk3}, each of which contains

three Fault Injectors fi, lk1={fi1, fi2, fi3}, lk2={fi4, fi5, fi6}, and lk3={fi7, fi8, fi9}.

Fourth Subprocess

Every ∆ i with a maximum of h nodes is assigned to a location lk with h Fault Injectors and

each circuit node u ∈ ∆ is assigned to a Fault Injector fi lk∈ , u fia . In the subgraph ∆ i the

first node ui
m

m∈ Λ , m=1 is assigned to the first Fault Injector u fii
m
a 1, fi1∈ lk1 and the

second node ui
m

m
+

+∈1
1Λ is assigned to the second Fault Injector u fii

m+1
1a , fi2∈ lk1, as

shown in Fig.5.20. This assignment continues until all nodes in the subgraph ∆ i have been

assigned to all Fault Injectors in lk1, i.e. u fii
h

ha and is repeated for each subgraph ∆ i in

G(SU,SE).

CLB C LB1∆
1 lk1 L

C 1 Ch

ui
m

ui
m+1

ui
hui

m
ui

m+1
ui

h

Fig. 5.20: Assignment of u to fi

Example

The graph in Fig. 5.21a contains nine nodes representing the fault locations U u u= { , ..., }1 9 in

a circuit that are assigned to nine Fault Injectors FI={fi1, ..., fi9}. The set of source nodes

Us={a,b} has as successor nodes the sets Γ() { }a e+ = and Γ() { , }b c d+ = , and generates

Λ2 = { , , }e c d . In addition, the sets of successor nodes Γ() {}e i+ = , Γ() { , , }c e f g+ = , and Γ() { }d g+ =

build the subset Λ3 . Since as the node e already exists in the subset Λ2 , it is eliminated in Λ3 .

Furthermore, the node g has several edges to the predecessor nodes in Λ k−1 and by generation

of the edges E' the edge to node d is selected due to the lower degree of node d,

deg() deg()d c+ +≤ , based on equation (5.18). Thus, Λ3 contains the nodes Λ3 = { , , }i f g , as

shown in Fig. 5.21b.

Node Assignment 88

The sets of successor nodes Γ()i
+ = ∅ , Γ() { }f h+ = , and Γ() { }g h+ = generate the set Λ 4 . Node h

is present in two sets. Since both predecessors of node h have an equal degree

deg() deg()f g+ += = 1 the randomly selected edge (g,h) is kept and (f,h) is deleted. The

successor node Γ() {}h i+ = builds Λ5 and since node i already exists in the subset Λ3 , it is

eliminated in Λ5 , Λ5 = ∅ .

a
e

i

b
c

d

g
f

h

a b

e

i

c d

fe g

h

i

1

2

3

4

5

∆ ∆

∆

1 2

3

a) b) c)

a b

e

i

c d

fe g

h

i

Λ

Λ

Λ

Λ

Λ

Fig. 5.21: Node assignment with Delta-Path algorithm

The set of ∆ is generated for a one-dimensional symbolic placement and contains the maximum

number of nodes,
∆ ∆

∆
z

z
⊂

=max h . In order to generate ∆1, a node in subset Λ1 for instance, node

a is selected as well as its successor node e∈Λ 2 . The subgraph ∆1 is complete with the

selection of the successor of node e, Γ Λ() { },e i i+ = ∈ 3 , as shown in Fig. 5.21c, ∆1 = { , , }a e i .

The subgraph ∆2 is generated in a similar manner, but differs in that node b has two successor

nodes in Λ 2 , Γ() { , }b c d+ = . By definition node c is selected for inclusion in the subgraph ∆ 2

based on its higher degree deg() =+c cΓ()
+ in comparison with the degree of node d

,deg() deg()d c+ +≤ . With the inclusion of the successor of node c, Γ Λ() { },c f f+ = ∈ 3, the

subgraph ∆2 = { , , }b c f is generated. When the subgraph ∆3 = { , , }d g h with the remaining

nodes of U' has been generated the generation process of set ∆ is complete.

The set ∆, referred to here as super nodes, is assigned to the locations LK lk lk lk= { , , }1 2 3 ,

Location SU LK: → , lk Locationf i: ()= ∆ , such that the cost function in equation (5.13) is

optimized. The process begins with a random assignment of super nodes to locations ∆ 2 1a lk ,

∆1 2a lk , and ∆ 3 3a lk as shown in Fig. 5.21b. Since the distance between two neighboring

locations is defined as one unit, eight units of wirelength are required for the random

Node Assignment 89

assignment. The new permutation π of super nodes to locations costs a wirelength of 6 units,

which is the best possible permutation of symbolic placement for this example. The simulated

annealing heuristic algorithm can be applied for finding the optimal solution.

∆

∆

∆

1

2

3

CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

L1

C 1

L2

C
2

L3

C3

lk

lk

lk

1

2

3

a
e

i

b
c

d
g

f h

∆1

∆2

∆3

∆

1∆

2

∆3

a) b) c)

permutation

Fig. 5.22: One-dimensional symbolic placement

Every super node contains three circuit nodes, which are assigned to the three Fault Injectors

in the first location lk fi fi fi1 1 2 3= { , , }. The process commences by assigning the first node

a ∈ Λ1 to the first Fault Injector a fia 1, fi lk1 1∈ , as depicted in Fig. 5.22. The second node

e ∈ Λ2 is the successor node of node a ∈ Λ1 , Γ() { }a e+ = , and is assigned to the second Fault

Injector e fia 2 , fi lk2 1∈ . This assignment continues until all nodes in the subgraph ∆1 have

been assigned to all Fault Injectors in lk1. With the assignment of the circuit nodes

{ , , }b c f ∈ ∆ 2
 and { , , }d g h ∈ ∆ 3

 to the Fault Injectors in lk2={fi4, fi5, fi6} and lk3={fi7, fi8,

fi9} the node assignment is completed.

∆

∆

∆

1

2

3

a e

d g h

b c

i

f

CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

L1

C1

L2

C2

L3

C 3

lk

lk

lk

1

2

3

a e

d g h

b c

i

f

Fig. 5.23: Super node splitting

Experimental Results 90

6. Experimental Results

6.1 CLB-Overhead

The previous section discussed the node assignment problem and its importance for the

compilation process in the logic emulator. The node assignment approach is used in order to

reduce FPGA-overhead and guarantee routability of the expanded circuit. Three different

algorithms have been utilized for the calculation of an optimized node assignment. Table 6.1

lists the benchmark-85 circuits with their stuck-at-0 faults (#S-a-0), as well as the calculation

of estimated wirelength with the simulated annealing (sim), min-cut (min), and Delta-Path (dp)

algorithms, which provide suboptimal solutions, e.g. local optima. A comparison between the

results of random (rdm) and optimized node assignment is presented as well as the percentage

of improvement of the estimated wirelength with optimized node assignment relative to the

estimated wirelength with random node assignment. For all circuits except circuits c3540 and

c6288 the simulated annealing algorithm results in the best improvement in estimated

wirelength. The wirelength for the circuits with stuck-at-1 faults (Table 6.2) is also calculated

using node assignment, which when used with the Delta-Path algorithm gives a better

improvement in estimated wirelength for smaller circuits than the other algorithms. However,

experimental results using simulated annealing show that a slow temperature decrease

corresponds to a better improvement in estimated wirelength [Kupk98], which results in a

higher runtime for optimized node assignment .

 Circuit # S-a-0 Wirelength
 (rdm) (min) (sim) (dp)

Improvement [%]
 (min) (sim) (dp)

c1908 288 622 129 121 135 79.30 80.55 78.3
c2670 705 1614 153 133 148 90.52 91.76 90.83
c3540 980 21596 2933 4043 2797 86.42 81.28 87.05
c5315 1353 15402 3423 2128 2531 77.78 86.18 83.57
c6288 5744 413006 43212 61127 21364 89.54 85.2 94.83
c7552 1646 15742 3261 1683 2959 79.28 89.31 81.2
c32k 36569 5712598 1707649 1575878 1891063 70.11 72.41 66.9
c65k 52974 187707361 35883754 5657101 31186059 80.88 96.99 84

Table 6.1: Comparison of node assignment results for stuck-at-0 faults

Experimental Results 91

 Circuit # S-a-1 Wirelength
 (rdm) (min) (sim) (dp)

Improvement [%]
 (min) (sim) (dp)

c1908 288 27203 3032 5018 3156 88.85 81.55 88.4
c2670 705 36352 5324 4760 3998 85.35 86.91 89
c3540 980 44163 6004 6464 6012 86.4 85.36 86.39
c5315 1353 128145 27439 23302 15624 78.59 81.82 87.81
c6288 5744 12512 2843 1232 3016 77.29 90.15 75.9
c7552 1646 201702 34983 31006 22025 82.66 84.63 89.08
c32k 36569 5735512 194624 1512978 1857228 66.07 73.62 67.62
c65k 52974 187707361 25889781 6016115 31158861 86.21 96.79 83.4

Table 6.2: Comparison of node assignment results for stuck-at-1 faults

The compilation process for circuits with millions of gates is very time-consuming, therefore it

is very important that the node assignment runtime for mapping the expanded circuit into the

logic emulator is kept to a minimum. As shown in Fig. 6.1, compared with the Delta-Path and

simulated annealing algorithms the min-cut algorithm has the lowest improvement of estimated

wirelength in most of the circuits. The simulated annealing algorithm has the highest runtime

and in most of the circuits highest improvement in estimated wirelength. The Delta-Path

algorithm provides a compromise between runtime and optimized wirelength, and achieves an

acceptable reduction of FPGA overhead as well as routability of the expanded circuit in an

acceptable runtime. However, experimental results indicate that the FPGA overhead factor

remains almost constant with respect to circuit size because the additional functions required

for the fault injection and fault activation are proportional to the number of emulated faults.

1

10

100

1000

10000

100000

1000000

100 1000 10000 100000

Number of Faults

R
u

n
ti

m
e

[s
ec

]

Simulated Anealling

Delta-Path

Min-Cut

c2670(s-a-0)

c65k(s-a-0)

c32k(s-a-0)

c7552(s-a-1)

c6288(s-a-0)

c5315(s-a-0)

c3540(s-a-0)

Fig. 6.1: Comparison of node assignment runtime for different algorithms

The calculated wirelength for circuit c65k (Table 6.1) with 150k nodes is 13 percent higher

using the Delta-Path algorithm than with simulated annealing and the runtime for this circuit is

85 percent lower than with simulated annealing (Fig. 6.1). In spite of its higher calculated

Experimental Results 92

wirelength the Delta-Path algorithm satisfies the requirements of circuit mapping in the logic

emulator and is therefore preferred over simulated annealing.

An experimental fault emulator has been developed (Fig. 4.9) and is described in Section 4.2.

The hardware emulation component of the experimental fault emulator is a commercial logic

emulator (Quickturn M250) consisting of 80 Xilinx XC4013-FPGA chips and compilation

software to compile the ISCAS-85 benchmark circuits and evaluate the fault emulation

approaches FES/1 and FES/2. The first step of the evaluation process involves mapping the

fault-free circuits into the emulator. In addition to the ISCAS-85 benchmark circuits, Table 6.3

also includes the circuits c32k (multiplexer) and c65k (multiplexer), which are generated in this

work.

Circuit # Gate # CLB Pin Net Freq [MHz]
c1908 880 387 2442 916 11.12
c2670 1192 598 3660 1435 11.12
c3540 1669 732 4684 1721 11.12
c5315 2307 978 7016 2496 11.12
c6288 2416 1047 7280 2448 11.12
c7552 3512 1562 10045 3756 11.12
c32k 32754 7423 102192 7728 11.12
c65k 65535 10602 210367 12132 11.12

Table 6.3: Logic emulation of circuits without Fault Injectors

Table 6.4 depicts the benchmark circuits expanded by stuck-at-0 faults. Here, the number of

faults (#s-a-0) represents the number of Fault Injectors. The number of CLBs (#CLB) used to

map the expanded circuit is contingent on the results of node assignment. An optimal node

assignment is particularly important when the capacity limit of the emulator has been reached.

For example, the expanded circuit c65k can not be mapped into the logic emulator with a

random assignment of fault locations to Fault Injectors. The CLB-overhead of the expanded

circuits is represented by the ratio of the number of CLBs (expanded circuits) divided by the

number of CLBs (original circuit) and is contingent on the number of Fault Injectors, i.e. the

number of faults. With the simulated annealing algorithm the CLB-overhead has the lowest

value with an average of 2.1 for stuck-at-0 and 2.7 for stuck-at-1.

The number of the CLBs required by the mapping process is also dependent on the structure of

the circuit. The number of gates that can be mapped into the emulator depends on the number

of pins (inputs and outputs of gates), which reflects the hardware cost. The number of extra

pins required in the expanded circuit is constant, i.e. each Fault Injector needs two extra pins,

Experimental Results 93

which leads to a linear increase of CLB-usage in relation to the number of Fault Injectors.

Compared to the original circuit, a circuit expanded by the Fault Activator uses FPGAs more

efficiently due to the regular structure of CLBs in the FPGAs.

 Circuit # S-a-0 # CLB
 (rdm) (min) (sim) (dp)

CLB-Overhead
 (rdm) (min) (sim) (dp)

c1908 288 539 525 409 423 1.39 1.35 1.06 1.09
c2670 705 954 842 662 701 1.59 1.4 1.11 1.17
c3540 980 3097 2436 1492 1503 4.2 2.49 2 2.05
c5315 1353 2354 1824 1982 1936 2 1.29 2 1.98
c6288 5744 5015 4754 4351 4398 4.7 4.1 4.1 4.2
c7552 1646 2907 2752 2238 2205 1.86 1.7 1.43 1.41
c32k 36569 22123 21053 20012 21242 3.6 3.27 2.7 2.86
c65k 52974 38984* 30843 29051 29321 3.7* 3 2.74 2.77

Average 2.87 2.5 2.1 2.1
 * larger than emulator capacity

Table 6.4: Fault emulation with stuck-at-0 Fault Injectors

Circuit # S-a-1 # CLB
 (rdm) (min) (sim) (dp)

CLB-Overhead
 (rdm) (min) (sim) (dp)

c1908 1396 1309 1258 1107 1101 3.38 3.25 2.86 2.84
c2670 1781 1667 1471 1283 1298 2.78 2.45 2.15 2.17
c3540 2040 3234 2868 2765 2801 4.4 3.9 3.78 3.83
c5315 3550 3435 3407 3309 3382 3.51 3.48 3.38 3.46
c6288 560 1337 1224 1201 1230 1.27 1.16 1.15 1.17
c7552 5149 6649 6294 5409 5386 4.25 4 3.46 3.45
c32k 36555 21053 20193 20098 20153 3.44 3.1 2.71 2.71
c65k 53168 40437* 31981 30102 30423 3.81* 3 2.84 2.87

Average 3.3 3.16 2.79 2.81
 * larger than emulator capacity

Table 6.5: Fault emulation with stuck-at-1 Fault Injectors

The relative improvement in CLB-overhead for random and optimized node assignment using

the various algorithms is illustrated clearly in Figures 6.2 and 6.3 for all indicated circuits. The

results are based on a random initial node assignment for each circuit. Substantial

improvements can not be attained with the presented algorithms for node assignment when the

initial state is already optimal. With the simulated annealing algorithm, the best reduction in

CLB number for most circuits is associated with a high runtime of node assignment. The

improvement in CLB-overhead with the Delta-Path algorithm comes close to matching the

simulated annealing results. However, an even higher reduction in CLB number is achieved for

circuits c1908(s-a-1), c5315(s-a-0), and c7552(s-a-0)(s-a-1). Note that better results are

attained using the simulated annealing algorithm due to the limitations of the Delta-Path

Experimental Results 94

algorithm (Section 5.4.1.3) although in both cases the number of CLBs in circuit c3540 can be

reduced by 50%. The min-cut algorithm results in a better reduction in CLB number only for

circuit c5315(s-a-0). As a result of random node assignment the number of CLBs required by

circuit c65k exceeds the capacity of the emulator, hence the circuit can not be mapped into the

logic emulator. In contrast, optimized node assignment leads to a decrease in CLB number by

almost 25 percent. Therefore, the circuit is routable and can be mapped into the logic emulator.

0

10

20

30

40

50

60

c1908 c2670 c3540 c5315 c6288 c7552 c32k c65k

R
ed

u
ct

io
n

 o
f

C
L

B
-n

u
m

b
er

 (
s-

a
-0

)
[%

]

Min-Cut

Simulated Annealing

Delta-Path

Fig. 6.2: Reduction of CLB number for s-a-0

0

5

10

15

20

25

30

c1908 c2670 c3540 c5315 c6288 c7552 c32k c65k

R
ed

u
ct

io
n

 o
f

C
L

B
-n

u
m

b
er

 (
s-

a
-1

)
[%

]

Min-Cut

Simulated Annealing

Delta-Path

Fig. 6.3: Reduction of CLB number for s-a-1

Experimental Results 95

6.2 Fault Emulation Runtime

Two approaches to fault emulation, FES/1 and FES/2, have been presented in Chapter 5.

Generally, the runtime required for fault emulation is lower for FES/1 than for FES/2. This

arises from the use of specific hardware modules, which interrupt the emulation process. Due

to this characteristic of FES/1, fault dropping is feasible.

The fault emulation runtime for FES/1 RTFE
FES /1 is determined by the number of faults Nf and

the average number of test vectors necessary to detect a fault Pavg . Good emulation runtime

RTG is calculated from the number of test vectors Ô in a test vector set and the emulation

clock speed Freq. Thus the total runtime RTtotal
FES /1 is defined as follows:

RT RT RT
P Nf O

Freqtotal
FES

FE
FES

G
avg/ /

() $

1 1
= +

+

=

⋅

(6.1)

In contrast, FES/2 uses the vector debugger of the emulator software to control the test

vectors. The test vector set is compiled as binary code, which can not be interrupted during the

emulation process. Fault dropping is therefore not possible. Inasmuch as faults can be detected

several times by a test vector set, fault emulation runtime increases relative to FES/1.

For FES/2, fault emulation runtime RTFE
FES /2 is determined by the number of faults Nf, the

number of test vectors Ô, and the emulation frequency Freq. Runtime for a good emulation

RTG is the same as for FES/1. Total runtime RTtotal
FES /2 is therefore defined as

RT RT RT
Nf O

Freqtotal
FES

FE
FES

G
/ / () $

2 2 1
= +

+

= (6.2)

The Equations (6.1) and (6.2) vary in the number of test vectors needed for fault emulation.

Usually, the average number of test vectors Pavg necessary to detect a fault is much smaller

than the number of test vectors Ô. Experience with the listed circuits has shown that almost 85

percent of all faults are detected by the first ten test vectors of a test vector set. Therefore, the

runtime of FES/1 is in general much smaller than the runtime of FES/2 and a higher speedup of

FES/1 compared to FES/2 can be achieved over fault simulation.

In order to evaluate this speedup, the FES results are compared with the fault simulators

Comsim [MaAl93] and VED [DaKC91]. The fault simulator Comsim, a vectorized event

Experimental Results 96

driven Parallel Pattern Single Fault Propagation simulator developed at the University of

Hannover was used on a Sun Workstation (Sparc 10 with 512 MByte RAM). The Comsim

method was developed to increase the accuracy of fault modeling at gate level and deals with

non-classical faults. In order to determine the fault effects for each library cell an analysis was

performed beginning with a low level description of a standard cell library and a corresponding

low level fault model. The resulting fault effects are mapped into gate level faults. Accurate

modeling of the fault effects involves implementation of gate level fault models including

stuck-at, bridging, transition, and function conversion fault models. The VED fault simulator is

a Vectorized Event Driven Parallel Pattern Single Fault Propagation simulator. As presented in

[DaKC91], the vectorization of parallel pattern fault simulation together with an adaptive

method for controlling the vector length leads to improved simulator performance. Compared

to compiled fault simulators VED is reported to be forty times faster for combinational circuits.

Comsim and VED represent state-of-the-art fault simulators although they were published in

1993 and 1991 respectively. Only Comsim was available for practical experiments and was

therefore chosen for a detailed comparison using the ISCAS-85 benchmark circuits and two

larger circuits generated in this work. Table 6.6, Fig. 6.4, and Fig. 6.5 illustrate the

experimental results using 20k pseudo-random test vectors, a quantity which is sufficient to

attain an average of 95 percent fault coverage (FC) for the evaluated circuits with the fault

simulator Comsim and the fault emulators FES/1 and FES/2. Note that some circuits can reach

this degree of fault coverage with a smaller number of test vectors. For example, 99,4 percent

fault coverage is attained for the circuit c6288 with only 96 test vectors while 89 percent fault

coverage is attained for the circuit c32k after 10000 random test vectors. The low fault

coverage for the circuit c2670 results because many faults are redundant (Chapter 3). Note

that the fault emulation runtimes are the sum of the s-a-0 and s-a-1 runtimes.

Circuit # Gates # Nodes # Faults
(Nf)

FC [%] FES/21)

[sec]
FES/11)

[sec]
Comsim

[sec]
Speedup

FES/2 over
Comsim

Speedup
FES/1 over

Comsim
c2670 1192 2678 2486 84.2 4,9 0,66 184 37.55 278.79
c3540 1669 3643 3020 95.4 6 0,75 201 33.5 268.00
c5315 2307 5115 4903 98.9 9.8 1,61 440 44.89 273.29
c6288 2416 6398 6303 99.5 12.6 1,90 629 49.90 331.05
c7552 3512 7882 6795 94.9 13.5 2,12 682 50.51 321.70
c32k 32754 75432 73124 93.6 121 23,2 6902 57.02 297.41
c65k 65535 150132 106142 94.7 176 33 12901 73.30 390.91

 1) Quickturn Logic Emulator M250

Table 6.6: Comparison of fault emulation and Comsim

Experimental Results 97

0

1

10

100

1000

10000

100000

1000 10000 100000 1000000
Number of nodes

R
u

n
ti

m
e

[s
ec

]

 Fault Simulation (COMSIM)

 Fault Emulation (FES/2)c2
6

7
0

c3
5

4
0

c5
3

1
5

c6
2

8
8

c7
5

5
2

c
3

2
k

c
6

5
k

 Fault Emulation (FES/1)

Fig. 6.4: Runtimes of fault emulation FES/1 and FES/2 and Comsim

0

50

100

150

200

250

300

350

400

c2670 c3540 c5315 c6288 c7552 c32k c65k

S
p

ee
d

u
p

FES/1

FES/2

Fig. 6.5: Speedup of fault emulation FES/1 and FES/2 over fault simulation with Comsim

The experimental results confirm the expected behavior. FES/1 is approximately five times

faster than FES/2 and both deliver a considerable speedup against Comsim. Note, however,

that Comsim is able to model non-classical faults and therefore should be slower than a stuck-

at fault simulator. To take this into account a comparison is made with the results published for

VED in [DaKC91]. For comparison with fault emulation ISCAS-85 and -89 benchmark

circuits [BBKo89] are used. However, only the combinational parts of the sequential ISCAS-

89 benchmark circuits are simulated. The experimental results of the FES/1 emulation shown in

Table 6.6 indicate that for the selected benchmark circuits a Pavg value of 3k-5k test vectors is

appropriate. Therefore, Pavg=5k and a fault emulation speed of Freq=10 MHz have been used

to calculate expected runtimes. Note that although FES/1 runtimes already exist for the circuits

c5315, c6288, and c7552 in Table 6.6, a pessimistic calculation of runtime with Pavg=5k is

Experimental Results 98

made in Table 6.7 and results in a higher runtime for the circuits when compared to the runtime

in Table 6.6. The VED runtimes have been taken from [DaKC91] for the random test vector

set size of 500k and from [Daeh97] for the random test vector set size of 1000k. The results

are presented in Table 6.7, Fig. 6.6, and Fig. 6.7.

Circuit #
Gates

Nodes # Faults
(Nf)

FES/11)

[sec]
VED2)

[sec]
Speedup

FES/11) over
VED2)

FES/13)

[sec]
VED4)

[sec]
Speedup

FES/13) over
VED4)

c5315 2307 5115 4903 2.5 253 101.2 - - -
c6288 2416 6398 6303 3.2 345 107.8 - - -
c7552 3512 7882 6795 3.4 653 192 3.5 48 13.7
s9234 2900 8840 6100 3.1 1403 452.5 - - -

s13207 4700 12909 9000 4.5 1220 271.1 - - -
s15850 5400 15148 10600 5.3 1430 269.8 5.4 126 23.3
s38584 12600 35210 32000 16 3783 236.4 16.1 322 20
s38417 13200 36148 28700 14.4 4285 297.5 - - -
s35932 13200 36292 34000 17 6916 406.8 - - -

 1) Calculated expected values for 500k test vectors 2) Values from [DaKC91] on Apollo DN2500 for 500k test vectors
 3) Calculated expected values for 1000k test vectors 4) Values from [Daeh97] on HP735 for 1000k test vectors

Table 6.7: Comparison of fault emulation FES/1 and VED

0

1

10

100

1000

10000

100000

5000 10000 15000 20000 25000 30000 35000 40000

Number of nodes

R
u

n
ti

m
e

[s
ec

]

VED on Apollo DN2500 for 500k test vectors

FES/1 for 500k test vectors

FES/1 for 1000k test vectors

VED on HP735 for 1000k test vectors

c
5

3
1

5
c
6

2
8

8
c
7

5
5

2
s9

2
3

4

s1
3

2
0

7

s1
5

8
5

0

s3
8

5
8

4

s3
8

4
1

7
s3

5
9

3
2

Fig. 6.6: Simulated runtime of VED and calculated runtime of fault emulation FES/1

Experimental Results 99

0

1

10

100

1.000

c5315 c6288 c7552 s9234 s13207 s15850 s38584 s38417 s35932

S
p

ee
d

u
p

FES/1 &VED on HP735 for 1000k test vectors

FES/1 &VED on Apollo DN2500 for 500k test vectors

Fig. 6.7: Speedup of fault emulation FES/2 over fault simulation with VED

The speedup of FES/1 over VED is in the range of 10 to 20 at the least. Taking into account

that the VED results have been obtained on Apollo DN2500 and HP735 computers, it can be

assumed that for the examined circuits on today's workstations the speed of fault emulation

will still outperform VED. Moreover, the following arguments support the claim that the

potential of fault emulation is much larger.

1) The runtime of event-driven PPSFP depends on the average activity of the circuit per

simulation run (Equation (3.7)). Low runtimes for benchmark circuits may be the result

of their low average activity [Alt95]. For circuits with higher activity VED runtime

increases (Equation (3.7)) and a higher speedup relative to VED can be expected with

fault emulation.

2) When dealing with sequential circuits, an average number of iterations must be executed

for each simulation run. With each iteration additional events are generated at the

combinational part of the circuit where new storage elements can be activated. The

activation of new storage elements results in an additional number of iterations, which in

turn causes new events. The average circuit activity increases and a significant increase in

the runtime of VED can be expected for sequential circuits.

3) One of the major disadvantages of fault simulation is that runtime increases linearly to

quadratically with the number of circuit elements [KiHa87][Goel80] due to the fact that

the number of faults grows proportionally with circuit size and the effect of each fault is

propagated throughout the circuit. Advanced approaches to parallel fault simulation

minimize the number of simulation passes by processing faults or test vectors

Experimental Results 100

simultaneously. However, the circuit elements must still be processed sequentially in

order to simulate the complete circuit. With fault emulation, all circuit elements are

processed in parallel by the emulation hardware. Thus, emulation runtime is based solely

on the number of faults and the number of test vectors and, in contrast to fault

simulation, increases only linearly with circuit size. Hence, for fault emulation the

speedup increases for larger circuits as shown in Figures 6.5 and 6.7. Note that Fig. 6.7

is scaled logarithmically.

4) Not only workstations but also emulators are increasing in performance. All

measurements and estimations have been made using a Quickturn System Realizer M250

with FPGAs built in 1993. FPGA technology, capacity, and routing resources have been

enhanced since then and an emulation speed of approximately 25MHz for an emulator

capacity of 20 million gates is now possible.

Unfortunately, the speedup for circuits larger than 65k gates could not be measured due to

limited hardware resources. The emulator M250 has a nominal capacity of 250k gates.

Considering a hardware overhead of a factor of nearly 2 to 4 (see Tables 6.4 and 6.5) for fault

emulation, circuits larger than 65k can not be fault emulated with the M250 system. The FES/1

and FES/2 approaches to fault emulation are implemented and evaluated only for

combinational circuits (Table 6.6). As discussed in Chapter 4, these approaches can also be

used for a two-valued logic fault emulation for sequential circuits. Due to the implementation

of the fault emulator as a two-valued logic, the fault emulator can not handle potentially

detected faults, which are unknown values at the primary outputs of the circuit. In other words

the faults may or may not be detected, depending on the initial values of the flip-flops. The

percentage of potentially detected faults in sequential circuits is usually very low [ChHu95].

Table 6.8 compares FES/1 and FES/2 to previously published fault emulation approaches and

is based on Table 4.1 in Chapter 4. Similar to the Cheng&Dai approach, both FES/1 and FES/2

require additional logic functions for fault injection. In contrast to the Cheng&Dai approach,

however, FES/1 and FES/2 use an x- and y-decoder for fault activation. This leads to a faster

fault injection without reconfiguration of the emulator hardware, a requirement of the SFE

approach. The solution to the mapping problem presented by Cheng&Dai implements the fault

grading method to generate several expanded circuits with a subset of faults. Because each

expanded circuit must be reconfigured in the emulator, the total reconfiguration time increases

significantly. For a large number of faults fault emulation runtime (Equation (4.1)) is negligible

when compared to the total reconfiguration time for the complete FPGA system. Neither the

fault emulation runtime for different circuits nor a comparison with a software-based fault

simulator is indicated in [ChHu95]. Rather, for a circuit with 100k gates and 100k faults the

Experimental Results 101

estimated total fault emulation runtime Rt (Equation (4.1)) is calculated with 1 MHz and 50k

test vectors. This results in Rt=81 minutes with a reconfiguration time of R=20 minutes and a

fault emulation runtime of Rf=61 minutes.

Timoc

(1979)
Cheng&Dai SFE KRONE FES/1 FES/2

Fault

Injection

additional
logic

functions
 OR / NOR/...

additional
logic

functions
AND / OR/...

reconfiguration
of logic blocks

(BLP)

switch
modules

embedded in
FPE-cells

additional
logic

functions
AND / OR/...

additional
logic

functions
AND / OR/...

Fault

Activation

shift register shift register emulator
software

emulator
software X-Y Decoder X-Y Decoder

Evaluation

of Results

LSI-Tester emulator additional
hardware

emulator additional
hardware

emulator

Hardware

Overhead n/a
1.3 - 2 for

each
replication

n/a n/a 2-3 2-3

Technology

Dependency

breadboarding
and

wire-wrapping
none Meta FPGAs KRONE

FPEC
none none

Runtime - n/a low-high n/a low low-high

Table 6.8: FES/1 and FES/2 approaches based on the comparison of Table 4.1

The reconfiguration time with the SFE approach is negligible when the average number of test

vectors for each fault is over 10000. However, experimental results [BuRe96] indicate that

90% of all faults are detected by the first hundred test vectors. For benchmark-89 circuits a

speedup from 8 to 20 in fault emulation runtime over the fault simulator Hope [LeHa93] is

reported. For most of the circuits, the average number AN of test vectors needed to detect a

fault is less than 10000, e.g. AN=4531 for the circuit s38417. Therefore, the reconfiguration

time Tconf as calculated with the SFE approach is a considerable part of the total runtime of

SFE. In contrast, the FES/1 and FES/2 approaches involve no reprogramming or

reconfiguration of the FPGAs. However, FES/2 runtime increases significantly when a large

number of test vectors exists. The calculation of FES/1 runtime is similar to the SFE approach

with the difference that the reconfiguration time is inapplicable in the FES/1 approach. Due to

its required reconfiguration time, the total runtime of the SFE approach is by a factor of Tconf
.Nf greater than the FES/1 runtime. The calculation of FES/1 runtime with Equation (6.1) for

the largest circuit (s38417) in [BuRe96] with AN=4531, emulation speed of 1.5 MHz, and

57448 faults results in a runtime of 172 seconds. In contrast, the SFE approach requires in

addition to 172 seconds runtime a reconfiguration time of 45 seconds, which is derived from

the 0.8 millisecond average reconfiguration time [BuRe96] for each fault. The reconfiguration

time for this circuit constitutes over 20 percent of the total fault emulation runtime. SFE speed

[BuRe96], calculated with Equation (4.2), indicates how many faults can be executed per

Experimental Results 102

second and depends on the average number of test vectors, reconfiguration time, and the

operating frequency of the fault emulation. In order to compare the number of faults per

second that can be executed using the SFE approach with those that can be executed with

FES/1 the Equation (6.1) is used for RTtotal
FES /1=1 second and results in

Nf
Freq

Pavg

=

(6.3)

A comparison of the Equations (4.2) and (6.3) shows that, due to its required reconfiguration

time, the SFE approach executes a factor of
P

P T Freq
avg

avg conf+ ⋅
 fewer faults per second than the

FES/1 approach. A considerable advantage of the FES approaches over previous fault

emulation approaches is represented by the absence of reprogramming and reconfiguration

times as well as the low-cost implementation of fault injection into the existing

reprogrammable gate arrays.

Table 6.9 concludes the discussion of fault emulation by illustrating the basic characteristics of

the existing approaches. Logic emulation systems exist today with a capacity of 20 million

gates requiring a compilation runtime of 2 million gates per hour, with feasible clock speeds of

up to 25 MHz. This impressive basic speed will translate into large speedups for large circuits.

An additional advantage of fault emulation is the ability to plug the circuit into the target

system as a reconfigurable prototype with the emulator taking the place of a chip, such as a

board with several chips, where one or more chips are emulated for the evaluation of the

complete system under real operating conditions. However, the long compilation runtime

required by fault emulation is a disadvantage. Fault emulation and fault simulation using

hardware accelerators necessitate specific hardware, whereas a fault simulator requires only a

von-Neuman machine. Furthermore, the timing of the circuit can not be modeled in a logic

emulator although the possibility exists of arbitrarily delaying each signal in the emulator.

Fault Simulation Hardware Accelerator Fault Emulation

Implementation Time Low High High
Basic

Sim/Emulation Speed
Low(Hz) Low(Hz) High(MHz)

Hardware Requirement Low High High

Timing Modeling Yes Yes No
Runtime with Respect to

Circuit Size
Linear to Quadratic Linear to Quadratic Linear

Integration into Target

System
No No Yes

Table 6.9: Overview of existing approaches

Conclusion and Future Work 103

7. Conclusion and Future Work

Conclusion

Due to the increasing complexity of large circuits fault simulation requires extremely long

computing times. Chapter 3 discusses various methods which attempt to minimize simulation

time by processing faults concurrently. If a large number of faults is to be considered, however,

these methods do not lead to an acceptable reduction in computing time for complex circuits.

A new approach to design verification, logic emulation, uses a reprogrammable prototype of a

digital circuit for hardware-based fault simulation, which attains a speedup over the software

fault simulator through a reduction in runtime.

Two new approaches to fault emulation, FES/1 and FES/2, were developed to satisfy the

requirements of rapid fault injection including fault activation, emulator technology

independence, optimal fault emulation runtime (Chapters 4 and 6), minimal hardware overhead,

and optimized mapping (Chapter 5). Although identical methods of fault injection and fault

activation in the FPGAs are used by FES/1 and FES/2, FES/1 [SeBa97] [Seda97] uses the in-

circuit mode and involves expanding the logic emulator by additional hardware modules for

test generation and emulation analysis, whereas fault emulation FES/2 [SeBa98] [Seda97a]

uses the acceleration mode and evaluates the test vector set without additional hardware. In

contrast to the previously presented methods of fault emulation, these new approaches allow

for faster fault injection into any node of the circuit without dependency on a specific logic

emulator technology.

When using benchmark-85 circuits (combinational circuits) with 800-65k gates a speedup

factor of 15-390 is acquired compared to Comsim, whereas a calculated speedup factor of

13-23 is reached with 800-13k gates when compared to VED. As presented in Chapter 6, the

resulting fault emulation runtime increases linearly with circuit size in contrast to fault

simulation. Therefore, for fault emulation a higher speedup can be obtained for very large

circuits with millions of gates. In comparison to the FES approaches, fewer faults per second

can be executed using the SFE approach due to its required reconfiguration time (Equation

6.3). A considerable advantage of the FES approaches over previous fault emulation

approaches is represented by the absence of reprogramming and reconfiguration times as well

as the low-cost implementation of fault injection into the existing reprogrammable gate arrays.

FES/1 and FES/2 expand the circuit using Fault Injectors. Each Fault Injector has a

corresponding logical address and is controlled by the Fault Activator. Fault activation through

use of the Fault Activator utilizes neither a shift register nor reconfiguration or reprogramming

Conclusion and Future Work 104

of FPGAs and therefore differentiates itself from the previous techniques. In addition,

processing a data sequence is not a prerequisite to fault injection as with a shift register. Fault

locations are arranged in an addressable array by the Fault Activator. Thus, each addressed

fault location, i.e. Fault Injector, is directly accessible and enables a faster fault injection. The

fault location is addressed using a two-dimensional array of an address decoder. Furthermore,

a symmetrical FPGA, which is also structured as a two-dimensional array, is used for the

optimal mapping of the expanded circuit into the logic emulator. The expansion of a circuit by

Fault Injectors and a Fault Activator constitutes an overhead of FPGA resources in the logic

emulator. However, the node assignment method leads to an improved usage of

FPGA-resources for fault emulation, hence a reduction of FPGA overhead [Seda98a].

Hardware-based fault injection is considered with the objective of minimizing the hardware

overhead, and includes mapping the faulty circuit with optimized partitioning, technology

mapping, and placement and routing.

The compilation process precedes mapping the expanded circuit into the logic emulator and is

very time-consuming for circuits with millions of gates. It is therefore very important that the

node assignment runtime for mapping the expanded circuit into the logic emulator be kept to a

minimum. Simulated annealing, min-cut algorithms and a new algorithm Delta-Path, which is

developed in this work, are utilized for the calculation of an optimized node assignment. The

Delta-Path algorithm provides a compromise between runtime and optimized node assignment,

and achieves an acceptable reduction of FPGA overhead as well as routability of the expanded

circuit in an acceptable runtime. Experimental results show that optimized node assignment

reduces the FPGA-overhead by 10% to 54%.

Future Work

In order to develop dependable systems the validation of their fault tolerance properties is

required [CMSi98]. Fault tolerant circuits are designed in such a way that although parts of the

system have failed, the system is still able to deliver correct outputs using functional

duplication. Here, the outputs are computed individually by two, or often three, separate

systems. A fault is indicated when system outputs differ. Fault injection is commonly used to

evaluate the dependability of a system and can be performed in two ways: system simulation-

based fault injection and hardware-based fault injection. The simulation-based approach

involves the injection of faults into an accurate simulation model of the system and can be very

time-consuming for complex systems. An advantage of this technique is that it can be applied

earlier in the design phase than a hardware prototype. Hardware-based fault injection entails

injecting physical faults into the target system hardware with the advantage of realistic fault

modeling. Methods which implement this technique include electromagnetic interferences

[KFAC95], pin-level fault injection [Arla90], power supply disturbances [MKGT92], and

Conclusion and Future Work 105

heavy-ion radiation [KLDJ94]. The main problem however, is not the injection of faults, but is

related to the difficulties of controlling and observing the fault effects inside the system.

The dependability of a system can be evaluated using a logic emulator for hardware-based fault

injection. An important application of fault emulation is real time fault injection into a target

system hardware for the evaluation of system behavior. Here, faults are injected into the system

in order to identify the dependability deficiencies of the system, observe system behavior with

the given faults, as well as determine the degree of fault coverage. Then, data regarding the

faulty behavior of the system can be gathered. The logic emulator has the advantage of being

used early in the design phase similar to a simulation-based approach. Figure 7.1 illustrates the

process of system evaluation with a fault emulation approach. The target hardware and

software are connected to the logic emulator, which contains the expanded design with Fault

Injectors and the Fault Activator. A data analyzer gathers data for the faulty behavior of the

system and analyzes the results of an in-circuit fault emulation. The controller is responsible for

the control of fault injection during system operation.

Target system (Hard- und Software)

Design +
Fault Injectors

Fault Activator

Logic Emulator
Controller Data Analyzer

 Fig. 7.1: Evaluation of system dependability using logic emulation

Various methods and an algorithm have been introduced in this work, which provide improved

evaluation of future digital circuits with increasing design complexity. The results presented

here indicate that, due to the acceleration of test vector evaluation, a large number of faults can

be examined within a short evaluation time. This is a necessity for current and future circuit

complexity. Fault emulation uses advanced debugging and performance monitoring features of

a logic emulator to inject hardware-based faults in a realistic operating environment, as well as

to monitor the activation of the faults and their impact on the target system behavior in detail.

Therefore, for critical applications, such as traffic control, aerospace, and medical life support,

this work makes an important contribution.

References 106

8. References

[AbBF90a] Abramovici, M., Breuer, M. A., Friedman A. D., "Digital Systems Testing and

Testable Design", New York, W.H. Freeman and Company, 1990, pp. 111

[AbBF90b] Abramovici, M., Breuer, M. A., Friedman A. D., "Digital Systems Testing and

Testable Design", New York, W.H. Freeman and Company, 1990, pp. 541

[AbBF90c] Abramovici, M., Breuer, M. A., Friedman A. D., "Digital Systems Testing and

Testable Design", New York, W.H. Freeman and Company, 1990, pp. 343

[AlKa95] Alpert, C.J., Kahng, A.B., "Recent Directions in Netlist Partitioning: A Survey",

The VLSI Journal, Vol. 19, 1995, pp. 1-93

[Alt95] Alt, J., "Fehlersimulation synchroner Schaltungen unter Berücksichtigung nicht-

klassischer Fehler", University of Hannover, PhD Thesis, 1995, pp. 114

[Arla90] Arlat, J., "Fault Injection for Dependability Validation: A Methodology and

Some Applications", IEEE Transactions on Software Engineering, Vol. 16, No.

2, 1998, pp. 166-182.

[Arms66] Armstrong, D. B., "On finding a nearly minimal set of fault detection tests for

combinational logic nets ", IEEE Transactions on Electronic Computers, Vol.

EC-15, 1966, pp. 66-73

[BARZ87] Barzilai, Z., "HSS-A High Speed Simulator", IEEE Transactions on Computer

Aided Design, Vol. 6, No. 4, July 1987, pp. 601-617

[BBKo89] Brglez, F., Bryan, D., Kozminski, K., "Combinational Profiles of Sequential

Benchmark Circuits", International Symposium on Circuits and Systems,

ISCAS, 1989, pp. 1929-1934

[Benn82] Bennetts, R.G., " Introduction to Digital Board Testing", Edward Arnold, 1982

[BhHi92] Bhat, N., Hill, D., "Routable Technology Mapping for LUT FPGAs",

International Conference on Computer Design, ICCD, 1992, pp. 95-100

[Bott85] Bottorff, PP., "Test Generation and Fault Simulation", VLSI Testing, North

Holland, 1985, pp. 29-33

[Breu77a] Breuer, M.A., "A Class of Min-Cut Placement Algorithms" Proceedings of 14th

Design Automation Conference, October 1977, pp. 284-290

[Breu77b] Breuer, M.A., "Min-Cut Placement", Journal of Design Automation and Fault

Tolerant Computing, 1, October 1977, pp. 343-382

[Brew77] Brewer, B.A., "Digital System Design Automation: Languages, Simulation and

Database", Pitman, 1977

[BrFr92a] Brown, S.D., Francis, et al., "Field-Programmable Gate Arrays", Kluwer

Academic Publishers, 1992

References 107

[BrFr92b] Brown, S.D., Francis, et al., "Field-Programmable Gate Arrays", Chapter 3:

Technology Mapping for FPGAs, Kluwer Academic Publishers, 1992, pp. 50-

61

[BrFr92c] Brown, S.D., Francis, R.J., et al., "Field-Programmable Gate Arrays", Chapter

4: Flexibility of FPGA Routing Architecture, Kluwer Academic Publishers,

1992, pp. 147-166

[BRYA87] Bryant, R.E., "COSMOS: A Compiled Simulator for MOS Circuits", Proc. 24th

Design Automation Conference, DAC, 1987, pp. 87-92

[BuBa90] Butts, M., Bacheler, J., "An Efficient Logic Emulation System", Proc. of

International Conference on Computer Aided Design, ICCAD, 1990, pp. 138-

141

[BuRe83] Burkard, R.E., Rendl, F., "A Thermodynamically Motivated Simulation

Procedure for Combinatorial Optimization Problems", European Journal of

Operational Research 17, 1983, pp. 169-174

[BuRe96] Burgun, L., Reblewski, F., Fenelon, G., Barbier, J., Lepapa, O., "Serial Fault

Emulation", Proc. of the 33rd Design Automation Conference, DAC, 1996, pp.

801-806

[Cha76] Cha, C. W., "Deductive Simulator", IBM Technical Disclosure Bulletin, Vol.

19, No. 6, 1976, pp. 2352-2353

[Chan65] Chang, H. Y., "An Algorithm for Selecting an Optimum Set of Diagnostic

Tests", IEEE Transactions on Electronic Computers, Vol. EC-14, 1968, pp.

706-711

[ChHu95] Cheng, K., Huang, S., Dai, W., "Fault Emulation: A New Approach to Fault

Grading", International Conference on Computer Aided Design, ICCAD, 1995,

pp. 681-686

[ChWe91] Cheng, C., Wei, Y.A., "An Improved Two-Way Partitioning Algorithm With

Stable Performance", IEEE Transactions on Computer Aided Design, August

1991, pp. 1502-1511

[ChWo94] Chang, S., Woo, N., "Layout Driven Logic Synthesis for FPGAs", 31st

ACM/IEEE Design Automation Conference, DAC, 1994, pp. 308-313

[CMSi98] Carreira, J., Madeira, H., Silva, J., "Xception: A Technique for the

Experimental Evaluation of Dependability in Modern Computer", IEEE

Transactions on Software Engineering, Vol. 24, No 2, 1998, pp. 125-136.

[Coel89] Coelho, D.R., "The VHDL Handbook", Kluwer Academic Publishers, 1989

[DaKC91] Daehn W., Kannemacher, D., Castagne, J., "Vector Length Control for Control

for Compiled Code Event Driven Pattern Parallel Fault Simulation", European

Test Conference, ETC, 1991, pp. 165-170

References 108

[Dona88] Donath, W.E., "Physical Design Automation of VLSI Systems", Benjamin

Cummings, 1988, pp. 33-62

[DuKe85] Dunlop, A.E., Kernighan, B.W., "A Procedure for Placement of Standard-Cell

VLSI Circuits", IEEE Transactions on Computer Aided Design, 4, January

1985, pp. 92-98

[DuRa79] Duhamel, PP., Rault, J. C., "Automatic Test Generation Techniques for Analog

Circuit and Systems: A Review", IEEE Transactions on Circuits and Systems,

Vol. CAS-26, No. 7, 1979, pp. 411-440

[EIA87] Electronic Industries Association, "EDIF Electronic Design Interchange Format

Version 2.0.0", EDIF Steering Committee, 1987

[Eldr59] Eldre, R. D., "Test Routines Based on Symbolic Logical Statement", Journal

ACM, Vol. 6, No. 1, 1959, pp. 33-36

[Evek91] Eveking, H., "Verifikation digitaler Systeme", Teubner, 1991

[Fran90] Francis, R.J., et al., "Chortle: A Technology Mapping Program for Lookup

Table-Based Field-Programmable Arrays", Proc. 27th Design Automation

Conference, DAC, 1990, pp. 613-619

[Fran91a] Francis, R.J., et al., "Chortle-crf: Fast Technology Mapping for Lookup Table-

Based FPGAs", Proc. 28th Design Automation Conference, DAC, 1991, pp.

227-233

[Fran91b] Francis, R.J., et al., "Technology Mapping of Lookup Table-Based FPGAs for

Performance", Proc. International Conference on Computer-Aided Design,

ICCAD, 1991, pp. 133-138

[Frie67] Friedman, A.D., "Fault Detection in Redundant Circuits", IEEE Transactions on

Electronic Computing, Vol. EC-16, 1967, pp. 99-100

[Goel80] Goel, PP., "Test Generation Cost Analysis and Projections", Proc. IEEE Design

Automation Conference, DAC, 1980, pp. 77-84

[Goel81] Goel, PP., "An Implicit Enumeration Algorithm to Generate Tests for

Combinational Logic Circuits", IEEE Transactions on Computers, Vol. C-30,

1981, pp. 215-222

[GoVo71] Godoy, H.C., Vogelberg, R.E., "Single Pass Error Effect Determination

(SPEED)", IBM Technical Disclosure Bulletin, Vol. 13, 1971, pp. 3343-3344

[HaKu72] Hanan, M., Kurtzberg, J.M., "A Review of the Placement and Quadratic

Assignment Problems", SIAM Review 14, 1972, pp. 324-342

[Hart96] Hartong, W., "Entwicklung eines Hardwaremoduls zur Verarbeitung von

Testvektoren für ein Fehleremulationssystem", Studienarbeit, Institute of

Microelectronic Systems, University of Hannover

[Haye72] Hayes, J. PP., " Fault Modeling", IEEE Design & Test, 1985, pp. 88-95

References 109

[HeRo94] Heusinger, PP., Ronge, K., Stock, G., "Handbuch der PLDs und FPGAs",

Franzis Publishers, 1994, pp. 160-169

[HiSC82] Hitchcock, R., Smith, G.L., Cheng, D.D., "Timing Analysis of Computer

Hardware", IBM Journal of Research and Development, 1982, Vol. 26, No. 1,

pp. 100-105

[Kaut68] Kautz, W. H., "Fault Testing and Diagnosis in Combinational Digital Circuits",

IEEE Transactions on Electronic Computers, Vol. EC-17, 1968, pp. 352-366

[KeLi70] Kernighan, B.W., Lin, S., "An Efficient Heuristic Procedure to Partition

Graphs", Bell System Technical Journal, September 1970, pp. 291-307

[KFAC95] Karlsson, J., Folkesson, PP., Arlat, J., Crouzet, Y., et al.,"Application of Three

Physical Fault Injection Techniques to the Experimental Assessment of the

MARS Architecture", Proc. 5th IFIP Working Conf. on Dependable Computing

for Critical Applications, 1995, pp.150-151

[KGVe83] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.PP., "Optimization by Simulated

Annealing", Science 220, 1983, pp.671-680

[KhHu93] Khan, U. R., Owen, H. L., Hughes, J. L., "FPGA Architectures for ASIC

Hardware Emulator", Proc. 6th IEEE ASIC Conference, 1993, pp. 336

[KLDJ94] Karlsson, J., Liden, PP., Dahlgren, PP., Johansson, R., et al., "Using Heavy-Ion

Radiation to Validate Fault-Handling Mechanisms", IEEE Micro, Vol. 14, No.

1, 1994, pp. 8-32

[KoBe57] Koopmans, T.C., Beckmann, M.J., "Assigned Problems and the Location of

Economic Activities", Econometrica 25, 1957, pp.53-76

[KrHa87] Krishnamurthy, B., Harel, D., "Is There Hope for Linear Time Fault

Simulation?", Fault Tolerant Computing Symposium, FTCS, 1987, pp. 30-35

[Kron96] Krone AG, "The Prototyper: A Breakthrough in ASIC Emulation", Report

1996

[Kupk98] Kupka, H., "Anwendung und Implementierung des Simulated Annealing zur

optimalen Plazierung von Fehlerinjektoren", University of Hannover, 1998

[LeHa92] Lee, H.K., Ha, D.S., "HOPE: An Efficient Parallel Fault Simulation for

Synchronous Sequential Circuits", Proc. of the 29th Design Automation

Conference, DAC, 1992, pp. 336-340

[LeHa93] Lee, H.K., Ha, D.S., "New Techniques for Improving Parallel Fault Simulation

in Synchronous Sequential Circuits", Proc. of International Conference on

Computer-Aided Design, ICCAD, 1993, pp. 10-17

[Leng90] Lengauer, T., "Combinatorial Algorithms for Integrated Circuit Layout",

Teubner, 1990, pp. 251-302

[Li97] Li, R., "Implementierung des Min-Cut Plazierungsalgorithmus zur Verteilung

von Fehlerinjektoren", University of Hannover, 1997

References 110

[Lips89] Lipsett, R.,"VHDL: Hardware Description and Design", Kluwer Academic

Publishers, 1989

[MaAl93] Mahlsteht, U., Alt, J., "Simulation of Non-Classical Faults on the Gate-Level

Fault Simulator COMSIM", Proc. International Test Conference, ITC, 1993,

pp. 883-892

[Mahl95] Mahlsteht, U., "Deterministische Testgenerierung für Gatterverzögerungsfehler

unter Berücksichtigung der minimal erkennbaren Fehlergröße", University of

Hannover, PhD Thesis, 1995, pp. 31-32

[McCl71] McCluskey, E. J., Clegg, F. W., "Fault Equivalence in Combinational Logic

Networks", IEEE Transactions on Computers, Vol. C-20, No 11, 1971, pp.

1286-1293

[Meal55] Mealy, G.H., "A Method for Synthesizing Sequential Circuits", Journal of Bell

Systems, Vol. 34, 1955, pp. 1045-1079

[Mei74] Mei, K. C. Y., "Bridging and Stuck-at Faults", IEEE Transactions on

Computers, Vol. C-23, No 7, 1974, pp. 720-727

[Micz89] Miczo, A., "Digital Logic Testing and Simulation", Wiley, 1989

[MKGT92] Miremadi, G., Karlsson, J., Gunneflo, U., Torin, J., "Two Software Techniques

for Online Error Detection", Proc. 22nd Fault Tolerant Computing Symposium,

FTCS, 1992, pp. 328-335

[Moor56] Moore, E. F., "Gedanken-experiments on Sequential Machines", Automata

Studies, Princeton University Press, 1956, pp. 129-153

[MoTh94] Moorby, PP. R., Thomas, D. E., "The Verilog Hardware Description

Language", 1994, Kluwer Academic Publishers

[MRRT53] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., "Equations of State

Calculations by Fast Computing Machines", Journal of Chemical Physics 21,

1953, pp.1087-1092

[Murg90] Murgai, R., et al., "Logic Synthesis for Programmable Gate Arrays", Proc. 27th

Design Automation Conference, DAC, 1990, pp. 620-625

[NaBi88] Naish, PP. and Bishop, PP., "Designing ASICs", Ellis Horwood, 1988

[OnLL89] Ong, C., Li, J., Lo, C., "An Automatic Cell Synthesis Tool", 26th Design

Automation Conference, DAC, 1989, pp. 239-244

[Papa91] Papageorgiou, M., "Optimierung", Oldenburger Publishers, 1991, pp. 116-117

[Plic79] Plice, W. A., "Overview of Current Automated Analog Test Design",

International Test Conference, ITC, 1979, pp. 128-136

[Quick96] Quickturn Data Book, "PTRUN", 1996

[Quick96a] Quickturn Data Book, "m250", 1996

[Quick98] Quickturn CoBALT Plus Brochure, "CoBALT, CL20000", 1998

References 111

[Rose90] Rose, J., Brown, S., "The Effect of Switch Box Flexibility on Routability of

Field-Programmable Gate Arrays", Custom Integrated Circuits Conference,

CICC, 1990, pp. 27.5.1-27.5.4

[Rose91] Rose, J., Brown, S., "Flexibility of Interconnection Structures in Field-

Programmable Gate Arrays", IEEE Journal of Solid State Circuits, Vol. 26, No.

3, 1991, pp. 277-282

[Roth66] Roth, J.P., "Diagnosis of Automata Failures. A Calculus and a Method", IBM

Journal of Research and Development, Vol. 9, No. 2, 1966

[RuSa89] Russel, G. and Sayers, I.L., "Advanced Simulation and Test Methodologies for

VLSI Design", Van Nostrand Reinhold, 1989

[Rutm72] Rutman, R., "Fault Detection Test Generation for Sequential Logic Heuristic

Tree Search", IEEE Computer Repository Paper, No. R-72-187, 1972

[SaYo95a] Sait, S.M., Youssef, H., "VLSI Physical Design Automation - Theory and

Practice", McGraw-Hill, 1995, pp. 37-79

[SaYo95b] Sait, S.M., Youssef, H., "VLSI Physical Design Automation - Theory and

Practice", McGraw-Hill, 1995, pp. 141-205

[ScKo94] Schlag, M., Kong, J., Chan, PP., "Routability-Driven Technology Mapping for

Lookup Table-Based FPGAs", IEEE Transactions of Computer Aided Design

of Integrated Circuits and Systems, Vol. 13, No. 1, 1994, pp. 13-18

[ScMe72] Schertz, D.R., Metze, G., "Representation for Faults in Combinational Digital

Circuits", IEEE Transactions on Computers, Vol. C-21, 1972, pp. 858-866

[ScTr87] Schulz, M.H., Trischler, E., Sarfert, T.M., "Socrates: A Highly Efficient

Automatic Test Pattern Generation System", International Test Conference,

ITC, 1987, pp. 1016-1026

[SeBa97] Sedaghat-Maman, R., Barke, E., "A New Approach to Fault Emulation", Proc.

of the 8th International Workshop of Rapid System Prototyping, RSP, 1997,

pp. 173-179

[SeBa98] Sedaghat-Maman, R., Barke, E., "Real Time Fault Injection Using Logic

Emulators", Proc. of Asia and South Pacific Design Automation Conference,

ASP-DAC 1998, pp. 475-480

[Seda97a] Sedaghat-Maman, R. "Fehleremulation mit Logikemulationssystemen", SICAN

- Herbsttagung Mikroelektronik - Mikrosysteme, 1997, pp.221-225

[Seda97b] Sedaghat-Maman, R., DFG-Research Report, Report period: 15.3.1995-

15.3.1997, No. Ba 812/3-1, 1997

[Seda97c] Sedaghat-Maman, R., DFG-Research Report, Report period: 15.3.1997-

15.3.1998, No: Ba 812/3-2, 1998

[Seda98] Sedaghat-Maman, R., "Eine Neue Methode zur Fehleremulation",

ITG-Fachtagung Mikroelektronik für die Informationstechnik, 1998, pp. 77-81

References 112

[Seda98a] Sedaghat-Maman, R. "Fault Emulation with Optimized Assignment of Circuit

Nodes to Fault Injectors", Proc. IEEE International Symposium on Circuits and

Systems, ISCAS, 1998, pp. 135-138

[SeLe87] Sechen, C., Lee, K., "An Improved Simulated Annealing Algorithm for Row-

Based Placement", Proc. IEEE International Conference on Computer-Aided

Design, ICCAD, 1987, pp.478-481

[Selle68] Sellers, F., "Analyzing Errors with the Boolean Differences", IEEE Transactions

on Electronic Computers, Vol. EC-17, 1968, pp. 678-683

[Sesh65] Seshu, S., "On an Improved Diagnosis Program", IEEE Transactions on

Electronic Computers, Vol. EC-12, 1965, pp. 76-79

[Spir85] Spiro, H., "Simulation integrierter Schaltungen", R. Oldenburg Publishers, 1985

[Stein61] Steinberg, L., "The Backboard Wiring Problem: A Placement Algorithm",

SIAM Review 3, 1961, pp. 37-50

[StGr76] Stephenson, J., Grason, J., "A Testability Measure for Register Transfer Level

Digital Circuits", Proc. International Symposium on Fault Tolerant Computing,

FTCS, 1976, pp. 101-107

[Thor92] Thorpe, T.W., "Computerized Circuit Analysis With Spice: A Complete Guide

to Spice With Applications", John Wiley & Sons, 1992

[TiBu83] Timoc, C., Buehler, M., "Logical Models of Physical Failures", Proc. IEEE

International Test Conference, ITC, 1983, pp. 545-553

[Timo79] Timoc, C.C., Lawrence, M.H., "Fault Simulation: An Implementation into

Hardware", Proc. IEEE International Test Conference, ITC, 1979, pp. 291-295

[UlBa74] Ulrich, E.G., Baker, T.G., "Concurrent Simulation of Nearly Identical Digital

Networks", Computer, Vol. 8, No. 4, 1974, pp. 39-44

[Wads78] Wadsack, R. L., "Fault Modeling and Logic Simulation of CMOS and MOS

Integrated Circuits", BELL System Technical Journal, Vol. 57, No. 5, 1978, pp.

1449-1474

[WaEi85] Waicukauski, E. B., Eichelberger, E. B., "Fault Simulation for Structured

VLSI", VLSI System Design, Vol. 6, No. 12, 1985, pp. 20-32

[Waxm89] Waxman, R., "VHDL Links Design, Test, and Maintenance", IEEE Spectrum,

May 1989, pp. 40-45

[Wilk94] Wilkins, B. R., "Testing Digital Circuits", Chapman & Hall, 1994, pp. 162-165

[WoLe88] Wong, D., Leong, H., Liu, C., "Simulated Annealing for VLSI Design" Kluwer

Academic Publishers, 1988

[Wund91a] Wunderlich, H. J., "Hochintegrierte Schaltungen: Pruefgerechte Entwurf und

Test", Springer Publishers, 1991, pp. 110

[Wund91b] Wunderlich, H. J., "Hochintegrierte Schaltungen: Pruefgerechte Entwurf und

Test", Springer Publishers, 1991, pp. 182

References 113

[Xili94] XILINX Data Book, " The Programmable Logic", 1994

[Zycad94a] Paradigm RP, Fremont, Zycad Corporation, 1994

[Zycad94b] Paradigm ViP, Fremont, Zycad Corporation, 1994

[Zycad94c] Paradigm XP, Fremont, Zycad Corporation, 1994

