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EXPERIMENTAL STUDY ON THE PERFORMANCE OF COARSE GRAIN MATERIALS AS 
SCOUR PROTECTION 

Alexander Schendel1, Nils Goseberg1,2 and Torsten Schlurmann1 

Large scale hydraulic model tests were carried out to investigate the erosive potentials, bed stability and the 

performance as scour protection of wide-graded quarry-stone material with fractions ranging from 0.063 – 200 mm. 

Within the two phase test program the material was exposed to several wave spectra during hydraulic model tests in 

the Large Wave Flume of the Forschungszentrum Küste and additionally to an incrementally increased current in a 

closed-circuit flume at the Franzius-Institute. As result of the wave load, a maximum scour depth of S/D = 0.161 was 

observed after 9000 waves with a simulated storm duration of 20 h in model scale. Furthermore, fractional critical 

shear stresses were determined based on velocity measurements, which indicate highly selective incipient motion of 

individual fractions under steady current conditions. The selective mobility of this wide-graded material could not be 

expressed by the Shields approach. 

Keywords: scour protection, hydraulic model test, wide-graded grain material, erosion stability, incipient motion, 

critical shear stress 

Introduction and Motivation 

As a result of the progressing expansion and accelerated development of Offshore Wind Energy 

Converters the need for economically and technically optimized scour protection systems increases 

likewise to guarantee long term operation of supporting structures in various locations. Due to their 

versatility and cost efficiency wide-graded material mixtures, mainly composed of artificial quarry-

stone material, are considered a potential scour protection system, which can meet the requirements of 

structures in fluvial, estuarine and coastal waters. The main reason for this is that wide-graded 

materials can be applied as single layer scour protection, which simplifies the way of installing the 

protective layer by excavators or slides. In such application, the verification of the stability of wide-

graded material mixtures with respect to external forces exerted by currents or waves is of major 

importance. 

However, up to date fundamental research studies, which can verify the stability of wide-graded 

material mixtures under offshore conditions as well as their actual performance as scour protection 

system are scarce. The applicability of existing approaches and guidelines for the design of scour 

protection for offshore supporting structure has not yet been validated for the material under 

consideration. Furthermore, the numerous studies on the erosion stability of wide-graded material 

mixtures are mostly based on fluvial erosion and sedimentation processes and thereof linked to material 

properties and flow conditions, which are dominant in hydraulic engineering. On this account, the 

results of those studies cannot be directly transferred to the stability of wide-graded quarry-stone 

materials under offshore conditions. In light of this situation, industry-funded large-scale hydraulic 

model tests were conducted by the Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering 

at Leibniz University Hannover, Germany, in order to investigate fundamentals of erosive potentials, 

bed stability and the performance as scour protection of wide-graded material mixtures. On this basis 

safer and more economic design criteria for scour and bed protection are sought. A two phase 

experimental test program firstly contained the assessment of the performance as adaptable and “low-

regret” scour protection for maritime structures und typical wave loads by carrying out hydraulic model 

tests in the Large Wave Flume (GWK) of the Forschungszentrum Küste (FZK) in Hannover. Based on 

the findings in the first phase, a second phase was conducted with the purpose to describe the 

characteristic erosion and sedimentation processes as well as to quantitatively determine the bed 

stability of a wide-graded grain material under steady flow conditions. The model tests of the second 

phase were carried out in the closed-circuit flume of the Franzius-Institute.  

In accordance with the two phase test program this paper is equally organized in two parts. A first 

part describes the experimental setup and presents the results of the model tests in the Large Wave 

Flume while the second part focuses on the steady current experiments in the closed-circuit flume. At 

the end combined conclusions for both parts will be drawn. 
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SCOUR PERFORMANCE UNDER SPECTRAL WAVE LOADS 

Experimental setup 

The hydraulic model tests were carried out in the Large Wave Flume of the Forschungszentrum 

Küste at a model scale of 1:4. This model scale was particularly chosen to account for scaling and 

model effects with regard to the unique sediment properties. The investigated material was a wide-

graded quarry-stone material made of Jelsa-Granodiorite with a grain size distribution of 0.063-

200 mm. Due to the abundance of finer fractions within the grain size distribution and the sharp-edged 

grain shapes, the tested material significantly differed from material mixtures used in previous studies. 

Fig. 1 shows the grain size distribution of the original material and also depicts the slightly deviating 

distribution of the scaled material in 1:4 model scale. Tab. 1 additionally presents some key properties 

of the investigated material. 

 

Figure 1: Original and scaled grain size distribution of tested wide-graded grain material (semi-logarithmic). 
Inset depicts an image of one actual material surface in a big pack right after the transport together with a 
metric folding rule. 

 
Table 1: Grain size and gradation characteristics of material in prototype 
and model scale. 

Material 𝑑10 
 

[mm] 

𝑑16 

[mm] 

𝑑30 
 

[mm] 

𝑑50 

[mm] 

𝑑60 
 

[mm] 

𝑑84 
 

[mm] 

Cu 
 

[-] 

Cc 
 

[-] 

Prototype scale 0.6 2.5 11.2 30 62 102 103 3.37 

Model scale 1.0 4.0 7.4 12.0 15.0 29.5 15 3.65 

 

The Large Wave Flume is 307 m long, 7 m deep and 5 m wide. The waves are generated by a 

piston type wave generator with maximum stroke of ± 2.1 m. Regular waves up to a height of 2.00 m 

and wave spectra with a maximum significant wave height of Hs = 1.3 m can be generated under model 

conditions. Furthermore, the wave machine is able to filter re-reflections by an active custom-made 

absorption system. The model setup consisted of two independent test sections. While the first section 

provided the assessment of the general bed stability of the wide-graded material under spectral wave 

load, the second section (Figs. 2 and 3) followed the investigation of the structure-induced scour and 

protection around a monopile-support structure. This present paper only refers to the results of the 

second section for brevity. The setup for the second section included a monopile as offshore foundation 

structure with a diameter of D = 1 m. The monopile was placed in the middle of a single layer material 

bed made of the wide-graded material mixture. The material bed was installed with a layer thickness of 

0.5 m over a length of 9 m and ended on both sides of the wave flume. It has to be noted that with this 

setup the negative effects of secondary scours and material sinking into the underlying sediment were 

prevented. 

For the continuous measurement of water surface elevation a total number of 20 wire-type wave 

gauges were installed along the flume side. Besides, 6 ADV probes were used for the determination of 

the orbital velocity distribution under waves. The measurement of the scour process and the general 



 COASTAL ENGINEERING 2014 
 

3 

material displacement around the monopile was conducted by the combination of Acoustic Backscatter 

Systems (ABS, AQUAscat 1000L), single-beam Echosounders (Tritech PA 500/6- PS) and the first-

time application of a high resolution 3D laser scanner (FARO Focus3D). The high resolution scans 

(accuracy up to ± 2 mm, depending on the distance to the object) by the laser scanner enabled the 

determination of smallest displacement processes on the bed, which is a very useful feature when 

dealing with coarse grain materials. In addition, the bed movement during the tests could be observed 

with 5 underwater cameras installed in the monopile. The experimental setup as well the placement of 

the measurement devices are shown in Fig. 2. 

 

 

Figure 2: Sketch of the experimental setup: a) Top View; b) 
Side View; c) Placement of measurement devices around the 
monopile. 

 

Figure 3: Picture of experimental setup. 
Waves are propagating in viewing 
direction. 

 

In order to meet North Sea environmental conditions approximately, the model tests were carried 

out with spectral wave load (JONSWAP-spectra with γ = 3.3). The significant wave height Hs was 

successively increased in three steps from 0.7 m to 1.3 m with a constant peak period Tp = 8 s. For each 

spectrum a total amount of 3000 waves was generated. The water depth remained constant throughout 

the entire test program at 5 m above the flume bed. The ABS and Echosounder devices allowed a 

continuous measurement of the scour development, but only at fixed positions close to the monopile. In 

contrary, the laser scanner which was able to capture the entire scene at once could only be applied 

after the water had drained. Therefore, only 3 laser scans could be made for each wave spectrum. 

Tab. 2 gives an overview over the test conditions. 

 
Table 2: Test conditions for scour tests under spectral (JONSWAP) wave 
loads in model scale. Um is calculated by linear wave theory with H = Hs 
and T = Tp. 

Spectrum 
 

Number 
of 

waves 
 

Wave 
length 

 

Significant  
wave 
height 

 

Peak  
wave 
period 

 

Maximum 
horizontal 

orbital 
velocity 

Keulegan-
Carpenter 
number 

 

 N L Hs Tp Um KC 

 [-] [m] [m] [s] [m/s] [-] 

01 3000 53.1 0.7 8.0 0.51 4.1 

02 3000 53.1 1.0 8.0 0.73 5.9 

03 3000 53.1 1.3 8.0 0.96 7.6 

 

Qualitative material performance under wave load 

In this chapter qualitative impressions of the general material behavior under wave load is 

presented based on observations by eye during the model test. While the scour development induced by 

the first wave spectrum was relatively small and a distinct position of a maximum scour could not be 
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determined visually, the scour development increased significantly during the second and third wave 

spectrum based on increasing significant wave height Hs.  

Despite the further development of the scour depth during the third spectrum an overall high stability 

under wave loads can be attributed to the material. To demonstrate this observation the small scour 

development at the end of the test is shown in Fig. 4. Moreover, tendencies of a developing armor layer 

on the bed surface became visible after the first wave spectrum with Hs = 0.7 m (red circle in Fig. 5). 

This is consistent with results from the additional model tests applying steady flow conditions as 

reported in the next chapter of this paper. In addition, a beginning sorting of material fractions 

especially around the monopile was found as illustrated in Fig. 5. A deposition of finer material 

fractions occurred directly at the sides of the monopile (blue circle). In contrast, coarser material 

fractions concentrated in a wider radius around the monopile (yellow circle in Fig. 5). The development 

of the deposition of finer fractions at the sides of the monopile could also be directly observed by the 

cameras mounted inside the monopile (Fig. 6). 

 

 

Figure 4: Final scour development around the monopile after 9000 waves and maximum significant wave 
height Hs = 1.3 m. Waves are propagating in the direction of view. 

 

 

 

Figure 5: Tendencies of armor layer development 
(red circle), deposition of finer fractions on the 
sides (blue circle) and coarser fractions (yellow 
circle) around the monopile after 3000 waves with 
Hs = 0.7 m. Waves are coming from the left side. 

 

Figure 6: Deposition of finer fractions at the sides of 
the monopile after 3000 waves with Hs = 0.7 m. Red 
line indicates initial bed level. 

 
 

Structure-induced scour development under irregular waves 

The following Figs. 7-9 showcase the scour development around the monopile based on the laser 

scan analysis. In these figures scour is represented in blue color, while depositional development is 

plotted in red. In order to account for potential measurement uncertainties only changes in bed 

topography greater than ± 5 mm were considered. Within the first spectrum (Hs = 0.7 m) a symmetrical 

scour developed around the monopile with maximum scour depths in front and depositions at both 

sides of the structure (Fig. 7). As a result of the second spectrum (Hs = 1.0 m) the maximum scour 

depth diagonal in front of the monopile increased. In addition, a second concise scour was formed on 
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the back side of the monopile. Furthermore, the increased load leads to an asymmetrical scour pattern 

in wave direction. The inhomogeneous material composition as well as an inevitable uneven 

compaction during the installation of the material in the flume may be possible explanations for the 

asymmetrical scour pattern. Apart from that, a typical radial scour developed as the third wave 

spectrum with Hs = 1.3 m was exposed to the monopile. Afterwards, two positions with almost 

identical maximum scour depth were identified. The first (position 1 in Fig. 10) is located diagonal in 

front of the monopile at x/D = 0.67 and y/D = 0.72 in relation to the center of the monopile. The second 

(position 2 in Fig. 10) is placed behind the monopile at x/D = 1.29 and y/D = 0.13.  

 

 
Figure 7: Scour development in S/D after 3000 waves with Hs = 0.7 m (spectrum 01). 

 
Figure 8: Scour development in S/D after additionally 3000 waves with Hs = 1.0 m (spectrum 02). 

 
Figure 9: Final scour development in S/D after additionally 3000 waves with Hs = 1.3 m (spectrum 03). 

Due to the successive wave load with increasing Hs, the combined development of the maximum 

scour depth for all three spectra is given in Fig. 10. In the beginning of each spectra, and thus with 

every step up of Hs, the maximum scour depth increased considerably. In the further course of a 

spectrum the increase of scour depth slowed down. In summary, a maximum scour depth of S/D = 

0.161 was observed after 9000 waves and a applied storm duration of 20 h with a maximum significant 

wave height of Hs = 1.3 m. This maximum scour depth found in the experimental investigation is 
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significantly below practical design approaches for scour depth estimation at monopiles with S/D = 1.3 

(DNV, 2010) or S/D = 2.5 (GL, 2005). However, it should be noted that a wave load of 3000 waves for 

each wave spectrum has proven to be insufficient to achieve an equilibrium scour depth, so that a 

further increase of scour depth with ongoing wave load has to be assumed. The detailed development 

of scour depth for each wave spectrum can be taken from Tab. 3. Since the ABSs and Echosounders 

were not able to measure the maximum scour depth the displayed development of the maximum scour 

depth is based and the laser scanner data only. 

 

 

Figure 10: Development of maximum scour depth for position 1 (blue) and position 2 (red), combined for all 
wave spectra. 

 
Table 3: Maximum scour depth and accumulated maximum scour 
depth for position 1 and position 2 for every measurement based on 
laser scanner data. 

  Position 1 Position 2 

Spectrum 
 

Number 
of 

waves 
 

Maximum 
scour 
depth 

 

cumulative 
maximum 

scour 
depth  

 

Maximum 
scour 
depth  

 

cumulative 
maximum 

scour 
depth 

 

 N S Dmax⁄  Σ S Dmax⁄  S Dmax⁄  Σ S Dmax⁄  

 [-] [-] [-] [-] [-] 

1 500 0.009  0.006  

 2500 0.010 0.019 -0.003 0.003 

2 1000 0.029  0.048  

 2000 0.019 0.048 0.017 0.065 

3 1000 0.054  0.054  

 2000 0.040 0.094 0.037 0.091 

Σ 9000  0.161  0.159 

 

By cumulating the scour processes over the considered bed surface around the monopile the 

displaced scour volume is calculated. Fig. 11 shows the cumulated scour volume in dependency to the 

radial distance r/D to the monopile center. In regard to the development of the maximum scour depth, 

the amount of eroded scour volume increased at the beginning of each wave spectrum. Here, the 

highest displaced scour volume per m² surface area could be determined within a distance of r/D = 1.5 

to the center of the monopile. Beyond this distance the scour volume decreased, due to the deposition 

of material at a distance of r/D = 2 (Fig. 8 and 9). Further, the development of the scour volume at a 

distance of r/D = 0.75 (red curve in Figure 11) indicates the described deposition of finer material 

fractions directly at the sides at the monopile. The maximum scour volume after 9000 waves is 

Numbers in x/D 
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0.05 m³/m², so that an average scour depth of 5 cm (model scale) within a radius of r/D = 1.5 can be 

found as a result of the successively increasing wave load with a significant wave height Hs up to 

1.3 m. At this point, the asymmetric scour pattern has to be pointed out again, which influences the 

calculation of the radial scour volume around the monopile. 

 

Figure 11: Development of cumulated scour volume around the monopile with increasing number of waves 
and depending on the radial distance to the monopile center. The scour volume is normalized by the radial 
surface areas specified in the inset (in model scale). 

Discussion 

Comparison of this results with practical design guidelines for the scour depth estimation of 

monopile foundation (GL, 2005; CERC, 2006; DNV, 2010) revealed much smaller scour depth for the 

innovative scour protection material composed of Jelsa-Granodiorite. However, these guidelines take 

also into account the combined influence of currents and waves while for the derivation of the 

published guidelines equilibrium scour depths were obtained. In this present study the number and 

intensity of the waves exerted to the structure have been too small to achieve an equilibrium scour 

depth. These results we have presented herein are thus preliminary and it is anticipated that further 

experiments have to clarify equilibrium scour depth finally.  

A direct comparison of this results with approved approaches from the literature on maximum 

scour depth (Sumer et al., 1992; Melville and Coleman, 2000; Zanke et al., 2011) or time scale of scour 

development (Sumer and Fredsoe, 2002) cannot be carried out to date due to highly divergent material 

properties and the successive wave load.  Additionally, the hydraulic model tests were conducted in the 

Large Wave Flume with a relatively large model scale, so that different scaling and model effects have 

to be considered compared to small scale model tests that were particularly used for the mentioned 

literature. Also, those approaches are not valid and applicable for small KC number (KC<6) and thus 

comparability is limited so far. This also underpins the necessity for ongoing testing of the considered 

material. 

EROSION STABILITY UNDER STATIONARY CURRENT 

Experimental setup 

The hydraulic model tests of the second phase were carried out in the closed-circuit flume of the 

Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, University Hannover, Germany. 

The flume is driven by four pipe pumps with a maximum discharge of 0.5 m³/s. Total length of the 

flume is 60.0 m with a 3.13 m long window section at the study area were the sediment layer was 

placed in a pit (Fig. 12). The cross-sectional size of the flume is 1.0 m x 1.0 m with a horizontal and 

not inclined bottom. Both bottom and flume walls have a floating screed finish. In order to investigate 

the ongoing erosion processes a prototype model scale of 1:1 was chosen for the model tests. Thereby, 

scaling effects that could bias the behavior of finer fraction within the wide-graded material could be 

reduced to a minimum. The wide-graded material was installed in a pit with a width of 1.0 m, a length 

of 2.7 m and with a layer thickness of 200 mm. The material was placed on top of a sublayer with 

similar grain characteristics to simulate a natural interlocking with the subsurface. Fig. 12 illustrates the 
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experimental setup, Fig. 13 shows the material placement in the pit before the flume was filled with 

water. 

 

 

Figure 12: Schematic cross-section of experimental setup (not to scale). 

 

 

 

Figure 13: Sediment pit with build-in wide-graded material before water was filled in the flume. 

 

The applied wide-graded material was identical to the prototype material of the first test phase (see 

Fig. 1 for grain size distribution). For the second test phase three test samples of this material were 

obtained with slightly different grain size distributions, which resulted in three consecutive 

experimental runs. Tab. 4 summarizes the grain parameters of the three used material samples.  

Changes of the bed topography over time were measured with a laser distance sensor (Baumer 

OADR 2016480, resolution 0.015 – 0.67 mm) which was mounted on an automated positioning system 

above the test area. By means of the laser sensor digital elevation models (DEM) of the bed topography 

were created with a vertical accuracy of about 1.0 mm. 

In order to measure the eroded bed load a sediment trap was installed downstream of the sediment 

bed. The amount as well as the gain size distribution of the eroded bed load were determined for each 

test run and compared to the grain characteristics of the initial material. Due to its design as an artificial 

pit trap, the sediment trap was not able to collect suspended material.  

By using an acoustic Doppler velocimeter (ADV, NORTEK Vetrino+) 3D velocity measurements 

were carried out. The positions and heights of the measurements over the sediment bed had to be varied 

for the three experiments in order to account for the rough bed surface. For each position the measuring 

period amounted to 30 s with a sampling rate of 200 Hz. The velocity measurements provided the basis 

for the estimation of bed shear stresses. In combination with the sediment trap results is was possible to 

assess the bed stability by defining critical shear stresses for individual sediment fractions. Tab. 4 

summarizes the test conditions and the grain size distributions with 𝑢̅ as the mean flow velocity 

averaged over a cross-sectional area during preliminary test without a sediment bed. 
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Table 4: Test conditions for all 3 experiments and the grain size distributions of the material samples 
used in these experiments. The lower section of this table shows the load cases for each experiment. 

 Grain size parameters Test conditions 
Experiment 𝑑10 

 
[mm] 

𝑑16 

[mm] 

𝑑30 
 

[mm] 

𝑑50 

[mm] 

𝑑60 
 

[mm] 

𝑑84 
 

[mm] 

Cu 
 

[-] 

Cc 
 

[-] 

𝑢̅ 
 

[m/s] 

𝑇 
 

[min] 

𝐻 
 

[cm] 

A 0.6 2.5 11.2 30 62 102 103 3.37 0.10-0.90 120 45 

B 0.4 1.0 5.6 25 56 100 140 1.40 0.10-0.90 120 45 

C 1.0 4.0 22.4 72 85 116 85 5.90 0.10-0.90 120 45 

 
Load cases 1 2 3 4 5 6 7 

𝑢̅  [m/s] 0.10 0.18 0.24 0.38 0.56 0.72 0.90 

 

Experimental procedure 

A total amount of three experiments were carried out with repeating load conditions but slightly 

different material properties (compare Tab. 4). In each experiment the flow velocity was successively 

increased in seven load cases from 0.1 m/s to 0.9 m/s. Adding up the 2 hours load duration for each 

flow velocity a cumulated load time of 14 hours for each experiment and material sample was 

achieved. At the beginning of every load case the flume was carefully filled with water on both sides of 

the sediment bed. During the experiments no additional sediment was added.  

Velocity profiles were measured at 10 positions above the sediment bed, of which 5 positions were 

located on the longitudinal axis of the flume. The positioning of the remaining profiles was based on 

distinctive structures within the bed surface, in particular hiding and exposure areas. For each profile 

the velocity was measured at 8 points over half of the water depth, with an interval of 1 cm between the 

bed nearest five points and an interval of 5 cm between the remaining three points. 

After the experiment was stopped the water was slowly drained in order to enable the scanning of 

the bed surface with the laser sensor and to remove the collected material out of the sediment trap. 

Along with the ADV probe the laser sensor was mounted on the automated positioning system. 

Thereby the bed surface could be scanned in a grid like pattern with a longitudinal spacing of 𝛥𝑥 =
 0.5 mm and a lateral spacing of 𝛥𝑦 =  5 mm, respectively. To consider wall influences and roughness 

changes the scan area was reduced by 38 cm on both ends and 10 cm on both sides in relation to the 

sediment surface, resulting in a total scan area of 80 cm x 194 cm. In this way the sediment topography 

was scanned after each load case.  

Due to the small amount of eroded material in the first 3 load cases, grain size distributions of the 

eroded material could only be produced for the last 4 load cases. 

 
Applied analysis methodology 

Based on the laser scans detailed DEMs of the sediment bed topography were generated. The 

process included the elimination of spikes in the laser signal and the interpolation of data points to a 

1 mm x 1 mm fine grid by means of a cubic Delaunay triangulation. Subsequently, erosion and 

accumulation areas within the bed surface due to increasing flow velocities could be determined by 

calculating the elevation difference between DEMs of single load cases. 

The present bed shear stresses were estimated on the assumption of a logarithmic velocity 

distribution within the boundary layer as being applied in Biron at el. (2004) and Petri et al. (2010). 

Though this log law method involves some uncertainties, especially in such complex and turbulent 

flow conditions, it also has some advantages. By measuring velocity profiles and fitting a logarithmic 

equation in form of ln 𝑧 to them, the local roughness lengths z0 for each measurement position can be 

determined instead of assuming a global roughness length for all measurement positions. In this study 

the fitting was carried out by using a least square error approach. Furthermore, the goodness of the 

fitting was measured by the coefficient of determination R², at which values of R² of over 91 % for all 

measured profiles could be achieved. Fig. 14 shows the distribution of calculated bed shear stresses for 

all three experiments and underlines the variation of bed shear stress caused by the extremely rough 

sediment surface. 
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Figure 14: Calculated bed shear stresses in comparison to the measured near bed flow velocities. 

 

For the assessment of the erosion stability under stationary flow the incipient motion condition has 

to be defined. In this study the calculated bed shear stresses are compared with the largest grain fraction 

collected by the sediment trap in each load case to determine fractional critical shear stresses τc,i and 

therefore conclude critical conditions for the incipient motion. In accordance with the Largest-Grain 

Method (described by Wilcock (1988) and applied by Andrews (1983) and Carling (1983)) coarser 

fractions were still available in the bed in each experiment and load case. In the following, the 

experimental results, which were obtained on the basis of the above outlined methodology, are 

presented and discussed. 

 
Changes in bed topography and displacement processes 

During the experiments a significant coarsening of the sediment surface with increasing flow 

velocities due to the selective erosion of finer grain fractions has been visually observed. The increase 

of the flow velocity led to further erosion of finer material again and again at the beginning of each 

load case. By the end of each load case a stabile bed surface was provided and sediment transport could 

no longer be detected, so that the development of a static armor layer can be concluded (Jain, 1990; 

Marion and Fraccarollo, 1997; Parker and Sutherland, 1990). Furthermore, numerous areas within the 

bed surface could be identified where stability-affecting exposition and hiding phenomena appeared. 

The resulting erosion and accumulation areas can be illustrated by creating plots of bed elevation 

differences between individual load cases based on the DEMs. Fig. 15 exemplarily shows the DEM of 

the bed topography and the cumulated displacement processes during experiment B.  

Along with progressing flow velocities an increase of erosion (blue) and accumulation (red) areas 

can be found. Thereby, the erosion outweighs the accumulation a few times. At the same time, erosion 

is taking place globally distributed, and thereby reflecting areas with large quantities of finer fractions, 

whereas accumulation is locally concentrated behind larger stones or similarly protected parts. While 

the characteristics of the development of erosion and accumulation areas with increasing flow 

velocities is similar, considerably difference in the quantity of erosion between all three experiments 

were detected depending on the varieties in initial grain size distribution, placement and bed surface 

structure (not shown here for brevity).    
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Figure 15: Top figure shows the DEM of the bed topography of experiment B. Lower figures show the 
development of erosion (blue) and accumulation (red) areas during experiment B. 

 

Figure 15: Development of erosion and accumulation areas at different flow velocities for experiment B. First 
figure shows the DEM of the bed surface at the beginning of experiment B based on laser scanning data. 
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Fractional critical shear stress 

Fig. 16 shows the fractional critical shear stresses τc,i calculated with the Largest Grain Method for 

all three sediment samples and experiments, respectively. For all sediment samples the strong variation 

of critical shear stresses with the considered grain sizes di is apparent. Similar variations of τc,i  are also 

pointed out by Kuhnle (1993) and Wilcock and Crowe (2003) for specific sediment mixtures and 

presented in Fig. 16 for comparison. Kuhnle (1993) investigated the incipient motion of sand-gravel 

sediment mixtures, which contained a gravel mix (d50 = 5.579 mm) and a sand mix (d50 = 0.476 mm). 

He found that in case of 100% sand or 100% gravel mixtures (Kuhnle (1993) Gravel), all grain sizes 

were eroded at the nearly the same critical bed shear stress. However, in the experiments with sand-

gravel mixtures (Kuhnle (1993) SG45 with 45% gravel), the sand fractions were still moved at almost 

the same shear stress, whereas the critical shear stresses for the gravel fractions were significantly 

depending on the grain size. Wilcock and Crowe (2003) presented critical shear stresses for additional 

sand-gravel mixtures. They demonstrated, that the variation of the critical shear stress τc,i with grain 

sizes di increases with the amount of sand within the mixture and thus with the non-uniformity of the 

sediment mixture. In accordance with those findings, the critical shear stresses for the extremely wide-

graded materials used in this paper vary strongly with grain size and therefore indicate a highly 

selective mobility of individual fractions for the investigated materials mixtures. 

 

 

Figure 16: Critical shear stresses τc,i for corresponding grain sizes di. 

 

Furthermore, Kuhnle  (1993) and Wilcock and Crowe (2003) showed that the critical shear stresses 

τc,50 for the d50 grain diameter of their sediment mixtures were quite close to the corresponding Shields 

values. In this present study the τc,50 values could not be determined, because no grain sizes in the range 

of the d50 diameter of the sediment samples (25-72 mm) were collected by the sediment trap. This 

already indicates to much lower values of τc,50 for the mixtures in this study compared to the Shields 

approach.  

 
Discussion 

Based only on the visual observations a high erosion stability of the material under current load 

could be conjectured. This contradicts the calculated critical shear stresses, which indicate a relative 

low erosion stability of coarser fraction with respect to the Shields approach. Available hiding 

functions, which consider exposition effects of coarser grains within the sediment mixtures, point to 

smaller critical shear stresses for these fractions. But usually it is assumed that fractions are affected by 

the exposition phenomenon, which are larger than the representative d50 mean diameter of the mixtures. 

In this study already much smaller fractions than the d50 diameter of the three sediment mixtures show 

smaller critical shear stresses as would have been expected by the Shields approach. 

As pointed out by several authors and shown in summery by Shvidchenko et al. (2001), the Shields 

curve is not an appropriate mean to accurately assess the incipient motion of non-uniform sediment 

mixtures. However, the dimension of the differences by which the behavior of the tested sediment 

mixtures deviates from the prediction of the Shields curve, is unexpected.  
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Conclusions 

In order to assess the stability and the performance of coarse grain materials as scour protection 

large-scale hydraulic model tests were carried out by the Franzius-Institute. The experimental study 

provided first insights in the behavior of coarse grain materials under wave and current load. The 

results indicate to an apparent high stability against spectral wave load and stationary current for the 

investigated wide-graded grain material and the given test conditions. In summary, the following 

results on the stability and scour performance of wide-graded grain materials under spectral wave load 

can be concluded from the first test phase: 

 

 Along with general small changes of the bed topography under wave load, tendencies of a 

stabilizing amour layer development were observed. 

 Development of a radial structure-induced scour pattern around the monopile, with two positions 

of almost identical maximum scour depth diagonal in front and on the back side of the monopile.  

 A maximum structure-induced scour depth of S/D = 0.161 was observed after 9000 waves and a 

simulated storm duration of 20 h with a maximum significant wave height of Hs = 1.3 m. 

However, it has to be noted that this scour depth does not represent a final equilibrium scour depth.  

 The final eroded scour volume amounts to 0.05 m³/m² within a radial distance from the center of 

the monopile of r/D = 1.5, which corresponds to a mean scour depth of 5 cm around the monopile. 

The calculation of the scour volume might be influenced by an asymmetrical scour pattern around 

the monopile in wave direction.  

In addition, following conclusions regarding the erosion stability of wide-graded quarry-stone 

materials under stationary current can be drawn from the second test phase: 

 

 Stable and immobile bed surfaces established, indicating the development of a temporarily static 

armor layer under stationary current. Therefore the development of a stabilizing armor layer may 

be considered in the design of scour and bed protection systems containing wide-graded quarry-

stone material. 

 The investigated wide-graded material showed a strong variation of critical shear stresses in 

dependency of grain size which indicates to a highly selective mobility of individual fractions. The 

Shields approach, which is still the method of choice for the stability assessment of granular scour 

and bed protections, is not able to represent the selective mobility of the applied wide-graded 

material. The Shields approach significantly overpredicts the critical shear stresses for the mean 

diameter d50 of the tested wide-graded material, despite the apparent erosion stability under 

stationary observed in this study 

The applied wide-graded material appears promising regarding the application as scour or bed 

protection for estuarine and coastal structure, also due to the ability to develop a stabilizing armor layer 

under wave as well as under flow conditions and the associated increase in erosion stability. However, 

future studies have to focus on the further investigation of the involved erosion processes in order to 

fully understand the stabilizing process of wide-graded materials. Therefore, detailed measurements of 

the flow field above rough beds have to be performed and methods to measure or estimated bed shear 

stresses have to be refined. 
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