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Abstract

IAGIAS Generalised Interval Arithmetic Simulator (AGIAS)|is a specialised simulator which
uses affine arithmetic to model parameter variations. It uses a specialised root-finding
algorithm to simulate analogue circuits with parameter variations in one single simulation
run. This is a significant speed-up compared to the multiple runs needed by industrialised
solutions such as [Monte-Carlo (MC)| or [Worst-Case Analysis (WCA)| Currently,
can simulate analogue circuits only under very specific conditions. In many cases, circuits
can only be simulated for certain operating points. If the circuits is to be evaluated in other
operating points, the solver becomes numerically unstable and simulation fails. In these
cases, interval widths approach infinity.

Behavioural modelling of analogue circuits was introduced by researchers working around
limitations of simulators. Most early approaches require expert knowledge and insight into
the circuit which is modelled. In recent years, Machine Learning techniques for automatic
generation of behavioural models have made their way into the field. This thesis combines
Machine Learning techniques with affine arithmetic to include the effects of parameter
variations into models.

ISupport Vector Machines (SVMs)| train two sets of parameters: one slope parameter
and one offset parameter. These parameters are replaced by affine forms. Using these two
parameters allows affine to model effects of parameter variations with varying widths.
Training requires additional information about maximum and minimum values in addition to
the nominal values in the data set. Based on these changes, affine &€ Support Vector Machine
and v Support Vector Machine algorithms for regression are presented. To
train the affine parameters directly and profit from the [Sequential Minimal Optimisation|
lalgorithm (SMO)[s selectivity, the is extended to handle the new, larger optimisation
problems.

The new affine are tested on analogue circuits that have been chosen based on
whether they could be simulated with[AGIAS|and how strongly non-linear their characteristic
function is.

Keywords: Support Vector Machines, Parameter Variations, Behavioural Modelling, Affine
Arithmetic, Uncertainty Modelling
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Kurzfassung

IAGIAS Generalised Interval Arithmetic Simulator (AGIAS)|ist ein spezieller Analogsimulator,
der Parametervariationen mittels affiner Arithmetik darstellt. Er verfiigt iiber eine spezielle
Nullstellensuche, die die Simulation von analogen Schaltungen mit Parametervariationen
in nur einem einzigen Simulationslauf ermoglicht. Dies ist eine erhebliche Beschleunigung
gegeniiber industriell etablierten Verfahren wie der [Monte-Carlo (MC)| oder Worst Case
Analyse (WCA). Aktuell konnen analoge Schaltungen nur unter bestimmten Randbedingung
mit simuliert werden. In vielen Féllen beschrankt sich die Simulierbarkeit auf einen
oder wenige Arbeitspunkte. Wird die Schaltung auBerhalb dieser Arbeitspunkte betrieben,
so ist die Nullstellensuch numerisch instabil. In diesem Fall wachsen die Intervallbreiten ins
unendliche.

Verhaltensmodellierung wurde von Forschern entwickelt, um Einschrankungen von Simu-
latoren zu umgehen. Viele bekannte Ansétze lassen sich nur umsetzen, wenn der Entwickler
des Modells iiber Expertenwissen tiber die zu modellierende Schaltung verfiigt. Die neusten
Verfahren verwenden Algorithmen des Machinellen Lernens, um Modelle automatisiert zu
erzeugen. Diese Arbeit kombiniert diese Algorithmen mit Affiner Arithmethik, um die
Auswirkungen von Parametervariationen im Modell abzubilden.

ISupport Vector Machines (SVMs)| trainieren zwei Parameter: die Steigung und den Offset
einer Hyperebene. Diese Parameter werden durch affine Formen ersetzt. Damit ist es moglich
Ausgabeintervalle mit unterschiedlichen Breiten zu modellieren. Fiir das Training miissen
zusétzlich zu den Nominalwerten Minimal- und Maximalwerte im Datensatz enthalten sein.
Basierend auf diesen Anderungen werden affine ¢ Support Vector Machines und
affine v Support Vector Machines (FSVR]) vorgestellt. Um diese SVMs zu trainieren, wurde
der [Sequential Minimal Optimisation algorithm (SMO)|angepasst. Der Erweiterte
kann auf den grofleren Optimierungsproblemen arbeiten und ist selektiv.

Die neuen affinen werden verwendet, um verschiedene Analogschaltungen zu
modellieren. Dabei wurden Schaltungen gewéhlt, die mit [AGIAS| nur eingeschrankt simuliert
werden konnen. Die Schaltungen sind dabei unterschiedlich stark nichtlinear.

Schliisselworter: Support Vector Machines, Parametervariationen, Verhaltensmodellierung,
Affine Arithmetik, Modellierung von Unsicherheiten
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1. Introduction

In 1970 [CANCER)] (Computer Analysis of Integrated Circuits Excluding Radiationl) was
introduced as a programme for circuit simulation and just two years later it was renamed
to [SPICE] (Simulation Program with Integrated Circuit Emphasis)) [54]. Although highly
specialised tools had been around before, [SPICE] was the first all-rounder which was of
practical use [77].

The early versions of [SPICE] suffered from several problems. In their 1974 paper, Boyle,
Cohn, Pederson and Solomon state that “[bJecause of the large number of these [semi-
conductor| devices in large scale IC systems, the analysis can surpass the computer’s
memory capability, simulator circuit-size capability, or the inherent numerical accuracy of
the computer” ([§], p. 1).

Starting in the early days of [SPICE] developers worked around the simulator’s limitations
by creating behavioural models. Boyle, Cohn, Pederson and Solomon introduced macro
modelling from digital into analogue design with their famous operational amplifier model [§].
As [SPICE] was not able to process differential equation systems directly, macro modelling
was unrivalled [36].

Since 1974 a lot has changed. On the one hand, algorithms were continuously refined, on
the other hand, computer hardware advanced greatly. The PC came with enough computing
power to bring simulators to every circuit designer’s desk. This boosted the development of
commercial simulators which soon surpassed [SPICE| and overcame its internal problems.
The most popular [SPICE}ike simulators today are Cadence’s Spectre and Synopsys’ Saber.
Those simulators come with a wide variety of analysis types and can easily simulate analogue
circuits with hundreds of transistors.

[SPICE}ike simulators depend on mathematical models of circuits elements. These models
are mainly created based on the component’s physical behaviour. Device models come in
different flavours which depend on the intended usage: simple models are used for manual
calculations, highly detailed models are used in simulators. Simple models are for example
Ohm’s Law for ohmic resistors or the Shichman-Hodges model for [Metal-Oxide;
Semiconductor Field-Effect Transistors (MOSFETs)| [68]. The latest releases of the [Berkeley]
Short-channel [GFET] Model (BSIM)| family, [BSIMBv3, [BSIM} and [BSIMp, are among the
most detailed transistor models [11, 42 [59].

With each new technology node, the size of the physical structures on a chip decreases.
With smaller structures more physical effects became relevant and new effects were discovered.
These new effects were included into device models and models accuracy improved greatly

'In 1968 this model represented the understanding of semiconductors at that time.



1. Introduction

with deeper understanding of device physics. At the same time, model complexity grew, too.
Simultaneously, the influence of process variations on the circuit’s performance grew. As
production of only a very few sample chips for measurement is very expensive, methods to
estimate and evaluate such variations are needed. Contemporary circuit simulators provide
two classes of simulation methods for this: statistical methods and methods for [Worst-Casel
lAnalysis (WCA)| The most common techniques are the [Monte-Carlo (MC)| method for
statistical analysis and |[Corner Case (CC)| for worst case analysis.

Both [MC] and [CC| analysis require many simulation runs, and are therefore not feasible
for large circuits. This inspired the development of a different simulation concept: circuit
simulation using specialised interval arithmetic [26]. This concept replaces parameter
distributions by intervals and introduces new simulation algorithms which operate on
intervals as well as on real values. The resulting software suffers from some of the early
[SPICE] problems: algorithmic problems and low numerical stability. Challenges are strongly
non-linear operations and piecewise defined functions in models.

1.1. Analogue Design

IIntegrated Circuits (ICs)| can be divided into three classes: analogue, digital and mixed-signal
circuits. They are differentiated by the type(s) of signal(s) which they process. Analogue
circuits process signals which are continuous in time and value. Digital designs process
signals which are discrete in time and value. Mixed-signal designs are a combination of
analogue and digital circuits and process both analogue and digital signals.

Analogue design describes the activity of creating analogue circuits. It can be viewed
on different hierarchical levels. Graeb suggests four design levels [27, p. 7]: system level,
architecture level, circuit level, and device or process level (from highest to lowest). The
system level typically refers to a very complex design, for example a hi-fi amplifier. The
architecture of a system consists of different building blocks, for example different audio
amplifiers. On circuit level, the design for each building block is represented by a netlist
which contains electrical components such as transistors and passives. On device level,
compact models for transistors are derived from doping profiles and geometric structures.
Sometimes, the process level is considered a separate level which is used to simulate the
manufacturing process [27].

Simulation of analogue designs often takes place on circuit level. Although contemporary
simulation software can simulate around 100,000 transistors, it often takes too much time to
simulate analogue systems in their entirety. To speed up simulation of analogue systems, new
forms of modelling using for example so-called [Analogue Hardware Description Languages|

(AHDLs)| have been developed.
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1.2. Simulation of Analogue Circuits with Parameter
Variations

Circuits have two types of parameters: operating parameters and component parameters.
Operating parameters determine the operating conditions of the circuit and are defined
in the circuit’s specification. Component parameters are the parameters of the circuit’s
components, e.g. nominal values of resistors.

A circuit’s specification describes its function formally and formulates both the require-
ments and the objectives for the circuit’s performances. For example, a very rudimentary
specification could be:

A single-ended amplifier with an amplifier gain of at least 20 dB. The circuit has to work
with operating voltages between 4.8V and 5.2'V.

In this example, the functionality is described by giving a circuit class (“amplifier”).
The requirements describe the external conditions under which the circuit has to operate
successfully. There is only one requirement in the given example: correct operation for
a varying operating voltage. Requirements from the specification are called operating
parameters for the circuit. Operating parameters are usually represented by bounded
intervals which define a minimum and a maximum value. The objectives lay down the terms
for evaluating whether the circuit operates correctly. Usually, the objectives are described
by one-sided bounded intervals. The example objective is a gain larger than 20 dB.

Layouts of circuits consist of various geometrical structures which define regions for
doping, oxide or metal layers. From the layout, the masks for manufacturing are created.
Fluctuations in the manufacturing process translate to statistical variations of process
parameters such as oxide thicknesses or channel widths. In device models, these quantities
influence device parameters such as the transistor gain. For simulations, statistical variations
are represented by probability distribution functions. Most commonly normal and uniform
distributions are used. In addition, some simulators support user defined distribution
functions. These distribution functions can only be calculated by testing and examining
the manufacturing process. However in practice, designers often estimate parameters of the
distribution functions.

Earlier, and [CC| simulation were introduced. This section presents these two methods
and introduces a third approach: simulating circuits using interval arithmetic. The class A
amplifier as shown in Fig. is used to demonstrate how these simulation methods work.
To keep the demonstrations simple, only two parameters are varied: the cross-sectional area
factor [A] of the [Bipolar Junction Transistor (BJT)|and the resistance of the collector resistor

R

1.2.1. Monte Carlo Simulation

The modern method was developed during the Manhattan Project [51]. Generally, the
[MC] experiment is a stochastic method based on the strong law of large numbers. It aims



1. Introduction

Figure 1.1.: Example circuit: class A amplifier.

to determine numerical results for an experiment by randomly sampling the experiment’s
parameters and conducting the experiment a given number of times. The [MC|] method’s
mathematical properties are detailed in [28]. experiments usually follow this pattern:
first the parameters are randomly sampled following a distribution function, then the
experiment is conducted and evaluated, and the results are gathered.

The method debuted in circuit simulations in the 1960s [37]. In circuit simulation
the experiment is a circuit. The evaluation of the experiment is any analysis type, such as
[DC] [AC] or transient simulation. The experiment’s parameters are component and operating
parameters for which distribution functions have been specified. The designer configures
the simulator and specifies the distribution functions and the number of simulation runs.
For each simulation run a new parameter set is sampled from the distribution functions.
Both Spectre and Saber offer analysis [9], [71].

In this demonstration the class A amplifier is the experiment. It is evaluated using the
[DC] sweep analysis. The input voltage [V, is swept from —0.8 V to 0.8 V in steps of 0.02 V.
The [MC| parameters are the resistor [Rl> and the area coefficient [Al With only two [MC]
parameters, the parameter set is sampled 1000 times.

Fig[I.2 shows the sequence of the MC|simulations. To demonstrate the MC| method a
Gaussian distribution is specified for each parameter. The means and standard deviations
are given in Fig. [[.2al the mean value of the distribution function is the nominal value of the
parameter, the standard deviation determines the width of the variations. Both the collector
resistor and the cross-sectional area factor A are varied by 10%. A new parameter
sample is drawn for each simulation run. Tab. displays the first five parameter sets.
In addition, the first threes samples are marked by vertical lines in the distribution graphs
and are indexed, according to the simulation run for which they were drawn. The resulting
characteristic function =f and a histogram for the amplifier gain are shown in

Fig. [[.2d

Usually, the [MC|analysis is implemented as a loop: after a set of parameters has been
determined, the circuit is simulated, the simulation results are saved and the next [MC]
experiment is started by sampling new parameters.



1.2. Simulation of Analogue Circuits with Parameter Variations

ph 1= 20K, 7 =2kQ

sA
No. in k(2 A =
| - 1 20.22 95.98
213
Fe 2 18.89  99.31 -
. 4 =100, 0 = 10 3 21.84 90.33 g
4 1935 10057 S
) 19.06 104.65
! 312 A Gain
(a) Distribution functions with (b) Sampled parameter values (¢) Characteristic function (top)
mean and standard devia- for the first five [MC| runs. and amplifier gain histogram
tion. (bottom).

Figure 1.2.: Monte Carlo simulations of the class A amplifier.

As the [MC| method is based on the strong law of large numbers: a large number of
simulation runs is needed to obtain reliable information about a circuit’s performance. From
this data, the mean and quantiles can be calculated. In this example, the amplifier gain
approaches a Gaussian distribution with = —16.04 and o = 0.44.

The disadvantage of this simulation type lies in the high number of simulation runs which
are needed to obtain reliable data. This leads to a high overall simulation time and a high
memory usage for saving the results. Furthermore, it is impossible to know beforehand how
many simulation runs are needed. Although simulation is a powerful tool to evaluate a
circuit’s behaviour with parameter variations, its disadvantages prevent it from being used
for large circuits and systems.

1.2.2. Worst Case Analysis

The specification of a circuit does not only define operating parameters but also performance
objectives. These are usually given as upper or lower bounds or both, e.g. minimum
amplifier gain or maximum power consumption. The aim of WCA]is finding the worst-case
performance if all component and operating parameters take an arbitrary value in their given
tolerance regions. If a lower bound is specified for a performance feature, the worst case
is the maximum deviation from the nominal value in negative direction. [WCA] calculates
the minimum value of the performance feature. If an upper bound is specified, the worst
case lies in direction of that bound and the maximum value of the performance feature is
calculated [27].

[WCA] has three main types: classical, realistic and general. The three types are distin-
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guished by the form of the tolerance region and the performance function. Tolerance regions
can be boxes for ranged parameters and ellipsoids for statistical parameters with normal
distribution, performance functions can either be linear or non-linear. Classical WCA] starts
from a tolerance box and a linear (or linearised) performance function. Realistic[WCA| uses
an ellipsoid tolerance region and a linear performance function. The most general WCA|
uses an ellipsoid tolerance region and non-linear performance function.

Classical [WCAl is the basis for simulation. The minima and maxima of a linear
function over a rectangular parameter space are found in the corners of the parameter
space. The [CC|simulation conducts one simulation for each corner. Given [P| parameters
the parameter space has 9P corners. Just like simulation is a wrapper for standard
analysis types. The designer configures the simulation and selects the parameters which are
varied. The number of simulations is fixed at the number of corners of the parameter space.
simulation is available in both Spectre and Saber [9, [71].

For this example, the two parameters are chosen to lie within an interval. These intervals
ardRl> € [16k€, 24kQ] and [A] € [80,120]. The amplifier gain is evaluated for the four corners
of the parameter space.

Fig. [I.3] shows the flow for a[CC|analysis. A parameter space spanned by two parameters
has four corners. These corners are shown in Tab. [[.3al For each of these corners, the
simulation is run once, resulting in 4 simulation runs. Fig. shows the [DC| transfer
function for different parameter combinations at the top. The bottom shows the amplifier
gain over the two parameters. In this example, the performance is linear in the parameters.
Tab. displays the gain for the four corners. The two extreme values are —13.78 as the
worst performance and —17.55 as the best performance.
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2 240 120 Vin 2 -17.46
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(a) Corners of the parameter (b) DC transfer function (top) (c¢) Amplifier gain for the
space. and parameter corners of corner cases.

the parameter space with
the gain (dashed lines).

Figure 1.3.: Corner Case simulations of the class A amplifier.
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For circuits with only a small number of varying parameters, [CC| simulations run in
very short time compared with [MC] simulations. However, the number of simulations is
determined by 2P With the number of simulations increases exponentially with the number
of parameters, the overall simulation time for the [CC|increases exponentially, too. Therefore,
for circuits with many parameters, [CC| analysis is not feasible.

A second problem arises from the underlying assumptions: parameters’ tolerance regions
are bounded and performances are described by linear functions. In real world circuits,
component parameters’ variations are characterised by normal distributions which lead to
ellipsoid tolerance regions. Therefore, boxed tolerance regions are at best much worse than
the real worst cases. Furthermore, in many cases performance measures are not linear in
the parameters. Using the [CC| simulation on non-linear performance measures therefore
does not guarantee to return the worst cases.

1.2.3. Simulation with Intervals

In 2008, a new numerical simulation technique for analogue circuits with parameter vari-
ations was introduced [25, 26]. Instead of classical interval arithmetic it employs affine
arithmetic [16], a simplification of Hansen’s generalised interval arithmetic [34]. The root-
finding algorithms have been adapted for calculations with affine arithmetic. Although
specialised simulation tools for WCA] have been developed before, this was the first all-
rounder with affine arithmetic. The current simulator implementation is called [AGTAS]
(AGIAS Generalised Interval Arithmetic Simulator]).

Fig. shows the programme flow of the simulator. It consists of a symbolic preprocessor
and a numeric solver. The maple preprocessor takes the circuit’s netlist and parameters
and creates the equation system and the simulator configuration as well. The resulting
files are parsed for numerical solving of the equation system. The core of the simulator is
the so-called [Extended Partial Deviations (EPD)|solver [25]. Using the |[Affine Arithmetic|
[Mathematic Library (AAF Lib)|, the [EPD|solver conducts the numerical simulation. The
results can either be plotted using an external tool such as gnuplot, or written to text files.

The [EPD] solver calculates the interval-valued solution in two steps. For each time step,
first the nominal solution is calculated for which all parameters take their nominal value,
then the interval-valued solution is calculated. Therefore, [AGTAS| needs only one simulation
run. Compared to [MC| and [CC]| this is a huge gain in terms of simulation time and memory
usage.

In [AGTAS] parameters are written as affine forms, the interval representation of affine
arithmetic. Affine arithmetic is described in greater detail in Sec. 2.1} Tab. shows
the two affine parameters used in the class A amplifier example. From these parameter
variations the simulator calculates all possible output voltages for a given input voltage.
Instead of a single [DC]| transfer function, the solver calculates all possible transfer functions
for the given parameter set. In doing so, [AGIAS| guarantees enclosing all possible [DC|
transfer functions by overestimating the output intervals.

Fig. [I.5]illustrates simulation with [AGIAS] Fig. shows the affine [DC] transfer function.
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Figure 1.4.: Semi-symbolic simulation with |AGIAS; the equation system for the numerical
solver backend is created using Maple libraries.

[AGIAS] standard for plotting affine forms is plotting the minimum and maximum values.
Nominal values currently have to be obtained from an additional simulation run as they are
not part of the output of an affine simulation. Nominal values are plotted as a dashed line.
The class A amplifier can not be simulated with affine arithmetic over the full operation
range. Simulation stops shortly before the knee and can only be resumed for much higher
input voltages. Simulation is numerically unstable for settings in the area for which no
minimum and maximum values are plotted.

Some output values in affine form are given in Tab. [I.5¢ The output voltage contains
the noise symbols of both varying parameters and a third symbol ¢,,,. As common noise
symbols represent correlation, the correlation between output voltage and [R} and transistor
gain is given by the noise symbols’ weights. The third symbol is introduced to enclose the
linearisation error.

Simulating circuits with affine arithmetic is not universally possible. The root-finding
algorithm is particularly sensitive to the widths of the intervals and to mathematical
formulations used to describe the circuit components. Usually, semiconductor components
are described by non-linear equation systems and — depending on the chosen model —
piecewise functions. Both strong non-linearities and piecewise functions pose a problem for

the solver.

Calculations in affine arithmetic are carried out through linearisation. Therefore, large
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Figure 1.5.: Simulation with affine arithmetic using |AGIAS|

intervals on strongly non-linear operations lead to very large overestimation. Ultimately the
width of intervals approaches infinity.

Piecewise functions are implemented using Heaviside functions. Heaviside functions are
evaluated using only the centre value of the affine form to determine which branch is to be
used. This leads to incorrect results and very large overestimation. Ultimately, the [EPD]
solver will fail to converge. Additional experiments revealed that the solver shows different
behaviours for different branches of the Heaviside. This depends heavily on the model.

Fig. illustrates the influence of piecewise functions. On the left another simple one-
transistor circuit, an NMOS inverter, is shown in Fig.[1.6a, The input stimuli were chosen so
that the NMOS| transistor in the inverter operates in all regions. When switching from linear
to saturation region the root-finding algorithm fails to calculate the interval correctly, which
results in huge overestimation. This can be seen as two peaks in Fig. [1.6b| Using transient
simulation, this example also shows that the direction of switching is important. While on
the first occurrence (1), the simulator overestimates the intervals hugely switching from
linear to saturation region, but converges to sensible values afterwards. When switching
back (2), the simulator fails to converge and simulation terminates.

Unfortunately, [AGTAS| suffers from similar problems as the 1970’s [SPICE] It is sensitive
to non-linearities and exceeds numerical capacities. In addition, the root-finding algorithm
cannot handle piecewise defined functions. Strong non-linearities and piecewise defined
functions are most commonly found in transistor models. Older models often contain
piecewise functions, while their more contemporary counterparts are built around single
non-linear equations. This leads to massive overestimation in the simulation of transistor
circuits or the algorithm fails to converge. Therefore, [AGIAS]is not used to generate data
for modelling, but only to test models in this thesis.
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Figure 1.6.: NMOS inverter: convergence failure for piecewise functions.

1.3. Scope of this Thesis

Behavioural modelling has historically been coupled to the development of circuit simulation
software. Every simulator has its limits: the number of transistors, the number of components,
the numerical stability, the computing power of a PC or the robustness of the root-finding
algorithms.

As circuit designers cannot improve the algorithms, behavioural modelling became their
approach of choice to overcome a simulator’s limitation. The introduction of the operational
amplifier model was motivated by the shortcomings of the newly released [8].

Since the 1970s the meaning of “a large number of transistors” has changed drastically.
In 1974, it meant “around ten”, nowadays the numbers depend on the objective of the
simulation. Simulating nominal circuit behaviour is generally considered an easy task and
standard simulations can be performed on circuits with roughly 100,000 transistors [62]. For
specialised simulation types, such as [MC| and [CC| simulation, the number of transistors can
be much lower. Additionally, if the simulation takes too much time, certain analysis types
are considered inapplicable to large circuits.

As[AGTAY]is still a very new implementation and its root-finding algorithms come with
a unique set of challenges, “a large number of” means “about ten” again. Calculations in
interval arithmetic can be a bit of a hassle. [AGTAS] objective is to include all possible
solutions in one simulation run. To achieve this, the [EPD] solver introduces a new affine
symbol to cover additional intervals introduced by solving non-linear equations. The [EPD]
solver will always overestimate the solution. This leads to convergence problems if the
intervals are too wide.

To overcome these limitations, a new approach for behavioural modelling is proposed.
Behavioural modelling is a wide field which ranges from macro modelling to high level

10
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[AHDLs In general, creating behavioural models is a tedious task, which requires a lot of
time and expert knowledge. In recent years, a lot of research has gone into automating
the generation of behavioural models [53, [67]. At the core of this research were learning
algorithms, that allowed automated black-box modelling of circuits.

Standard behavioural models are created for real-valued simulation methods. Therefore,
most behavioural models are not variation-aware.

The focus of this thesis is to create behavioural models for [AGIAS] These models have
the following characteristics:

The models are variation-aware. The key concept of [AGIAS]is simulating circuits with
parameter variations in one simulation run. It uses affine forms as representation for
parameter variations. Therefore, model parameters have to be affine forms.

The models enclose the original circuit with high overall accuracy. [AGTAS| guarantees
to enclose the correct results. Therefore, behavioural models have to enclose the
original circuit. Enclosure can be obtained by different techniques. To preserve
accuracy it is necessary to enclose the original circuit as closely as possible.

The models do not contain piecewise defined functions and contain relatively few
non-linear functions. Piecewise functions and strongly non-linear functions lead to
overestimation and convergence failure.

The models are generated at least semi-automatically.

11






2. Behavioural Modelling

Scientific models are theoretical or objective representations of real world features. Theoreti-
cal representations include, but are nor limited to, mathematical models, conceptual models
and graphic models. Objective representations include to scale miniatures and constructions
kits among others. Real world features can be anything from weather phenomena to human
built machinery. Models are created to understand, simplify, visualise, or simulate a certain
feature. Usually one model cannot achieve all these different goals. Therefore, for each of
these tasks different types of models are used. Models can be hierarchical, meaning models
can represent other models.

In electrical engineering, modelling usually refers to creating mathematical representations
of real world features or other electrical models. Objective representations are quite
uncommon and are only used for very specific subjects. Mathematical models in electrical
engineering represent a wide variety of real world features ranging from circuit components,
circuits and systems to physical effects and mechanical models. In this thesis, the focus lies
on creating mathematical models of analogue circuits and systems and circuit components.

Sec. introduced different abstraction levels which are used when discussing [[C| proper-
ties. These levels are not directly transferred to classify models for analogue circuits and
components. In fact, there is no universal way to fulfil this task. Mantooth and Fiegenbaum
suggest to classify models hierarchically according to Table [2.1]

Table 2.1.: Classification of models according to [46] p. 19].

Design Abstraction Modelling characteristics

Primitive Devices , , diode, etc.) represented by:

- Analytical equations

- Tables

Functional Macromodels derived by:
- Circuit simplification
- Circuit build-up
- Symbolic Methods

- Combinations of the above

Behavioural High Level language descriptions
- Linear and non-linear mathematical equations
- Tables

13
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They introduce three design abstraction levels: primitive, functional and behavioural.
Primitive models are highly detailed models used in transistor level simulation. All models
representing semiconductor devices are primitive models. In analogue designs, primitives are
used on circuit level to create circuits. Models on functional level are called macro models.
Macro models are used instead of the detailed circuit schematics. They are created from
idealised electrical components and usually have some similarity to the circuit they represent,
e.g. Boyle’s operational amplifier model [8]. These models can be found on architecture
level and system level. Models on the behavioural level are arbitrary mathematical or
logical function blocks. These models are created using equations or procedural descriptions,
e.g. [Hardware Description Languages (HDLs)l Behavioural models usually do not bear
any similarity to the topology of the modelled circuit. They can also be found on both
architecture and system level. Mantooth and Fiegenbaum’s classification does not cover
any models for the device/process level as given in Sec. , as these models are not used in
circuit simulation.

Another approach to formalising and classifying are Y-charts. In 1983, Gajski and Kuhn
introduced the Y-chart for characterising and formalising design methodologies for digital
designs [21]. Y-charts aim at incorporating every aspect of digital design and offer a universal
language to describe different design flows. Therefore, they can also be used to classify
different modelling methodologies. However, they are not directly applicable to analogue
design methodologies. The Y-chart was adapted for analogue design in 1994 by Hosticka
et alii [35]. Y-charts distinguish three different views and several levels which in Y-chart
terminology are called layers.

[SPICE}Hike simulators are built to simulate conservative electrical systems which are
constructed from lumped elements and which are described either as I-V or Q-V equation
systems. Therefore, models used with these simulators have to be formulated as -V or
Q-V equation systems. These restrictions can be avoided to a certain extent by using
dependent sources which allow arbitrary mathematical operations to model the relation
between input and output signals. Modelling for [AGTAS| comes with additional constraints:
[AGTAS| specialises in simulating circuits with parameter variations and uses affine arithmetic
to represent these variations. If a model’s parameters have physical meaning, they can
directly be described using affine forms. If not, parameter variations have to be taken into
account during model creation.

2.1. Affine Arithmetic

Affine arithmetic was introduced by de Figueiredo and Stolfi in the mid-1990s with a first
full overview in [16]. Standard interval arithmetic describes intervals by their lower and

upper bounds
X]= EESS (2.1)

In classical interval arithmetic, the basic assumption for calculations is that all intervals are
uncorrelated. This leads to huge widening of intervals, sometimes called interval explosion.

14
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Intervals in affine arithmetic are called affine forms:

N
k=1

Each affine form is denoted by a hat over the variable name and consists of a mean value
and a sum of weighted noise symbols [g;] with weights [z;] Affine arithmetic does not assume
that intervals are uncorrelated, instead affine forms can be linearly correlated. Each affine
form can be constructed from an arbitrary number of noise symbols. Two affine forms are
correlated, if they share the same noise symbol with non-zero weight. If the weights have
the same sign, the affine forms are positively correlated, else they are negatively correlated.
Affine forms can be converted to classical intervals by using the radius. The radius is defined

as N
rad => \\ (2.3)
k=1

The classic interval to represent the affine form then is

= — rad+ rad]. (2.4)

Mathematical operations on affine forms can be divided into two groups: affine operations
and non-affine operations. Affine operations on affine forms return affine forms, non-affine
operations do not. To calculate the result of non-affine operations, the operation has to be
linearised. This linearisation introduces problems to numerical simulation: overestimation
and loss of correlation information. Overestimation causes intervals to grow steadily. This
can lead to violation of functions’ domains and can therefore render a given problem non-
solvable. The linearisation error is incorporated into the affine form as a new noise symbol
at the expense of the correlation information. Two algorithms for calculating non-affine
operations are presented in [16].

2.2. Physical Modelling

Physical modelling is the activity of creating models of electronic devices based on equations
which accurately describe the complex physical mechanisms in the device. The resulting
models are usually called device models. Progression of technology usually means scaling
down the channel width of MOSFETY This introduces new physical mechanisms into the
models and increases the complexity of the model. Physical models can be put into three
categories: analytical models, table look-up models and empirical models [2].

Analytical models are derived directly from device physics. This group can be sub-
classified into charge sheet models and compact models. Charge sheet models are based
on surface potential analysis. The basic assumption is that the inversion region is of
infinitesimal thickness [2, p. 238-242][74 p. 131-140]. As the complete charge model is too
complicated, a simplified charge sheet model has been introduced by Tsividis [74, p. 140-146].
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Usually, charge sheet models are not used in circuit simulation. Compact models are
created from charge sheet models by using different equation systems for different operation
regions and by removing physical phenomena of lesser significance [I7, 47]. While in earlier
models switching through operation regions is represented by piecewise defined functions,
contemporary models are built using smoothing functions. Almost all models used for
transistor level simulation are compact models.

For table look-up models, the device currents for different geometries and bias points are
stored in tables [69]. There are different approaches for creating the data base for these
models: using a dedicated device simulator, measurements of devices or approximating
the currents by using splines. Table look-up models are used in so-called Fast{SPICE]
simulators [50]. Using table look-up models requires some interpolation to obtain values
that are not explicitly part of the look-up table.

Empirical models are created based on experimental data. For these models, compo-
nents have to be measured. Then, the model equations are created using curve fitting
algorithms [78]. These models are very rarely used in simulators and are not discussed
further.

The number of effects which are modelled is not only determined by the developer but
also by the number of effects known at the time the model is created. Therefore, compact
models represent the understanding of semiconductor physics at the time of their creation.
This can be demonstrated by examining the development of models [I1]: The
first compact model was the model by Shichman and Hodges [68]. It is based
on 1970’s device physics for long-channel and uniform-doping effects. The model equations
are very simple and are still used for manual calculations. Over the following years, different
models were published which advanced [MOS| 1 little by little. The next major step forward
was the [BSIM|l model which included improved short—channel effects and gives good results
for channel lengths above 1 pm. The [BSIMB models include short-channel, narrow width
and high field effects [42]. In the subsequent versions of this model, accuracy was improved
and a single-equation approach was introduced. The latest members of the [BSIM] family
are and [BSIMG. BSIMU extends the existing models into the sub-10nm regime
and introduces better @ handling [59]. changes the core structure from threshold
voltage based to charge based [I].

For [BJT] the same is true for the Ebers-Moll model and the Gummel-Poon model. The
Ebers-Moll model was published in 1954 [19] and was limited to behaviour with only
rudimentary modelling of transient behaviour. The Gummel-Poon model was published in
1970 [31]. Simplifying and idealising the Gummel-Poon model results in the Ebers-Moll
model.

Contemporary compact models are the most accurate models used in circuit simulation.
They model dynamic, non-linear large signal behaviour. The models are formulated as
differential equation systems which only include derivatives with respect to time. Older
models use piecewise-defined functions, newer models use smoothing functions. Compact
models always abide by Kirchhoff’s and Ohm’s laws. As the parameters of these models
have physical meaning, the models can be used for statistical and worst case evaluation.
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For the same reason it is also very easy to use intervals instead of distribution functions.
However, as the equation system contains strongly non-linear and piecewise defined functions,
numerical calculations with intervals often fail. Compact models can only be created with
expert knowledge about semiconductor physics. Therefore, there is no automation for this
approach.

2.3. Equivalent Circuit Models

Equivalent circuit models are models which reproduce the behaviour of a circuit or semicon-
ductor device by combining idealised electrical components. These models can be divided
into two classes: equivalent circuit device models and macro models.

Equivalent circuit device models are based on numerical data which describe device
characteristics or on mathematical device equations. Although developed as physical models
(see Section , the Ebers-Moll and Gummel-Poon models are prominent examples for
equivalent circuit models [23]. Getreu describes different equivalent circuit representations
of the models’ equation systems showing that the equivalent circuit representation of an
equation system is not unique [23], p. 10 et seq.]. Another commonly used example are small
signal equivalent circuits. Approaches for the automatic generation of equivalent circuit
models from device simulations are sparse. One approach has been presented by Pacelli
et alii in 2000 [5§]. This method first partitions a device into functional regions and then
creates one circuit block per functional region.

Macro modelling is one of the oldest modelling approaches for modelling analogue circuits.
It has been imported from modelling digital circuits by Boyle et alii with their famous model
of an operational amplifier [§]. Macro modelling is closely related to circuit design. It even
borrows its basic approaches from circuit design: the top-down and the bottom-up approach
from circuit design become circuit simplification and circuit build-up in macro modelling
respectively [46].

Circuit simplification starts with the original circuit and simplifies it by removing un-
necessary characteristics. The most common simplifications are removing circuit elements
and replacing complex device models with simpler models. Usually, a circuit component
contributes to several characteristics. Therefore, removing components can damage char-
acteristics which are important to the model. Removing components does not result in a
high degree of simplification. Much better results can be obtained by replacing complex
models with simpler models, e.g. replace [BSIMB by [MOSI] models. Replacing models allows
designers to remove characteristics from a component without removing the respective
component from the circuit.

Circuit build-up produces a configuration from ideal elements. The objective of this
approach is to reproduce the terminal characteristics. The resulting circuit configuration
does not necessarily resemble the original circuit. Creating a model via circuit build-up,
the designer first has to identify the circuit performances and has to select the electrical
characteristics for the model. The second step is to partition the characteristics in function
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blocks, e.g. amplification and low-pass behaviour. Creating the function blocks is the last
step. Commonly, first the ideal behaviour is modelled and then the non-ideal behaviour is
added on top of that.

Macro models consist of several stages: input, output and main function stage. The in-
and output stage model the respective in- and output terminal characteristics. The main
function stage represents the transfer function and all non-linear effects. This stage usually
consists of several function blocks [12 p. 16]. It is also possible to have additional stages
between main function stage and output stage, e.g. stages to model transient behaviour.

Both macro modelling techniques are not mutually exclusive, they can be combined.
Boyle’s operational amplifier model is an early example for a combined approach: the input
stage was created using circuit simplification, the rest of the model was created using circuit
build-up [8, [46].

Built mainly from idealised components, macro models adhere to Kirchhoft’s and Ohm’s
laws and can easily be simulated by standard simulators. Equivalent circuit models therefore
have similar properties as circuits: equivalent models can model dynamic, non-linear large
signal behaviour. Depending on the components’ models the resulting equation system
can contain piecewise-defined functions. Creating macro models requires expert knowledge.
Macro models can be used for statistical and worst case analysis under certain conditions:
parameters have to retain physical meaning for the circuit. This is the case for models
obtained from circuit simplification or models from circuit built-up which have the same
topology as the original circuit. There is no universal automation approach for creating
macro models, but there are approaches to semi-automatically generate models of certain
circuit types, e.g. operational amplifiers.

2.4. Symbolic Modelling

Symbolic modelling is directly related to symbolic simulation and symbolic simplification.
The objective of symbolic simulation is to obtain an analytic, closed-form expression for
the system transfer function [24] or determine the relation between input and output of a
system in time domain [6]. Symbolic simulation gives designers a different perspective from
numerical simulation: it helps gaining better understanding of a circuit’s behaviour. The
resulting equations can be used as a behavioural model.

Usually, equations determined by symbolic simulation feature too many terms to obtain
insights into the circuits behaviour [33]. Therefore, different simplification algorithms have
been developed. These algorithms form a family of hybrid symbolic/numeric algorithms for
expression simplification. The basic procedure is the same: the designer chooses a numerical
reference simulation and an error bound. The algorithm then applies simplifications to the
symbolic expression and simulates the expression numerically. If the error exceeds the error
bound, the simplification is cancelled. This is repeated until no more simplifications are
possible [33]. Although the result of a symbolic simulation can be used as a behavioural
model, usually simplification algorithms are applied before the equations are used as model.
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There are different simplification methods for linear and non-linear systems. For linear
systems there are three types: simplification before, during and after generation.
tion Before Generation (SBG)|simplifies the circuit before the symbolic simulator is started.
Symbolic simulators support different forms of circuit description and there are different
[SBG| methods for each. [SBG] algorithms remove circuit components or replaces complex
device models with simpler ones [I8], simplified graphs [14] [I5] or remove elements from
matrices [55]. This approach is also associated with manual evaluation [20]. [Simplification|
IDuring Generation (SDG)| is mainly done by simplifying graphs using the Two-Graph
Method [48, [55]. Different methods based on sorting spanning trees have been published,
e.g. in [79]. One alternative to sorting spanning trees is a method based on sensitivity
analysis [81]. The transfer function is usually given in a sum-of-products formulation. Most
ISimplification After Generation (SAG)| approaches evaluate the influence of single products
on the complete transfer functions in a given nominal point. If a product contributes less
than a predefined value ¢, it is eliminated [81].

Simplification procedures for non-linear systems are sparse. Weakly non-linear systems
are approximated using Volterra-series [4, 80]. In these approaches usually second and
third order polynomials are used [55]. A second approach uses place holders to represent
non-linear components. After the transfer function has been generated, the place holders can
be replaced by arbitrary non-linear functions [49]. methods for linear systems have also
been applied to non-linear systems. The approach presented by Borchers [5] operates on the
symbolic equation system. This approach simplifies iteratively. First one term is removed
from the equation system, then numerical simulation is used to determine the impact of the
removal. If the impact is smaller than an a priori defined error bound, the term is removed
permanently. Symbolic simulation is then carried out after the simplification algorithm has
terminated. Other approaches suggest using ideal circuits components as every piecewise
linear formulation can be transformed into a linear equations system [45] or approximation
with posynomial functions [15].

The results of symbolic simulations can be used as behavioural models. The transfer func-
tions represent non-linear, large signal behaviour and include dynamics as well. Although
based on conservative systems, the models are not conservative. Depending on the com-
ponents’ mathematical models, the resulting model function can contain piecewise defined
functions. Creating symbolic models requires the same amount of knowledge as designing a
circuit. The parameters of a symbolic model are the parameters of its components. The
parameters have physical meaning and the model can directly be used for statistical and
worst case analysis. Symbolic modelling can be considered a semi-automated approach to
modelling as the circuit has to be designed by hand, but the resulting model is determined
automatically by the simulator. Symbolic models are transfer function models which have
to be wrapped before using them with a [SPICEHike simulator.
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2.5. Classical System ldentification

System theory defines systems as objects which operate on signals. Signals are defined as the
representation of information [75]. Systems produce an observable signal. These observable
signals are usually called outputs. Systems can also be affected by external stimuli. If
these stimuli can be manipulated by the observer, they are called inputs. Others are called
disturbances. Some disturbances can be measured directly, others can only be observed by
their influence on the system’s output [43].

Although most identification approaches are designed for [Discrete-Time (DT)| systems,
modelling analogue circuits requires [Continuous-Time (CT)| models. There are two basic
approaches for creating [CT] models: the indirect approach which first determines a [DT]
model and then transforms it to [CT]and the direct approach which creates the [CT] model
directly from the data [22].

The prerequisites for identification of [CT] and [DT] models are the same: a data set, a
model structure, a criterion of fit between data and model and a way to evaluate resulting
models. The data set is determined experimentally. The model structure — that is the
architecture, model order, the representation of dynamics, and the interface — are defined
by the designer. The model is trained automatically. Training means the parameters of
the model are determined by solving an optimisation problem. After training the model
is validated using the fit criterion. If validation fails, one or more of the prior steps (data
generation, model structure selection, training) have to be revised [82] p. 2 et seq.|[50] p. 7
et seqq.]. A short remark on the interface: when creating data based models, the designer
chooses the inputs and outputs for the models. Training models with multiple outputs is
more difficult and therefore, often [Multiple Input Single Output (MISO)|models are used.

Classical system identification offers two main modelling architectures: transfer
function models and state-space models. The most general transfer function model is
represented by

y(k) = G(q)u(k) + H(q)v(k) =

where y is the system output, u are the system inputs and v are the disturbances[43]. G(q)
is the input transfer function, H(q) is the noise transfer function and ¢ is the forward shift
operator. The transfer functions are represented as rational functions which are created
from five polynomials A(q), B(q), C(q), D(q) and F(q). Depending on which of these
polynomials are used, different special models can be derived. Table [2.2] presents the most
common special cases for dynamic linear [Single Input Single Output (SISO)| models. These
can be expanded to non-linear problems by replacing the polynomials by arbitrary non-linear
functions.

In state space models the relationships between input, noise and output signals are
described by first order differential or difference equations [43]. State-space models are
especially useful for continuous time models of physical systems. In general, it is much easier
to incorporate prior knowledge about physical connections into state-space models than into
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Table 2.2.: Some common black-box [SISO| models as special cases of Eq. )[IBI7 p. 88].

Polynomials Name of Model Structure

Used in Eq.

B FIR| (Finite Impulse Response))

AB Autoregressive with Exogenous Input (ARX)|

ABC Autoregressive Moving Average with Exogenous Input (ARMAX))|

AC Autoregressive Moving Average (ARMA )|

ABD Autoregressive Autoregressive with Exogenous Input (ARARX)

ABCD Autoregressive Autoregressive Moving Average with Exogenous
Input (ARARMAX),|

BF OE] (Output Error)

BFCD BJ| (Box-Jenkins

transfer function models. State space models are described by the following equation system

x = Ax(k) + Bu(k) (2.6)
y(k) = CTx(k) + Dv(k) (2.7)

with x(k) as the states and y, u and v as in transfer function models.

Both transfer functions and state-space models can be used to model non-linear systems.
In transfer function models the two linear transfer functions G(q) and H(q) are replaced by
non-linear functions. In state-space models the equations for calculating the change of the
state and the output are also written as non-linear equations.

Training requires solving different optimisation problems for linear and non-linear models.
For linear optimisation problems, different variants of the least squares method are used.
For non-linear optimisation problems, a variety of methods is available. There are two
types of methods: local and global optimisation methods. Local methods converge to a
local optimum, while global methods converge to a global optimum. For linear dynamic
system identification, recursive algorithms are used because they are computationally less
demanding.

Dynamics can be modelled by including them directly into the model or by modelling
them externally [56]. Models with internal dynamics are often non-linear state-space models.
These models are trained using the backpropagation-through-time algorithm [56]. For
external dynamics, the model is split into a linear dynamic and non-linear static block. If
the linear dynamic filter is followed by the static block, the system is called Wiener system.
If the blocks are connected the other way round, it’s a Hammerstein system. Wiener and
Hammerstein systems are created using non-linear optimisation algorithms.

One method to generate a [CT| model directly from the data is the state-variable filter
method. This method applies a minimum-order filter to a transfer function model before
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estimating the model parameters. The filter K(q) is characterised by

1

K@) = o5 28)
where the order is determined by n and the bandwidth by A. Both parameters are chosen a
priori. Although system identification is usually done in discrete time, [CT] approaches bring
some advantages. They operate on non-uniformly sampled data, it is easier to preserve a
priori knowledge and models do not suffer from the underlying assumptions which have to
be made when transforming a model to a model. Beside the state-variable filter,
there are also linear filter methods, integration based methods and modulating function
methods [82].

Models from classical system identification are black-box models. They are generated from
data which have been obtained from simulation or measurement. Overall, black-box models
require little a priori knowledge. Both transfer function models and state-space models
are generally not conservative models. Classical system identification offers algorithms
to identify non-linear dynamic systems. Non-linearities can be modelled internally and
externally, which calls for different optimisation algorithms. The parameters in the models
do not have physical meaning. This makes stochastic or worst-case analysis difficult. System
identification approaches can be automated.

2.6. Artificial Neural Networks

The (human) brain is an extremely powerful structure for tasks such as information processing
and pattern recognition. It is capable of learning and adapting. |Artificial Neural Networks|
are mathematical models which were inspired by the (human) brain.

Inputs Neuron Output
T1e w1
Toe Wao

Tpe Wy, b

Figure 2.1.: General structure of a neuron with n inputs and 1 output.

Fig. shows a neuron, the central calculation structure of a [NN| Each neuron has a
fixed number of inputs [x},7 € 1...n, a bias b, a transfer function f and an output [y} The
inputs are weighted by w;, summed with the bias and then fed into the transfer function to
calculate the output

Y= f(z w;x; + b). (2.9)
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Common transfer functions are the linear function, the step function and the sigmoid
function [32].

Inputs Hidden Layer Output
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Figure 2.2.: Structure of a minimal |Mu1tilayer Perceptr0n| type |Artiﬁcial Neural Network|.

Although neurons can be connected in arbitrary ways to form a [NN| usually layered
structures are preferred. They limit the number of possible connections between neurons.
IMultilayer Perceptrons (MLPs)| the most common network architecture, use layers and
directionality. consist of at least three layers: one input layer, one output layer Ny
and at least one hidden layer Ny. The MLP|in Fig. has the minimum number of layers
with one hidden layer. The signal flow direction is from input to output. Neurons can only
be connected to neurons in the next layer and are usually connected to all neurons in the
next layer: all inputs are connected to all neurons of the hidden layer and are not connected
to neurons of the output layer. Neurons cannot be connected to other neurons in the same
layer: the neurons of the hidden layer are not connected to each other.

Usually the input layer does not contain any neurons, its only task is to pass the inputs
on to the first hidden layer. Neurons in the hidden layers usually use non-linear transfer
functions for regression. The output layer contains one neuron per output with a linear
transfer function. Each hidden layer of the [MLP] can be constructed from an arbitrary
number of neurons. The layers do not need to have the same number of neurons and the
neurons of one layer do not need to have the same transfer function. Usually, each output
of one layer is connected to all neurons of the following layer. Before the advent of Deep
Learning, with one hidden layer were the most common, while with more than
two hidden layers were considered exotic [56].

are feedforward networks and can only model static behaviour as presented so far.
For dynamic behaviour, both external and internal approaches can be used. Employing the
external approach, can be used as the static non-linear approximator in a Wiener or
Hammerstein model.

A second option is using recurrent networks with tapped delay lines. Tapped delay lines
are filter structures in [NNsgl Recurrent networks distinguish themselves from feedforward
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networks by at least one feedback loop. Two types of feedback are commonly used: global
feedback and local feedback [56]. Global feedback is an alternative approach for external
dynamics: the output is fed back to the model as input via tapped delay lines. Local
feedback is an approach for modelling dynamic behaviour internally. In local feedback
models, the feedback is restricted to links or the neurons themselves. Nelles distinguishes
three types of local feedback: local synapseﬂ feedback, local activation feedback, and local
output feedback [50, p. 648 et seq.].

When creating[NNs| the designer defines the number of in- and outputs and the architecture
by configuring the number of hidden layers and the number of neurons on the hidden layers.
For each neuron, the transfer function must also be determined beforehand. Then, a
backpropagation algorithm determines all weights and biases of the [NN]

For creating [NNg| little knowledge about the circuit which is to be modelled is needed.
NNsfcan model non-linear dynamic systems applying either approaches which create external
or internal dynamics. The designer has full control over the topology: the number of neurons
and the configuration of the network as well as the transfer functions of the neurons. The
parameters, the weights and biases, are determined by an optimisation algorithm. There
are approaches that also apply optimisation algorithms for creating the topology. As the
parameters do not have physical meaning, stochastic or worst case evaluations of the model
are not possible.

2.7. Fuzzy Systems

Fuzzy logic was introduced as an extension of classical Boolean logic by Zadeh in 1965 [83].
While Boolean logic assigns each variable either the value 0 (false) or 1 (true), fuzzy logic
allows one to assign every value in the interval [0, 1]. With this convention, fuzzy logic is
very close to the vague formulations usually used in human communication.

Fuzzy systems take real-valued inputs and calculate real-valued outputs by using fuzzy
sets. This requires three blocks: fuzzification, inference mechanism and defuzzification [41].
Fuzzification converts real values to fuzzy sets by calculating the degree of membership. The
inference mechanism uses a set of rules to calculate the output fuzzy sets. Defuzzification
combines these fuzzy sets and calculates the real-valued output [7, 56]. The two basic
concepts of fuzzy systems are fuzzy sets and rules.

Fuzzy sets are created for linguistic values of linguistic variables. A linguistic variable
is a word which describes a physical quantity and linguistic values characterise linguistic
variables. For example height is a linguistic variable and tall and short are linguistic values.
For each linguistic value, one fuzzy set is created. In contrast to conventional set theory,
numbers can have partial membership in a fuzzy set. Membership functions are used to
calculate the degree of membership of a fuzzy set. Formally, a fuzzy set M can be written as

M = {(z, ™ (x)): 2 € X} (2.10)

1 .
A link between neurons.
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where X is the universe of discourse, the set of numbers on which the variable is defined,
 is a number and p* (z) is the membership function of the fuzzy set M. A membership
function maps X to [0, 1]. Common membership functions are triangular functions, Gaussian
functions and singletons [41]. Partial membership is expressed by the degree of membership
which is determined by evaluating the membership function for a given input value z. The
degree of membership is needed to evaluate the rules.

Rules for fuzzy systems are closely linked to if-then-clauses which are commonly used in
human communication. The rules map a condition for the system’s input to a consequence
for the output. Conditions for different operators are combined using operators such as
AND or OR. For these operators, several definitions exist [60]. The degree of firing jip,
describes the certainty with which a rule R; is fired, this is the extent to which it is taken
as true.

The most common fuzzy models are the Mamdani [44] and Takagi-Sueno [72] fuzzy
systems. They share the fuzzification algorithm, but apply different rules for inference and
different principles for defuzzification.

Mamdani fuzzy systems use rules of the form

where u;, denotes the K inputs, y is the output, 7 indexes the rules and A;x denotes the
fuzzy set which is used. The degree of firing for each rule is used to define a recommendation
for each output pp. rec.

There are two algorithms for defuzzification: centre of gravity and centre average. These
calculation rules accumulate the recommendations from all rules and determine the real-
valued output. The centre of gravity method calculates the weighted average of the centres
of gravity of all recommendations yp, ;... The only difference for the centre average method
are the weights: this method uses the degree of firing as the weight.

Singleton fuzzy systems simplify the defuzzification stage of Mamdani systems by simpli-
fying the output fuzzy sets to singleton fuzzy sets. The rules have the following form:

Ri . IF Uy = Ail AND Uy = AiQ . AND Up = Q;p THEN Yy = S;, (212)

where s; represents a single value.
Takagi-Sueno fuzzy systems use rules in the form

R; :1IF uy = Ajy AND uy = Ajp... AND up = a;p THEN y = fi(uy,...,u,), (2.13)

where f is an arbitrary function. Most commonly a linear function is used. The output for
this system is calculated as
y = > filw)pg,
> 123
where f;(u) is a memoryless function, often a linear combination of the inputs, and ppg, is
the degree of firing. As the rules of the Takagi-Sugeno fuzzy systems calculate a real value
as a consequence, the defuzzification stage and inference stage overlap.

(2.14)
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Fuzzy systems can be used as approximators for modelling dynamics externally. However,
there is also the possibility to model dynamics internally: past outputs and inputs can be
included into rules, too. Lilly [4I] presents a method for creating dynamic models based on
Taqgkagi-Sugeno systems and plant fuzzy systems. The consequence of each rule has the
form

x(t) = Ax(t) + bu(t) (2.15)

where x denotes the system states and u the inputs to the system

Although fuzzy systems are a black-box approach, the creation of a fuzzy system requires
expert knowledge to infer the fuzzy sets and fuzzy rules. An automated form of creating
fuzzy systems is obtained by adopting algorithms from for optimising the system.
The resulting systems are called neuro-fuzzy systems [56]. Dynamics are usually modelled
externally. Fuzzy systems generate transfer function models which are not conservative.
The parameters of a fuzzy system do not have physical meaning. Fuzzy systems can contain
piecewise defined functions for fuzzyfication, but these can be avoided by the designer. Fuzzy
systems are popular in modelling control systems.

2.8. Support Vector Machines

ISupport Vector Machines (SVMs)| are a relatively young topic in machine learning and
statistical learning theory. They were first published by Vapnik and Cortes in 1995 [13].
Although they were originally developed for classification and pattern recognition problems,
algorithms for regression problems followed quickly. do not suffer from the curse of
dimensionality. They have been successfully used in modelling circuits [52] 66].

In classification, the task for is to separate data into two classes by finding the
optimal separating hyperplane. The optimal separating hyperplane is the one that separates
the data with maximal margin [76]. Pattern recognition algorithms are separated into two
classes: hard margin classifiers and soft margin classifiers. Hard margin classifiers attempt
to find a hyperplane which classifies all members of the data set correctly. On real world
data, a hard margin separator can rarely be found. In this case soft margin classifiers are
used. Soft margin classifiers allow for classification errors and penalise misclassifications
using a loss function. for regression are closely related to soft margin classifiers.

Vapnik’s estimate functions
f Bd+{Y (2.16)

on [independent and identically distributed (i.i.d.)|] data (x}[y}) with i = 1,2,...,] with
l G' and [yl l —1,+1] for classification and [yj l R| for regression. [x} are the inputs and
[yl are the outputs of the modelled system.

The optimisation problem for determining the parameters w and b is constructed by
minimising the empirical risk

l
Rewp = B (2.17)
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where F; is the estimation error which is calculated by a loss function. Most commonly the
linear [glinsensitive loss function is used. The [SVM] algorithms developed by Vapnik are
called for using this loss function to penalise errors. The [glinsensitive loss function
is defined as

I£]= T} — f ). = max{0, [} — f &I et (2.18)

where |y} is an original value, f ) is an estimate and [¢|is the maximum permissible error.
The maximum permissible error is chosen a priori and controls the accuracy of the model [76].

In 2000 Scholkopf et alii published a variant of the which minimises the maximum
permissible error additionally. They introduce a parameter [ which realises the trade-off
between the maximum permissible error [ against the empirical risk [R.,,,} The resulting
algorithm is called [JSVM] [65].

[Least Square [SVME (LS-SVMs)| follow a slightly different approach [70]. They introduce
a small change to Vapnik’s original algorithm: they change the function for calculating the
empirical risk to

l
Remp,Q = ZEzZ (219)
i=1

and use equality constraints instead of inequality constraints. They also use the [glinsensitive
loss function to determine the constraints.

are black-box models. No knowledge about the circuit is needed in modelling.
The obtained model is a transfer function model. Inherently, can only model static
non-linear behaviour. Dynamic behaviour can only be added to the [SVM] using the Wiener
or Hammerstein approach. There is no internal approach for modelling dynamics. The
resulting model equations do not describe a conservative system. training is a
constraint optimisation problem which can be solved either by using quadratic programming
or convex programming. As in other black-box models, the parameters do not describe
physical properties and therefore cannot be used for statistical or worst case approximation.
There are fully automated approaches for creating [SVM] models including data generation
and selection [52] [66].

2.9. Comparison

This section compares the different modelling techniques which were introduced in this
chapter. Table compares general features: the level on which the models are used,
their compatibility with [SPICE}Hike simulators, their ability to model dynamic circuits,
the amount of prior knowledge which is needed to obtain the model and their degree of
automation.

Different levels in analogue design use different types of models. Lower levels require
high accuracy in representing the physical effects while high levels don’t require detailed
information about the internal mechanisms of a certain block but only need a representation
of its general functionality. Of the procedures presented in this chapter, only two are used

27



2. Behavioural Modelling

Table 2.3.: Comparison of different modelling approaches.

E 5

e 5 7 % :

3 - & g
Modelling Technique = O A €2 <<
Physical Modelling Transistor Yes Internal White Box Low
Equivalent Circuit Modelling  Transistor Yes Internal White Box Medium
Symbolic Modelling Circuit No Internal White Box Low
Classical System Identification  Circuit No Both Grey Box High
|Artiﬁcial Neural Networkls Circuit No Both Black Box High
Fuzzy Systems Circuit No Both Black Box Medium

Support Vector Machine Circuit No External Black Box High

]

to create transistor level designs: physical modelling and equivalent circuit modelling. All
other approaches are used to model analogue designs on circuit level or higher (Sec. .

[SPICE}Hike simulators use the [Modified Nodal Analysis (MNA)| to obtain the equation
system for a circuit. The [MNA]is based on Kirchhoff’s laws. The can only be applied
to models which describe the voltage and current relations on all their ports. Physical
and equivalent circuit models are directly compatible with the [MNA] In general, transfer
function models and state-space models do not describe voltages and currents at all inputs
and outputs. Those models can be simulated by [SPICEHike simulators by wrapping, e.g.
with dependent sources. Whether arbitrary models can be wrapped by a dependent source
depends on the capabilities of the simulation software.

All techniques in this chapter can be used to model non-linear static behaviour. However,
not all can model dynamic behaviour inherently. For techniques which do not offer means
to model dynamic behaviour directly, the Wiener or Hammerstein approach can be used
to add dynamics to the model. This is called external dynamic modelling in contrast to
internal dynamic modelling. Dynamics are modelled internally in physical, equivalent circuit
and symbolic modelling. For these approaches external techniques are not used.

(Classical system identification provides two main types of algorithms: transfer-function
and state-space models. For the former mainly external dynamics are used, for the latter
internal dynamics are more common. and fuzzy models can be used as static non-linear
approximator for a Wiener or Hammerstein approach, but for both methods there are also
internal approaches, namely tapped delay lines for and Neuro-Fuzzy Systems for fuzzy
modelling. can inherently only model static behaviour and can only be extended to
include dynamic behaviour using external methods.

Creating a model requires a certain amount of a priori knowledge. Whether modelling
can be automated and the amount of time which it takes to create said model is directly
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linked to the amount of expertise which is needed. Generally, the following is true: the more
a priori knowledge is needed, the longer it takes to create the model and the lower is the
grade of automation. Modelling approaches can be categorised by that into three groups:
white box, black box and grey box models. White box models require full knowledge about
the internal mechanisms of the circuit. Behavioural models that require a high level of
expertise are usually created manually and creating a model requires a lot of time. Black
box models are the exact opposite: no knowledge about the internal mechanisms of a circuit
is required, the model is created using only data which are measured at the input and
the output of the circuit. The creation of black box models can be automated for general
settings. Everything in between is called a grey box model. Typical examples of white box
models are compact models, equivalent circuit models and symbolic models. [SVMs| and [NNf|
are black box models. Fuzzy systems are also black box models, but creating the fuzzy rules
requires expert knowledge. In classical system identification, transfer function models are
commonly black box models while state-space models can be considered grey box models as
the designer can include a priori knowledge.

[SPICEHike simulators can handle all models which were introduced in this chapter. For the
[AGTAS|simulator, the mathematical formulation of the models is important. The root-finding
algorithm can handle non-linear functions, but fails on piecewise-defined functions. Table
compares the complexity and different characteristics of the mathematical formulation of
different models.

Table 2.4.: Comparison of the mathematical complexity of different models.

Model Function

Piecewise Domain-restricted Overall
Compact Model Yes Yes High
Equivalent Circuit Model Yes Yes High
Symbolic Model Yes Yes High
Transfer Function Model No Yes Medium
State Space Model No No Medium
Model Yes No Low
Fuzzy Model Yes No Medium
SVM| Model No No Medium

Compact models use different equation systems for different ranges of operations. Although
in newer models smoothing functions are used for the transition between the different
equation systems, older variants are defined piecewise. Therefore, all approaches which use
compact models — such as equivalent circuit models and symbolic models — also can contain
piecewise-defined functions. Fuzzy models and models can also contain piecewise-defined
functions, depending on the choice of the designer. The membership functions in fuzzy
models and the decision functions neurons of [NN| models can be piecewise-defined functions.
Transfer function models, state space models and [SVM] do not contain piecewise functions.
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Using any interval arithmetic for numerical calculations can lead to problems, if equation
systems contain domain restricted functions, e.g. the root function. Models which contain
these functions can lead to failure in solving the equation system. Compact models, equivalent
circuit models, symbolic models and transfer function models contain domain restricted
functions.

Chapter [I] introduced the [MC| analysis and [WCA] These methods vary component
parameters according to some predefined distribution function or interval. Therefore, these
analyses are only used on models whose parameters have physical meaning. For simulating
circuits with parameter variations with the [AGIAS| simulator, there is a trade off between
parameters with physical meaning and the number of parameters. The more parameters are
represented by affine forms, the larger the overestimation in each calculation step is and the
higher the probability that the root-finding algorithm will not converge. Table compares
the parameters of different models.

Table 2.5.: Parameters in different models.

Model Representation Number
Physical Model Physical High
Equivalent Circuit Model Physical High
Macro Model Both Medium
Symbolic Model Physical High
Classical System Identification ~Mathematical Medium
|Artiﬁcia1 Neural Network}s Mathematical Medium
Fuzzy Systems Mathematical Medium
Support Vector Machiney Mathematical Low

Parameters in physical models, equivalent circuit models and symbolic models have
physical meaning. These models can directly be used for statistical and worst case analysis.
In macro models only parameters which result from top-down modelling have physical
meaning. In bottom-up models the parameters may have physical meaning. Macro models
can only be used for statistical and worst case after careful consideration. Parameters in
the other models are mathematical parameters.

Physical models, equivalent circuit models and symbolic models come with a high number
of parameters. Macro models, transfer function models and state-space models from classical
system identification, [NN] models and fuzzy models have a medium number of parameters
which is dependent on the designer’s choice. [SVM] models have a very low number of
parameters.

Sec. [L.3] presented the conditions for creating models for affine simulations. The first
and second point on the list do not exclude any algorithm which has been presented in
this chapter. The third item on the list excludes every approach that returns models with

piecewise defined functions and a high number of non-linear functions. Physical models
tend to fall in either category: older models like the model are constructed using
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piecewise defined functions. Newer models are built using non-linear functions. Therefore,
physical models, equivalent circuit models, symbolic models and macro models cannot be
used. This leaves system identification, [NNs| fuzzy models and Of the four data
based modelling procedures, fuzzy modelling is the most complicated as creating the rules
for a fuzzy system and neuro-fuzzy systems cannot be automated. Finally, models with
fewer parameters have a higher chance of simulating successfully. From the remaining three
approaches comes with the smallest number of parameters. are chosen for
creating behavioural models of analogue circuits with parameter variations even though
parameters do not carry physical meaning.
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3. Support Vector Machines

In 1998 Vladimir Vapnik published the comprehensive book on [Support Vector (SV)| learn-
ing [76]. [Support Vector Machines (SVMs)| are based on the following idea: '[The [SVM]
maps the input vector (x| into a high-dimensional feature space through some non-linear
mapping, chosen a priori. In this space, an optimal separating hyperplane is constructed.” [T,
p. 421]

Vapnik’s general description introduces two concepts which are essential for
the mapping into a possibly high-dimensional feature space and the optimal separating
hyperplane. A hyperplane is written as

=Rl (3.1)

An optimal separating hyperplane is constructed to separate two classes of data with
maximum margin and minimum gradient. This is the basic formulation of an [SVM] With
the dot product in Eq. the algorithm is limited to solving linear problems. This is
overcome by mapping the data into a feature space. Solving a non-linear pattern recognition
problem is difficult. work around this by using a non-linear mapping function [©] to
map data into a feature space [H] in which the linear separating hyperplane is constructed.
The mapping function [6)] gives way to another important concept: the kernel function [f
Data for training are represented as

)7)7‘~7> X‘ (32)

In statistical learning the [x} are called patterns and the | are called labels or targets [64].
More common in engineering are inputs and outputs respectively which will be used through-
out this thesis. Although the input space can be an arbitrary construction, often the input
space is constructed from vectors of real numbers

[ =[RF. (3:3)

The output space takes two different forms depending on the application of the [SVM] There
are two main applications: pattern recognition and regression. For pattern recognition the
output space is a countable set of labels — with binary pattern recognition as the simplest

case and
Dhin = {—1,+1}. (3.4)

For regression the output space usually equals the space of real numbers

=Rl (3.5)
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3. Support Vector Machines

During training of an [SVM] a measure is needed to determine the quality of the estimate.
This is done using the risk and loss functions. Loss functions are functions which assign
a real value to measure misclassification or misprediction. This means they measure the
training error The risk function collects the single errors.

3.1. Statistical Learning Concepts

Fig. shows the learning model of learning from examples which was introduced by
Vapnik [76, p. 20]. It consists of a generator, a target operator and the learning machine.
The generator generates input vectors [x|  X] where [X] denotes the input space. The input
vectors are and are generated from some unknown probability distribution function

F(x]).

Target
X o o
Generator " Operator =Y
| Learning |<
Machine f(x)

Figure 3.1.: Learning model according to Vapnik [76], p. 20].

The input vectors [x] are fed into the target operator which returns the output values
[yl The function which transforms the input vectors is unknown, but it is guaranteed to
exist and does not change. Mathematically, the target operator represents an unknown
conditional distribution function F | which also includes using a function jy|= g.

The pairs that form the training set are drawn according to the joint distribution function
F = F({x)F(y|}x). The learning machine observes the training set and constructs an
operator that approximates the target operator. This process is called the learning process.
During learning an appropriate function is chosen from a given set of functions. The learning
problem is based on the general statistical problem of minimising the risk functional on the
basis of empirical data.

Choosing a function from a set of functions is an optimisation problem. In mathematics,
optimisation means finding the minimum or maximum of an objective function. The objective
function is a measure of quality for the optimisation problem. Optimisation problems can
be unconstrained or constrained; and there are also two types of constraints: equality and
inequality constraints [57]. Training an means solving a constrained optimisation
problem with inequality constraints.
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3.1. Statistical Learning Concepts

3.1.1. Generalisation and Overfitting

Generalisation is a central point in learning. If a model generalises well, it can estimate the
outputs for inputs that have not been available during training. Consider a learning model
in the real world, e.g. a student. Generalising well means that the student is able to learn a
rule from the given data and apply it to new data correctly. Not generalising well means
the given data are learnt by heart and new data cannot be handled correctly.

It is difficult to measure the ability of an algorithm to generalise directly. One such
measure is obtained by using two disjoint sets of data: the training set [X}r,q:, and the test
set [Xlress.- The training set is the data set on which the model is trained. Both its inputs
and outputs are known during training. The test set is not available during training. For
the finished [SVM] this set is completely unknown. The ability to generalise well can only be
calculated after training is finished.

This measure is based on the training error ] and the test error[e The training
error is calculated for each data pair [x}[y} in Epmm. For pattern recogmtlon, the error
measure is often based on counting the number of classification errors. For regression, usually
the difference between the original and estimated output or the norm of that difference is
used.

Ervads = Ilh — FGDI B L Mrvain (3.6)

where f(x}) is the estimate for the input [xJ. The test error is calculated on the test set.
Both the test set and the test error are defined in a similar way as the training set and
training error. The data pairs are denoted by the index k in contrast to the index ¢ of the
training data.

Tes ||I% f"c est' (37)

Usually, both measures are not given for each data sample separately, but the overall training
error and test error are calculated by averaging or summing up the errors for
each set.

Of course, the training error is a measure for the success of the training. Therefore, a
small training error is desired. A large training error indicates that the model is inaccurate.
The training error alone can not measure the performance of a model in a setting with
previously unknown inputs. That means that a model with a very low training error can
show very poor performance in a more general setting. This information gap is closed by
combining the training and the test error. Fig. illustrates the interpretation of these two
measures. There are two cases that denote a poor model: first case, the training error is
high, which was already discussed. This is called underfitting: the underlying model is too
simple. The second case is when the training error is low, but the test error is high. This
case is called overfitting and denotes a poor generalisation ability of the model. In this case
the training data are estimated with very high accuracy, but the underlying model is overly
complex and cannot estimate other data correctly [64].
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Underfitting | Fitting Overfitting

A e Testing Error
- —— Training Error

»
L

Figure 3.2.: Illustration of overfitting.

3.1.2. Risk

Optimisation problems require a function that serves as quality criterion. Section |3.1.1
introduced two possibilities: the training error and the test error. Minimising the expected
test error is called a transduction problem which is very difficult to handle “both computa-
tionally and conceptually” [64, p. 66]. Instead, the training error is chosen to define the
quality criterion. Sec. introduced the empirical risk as a sum of estimation errors.
Therefore, Eq. can be rewritten in terms of the training error

Remp = Z €Trainf (38)

i=1]

More formally, [SV] learning problems are function selection problems. From a set of
functions {f(x)} one function f*(x)) should be chosen so that it minimises

R— R(f) — f)dF (3.9)

where R is the risk functional, |£] is a loss function and F an unknown probability
distribution function according to which the inputs for training have been drawn. As F
is unknown, Eq. cannot be minimised directly. But as the inputs , e ,@ are
known, the task is to minimise the risk functional based on empirical data. This is one of
the main problems of mathematical statistics [76].

One common way to approximate integrals is to use a finite sum. In [SV]learning this
leads to the empirical risk minimisation induction principle where the empirical risk is

used instead of Eq. (3.9) [64].

Definition 3.1.1. Given a loss function [y} (X)) on a set of functions {f(x)} in
E and a sample ), ) e @@) 'rain drawn according to an unknown
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3.1. Statistical Learning Concepts

distribution function F on . Then the risk R( f. is approximated by the empirical
risk
Renp| = ‘ll f (3.10)

Loss functions are the basis to calculate both the risk R and the empirical risk [Rep,)
Section introduced the difference between the estimated output and the original

output [y] or some norm of that difference as a measure for the training error for a regression
problem. A more formal definition for loss functions is given by:

Definition 3.1.2. (Loss function [64, p. 62]) Denote by {|[y|[fx)[} X[ W X[ the

triplet consisting of [an input] x|, an [output] || and a prediction [f(x)l Then the map

XY X[V [0, 00) with the property =0 for allx] and [y will be

called a loss function.

3.1.3. Loss Functions

In other words, loss functions are strictly non-negative functions that return 0 if the
estimate equals the original output value. Therefore, the minimum of any loss function is 0
and can be obtained for any given [x] and [y}

For regression, loss functions use the amount of misprediction | f(x)| and do not
incorporate the input [x| separately to determine the quality of the prediction. Therefore,
loss functions for regression are written as | | f(x)|). Three loss functions were considered
by Vapnik [76]:

LA/ = U1/ &) (3.11)
T = {7/l (3.12)

Al f)| — & for | f(x) > ¢
L) X)) = 2 )
i) {é\ TP fo |— 7o) < (319)

the linear insensitive loss function (Eq. (3.11)), the quadratic insensitive loss func-
tion (Eq. (3.12)) and the Huber loss function (Eq. (3.13)), with

- (T BIE

Here [g| represents the maximum permissible error: all mispredictions smaller than [¢ are
admissible and the corresponding loss is set to zero. For [f] = 0 the linear [gHinsensitive loss
function becomes an [; loss function and the quadratic [Hinsensitive loss function equals an
Iy or squared loss function [64]. Similar to the maximum permissible error ] I the parameter ¢
is chosen a priori and determines which mispredictions are penalised according to a squared
function or a linear function.

~—
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3. Support Vector Machines

Per definition, loss functions can only return non-negative values. Therefore, the optimi-
sation problem cannot profit from negative errors. At the same time, loss functions cannot
represent the direction of a misprediction, as there is no information about whether the
estimate is larger or smaller than the original output. This information is incorporated
into so-called slack variables [¢] and [£7] for estimates which are larger and estimates which
are smaller than the output respectively. All mispredictions regardless of the direction are
addressed by .

From the loss functions, the distribution of [y] for a given [x] according to some underlying
functionality g can be calculated by minimising the log-likelihood

ol =2 —1np|,9)- (3.15)

The function p(y}[x}, g) gives the probability with which the loss for a certain pair (fy[x})
will occur. Table presents the most common loss functions and their corresponding
density models. For simplicity, the term is replaced by .

Table 3.1.: Common loss functions and corresponding density models [...] [64, p. 70]
[L]oss [F]unction [D]ensity i Jodel p
insensitive |||a exp |I||a
Laplacian H %GXP _|I|
Gaussian % \/% eXP(—EgE)

i D
Huber’s robust los { ' if |I| =0 o {exp if |I‘ <o

| | — 5 otherwise exp(§ — ||) otherwise

Polynomial = |I| ﬁ exp(— |I|d

if I < s " I B
Piecewise polynomial - - 1|I| B ! || =7 & exp(— 1) if ¢ <o
exp(a 7 — ||) otherwise

| — o1 otherwise

3.1.4. Regularisation

Minimising only the empirical risk can lead to numerical instabilities and can harm
generalisation. The most common way to avoid these problems is to restrict the set of
admissible functions. This technique is called regularisation and was introduced by Tikohonov

and Arsenin [73]. For kernel methods — such as — two special methods are used: a

!This formulation and the formulation used in Eq. 1' describe the same principle and lead to an equal
measure for the mispredictions for ¢ = o = 1.
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3.1. Statistical Learning Concepts

coefficient space constraint on the expansion coefficients of the weight vector in feature
space or a function space regularisation which penalises the weight vector directly [64].

The main purpose of regularisation is to stabilise the optimisation problem. This is done by
adding a stabilisation or regularisation term to the original objective function. The original
objective function for is the empirical risk [R,,,,] Together with a regularisation term,
the most commonly used objective function ® is obtained:

o = Q[f] + (3.16)

where (f) is the regularisation term and C' is a non-negative constant. The regularisation
term is a measure for the simplicity of a function. The constant C' is the regularisation
parameter which determines a trade-off between the empirical risk and the regularisation
term Q(f).

Considering the hyperplane given in Eq. , the standard choice for the regularisation
term for is the quadratic regulariser

alf] = 51 (.17

The geometric interpretation of minimising this regularisation function is finding the function
with the smallest gradient.

3.1.5. Optimal Separating Hyperplane and Soft-Margin Hyperplane

Separating hyperplanes are a basic concept in learning and have been used to create
classical learning algorithms [76]. They are used to separate two classes of data in binary
pattern recognition. If two classes are separable, the optimal separating hyperplane can be
determined. As most problems are not separable, the soft-margin hyperplane is used which
allows for misclassifications in the final hyperplane.

Hyperplanes have the general form

+bd+{Y (3.18)

The parameters [w] € X] and [)] € R] define the hyperplane and are determined during training.
There are numerous ways to describe one hyperplane by scaling one parameter set @
To get rid of that degree of freedom, the canonical form of the hyperplane is used. The

canonical form is obtained by scaling (w} b) such that
minfw] - x| {9 = 1. (3.19)

The point closest to the hyperplane therefore has a distance of .
Creating an optimal margin hyperplane requires solving an optimisation problem:

1
minimise ¢ = 2||||2 (3.20)
subject to B o) > 1 (3.21)
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3. Support Vector Machines

The constraints formulate the fact that the product of the original output and the estimated
output must be positive — equal to 1 in the ideal case.

The optimal margin hyperplane introduces one very severe limitation: data must be
separable for the algorithm to converge [76]. An optimal separating hyperplane can rarely
solve real world problems. To overcome this limitation, it is necessary to allow some error
to remain in the resulting [SVM] This possibility is created by the soft margin hyperplane.

Soft margin hyperplanes are designed to allow a certain amount of errors. Misclassifications
are incorporated into so-called slack variables |¢| > 0. These slack variables are used to relax
the constraints which leads to the following optimisation problem

1 N
minimise <I> = 2||||2 + C (3.22)
=1

subject to K HY) > 1 (3.23)

In this case the objective function is expanded by the sum over all slack variables. Creating
the soft-margin hyperplane makes use of all concepts introduced in earlier sections: the

empirical risk the loss function [£]and regularisation.

3.1.6. Kernel Functions and Feature Space

The previous section introduced separating hyperplanes. Hyperplanes are linear constructs
and can therefore not solve non-linear problems. However, most real-world problems require
the learning machine to construct some non-linear rule. Creating a non-linear rule is a
rather complicated task in input space. Here, two more key concepts are employed: feature
space [H] and kernel functions [k} The key idea is that data can be mapped from input to
feature space using some arbitrary function. As long as the dot product is defined in the
feature space, a separating hyperplane can be constructed.

Commonly the feature space is of higher dimension than the input space which makes it
subject to the curse of dimensionality. In approximation theory, the curse of dimensionality
describes that with increasing dimension the rate of asymptotic convergence decreases
drastically. This is avoided by using kernel functions [f} Kernel functions allow to calculate
the dot product in feature space without explicitly calculating the mapping into feature
space [64].

Kernel functions have the general form

) Bl (3.24)
where ) denotes the kernel function and is the mapping function :

from input into feature space.

For constructing kernel functions and feature spaces, there are two possibilities: construct-
ing a kernel function for a given feature space or start with a kernel function and construct
the associated feature space.
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Constructing a kernel function from a given feature space requires formulating the dot
product from the mapping function and obtain a formulation in input space — the kernel
function. Scholkopf and Smola demonstrate this approach on product features and obtain
the polynomial kernel [64, p. 27 et seq.]

ZEE el = & - )" (3.25)

where d is the order of the polynomial and (x) is the mapping function which maps data
x from the input space to a vector in feature space. The elements of this vector are all
possible dth degree products of the elements of [x| The dimension of the feature space of a
polynomial kernel can be calculated as

d+ N —1 (d+ N —1)!
(1) .

where NV is the dimension of x| and d is the degree of the polynomial. For real world scenarios
this leads to a very high dimensionality. Calculating the mapping explicitly would be very
costly. Using the kernel function given by Eq. makes use of the feature space without
explicitly calculating the mapping.

The second approach is to construct a feature space from a given positive definite kernel
function. This property is only defined for matrices, not for functions. To define positive
definiteness for a kernel function, the kernel matrix is defined as

Ky ={ A ) 4 (3.27)

A positive definite kernel function is defined as follows [64]:

Definition 3.1.3. Given a non-empty set and a kernel function |k| on ><. If (K ;)

is positive definite, the kernel function is positive definite.

This implies positivity on the diagonal, this is

>0 VXA (3.28)

R () ={ Al ) (3.29)

From positive definitive kernels, first a map into a feature space is constructed. Next, this
map has to be turned into a vector space. Finally, the dot product is defined on that vector
space so that the kernel function satisfies Eq. . Feature spaces which are constructed
like this are called [Reproducing Kernel Hilbert Spaces (RKHSs)| [64].

Beside the polynomial kernel (Eq. (3.25)) a variety of other kernel functions can be used.
From the polynomial kernel, two other kernels can be obtained: the linear kernel for d = 1

(Eq. (3.30))) and the inhomogeneous polynomial kernel (Eq. (3.31])):

) =Ix - & (3.30)
FE) = (- b + ) (3.31)

and symmetry
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where ¢ > 0 is a positive real constant and d is the degree of the polynomial. Vapnik suggests
using Gaussian [Radial Basis Functions (RBFs

) [76]
) — expl ||Il|| (332)

with o > 0, and sigmoid kernels

HEx]) = tanh(x(] - &) + ) (3.33)

with k > 0 and € > 0. Sigmoid kernels are not positive definite, but proved useful in practice
nevertheless. Scholkopf and Smola suggest using B,, spline kernels of odd order

> - 32p+1<u||> with B, = @) I_s.5 (3.31)
n=1

with p € N. The kernel calculates the 2p 4+ 1 fold convolution of the centred unit interval
[—21,1]. A second suggestion are arbitrary kernels

) = f(a@E)) (3.35)

where d is a metric on |X|and f a function on Ry [64].

The third important concept is the so-called kernel trick. This concept states that if an
algorithm is formulated in terms of a positive definite kernel, an alternative algorithm can
be obtained by replacing the kernel k| by another positive definite kernel [E [64, p. 34].

3.1.7. Optimisation

In mathematics, optimisation means finding an optimum for a given problem by minimising
or maximising a quality measure. Generally, constrained optimisation problems are written
as

minimise ¢ ()
X

subject to g;(z) <0 Vi€ [n] (3.36)
hij(z) =0 Vj € [m]

where ®(z) is the target function, g;(x) are inequality constraints, h;(z) are equality
constraints and n,m € N, with either n or m larger than zero. As every minimisation
problem can be transformed into a maximisation problem by multiplying the target function
by —1, the remainder of this subsection only deals with minimisation.

One common method to transform optimisation problems is the Lagrange multiplier rule.
It was suggested in 1788 by Lagrange for minimising a function with equality constraints [76].
Consider the optimisation problem in Eq. with n = 0. Both the target function ®(x)
and the constraints h;(z) and their derivatives are continuous. Assume that z* is a local
minimum in the optimisation problem and consider a function

(af Aoy A) Z Aihi(x (3.37)
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is called Lagrange function or Lagrangian and the coefficients A\, &k =0,1,...,m are
called Lagrange multipliers.

Theorem 3.1.1 (Langrange [76, p. 392]). Let the functions h;(z), i = 1,... = m, be
continuous and differentiable in the vicinity of point x*. If x* is the point of a local
extremum, then one can find Lagrange multipliers \* = (A, ..., \,,) and \g which are not
equal to zero simultaneously such that the following conditions (the so-called stationary

conditions)
[L], (2", A5, A") =0 (3.38)

hold true. That is
[ (z* 26, A) =0 i=1,...,n. (3.39)
To guarantee that \g # 0 it is sufficient that the vectors

Ry(z%), ..., b, (2%) (3.40)
are linearly independent.

The last important concept used to create algorithms is duality. It is directly
linked to the Lagrange multiplier method. The concept of duality means for every primal
optimisation problem in x one can formulate a dual maximisation problem in terms of A
by computing the saddle point of the Lagrangian. The solution of the dual problem is
guaranteed to exist following the Wolfe theorem which is based on the [Karush-Kuhn-"Tucker|
lconditions (KKTs)| [64].

The most important sufficient criterion for optimality is the Kuhn-Tucker saddle point
condition. It is often referred to as [KKT] as it is based on earlier work by Karush. While
the inequality constraints g;(x) can be included directly, the equality conditions are included
by splitting them into h;(x) < 0 and h;(x) > 0.

Theorem 3.1.2 (Kuhn-Tucker Saddle Point Conditions [64], p. 167]) Assume an optimisa-
tion problem of the form [Eq. /, where ®, g;, h; . fm’ i € [n] and j € [m] are

arbitrary functions, and a Lagrangian

(ac o )+ Z%Qz + Zﬁj i(x) where o; > 0 and j3; € . (3.41)

If a set of vam’ables z, 64 B_ with T , a; >0 and exists, such that for all x ,
a € 1]0,00)" and B &

Lz 0. 5) {8z, 5. 5) {Dw. 6. 5), (3.42)
then Z is a solution to [Eq. (3.36)].

These sufficient conditions become necessary conditions with the additional assumptions
that ® and g; are convex functions on the convex set , it g; fulfils one of the following
conditions [64, p. 167]

43



3. Support Vector Machines

1. Slater’s condition: There exist an x such that for all i € [n] g;(z) <0

2. Karlin’s condition: For all non-zero a € [0,00)" there exists an « such that
Yic1 aigi(z) < 0.

3. Strict constraint qualification: The feasible region [X] contains at least two distinct
elements, and there exists an x € X] such that all g; are strictly convex at x with
respect to [X}

The [KKT] conditions as described up to here are not particular useful for calculation. But
as they formulate conditions for a saddle point, they can be rewritten in terms of derivatives
of the Lagrangian: [64, p. 170]

1. Saddle point in z: 9Lz, a) = 9,P(Z) + Yie) @0,0:(T) = 0
2. Saddle point in &: 9|z, a) = ¢;(z) <0

3. Vanishing gap: Y a;9;(2) =0

3.1.8. Specialised Optimisation Algorithm: Sequential Minimal
Optimisation

[SVM] parameters can be determined using standard quadratic programming. For larger
problems, this is problematic as computing the kernel matrix can take very long or can
be impossible due to memory restrictions. The basic idea of the [Sequential Minimall
|Optimisation algorithm (SMO)| is to reduce the optimisation problem to the smallest
quadratic optimisation problem possible: an optimisation problem in only two variables. In
case of [SVM§] this means an optimisation problem in two Lagrange multipliers. The [SMO]
was published in 1999 by Platt [61].

The [SMO] has three components: choosing a multiplier pair for optimisation, calculating
the solution analytically and an algorithm to calculate the offset b. The requires the
[SVM] to have the following form:

1 N N
maxgmjze W(a) = —5 Z qiqj)ai Ca; + Zgiaz’ (343)
ig=1 i=1

N
subject to Zqia,- =0 (3.44)
i=1

0<a, <C (3.45)

The vector a is the vector of Lagrange multipliers and the vector q is a sign vector. The
elements of the single vectors are referenced by an index. The elements of the vector q
can take the values [1,—1]. The vectorised problem is obtained by first formulating the
Lagrange multiplier vector a and sign vector q. These two vectors can be obtained from
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the constraints of the optimisation problem. Then the target function is rewritten using the
two vectors. In this process the vector g is determined. As a final step, all constraints are
rewritten in terms of the vectors and their elements.

The algorithm uses two heuristics to chose the multipliers, one for the first and one for
the second multiplier. For the first multiplier, all multipliers are collected in two groups:
bounded and non-bounded multipliers. All multipliers that are not equal to C' or 0 are
called non-bounded multipliers. They are more likely than bounded multipliers to violate
the [KKT] conditions. The second multiplier is chosen to maximize the step taken in the
solution. As there might be solutions which don’t make positive progress, this heuristic
iterates over candidates for optimisation so that a pair with positive progress is guaranteed.

After two multipliers oy and «y have been chosen for optimisation, both multipliers are
limited to the square between 0 and C' by Eq. . Eq. further limits the solution
space to a straight line. The algorithm then calculates the minimum of Eq. on the
line given by Eq. . All equations used in this process can be derived analytically.

After the multipliers have been optimised, the offset b is calculated, so that the [KKT|
conditions are fulfilled for the two multipliers. The algorithm iterates over all multipliers
until is can’t find any pairs for optimisation.

3.2. Training Algorithms for Support Vector Machines

The algorithms which are presented in the following subsections follow the same general
method of construction:

1. First the primal optimisation problem is constructed from the risk and loss function.
The empirical risk functional and a regularisation term form the target function while
the loss function is used to construct the constraints.

2. The primal optimisation problem is then transformed into a single function using the
Lagrange multiplier method.

3. The Lagrange function derivatives with respect to the primal variables are calculated.
They are used to obtain a calculation rule for the gradient [w] and the dual formulation.
The dual formulation is obtained by resubstituting the derivatives into the Lagrange
function to remove the primal variables. The result is a quadratic optimisation problem
which is formulated in terms of the Lagrange multipliers only.

The dual optimisation problem is solved using quadratic or convex programming or are
solved by specialised algorithms such as the [SMO] The dual variables are then used to
calculate the primal parameters. Some parameters of an [SVM] have to be set before training
the model. These parameters are called hyperparameters.

Several algorithms are based on this general approach. This section presents Vapnik’s
g5 VM| for Classification (eSVC)| and [gSVM] for Regression (eSVR)| and Scholkopf’s [MSVM]
for Regression (VSVR)| Suykens’s [Least Square [SVM] (LS-SVM)|is not described here, as it

was not used as basis for the algorithms which are presented in Chapter [4]
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3. Support Vector Machines

3.2.1. Vapnik’'s Support Vector Machines for Classification

S VM| for Classifications (eSVCs)| can be constructed from both the optimal margin hyper-
plane and the soft margin hyperplane. As the optimal margin hyperplane is of no practical
significance, this section introduces the algorithm based on the soft margin hyperplane [76),
p. 408 et seqq.].

The optimisation problem for soft margin hyperplane classifiers has already been con-

structed in Eq. (3.22):
nigise @(wle}) = 1wl + 0S¢ (3.40)
minimise ®(wl}) = =||w| ; :
2 P

subject to &) > 1 (3.47)

From this the Lagrangian is obtained as

Gl i RURR A

where a; and 3; are the Lagrange multipliers. As[SVMg optimisation problems are formulated
with the inequality constraints larger than zero rather than smaller than zero, there is a
sign change in the Lagrangian (minus instead of plus).

Deriving the Lagrangian for the primal variables results in

S50 »

gt I =0 (3.50)
%:C—ai—ﬂizo (3.51)

These derivatives are substituted into the Lagrangian to obtain the dual optimisation

problem:
!
maxnmse W(a - Z o, III I + ZO%'
zg 1 i=1

! 3.52
subject to Z oz-» ( )
i=1

The first derivative is the calculation rule for the parameter

l
=> a. (3.53)
i=1

46



3.2. Training Algorithms for Support Vector Machines

This rule can be used to illustrate what exactly support vectors are: the Lagrange multipliers
«; are associated with a certain data pair ) The multipliers are determined by solving
the dual optimisation problem. Usually, only a portion of these is non-zero. The input
vectors x| associated with the non-zero multipliers «; are called support vectors.

The parameter [ is determined using the [KKT] conditions. According to the [KKT] only
the non-zero Lagrange multipliers «; correspond to constraints which have been exactly met.

Therefore for all o;; > 0
BB -1=0 (3.54)

holds. For each constraint, the offset [I} can be calculated as

H -y aj . , (3.55)

One method to calculate [f] is to average all [ [64].
Substituting Eq. (3.53)) into the hyperplane form results in the expansion of the hyperplane

_ Za ) +H (3.56)

This algorithm is extended to non-linear problems by using the kernel trick. The algorithm
has been developed using the linear kernel. Therefore, the general algorithm can be written

as
l
i=1

3.2.2. Vapnik’s Support Vector Machines for Regression

fx

~—

f(x

~—

In his 1998 book, Vapnik uses three different loss functions to construct for function
estimation: the[gHinsensitive loss function, the squared [ginsensitive loss function and Huber’s
loss function [76]. The most common variant is the constructed using the [g}insensitive
loss function, which was called by Scholkopf et alii [65].

A separating hyperplane
g=R L (3.58)
is estimated on L1.dJ] data

Edidh) - B ) AR (3.59)

As with the SVC], the basis for this algorithm is formed by the soft margin separating
hyperplane.
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3. Support Vector Machines

Using the regularisation term %||||2 and the insensitive loss function, the most common
training algorithm is

l
e ¢*>) _ ;HHQ + c; ) (3.60)

subject to (w] -} + ) (3.61)
b — & B+ (3.62)
g{g >0 (3.63)

with two hyperparameters: the cost C' and the maximum permissible error [g]
From this the Lagrange function is calculated as

o) -4+ o] - Sol] ol
_ZQEHEF (3.64)
S B

where , H and *)are the primal variables and the Lagrange multipliers ' and n*) are
the dual variables.
Differentiating the Lagrange function with respect to the primal variables results in

e :I )H =0 (3.65)

aﬂ Z (3.66)
dr
T

Eq. (3.65)) is the calculation rule for the parameter @ Substituting the derivatives into the
Lagrangian results in the dual optimisation problem

W(a () =—3 Z (aj —QH I
maximise 25 (3.68)

(%) l
=1 =

l
subject to » (af —a;) =0 (3.69)

i=1

=C-aP—pM =0 (3.67)

ol e o0, (3.70)

Z
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3.2. Training Algorithms for Support Vector Machines

Note that the dual variables 772-(*) in Eq. |D have been eliminated through the conditions

given in Eq. (3.67)).

Different loss functions lead to different dual formulations. The general formulation of
the optimisation problem is

mlnlmlse cI>|I*) ||I|| + C ) )) (3.71)
subJect to[w] - x| HA -y ’HEL (3.72)
subject to [y} {w] - & {8 g+ & (3.73)

49 >0 (3.74)

After calculating the Lagrange function, the following general dual optimisation problem is
obtained

l l
Wal") =3 Y (af — (o] - aj>E b+ <@; ~ )
maxi(rg)lise i’jzl = (3.75)
" —a + o +CZ { +T))
where Tl*) *') i al‘ (3.76)

subject to » (aj —a;) =0 (3.77)

i= 1
9
() C) ) (3.78)
04" (3.79)

9 _ g b o 44E7)
):mf{.)yc PR (3.80)

Although the formulation of the optimisation problem is different depending on the loss
function, all formulations result in the same calculation rule for the gradient (w| given
in Eq. (3.65). The offset [f] is calculated using the conditions. Solving Eq. (3.65))
for , expanding Eq. , and applying the kernel trick leads to the well known

formulation z
> (ai - ai) +H (3.81)
i=1

3.2.3. Scholkopf’s Support Vector Machines for Regression
are closely related to ESVRs, While in the accuracy is subject to the

designer’s choice of the maximum permissible error [, aim to minimise the maximum

f(x

~—
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3. Support Vector Machines

permissible error for highest possible accuracy. This additional optimisation goal is included

into the objective function via the hyperparameter

* 1 *
2(]d"19 = 512 + Pl Renalid ).

(3.82)

The parameter || realises a trade-off between the empirical risk and the maximum
permissible error [g] [f] is determined during training. This makes [ an additional primal
variable. As the also uses the [ginsensitive loss function, the remainder of the primal
optimisation problem changes only marginally: as || has to be larger than 0, an additional

inequality is added:

mlmmlse (IDII l HHH + C(m—i- Z(I%l ))

SubJect to@ @@j
b — ] - [+
glgld=>0

This is the Lagrangian for the

l
Ol [d ol 5. ) éuﬂn +cﬂ%+cz
=1

Differentiating for primal variables results in

5@'1 Zaz— ,H;:o

@ z:l
;é?) —C’—al(*)—nz() 0
!
gg —Za+a 0

50

(3.83)

(3.84)
(3.85)
(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)



3.2. Training Algorithms for Support Vector Machines

As in Vapnik’s algorithm, the first of these equations is the calculation rule for the
parameter [w] All four equations are used to construct the dual optimisation problem

W(a () =3 Z (aj — o I I
maximise 2= (3.92)

o) !

subject to » (o —a;) =0 (3.93)

i=1

ol e 0,C] (3.94)

Elj (f + o) (3.95)

With the calculation rule for [w| being the same as in Vapnik’s algorithm, the resulting
formulation is also the same. Both [l and [€ can be calculated from the constraints of the
primal problem using the KKT-conditions.
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3. Support Vector Machines

3.3. Support Vector Machines in Behavioural Modelling

5V Ms| are applied in various scientific fields. Common examples are recognition of hand-
written characters, image processing, e.g. cancer classification, face detection, brain scan
classification, control systems, and financial time series prediction. SVRs and [ySVRS have
also been used in automated approaches for behavioural modelling of circuits and systems.
Mielenz and Senger presented an automated procedure in 2009 and 2011 respectively [52] [66].

Input
Simulation Oﬁa:)luif Data Base
A
Y
SVM
Functional Library
Controller Modelling
Y
- Validation

Figure 3.3.: Modelling procedure as presented by Mielenz [52].

Fig. presents Mielenz’ basic system for an automated iterative modelling procedure.
It comsists of four main blocks: simulation, controller, modelling and a data base. One
iteration starts with simulating the original circuit. The simulation data is saved to the
data base. From the data base, data are chosen for generating or adapting the model, an
The controller observes two process variables and determines the setup for the next
iteration. As cannot model dynamic behaviour, dynamics are modelled employing an
external functional library [52]. This automated modelling system concentrates on creating
transfer function models. It is expanded to provide electrical models, i.e. models which
model the relations at each port, and better automation by Senger [66].
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4. Variation-Aware Behavioural
Modelling Using Support Vector
Machines

All standard modelling approaches are used to create models with real valued parameters
which give one single value output estimate for each input vector. These models are called
nominal models. The aim of this thesis is to create variation-aware behavioural models.
Variation-aware behavioural models are models which include the effects of parameter
variations. Sec. introduced affine forms as means for parameters to model these effects.
Therefore, this class of models is called affine models.

Algorithms for creating variation-aware behavioural models are based on the [SVM]
algorithm. are data-based models. Data-based models can only represent information
that has already been captured by the data. For nominal models, information is collected
by [DC] [AC] or transient simulation of the analogue circuit with different input stimuli. For
affine models, the effects of parameter variations have to be included into the data. Three
options to achieve this have been presented in Chap. [I} [MC]|simulation, WCA] and affine
arithmetic simulation.

With additional information available, there are two basic approaches to create models
which take parameter variations into account: external variation-aware modelling and
internal variation-aware modelling. External variation-aware modelling procedures first
train a nominal model using any standard approach presented in Chap. [2| and then expand
the model to include the variations. The internal variation-aware modelling procedure
modifies the training algorithm to train the parameters of the chosen algorithm to include
the variations.

For internal variation-aware modelling, [fSVR] and ySVR] algorithms are expanded to ac-
commodate affine parameters. The new algorithms are denoted by a circumflex over the first
letter and are called ¢ Support Vector Machine for regression with affine parameters (ESVR)
and [v Support Vector Machine for regression with affine parameters (VSVR)| respectively.
have two parameters which are estimated during training. These two parameters are
represented by affine forms. Using the primal-dual approach, new optimisation algorithms
are determined. Including information about variations requires additional constraints in
the primal optimisation problem. Therefore, the dual optimisation algorithms have more
constraints, too. These optimisation problems cannot be solved using the [SMO] algorithm.
The [SMOJis adapted to solve optimisation problems with additional equality constraints.
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4. Variation-Aware Behavioural Modelling Using Support Vector Machines

4.1. Data Base Representing Effects of Parameter
Variations

Black-box models can only represent information which is present in the data base. For
modelling analogue circuits, this information is obtained by simulation. Nominal models
are created using input-output data pairs which are acquired using [DC| [AC] or transient
simulation. The standard for black-box models are data pairs with multiple inputs and
a single output . For affine models, this data base has to be expanded to include
information about parameter variations. Affine black-box models are also based on [MISOJ
data and cannot model any parameter variations that are not reflected in the output data.
This information is obtained using one of the three analysis types which were presented in
Chap. [I} [MC| analysis, WCA] and simulation with affine arithmetic. These three algorithms
return different forms of output data which represents the effects of parameter variations.
This section details the different forms of data and presents one generalised form which is
then used for creating affine black-box models.

[WCA] returns two output values per input: the minimum and maximum output value
that can be obtained for the given parameters. The easiest algorithm for WCA]is the [CC]
analysis. More complex algorithms perform a line search on the boundaries of the parameter
space or even search the complete parameter space. In any case, data sets obtained from

[WCA] have the following form

b [ (). (e {2 - ({5 (4.1)

where the underline denotes the minimum value and the overline denotes the maximum
value of the output. The [WCA] does not return a nominal value. One way to obtain this
information is to run a nominal simulation of the circuit. For symmetric variations of
the output around the nominal value there is a second possibility: the mean value of the
minimum and maximum value can be calculated.

The [MC]| simulation returns one output value per sampled parameter configuration. The
output values contain statistical information such as expected value and standard deviation.
The data set takes the form

7Y1)7aY2>7"'77Yl) (42)

where Y; denotes the set of [MC| output values

Y Lo v (4.3)

and Ny the number of [MC| runs. For each input vector [x] there are Ny,;c output values.
The whole data set for a system with m inputs and one output consists of

Nset = (m+NMC) (44)

real values with [ as the number of samples. For small data sets, it may be possible to
operate on the complete data set. However, standard data sets for black-box modelling are
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4.1. Data Base Representing Effects of Parameter Variations

too big to be operated on: they require too much memory and too much time to be iterated.
Therefore, data from [MC| simulation has to be processed. There are different options for
processing: expected value and standard deviation can be extracted but there is also the
possibility to extract minimum, maximum and mean value.

The third option for obtaining data is simulation with the [AGTAS| simulator. This
simulator determines an affine form output value for each input value. These output values
carry information about which variations contributed to the output value. Data obtained

this way has the form
G i), 6boi). - - &) (4.5)
where the affine form output is

l
k=1 k,P k,

The noise symbols in the output can be separated into two groups: the first group are
parameters of circuit elements, the second group are parameters which cover the linearisation
error. The sum which collects all these parameters in Eq. is separated into these
two groups. The first group is denoted by the index P, the second by the index E. Noise
symbols of the first group carry correlation information based on the physical relations.
The second group does not carry additional information on physical relations. These noise
symbols are purely mathematical.

The form of the data and the information they incorporate are different for each of the
simulation approaches. Data from [MC| and [WCA] can be obtained for every circuit as those
algorithms are common in industrial simulation software. Obtaining data using [AGTAS]is
quite difficult as simulation often fails.

Tailoring a modelling procedure to one of these data sets limits its applicability. This is
especially the case if the procedure is tailored to operate on data from the [AGIAS| as the
simulator can only simulate a very limited amount of circuits. To avoid that, all three data
sets are transformed to one data representation: input value, and minimum, nominal, and
maximum output value.

(b s h {300). (e e (e (300)- - - G {eh {eh [5h)- (4.7)

This form is called min-nominal-max form. From here on, all maximum values are marked
by the overline, all minimum values are marked by the underline. Output values without
either reference nominal values. If nominal values are not available, the mean value of the
minimum and maximum value can be used as an alternative.

Tab. lists the different methods which are employed to calculate the min-nominal-max
form. This form can most easily obtained from data created by WCA]or simulation with
[AGTAS] as the output of the WCA]is already very close to the desired form and the [AGIAS]
output can be transformed with very easy calculations.

The missing value from [WCA] can either be determined by a nominal simulation or by
calculating the mean value from the given data. The latter only provides valid information

=
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4. Variation-Aware Behavioural Modelling Using Support Vector Machines

about a circuit’s nominal behaviour if the variations are symmetric to the nominal values.
This assumption may not hold for strongly non-linear circuits.

The processing effort for data from [AGTAS]simulator is almost as simple. The nominal
values are part of the affine form, they are the central values. The minimum and maximum
values can easily be calculated using the radius of the affine form.

Table 4.1.: Calculation rules to determine data in the form from different simula-
tion types.

Minimum Nominal Maximum

N

from nominal simulation

yo — rad(p) Yo Yo + rad(y)
min(Y) max(Y)
g el Y Y]+ el
—nolY] from nominal simulation + nolY]
E[Y] — nolY] EY|+nolY]

Converting data from [MC| simulation is more complex than for the other approaches.
There are two possibilities to obtain a nominal value: nominal simulation or calculating
the expected value of the output data E[Y] for each input. There are also different ways
to calculate the minimum and maximum values. The easiest approach is to determine the
absolute minimum and maximum from the data Y. However, this approach ignores the
statistical nature of the data completely: for [MC| simulation, parameter deviations are
usually modelled by normal distribution functions. The output data is distributed along
a normal distribution function. A normal distribution function cannot be used to obtain
an absolute minimum and maximum value of the distributed quantity. In [MC]| simulation,
the minimum and maximum values are different in each run due to different samples drawn
from the parameter space. Minimum and maximum values can be obtained using integer
multiples n of the standard deviation o[Y]. This approach determines the extent of validity
of the model. In case the expected value and standard deviation are used, the minimum
value is calculated as E[Y] — no[Y] and the maximum value as E[Y] + no[Y] respectively.

4.2. Concepts for Creating Variation-Aware Behavioural
Models

Chapter [2] introduced and compared different methodologies for modelling. A comparison
shows that models with physical parameters can directly be used for simulation with
parameter variations, but are difficult to be used in simulation with affine arithmetic. Models
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4.2. Concepts for Creating Variation-Aware Behavioural Models

with mathematical parameters can not be used for standard simulation with parameter
variations, but are easier to be used for simulation with affine arithmetic as they have often
a lower number of parameters. This thesis focuses on for modelling. have two
mathematical parameters which are calculated during training. Therefore, special concepts
for creating variation-aware behavioural models based on are required.

The standard steps to generate nominal black box models were introduced in Sec.
the data set, the model structure, a quality criterion (“criterion of fit”) and a measure to
evaluate this criterion. Fig. [4.1]shows a minimal modelling flow based on these steps. The
first step is data generation. From all data generated, two disjoint sets are formed: the
training set and the test set. The training set is then used to create the model using a
predefined model structure. The test set is used for the final step, validation: here the
quality criterion is evaluated using data samples from the test set to determine whether
model generation was successful.

Data Generation

Training Data"

Model Generation

Model‘

Test Data

/
Validation -

Figure 4.1.: Flow for creating nominal black-box models.

The general modelling flow for external variation-aware modelling concepts is presented in
Fig. [f.2] After data generation, a nominal model is created and validated using the nominal
values from the data set. For modelling, any existing algorithm for creating black-box
models can be used. The nominal model is then expanded into an affine model. For this
expansion, the distance between the nominal estimates and the minimum and maximum
output values is measured. This information is then used to create an affine formulation. In
the final step, the affine model is validated using the test and training data set.

Internal variation-aware modelling has the same flow as nominal modelling, see Fig.
Only the algorithms used for generating and validating the models are different. As of
writing there are no known algorithms to directly infer models with affine parameters. One
central problem in using affine arithmetic is that this arithmetic produces new noise symbols
in every non-linear calculation. Therefore, there are two options: either use a formulation
that is linearly in the affine parameters or use an algorithm that calculates the centres and
weights of the affine parameters separately. Constructing an algorithm that is purely linear
in the affine expressions is not possible with quadratic optimisation, which is the standard
algorithm in training [SVMs| Therefore, this work presents algorithms which fall into the
second category. Algorithms for creating with affine parameters are introduced in

Sec. 4.3l
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Data Generation

Nominal Training Data"

Nominal Model Generation

Y

. Nominal

Nominal Validation

~ Test Data
Complete Training Data"
Affine Model Generation
Affine V‘;lidation - Complete
Test Data

Figure 4.2.: External variation-aware modelling: Flow for creating affine black-box models
with external extension.

Data Generation

Training Data"

Affine Model Generation

Y
Validation

- Test Data

Figure 4.3.: Internal variation-aware modelling: Flow for creating affine black-box models
using specialised algorithms.

4.2.1. External Variation-Aware Modelling using Parallel Translation

Sec. introduced the basic concept of external variation-aware modelling for models
which reproduce a circuit’s behaviour with parameter variations. Models which are created
following this concept are based on a nominal model. Although any modelling method can
be used to create the nominal model, this thesis focuses on models.

Sec. [4.1] introduced a data base in the min-nominal-max form. The nominal values are
used to create the nominal model and the expansion to an affine model uses this nominal
model and the minimum and maximum values. One method to obtain this expansion is to
model the behaviour for minimum and maximum values with two separate models using
the same model structure as in the nominal model. Converting these three models into one
model with affine parameters is difficult and, in the general case, it is impossible altogether.

The easiest way to incorporate the parameter variations into the model and write the
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4.2. Concepts for Creating Variation-Aware Behavioural Models

parameters as affine arithmetic forms is parallel translation. It can be performed on arbitrary
mathematical functions. Fig. .4 illustrates parallel translation of an arbitrary non-linear
function by p; both upwards and downwards. In this example the mean value is shown by
the dashed line and the solid lines mark the minimum and maximum values.

— - - Mean Value
—— Min/Max Values

Figure 4.4.: Parallel translation by p; upwards and downwards.

Affine forms can be interpreted as a parallel transform of the centre value [zg| by a certain
value ny:l. Therefore, affine forms can be used to represent the parallel translation:

+ ey (4.8)

where the centre value is represented by a nominal estimate and the variations are
represented by the parameter p;.

Fig. shows the more detailed modelling flow for external variation-aware modelling
with parallel translation. Data generation is split into two steps: circuit simulation and
postprocessing. Simulating the circuit using one of the three methods —[WCA] [MC|simulation
and simulation with affine arithmetic — is followed up by a postprocessing step which ensures
that data has the min-nominal-max form. After the nominal model has been validated,
the distance for the parallel translation is determined. Sec. [I.3] postulated that the affine
model encloses the data. This means, the minimum and maximum estimated output values
have to lie outside the minimum and maximum output values. The distance parameter is
calculated as the maximum distance between the nominal estimates and the minimum and
maximum values of the training set.

pr = max{|£() B 1) B B L Fran (49)

Here p, is the distance, f(z;) is the estimated nominal value and |y| and [y are the minimum
and maximum output values respectively.
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b= Circuit Simulation
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Figure 4.5.: External variation-aware modelling flow: [SVMk as nominal model structure
with parallel translation.

Chap. [ introduced as the basic model structure, which gives the resulting model

the mathematical form
" ﬁ I pl (4.10)

where “ 1s the affine model estimate, f is the nominal [S estimate, p; is the distance
as per Eq. (| and [g}, is the noise symbol of the affine model.

This afﬁne model is then validated against the minimum and maximum values from
the test data set. Validation is based on the same principle as calculating the distance for
parallel translation: the model has to enclose the original data. The measure to determine
the violation of the original data range is called modelling error. The affine model violates
the enclosure condition if its minimum output values are larger than the original minimum

f()| = f(x

~
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4.2. Concepts for Creating Variation-Aware Behavioural Models

values or if its maximum output values are smaller than the original maximum values
respectively. The model is simulated with [AGIAS] to obtain data for comparison with the
test data set. The modelling error |¢|is defined as

= max{o[g} - F&). £ () )} (4.11)

where overlined quantities represent maximum values and underlined quantities minimum
values. The three arguments of the maximum function represent no violation, violation
of the upper boundary, and violation of the lower boundary respectively. A model which
encloses the original data returns a modelling error of zero. If the modelling error is not
equal to zero, the model can be corrected by using the modelling error [e| as distance for
another parallel translation. This gives the most general form of an affine behavioural model

based on parallel translation:
e +dp .- (4.12)

Parallel translation has one big disadvantage: it can only generate tubes of constant width
independent of the input value. In the example given above, this width is given as

orad(f(x)) = 2(ps + €). (4.13)

This does not sufficiently model real world data. In real world data the distance between
the minimum and maximum varies over the input values. One such example is the class A
amplifier which was used to introduce simulation of circuits wit parameter variations: the
top graph in Fig. shows a plot of the output values over the input values. While in the
saturation region the output range is very small, it is quite large along the operating region.

4.2.2. Internal Variation-Aware Modelling with Support Vector
Machines

External variation-aware modelling with parallel translation provides a fast, all-round
algorithm for creating variation-aware behavioural models. The resulting models have a
constant distance between minimum, mean and maximum values. Usually, the original data
describes ranges of varying width. Therefore, the overall accuracy of models created by the
external variation-aware modelling flow from Sec. is rather low.

Internal variation-aware modelling can overcome the disadvantage of parallel translation
by directly varying the parameters of the model. This offers the possibility to produce model
output ranges with varying width for different input values. The higher overall accuracy of
these models is traded off for the complexity of the training algorithm.

Using affine forms as parameters introduces a new difficulty to modelling. When training
non-linear models, the optimisation algorithms are often non-linear in the model parameters.
When trying to train affine parameters directly, non-affine operations introduce additional
noise symbols to enclose the linearisation error. This makes it difficult to determine model
parameters.
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There are two ways to avoid additional noise symbols: constructing an algorithm with
only affine operations or estimate centre values and weights separately. Only addition,
subtraction and multiplication with a constant are affine operations. A training algorithm
based only on these operations could not be formulated. In original SVM4 the gradient is
calculated as an expansion of the Lagrange multipliers. These multipliers are determined by
a quadratic optimisation problem. Determining an affine gradient directly means that the
multipliers are represented by affine forms, too. The calculation rule for the affine gradient
is derived from Eq. by solving for w|and replacing [w| and the Lagrange multipliers
by affine forms:

!
=Y - da- (4.14)
=1

(%)

i

with the affine multipliers &
tion problem

. These multipliers are determined by the quadratic optimisa-

maxi(rr)lise l l (4.15)
Z(a;‘ +ay) +<d:f ~ay)
i=1 i
I
subject to Y (& — &;) =0 (4.16)
i=1
al? €0, C (4.17)

Assuming each multiplier o?,g*) has one correlated noise symbol, the optimisation problem
introduces new noise symbols each time the target function is evaluated as the square
function is a non-affine operation. Standard solvers for quadratic optimisation problems use
non-affine operations and so does the [SMO] None of the known algorithms could be written
without non-affine operations.

The second option separates each affine parameter into multiple real-valued parameters:
one for the centre value and one for each weight. This enlarges the algorithm significantly.
The size of the algorithm translates directly into solver run-time. Furthermore, the data
base has to contain enough information to train multiple weights simultaneously without
constructing an additional optimisation problem for the weights.

have two parameters which are determined during training: the gradient and the
offset. Using affine forms for both parameters allows to model different output ranges. As
the data only contain information about the centre values and the envelope of the data — the
minimum and maximum values — one independent noise symbol per parameter is introduced.
To determine the centre values and weights additional constraints are included into the
optimisation problem.
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4.3. Extending the Support Vector Algorithm

Sec. [3.2] introduces training algorithms that determine a hyperplane. In this extension
the hyperplane’s parameters are replaced by affine forms: the gradient W|and the offset E[
Fig. 4.6| shows the effects of varying these two parameters: varying the offset is a parallel
translation (see Fig. ; varying the gradient causes the planes to swing open (see
Fig. . Combining these two results in a bow shape as shown in Fig. [4.6¢| This allows
the modelling of different widths of the output values and with the kernel trick this solution
extends to non-linear problems.

-~ | - Nominal A
= > — Min/Max

(b) Variation of the slope w. (¢) Variation of both offset b and slope w.

Figure 4.6.: Variations of the parameters of a straight line g(x) = wz + b.

The min-nominal-max form of the data base emphasises the envelope of the data. The
hyperplane is extended to describe a range by the affine parameters. Affine forms can contain
an arbitrary number of noise symbols. The number chosen for the new [SVM] algorithms
is limited by the information available from the data base and the size of the resulting
algorithm. As the weights are determined separately, each additional noise symbol increases
the size of the algorithm. With the emphasis on the envelope of the data, one noise symbol
per parameter is used. This leads to the affine hyperplane formulation

JEREE IERERED (4.18)

This formulation introduces the affine gradient parameter [w] and the affine offset
B <[ HbE} The parameters have been expanded to affine forms using two uncorrelated
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noise symbols [g], and [}, respectively. The weights of these noise symbols, [wj] and [b;] are
the two new parameters which have to be determined by the optimisation algorithm.

As illustrated in Fig. the parameter [by| realises a parallel translation. The maximum
permissible error || can be interpreted similarly: by using the [glinsensitive loss function, a
tube is constructed around the original values which marks the area for correct estimates.
This tube is constructed by parallel translation by the maximum permissible error. As both
and [by] represent an area that is constructed by parallel translation, [b)] is chosen as

NSE! (4.19)

At this point note should be taken that the letter ¢ is used for two purposes in the context
of this thesis: it denotes the noise symbol in affine forms and the maximum permissible error
in the e-insensitive loss-function. To distinguish these two uses, the following convention is
used: if the € has an index, it represents a noise symbol in an affine form; else, it represents
the maximum permissible error of the [gfinsensitive loss function.

In the original algorithm, the regularisation term represents the geometric interpretation
of searching the hyperplane with the lowest gradient. This basic idea from the original
algorithm is still used to determine the centre values. Following Sec. [T, the model should
enclose the data as closely as possible. This means the space enclosed by the minimum
and maximum hyperplanes should be minimal. The minimum and maximum values for the
hyperplane given in Eq. are calculated as follows

() T + [wik| +bd+ [Ba] (4.20)
F ) wl— Wik +od - B (4.21)

In the one dimensional case, the area between f(z) and f(z) is calculates as

A= ["(f@) - fa)de (4.22)
— /:2(|w1x\ + [by])da (4.23)
_ /: 2(—;|w1|a: by |)dz + /0962(;|wl|x T by |)da (4.24)
= [wn|(T* + 2°) + 2[by | (T — z) (4.25)

with Z as the maximum and z as the minimum input values. The resulting formula is still
dependent on the weights of both noise symbols. If this is used to expand the optimisation
as is, the resulting optimisation problem cannot be used using quadratic programming.
As by is chosen equal to the maximum permissible error, only the first term of the sum is
considered for optimisation. As data can always be scaled so that the factor (Z° +z°) equals
1, only the term is included into the optimisation problem. is considered as a second
regularisation term, analogously to %||||2 Minimising [w;| means minimising the variation
of the gradient.
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4.3. Extending the Support Vector Algorithm

The next step is to apply a cost function to the distance between the minimum and
maximum estimates and original minimum and maximum values. This cost function is the
[Finsensitive loss function. And as for the nominal values, constraints are calculated from
this quality measure. Instead of two constraints for the nominal values, six constraints with
two for minimum, nominal and maximum values each are included into the optimisation
problem.

' SERK! (4.26)
b — (o - & o) <[+ (4.27)
+|-|+||)S+<1- (4.28)
— (o - B + [wal - B Al + Bul) LA+ & (4.29)
1 = [wi] - Bl oo~ i) {7 L+ (4.30)
—ﬁ B — ] - 5| +Hod — ) LA+ (4.31)

Where () are the slack variables to measure misestimation of the nominal values, and (; (*)

and 51( are the slack variables to collect misestimation of maximum and minimum values
respectively.

With the choice of [by] the new regularisation term based on [wy] and the additional
constraints for minimum and maximum values, new [SVM] algorithms can be constructed.
The following sections present new [SV]algorithms which estimate hyperplanes with variations.
One group is based on Vapnik’s algorithm, the other on Scholkopf’s algorithm.
As these algorithms are used for modelling analogue circuits, only algorithms for regression
are presented.

4.3.1. £ Support Vector Machines with Affine Parameters

The is the affine expansion of the ESVR] The training algorithm estimates a hyperplane
where both the gradient and the offset are represented as affine parameters

W+ (4.32)

using the [gHinsensitive loss function. With an additional regularisation term based on
additional constraints for minimum and maximum values (given by Eq. (4.26) to Eq. (4.31))),
and additional slack variables, the following optimisation problem is obtained

efdwlld”, ¢, 6% = llw + 1w
minimise ! (4.33)
o o S +oz+<@-+<:+ai+a:>
=1

subject to | +H ) (4.34)
b+ (4.35)

A

A
o | [on ]
o] [

< |
E
=

65



4. Variation-Aware Behavioural Modelling Using Support Vector Machines

(ol - b + [l - B HA+ Bul) 7 L+ G (4.36)
B — o - B+ ] - B8+ ) L9+ ¢ (4.37)
ol B — il - Bl H{H = ) {5 L+ (4.38)
b — (v - B — vl - B HE - ) 4+ o7 (4.39)
f.¢9 6 >0 (4.40)

For creating the Lagrangian, additional multipliers 8, %, k| and A" are introduced.
This leads to the Lagrangian

O wIEd ), ¢, 60; 0, 85 A0 5 ) A0y

~ Lol + —||w1||2+0§:<H+I+<@+<Z 56

H*EF

iRl

E —\EHH—M» "
, 'E_'] EHH—II)—%)

—;v:+a:+~E—r] EHH—H))

! ! l ! ! !
_ZUH an Z’%Q—Z"GIC;—Z/V@—ZA%;
i=1 i=1 i=1 i=1

with o, 8% ) p®) ) A& > 0. Using affine forms results on additional primal vari-
ables. Deriving the Lagrangian for the primal variables results in

e N D (1.42)

A Sgnl)

@ = Wi — Z(Bz* —Bi— + %) =0 (4.43)
- sgn(wi|y |ELN’

ai 4)

= F—o+ B =B+ =) =0 4.4

T ;(a a; + B = B+ =) (
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aﬂ !
= =2 (B =By ) =0 (4.45)
o=
6%?) =C - ozz(*) - 771(*) =0 (4.46)
dll * ()
dl SEENG)

In the original algorithm, the derivative for [w| forms the calculation rule for the gradient
parameter. This holds for the derivative for here, but not for the derivative for [w]
With the sign function, Eq. can neither be solved for nor be used to create an
optimisation problem that can be solved by quadratic or convex programming. The sign
function can be removed from the equations by using the symmetry property of affine forms.
Consider the standard notation of the affine form representing the gradient

€ [-1,+1] (4.49)

In the one dimensional case, solving Eq. (4.43]) for [w,| while ignoring the sign function results

m
l

wy = sgn(w) Z(ﬁ: — B = A )|zl (4.50)

=1

When substituting this function into the affine form, the parameter w; is multiplied by
a noise symbol. The sign function can return three values: —1 for negative values, 0 for
zero and +1 for positive input values. The noise symbol represents the interval [—1,+1].
Multiplying these quantities,

+1 ifw; <0

sgn(wl) - [-1,+1] =[-1,41] - <0 ifw; =0 (4.51)
-1 ifw; >0

= [-1,+1], (4.52)

shows that the resulting interval is [—1,+1]. Therefore, the sign function can be dropped
from Eq. (4.43). The resulting derivative is

dz
oW

=W

—_

B - B %)H 0 (1.53)
=1

and the resulting calculation rule can be determined by solving Eq. (4.53)) for .
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Substituting the derivatives into the Lagrangian results in the following dual optimisation
problem

W(al?, B9 4y =

—*Z —ai+ 8 =B+ — )

i,7=1
<w—w+@—@+ﬁ—w@-i
maximise . . i} (4.54)
ol B A -5 Z B = Bi—vi +7)(B5 — B85 — ;5 + )yl
z] 1
el + i+ 5 +ﬁi+v;‘+%)
! I !
i=1 i=1
!
subject to Y (af —a; + B — B+ —7) =0 (4.55)
i=1
!
DB =B =% +7) =0 (4.56)
=1
0< o, Y "< (4.57)

The multipliers 77( ) l(* , and )\ ™) have been eliminated from the optimisation problem

by substituting the derlvatlves into the primal optimisation problem and by the fact that
Lagrange multipliers are larger than or equal to zero by definition.
From the derivatives, two calculation rules are obtained: one for [wg| and one for

Wg = Z — o+ B =B+ - Z (4.58)

W1 = Z (BF = Bi — v + ) III (4.59)

With [b] chosen to equal [g only one parameter is left to be determined: [b)] Here the same
approach as in the original algorithm is employed and [by is determined using the
conditions.

The formulation from Eq. (4.32)) is then expanded to

l
: Z(Oé; —a;+ B =B+ — %‘)
i=1
¢ . . (4.60)
Z(ﬁz’ —Bi—i + %)\‘
i=1

Hod +eH

68



4.3. Extending the Support Vector Algorithm

where k denotes the kernel function used to solve non-linear problems.

This algorithm uses one set of constraints for each minimum, nominal, and maximum
values, resulting in six constraints in total. Solving the optimisation problem requires to
calculate the kernel matrix. For smaller problems the kernel matrix can be calculated
completely. With a kernel matrix at 9 times the size of the matrix of a nominal algorithm,
the algorithm is almost guaranteed to run into memory problems. Additionally, this
algorithm does not use the full potential of the symmetry property of affine forms.

The size of the algorithm can be reduced by removing the constraints associated with the
nominal value from the primal optimisation problem. This also represents the underlying
assumption that data is symmetrical to the nominal value and therefore the nominal value
can be determmed from the minimum and maximum values. Doing so removes the Lagrange
multipliers a ) from the resulting dual optimisation problem and the solutions for the
expansion of the hyperplane. To differentiate between the two forms, the algorithm with the
full set is called and the reduced size algorithm is called with both numbers
referencing the number of constraints in the primal optimisation problem.

The resulting dual optimisation problem for the is

* 1 ! * * *
w(B,4) "3, Z — B+ =B — B+ — %’) ' '
12 08— B =) + )b
— Z z . — . — . . X . X.
ma(x)1m(1§e 2.5 LA A A [ (4.61)
ﬁz 77,
(Bi + B+ + )
! 1
+> (B — 51‘) +> (v - %’)
i=1 i=1 [ |
!
subject to Y (B — B+ — %) =0 (4.62)
i=1
!
Y B =Bi—7 +7)=0 (4.63)
i=1
x40 <0 1)

Only the calculation rule for the gradient’s centre value is changed:

I
=D (B =B+ - %‘) (4.65)
i=1
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and the expansion of the [SVM] hyperplane is

l
Fel=S5 - B+ — %-)H
=1
l
Z(BZ‘ — B+ m||
=1

Hod H{eH

where k denotes the kernel function used to solve non-linear problems [40].

4.3.2. v Support Vector Machines with Affine Parameters

(4.66)

The[eSVR]is based on the[eSVR|and comes with the same basic advantages and disadvantages:
it offers designers full control over the accuracy, but it is difficult to use when trying to
obtain the best model in terms of the maximum permissible error. To create affine models
with the smallest maximum permissible error [ the algorithm is used as a basis. The

new algorithm is called accordingly.

Just as its parent algorithm, it extends the primal optimisation problem by the
parameter || and includes the parameter || as an additional primal variable.

(I)*)7 Cz(*) (5(*)

imise
g ¢ o)

=

m

|E OIIW1

[0}

@é@é

1 1
= S llwoll® + S flwn |

<IE|+EI:<H+I'+Q+Q +0; +6;))

+|l| g L4+
| HA+ ) L+ ¢

- b)) l+5

| HY— Pi)) {4+ 47

The parameter || has to be chosen by the designer before training. The same boundaries
apply to choosing [ as for the original pSVR] algorithm.
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With additional multipliers for the new primal variable, the following Lagrangian is
obtained

DEIIEEE. ¢, 6) = Slhwol? + Slhual? +

l
+CZ+Q+<;‘+5Z-+5;‘)
=1

-

Q

Q)
=
=

|
=
X ]
=

E - H| +H— \Em
E - lﬂ | Ew +H— ||> —%)
l ‘@'E—M H|+H—|E|)>
—12172‘+5;*+ 1 -E_ |ﬂ . E‘ +|E|_ !I) )

! ! l l l !
- 27] - ZU - Z’%Cz - Z/‘&:Cz* - Z)\i5i - Z/\f(s; —
i=1 i=1 i=1 i=1 i=1 i=1

(4.75)

where ag*),ﬁi(*) ) i(*) , f*),/{,(*),)\l(*),u > 0 are the Lagrange multipliers. This Lagrange
formulation differs from the formulation for the by only one term: Deriving this

Lagrangian for the primal variables results in

az:l * * * * .
:WO_;(%—%‘F@—BML%‘—%)H—O (4.76)
aﬂ * *

:WI_Z(Bi —Bi— i +%)|E|»| =0 (4.77)

=1
L
Tl (i —a;+ 8] =B+ —v)=0 (4.78)
i=1

am

e =0 — +7%)=0 4.79
] i:l(ﬁ Bi =i +%) ( )
3%[% =C-al =" =0 (4.80)
B o -k 0 (4.81)

Y
EO N
*

71



4. Variation-Aware Behavioural Modelling Using Support Vector Machines

aZZI

;s =C - =AY = (4.82)

aﬂ CI—[L Za +a;+ 8+ 8+ +7) =0. (4.83)

The sign function in Eq. (4.77)) has been eliminated following the reasoning given in Sec.

Substituting these derivatives into the Lagrangian results in the dual optimisation problem

for B<SVRS

W(al?, 47 2(") =

—*Z —a;i+ B =B+ — )

1]1

<w—w+@—@+ﬁ—wi-a

maximise (4.84)
OZE*),BZ(*),’YZ(*) k k *
-5 Z B = Bi—vi +7%)(B5 — B —; +%)’E ' |
z] 1
! I !
+> (o I +Z g — 1 +3 (0 =y
=1 =1
l
subject to » (af —a;+ B — B+ —v) =0 (4.85)
i=1
z
B =Bi— +7)=0 (4.86)
6' (ai o+ 6+ B+ +7) =20 (4.87)
0<a ) B9 A0 <o (4.88)
The multipliers ng*), )\E , and p are eliminated in the process of creating the dual

optimisation problem.

The calculation rules for the gradient parameters [wg| and [w] for the are the same
as for the Therefore, the expansion for the original hyperplane is also the same. As
for determining the offset parameters [b| and [b;] are determined by the [KKT] conditions.

As for ESVRS| a reduced algorithm with four constraints is obtained by removing the
nominal value and its respctive constraints from the training algorithm. The resulting dual
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optimisation problem for the is

W (B, :—*Zﬁz Bi+7 =) (B8] = 65+ — 7'
,Jl

mggf)im&?e —= Z Bi=Bi—v +7)(B] — 8=+ II I| (4.89)
i i

1] 1
! ] !
+> (6~ ﬁi) +> (0~ %-)
i—1 i=1 [ |
!
subject to > (87 — Bi+~v — ) =0 (4.90)
i=1
!
B —Bi— +7%)=0 (4.91)
=1
0< B < (4.92)

The changes to the algorithms have the same consequences as for the algorithm.

4.4. Implementation

Sec. introduced the basic conditions for generating variation-aware behavioural models:
affine parameters, enclosure of the original data, no piecewise or strongly non-linear functions,
and semi-automated generation of models. Furthermore, affine arithmetic should not be
used for training and the resulting models have to be simulated successfully with the [AGIAS
simulator. The structure of the new [SVM] algorithms guarantees all but enclosure, semi-
automated generation and models which can be simulated in [AGIAS| These three conditions
have to be guaranteed through the modelling flow. Fig. details this modelling flow.

Data for modelling are generated using Saber. Stimuli are generated automatically. The
basic idea for this automated data generation is available in [66]. Parameter variations are
included by using either [MC]| simulation or WCA] Then, data are processed to obtain the
min-nominal-max form. The final step in data generation is splitting the data into training
and test set.

Then the affine model is generated. ESVRP, ESVRY, PSVRHY, or PSVRE can be selected
as training algorithm. The two original algorithms, and pSVR] are implemented for
comparison. The optimisation problem is solved using [CVX] a package for specifying and
solving convex programmes, [29, [30] or an extended version of the algorithm. The
extended algorithm is described in Sec. [4.5] The CVX solver is very fast even though the
complete kernel matrix has to be calculated. Its disadvantage is that it has a tendency to
assign a very small non-zero value to each multiplier. This selects all data points as support
vectors. The extended [SMO] algorithm is much slower, but selects only a subset of the
data vectors as support vectors. For the CVX solver, an additional model reduction step is
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————— - Simulation with Saber

Y
Data Postprocessing

"Training Data

Affine Model Generation

i Test Data
! Y
- ----+ Simulation with AGIAS
|
Pt Failed: 0
Validation atled: ¢ > !
"Passed: e=0 Model Adjustment
Finished - !

Figure 4.7.: Implemented flow for training . with interval parameters.

included. This reduction step sets multipliers with values several dimensions smaller than
the maximum multiplier value to zero.

The first validation step is simulating the model using [AGIAS| with the same stimuli used
in the simulation with Saber. If a model cannot be simulated with [AGIAS] successfully,
validation cannot be carried out. [SVM] algorithms cannot guarantee to find a model that
encloses data as this information is not part of the optimisation problem. In the second
validation step, the output estimates are compared with the complete original data set. This
steps calculates the modelling error as measure for the model’s quality. The modelling error
e was introduced in Sec. [1.2.1] and is defined as

€= maX{O??@' o mv f(xz) - Y, } (493)

The modelling error e is positive, if the original maximum values are larger than the
estimated maximum values or the original minimum value is smaller than the estimated
minimum value respectively. If the modelling error is larger than zero, validation has failed
and the model has to be adjusted.

Model adjustment is based on the same principle as external modelling. The model is
adjusted by using the modelling error as distance for parallel translation. For models,
this results in the following model equation

F b Lo +od +e ] + €)- (4.94)
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4.5. Extended SMO Algorithm for Training Affine SVMs

The new [SVM] algorithms cannot be solved using the standard [SMO] First and foremost,
because the [SMO| does not take the second equality constraint into account, and second,
the new algorithms cannot be written in the vector form given in Sec. [3.1.8] This section
introduces an extended vectorised form of the optimisation problem and an extended version
of the [SMOQ] algorithm which is specifically tailored to train affine The is used
to demonstrate the new algorithm. For ease of reading, the dual optimisation problem for

the ESVR is
Wl 47217 =

1 X %
52 —a;+ 58 = Bi+v — %)
(0f — o+ 85 = B+ — vl [
maximise i} . . (4.95)
RN -5 Z Bi = Bi =i +7)(B5 = B — 5 + )l ]
’L] 1

—eai + i + 87 + B+ + )

i=1 i=1
!
subject to 3 (af — a; + B — B+ 77 — ) = 0 (4.96)
i=1
!
DB =B = +w) =0 (4.97)
i=1
0< o’ g <C (4.98)
The vectors a and q are determined from Eq. (4.96). For the these are
a= [ajvai76;75ia7;k;’yi]T (499)
q=1[,-1,1,-1,1,-1]". (4.100)

With these two vectors the target function can be rewritten:

W(a) = 3 Z qzq]a aH I _IZ q;3;
2] 1 1

N Z 61 P)/z +71 5] ﬁj _7;+7J)’E ’ ’

z]l

(7 +a»+ﬁ;‘+6i+ﬁ+%>
l

=1

(4.101)
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The last line of this equation can be reformulated by gathering the output values in one

vector
Ly = [y {sh ({5 [ ()" (4.102)

To reformulate the second line in terms of the vector a, another vector is needed. This
vector is constructed as

r= [0,0, 1,-1,-1,1" (4.103)

where the zeros mask the multipliers a Usmg these two vectors, the optimisation problem
can be rewritten as

1 L
Wi(a) = 5 Z qiqj%>aiaj
maximise ) L: (4.104)
5 Z rirj}l aa _'_ZLZqZ a;
) -
subject to Y qsa; =0 (4.105)
i=1
L
> ra, =0 (4.106)
i=1
0<a; <Ct (4.107)

where L = L; - 1 with 1 as the unit vector.

The original [SMO] chooses two multipliers for optimisation, one of which is substituted
using the equality constraint of the optimisation problem. This approach can not solve
optimisation problems with two equality constraints. As each equality constraint can be
used to remove one variable from the optimisation problem, the optimisation problem can
still be solved analytically when three multipliers are chosen.

The original algorithm employs a heuristic to select one multiplier which violates the
[KKT] conditions and a second multiplier to maximize the increase in the objective function.
Extending this to three multipliers requires new heuristics which fulfil these task and return
triples for solving. Without loss of generality these three multipliers are denoted by the
indexes 1, 2, and 3.

The second constraint does not apply to all multipliers in the algorithm. This introduces
an additional restriction to the heuristics for choosing the multipliers and requires additional
intelligence. If no valid triple can be chosen, the algorithm chooses a valid pair instead and
optimises that pair.

Due to the formulation of the equality constraints not every triple can be optimised. The
elements of the vector q can take the values {+1, —1} and the elements of the vector r
can take the values {+1,0, —1}. There are different possibilities for a triple to be invalid
for optimisation: two or three r; i € {1,2,3} are 0 or the multiplier vectors [q, g2, ¢3] and
[r1, 79, 73] are linearly dependent.
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To obtain a valid triple, the multipliers are sorted into different classes. The first two
classes are obtained by collecting all multipliers in two classes Cyp and Croyy. These two
classes are already used in the original algorithm’s heuristic [I0, 61]. The second set of
classes is based on the vector q. The two resulting classes are called Cp and C'y for positive
and negative g; respectively. The third set of classes is based on the vector r and the relation
between r; and ¢;. This set has three classes: Cyppo for r; = 0, Crg for r; = ¢;, and
Crrans for ry # q;.

For different [SVM] algorithms, different combinations of these different classes are used
for working set selection. Only the two classes Cpp and Cpoy are needed for the original
algorithm, all twelve combinations of the different classes are needed to train the
new algorithms. Tab. .2 shows all class combinations for all algorithms which have
been implemented. When all classes are evaluated, a set of possible candidates is chosen.
From these candidates, the pair or triple which promises the largest increase of the objective
function is chosen for optimisation.

Table 4.2.: Working set selection classes for original and affine algorithms for regression.

Algorithm Classes
eSVR {Cup, Crow}
VSVR] {Cup,Crow} x {Cp,Cy}
eSVRHY, ESVRP {Cup, Crow} X {CzEro: Ccrs, Crrans}

VSVRU, VSVRG6  {Cup, Crow} X {Cp,Cn} X {CzErro, Ccrs; Crrans}

For pairs, the analytic solution is the same as for the original SMO] For a valid set of three
multipliers, the analytic solution is presented here. In this case the equality constraints can
be written as

L

G101 + G20 + gsaz = — Y quay = G (4.108)
i=4
L

iy + 1oty + 303 = — r4aq = Gy (4.109)
i=4

where GG; and G, are constants. All variables are limited to values in the interval [0, C].
Solving Eq. (4.109) for as and substituting into Eq. (4.108) returns a linear equation in a,

and a,

(1 — gsrirs) a1 + (g2 — qsrar3) as = G — q373Go. (4.110)

my my

The optimisation problem has to be solved along this line. The last equation is solved for
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a, and substituted into the target function along with Eq. (4.109).

1
Wi(a,) = — 5[([(11 + 715 K — 27'17"3K13)a%

2
Gy — 3Gy — m1a1>

mo

+ (Kyy + 1575 K33 — 21975 K53) (

Gy — Q3G2 — mya;
+ 2(K12 — 1org K3 — 113 Kos + 7“17“27“5[(33) m 3]
2

! (4.111)
+ 2(K13Gy — 113 K33Ga + > (K1 — rirsKai)a;)ay

i=4

G1 — 3Gy — myay

!
+ 2(Ky3Gy — 1173 K33G5 + Z(Km‘ — 1913 K3;)a;) ]

i—4 my
G — Gaqsrs — myay

+ (1 Ly — qsrirsLs)ay + (qaLo — qsrorsLs) m + const
2

The second derivative of this formula is needed to determine whether the maximum exists.

W m?
Dz =— (K + T%T§K33 —2ryr3Ky3) — %(Km + T§T§K33 — 21913 Ky3)
“ - my (4.112)
+ 2E1<K12 —ror3ly3 — T3 K93 + 7"17‘27”§K33) =D
2

As all entries in the kernel matrix K are strictly positive and K;; + K;; > 2K;; for i # j [64],
the second derivative of the target function with respect to a; is always smaller than zero
and a; determined from the target function maximises the target function.

The new a; is determined by setting the first derivative of W to zero and solving for a,.

_1m1

a —B[E(Gl - Q3G2)(K22 - 7”37“32, - 27’27“3K23)
1
- m—(Gl — 3Go) (K9 — 1913 K3 — 117305 + 7"17“27“32,[(33)
2
!
m
+ ﬁl(K%GQ — 113 K33G5 + Z(Kzi — 1ror3Ky;)a;) (4.113)

2 i=4
!
— K13Gy + 113 K33Go — Z(Kli - 7’17”3K3z')ai) +qiLy — qsrirsls
i=4
m
- 71((12[/2 — q3ra73Ls3)]
mo
All valid solutions have to lie in the interval [0, C]. After a; has been calculated, it is
bounded to that interval, if necessary. Then a, is calculated and bounded, and finally as is
calculated and bounded, too. Then a; is recalculated and bounded based on a, and asz to

make sure all three values are inside the valid interval.
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5. Results

The capabilities of the new algorithms are presented by modelling the characteristic function
of three example circuits. These example circuits are: an inverting amplifier, a class A
amplifier and a single diode. These examples have been chosen to evaluate the new algorithms
on data sets with different degrees on non-linearity: first is the inverting amplifier, which
operates linearly over the largest part of its operation range, second is the class A amplifier
with a smaller linear operation region, and third is the single diode, which is strongly
non-linear. [AGTAS]| can simulate all chosen examples only for parts of the chosen modelling
range. The inverting amplifier can only be simulated for certain operating points. Therefore,
data are generated using Saber and [AGIAS| is used to verify models at the end of the
modelling process.

The example circuits showcase different and kernel functions. For each example,
models are created with all available [SVM] algorithms. The original SVM] and fSVM]
algorithms serve as examples for external variation-aware modelling (Sec. , while
the new ESVR] and FSVR] algorithms are examples for internal variation-aware modelling
(Sec. [4.2.2)). Three kernel functions are available for all SVMs} linear kernel, Gaussian
kernel, and polynomial kernel (Sec. .

While every algorithm is suited for modelling every circuit, this does not hold for kernel
functions. This is obvious for the linear kernel: if the circuit’s characteristic curve is strongly
non-linear, it cannot be modelled with a linear function with sufficient accuracy. It is not
that obvious for non-linear kernels. The kernel functions and the their kernel function
parameters have been determined experimentally for the examples presented here.

Data for modelling was generated with [MC]| simulations using Saber. To save time and to
have the same data set for all models of a given circuit data was generated once per circuit.

Models were evaluated for their size, modelling errors, overestimation and the areal
overestimation. The size of a model is given as the number of in the model. The
modelling error is used to adjust models to fully enclose the original data. Overestimation
is a measure to evaluate the average width of a model compared to the width of the original
data and areal overestimation compares the area described by the model compared to
the size of the original data set. Models are good, if they are sufficiently small, and the
overestimation and areal overestimation are close to 1.

The extended [SMO| which was created to train affine is evaluated with respect to

its runtime and selectivity.
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5. Results

5.1. Quality Measures for Affine Support Vector Machines

[SVM] models are trained with selective algorithms. These training algorithms can result in
sparse models, e.g. models with a very low number of compared to the number of data
points in the training data set. In this work, models do not have to be sparse, they have
to be sufficiently small. A model qualifies as sufficiently small under two conditions: first,
the number of is small compared to the number of elements in the training data set or
second, it can be simulated with [AGIAS]

The modelling error as defined in Sec.

e = maX{O - , } (5.1)

e cannot measure the quality of the final model. The modelling error is calculated during
validation and is used to adjust the model. After validation has finished the modelling error
equals zero on all models. Generally, models with a large modelling error before model
adjustment have a lower overall accuracy. In this respect the modelling error can be used as
a first estimate.

Overestimation was introduced by O. Scharf in [63]. is designed to overestimate
intervals during simulation. This guarantees that the real values are always enclosed in the
simulation results. The overestimation is defined as the average ratio of width of the affine
output values to the width of the original data. The overestimation is calculated as

l
Z zModel (52)

i=1 z ,Org

mO’U

1
z

with d; \oder @s the width of the [AGTAS| output and d; o, as the width of the original
data. The width of an affine form equals two times its radius. As data is given in the
min-nominal-max form, the width of the original data is calculated as d; or, = 7 {4}
Substituting these into Eq. - the overestimation is calculated as

! 9rad l
. 5.3
S >3

The overestimation is defined using the ratio of the widths of two intervals. If d; ,, equals
0 for one data point in the set, the resulting overestimation approaches infinity. As this is
the case in all examples presented here, the median is used in Eq. [5.3] instead. Interpreting
the overestimation stays difficult in models which have minute original widths for a large
range of their input data.

The areal overestimation is defined as the ratio of the area covered by the model to the
area covered by the original data. It is defined as

OU

_ 1
l

A = AModel (5 4)
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5.2. Inverting Amplifier

where Aygoqer is the area covered by the model and Ag,, is the area covered by the original
data. These two areas are calculated using the trapeze formula on its in- and output data
pairs

A=2

7

(dyi+dyi1) (@i — 1) (5.5)

N
=2

DO | —

where d,; denotes the width of a given data interval.

5.2. Inverting Amplifier

The inverting amplifier consists of an operational amplifier and two resistors. The circuit
diagram is given in Fig. In this circuit, the operational amplifier is a well-known pa741
which consists of 25 [BJTs. The two top level resistors [B], and [R}, are of the same size,
which results in an amplification of 1. The op-amp is supplied with £15V. The inverting
amplifier is simulated for inputs which are uniformly distributed between —15V and 15 V.
The model recreates the characteristic function =f as given in Fig. [5.1bl The
circuit operates linearly over the largest part of its operating range (roughly between —11V
and 11V). Although it is the most complex example in terms of the number of components
and the circuitry involved, its data set has the simplest shape.

15 —— Orig. data
10
r - s
R [ 2

| | | | | ™
—-15 =10 =5 0 ) 10 15
Vip in V
(a) Schematic diagram. (b) Data for modelling.

Figure 5.1.: Inverting amplifier.

Data for modelling were obtained by running a [MC| simulation in Saber. For this
simulation, the transistor gains and the top level resistances are varied by 10%. Data
were generated using the [DC| sweep analysis: the input voltage Vi, is swept from —15V
to 15V in steps of 0.01V. 10000 runs were performed per input voltage step. The
simulation returns 3001 data samples. 301 of these samples are used for training. Data
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5. Results

samples for training are chosen based on the gradient between data samples. Fig. [5.1b|shows
the characteristic curve of the inverting amplifier as well as the envelope of the [MC| results.

This circuit was modelled successfully using linear and Gaussian [RBF] kernels. The
[SVM] cost hyperparameter C' is set to 5. use the maximum permissible error as
hyperparameter. It is is varied between 0.00V and 1.50V in steps of 0.15V. The trade-off
parameter [1] is varied between 0.1 and 1.0 in steps of 0.1 for V\SVRsg Data is not scaled for
training.

The linear kernel has no hyperparameters. The Gaussian [RBF| kernel has one hyperpa-
rameter: % The LibSVM documentation [I0] recommends using one over the number of
data points as default. This gives good results in training nominal For affine [SVM§|
bigger values give better results. As a rule of thumb % is a good starting point. In this
section ﬁ was used for models and 7—10 was used for models.

All in all, 264 models were created from the different algorithms and configuration options.
An overview of quality measures and runtimes for all models is available in Appendix [A.T]

For this section, inverting amplifier models with the following |¢ and || parameters are
presented: [f| = {0.30V,1.05V} for both kernels and [v] = {0.2,0.7} for linear kernels and
={0.1,0.7} for kernels. For with [RBF] kernels a different set was chosen as

the difference for models with 1= 0.2 and [ = 0.7 is too small to illustrate.
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5.2. Inverting Amplifier

[SVM] models with linear kernels have only two parameters, no matter how many
were selected during training as the model parameters w and b can be calculated directly
from the and their weights. The numbers of in linear models are available from
Tab. for completeness. In with any other kernel, the number of determines
the number of non-linear elements in the model. Tab. B.1bl shows the for the selected
models with [RBF] kernels.

The [CVX] solver usually returns all data points as support vectors. Before calculating the
number of [SVs| the [CVX]models were reduced, by setting weights to zero that were more
than three orders of magnitude smaller than the maximum weight. Models trained with the
extended [SMO] profit from its selecting capabilities and are not reduced further. Models
trained with the extended are smaller than models trained wit the [CVXl

The numbers show, that less [SVk are used in models with larger permissible errors for
and models with lesser emphasis on the maximum permissible error in the cost
function for YSVRs This result is expected as the constraints for a successful training
are more relaxed. Models that place more importance on the maximum permissible error
through a higher trade-off parameter have more [SVs|

Table 5.1.: Overview of the numbers of [SVk for SVM models with linear and Gaussian RBE
kernels generated with CVX and the extended [SMO] The training set contains
301 samples.

(a) Linear kernel.

CVX

Extended [SMO|

SVM| [SVM [SVMB [SVM]| [SVMi [SVM
eSVR|e =030V 301 156 189 111 129 120
eSVR|e = 1.0V 2 65 301 5 64 46
VSVR| v = 0.2 301 301 301 139 280 244
VSVR|v = 0.7 301 301 301 139 300 301

(b) RBF kernel.
CVX Extended [SMO

SVM| [SVM [SVMB [SVM] [SVMit [SVMp
eSVRe =030V 38 118 116 27 25 30
ESVRle =1.05V 6 31 79 6 7 4
VSVR| v = 0.2 301 228 225 257 130 223
VSVR|v = 0.7 301 301 301 257 219 298
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5. Results

Tab. shows the modelling error for the selected inverting amplifier models. The
modelling error is the remaining error between model and original data where the model
does not fully enclose the original data. [RBEF] kernels enclose the data better than linear
kernels as the RBF| models the regions of non-linear operation more closely than the linear
kernel.

with [] = 0.7 and both selected models trained with the [CVX] solver, and
with ] = 0.7 trained with the extended solver lead to models with a modelling
error of e = 0.0 V. These models enclose the original data without further adjustment. All
other models are adjusted before overestimation and areal overestimation are calculated.

Affine have a much lower modelling error than their nominal counterparts. Models
with higher maximum permissible error (g|= 1.05V, [t|= 0.2) have lower modelling errors
than models with more restrictive settings.

Table 5.2.: Modelling errors for models with linear and Gaussian kernels.
(a) Linear kernel.

CVX Extended [SMO|
SvM| [SVME [SVMp [SvM] [SVMU T [SVMB

eSVR]e =0.30V  2.085 0.651 0.619 2.087 0.439 1.118
eSVR|e =1.06V 1.952 1271 0.768 1908 1.193 1.537
VSVR|v = 0.2 2537 0441 0.615 2.824 0.335 1.541
VSVR|v = 0.7 2537 0.092 0.087 2824 1254 2.614

(b) RBF kernel.

CVX Extended [SMO
SVM| [SVMJ [SVME [SVM] [SVMi [SVMp
eSVRle =030V 2,082 0.074 0.074 1.919 0372 0.440
eSVR|e = 1.05V  1.816 0534 0.501 1.603 1.262 1.258

VSVR|v = 0.2 2383 0.083 0.000 2.381 3.220 0.276
VOVR|v = 0.7 2.383 0.000 0.000 2.381 0.046  0.000
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5.2. Inverting Amplifier

Tab. compares the overestimation for selected models. All models in this table have
been adjusted to a modelling error of 0.0 V. Internal variation-aware modelling with affine
leads to models with a lower overestimation than external variation-aware modelling.
Models with larger maximum permissible errors have a higher overestimation. Reason for
this is the larger width of the model even for small original widths. Models with [RBF]| kernels
perform better than models with linear kernels as the non-linear models fit the original data
more closely.

ESVRE and PSVRB models do not generally outperform and models in
terms of overestimation. On the given model selection, a larger permissible error leads to
larger overestimates while a trade off putting stronger emphasis on the permissible error
leads to smaller overestimates.

Table 5.3.: Overestimation for adjusted models with linear and Gaussian kernels.
(a) Linear kernel.

CVX Extended [SMO|
SvM| [SVME [SvMb [SvM] [SVMU[SVME

eSVR|e =0.30V 5928 3.366 3.443 6.078 2914 1.354
eSVR|e =1.06V 7.656 5925 6.262 7.545 5.767 7.078
VSVR| v = 0.2 6.470 2.412 27784 6471 2135 1.102
VOVR|v = 0.7 6.470 1.723 2379 6471 3.004 6.344

(b) RBF kernel.

CVX Extended [SMO
SVM| [SVMIE [SVMB [SVM] [SVMi [SVMp
eSVR|e =030V 6.075 2264 2264 5.660 2.993 1.583
eSVR|e =1.05V 7.309 5517 5500 6.414 7.995 4.753

VOVR| v = 0.2 6.078 2.369 2379 6.073 6.095 1.609
VOVR|v = 0.7 6.078 1.637 2779 6.073 2.126 2.421
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Areal overestimation for the selected models is compared in Tab. [5.4] The areal overesti-
mation is smaller than the point-wise overestimation discussed before.

The external variation-aware models overestimate the data area by a larger margin than
internal variation-aware models as parallel translation does not handle the shape of the data
well.

Table 5.4.: Areal overestimation for adjusted models with linear and Gaussian

kernels.

(a) Linear kernel.

CVX Extended [SMO|
SVM| |SVM4 |ISVMpE |SVM| |SVMY |SVMP

eSVR|e =030V 236  1.75 1.85  6.66 1.69 2.53
eSVR|e =1.00V  3.06  2.36 269 686 4.74 6.15
VSVR| v = 0.2 258  1.35 1.64 258 1.44 0.81
VSVR|v = 0.7 258 134 1.34 258 1.6 2.57

(b) RBF kernel.

[CVX Extended [SMO
SVM| [SVM [SVMB [SVM] [SVMU [SVMp

eSVRle =030V 242 1.62 146 614 248  1.60
eSVRle =1.05V 291 221 220 568 561 3.0l

NSVR| v = 0.2 2.42 1.60 149 724 832 1.73
VSVR|v = 0.7 2.42 1.66 1.65 7.24 1.51 1.51

The SVR models with linear kernels are shown in Fig. [5.2] and Fig. [5.3] and for Gaussian
[RBF] kernels in Fig. and Fig. [5.5] Each figure presents models without adjustment on
the left and adjusted models on the right. All models had to be adjusted after training
as the affine did not enclose the data originally. This is normal behaviour for the
algorithms as the optimization problem does not include a condition to force enclosure of
the data. Adjusted models have been enhanced to enclose the original data. Fig. [5.5] shows
models that do not need to be adjusted: models with ] = 0.7 and the kernel
have a modelling error of 0.0V. Even the linear models with the same trade-off
parameter seem to enclose the data, although these models have modelling errors of 0.092 V
and 0.087 V.

86



5.2. Inverting Amplifier
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Figure 5.2.: Characteristic functions of models with linear kernels. Models are plotted

without and with adjustment.
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Figure 5.3.: Characteristic functions of models with linear kernels. Models are plotted

without and with adjustment.
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Figure 5.4.: Characteristic functions of models with kernels. Models are plotted

without and with adjustment.
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Figure 5.5.: Characteristic functions of models with kernels. Models are plotted

without and with adjustment.
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Inverting amplifiers are designed to operate linearly over the largest portion of the input
values. Variations are strictly symmetric to the nominal values in the linear operation region.
Only in the saturation regions, the circuits behaviour is non-linear and output variations
are not symmetric to the nominal values. For this reason, linear ESVR}{ and FSVRY models
are expected to outperform non-linear models and and models. Against
expectations, and models did not yield significantly better models than
and models. The basic idea here is that nominal values do not carry much
additional information in a predominantly symmetrical setup. The results given here show
that affine and affine algorithms select similar numbers of in the model.

The model selection in this section shows different configurations that all lead to good
models. The models come with relatively low modelling errors and the models fit the data
closely even before adjusting the models. Models show small areal overestimation and
relatively small overestimation.
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5.3. Class A Amplifier

The class A amplifier was introduced in Sec. [[.2] as a rather simple circuit that cannot be
simulated by [AGIAS| The circuit diagram is given in Fig. [5.6a} the circuit consists of one
[BJT] transistor and five resistors. The circuit is supplied with [V].. = 7V. The resistors
R, and R, bias the circuit at 0.9 V. The input voltage V;, was varied between —0.8 V and
0.8 V.

This range includes the amplifying range for input voltages between approximately —0.3 V
and 0.1 V. The rest of the input voltage range includes a saturation region at V¢ for input
voltages below —0.3 V and an approximately linear operation range for input voltages above
0.1V with an amplification of approximately 1. The input range for modelling was chosen
deliberately to include more than just the amplification region. This leads to a data set
which includes more non-linear behaviour than the data of the inverting amplifier in Sec. [5.2}

—— Orig. data

\J

0 T T T T T
—-06 —-03 0 0.3 0.6
Vi, in V

(a) Schematic diagramme. (b) Data for modelling.

Figure 5.6.: Class A amplifier.

For modelling, the cross-sectional area factor [4] of the [BJT] and the resistance of the
collector resistor are varied. The cross-sectional area factor is varied by 20 %, the
collector resistance is varied by 10 %.

Saber’s [MC]| simulation and a [DC| sweep were used to obtain data for modelling. The
input voltage was swept from —0.8 V to 0.8 V in 242 steps. 1000 samples were drawn for
each input voltage step. This number was chosen as only two parameters in the circuit were
varied. The simulation setup returns 243 data points. 31 of those are chosen as training
data set. Fig. [5.6b]shows the outline of the data area and the nominal values based on the
training data set.

Each region in this data set has a different data distribution. In the saturation region,
almost no variations exist. In the amplification region, the variations are not symmetric to
the nominal values. Variations start at 0 and grow to around 2.5V. In the linear operation
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5.3. Class A Amplifier

region, the variations form a symmetric almost constant-width tube around the nominal
values.

This circuit is modelled using Gaussian [RBF| kernels. The cost hyperparameter C' is set
to 5. The maximum permissible error for is varied between 0.0V and 0.35V in steps
of 0.035V. The trade-off parameter for is varied between 0.1 and 1.0 in steps of 0.1.
Data is not scaled for training. The kernel hyperparameter — is set to 6.

For the class A amplifier, 126 models have been created. Xll model configurations were
run with the [CVX]and extended [SMO] An overview of the quality measures and run times
for all models is available from Appendix

For a more detailed overview, class A amplifier models with [g|= {0.070 V,0.280 V} and
[]={0.2,0.7} are selected.

Tab. compares the numbers of for the selected class A amplifier models. Models
trained with the [CVX]have been reduced before determining the number of SV

With just 31 samples in the training data set training algorithms were still selective. Only
three models with [/ = 0.7 use all data samples as Most models require less than
half of the data points as[SVsl This reduces the overall number of non-linear terms, that
have to be evaluated by the simulator. Models with relaxed conditions on the modelling
error — high maximum permissible error in and low trade-off parameter in
models — have less [SV&l

Table 5.5.: Class A Amplifier: Overview of the number of for models with Gaussian
[RBF| kernels generated with CVX and the extended [SMO] The training data set
contains 31 samples.

CVX Extended [SMO
SVM| [SVME [SVMB [SVM] [SVMJ™ [SVME

eSVR|e =0.070V 15 20 21 16 23 22
eSVR|e = 0.280V 6 10 9 6 8 11
VOVR| v = 0.2 ) 23 27 6 17 22
VOVR| v = 0.7 ) 31 31 6 26 31
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Tab. shows the modelling errors for the selected class A amplifier models. The
maximum error in all models occurs around V;,, = 0.0 V. This area has the largest width in
the original data and the shape of the original data has a very sharp bend. This bend can
not be represented as sharply in the models.

The modelling error is smaller in all models for larger permissible errors in models
and models which give the maximum permissible error a greater weight in the cost
function.

Table 5.6.: Modelling error for selected class A amplifier models in volts.

CVX Extended [SMO!

SVM| [SVMY [SVME |SVM] [SVMY  [SVMB

eSVR|e =0.070V  1.57  0.81 0.65 146  0.86 0.54
eSVR|e =0.280V 1.21  0.52 035 117 041 0.45
VSVR|v = 0.2 1.22  0.92 0.78 1.08  1.96 0.53
VSVR|v = 0.7 1.22 0.93 0.799 1.08  0.88 0.72

All models display relatively large overestimation. A summary is given in Tab. With
modelling errors as large as 20 % of the output range, models overestimate the regions above
0.1V and below —0.3V by a large margin. Overestimation for input values below 0.1V
grows to infinity as the width of the original data is 0. By using the median, the influence
of these data samples on the overestimation is lowered.

Models trained with the solver have lower overestimation than models trained with
the extended solver.

Table 5.7.: Overestimation for selected class A amplifier models.

CVX Extended [SMO
SVM| [SVM [SVMB [SVM] [SVMi [SVMp

eSVRle =0.070V  3.73  3.70 3.30 5.34 410 3.01
eSVR|e =0.280V  3.65  3.48 3.15 514  3.19 3.29
VOSVR|v = 0.2 3.85  3.70 3.35  5.09 6.51 3.22
VOVR|v = 0.7 3.85 3.71 3.32  5.09 3.70 3.36
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Areal overestimation is given in Tab. 5.8 It indicated a larger overestimation of the data
than the overestimation. The impact of regions for which the overestimation cannot be
calculated directly is higher in this measure. Zero sized areas in the original data do not
add to the area of the original data, while the respective areas of the model increase the
model area significantly.

Table 5.8.: Areal overestimation for selected class A amplifier models.

CVX Extended [SMO
SVM| |SVMY [SVME [SVM| [SVMY [SVMP

eSVR]e =0.070V  6.30  4.54 395 761 497 3.54
eSVR]e =0.280V  6.16  4.48 3.58 7.26  3.88 4.06
VSVR| v = 0.2 6.51  4.78 429 716 9.64 3.90
VOVR| v = 0.7 6.51 4.84 432 716 4.74 4.15

Fig. shows results for models of the class A amplifier, Fig. [5.8] shows the results
for models of the class A amplifier. Models on the left have not been adjusted for
enclosing all data, models on the right have been adjusted for full enclosure.

Both sets of figures illustrate the large overestimation introduced by adjustment. Models
without adjustment hug the original data tightly outside the amplification region. The
modelling error in these models is determined where the minimum output voltage hits
approximately 0.7V. In these models, adjustment is the main reason for the large overesti-
mation.

The plots show that the full original data set is much more ragged around the edges
than the training data set suggests. This is not a problem for algorithm adjustment as the
maximum deviation from the original data is not observed around the rough patches.

Class A amplifiers operate linearly in their amplification region. This model deliberately
includes more than just the amplification region. These additional operation regions pose
the greatest challenge for the modelling algorithms.

The original data has zero width for V;, < —0.3V. The region V;, > 0.1V has very
small constant width. The affine SVM] algorithms model the given data set fine, but with
sometimes very large modelling errors. Adjusting the model to enclose the original data
leads to large overestimates.

From the overestimation standpoint, models which are more restrictive with regards to
the maximum permissible error should be preferred. As these models are trained on a very
small training data set, more data points should be used for training.
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(c) e = 0.280 V without adjustment. (d) e =0.280 V with adjustment.
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Figure 5.7.: Characteristic functions of models with kernels. Models are plotted

with and without adjustment.
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5.3. Class A Amplifier
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Figure 5.8.: Characteristic functions of models with kernels. Models are plotted

with and without adjustment.
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5. Results

5.4. P-N Junction Diode

The third example is a model of the characteristic function of a p-n junction diode. In this
case, |l[|= f is modelled, recreating the Shockley diode equation, also known as the diode
law. The characteristic function is strongly non-linear. For voltage smaller than the thermal
voltage [V} the diode conducts the saturation current which is very small. For voltages
larger than the thermal voltage, the current increases exponentially. Fig. shows the
component (Fig. and the data used for modelling (Fig. [5.9b)).

y —— Orig. data
1 6
>~ 5
S 9 ]
~5 3
- 2
1% 17
0 T T T T T T T~
0 0.1 020.3 04 0.5 0.6 0.7 0.8
Vi in V
(a) Schematic diagramme. (b) Data for modelling.

Figure 5.9.: P-N junction diode.

For modelling, the thermal voltage is varied by 1% and the saturation current is
varied by 20 %. Modelling data was generated using Saber’s simulation and a sweep.
The voltage across the diode was varied from 0.0V to 0.8V in steps of 1mV. 1000 [MC]
samples are drawn for each step in the [DC|sweep. This number was selected as only two
parameters are varied. This simulation setup returns 802 data points. 18 of these data
points were used for training. Fig. [5.9b] shows the outline of the training data.

This data set is strongly non-linear. For V' < V;; the current is close to 0 A and the
width of the tube is only a few pA. For V > V,;, the current rises quickly and so does the
width of the tube. This poses a challenge in modelling as adjustment will decrease the
model performance significantly. The diode current was scaled to the range [0.0 A, 1.0 A] to
improve convergence.

Polynomials are the only kernels that work on this data set. To model the quickly rising
current after the knee, a relatively high, odd degree has to be chosen. All models presented
here are modelled with 9th order polynomials. Ninth order polynomials describe a middle
ground between modelling accuracy and simulating the model with [AGTAS]

Polynomial kernels have three hyperparameters. The first is the degree, which is set to
9 as discussed above. The second is an offset coefficient which was set to 0.4. The third
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5.4. P-N Junction Diode

hyperparameter scales the scalar product, which is set to 3. This results in the following
kernel
k(z,2') = (3% < z,2’ > +0.4)". (5.6)

The cost hyperparameter C' is set to 10. For models the maximum permissible
error was varied between 0.000 A and 0.050 A in steps of 0.005 A. The trade-off parameter
of pSVRg| is varied between 0.1 and 1.0 in steps of 0.1.

For the diode, 126 models were created. All model configurations were run with both the
[CVX] solver and the [SMO] solver. All models with their quality measures and runtimes are
documented in Appendix [A.3]

Models with the maximum permissible error [g| = {0.015 A, 0.035 A} were selected from
models and with the tradeoff parameter set to [|= {0.2,0.7} are selected from
models for a more detailed inspection.

Tab. gives an overview of the numbers of for selected models. Models generated
with the [CVX] solver cannot be reduced in size by the chosen model order reduction
approach. Models trained with the extended [SMO] solver profit from the solver’s selectivity
fully. Depending on the setting for the maximum permissible error for ESVRS only half
of the training samples are used as in the model. As models are optimised for

smallest error, only three of the selected models profit from the selectivity of the extended

[SMO] solver. Nominal models only use 9 while models require all training
samples as [SVs

Table 5.9.: Diode: Overview of the numbers of for models with polynomial kernels
generated with CVX and the extended [SMO] The training data set contains 18

samples.
CVX Extended [SMO
SVM| [SVME [SVMB [SVM] [SVMU [SVME
eSVR|e = 0.015A 18 18 18 13 15 16
eSVR|e = 0.035A 18 18 18 10 13 16
MSVR| v = 0.2 18 18 18 9 17 18
VSVR| v = 0.7 18 18 18 9 18 18
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5. Results

The diode data set is strongly non-linear. The region with V' < V;, is modelled closely
by most models. models exhibit some oscillation which stems from the ninth-order
polynomial. This effect is more subdued in the other selected models. It also does not
dominate to the modelling error. For the selected models, the modelling error is calculated
somewhere along the diode’s forward operation region. Vertical distances grow rapidly in
this region. This leads to large modelling errors. Modelling errors for the selected models
are available from Tab. .10l

Table 5.10.: Modelling error in A for selected diode models.

Modelling error CVX Extended [SMO
in A SVM| |[SVM}Y [SVME [SVM| [SVMU [SVMPB

eSVRle =0.01bA 6.72  2.73 233  7.05 215 4.73
eSVR|e =0.0350A 542 181 1.62  6.65 0.85 1.06
VSVR|v = 0.2 499  3.55 3.49  5.08 0.12 2.39
VSVR|v = 0.7 499  3.67 3.58 508 541 4.08

Overestimation for diode models is huge. The original data has a width in the range of
107'% A for the largest part of the input range. The original data has a noticeable width only
above the knee. Even without adjusting the models for the modelling errors, overestimation
for most data points is very large. Adjusting the models adds to this effect with the model

width becoming even larger. Tab. gives an overview of the overestimation for adjusted
models.

Table 5.11.: Overestimation for selected diode models.

Extended [SMO
SVM| [SVM{t [SVME [SVM| [SVM# [SVMB

eSVR|e = 0.015A 6.97e6 3.11e6 2.89¢6 7.29¢6 2.55e6 5.69¢6
eSVR|e = 0.035 A 6.23e6 2.73e6 2.63e6 7.43e6 1.95e6 2.49¢6
VOVR|v = 0.2 6.21e6 3.54e6 3.44e6 6.30e6 1.22e6 3.69€6
VOVR|v = 0.7 6.21e6 3.63e6 3.58¢6 6.30e6 5.86e6 4.43e6

Areal overestimation for the selected diode models is given in Tab. [5.12] These values
illustrate what has been observed with the other circuit examples, too: internal variation-
aware modelling with affine leads to smaller overestimation than external variation-
aware modelling. Models allowing large maximum permissible errors perform better than
models with smaller maximal permissible errors. As with the overestimation, the areal
overestimation is dominated by the models behaviour for V' < V;;,.
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5.4. P-N Junction Diode

Table 5.12.: Areal overestimation for selected diode models.

[CVX Extended [SMO

SVM| [SVMY |SVM6 [SVM| [SVMY [SVMPB

eSVR|e = 0.015A 40.53 19.57 17.57 4240 17.28 32.89
ESVR|e = 0.035A 36.25 17.44 16.53 43.21 1456 14.17
VSVR|v = 0.2 36.12  21.81 2143 36.62 894 21.04
VvSVR|v = 0.7 36.12 2249 2201 36.62 3547 26.60

Fig. [5.10] and Fig. [5.11] show the characteristic curves for ESVR] and SVR] diode models
with and without model adjustment. On the right are models with adjustment. These
figures illustrate the huge overestimation for V' < V;;,. In forward operation the distance
between the minimum and maximum values is still very close to the original data.

The diode models are different from the two examples presented earlier. These models
model the relationship between current and voltage at one component. Therefore, input
and output of the models cannot be separated. Currently, the diode models cannot be
simulated with [AGTAS] as the solver cannot find a starting solution for the EPD, the newly
introduced weight that captures errors when solving an affine equation system. The EPD
that is determined during the evaluation is very large and indicates numerical instability in
the solver. The results presented in this chapter were obtained using Matlab to evaluate the
model.

The diode model is the only model for which data has been scaled for modelling. Originally
output values fall in the range [0.0 A, 30 A]. This data is scaled to the range [0.0 A, 1.0 A].
The maximum permissible errors used in training models have to be interpreted
with respect to the range after scaling. The largest maximum permissible error is set to
= 0.05A. This means models allow up to 5% of the output range as error.

Overestimation is a measure that cannot be used for diode models. Area overestimation
offers a glimpse into how much the model actually overestimates the original data. Both
overestimation properties are dominated by the diode’s non-conductive region. In this
region the original data has a width of only a few pico amperes while the models all have a
significant width.

Polynomials often come with oscillation. In the models selected here, oscillations did
occur for large maximum permissible errors, but they did not impact the models negatively.
The oscillations could be a cause for large modelling errors. This is not the case with the
models shown here.
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(a) € = 0.015 A without adjustment. (b) € = 0.015 A with adjustment.

A

A

Vip in V Vin In V
(c) e =0.035 A without adjustment. (d) e =0.035 A with adjustment.

Original data eSVM ESVMA4 ----&SVM6

Figure 5.10.: Characteristic functions of models with polynomial kernels.
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Figure 5.11.: Characteristic functions of models with polynomial kernels.
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5. Results

5.5. Notes on the Extended SMO

All models were trained with two solvers: the solver and the extended solver.
The [CVX]solver is available as Matlab toolbox. Its optimizers are written in C. The [CVX]is
not selective. It will always return all data points as The extended [SMO]extends Platt’s
[SMO] to work on optimization problems with two equality constraints. It is constructed to
be selective and is implemented in Matlab.

Tab. compares the numbers of [SV4 for fSVR] models of the inverting amplifier,
Tab. contains the numbers of [SVg| for VMSVM] models of the inverting amplfier. The
inverting amplifier models are trained on the largest data set. In models the differences
in size between the two solvers are on average more pronounced than with models.
The [SMO] solver rarely returns all data points as support vectors for linear models.

Table 5.13.: Numbers of for models of the inverting amplifier for the and
SMO] solver. Models trained with the [CVX] solver have been reduced before
evaluating the number of . The training data set contains 301 samples.

(a) Linear kernel.

inV 0.00 0.15 030 0.45 0.60 0.75 090 1.05 1.20 1.35 1.50

eSVR| SMO[ 185 140 111 77 51 24 13 3 5 5 5
eSVRLICVX] 301 301 301 8 56 30 12 2 2 301

eSVRY, SMO| 175 162 129 128 115 98 81 64 47 31 21
eSVRY, [CVX| 301 301 156 183 115 301 81 65 301 96 301
eSVRPB, SMO| 137 131 120 111 86 74 81 46 o1 7 8
eSVRP, ICVX|[ 301 280 189 223 139 301 301 301 301 63 22
(b) kernel.
inV 0.00 0.15 030 0.45 0.60 0.75 090 1.05 1.20 1.35 1.50
eSVR] [SMO| 289 77 27 18 10 13 6 6 6 6 6
eSVRL [CVX] 301 80 38 27 11 8 7 6 6 6 6
eSVRY, SMO| 301 63 35 22 18 15 7 7 7 7 7
eSVRY, ICVX|[ 301 114 118 45 22 42 68 31 8 21 11
eSVRG, SMO| 301 96 30 25 19 16 4 4 7 4 4
eSVRpP, [CVX|[ 301 204 116 52 34 25 13 79 6 28 7

models do not profit from the extended [SMOJs selectivity as much as models.
If the trade-off parameter is larger than 0.5, the number of does not change anymore.

As models minimize the maximum permissible error, they tend to have more
than ESVRI models.

Tab. compares the number of of class A amplifier models. models
have been ommited as they show the same effect as inverting amplifier models. Data
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5.5. Notes on the Extended SMO

Table 5.14.: Numbers of for models of the inverting amplifier for the and
SMOI solver. Models trained with the [CVX] solver have been reduced before
evaluating the number of |S_V|s The training data set contains 301 samples.

(a) Linear kernel. (b) [RBF| kernel.

0.1 02 03 >04 0.1 02 03 04 >05

vSVR] SMO| 139 139 139 139  pSVR|SMO| 257 257 257 257 257
voVR] (CVX] 301 301 301 301 |pSVRL[ICVX|[ 301 301 301 301 301
VSVRY, SMO| 51 208 280 300 pPSVR4,SMO| 58 130 179 197 219
VSVRY, ICVX] 301 301 301 301 pPSVRY,|ICVX] 236 228 297 301 301
§ 6
§ §

VSVREG, SMO| 146 244 297 301  PSVRG, SMO| 158 223 270 291 298
VSVREG, ICVX] 301 301 301 301 PSVRE,|CVX) 152 225 279 292 301

for the class A amplifier show that the extended [SMO]is selective on a small data set with
an non-linear kernel.

Table 5.15.: Number of for class A amplifier models for the [CVX|and [SMO|solver.
Models trained with the [CVX]solver have been reduced before evaluating the
number of |S'_V|s The training set contains 31 data points.

ian 0.0 35 70 105 140 175 210 245 280 315 350

eSVRLSMO[ 28 19 16 14 14 12 12 12 6 12 6
eSVR,ICVX] 31 18 15 12 10 10 9 8 6 5 3
eSVRY,[SMO| 31 26 23 17 17 14 12 8 8 10 8
eSVRY, [CV 31 25 20 1v 17 13 12 10 10 8 8
6
§

eSVRp, [SMO| 31 27 22 19 18 12 12 13 11 9 11
eSVRG, ICVX|[ 31 24 21 20 15 12 10 11 9 9 10

Tab. [5.16] compares the numbers of [SV§| for ESVR] diode models. All models are trained
on 18 training samples. The table compares only models trained with the extended [SMO]
as models trained with the could not be reduced. bSVR] models are ommitted as the
algorithm does not select on these models. The extended returns models with only
half the training samples as provided the configuration allows a large enough error.
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5. Results

Table 5.16.: Numbers of for models of the diode for the solver. The training
data set contains 18 samples. Models trained with the [CVX]solver could not
be reduced and are not included here.

inmA 00 5 10 15 20 25 30 35 40 45 50

eSVR 16 13 13 13 13 12 12 10 10 9 9
eSVR) 16 15 12 15 15 14 13 13 13 14 12
eSVRP 15 17 12 16 12 11 14 16 13 12 11

=

Tab. gives an overview of all runtimes for models for the inverting amplifer.
All BSVR]I models’ runtimes are available from Tab. [5.I8 Runtimes for models trained with
the [CVX] solver evolve as expected: nominal models train in around 48 s, ESVRU and PSVRU
models take approximately three times as long at approximately 140s, and and
models take the longest at around 305s — around twice as long as and
models.

Runtimes of the extended [SMO] solver vary wildly. Linear models, models
with [RBEF] kernels, and all models take longer to train than with the [CVX] solver.
models and with ] > 0.9V train significantly faster than with the [CVX]solver.

The runtimes for class A amplifiers are available from Tab. [5.19) Runtimes for ESVR
models trained with the extended [SMO]still vary wildly. For the models, runtimes
are much more streamlined. Training takes longer than with the [CVX]solver, but times are
more consistent.

Runtimes for the diode models are compared in Tab. [5.20] Training diode models with
the [SMO] solver usually takes much longer than with the [CVX] solver, but runtimes are
consistent within a model class.

The solvers running within the [CVX]toolbox profit from being written in C. This explains
at least in part, why these run so much faster than the extended [SMO] Although no data is
available here, trained with LibSVM were used in first experiments with external
variation-aware modelling. LibSVM’s C implementation was used for training and performed
just as fast as the [CVX]solver.

Blaming runtime differences solely on the choice of programming language and non-
optimized code is too simple-minded. The extended [SMO] solver solves the optimization
problem iteratively. In every iteration, it calculates a heuristic to determine the pair or
tripe of data points for which the optimization function is minimized. It then calculates
new weights and updates the error terms for the next iteration. Optimization ends if the
improvement of the model sinks below a given threshold. There is no limit on the number
of iterations to reach the improvement threshold.

Additionally, are known to show unpredictable convergence behaviour, if output
data is not scaled before training. As the two examples which show wildly varying runtimes
were trained on unscaled data, this observation holds true for the extended [SMO]
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5.5. Notes on the Extended SMO

Table 5.17.: Runtimes in s for models of the inverting amplifier for the and

solver.
(a) Linear kernel.
cSVR ESVRY [ESVRE
SMO CVX MO [cVX] MO [CVX

0.00 10943.890 52.740 2313.080 139.126 3356.961 300.823
0.15 3992.644 46.138 2122.242 140.241 3382.514 301.555
0.30 5107.015 45.588 1723.244 140.338 2982.000 298.950
0.45 10228.137 46.103 3693.044 140.249 3362.397 301.065
0.60 24875.594 45.809 5543.656 141.054 3157.383 296.443
0.75 31857.805 46.644 8858.616 141.043 3367.764 298.268
0.90 255.930 48.258 2544.609 139.417 3477.080 299.782
1.05 515.150 47.798 6797.498 140.381 1407.597 297.836
1.20 975.370 46.646 4427.342 140.839 4230.705 301.815
1.35 974.907 46.197 2601.076 140.680 2832.872 301.180
1.50 953.319 45.347  632.906 140.213 2703.262 301.103

(b) kernel.
cSVR! [ESVRI ESVRE
SMO[ [CVX]  [SMO] [cVvX]  [SMO] [CVX

0.00 1331.636 45.535 2819.798 142.744 10748.438 307.921
0.15 164.888 44.703 47212.329 144.626 35806.283 301.446
0.30  40.500 45.430 108.280  140.869 3897.379 303.091
0.45 33.595 45.425 48381.961 141.330 3611.629 300.877
0.60  29.002 44.924 48204.843 140.809 23922.556 305.129
0.75  32.848 45432 131.732 141.888 3301.648 302.350
0.90 25.048 44957  45.821 142.504  2767.277  304.918
1.05  25.018 45.324  44.996 141.165  2792.945 304.138
1.20  24.952  45.286  45.837 141.949  2807.070  303.211
1.35 24921 44.848  45.509 143.754  2543.629  306.952
1.50  24.697 44.862  45.894 141.232  2501.438  305.801
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Table 5.18.: Runtimes in s for models of the inverting amplifier for the and

@ solver.

(a) Linear kernel.

VSVR] YSVRU USVRE
SMO]jcvx]  [BMO] [CVX] [SMO) CVX

0.1 1149.853 49.220 11320.919 143.042 16923.135 306.490
0.2 1149.150 49.806 25865.832 143.316 42890.786 300.061
0.3 1138.419 50.104 33962.535 141.768 69740.263 302.159
0.4 1157.486 49.860 45515.602 144.115 84527.863 303.677
0.5 1143.836 49.484 66676.825 143.068 107442.328 305.584
0.6 1140.483 49.956 66908.327 142.649 109225.551 300.392
0.7 1149.941 49.456 66109.814 142.010 109727.976 300.519
0.8 1147.962 49.861 67669.059 141.470 110580.835 305.379
0.9 1144.473 49.818 67229.627 142.527 109780.658 303.009
1.0 1146.399 49.856 67701.318 141.748 111487.404 301.625

(b) kernel.
VSVR! FSVRU FSVRb

SMO| [CVX SMO CVX] SMO CVX

0.1 341.101 45.110 1395.444 144.640 3381.126 310.922
0.2 338.187 45406 4043.718 144.343 7711.609 309.153
0.3 341.330 45.031 6495.287 145.646 17981.850 304.674
0.4 339.480 44.979 10168.727 145.199 26134.396 304.560
0.5 341.123 44.498 14680.257 144.346 51194.106 307.333
0.6 338.339 45.217 14931.892 145.226 52291.515 310.621
0.7 345.023 44970 14811.167 144.790 52581.182 309.855
0.8 340.830 44.773 14715.273 144.295 51703.803 309.866
0.9 341.378 44.582 14922307 146.955 51851.606 310.697
1.0 340.431 44.772 14884.491 146.188 52111.031 310.447
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Table 5.19.: Runtimes in s for all class A amplifier models for the and solver.

(a) models.
[ESVR] ESVRY ESVRP
SMO[ [cVX] MO [cVX]  [SMO] [CVX

0.000  28.400  25.133 130.183 11.269 516.292  13.128
0.035 18621.356 10.168 36558.218 10.949 42459.570 13.064
0.070 18882.784 9.804 35824.397 10.962 9190.917 13.045
0.105 19199.261 9.892 35629.246 11.197 8870.806 13.146
0.140 18890.565 9.757 35591.034 10.943 9178.347 13.218
0.175 18630.890 9.902 34623.524 11.075 7418.083 12.993
0.210 19047.435 9.786 13.316 11.331  7634.555 13.311
0.245  42.286 9.681 13.005 11.013  8094.898 13.304
0.280 10.267 9.881 12.804  10.953 7325.498 13.110
0.315 19250.386 9.735 12.499 11.093 6623.903 13.379
0.350  30.572 9.863 12.390 11.207  7191.846 13.235

(b) models.

VSV OSV OSV
SMO| [CvX] [SMO] [cvxl [SMO[  [CVX

0.1 30.739 9.810 36.697 11.372 49.104 13.784
0.2 30.346 9.899 88.969 11.456 98.859 13.802
0.3 30.630 10.009 127.838 11.400 219.355 13.779
0.4 30.327 9.808 180.600 11.503 316.319 13.681
0.5 30.730 9.780 231.588 11.405 508.159 13.561
0.6 30.540 9.788 235.259 11.231 489.524 13.592
0.7 30921 9.809 230.707 11.403 503.521 13.671
0.8 30.225 9.875 233.738 11.469 493.892 13.582
0.9 30.776 9.766 232.205 11.420 496.640 13.570
1.0 30.975 9.804 232.962 11.485 505.001 13.640
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Table 5.20.: Runtimes in s for all diode models with for the |CVX| and |SMO| solver.

(a) models.
eSVR ESVRY ESVRP
SMO[ [cVX]  [SMO] [cVX]  [SMQ] [CVX

0.000 1742.677 10.890 2826.215 9.889 4467.333 10.788
0.005 1384.832 9.444 2351.300 10.259 4152.247 10.840
0.010 1441.301 9.386 2085.790 9.858 3746.267 11.393
0.015 2081.033 9.847 2052.813 10.243 4134.379 10.894
0.020 2774.992 9.452 2114.147 10.340 4341.665 10.773
0.025 2423.213 9.528 2260.814 9.992 4176.730 11.331
0.030 2554.148 9.874 2095.042 10.315 4388.949 10.926
0.035 2234.318 9.544 2258.589 10.355 4670.135 10.850
0.040 2116.340 9.407 2033.453 10.383 3626.911 11.365
0.045 2002916 9.763 2606.741 10.021 285.038 10.846
0.050 1419.553 9.287 3860.840 10.194 2882.571 11.027

(b) models.
vSVR \AJSV§14 \A)S\/Eb

SMO|[cvx]  [SMO] [CcVX SMO CVX]

0.1 1439.645 9.701 2773.102 10.648 5196.824 11.229
0.2 1423.210 9.473 4172.945 10.290 8673.961 11.546
0.3 1433.214 9.712 6015.294 10.337 10541.161 11.216
0.4 1442.023 9.450 7801.963 10.175 13676.213 11.079
0.5 1436.027 9.446 9229.548 10.157 14656.770 11.403
0.6 1440.176 9.750 9294.388 10.266 14366.720 10.944
0.7 1443.778 10.018 9176.258 10.470 14476.337 11.167
0.8 1432.628 9.585 9147.337 10.313 14400.468 11.582
0.9 1441.119 10.020 9151.134 10.272 14570.998 11.079
1.0 1424.439 9.384 9218937 10.694 14319.017 11.176
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6. Summary

Target of this work was the creation of behavioural models of analogue circuits that
describe the effects of parameter variations and can be simulated with [AGTAS] First, for
simulation with [AGTAS| parameter variations have to be represented as affine parameters.
Second, models have to enclose the original data fully. Third, models have to be written
in mathematical forms that are numerically stable even when calculated with interval
arithmetic.

Sec. explored two concepts for creating behavioural models of analogue circuits which
describe the effects of parameter variations: external and internal variation-aware modelling.
For external variation-aware modelling, first a model on the nominal behaviour of the
circuit was created. Then parallel translation was used to create one affine parameter that
extends the model’s offset to enclose data fully. The distance for the parallel translation is
determined by calculating the largest distance between the nominal model and the minimum
and maximum of the original data respectively.

Internal variation-aware modelling requires the modelling algorithm to be adapted to
determine affine parameters during training. This work extends Support Vector Machines
with two affine parameters. These parameters were introduced to linear [SVMs| Training a
linear [SVM] means determining its slope and offset. Affine determine affine intervals
for these two parameters. The offset parameter describes a parallel translation, an affine
slope describes a family of lines. Extending affine with the kernel trick to non-linear
does not change the interpretation of the offset parameter. The affine slope in
non-linear is a function of the input value.

Sec. [£.3| provided affine and affine algorithms. Like their nominal counterparts,
the algorithms allow the user to determine a maximum permissible error.
algorithms include the maximum permissible error into the cost function and optimize this
parameter. Like their nominal counterparts they allow a trade-off between the overall model
error and the maximum permissible error. Both models use the maximum permissible error
as initial width of the affine offset.

Two algorithms have been developed for each algorithm class: algorithms which use
minimum, nominal, and maximum values of the original data are called and PSVRE;
algorithms that only use minimum, and maximum values are called and PSVRH.
The number appended to the algorithm name refers to the number of error constraints. For
comparison: the original algorithms have two error constraints.

LibSVM, one standard implementation for training implements the Sequential
Optimal Minimization algorithm. This algorithm solves the quadratic optimization problem
by sequentially selecting two data points for optimization. The resulting optimization
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problem in two variables can be solved analytically. The [SMO] depends heavily on the fact
that the original optimization problem has one equality constraint that links the selected
variables. The optimization problem for the affine[SVMg has two equality constraints. Sec.
extended the [SMO] to operate on optimization problems with two equality constraints. It
also introduces a new heuristic for selecting data pairs or triples as not all variables of the
optimization problem are linked by the second equality constraints. Sec. shows that the
extended [SMOQ] is selective, but requires additional work to lower its runtime.

Three circuits were modelled using the new algorithms: the inverting amplifier, a
class A amplifier and a diode. For the first two circuits classical behavioural models are
created by modelling V,; = f(Vi,). The diode model is closer to a physical component
model as it models I = f(V'). The inverting amplifier is the most linear circuit, the class A
amplifier is non-linear in the range chosen for modelling and the diode is strongly non-linear
by nature.

Sec. presents the results for modelling the inverting amplifier. Behavioural models
are created using linear and [RBF] kernels. All models that have been created have been
simulated with [AGTAS] Models with the RBF] kernel create slightly better models as these
models trace the non-linearities of the circuit more closely than linear kernels. Against
expectations, the difference between affine models with 4 and 6 error constraints is quite
small.

The class A amplifier was modelled using RBF] kernels in Sec. [5.3] All models that have
been created have been simulated with[AGIAS| Class A amplifier models without adjustment
enclose the original data very closely. models with smaller maximum permissible
error model the data outside the operation region more closely. Even with adjustment, this
leads to lower overestimation and mismatch. For the differences between high and
low trade-off parameters is not as pronounced as the maximum permissible error is one
result of the training.

Diodes are modelled in Sec. Working models could only be obtained with ninth order
polynomial kernels. With their different nature, diode models offer a different result. While
diodes can be used in nominal simulation with [AGTAS] affine simulations fail. Therefore,
diode models were evaluated in Matlab. Due to the nature of the original data, diode models
have large modelling errors and due to the parallel translation, very large overestimation
and mismatch. Therefore, diode models require more work on the solver in [AGTAS]

All models presented in Chap. [5] have only one input, they only consider static behaviour,
and two of three models do not model their ports electrical. In future work, these points
should be addressed. Moving to more than one input was already considered in the algorithms
presented in Sec. 4.3 but has so far not been tested. One challenge is data generation.
Dynamic models require information about dynamic behaviour which also turns this into
a data generation problem at first glance. However, do not offer direct capabilities
for modelling dynamics. Modelling electric behaviour of all ports requires more data again,
but it also requires more than one model as do not support multi-input-multi-output
models in one
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Table A.1.: Inverting amplifier models trained with the solver.

(a) Linear kernels.

adjusted not adjusted

£ Runtime in s ETrain NV €. iV My, A,y My A,
0.00 52.740 301 2.537 2.537 2.546 2.580 0.000 0.000
0.15 46.138 301 2.085 2.085 2.244 2.273 0.267 0.133
0.30 45.588 301 2.013 2.024 2.333 2.364 0.534 0.266
0.45 46.103 &4 2.017 2.029 2489 2.521 0.801 0.399
0.60 45.809 56 2.002 2.015 2.625 2.659 1.068 0.532
0.75 46.644 30 1.972 1.985 2.746 2.782 1.334 0.665
0.90 48.258 12 1.944 1.958 2.869 2.907 1.601 0.798
1.05 47.798 2 1.937 1.952 3.013 3.053 1.868 0.931
1.20 46.646 2 1.944 1.959 3.171 3.213 2.135 1.064
1.35 46.197 301 1.950 1.967 3.329 3.373 2402 1.197
1.50 45.347 301 1.957 1.974 3.487 3.533 2.669 1.330

(b) kernels.

adjusted not adjusted

¢ Runtime in s Train NV e iV My, A, Moy Ao
0.00 45.535 301 2.361 2.383 2392 2.424 0.000 0.000
0.15 44.703 80 2.176 2.197 2356 2.387 0.267 0.133
0.30 45.430 38 2.062 2.082 2.391 2.422 0.534 0.266
0.45 45.425 27 2.028 2.045 2.504 2.537 0.801 0.399
0.60 44.924 11 1.933 1.948 2.558 2.591 1.068 0.532
0.75 45.432 8 1.766 1.780 2.539 2.573 1.334 0.665
0.90 44.957 7 1.754 1.766 2.676 2.711 1.601 0.798
1.05 45.324 6 1.804 1.816 2.877 2.914 1.868 0.931
1.20 45.286 6 1.794 1.806 3.017 3.056 2.135 1.064
1.35 44.848 6 1.784 1.795 3.157 3.199 2402 1.197
1.50 44.862 6 1.774 1.785 3.298 3.341 2.669 1.330
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Table A.2.: Inverting amplifier ‘ models trained with the solver.

(a) Linear kernels.

adjusted not adjusted
¢ Runtime in s ETrain MMV epeee IV My, Aoy Mgy A,

0.00 139.126 301 0.087 0.087 1.124 1.341 1.781 1.092
0.15 140.241 301 0.412 0.413 1.491 1.574 1.737 1.006
0.30 140.338 156 0.648 0.651 1.720 1.755 1.731 0.953
0.45 140.249 183 0.823 0.827 1.881 1.896 1.736 0.920
0.60 141.054 115 0.958 0.966 2.013 2.023 1.759 0.907
0.75 141.043 301 1.079 1.088 2.138 2.150 1.797 0.910
0.90 139417 81 1.189 1.199 2249 2.269 1.827 0.915
1.05 140.381 65 1.260 1.271 2.335 2364 1874 0.934
1.20 140.839 301 1.085 1.097 2.386 2.410 2.262 1.129
1.35 140.680 96 0.586 0.596 2.221 2.235 2.832 1.421
1.50 140.213 301 0.645 0.656 2.445 2.461 3.120 1.565

(b) kernels.

adjusted not adjusted
¢ Runtime in s ETrain MMV ereee NV My, Aoy Mgy Ao,

0.00 142.744 301 0.000 0.000 2.192 2.197 3.890 1.915
0.15 144.626 114 0.000 0.000 1.792 1.757 3.163 1.532
0.30 140.869 118 0.057 0.074 1.542 1.457 2.606 1.205
0.45 141.330 45 0.161 0.175 1.736 1.624 2.767 1.260
0.60 140.809 22 0.241 0.253 1.853 1.754 2.859 1.305
0.75 141.888 42 0.346 0.356 1974 1.901 2.931 1.342
0.90 142.504 68 0.463 0.472 2111 2.053 2.972 1.371
1.05 141.165 31 0.525 0.534 2.261 2.214 3.126 1.457
1.20 141.949 8 0.577 0.585 2481 2.441 3.438 1.610
1.35 143.754 21 0.627 0.635 2.703 2.672 3.754 1.767
1.50 141.232 11 0.677 0.685 2927 2903 4.069 1.925
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Table A.3.: Inverting amplifier e models trained with the solver.

(a) Linear kernels.

adjusted not adjusted

£ Runtime in s ETrain NV €. iV My, A,y My A,
0.00 300.823 301 0.087 0.087 1.124 1.341 1.781 1.092
0.15 301.555 280 0.415 0.416 1.538 1.627 1.809 1.050
0.30 298.950 189 0.617 0.619 1.805 1.854 1.921 1.067
0.45 301.065 223 0.764 0.768 1.996 2.027 2.053 1.106
0.60 296.443 139 0.892 0.899 2.207 2.226 2.180 1.148
0.75 298.268 301 1.027 1.035 2.386 2.399 2.269 1.173
0.90 299.782 301 1.154 1.165 2.580 2.592 2402 1.227
1.05 297.836 301 1.221 1.232 2,675 2.690 2.476 1.253
1.20 301.815 301 1.316 1.328 2.672 2.697 2.349 1.174
1.35 301.180 63 1.061 1.073 2.542 2.567 2.575 1.286
1.50 301.103 22 0.653 0.663 2.451 2.467 3.116 1.563

(b) kernels.

adjusted not adjusted

¢ Runtime in s Train NV e iV My, A, Moy Ao
0.00 307.921 301 0.000 0.000 2.216 2.228 3.933 1.942
0.15 301.446 204 0.000 0.000 1.834 1.810 3.238 1.578
0.30 303.091 116 0.057 0.074 1.542 1.457 2.606 1.205
0.45 300.877 52 0.174 0.188 1.732 1.624 2.739 1.249
0.60 305.129 34 0.263 0.275 1.851 1.756 2.817 1.287
0.75 302.350 25 0.362 0.372 1979 1.903 2.915 1.330
0.90 304918 13 0.428 0.437 2.111 2.049 3.041 1.399
1.05 304.138 79 0.493 0.501 2.242 2.197 3.157 1.471
1.20 303.211 6 0.545 0.553 2.465 2.424 3.464 1.623
1.35 306.952 28 0.596 0.603 2.686 2.655 3.782 1.780
1.50 305.801 7 0.646 0.653 2911 2.887 4.095 1.938
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Table A .4.: Inverting amplifier models trained with the solver.

(a) Linear kernels.

adjusted  not adjusted

v Runtime in s ETrain MV ereq NV my, A, Mgy Ay
0.1 49.220 301 2.537 2.537 2546 2.58 0.0 0.0
0.2 49.806 301 2.537 2537 2546 2.58 0.0 0.0
0.3 50.104 301 2.537 2.537 2546 2.58 0.0 0.0
0.4 49.860 301 2.537 2.537 2546 2.58 0.0 0.0
0.5 49.484 301 2.537 2.537 2546 2.58 0.0 0.0
0.6 49.956 301 2.537 2.537 2546 2.58 0.0 0.0
0.7 49.456 301 2.537 2537 2546 2.58 0.0 0.0
0.8 49.861 301 2.537 2.537 2546 2.58 0.0 0.0
0.9 49.818 301 2.537 2.537 2546 2.58 0.0 0.0
1.0 49.856 301 2.537 2.537 2546 2.58 0.0 0.0

(b) kernels.

adjusted not adjusted

v Runtime in s ETrain MV epeee NV my, Ay Moy Ao
0.1 45.110 301 2.361 2.383 2392 2424 0.0 0.0
0.2 45.406 301 2.361 2.383 2392 2424 0.0 0.0
0.3 45.031 301 2.361 2.383 2392 2424 0.0 0.0
0.4 44.979 301 2.361 2383 2392 2424 0.0 0.0
0.5 44.498 301 2.361 2.383 2392 2424 0.0 0.0
0.6 45.217 301 2.361 2.383 2392 2424 0.0 0.0
0.7 44.970 301 2.361 2.383 2392 2424 0.0 0.0
0.8 44.773 301 2.361 2.383 2392 2424 0.0 0.0
0.9 44.582 301 2.361 2.383 2392 2424 0.0 0.0
1.0 44.772 301 2.361 2.383 2392 2424 0.0 0.0
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Table A.5.: Inverting amplifier ‘ models trained with the solver.

(a) Linear kernels.

adjusted not adjusted

v Runtime in s €Train MV ereq NV my, Apy Moy Aoy
0.1 143.042 301 1.658 1.666 2.119 2.129 0.619 0.380
0.2 143.316 301 0.441 0.441 1418 1.525 1.531 0.939
0.3 141.768 301 0.110 0.110 1.143 1.349 1.759 1.078
0.4 144.115 301 0.087 0.087 1.122 1.338 1.777 1.089
0.5 143.068 301 0.087 0.087 1.125 1.342 1.782 1.092
0.6 142.649 301 0.087 0.087 1.124 1.341 1.781 1.092
0.7 142.010 301 0.092 0.092 1.125 1.339 1.772 1.086
0.8 141.470 301 0.089 0.089 1.122 1.337 1.773 1.087
0.9 142.527 301 0.087 0.087 1.121 1.337 1.775 1.088
1.0 141.748 301 0.087 0.087 1.126 1.343 1.783 1.093

(b) kernels.

adjusted not adjusted

v Runtime in s ETrain MV epeee iV my, Ay Moy A,
0.1 144.640 236 0.394 0.395 1.462 1.443 1.838 0.908
0.2 144.343 228 0.082 0.083 1.514 1.490 2.511 1.226
0.3 145.646 297 0.000 0.000 1.625 1.604 2.835 1.398
0.4 145.199 301 0.000 0.000 1.667 1.647 2.908 1.436
0.5 144.346 301 0.000 0.000 1.661 1.640 2.897 1.430
0.6 145.226 301 0.000 0.000 1.661 1.640 2.897 1.430
0.7 144.790 301 0.000 0.000 1.661 1.640 2.897 1.430
0.8 144.295 301 0.000 0.000 1.661 1.640 2.897 1.430
0.9 146.955 301 0.000 0.000 1.660 1.640 2.897 1.430
1.0 146.188 301 0.000 0.000 1.661 1.640 2.897 1.430
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Table A.6.: Inverting amplifier models trained with the solver.

(a) Linear kernels.

adjusted not adjusted
v Runtime in s €Train MV €1. IV my, Ay Mgy Aoy

0.1 306.490 301 1.496 1.503 2.197 2215 0.976 0.598
0.2 300.061 301 0.614 0.615 1.562 1.642 1.446 0.886
0.3 302.159 301 0.266 0.267 1.287 1.439 1.661 1.018
0.4 303.677 301 0.087 0.087 1.122 1.338 1.777 1.089
0.5 305.584 301 0.087 0.087 1.124 1.341 1.781 1.092
0.6 300.392 301 0.087 0.087 1.124 1.341 1.781 1.092
0.7 300.519 301 0.087 0.087 1.126 1.343 1.783 1.093
0.8 305.379 301 0.094 0.094 1.127 1.340 1.770 1.085
0.9 303.009 301 0.101 0.101 1.135 1.345 1.766 1.082
1.0 301.625 301 0.087 0.087 1.126 1.342 1.783 1.093

(b) kernels.

adjusted not adjusted

v Runtime in s Train NV e IV My, Aoy Mygy Ao
0.1 310.922 152 0.351 0.353 1.478 1.456 1.951 0.956
0.2 309.153 225 0.000 0.000 1.520 1.492 2.660 1.301
0.3 304.674 279 0.000 0.000 1.646 1.626 2.872 1.418
0.4 304.560 292 0.000 0.000 1.667 1.650 2.908 1.439
0.5 307.333 301 0.000 0.000 1.664 1.646 2.901 1.435
0.6 310.621 301 0.000 0.000 1.663 1.646 2.901 1.435
0.7 309.855 301 0.000 0.000 1.664 1.646 2.901 1.435
0.8 309.866 301 0.000 0.000 1.664 1.646 2.901 1.435
0.9 310.697 301 0.000 0.000 1.664 1.646 2.901 1.435
1.0 310.447 301 0.000 0.000 1.663 1.646 2.901 1.435
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Table A.7.: Inverting amplifier models trained with the solver.

(a) Linear kernels.

adjusted not adjusted

£ Runtime in s ETrain NV €. iV My, A,y My A,
0.00 10943.890 185 2.537 2.537 7.641 7.741 0.000 0.000
0.15 3992.644 140 2.097 2.097 8.090 8.197 0.267 0.133
0.30 5107.015 111 2.075 2.087 6.573 6.659 0.534 0.266
0.45 10228.137 77 2.474 2489 2935 2974 0.801 0.399
0.60 24875.594 51 2.561 2.578 3.173 3.215 1.068 0.532
0.75 31857.805 24 2.630 2.647 3.393 3.437 1.334 0.665
0.90 255.930 13 1.929 1.943 6.741 6.830 1.601 0.798
1.05 515.150 3 1.893 1.908 6.786 6.875 1.868 0.931
1.20 975.370 5 1.517 1.531 5.802 5.878 2.135 1.064
1.35 974.907 5 1.367 1.381 5.473 5.545 2402 1.197
1.50 953.319 5 1.217 1.231 5.200 5.268 2.669 1.330

(b) kernels.

adjusted not adjusted

¢ Runtime in s Train NV e iV My, A, Moy Ao
0.00 1331.636 289 2.229 2.251 6.756 6.845 0.000 0.000
0.15 164.888 77 2.314 2.335 7.160 7.254 0.267 0.133
0.30 40.500 27 1.902 1.919 6.063 6.143 0.534 0.266
0.45 33.595 18 1.726 1.726  5.385 5.456 0.801 0.399
0.60 29.002 10 1.854 1.854 5.851 5.927 1.068 0.532
0.75 32.848 13 1.951 1.955 6.534 6.620 1.334 0.665
0.90 25.048 6 1.753 1.753 5.959 6.037 1.601 0.798
1.05 25.018 6 1.603 1.603 5.604 5.677 1.868 0.931
1.20 24.952 6 1.453 1.453 5.303 5.372 2.135 1.064
1.35 24.921 6 1.303 1.303 5.002 5.067 2.402 1.197
1.50 24.697 6 1.153 1.153 4.700 4.762 2.669 1.330
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Table A.8.: Inverting amplifier ‘ models trained with the solver.

(a) Linear kernels.

adjusted not adjusted
¢ Runtime in s ETrain MMV epeee IV My, Aoy Mgy A,

0.00 2313.080 175 0.362 0.363 1.837 1.889 1.356 0.831
0.15 2122.242 162 2.907 2.922 1.486 1.593 1.887 1.097
0.30 1723.244 129 0.437 0.439 1617 1.692 2.056 1.149
0.45 3693.044 128 0.432 0.435 2.600 2.630 2.278 1.239
0.60 5543.656 115 0.894 0.902 1.980 1.990 1.817 0.940
0.75 8858.616 98 0.936 0.945 3.963 3.991 1.912 0.974
0.90 2544.609 81 1.009 1.019 4.202 4.240 1.980 0.996
1.05 6797.498 64 1.181 1.193 4.679 4.735 1.935 0.966
1.20 4427.342 47 0.940 0.951 3.183 3.213 2.334 1.167
1.35 2601.076 31 0.584 0.594 3.228 3.251 2.834 1.422
1.50 632.906 21 0.685 0.696 3.625 3.668 2.722 1.357

(b) kernels.

adjusted not adjusted
¢ Runtime in s ETrain MMV ereee NV My, Aoy Mgy Ao,

0.00 2819.798 301 0.000 0.000 2.189 2.194 3.885 1.912
0.15 47212.329 63 0.000 0.000 1.785 1.743 3.160 1.519
0.30 108.280 35 0.359 0.372 2558 2.476 2477 1.180
0.45 48381.961 22 0.455 0.461 1929 1.805 2.625 1.170
0.60 48204.843 18 0.618 0.624 1971 1.936 2.376 1.140
0.75 131.732 15 0.762 0.762 3.689 3.642 2.456 1.148
0.90 45.821 7 1.412 1.412 5.897 5.912 3.005 1.400
1.05 44.996 7 1.262 1.262 5.595 5.607 3.273 1.533
1.20 45.837 7 1.112 1.112 5.293 5.302 3.545 1.666
1.35 45.509 7 0.962 0.962 4992 4.997 3.811 1.799
1.50 45.894 7 0.812 0.812 4.690 4.692 4.078 1.932
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Table A.9.: Inverting amplifier o models trained with the solver.

(a) Linear kernels.

adjusted not adjusted

£ Runtime in s ETrain NV €. iV My, A,y My A,
0.00 3356.961 137 1.911 1.921 1.593 1.710 1.694 1.038
0.15 3382.514 131 1.264 1.264 2.057 2.085 1.464 0.839
0.30 2982.000 120 1.118 1.118 2.521 2.533 1.235 0.659
0.45 3362.397 111 3.400 3.400 2.532 2.546 1.355 0.700
0.60 3157.383 86 1.811 1.823 2.863 2.878 1.791 0.925
0.75 3367.764 74 2.723 2.741 2929 2.943 2.096 1.075
0.90 3477.080 81 0.709 0.717 2512 2.529 2.763 1.431
1.05 1407.597 46 1.524 1.537 6.094 6.146 2.529 1.281
1.20 4230.705 51 0.303 0.311 2.255 2.276 3.344 1.715
1.35 2832.872 7 0.698 0.708 2.643 2.656 3.342 1.697
1.50 2703.262 8 0.094 0.102 2.323 2.341 3.846 1.958

(b) kernels.

adjusted not adjusted

¢ Runtime in s Train NV e iV My, A, Moy Ao
0.00 10748.438 301 0.000 0.000 2.197 2.208 3.899 1.925
0.15 35806.283 96 0.000 0.000 1.864 1.831 3.299 1.596
0.30 3897.379 30 0.439 0.440 1.700 1.599 2.090 1.005
0.45 3611.629 25 0.610 0.626 1.875 1.843 2.122 1.066
0.60 23922.556 19 0.973 0973 2.192 2.164 2.144 1.024
0.75 3301.648 16 1.103 1.103 2.380 2.384 2.243 1.101
0.90 2767.277 4 1.408 1.408 3.024 3.010 2.946 1.376
1.05 2792.945 4 1.258 1.258 3.024 3.010 3.212 1.509
1.20 2807.070 7 0.966 0.968 2.595 2.559 2.842 1.375
1.35 2543.629 4 0.958 0.958 3.024 3.010 3.750 1.775
1.50 2501.438 4 0.808 0.808 3.024 3.010 4.018 1.908
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Table A.10.: Inverting amplifier models trained with the solver.

(a) Linear kernels.

adjusted  not adjusted

v Runtime in s ETrain MV ereq NV my, A, Mgy Ay
0.1 1149.853 139 2.81 2.824 2547 258 0.0 0.0
0.2 1149.150 139 2.81 2.824 2547 258 0.0 0.0
0.3 1138.419 139 2.81 2.824 2.547 2.58 0.0 0.0
0.4 1157.486 139 2.81 2.824 2547 258 0.0 0.0
0.5 1143.836 139 2.81 2.824 2547 258 0.0 0.0
0.6 1140.483 139 2.81 2.824 2547 258 0.0 0.0
0.7 1149.941 139 2.81 2.824 2.547 2.58 0.0 0.0
0.8 1147.962 139 2.81 2.824 2.547 2.58 0.0 0.0
0.9 1144.473 139 2.81 2.824 2.547 2.58 0.0 0.0
1.0 1146.399 139 2.81 2.824 2547 258 0.0 0.0

(b) kernels.

adjusted not adjusted

v Runtime in s ETrain MV epeee NV my, Ay Moy Ao
0.1 341.101 257 2.359 2381 7.148 7.242 0.0 0.0
0.2 338.187 257 2.359 2.381 7.148 7.242 0.0 0.0
0.3 341.330 257 2.359 2381 7.148 7.242 0.0 0.0
0.4 339.480 257 2.359 2381 7.148 7.242 0.0 0.0
0.5 341.123 257 2.359 2381 7.148 7.242 0.0 0.0
0.6 338.339 257 2.359 2,381 7.148 7.242 0.0 0.0
0.7 345.023 257 2.359 2381 7.148 7.242 0.0 0.0
0.8 340.830 257 2.359 2.381 7.148 7.242 0.0 0.0
0.9 341.378 257 2.359 2381 7.148 7.242 0.0 0.0
1.0 340.431 257 2.359 2381 7.148 7.242 0.0 0.0

123



A. Generated Models

124

Table A.11.: Inverting amplifier ‘ models trained with the solver.

(a) Linear kernels.

adjusted not adjusted

v Runtime in s €Train MV ereq NV my, Apy Moy Aoy
0.1 11320.919 51 1.409 1.417 0.709 0.765 1.821 0.953
0.2 25865.832 208 0.335 0.335 1.307 1.444 1.648 1.006
0.3 33962.535 280 0.086 0.088 1.922 2.004 3.285 1.747
0.4 45515.602 300 1.067 1.072 1.392 1.473 1.641 0.952
0.5 66676.825 300 1.254 1.254 1.597 1.647 1.384 0.817
0.6 66908.327 300 1.254 1.254 1.597 1.647 1.384 0.817
0.7 66109.814 300 1.254 1.254 1.597 1.647 1.384 0.817
0.8 67669.059 300 1.254 1.254 1.597 1.647 1.384 0.817
0.9 67229.627 300 1.254 1.254 1.597 1.647 1.384 0.817
1.0 67701.318 300 1.254 1.254 1.597 1.647 1.384 0.817

(b) kernels.

adjusted not adjusted

v Runtime in s ETrain MV epeee iV my, Ay Moy A,
0.1 1395.444 58 3.009 3.010 8.085 8.110 6.637 3.424
0.2 4043.718 130 3.220 3.220 8.294 8.319 6.701 3.369
0.3 6495.287 178 0.148 0.166 1.531 1.530 2.293 1.127
0.4 10168.727 198 0.132 0.140 1.612 1.610 2.366 1.152
0.5 14680.257 219 0.044 0.046 1.505 1.506 2.571 1.255
0.6 14931.892 219 0.044 0.046 1.505 1.506 2.571 1.255
0.7 14811.167 219 0.044 0.046 1.505 1.506 2.571 1.255
0.8 14715.273 219 0.044 0.046 1.505 1.506 2.571 1.255
0.9 14922.307 219 0.044 0.046 1.505 1.506 2.571 1.255
1.0 14884.491 219 0.044 0.046 1.505 1.506 2.571 1.255




A.1. Inverting Amplifier

Table A.12.: Inverting amplifier 0 models trained with the solver.

(a) Linear kernels.

adjusted not adjusted
v Runtime in s €Train MV €1. IV my, Ay Mgy Aoy

0.1 16923.135 146 1.177 1.188 0.483 0.516 2.375 1.202
0.2 42890.786 244 1.541 1.541 0.700 0.801 2.246 1.178
0.3 69740.263 297 1.096 1.105 0.739 0.903 2.354 1.258
0.4 84527.863 301 1.368 1.376 1.322 1.409 1877 1.054
0.5 107442.328 301 2.600 2.614 2542 2.569 0.386 0.197
0.6 109225.551 301 2.600 2.614 2.542 2569 0.386 0.197
0.7 109727.976 301 2.600 2.614 2.542 2.569 0.386 0.197
0.8 110580.835 301 2.600 2.614 2542 2569 0.386 0.197
0.9 109780.658 301 2.600 2.614 2542 2569 0.386 0.197
1.0 111487.404 301 2.600 2.614 2542 2569 0.386 0.197

(b) kernels.

adjusted not adjusted
v Runtime in s Train NV e IV My, Aoy Mygy Ao

0.1 3381.126 158 0.345 0.347 1.763 1.767 1.927 0.932
0.2 7711.609 223 0.259 0.276 1.742 1.734 2.067 1.009
0.3 17981.850 270 0.136 0.1564 1.578 1.565 2.329 1.144
0.4 26134.396 291 0.072 0.075 1.495 1476 2.462 1.202
0.5 51194.106 298 0.000 0.000 1.535 1.509 2.688 1.315
0.6 02291.515 298 0.000 0.000 1.535 1.509 2.688 1.315
0.7 02581.182 298 0.000 0.000 1.535 1.509 2.688 1.315
0.8 51703.803 298 0.000 0.000 1.535 1.509 2.688 1.315
0.9 51851.606 298 0.000 0.000 1.535 1.509 2.688 1.315
1.0 52111.031 298 0.000 0.000 1.535 1.509 2.688 1.315
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Table A.13.: Class A amplifier models created with the solver.

adjusted not adjusted

£ Runtime in s ETrain MMV epeee iV My, Aoy Mgy Ao,
0.000 25.133 31 1.481 1.571 3.869 6.535 NaN 0.000
0.035 10.168 18 1.421 1.511 3.804 6.425 0.091 0.077
0.070 9.804 15 1.357 1.446 3.727 6.295 0.183 0.154
0.105 9.892 12 1.299 1.388 3.784 6.390 0.274 0.232
0.140 9.757 10 1.238 1.327 3.495 5.902 0.366 0.309
0.175 9.902 10 1.163 1.252 3.505 5.920 0.457 0.386
0.210 9.786 9 1.131 1.221 3.504 5.918 0.549 0.463
0.245 9.681 8 1.123 1.212 3.572 6.033 0.640 0.540
0.280 9.881 6 1.117 1.207 3.649 6.163 0.731 0.618
0.315 9.735 5 1.129 1.219 3.772 6.371 0.823 0.695
0.350 9.863 5 1.125 1.215 3.854 6.508 0.914 0.772




A.2. Class A Amplifier

Table A.14.: Class A amplifier ‘ models created with the solver.

adjusted not adjusted
¢ Runtime in s ETrain NV €. NV My, Aoy Mgy A,

0.000 11.269 31 0.838 0.931 3.040 4.845 0.928 0.572
0.035 10.949 25 0.803 0.895 3.043 4.818 1.014 0.637
0.070 10.962 20 0.718 0.810 3.090 4.541 1.117 0.684
0.105 11.197 17 0.593 0.684 2977 4.122 1.314 0.754
0.140 10.943 17 0.515 0.608 2.881 3.933 1.507 0.833
0.175 11.075 13 0.431 0.524 2.807 3.759 1.630 0.930
0.210 11.331 12 0.436 0.527 2912 4.029 1.753 1.056
0.245 11.013 10 0.433 0.525 2974 4.256 1870 1.174
0.280 10.953 10 0.432 0.524 3.036 4.478 1.906 1.287
0.315 11.093 8 0.388 0.480 2.969 4.479 2.001 1.387
0.350 11.207 8 0.283 0.375 2.788 4.253 2.133 1.507

Table A.15.: Class A amplifier o models created with the solver.

adjusted not adjusted
¢ Runtime in s €Train MV €1.q NV my, Ay Mgy A,

0.000 13.128 31 0.695 0.785 2703 4.324 1.098 0.630
0.035 13.064 24 0.659 0.749 2705 4.321 1.166 0.707
0.070 13.045 21 0.557 0.647 2.642 3.947 1.222 0.745
0.105 13.146 20 0.479 0.570 2.933 4.110 1.316 0.775
0.140 13.218 15 0.446 0.537 2.759 3.711 1.518 0.863
0.175 12.993 12 0.422 0.514 2.787 3.747 1.623 0.939
0.210 13.311 10 0.424 0.516 2.836 3.921 1.711 1.028
0.245 13.304 11 0.340 0.431 2708 3.743 1.796 1.126
0.280 13.110 9 0.261 0.353 2.558 3.584 1.885 1.220
0.315 13.379 9 0.242 0.334 2543 3.680 1.924 1.308
0.350 13.235 10 0.187 0.232 2468 3.661 2.042 1.420
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Table A.16.: Class A amplifier models created with the solver.

adjusted not adjusted

v Runtime in s ETrain NV €. NV My, Aoy Mgy A,
0.1 9.810 5} 1.125 1.215 3.854 6.508 0.914 0.772
0.2 9.899 5 1.125 1.215 3.854 6.508 0.914 0.772
0.3 10.009 5 1.125 1.215 3.854 6.508 0.914 0.772
0.4 9.808 5 1.125 1.215 3.854 6.508 0.914 0.772
0.5 9.780 5 1.125 1.215 3.854 6.508 0.914 0.772
0.6 9.788 5 1.125 1.215 3.854 6.508 0.914 0.772
0.7 9.809 5 1.125 1.215 3.854 6.508 0.914 0.772
0.8 9.875 5 1.125 1.215 3.854 6.508 0.914 0.772
0.9 9.766 5 1.125 1.215 3.854 6.508 0.914 0.772
1.0 9.804 ) 1.125 1.215 3.854 6.508 0.914 0.772

Table A.17.: Class A amplifier ‘ models created with the solver.

adjusted not adjusted

v Runtime in s €Train MV €1eq IV my, Ay Mgy A,,
0.1 11.372 17 0.686 0.778 2993 4.058 0.987 0.516
0.2 11.456 23 0.830 0.922 3.035 4.784 0.939 0.562
0.3 11.400 29 0.831 0.924 3.055 4.790 0.944 0.563
0.4 11.503 31 0.836 0.929 3.038 4.828 0.925 0.571
0.5 11.405 31 0.838 0.931 3.041 4.840 0.928 0.572
0.6 11.231 31 0.838 0.931 3.041 4.840 0.928 0.572
0.7 11.403 31 0.838 0.931 3.041 4.840 0.928 0.572
0.8 11.469 31 0.838 0.931 3.041 4.840 0.928 0.572
0.9 11.420 31 0.838 0.931 3.041 4.840 0.928 0.572
1.0 11.485 31 0.838 0.931 3.041 4.840 0.928 0.572
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Table A.18.: Class A amplifier o models created with the solver.

adjusted not adjusted

v Runtime in s ETrain MV epeee NV my, Ay Mgy A,
0.1 13.784 22 0.584 0.675 2.681 3.662 1.022 0.543
0.2 13.802 27 0.688 0.778 2.713 4.289 1.105 0.628
0.3 13.779 31 0.678 0.768 2.712 4.229 1.079 0.620
0.4 13.681 31 0.689 0.780 2.691 4.297 1.097 0.629
0.5 13.561 31 0.695 0.785 2.704 4.323 1.098 0.630
0.6 13.592 31 0.695 0.785 2.704 4.323 1.098 0.630
0.7 13.671 31 0.695 0.785 2.704 4.323 1.098 0.630
0.8 13.582 31 0.695 0.785 2.704 4.323 1.098 0.630
0.9 13.570 31 0.695 0.785 2.704 4.323 1.098 0.630
1.0 13.640 31 0.695 0.785 2.704 4.323 1.098 0.630

Table A.19.: Class A amplifier models created with the solver.

adjusted not adjusted
¢ Runtime in s €Train MV €1eq IV my, Ay Mey A,

0.000 28.400 28 1.485 1.575 4.913 7.796 NaN 0.000
0.035 18621.356 19 1.446 1.536 4.903 7.782 0.091 0.077
0.070 18882.784 16 1.373 1.462 4.794 7.614 0.183 0.154
0.105 19199.261 14 1.373 1.462 4.895 7.770 0.274 0.232
0.140 18890.565 14 1.341 1.431 4.902 7.780 0.366 0.309
0.175 18630.890 12 1.312 1.400 4.976 7.894 0.457 0.386
0.210 19047.435 12 1.248 1.336 4.836 7.678 0.549 0.463
0.245 42.286 12 1.295 1.383 5.071 8.035 0.640 0.540
0.280 10.267 6 1.082 1.172 4562 7.259 0.731 0.618
0.315 19250.386 12 1.190 1.280 4.972 7.887 0.823 0.695
0.350 30.572 6 0.991 1.080 4.501 7.163 0.914 0.772
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Table A.20.: Class A amplifier ‘ models created with the solver.

adjusted not adjusted

£ Runtime in s ETrain MMV epeee NV My, Aoy Mgy Ao
0.000 130.183 31 0.846 0.938 3.210 4.978 0.931 0.577
0.035 36558.218 26 0.796 0.888 3.165 4.914 1.026 0.634
0.070 35824.397 23 0.773 0.864 3.200 4.966 1.109 0.688
0.105 35629.246 17 0.611 0.701 2.842 4.403 1.263 0.774
0.140 35591.034 17 0.509 0.601 2.663 4.109 1.622 0.898
0.175 34623.524 14 0.430 0.522 2.525 3.916 1.707 0.886
0.210 13.316 12 0.376 0.469 2.464 3.835 1.848 1.183
0.245 13.005 8 0.385 0.478 2.605 4.029 1.896 1.271
0.280 12.804 8 0.317 0.408 2.499 3.882 2.008 1.447
0.315 12.499 10 0.337 0.430 2.676 4.125 2.056 1.493
0.350 12.390 8 0.278 0.368 2.596 4.014 2.166 1.656

Table A.21.: Class A amplifier u models created with the solver.

adjusted not adjusted

¢ Runtime in s €Train MV er.q iV my, Ay Mgy A,
0.000 516.292 31 0.690 0.780 2.767 4.287 1.093 0.629
0.035 42459.570 27 0.635 0.725 2.720 4.204 1.251 0.709
0.070 9190.917 22 0.451 0.542 2313 3.544 1.319 0.737
0.105 8870.806 19 0.364 0.454 2207 3.315 1.587 0.832
0.140 9178.347 18 0.355 0.445 2.261 3.429 1.693 0.943
0.175 7418.083 12 0.526 0.617 2.801 4.339 1.679 0.972
0.210 7634.555 12 0.353 0.444 2.397 3.729 1.583 1.102
0.245 8094.898 13 0.211 0.303 2.182 3.259 2.130 1.324
0.280 7325.498 11 0.356 0.447 2.624 4.056 2.009 1.423
0.315 6623.903 9 0.348 0.348 2.705 4.172 1.915 1.371
0.350 7191.846 11 0.193 0.193 2.354 3.643 2.286 1.551
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Table A.22.: Class A amplifier models created with the solver.

adjusted not adjusted

v Runtime in s ETrain NV epeee NV my, Ay Mgy A,
0.1 30.739 6 0.991 1.08 4.504 7.157 0.914 0.772
0.2 30.346 6 0.991 1.08 4.504 7.157 0.914 0.772
0.3 30.630 6 0.991 1.08 4.504 7.157 0.914 0.772
0.4 30.327 6 0.991 1.08 4.504 7.157 0.914 0.772
0.5 30.730 6 0.991 1.08 4.504 7.157 0.914 0.772
0.6 30.540 6 0.991 1.08 4.504 7.157 0.914 0.772
0.7 30.921 6 0.991 1.08 4.504 7.157 0.914 0.772
0.8 30.225 6 0.991 1.08 4.504 7.157 0.914 0.772
0.9 30.776 6 0.991 1.08 4.504 7.157 0.914 0.772
1.0 30.975 6 0.991 1.08 4.504 7.157 0.914 0.772

Table A.23.: Class A amplifier ‘ models created with the solver.

adjusted not adjusted
v Runtime in s €Train MV €1 NV my, Aoy Mgy Aoy

0.1 36.697 11 1.832 1.922 6.031 9.667 3.123 3.034
0.2 88.969 17 1.868 1.957 6.016 9.644 2973 2.935
0.3 127.838 21 0.401 0.493 2598 4.009 1.766 1.345
0.4 180.600 23 0.566 0.658 2.739 4.231 1.296 0.855
0.5 231.588 26 0.785 0.877 3.017 4.693 1.021 0.657
0.6 235.259 26 0.785 0.877 3.048 4.737 1.021 0.657
0.7 230.707 26 0.785 0.877 3.048 4.737 1.021 0.657
0.8 233.738 26 0.785 0.877 3.048 4.737 1.021 0.657
0.9 232.205 26 0.785 0.877 3.048 4.737 1.021 0.657
1.0 232.962 26 0.785 0.877 3.048 4.737 1.021 0.657
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Table A.24.: Class A amplifier - models created with the solver.

adjusted not adjusted

v Runtime in s ETrain NV €pee iV My, Aoy Mygy Aoy
0.1 49.104 18 0.245 0.337 2.285 3.474 1.960 1.312
0.2 98.859 22 0.441 0.533 2.518 3.900 1.557 1.056
0.3 219.355 26 0.454 0.545 2.521 3.904 1.481 1.026
0.4 316.319 30 0.509 0.600 2.447 3.803 1.313 0.751
0.5 508.159 31 0.625 0.715 2.698 4.151 1.220 0.699
0.6 489.524 31 0.625 0.715 2.698 4.151 1.220 0.699
0.7 503.521 31 0.625 0.715 2.698 4.151 1.220 0.699
0.8 493.892 31 0.625 0.715 2.698 4.151 1.220 0.699
0.9 496.640 31 0.625 0.715 2.698 4.151 1.220 0.699
1.0 505.001 31 0.625 0.715 2.698 4.151 1.220 0.699




A.3. Diode

A.3. Diode

All models have been created using polynomial kernels.

Table A.25.: Diode models created with the solver.

adjusted not adjusted

¢ Runtime in s €Train IN A epeq in A My A,, My A,
0.000 10.890 18 5.578 7.083 6924859 40.277 NaN 0.000
0.005 9.444 18 5.581 6.992 6968906 40.534 132945 0.773
0.010 9.386 18 5.580 6.747 6862666 39.916 265890 1.547
0.015 9.847 18 5.515 6.719 6968168 40.529 398836 2.320
0.020 9.452 18 5.374 6.365 6754740 39.288 531781 3.093
0.025 9.528 18 5.253 5.983 6514174 37.889 664727 3.866
0.030 9.874 18 5.199 5.710 6379815 37.107 797672 4.640
0.035 9.544 18 5.147 5.424 6233055 36.254 930618 5.413
0.040 9.407 18 5.095 5.140 6088530 35.413 1063563 6.186
0.045 9.763 18 5.043 5.043 6127236 35.638 1196509 6.959
0.050 9.287 18 4.991 4.991 6209455 36.116 1329454 7.733
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Table A.26.: Diode g‘ models created with the E solver.

adjusted not adjusted

¢ Runtime in s E €Train N A epeq N A My A,, My, A,,
0.000 9.889 18 2.704 3.671 3626963 22.487 28516  1.613
0.005 10.259 18 2.524 3.422 3550835 21.879 205008  2.418
0.010 9.858 18 2.038 3.019 3310575 20.485 358743  3.316
0.015 10.243 18 1.748 2.734 3108585 19.567 435161  4.017
0.020 10.340 18 1.446 2.440 3033586 18.739 647830  4.862
0.025 9.992 18 1.154 2.157 2884440 17.987 775764  5.723
0.030 10.315 18 0.885 1.897 2746605 17.253 892432  6.468
0.035 10.355 18 0.791 1.809 2732468 17.444 963974  7.158
0.040 10.383 18 0.610 1.634 2775894 17.311 1178377  8.020
0.045 10.021 18 0.466 1.493 2874773 17.363 1415371  8.875
0.050 10.194 18 0.098 1.084 2536357 16.185 1476137 10.018
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Table A.27.: Diode n models created with the solver.

adjusted not adjusted

¢ Runtime in s €Train IN A epeq in A My A,, My A,
0.000 10.788 18 2.619 3.583 3576756 22.013 66648 1.639
0.005 10.840 18 2.474 3.370 3464093 21.527 169791 2.366
0.010 11.393 18 1.862 2.839 3085551 19.385 309871 3.240
0.015 10.894 18 1.348 2.336 2894174 17.569 610603 4.287
0.020 10.773 18 1.148 2.145 2745039 17.120 648312 4.925
0.025 11.331 18 1.034 2.038 2681032 17.207 688079 5.615
0.030 10.926 18 0.956 1.968 2875984 17.809 951957 6.618
0.035 10.850 18 0.598 1.621 2632948 16.533 1047812 7.313
0.040 11.365 18 0.483 1.511 2715221 16.745 1237746 8.151
0.045 10.846 18 0.544 1.572 3172444 18.156 1635149 9.214
0.050 11.027 18 0.349 1.267 2920846 17.016 1682075 9.811

Table A.28.: Diode models created with the solver.

adjusted not adjusted

v Runtime in s ETrain IN A 1o i A My Ao My Aoy
0.1 9.701 18 4.991 4.991 6209455 36.116 1329454 7.733
0.2 9.473 18 4.991 4.991 6209455 36.116 1329454 7.733
0.3 9.712 18 4.991 4.991 6209455 36.116 1329454 7.733
0.4 9.450 18 4.991 4.991 6209455 36.116 1329454 7.733
0.5 9.446 18 4.991 4.991 6209455 36.116 1329454 7.733
0.6 9.750 18 4.991 4.991 6209455 36.116 1329454 7.733
0.7 10.018 18 4.991 4.991 6209455 36.116 1329454 7.733
0.8 9.585 18 4.991 4.991 6209455 36.116 1329454 7.733
0.9 10.020 18 4.991 4.991 6209455 36.116 1329454 7.733
1.0 9.384 18 4.991 4.991 6209455 36.116 1329454 7.733
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Table A.29.: Diode ‘ models created with the solver.

adjusted not adjusted

v Runtime in s CTrain I A epeq I A My A,, My A,,
0.1 10.648 18 1.815 2.819 2866314 17.887 106078 1.856
0.2 10.290 18 2.661 3.545 3537874 21.806 62014 1.646
0.3 10.337 18 2.691 3.631 3578126 22.289 21314 1.641
0.4 10.175 18 2.704 3.671 3626968 22.487 28512 1.613
0.5 10.157 18 2.704 3.671 3626964 22.487 28517 1.613
0.6 10.266 18 2.704 3.671 3626973 22.487 28518 1.613
0.7 10.470 18 2.704 3.671 3626963 22.487 28516 1.613
0.8 10.313 18 2.704 3.671 3626962 22.487 28516 1.613
0.9 10.272 18 2.704 3.671 3626962 22.487 28516 1.613
1.0 10.694 18 2.704 3.671 3626963 22.487 28516 1.613

Table A.30.: Diode o models created with the solver.

adjusted not adjusted

v Runtime in s ETrain 1IN A epeq in A Moy A, My A,
0.1 11.229 18 1.701 2.705 2648893 17.112 4341 1.730
0.2 11.546 18 2.606 3.486 3443386 21.433 26944 1.613
0.3 11.216 18 2.655 3.601 3534078 22.064 12922 1.589
0.4 11.079 18 2.632 3.590 3575905 22.041 58517 1.624
0.5 11.403 18 2.619 3.583 3576756 22.013 66658 1.639
0.6 10.944 18 2.619 3.583 3576761 22.013 67001 1.639
0.7 11.167 18 2.619 3.583 3576758 22.013 66854 1.639
0.8 11.582 18 2.619 3.583 3576762 22.013 67039 1.639
0.9 11.079 18 2.619 3.583 3576758 22.013 66826 1.639
1.0 11.176 18 2.619 3.583 3576761 22.013 66976 1.639
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Table A.32.: Diode E. models created with the E solver.

adjusted not adjusted

¢ Runtime in s E €Train N A epeq N A My A,, My, A,,
0.000 2826.215 16 2.003 4.003 4024281 24.128 NaN  1.366
0.005 2351.300 15 2.025 2.123 2402674 16.981 327107  4.909
0.010 2085.790 12 1.636 2.201 2682255 16.044 530266  3.527
0.015 2052.813 15 1.130 2.153 2551579 17.279 446685  5.036
0.020 2114.147 15 0.824 0.875 1397976 11.673 542165  6.695
0.025 2260.814 14 7.486 7.486 8054476 48.468 736089  5.902
0.030 2095.042 13 1.780 3.124 3943375 24.135 888954  6.369
0.035 2258.589 13 0.000 0.845 1947554 14.559 1121564 9.754
0.040 2033.453 13 0.000 0.270 1866776 13.458 1602347 11.920
0.045 2606.741 14 0.000 0.000 1945257 15.550 1945257 15.550
0.050 3860.840 12 0.720 1.996 4378530 24.396 2427413 13.047
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A. Generated Models

Table A.34.: Diode models created with the solver.

adjusted not adjusted

v Runtime in s €Train IN A epeq in A Moy A,, Mgy A,
0.1 1439.645 9 5.08 5.08 6295792 36.618 1329454 7.733
0.2 1423.210 9 5.08 5.08 6295792 36.618 1329454 7.733
0.3 1433.214 9 5.08 5.08 6295792 36.618 1329454 7.733
0.4 1442.023 9 5.08 5.08 6295792 36.618 1329454 7.733
0.5 1436.027 9 5.08 5.08 6295792 36.618 1329454 7.733
0.6 1440.176 9 5.08 5.08 6295792 36.618 1329454 7.733
0.7 1443.778 9 5.08 5.08 6295792 36.618 1329454 7.733
0.8 1432.628 9 5.08 5.08 6295792 36.618 1329454 7.733
0.9 1441.119 9 5.08 5.08 6295792 36.618 1329454 7.733
1.0 1424.439 9 5.08 5.08 6295792 36.618 1329454 7.733

Table A.35.: Diode ‘ models created with the solver.

adjusted not adjusted

v Runtime in s ETrain 1IN A €peg in A Moy Aoy Moy A,,
0.1 2773.102 12 2.007 2.007 3968336 23.369 2006079 11.956
0.2 4172.945 17 0.116 0.116 1222499  8.944 1109555  8.287
0.3 6015.294 18 2.410 3.709 4616163 26.972 990274  5.883
0.4 7801.963 18 3.741 3.741 4614762 26.716 957445  5.444
0.5 9229.548 18 5.405 5.405 5855132 35.473 570390  4.735
0.6 9294.388 18 5.405 5.405 5855132 35.473 570390  4.735
0.7 9176.258 18 5.405 5.405 5855132 35.473 570390  4.735
0.8 9147.337 18 5.405 5.405 5855132 35.473 570390  4.735
0.9 9151.134 18 5.405 5.405 5855132 35.473 570390  4.735
1.0 9218.937 18 5.405 5.405 5855132 35.473 570390  4.735
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A.3. Diode

Table A.36.: Diode models created with the solver.

adjusted not adjusted

v Runtime in s ETrain N A e N A Mgy, A,, My A,,
0.1 5196.824 15 0.424 1.885 3078518 19.207 1235877 8.490
0.2 8673.961 18 2.390 2.390 3689008 21.038 1352269 7.447
0.3 10541.161 18 0.319 1.092 2317742 14.808 1249990 8.597
0.4 13676.213 18 4.044 4.044 4384226 26.115 430340 3.117
0.5 14656.770 18 2.027 4.077 4428558 26.599 442197 3.413
0.6 14366.720 18 2.027 4.077 4428558 26.599 442197 3.413
0.7 14476.337 18 2.027 4.077 4428558 26.599 442197 3.413
0.8 14400.468 18 2.027 4.077 4428558 26.599 442197 3.413
0.9 14570.998 18 2.027 4.077 4428558 26.599 442197 3.413
1.0 14319.017 18 2.027 4.077 4428558 26.599 442197 3.413
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