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Zusammenfassung  

Das Platzen von Süßkirschen (Prunus avium L.) während oder kurz nach 

Regenfällen führt nahezu weltweit zu Problemen bei der Produktion. Der 

Mechanismus des Platzens ist trotz intensiver Forschung noch weitgehend 

unbekannt. Auch Mechanismen und Wege der Wasseraufnahme sind nicht 

vollständig geklärt. Ziele dieser Arbeit waren: (1) den Einfluss von Äpfelsäure auf die 

Wasseraufnahme und das Platzen von Süßkirschen zu identifizieren, (2) den 

Xylemstrom in sich entwickelnden Süßkirschen zu quantifizieren, (3) die Beziehung 

zwischen der Wasseraufnahme entlang unterschiedlicher Wege und dem Platzen zu 

untersuchen (4) und die Hypothese zu überprüfen, ob die Süßkirsche sich wie ein 

ideales Osmometer bezüglich des Wassertransportes verhält.  

Die Wasseraufnahme über die Fruchthaut wurde gravimetrisch und über den Stiel 

volumetrisch mittels Potometrie bestimmt. Das Platzen wurde durch Inkubation von 

Süßkirschen in Wasser und Auszählen geplatzter Früchte zu unterschiedlichen 

Zeitpunkten bestimmt und als T50 (Zeit bis zum Platzen von 50% der Früchte) sowie 

WU50 (aufgenommene Wassermenge bis zum Platzen von 50% der Früchte) 

angegeben. Im Platztest wurden Früchte in Äpfelsäurelösungen verschiedener 

Konzentrationen und pH-Werte inkubiert. Die Wasseraufnahmewege wurden u.a. 

durch Abkleben unterschiedlicher Regionen der Frucht oder durch direkte Injektion 

von Wasser mittels Injektionsnadel und Perfusor modifiziert. Das osmotische 

Potential der Inkubationslösung wurde durch Einsatz von Kirschsaft, künstlichem 

Kirschsaft oder Lösungen von Glucose, Saccharose und Polyethylen Glykol 6000 

(PEG 6000) variiert.  

Die Inkubation von Früchten in eigenem Saft führte im Platztest im Vergleich zu einer 

Inkubation in Wasser zu einer reduzierten T50 und WU50. Der Effekt war auf die 

Äpfelsäure als Bestandteil des Kirschsaftes zurückzuführen und konnte auch mit 

anderen organischen Säuren nachgestellt werden. Dabei war der pH-Wert der 

Inkubationslösung für das Platzen der Kirschen ausschlaggebend. Mit sinkendem 

pH-Wert nahmen T50 und WU50 ab. 

Der Xylemstrom durch den Stiel der Süßkirsche nahm von Beginn der Phase III an 

bis zur Reife hin von anfangs 24.9 ± 1.1 µl h-1 auf 5.2 ± 0.2 µl h-1 bei der Reife 

kontinuierlich ab. Überraschenderweise konnte der Einstrom nicht durch den Einsatz 



Zusammenfassung 

II 

hypertonischer Saccharoselösungen (bis zu -10 MPa) gestoppt werden, es verblieb 

ein Reststrom von 1.2 – 3.8 µl h-1. Der Xylemstrom hatte keinen Einfluss auf das 

Platzen.  

Durch Manipulation der Wege der Wasseraufnahme (z.B. Versiegeln der Stielgrube, 

Abschleifen der Kutikula oder Injektion von Wasser mittels einer Kanüle) und 

nachfolgenden Wasseraufnahme- und Platztests konnte gezeigt werden, dass das 

„critical turgor pressure model“ – welches postuliert, dass Früchte bei Erreichen eines 

kritisches Turgordruckes durch Wasseraufnahme platzen – nicht zur Erklärung des 

Platzens von Süßkirschen genutzt werden kann.  

Die Süßkirsche ist kein ideales Osmometer. So hat die Fruchthaut einen 

Reflektionskoeffizienten (𝜎) < 1 für kleinere Osmolyte wie Glukose, Fruktose oder 

Sorbitol. Gelöste kleine Osmolyte diffundieren je nach chemischem oder 

osmotischem Gradienten aus der Inkubationslösung durch die Fruchthaut in die 

Frucht (Influx) oder aus der Frucht in die Inkubationslösung (Efflux).  Der Ausfluss 

von Osmolyten (81% des gesamten Effluxes waren Glukose, Fruktose und Sorbitol) 

war bei Inkubation in Wasser mit der Netto-Wasseraufnahme korreliert.  

Auf der Grundlage dieser Arbeit und der Ergebnisse in der Literatur wurde daher ein 

neues Modell zur Erklärung des Platzens von Süßkirschen formuliert. Dieses Modell 

wird nachfolgend als Reißverschlussmodell („zipper model“) bezeichnet. Nach 

diesem Modell ist der Ablauf des Platzens wie folgt: 

1) Die lokale Wasseraufnahme durch Mikrorisse führt zum Platzen von Zellen im 

Bereich der Mikrorisse. 2) Als Folge des Platzens tritt Zellinhalt in den Apoplasten 

aus. Der Zellsaft von Kirschen enthält hohe Konzentrationen von Äpfelsäure. 

Äpfelsäure zerstört Membranen und schwächt Zellwände, so dass der lokale Defekt 

sich ausweitet. Zudem extrahiert Äpfelsäure Calcium aus den Zellwänden und fördert 

damit die Quellung. 3) Gequollene Zellwände sind mechanisch instabil. Die 

Spannung innerhalb der Fruchthaut führt dazu, dass diese gequollenen, instabilen 

Zellwände reißen und diese Zellen wiederum ihren Zellinhalt in den Apoplasten 

abgeben. Dieser Prozess setzt sich fort und es kommt zu einem Auftreten von 

Makrorissen und dem Platzen der Frucht. 

Schlüsselwörter: Platzen, Wasseraufnahme, Zipper Modell  
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Summary 

The cracking of fruit of sweet cherry (Prunus avium L.) during or after rainfall is a 

serious production problem in almost all countries where this high-value crop is 

grown. The mechanism of cracking is still largely unknown or misunderstood, despite 

extensive research. Also, the mechanisms and pathways of fruit water uptake have 

not been completely clarified. Uncertainties include: the contribution of water uptake 

via the xylem to rain cracking or the reason for water uptake when a fruit is incubated 

in its own juice. The objectives of this work were: (1) to identify the effect of malic 

acid on water uptake and rain cracking of sweet cherry fruit, (2) to quantify the xylem 

flows in developing sweet cherry fruit, (3) to investigate the relations between water 

uptake via various different pathways and rain cracking, and (4) to evaluate the 

implicit hypothesis that a sweet cherry fruit acts as an ideal osmometer. 

Water uptake via the fruit skin was determined gravimetrically and via the pedicel 

using a potometer. Cracking was determined by incubating fruit in water for different 

times, counting the numbers of cracked fruit, and quantifying the results as a T50 (the 

time to 50% cracking) and a WU50 (the amount of water taken up at 50% cracking). In 

the cracking assay, fruits were also incubated in malic acid solutions of different 

concentration and pH values. The water uptake path was controlled by sealing 

different regions of the fruit or by direct injection of water using a hypodermic needle 

and a perfusor. The osmotic potential of the incubation solution was varied using 

expressed sweet cherry juice, artificial sweet cherry juice, and various solutions of 

glucose, sucrose, and polyethylene glycol 6000 (PEG 6000). 

Incubation of fruit in their own juice reduced the T50 and WU50 values compared with 

fruit incubated in pure water. The effect could be attributed to malic acid, which is a 

major component of the juice. The behavior can be reproduced using alternative 

organic acids. The pH of the incubation solution was also crucial. Decreases in pH 

led to decreases in the values of T50 and WU50.  

The xylem flow via the pedicel of sweet cherry fruit decreased continuously from the 

beginning of stage III development towards fruit maturity from 24.9 ± 1.1 µl h-1 to 5.2 

± 0.2 µl h-1. Surprisingly, the xylem flow could not be stopped by using hypertonic 

sucrose solutions (down to -10 MPa), a flow between 1.2 – 3.8 µl h-1 still remained. 

The xylem flow had no effect on cracking. 
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By manipulating the pathways of water uptake (e.g. by sealing the pedicel cavity or 

by abrading the cuticle, or by injection of water using a hypodermic needle) in water 

uptake and cracking experiments, it was shown that the “critical turgor pressure 

model” – which suggest that fruit crack after reaching a critical turgor pressure by 

water uptake – fails to explain the cracking of sweet cherry fruit. 

The sweet cherry fruit is not an ideal osmometer. The fruit skin has a reflection 

coefficient (𝜎) < 1 for smaller osmolytes like glucose, fructose, or sorbitol. A solute 

diffuses along the gradient of its chemical potential or osmotic gradient of the 

incubation solution into the fruit (inflow) or out of the fruit into the incubation solution 

(outflow). The outflow of osmolytes (81% of the total outflow were glucose, fructose, 

and sorbitol) was correlated with the water uptake when incubating fruit in water.  

Based on this work and on a review of the literature, a new model to explain sweet 

cherry fruit cracking is proposed. This model is called the “zipper model”. According 

to this model, the process of cracking is:   

1) Local water uptake through microcracks in the cuticle leads to bursting of cells in 

the locality. 2) As a consequence, cell contents enter the apoplast. The cell contents 

include high concentrations of malic acid. Malic acid destroys membranes and 

weakens cell walls. Hence, the local defect spreads from cell to cell. Moreover, malic 

acid extracts calcium from the cell walls and promotes cell-wall swelling.  3) Swollen 

cell walls are mechanically weak. The natural growth-induced tensions in the fruit 

skin causes rupture of these swollen (weakened) cell walls, releasing further amounts 

of malic acid into the apoplast. A chain reaction propagates the cell failure forming a 

macrocrack. 

Keywords: cracking, water uptake, zipper model  
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Abbreviations 

 

A Fruit surface area 

Ci Water-vapor concentration inside of the fruit 

C0 Water-vapor concentration in the surrounding atmosphere 

ΔC Difference in water-vapor concentration between Ci and C0 

Ca Calcium 

Ca2+ Calcium ions 

CaCl2 Calcium chloride 

CI Cracking index 

CM Cuticular membrane 

D2O / DHO Deuterium-labelled water 

DAFB Days after full bloom 

F Rate of water uptake or transpiration 

FeCl3 Ferric chloride 

J Flux density 

H2SO4 Sulfuric acid 

K2HPO4 Dipotassium phosphate 

LD50 Dose of a toxic compound resulting in 50% mortality 

LVDT Linear variable displacement transducers 

NaCl Sodium chloride 

P Pressure on whole fruit basis 

p Permeance of the fruit skin 

PE Polythene 

PEG 6000 Polyethylene glycol 6000 

Pf Permeability of the fruit surface 

r Radius of the fruit 

R Gas constant 

RH Relative humidity 

t Thickness of the skin 

T Absolute temperature 

T50 Time to 50% cracking 

THO / 3H2O Tritium-labelled water 𝑉𝑤 Molar volume of water 
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WU50 Water uptake at 50% cracking 

s Mechanical stress 𝜎 Reflection coefficient Ψ𝑓𝑙𝑒𝑠ℎ
 Water potential of the flesh Ψ𝛱𝑓𝑙𝑒𝑠ℎ
 Osmotic potential of the flesh Ψ𝑓𝑟𝑢𝑖𝑡 Fruit water potential Ψ𝛱𝑓𝑟𝑢𝑖𝑡 Osmotic potential of the fruit juice Ψ𝛱𝑠𝑘𝑖𝑛 Osmotic potential of the skin Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 Osmotic potential of the incubation solution Ψ𝑃  Turgor ∆Ψ Difference between apparent Ψ𝑓𝑟𝑢𝑖𝑡 and Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
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1. General introduction to the phenomenon of cracking 

Rain cracking is a major problem in sweet cherry production in most of the countries 

of the world where this high-value crop is grown (Christensen, 1996). Rain cracking 

refers to the appearance of highly-visible ‘macrocracks’ in the fruit skin during or soon 

after rainfall (or extended periods of surface wetness from dew, etc). Sweet cherry 

fruit are most susceptible to rain cracking during the three-week period leading up to 

harvest (Christensen, 1973). Percentages of cracking of up to 90% of the fruit in an 

orchard have been reported (Christensen, 1996). Beginning with about 25% of 

cracked fruit, the cost of harvest of sweet cherry orchards becomes uneconomical 

(Looney, 1985). The reason being the high labor cost associated with selection of 

non-cracked fruit during picking and later during grading in the packhouse. Badly 

cracked fruit are not saleable as the crack opens up the vulnerable flesh to rapid 

deterioration due to pathogen entry and drying. In addition, the quality of the non-

cracked fruit from the same orchard is usually severely compromised due to the 

presence of ‘microcracks’ (microscopic cracks) in the cuticle. Both microcracks and 

macrocracks impair the barrier functions of the fruit skin to water movement and 

present entry ports for fruit rot pathogens including: Monilia, Botrytis, and Alternaria 

(Børve et al., 2000; Børve and Stensvand, 2003; Thomidis and Exadaktylou, 2013). 

Infections then spread rapidly from a few cracked fruit to neighboring, non-cracked 

fruit. In addition, microcracks limit storability of fruit due to increased rates of water 

loss. They increase transpiration (Knoche et al., 2002; Beyer et al., 2005) and 

compromise fruit appearance due to a loss of gloss and a decrease in firmness. Also, 

after a few days of storage/transit, the postharvest disorder “orange peel” (syn. 

alligator skin, lizard skin) develops, which limits access to lucrative high-quality export 

markets. 

Rain cracking is not limited to sweet cherry production. It also occurs in other soft and 

fleshy fruit including grapes (Considine and Kriedemann, 1972; Clarke et al., 2010), 

tomatoes (Peet, 1992; Lichter et al., 2002), litchi (Li et al., 2001; Mitra et al., 2014), 

bell peppers (Aloni et al., 1998), pomegranates (Galindo et al., 2014; Saei et al., 

2014), currants (Khanal et al., 2011), and plums (Mrozek and Burkhard, 1973; Milad 

and Shackel, 1992).  

 

This introduction provides a short overview of the problem of rain cracking. It is not 

intended as a comprehensive review of the literature that can be found elsewhere 
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(Sekse, 1995a, 1998, 2008; Christensen, 1996; Sekse et al., 2005; Simon, 2006; 

Balbontín et al., 2013; Khadivi-Khub 2015; Knoche and Winkler, 2017). This overview 

merely serves the purpose of providing some background information that is helpful 

to better understand the phenomenon of rain cracking of sweet cherry fruit.  

 

1.1 Morphology of the sweet cherry drupe 

The sweet cherry fruit develops from a single carpel. The margins of the carpel fuse 

and form the suture. The proximal portion of the fruit extends from the pedicel cavity 

to the equatorial region, the distal portion from the equatorial region to the stylar scar 

at fruit apex (Fig. 1A). The side opposite to the suture is referred to as the cheek, the 

‘lateral’ sides as the two shoulders (Fig. 1B). 

 

 

Fig. 1: Schematic drawing illustrating the terminology used to describe different 

regions on a sweet cherry fruit. A) View from the front; B) view from the top. Modified 

after Grimm et al. (2017). 

 

The fruit skin (exocarp) of the sweet cherry fruit comprises the cuticular membrane 

(CM) and two underlying cellular layers – the epidermis and the hypodermis (Fig. 2). 

The CM consists primarily of cutin and waxes and is very thin – about 1 µm thick in a 

mature sweet cherry fruit (Peschel and Knoche, 2012). The epidermis comprises a 

single layer of collenchyma cells of diameter about 25 µm, with thick cell walls (3.2 ± 

0.1 µm). There are no trichomes or hairs on the sweet cheery skin and stomata occur 
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at very low density (0.0 to 1.7 mm-2) and are non-functional in mature fruit (Peschel et 

al., 2003). Immediately under the epidermis is the hypodermis of thickness about 50 

to 100 µm. The hypodermis comprises from 2 to 7 cell layers of collenchyma (Glenn 

and Poovaiah, 1989). Under the skin (i.e. immediately adjacent to the hypodermis) is 

the flesh (mesocarp). It comprises very large (diameter 227 ± 2.9 µm), thin-walled, 

isodiametric, parenchyma cells (Yamaguchi et al., 2004). The vascular system (xylem 

and phloem) is embedded in the flesh and does not extend into the skin. At maturity, 

macerated tissue surrounding the pit can be observed in many cultivars, indicating a 

loss of cell integrity. 

 

 

Fig. 2: Cross-section of the fruit skin of a mature sweet cherry stained with calcofluor 

white (modified after Knoche and Winkler (2017)).  

 

1.2 Fruit growth and development 

A sweet cherry fruit growth follows the classic, double-sigmoid growth pattern of 

stone fruit. Development is usually described in terms of being into three stages 

(Lilleland and Newsome, 1934; Tukey, 1934). Stages I and III are characterized by 

rapid increases in fruit fresh mass and surface area, whereas the intermediate stage 

II is indicated by a lag phase, when growth slows down. In stage I, growth of the 

pericarp is mostly by cell division. Mass increases during stage I from very low to 

about 1.5 to 2.5 g per fruit. Stage II is characterized by development of the endocarp 

(the pit). At the transition from stage II to III the pit hardens and the skin color 

changes from green to yellow. Stage III is dominated by cell extension of the 



Chapter 1: General introduction 

4 

mesocarp and a color change to red or black in the non-yellow cultivars (Serrano et 

al., 2005). In addition, the flesh osmotic potential decreases rapidly (i.e. the osmotic 

concentration increases rapidly) from about -0.7 MPa (Knoche et al., 2004) to below  

-4 MPa at maturity (Knoche et al., 2014). Knoche et al. (2001) reported maximum 

fresh mass growth rates of about 0.54 g d-1 and surface area growth rates of about 

0.96 mm-2 d-1 during stage III.  

 

1.3 Cracking 

Before discussing details of the quantification and the mechanistic basis of cracking it 

is useful to briefly consider the different types of cracking in the literature.  

1.3.1 Microcracks 

Microcracks are small cracks, which are limited to the cuticle and do not extend into 

the cellulosic walls of the underlying epidermis or hypodermis. They cannot usually 

be detected by the naked eye. However, they are detectable under a light 

microscope after infiltration of the cracks with the fluorescent tracer acridine orange 

(Fig. 3). A detailed description of the method is given by Peschel and Knoche (2005). 

Microcracks occur at high frequency in the pedicel cavity and stylar scar regions of 

virtually all fruit grown in non-protected environments. Their frequency increases 

during stage III (Peschel and Knoche, 2005). Formation of microcracks is increased 

by high atmospheric humidity and by the presence of free water on the fruit surface 

(Knoche and Peschel, 2006). It is likely, microcracks can propagate to form 

macrocracks (Glenn and Poovaiah, 1989), but definitive evidence for this is lacking. 

Interestingly, microcracks do not impair the mechanical properties of the fruit skin 

indicating that it is the epidermal and hypodermal cell layers that form the structural 

‘backbone’ of the fruit (Brüggenwirth et al., 2014). 
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Fig. 3: Microcracks in the cuticle of a mature sweet cherry fruit after staining with 

acridine orange (modified after Knoche and Winkler (2017)). 

1.3.2 Macrocracks 

Macrocracks are not limited to the cuticle, but extend into the fruit skin, possibly into 

the flesh and in severe cases right down to the pit. They are clearly visible to the 

naked eye. Macrocracks often gape due to the presence of elastic strain in the skin 

(Grimm et al., 2012). 

 

1.3.3 Position of cracks 

There are three different kinds of macrocracks reported in the literature: a) apical 

cracks (sometimes also described as nose cracks (Simon, 2006)) (Fig. 4A), b) 

pedicel or stem end cracks at or next to the pedicel cavity (Fig. 4B), and c) side 

cracks which are irregular and usually long and deep (Fig. 4C). Fruit with small apical 

and pedicel end cracks can be sold on the domestic market at a lower price, but fruit 

with side cracks are usually without commercial value.  
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Fig. 4: (A) Apical cracks in stylar scar region, (B) pedicel or stem end crack in the 

pedicel cavity region, and (C) side cracks in cheek and shoulder regions 

(modified after Knoche and Winkler, 2017). 

 

It has been observed – but never described in detail – that cracking usually starts at 

the apical end or in the cavity region where the density of microcracks is highest 

(Peschel and Knoche, 2005). Consequently, side cracks are thought to represent 

elongation of cracks that originated from the stylar scar or pedicel end regions 

(Verner and Blodgett, 1931; Glenn and Poovaiah, 1989). In the field, this may be 

related to higher water uptake in these regions compared to the remaining fruit 

surface. In addition, both regions are characterized by extended periods of surface 

wetness due to the presence of a hanging water droplet at the stylar end and a 

puddle in the pedicel cavity. Extended periods of wetness allow more water uptake in 

these regions. The pedicel/fruit junction (Beyer at al., 2002) and the apical end 

(Glenn and Poovaiah, 1989) are preferential water uptake sites which may explain 

why these sites are most susceptible to cracking. Furthermore, due to the 

architecture of the fruit, these regions are also exposed to the highest stresses 

(Considine and Brown, 1981).  

 

In contrast to the above arguments, Measham et al. (2010) state that vascular water 

uptake flow is the relevant factor in side cracking. This claim is based on the 

observation that irrigating the soil while keeping the canopy dry resulted in large side 

cracks. However, when applying the same amount of water to the canopy using 

overhead sprinklers, only small cracks developed in the cavity region or the stylar 

scar region of the fruit.  
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1.4 Measurements of cracking 

Studies on the mechanism of cracking require procedures to reproducibly assess 

cracking susceptibility of the fruit. In principle, cracking may be assessed in the 

orchard or in the laboratory. 

 

1.4.1 Measuring of cracking in the orchard 

1.4.1.1 Measuring of cracking in the orchard after rainfall 

The easiest and most practical method of quantifying cracking in the orchard is to 

simply count the frequency of cracked fruit after rainfall. The percentages of cracked 

fruits are then calculated and compared. However, there are several problems with 

this method: Timing, duration, and intensity of rain cannot be controlled. The stage of 

maturity has a marked effect on cracking susceptibility but this is impossible to 

standardize. Also, several short rainfall events may produce different results from a 

single, long rainfall event. Wind and light modify wetness duration and the humidity in 

and around the tree. Temperature also affects cracking susceptibility. These factors 

are impossible to standardize and to control, so it is also impossible to make direct 

comparisons between cultivars that differ in time of maturation (Christensen, 1972b).  

 

1.4.1.2 Measurement of cracking under artificial rain 

A more precise method is to quantify cracking under artificial rain using potted trees 

and overhead sprinklers installed in a rain shelter or tunnel (Quero-Garcia et al., 

2014). Rainfall can be simulated and times and durations and intensities can be 

controlled. Performing this experiment using potted trees in a growth chamber, is 

logistically challenging but allows all environmental factors to be controlled. It is 

important to use rain water or deionized water in such experiments because even low 

concentrations of calcium may affect cracking (Lang et al., 1998). 

 

1.4.2 Measurement of cracking in the laboratory – the cracking index  

Determining the cracking index (CI) is the classical procedure for measuring cracking 

sensitivity in the lab. The test was established first by Verner and Blodgett (1931) and 

later modified by Christensen (1972b). Briefly, 50 fruit without defects are immersed 

in deionized water at constant temperature. After 2, 4, and 6 hours fruit are removed 
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from the incubation solution and checked for cracks. Non-cracked fruit are returned to 

the solution while cracked fruit are eliminated. The number of cracked fruit is 

counted. The CI is calculated from: 𝐶𝐼 = (5𝑎+3𝑏+𝑐)∗100250          (Eq. 1.1) 

In this equation, a, b, and c represent the numbers of fruit cracked after 2, 4, and 6 

hours, respectively. Rapid cracking of fruit has a larger effect on the CI as compared 

to the same percentage of cracking after more extended exposure. Hence, the same 

numbers of cracked fruit may result in different CI values. Detailed instructions for 

performing cracking assays are given by Christensen (1972b, 1996). In cracking 

assays performed in this dissertation, cracking is characterized by the time to reach 

half maximum cracking (T50; Knoche, 2015; chapter 4 (Winkler et al., 2015)).  

 

Weichert et al. (2004) determined the intrinsic cracking susceptibility in a modified 

cracking test. In their test, water uptake is quantified on the same batch of fruit and 

the rate of water uptake is calculated. This rate is usually constant during the typical 

duration of a cracking experiment. From the rate of uptake and the time course of 

cracking, the amount of water taken up at any one time is simply calculated by 

multiplying the duration of incubation by the uptake rate. Cracking is now described 

as a function of the amount of water taken up. In analogy to the T50, the amount of 

water uptake at 50% cracking (the WU50) may be calculated. The WU50 is suitable in 

characterizing the mechanical architecture of the fruit used in these assays, since it is 

standardized for water uptake. The WU50 is used among others tests for comparison 

of different organic acids, acids with different concentrations and pHs, different 

cultivars and mechanical modifications of the fruit skin in the present dissertation in 

chapters 4 (Winkler et al., 2015) and 5 (Winkler et al., 2016b). 

 

1.4.3 Disadvantages of cracking tests 

Despite the many advantages of laboratory-based cracking tests, some 

disadvantages and problems should be noted. 1) CI of the same cultivars determined 

at different sites are often poorly correlated or are not correlated at all. The same 

cultivars may have a high CI at one site, but a low CI at another site. For example, 

the CI for ‘Van’ in Oregon, USA, is 12 (Zielinski, 1964), but it is 92 in Norway (Sekse, 

1987; see compilation in Christensen (1996)). 2) CI varies between seasons. It is 
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recommended to quantify the CI over several (2 to 3) years and then calculate the 

average (Christensen, 1996). This variation may be caused by environmental effects 

that affect water uptake characteristics and/or the mechanical constitution of the fruit 

(i.e. temperature, cumulative rainfall, and number of periods of surface wetness). 3) 

Up to now it is not known whether the cracking-behavior of laboratory-based 

immersion tests mimics the cracking susceptibility of the fruit on the tree. The lack of 

a hydraulic connection between fruit and tree in a laboratory-based immersion assay 

is a likely source of artefact if water uptake through the xylem and the phloem 

vasculature of fruit and pedicel contribute to cracking. This has not yet been 

investigated critically as far as I am aware. Functionality of the xylem in mature fruit is 

investigated in this dissertation in chapter 3 (Winkler et al., 2016a). To the best of my 

knowledge there is only a single study comparing cracking assays in the field to 

laboratory-based immersion assays (Quero-Garcia et al., 2014). The authors 

reported significant correlations for cracking of the apical end and pedicel cavity 

region between their field and their laboratory tests, but their correlations were not 

significant for the side cracks.  

 

Based on the above arguments, laboratory-based tests are particularly useful for 

head to head comparisons of treatments within the same batch of fruit, such as 

carried out in this dissertation (chapters 2 (Winkler et al., 2015) and 4 (Winkler et al., 

2016b)). Further, the intrinsic cracking susceptibility offers a useful and 

straightforward approach to assessing the mechanical properties of a fruit relevant to 

cracking on a whole-fruit basis. Whether these determinations reflect the cracking 

susceptibility of fruit in the field depends on the role of the xylem and phloem 

transport in cracking. The xylem portion of this question is addressed in chapter 3 of 

this dissertation (Winkler et al., 2016a). The phloem contribution merits further 

investigation. 

 
 

1.5 Factors affecting cracking 

Many studies have been published investigating a wide range of factors affecting 

cracking. The results are summarized in Table 1. For more detailed information, the 

reader is referred to the original references. When these data are needed for 

discussion in the subsequent chapters, they will be discussed in greater detail there. 
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What can be concluded here is that these empirical studies often report inconsistent 

and in some cases even contradictory data. Typical examples are the effects of water 

uptake or firmness on cracking. Because these studies only describe single aspects 

of cracking, they are of limited usefulness in identifying the underlying mechanisms.  
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Table 1: Factors affecting the cracking susceptibility of sweet cherry fruit. Data are compiled from the literature (Knoche and 
Winkler, 2017). 

Factor Levels Susceptibility to cracking Reference 

Fruit size 2.8 – 10 g Increased susceptibility in large fruited cultivars, 
high variability between cultivars 

Tucker, 1934; Christensen, 
1975; Yamaguchi et al., 
2002 

Water uptake  No, or only weak correlation with susceptibility Kertesz and Nebel, 1935; 
Christensen, 1972a 

  Positive correlation between rate of uptake and 
cracking 

Belmans and Keulemans, 
1996; Yamaguchi et al., 
2002 

Firmness Fruit firmness (kg) 1 – 3.6, 
grade 3 – 10  

No correlation  Tucker, 1934; Christensen, 
1975 

 Flesh firmness (g) 
29.1 – 148.1 

Positive correlation between firmness and rate of 
cracking 

Yamaguchi et al., 2002 

Temperature 1 – 48°C Higher temperature, faster cracking Bullock, 1952; Richardson, 
1998 

Osmolarity 10.1 - 20% sugar Positive correlation with susceptibility Verner and Blodgett, 1931 
 12.8 – 26.4% soluble 

solids 
Lack of, or a weak correlation  Tucker, 1934; Christensen, 

1972c; Moing et al., 2004 

Skin Skin per gram soluble 
solids 

Higher mass of cell walls in less susceptible 
cultivars  

Tucker, 1934 

 Thickness of inner 
epidermal cell wall 

Positive correlation between thickness of inner 
epidermal cell wall and susceptibility 

Kertesz and Nebel, 1935 

 Thickness of cuticle and 
epidermal cell wall (µm) 
7.5 – 12.5  

Thicker cuticle and thicker epidermal cell wall in 
less susceptible cultivars 

Belmans et al., 1990 

 Cuticle thickness (µm) Thicker cuticle in less-susceptible cultivars Belmans and Keulemans, 
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0.9 – 4.02 1996; Demirsoy and 
Demirsoy, 2004 

Cell size Size of subepidermal cells Smaller cell size in more susceptible cultivars 
Higher variability of cell size in flesh of susceptible 
cultivars 

Kertesz and Nebel, 1935 

  Larger cells (longitudinally and latitudinally) in 
susceptible cultivars  

Yamaguchi et al., 2002 

Stomata Density of stomata No correlation  Christensen, 1972c; Glenn 
and Poovaiah, 1989 

Rootstock Colt, MaxMa 14, Maxma 
97 

Differences in cracking rates between cherries of 
different rootstocks after 4 and 24 h immersion in 
water 

Simon et al., 2004 

 Colt, F12/1 More cracking on Colt than on F12/1 Cline et al., 1995a,b 

Calcium salts Immersion test, overhead 
sprinkler 

Decreased susceptibility Verner, 1937; Christensen, 
1972d; Glenn and Poovaiah, 
1989; Meheriuk et al., 1991; 
Brown et al., 1995; 
Fernandez and Flore, 1998; 
Lang et al., 1998; Wójcik et 
al., 2013; Erogul, 2014 

  No, or minor effect  Looney, 1985; Koffmann et 
al., 1996 

Aluminium, 
iron and 
copper salts 

Al2(SO4)3, Al3(PO4)2, 
CuSO4, AlCl3, FeCl3, 
Fe(NO3)3, Fe2(SO4)3 

Decreased water uptake and less cracking Bullock, 1952, Christensen, 
1972d, Beyer et al., 2002a 

Growth 
regulators 

4 × 10 ppm GA3, 1 × 10 
ppm GA3 

Increased cracking  Cline and Throught, 2007 

 GA3 at 20 ppm  Decreased cracking  Demirsoy and Bilgener, 
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1998 
 NAA at 0.5, 1, and 2 ppm Decreased cracking Yamamoto et al., 1992; 

Demirsoy and Bilgener, 
1998 

Fungicides Borax, Captan, Maneb  No effect  Christensen, 1972d 

Coatings Vaporgard at 2% 14 d or 7 
d before harvest 

No, or negative effect of tested coatings Richardson, 1998 

 Mobileaf, SureSeal, 
RainGard, Mixture T1+T21 
 

Decreased susceptibility Davenport et al., 1972; 
Meland et al., 2014; Kaiser 
et al., 2014; Torres et al., 
2014; Dumitru et al., 2015 

1T1) 1% calcium chloride, 1% zinc sulphate, 0,1% polyphenols extracted from Vitis vinifera seeds and 0.1% humic acid 
extracted from lignite 
T2) solution obtained of galactomannan extracted from seeds of Gleditsia triacanthos, 1%; calcium chloride, 1%; zinc sulphate, 
1%; polyphenols extracted from Vitis vinifera seeds 0.1% and humic acid extracted from lignite 0.1%. For details see Dumitru 
et al., 2015. 
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1.6 Mechanism of water uptake 

The rate of osmotic water uptake (F) depends on the liquid water permeability of the 

fruit surface (Pf), the fruit surface area (A), and the gradient in water potential (ΔΨ, 

MPa) between the fruit’s water potential (Ψ𝑓𝑟𝑢𝑖𝑡) and that of the incubation solution 

(Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). In the case of rainwater, the osmotic potential of the incubation solution 

would be very close to 0 MPa.  

 

The fruit’s water potential equals the sum of the hydrostatic pressure, i.e. the turgor 

of the flesh (Ψ𝑃 ) and of the osmotic potential (Ψ𝛱𝑓𝑟𝑢𝑖𝑡 or π, MPa) of the juice. The 

gravitational and matric potentials are insignificant. The osmotic potential of the juice 

extracted from the fruit using a spaghetti or a garlic press, reflects the osmotic 

properties of the flesh’s symplast, because the volume of the apoplast of the fruit and 

fruit skin is very small relative to that of the flesh (predominantly, the cells are thin-

walled and large). Recently published data from our group indicates that the turgor of 

a mature sweet cherry fruit is very low (ranging 8 to 60 kPa; Knoche et al., 2014; 

Schumann et al., 2014) and is negligible (three orders of magnitude lower) compared 

to the osmotic potential of a mature fruit (-1.5 to -4.1 MPa; chapter 2; Knoche et al., 

2014). Hence, the water potential of the fruit essentially equals the osmotic potential 

of its flesh. 

 

The permeability of the fruit skin is a composite quantity that depends on the cross-

sectional areas for transport and the water permeabilities of the individual pathways 

along which water uptake occurs. For a detailed review the reader is referred to 

Knoche (2015). Water uptake occurs through several parallel pathways: the 

pedicel/fruit junction (Beyer et al., 2002b; Weichert et al., 2004), microcracks in the 

cuticle (Peschel and Knoche, 2005), polar pores in the cuticle (Weichert and Knoche, 

2006), mechanical defects such as insect holes, and through the cuticle. There is no 

evidence for mass flow of water through open stomata in the absence of a 

hydrostatic pressure or powerful surfactants (Peschel et al., 2003; Peschel and 

Knoche, 2012).  

In addition, water inflow into the fruit may occur through the pedicel via the vascular 

system of xylem and phloem (Hovland and Sekse 2004a,b; Measham et al., 2010, 

2014; Brüggenwirth et al., 2016).  
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Although all empirical evidence indicates that water uptake is involved in cracking, 

attempts to establish relationships between the amount of water uptake (or the 

determinants of uptake discussed above) and cracking have not proved successful. 

The relationships obtained are weak and not always significant (Christensen, 1972a; 

Peschel and Knoche, 2012). These relationships are now re-investigated in greater 

detail in chapter 5 (Winkler et al., 2016b) of this dissertation. 

 

1.7 Mechanical properties of the fruit skin 

The mechanical properties of the fruit skin are a critical factor in cracking. Recently, a 

number of papers have been published that address these properties in greater detail 

(Brüggenwirth et al., 2014; Brüggenwirth and Knoche, 2016a-d). In these studies a 

biaxial tensile test was employed where an excised skin segment of the fruit was 

pressurized from its inner surface. The pressure and the extent of bulging were 

monitored and fracture strains, fracture pressures, and the moduli of elasticity were 

quantified. Using this test, the following findings were established: 

 

Epidermis and hypodermis represent the mechanical ‘backbone’ of the fruit skin. The 

cuticle has only a negligible effect on the skin’s mechanical properties (Brüggenwirth 

et al., 2014). Fracture pressures of the fruit skin are of the same order of magnitude 

as the turgor reported for cells of the outer mesocarp and also for the whole fruit 

(Knoche et al., 2014; Brüggenwirth and Knoche, 2016b). However, fracture strains 

usually exceed those estimated from water uptake rates by several orders of 

magnitude (Christensen, 1972a; Brüggenwirth et al. 2014; Brüggenwirth and Knoche, 

2016d). Only when strain rates were lowered to values comparable to those during 

uptake, did fracture strains of excised skins decrease markedly so values 

approximated to those calculated for intact fruit (Brüggenwirth and Knoche, 2016d).  

 

The fruit skin becomes significantly strained during stage III growth due to a rapid 

increase in surface area and a lack of cuticle deposition (Knoche et al., 2004; Grimm 

et al., 2012; Lai et al., 2016). Excising a skin segment releases the tension in the skin 

as indicated by a decrease in the surface area of the segment. Also cutting into the 

fruit causes the cut to gape (Grimm et al., 2012). The release of strain is time 

dependent, indicating elastic and also viscoelastic behavior (Grimm et al., 2012; 

Brüggenwirth et al., 2014). 
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1.8 The current concept of fruit cracking  

The conventional concept of fruit cracking is based on the idea that the fruit cracks 

when water uptake causes the turgor to increase beyond the critical turgor pressure 

that strains the skin beyond its limit of extensibility (Considine and Kriedemann, 

1972). This model is also referred to as the “critical turgor pressure model” 

(Considine and Kriedemann, 1972; Measham et al., 2009). This model was 

introduced for grape berries and assumes a soft, fleshy fruit. Because, barring the pit, 

sweet cherries and grape berries have similar mechanical architectures, this model 

has also been used to explain rain cracking of sweet cherry (Sekse, 1995a; Sekse et 

al., 2005; Measham et al., 2009).  

The flesh of the cherry is thought to generate the pressure that subjects the skin to 

tensional forces causing stress in and strain of the skin. The amount of stress (s) is 

proportional to the radius of the fruit (r), the pressure on a whole fruit basis (p), and 

inversely related to the thickness of the skin (t; Considine and Brown, 1981).  𝑠 = 𝑃∙𝑟2𝑡               (Eq. 1.2) 

Water uptake during rain would then increase fruit (flesh) volume and pressure that 

stresses and strains the skin. When the fracture strain is exceeded at critical turgor 

pressure (syn. fracture pressure) the skin cracks.  

This concept offers a logical explanation for cracking. It is consistent with the 

presence of a strained fruit skin as indexed by strain relaxation of excised skin 

(Grimm et al., 2012), the gaping of fruit after incision (Grimm et al., 2012), and at 

least some portion of this strain being elastic (Brüggenwirth et al., 2014). The elastic 

portion of the strain generates a proportional internal pressure. Sekse (1995b) 

reported that cracking of sweet cherry fruit is also affected by irrigation. This 

observation suggests that water uptake via the vascular system (xylem and phloem) 

as well as via the fruit surface (wet skin) are involved in cracking and that the fruit’s 

water balance is the critical determinant.  

However, several arguments indicate that cracking may be more complex than this 

simple concept implies. 1) There was no detectable change in turgor when fruit was 

allowed to transpire or to take up water even up to the limit of cracking (Knoche et al., 

2014). 2) The fracture strains observed in biaxial tensile tests of excised skins largely 

exceeded those calculated from water uptake rates and half-times to cracking 

indicated the excised skin is more extensible in the tensile tests as compared to the 

skin when still on the fruit (Brüggenwirth et al., 2014; Winkler, unpublished data). 3) 
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Cracking of sweet cherries has been observed despite negative net water uptake 

rates (Knoche and Peschel, 2006).  

1.9 Gap of knowledge  

Despite of the significant economic importance of rain cracking of cherry fruit and 

despite many years of intense research effort, cracking is still poorly understood and 

the cracking mechanism largely unknown.  

Results have been published that appear contradictory and inconsistent with the 

“critical turgor pressure model”. Should the critical turgor concept be wrong, an 

alternative explanation must be thought to explain rain cracking of sweet cherry fruit.  

 

Key questions and phenomena that are poorly understood and that require detailed 

research include the following: 

(1) The pathways and mechanisms of water uptake through the sweet cherry fruit 

surface have been studied extensively (Christensen, 1972a; Beyer and 

Knoche, 2002; Beyer et al., 2002a,b, 2005; Weichert et al., 2004; Weichert 

and Knoche, 2006a,b). Yet, some puzzling findings remain that question the 

view that a sweet cherry fruit behaves like a simple osmometer with respect to 

water uptake (Weichert and Knoche, 2006a). For example, relationships 

between the osmotic potential of a fruit and the corresponding water uptake 

rate are surprisingly weak. But these should be highly significant, based on 

theoretical considerations (Christensen, 1972a). Also, turgors calculated from 

rates of water uptake using PEG 6000 as osmolyte are unrealistic high, i.e., 

several fold higher than the air pressure in a car tire. Further, why do sweet 

cherries incubated in their own juice gain weight and apparently take up 

water? The water potential of the fruit skin is less negative than that of the 

flesh and one would expect either no transport of water into the fruit or even a 

loss of water from the fruit’s skin to the incubation solution (Grimm and 

Knoche, 2015). These observations were reproducible and bring into serious 

question the simple view that the fruit behaves like an ideal osmometer.  

(2) Measham et al. (2010) hypothesized that the “side cracking” of fruit was due to 

water inflow via the vascular system. This hypothesis requires (i) a re-direction 

of xylem flows from non-transpiring leaves during rain towards the fruit and (ii) 

the negative osmotic potential of mature fruit to “drive” water inflow into the 

fruit when transpiration is absent. Besides, the xylem vascular system must be 
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conductive. To our knowledge, there is only limited information on water 

inflows via the xylem under transpiring and non-transpiring conditions. We 

therefore studied water inflow to the fruit via the xylem vascular system under 

transpiring and non-transpiring conditions (chapter 3 (Winkler et al., 2016a)).  

(3) The most commonly cited explanation for sweet cherry cracking is the critical 

turgor pressure model. This model, however, is at odds with a number of 

recent findings including a negligibly low turgor, the absence of detectable 

effects of transpiration, or water uptake (up to the point of cracking) on turgor 

(Knoche et al., 2014). Further, the limit of extensibility of the excised skin is 

about 20% in the elastometer (Brüggenwirth et al. 2014), whereas in 

submersion tests fracture strains are in the range of about 0.1 to 2.7% 

(Winkler, unpublished data). Finally, Knoche and Peschel (2006) observed 

cracking of fruit having negative rates of net water uptake. We therefore 

investigated relationships between water uptake and cracking in greater detail 

(chapter 5 (Winkler et al., 2016b)).  

(4) Mature sweet cherry fruit have a negligible low turgor (Knoche et al., 2014). In 

post veraison grape berries turgor is also low (Bernstein and Lustig, 1981, 

1985; Lang and Düring, 1990; Thomas et al., 2006, 2008) and this has been 

explained by the presence of solutes in the apoplast (Wada et al., 2008, 

2009). Apoplastic solutes reduce the gradient in osmotic potential between 

apoplast and symplast thereby decreasing turgor (Lang and Düring, 1990; 

Wada et al., 2008, 2009). In fact, when osmotic potentials of apoplast and 

symplast are equal, a turgor would be absent. Apoplastic solutes may arise 

from a loss of compartmentation during maturation (Lang and Düring, 1991), 

significant cell death in the maturing fruit (Tilbrook and Tyerman, 2008), 

enzymatic cell-wall degradation while ripening (Kondo and Danjo, 2001), or 

the bursting of individual cells due to heterogeneity in water potential 

components between individual cells (Grimm and Knoche, 2015). As a 

consequence, the cell contents come into contact with the cell wall. Sweet 

cherry symplast contains malic acid at concentrations of 70 mM (Herrmann, 

2001) and the juice of the fruit is highly acidic (pH 3.6 – 3.9; Serradilla et al., 

2011; Hayaloglu and Demir, 2015). Data for tomato indicate that incubating 

fruit in acidic buffers markedly promoted cracking, while incubating in neutral 

or basic buffers inhibited cracking (Lichter et al., 2002). What effect exposure 
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of the tissue to low pH and/or to high concentrations of malic acid has, is 

unknown. We therefore investigated the effects of malic acid on water uptake 

and cracking (chapter 4 (Winkler et al., 2015)). 

 

1.10 Objectives  

The objectives of this work were to  

(1) Test the hypothesis that a sweet cherry fruit is an ideal osmometer with 

respect to water transport (chapter 2); 

(2) Quantify xylem inflow into developing sweet cherry fruit under transpiring and 

non-transpiring conditions (chapter 3 (Winkler et al., 2016a)); 

(3) Establish the effects of malic acid on water uptake and cracking of sweet 

cherry fruit (chapter 4 (Winkler et al., 2015)); 

(4) Investigate the relationships between water uptake and cracking by 

manipulating water uptake along the various pathways and to confirm or reject 

the “critical turgor pressure model” (chapter 5 (Winkler et al., 2016b)). 
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ABSTRACT 

Osmotic water uptake through the fruit skin is an important factor in rain cracking of 

sweet cherries. The objective was to establish whether a sweet cherry behaves like 

an ideal osmometer, where: (1) water uptake rates are negatively related to the fruit’s 

osmotic potential (Ψ𝛱𝑓𝑟𝑢𝑖𝑡), (2) a change in osmotic potential of the incubation solution 

(Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) results in a proportional change in the water uptake rate, (3) the value of Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 yielding a zero uptake rate is numerically equal to the value of Ψ𝑓𝑟𝑢𝑖𝑡. Also, 

in the absence of significant fruit turgor (Ψ𝑃 ), this Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 value also equals that of Ψ𝛱𝑓𝑟𝑢𝑖𝑡, and (4) the fruit’s cuticular membrane (CM) is permeable to water only.  

The value of  Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and the rate of water uptake were only weakly related. 

Surprisingly, incubating a fruit in juice from the same batch of fruit, in isotonic artificial 

juice comprising five major osmolytes of the juice, or in isotonic glucose solution all 

resulted in significant water uptake. Decreasing the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 decreased rates of 

uptake and for even lower values caused water loss from the fruit to the solution. The 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 (at zero water uptake) was always more negative than the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 
throughout development. When incubating excised flesh discs in a series of glucose 

solutions, the apparent water potential of the flesh discs (Ψ𝑓𝑙𝑒𝑠ℎ) matched the Ψ𝛱𝑓𝑟𝑢𝑖𝑡. 
Plasmolysis of epidermal cells indicated that the skin’s osmotic potential (Ψ𝛱𝑠𝑘𝑖𝑛) was 

less negative than the Ψ𝛱𝑓𝑟𝑢𝑖𝑡. Holding fruit for up to 48 d at ~100% RH slightly 

reduced, but did not eliminate the difference between Ψ𝛱𝑠𝑘𝑖𝑛 and Ψ𝛱𝑓𝑟𝑢𝑖𝑡. Similarly, 

transpiration (4 d at ~0% RH and 22°C) did not eliminate the difference between Ψ𝛱𝑠𝑘𝑖𝑛 and Ψ𝛱𝑓𝑟𝑢𝑖𝑡. Water uptake from deionized water was paralleled by the outflow of 

glucose, fructose, and sorbitol and of anthocyanins into the incubation solution. Our 

data indicate that a sweet cherry is not an ideal osmometer. This is in part due to the 

CM having a reflection coefficient (𝜎) for the above moieties somewhat less than 𝜎 < 

1. These findings have consequences for gravimetric determinations of water uptake.  
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Rain cracking severely limits sweet cherry production in nearly all regions where this 

high-value crop is grown and especially when rainfall occurs during the harvest 

period (Christensen, 1996). Osmotic water uptake through the fruit surface into the 

flesh is considered to be the primary cause of rain cracking (Christensen, 1996; 

Winkler et al., 2016). There is no published evidence that the pit plays any significant 

role in either water uptake or in rain cracking.   

In the now familiar ‘osmometer’ model, the fruit is regarded as a small, thin-walled 

vessel containing a sugary solution of negative osmotic potential (i.e., the semi-fluid 

flesh) surrounded by a semipermeable membrane (i.e., the CM). As with an 

osmometer, the rate of osmotic water uptake (F; g.s-1) by a cherry fruit equals the 

product of the flux density (J; g.m-2.s-1) times the surface area (A; m²). Meanwhile, J 

may be expressed as the product of the osmotic water permeability (Pf; m
.s-1) and the 

water potential difference (∆Ψ) between the inside of the fruit (Ψ𝑓𝑟𝑢𝑖𝑡) and the outside 

solution (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). Based on the gas laws, this is multiplied by the molar volume of 

water (𝑉𝑤) divided by the product of the gas constant (R) and the absolute 

temperature (T) (
𝑉𝑤𝑅∙𝑇) (House, 1974; Kramer and Boyer, 1995; modified), hence we 

can write: 

𝐹 = 𝐽 ∙ 𝐴 = 𝑃𝑓 ∙ ∆Ψ ∙ A ∙ 𝑉𝑤𝑅 ∙ 𝑇  
Since for rain water the value of Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is very close to zero, the value of ∆Ψ 

during rain is determined solely by Ψ𝑓𝑟𝑢𝑖𝑡. Meanwhile, the value of Ψ𝑓𝑟𝑢𝑖𝑡 equals the 

sum of a number of water potential components: the principal ones being the internal 

pressure (i.e., the fruit Ψ𝑃  (relative to atmospheric pressure)) and the average tissue Ψ𝛱𝑓𝑟𝑢𝑖𝑡. Recent studies have established that values of fruit and cell Ψ𝑃  of mature 

cherry fruit are negligibly low relative to values of the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 (Knoche et al., 2014; 

Schumann et al., 2014). Thus, for a mature sweet cherry fruit either outside in the 

rain or inside immersed in pure water, we can safely introduce the simplification that ∆Ψ is numerically equal to Ψ𝛱𝑓𝑟𝑢𝑖𝑡. 
From the above, one would expect close and positive relationships between F and 

A, Pf, and ∆Ψ, when a fruit is incubated in deionized water in the laboratory. 

Furthermore, expressing F/A as the J eliminates A as a source of variability and this 
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should yield close relationships of J with Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and/or Pf. Also, by decreasing ∆Ψ by 

increasing the osmolyte concentration in the incubation solution one would anticipate 

a simple proportional decrease in F and/or J. Furthermore, because osmotic activity 

is a colligative property, the relationship obtained should be independent of the 

osmolyte used.  

To the best of our knowledge, relationships between F or J and ΔΨ or Pf have not 

been investigated in sweet cherry. The only results we are aware of reveal highly 

variable relationships between F (expressed as a % weight increase) and the value 

of Ψ𝛱𝑓𝑟𝑢𝑖𝑡 (Christensen, 1972).  

The objective of our study was to establish whether sweet cherry behaves like an 

ideal osmometer. To classify as an ideal osmometer, the following criteria should be 

fulfilled: (1) F and J should be negatively related to Ψ𝛱𝑓𝑟𝑢𝑖𝑡, (2) a change in Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

should result in a corresponding change in F, (3) the value of Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  yielding zero 

net uptake should exactly match that of Ψ𝛱𝑓𝑟𝑢𝑖𝑡and should be independent of the 

osmolyte used, (4) the CM should be permeable only to water but not to any 

osmolytes present in the fruit or in the incubation solution, and (5) the value of Ψ𝛱𝑓𝑟𝑢𝑖𝑡 
should be uniform within the fruit.  

 

MATERIAL AND METHODS 

PLANT MATERIAL. Sweet cherry fruit of the cultivars Adriana, Burlat, Hedelfinger, 

Merchant, Sam, Samba, Schneiders Späte Knorpel, and Regina and the sour cherry 

cultivars Achat, Morellenfeuer, and Ungarische Traubige were picked from 

greenhouse-grown or field-grown trees grafted on ‘Gisela 5’ rootstocks (P. cerasus L. 

x P. canescens Bois) at the Horticultural Research Station of the Leibniz University in 

Ruthe, Germany (lat. 52°14’N, long. 9°49’E). The only exception was ‘Regina’ used 

in the outflow-experiment, which was harvested from a commercial orchard in 

Ohndorf, Germany (52°36’N, 9°35’E) and held for up to two weeks at 2°C. Fruit were 

selected for uniformity of size, color, and freedom from defects. The pedicels were 

cut flush with the receptacle. Pedicel end and receptacle as well as the pedicel/fruit 

junction were sealed using a fast curing silicone rubber (Dow Corning SE 9186; Dow 

Corning Corp., Midland, MI). The silicone was allowed to cure for about one hour. 
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Sealing the pedicel/fruit junction restricted water uptake to the fruit surface (Beyer et 

al., 2002).  

 

DETERMINING WATER UPTAKE, THE APPARENT 𝚿𝒇𝒓𝒖𝒊𝒕
, AND THE CALCULATED 𝚿𝑷 . 

Water uptake and water loss were determined gravimetrically as changes in fruit 

mass. Fruit were weighed, incubated individually in various solutions, removed 

usually after 45 and 90 min, carefully dried using tissue paper, re-weighed, and re-

incubated. The value of F was calculated as the slope of a linear regression fitted 

through a plot of cumulative water uptake vs. time. Fruits that cracked in the course 

of an experiment were excluded from the analyses. 

The apparent Ψ𝑓𝑟𝑢𝑖𝑡 was obtained by determining F from osmolyte solutions at 

concentrations ranging from hypertonic to hypotonic. We refer to the Ψ𝑓𝑟𝑢𝑖𝑡 as the 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 because it is quantified indirectly by determining water uptake and 

loss. Briefly, a linear regression was fitted through a plot of F vs. the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. 

Because these relationships were not linear, the regression was limited to those data 

lying close to the x-axis intercept (i.e., close to the point of zero net change in mass). 

The intercept was calculated from the regression equation and corresponds to the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 that resulted in constant fruit mass. Under these conditions, there is no net 

movement of water indicating that the apparent Ψ𝑓𝑟𝑢𝑖𝑡 equals the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (Weichert 

and Knoche, 2006a). 

A fruit Ψ𝑃  is classically calculated as the difference between Ψ𝑓𝑟𝑢𝑖𝑡  and Ψ𝛱𝑓𝑟𝑢𝑖𝑡. We 

refer to this Ψ𝑃  as the calculated Ψ𝑃 . 

 

DETERMINING 𝚿𝜫𝒔𝒌𝒊𝒏. 

The value of Ψ𝛱𝑠𝑘𝑖𝑛 was determined using plasmolysis (Grimm and Knoche, 

2015). Briefly, skin sections were prepared using a razor blade, the sections were 

momentarily rinsed in isotonic sucrose solution to remove any juice from the cut 

surface and blotted with tissue paper. The sections were immediately transferred to a 

glass microscope slide, covered with a cover slip, and incubated in a sucrose solution 

(Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) for 30 min. The sucrose solutions used, ranged in concentration from –5.0 

to 0 MPa. Afterwards, slides were viewed at ×40 (BX-60; Olympus Europa GmbH, 

Hamburg, Germany) in transmitted light. Calibrated images were taken (DP73; 
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Olympus). The numbers of plasmolyzed cells and the total numbers of cells were 

counted and the percentage of plasmolyzed cells was calculated. The values of Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 were determined by water vapor pressure osmometry (VAPRO® 

5520 and 5600; Wescor, Logan, UT).  

 

EXPERIMENTS.  

Relationships between Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and F from deionized water were investigated using 

‘Adriana’, ‘Burlat’, ‘Hedelfinger’, ‘Merchant’, ‘Sam’, ‘Samba’, ‘Schneiders Späte 

Knorpel’, and ‘Regina’ fruit. Fruit juice was extracted using a garlic press and the 

value of Ψ𝛱𝑓𝑟𝑢𝑖𝑡 was determined (VAPRO® 5520 and 5600; Wescor). The number of 

individual fruit was 172. There were no consistent differences among cultivars, which 

allowed the data for all cultivars to be pooled.  

The effect of varying Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 of artificial juice or of polyethylene glycol 6000 

(PEG 6000; Merck Eurolab, Darmstadt, Germany) on F and on the apparent Ψ𝑓𝑟𝑢𝑖𝑡 
was quantified in ‘Adriana’. The artificial juice and the PEG 6000 solutions were 

prepared at values of Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ranging from -5.1 to 0 MPa. The lowest (most 

negative) Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  were hypertonic relative to the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and so resulted in negative 

rates of water uptake (i.e., water losses). Sweet cherry juice extracted from the same 

batch of fruit served as a control. The number of replicates was ten.  

The effect of different cultivars on the calculated fruit Ψ𝑃  was studied in 

‘Adriana’, ‘Regina’, ‘Sam’, and ‘Samba’. Fruit were incubated in PEG 6000 solutions 

ranging from -5.4 to 0 MPa. Values of Ψ𝛱𝑓𝑟𝑢𝑖𝑡 were determined by vapor pressure 

osmometry (VAPRO® 5520 and 5600; Wescor). The number of replicates was ten. 

The effect of incubating fruit in expressed fruit juice on water uptake was 

studied in ‘Achat’, ‘Adriana’, ‘Hedelfinger’, ‘Morellenfeuer’, ‘Regina’, ‘Samba’, 

’Schneiders Späte Knorpel’, and ‘Ungarische Traubige’. Juice was extracted from the 

same batch of fruit. Values of Ψ𝛱𝑓𝑟𝑢𝑖𝑡 were determined by vapor pressure osmometry 

(VAPRO® 5520 and 5600; Wescor). Fruit incubated in deionized water served as 

controls. The number of replicates was ten. 

The effect of heat treatment to inactivate any enzymes present in the juice was 

studied in ‘Adriana’. Rates of water uptake were determined by incubating fruit in 

juice heated for 5 min to 60°C, then cooled to laboratory temperature before use. 

Juice that had not been heat-treated served as control. Juice was prepared from the 
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same batch of fruit as described above. As an additional control, an artificial juice 

was prepared, comprising the five major osmolytes present in real juice. This was 

isotonic to the real fruit juice used in this experiment (Herrmann, 2001). The 

osmolytes in the artificial juice and their relative contributions to total osmolarity were: 

glucose (41.2%), fructose (37.5%), sorbitol (7.3%), malic acid (6.7%), and potassium 

as potassium malate (5.4%). These five osmolytes accounted for 98% of the 

osmotically active components of sweet cherry juice (Herrmann, 2001; Winkler et al., 

2015). Values of  Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 were determined (VAPRO® 5520 and 5600; Wescor). The 

number of replicates was 15. 

The effect of the pH of the sweet cherry juice on the rate of water uptake was 

investigated in ‘Regina’. Fruit were incubated in juice extracted from the same batch 

of fruit or in isotonic artificial juice. Both juices were used at their ‘native’ pH (4.2) or 

titrated to pH 7 using KOH. The number of replicates was 15. 

The effect of the developmental stage on the apparent Ψ𝑓𝑟𝑢𝑖𝑡 was investigated 

in ‘Regina’ at 32, 52, 71, and 91 days after full bloom (DAFB). The F from glucose 

solutions ranging in Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 from -5.8 to 0 MPa were determined. The number of 

replicates was ten.  

To identify whether the skin has an effect on the apparent Ψ𝑓𝑟𝑢𝑖𝑡, the latter 

was determined by incubating flesh discs excised from ‘Regina’ sweet cherry in 

glucose solutions differing in osmolarity. Flesh cylinders having diameters of 8 mm 

were excised from the equatorial region of the fruit’s cheek using a biopsy punch and 

cut to discs of 2 mm thickness using parallel-mounted razorblades. The discs were 

incubated in multiwell plates (well diameter 24 mm) containing glucose at Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

ranging from -5.9 to 0 MPa. Calibrated photographs were taken after 0, 15, and 30 

min of incubation at 1× using a binocular microscope equipped with a camera (MZ6, 

Leica, Wetzlar, Germany; camera DP73; Olympus). The area of the discs was 

quantified using image analysis software (cellSens 1.7.1; Olympus). The F values 

were calculated from the change in disc area during the first incubation interval. It 

was assumed that the disc tissue was isotropic and hence, would have undergone a 

change in thickness (not measured), proportional to the change in area (measured). 

Whole fruit from the same batch and incubated in the same solutions served as 

controls. The minimum number of replicates was six for discs and seven for whole 

fruit. 
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To establish whether the history of transpiration of the fruit alters the apparent Ψ𝑓𝑟𝑢𝑖𝑡, the effect of the water vapor concentration deficit during a holding period 

before an experiment was studied. Mature ‘Schneiders Späte Knorpel’ fruit were 

preconditioned by incubation above dry silica gel (~0% RH) or above water (~100% 

RH) at 22°C for 4 d. Subsequently, the apparent Ψ𝑓𝑟𝑢𝑖𝑡 was determined in glucose 

solutions (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) ranging from -4.9 to 0 MPa. Fresh fruit without a holding period 

and fruit held at ~100% RH for 4 d were used as controls. The number of replicates 

was ten. 

To identify whether the water vapor concentration deficit during a holding 

period induced a gradient in Ψ𝛱𝑓𝑟𝑢𝑖𝑡 within the fruit, ‘Adriana’ fruit was allowed to 

transpire for up to 154 h above dry silica gel (~0% RH) and the mass loss quantified. 

Fruit incubated above water (~100% RH) served as controls. The values of Ψ𝛱𝑓𝑟𝑢𝑖𝑡 
from the flesh were determined. Tissue cylinders ranging in depth from the skin to the 

pit were excised from the equatorial region using a biopsy punch of 8 mm diameter. 

The cylinders were then cut into four discs, each of about 1.5 mm thickness. The 

discs represented the entire transect of the flesh from skin to pit. The discs were 

squeezed to liberate their juice and this was measured immediately (VAPRO® 5520 

and 5600; Wescor). In a second experiment, plasmolysis of epidermal cells was 

quantified by incubating skin sections in sucrose solutions (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) ranging from -

5.0 to 0 MPa (Grimm and Knoche, 2015). This procedure yields a high-resolution 

estimate of the Ψ𝛱𝑠𝑘𝑖𝑛 only. We are not aware of any other method to assess this 

value. The history of transpiration of the fruit was varied. In one experiment fruit was 

preconditioned by excluding any transpiration by incubation for up to 48 days above 

water (~100% RH at 22°C, ‘Regina’). In another experiment fruit was incubated for 4 

d above dry silica gel (~0% RH, 22°C, ‘Schneiders Späte Knorpel’) to maximize 

transpiration. Freshly sampled fruit were used as control. The number of replicates 

was ten.  

Leakage of osmolytes from the fruit into the incubation solution was 

investigated by incubating ‘Regina’ fruit for up to 74 h in beakers containing 60 ml of 

deionized water. Water uptake was quantified gravimetrically. All fruit were carefully 

inspected macroscopically and fruits that cracked in the course of the experiment 

were discarded. Following removal of the fruit from solution, the incubation solution 

was lyophilized, its dry mass determined gravimetrically, and the residue taken up in 
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2.5 ml of deionized water. Subsequently, soluble solids were determined by 

refractometry. There was a linear relationship between the amount of solute outflow 

and the content of soluble solids (r²=0.99***, data not shown). Any leakage of 

anthocyanin that may have occurred was quantified by determining the absorption at 

520 nm using a spectrophotometer (Specord 210; Analytik Jena, Jena, Germany) 

after adjusting the pH to pH 3.5 using malic acid. Finally, sucrose, glucose, fructose, 

and sorbitol in the incubation solution were quantified by HPLC. Briefly, a 20 µl 

aliquot was injected onto a HC-75 (Ca2+, 9 µm 7.8 x 305 mm; Hamilton Company, 

Reno, NV) column of an HPLC system (LC-CaDI 22-14, HPLC compact pump 2250; 

Bischoff, Leonberg, Germany) equipped with a refractive index detector (RI detector 

8020; Bischoff) and a column heater (Variotherm 880; Bischoff). The flow rate was 

0.4 ml min-1, column temperature 80°C, and deionized water was used as a mobile 

phase.  

 

DATA ANALYSIS. Data are presented as means ± SE. Where error bars are not visible 

in a graph, they are smaller than the data symbols. Exception is Fig. 1, where data 

points for individual fruit are shown. Data were examined using analysis of variance 

or regression analysis. Pairwise comparisons of treatment means were carried out 

using Tukey’s Studentized range test (P ≤ 0.05, package multcomp 1.3-1, procedure 

glht, R version 3.3.2; R Foundation for Statistical Computing, Vienna, Austria). 

Regression analysis was performed using R (version 3.3.2) and SigmaPlot (version 

12.5; Systat Software, San Jose, CA). Significance of coefficients of determination 

(r²) at P ≤ 0.05, 0.01, and 0.001 is indicated by *, **, and ***, respectively. 

 

 

RESULTS 

The relationships between F or J and A or Ψ𝛱𝑓𝑟𝑢𝑖𝑡 were significant, but highly variable 

as indicated by coefficients of determination ranging from r2 = 0.12*** to r2 = 0.23***. 

Variability was particularly high for larger A and larger driving forces as indexed by 

more negative Ψ𝛱𝑓𝑟𝑢𝑖𝑡 (Fig. 1A and B). There was little difference in variability 

between the relationships of A or Ψ𝛱𝑓𝑟𝑢𝑖𝑡 with F and J.  
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Water uptake from artificial sweet cherry juice and from PEG 6000 solutions 

increased with time during a 1.5 h incubation at an approximately constant rate (Fig. 

2A and B). Making the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 more negative decreased rates of water uptake. At 

equal Ψ𝛱𝑓𝑟𝑢𝑖𝑡,  the F from artificial juice exceeded that from iso-osmolar PEG 6000 

(Fig. 2C). The only exceptions were hypertonic solutions, where F from artificial juice 

were equal to those from PEG 6000 or higher. Interestingly, the apparent Ψ𝑓𝑟𝑢𝑖𝑡 
averaged -2.7 MPa for fruit incubated in artificial juice, but -1.4 MPa for that 

incubated in PEG 6000 (Fig. 2C). At equal tonicity there was no difference in F from 

artificial juice and juice extracted from the same batch of fruit. When calculating the 

fruit Ψ𝑃 , an excessively high calculated fruit Ψ𝑃  was obtained from Ψ𝑓𝑟𝑢𝑖𝑡 
determined in PEG 6000 (Ψ𝑓𝑟𝑢𝑖𝑡 =-1.4 MPa, Ψ𝛱𝑓𝑟𝑢𝑖𝑡 = -2.6 MPa, calculated fruit Ψ𝑃  = 

1.2 MPa). However, a negative fruit Ψ𝑃  was calculated for Ψ𝑓𝑟𝑢𝑖𝑡 determined in 

artificial juice (Ψ𝑓𝑟𝑢𝑖𝑡 =-2.7 MPa, Ψ𝛱𝑓𝑟𝑢𝑖𝑡 = -2.2 MPa, Ψ𝑃  = -0.5 MPa). Most 

surprisingly, fruit incubated in its own juice or in artificial juice of the same tonicity as 

the fruit’s juice had a positive F (Fig. 2C).  

The extremely high fruit Ψ𝑃  calculated from Ψ𝑓𝑟𝑢𝑖𝑡 determined in PEG 6000 

was not unique to a specific cultivar, but was also obtained in other sweet cherry 

cultivars (Table 1). Similarly, water uptake from its own juice was also observed in 

other sweet cherry cultivars and also in two sour cherry cultivars. However, one sour 

cherry cultivar decreased slightly in mass (Table 2).  

Artefacts during incubation in juice that might result from enzymatic activity in 

the juice or from the acidity of the solution that may have changed the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 can 

be excluded as factors. First, heating juice to 60°C produced the same F (1.3 ± 0.2 

mg.h-1) as that from non-heated juice (1.0 ± 0.1 mg.h-1) or from artificial juice of the 

same tonicity (1.4 ± 0.1 mg.h-1). Also, the pH of natural juice or that of artificial juice 

had no effect on F. For natural juice of pH 4.2 and pH 7.0, the F were 1.1 ± 0.2 mg.h-1 

and 1.2 ± 0.2 mg.h-1, respectively, and for artificial juice 1.1 ± 0.2 mg.h-1 at pH 4.2 and 

1.3 ± 0.2 mg.h-1 at pH 7.0. 

Water uptake (mass gain) decreased, becoming a water loss (mass loss) at all 

developmental stages as the value of Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 became more negative (Fig. 3). The 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 and the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 became more negative as development progressed 



Chapter 2: A sweet cherry fruit: An ideal osmometer? 

31 

(Fig. 3A-E). Interestingly, the fruit’s apparent Ψ𝑓𝑟𝑢𝑖𝑡 was always more negative than 

the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 implying a negative calculated fruit Ψ𝑃 . The difference between the 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 and the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 increased up to 71 DAFB and remained constant at 

about -1.3 MPa, thereafter (Fig. 3F). At equal tonicity rates of uptake did not differ 

between fruit incubated in juice and in glucose solutions (Fig. 3D).  

Water uptake into flesh discs levelled off after 0.25 h indicating a decrease in 

F (Fig. 4A), whereas cumulative uptake into whole fruit increased linearly (i.e., a 

constant rate of uptake) up to 2 h (Fig. 4B). The apparent water potentials were -2.8 

MPa (Ψ𝑓𝑙𝑒𝑠ℎ
) and -4.1 MPa (Ψ𝑓𝑟𝑢𝑖𝑡

) for fruit from the same batch (Fig. 4C). Thus, the 

apparent Ψ𝑓𝑙𝑒𝑠ℎ approximately matched the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 (-3.1 MPa), whereas the apparent Ψ𝑓𝑟𝑢𝑖𝑡 was far more negative than the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 (Fig. 4C).  

The difference between the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 determined in the osmometer and the 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 determined in the incubation assays did not depend on the 

transpiration history of the fruit. Holding fruit for 48 h at ~100% RH slightly increased 

the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 from -2.7 to -2.6 MPa and the Ψ𝑓𝑟𝑢𝑖𝑡 from -3.8 to -3.7 MPa. Fruit held at 

~0% RH lost 1.4 g water and decreased in Ψ𝛱𝑓𝑟𝑢𝑖𝑡 from -2.7 to -3.3 MPa and in the 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 from -3.8 to -4.4 MPa. The difference between the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and the 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 in both treatments and the control remained constant at 1.1 MPa 

(Table 3). Holding fruit under transpiring conditions (~0% RH) for up to 154 h 

produced a mass loss of up to 2.2 g and a proportional decrease of the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 as 

compared to fruit held at 100% RH (data not shown). However, despite of the high 

mass loss at ~0% RH, there was no detectable gradient in Ψ𝛱𝑓𝑟𝑢𝑖𝑡 between the fruit’s 

outer and inner flesh. When holding fruit under non-transpiring conditions (~100% 

RH), mass and Ψ𝛱𝑓𝑙𝑒𝑠ℎ remained constant (data not shown).  

The percentage of plasmolyzed epidermal cells increased in a sigmoidal 

fashion as Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 decreased (Fig. 5). The osmotic potential at 50% plasmolysis 

represented the Ψ𝛱𝑠𝑘𝑖𝑛,  which was always less negative than the Ψ𝛱𝑓𝑙𝑒𝑠ℎ, as indexed 

by the Ψ𝛱𝑓𝑟𝑢𝑖𝑡. Holding fruit for up to 48 d at ~100% RH slightly reduced, but did not 

eliminate the difference between Ψ𝛱𝑓𝑙𝑒𝑠ℎ and Ψ𝛱𝑠𝑘𝑖𝑛, the former being approximately 

equal to the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 (Table 4). Fruit held at ~0% RH for 4 d lost 1.4 g and had slightly 



Chapter 2: A sweet cherry fruit: An ideal osmometer? 

32 

more negative Ψ𝛱𝑓𝑙𝑒𝑠ℎ and Ψ𝛱𝑠𝑘𝑖𝑛 (Fig. 5B). The difference between the Ψ𝛱𝑓𝑙𝑒𝑠ℎ and Ψ𝛱𝑠𝑘𝑖𝑛, however, remained constant.  

Water uptake increased with time when incubating fruit in deionized water (Fig. 6A, r² 

= 0.90***). The increase in water uptake was closely paralleled by the outflow of 

solutes from the fruit into the incubation solution as indexed by the increase in 

soluble solids (Fig. 6B, r² = 0.99***). Coefficients of determination for the relationship 

between osmolyte outflow and water uptake were higher (r² = 0.99***) than those for 

osmolyte outflow and time (r² = 0.80***). Also, anthocyanin leakage increased 

exponentially at high rates of water uptake, indicating the bursting of cells and 

vacuoles (Fig. 6B inset, r² = 0.89***). The HPLC analyses revealed an outflow of 

glucose, fructose, and sorbitol that was linearly related to water uptake (Fig. 6C, all r² 

= 0.99***). The sum of these three sugars accounted for ~80% of the total outflow of 

osmolytes (Fig. 6C inset). There was no outflow of sucrose (data not shown). 

 

DISCUSSION 

A sweet cherry is more complex than a simple osmometer 

Our results demonstrate that a sweet cherry fruit functions like an ideal osmometer 

only in some aspects - but clearly not in all. Consistent with being an ideal 

osmometer is the response of sweet cherry fruit to varying Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. For a given 

osmolyte or a mixture of osmolytes, decreasing the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (making it more 

negative) decreased water uptake and vice versa for increases. This response was 

obtained for all osmolytes investigated, including for PEG 6000, artificial juice, and 

glucose. It is also consistent with observations reported for grapes (Becker and 

Knoche, 2011) and Ribes berries (Khanal et al., 2011). 

However, inconsistent with an ideal osmometer were the following responses: First, 

the apparent Ψ𝑓𝑟𝑢𝑖𝑡 determined from the point of zero net change in mass depended 

on the osmolyte used in this and an earlier study (Weichert and Knoche, 2006a). 

PEG 6000 yielded a less negative apparent Ψ𝑓𝑟𝑢𝑖𝑡 than artificial juice. This response 

was not related to the low pH of the artificial juice, but occurred also when the pH 

was adjusted to pH 7.0. Second, the difference between the apparent Ψ𝑓𝑟𝑢𝑖𝑡 and the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, i.e., the  ΔΨ, is considered an estimate of the fruit Ψ𝑃 . However, when 
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subtracting the apparent Ψ𝑓𝑟𝑢𝑖𝑡 determined in PEG 6000 solutions from the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 

excessively high values for the fruit Ψ𝑃  are obtained (therefore referred to here as 

the calculated fruit Ψ𝑃 ). Literature data for other fruit crops also yielded values of the 

same order of magnitude (Table 5). However, experimentally determined values of 

fruit and cell Ψ𝑃  using pressure probes with mature fruit are negligibly low relative to 

the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (<0.1 MPa for grapes, see Thomas et al., 2006, 2008; 0.03 to 0.05 MPa 

for sweet cherry, see Knoche et al., 2014; Schumann et al., 2014). For grape berries, 

the lack of a significant measured cell Ψ𝑃   despite the very negative Ψ𝛱𝑓𝑟𝑢𝑖𝑡 was 

accounted for by the presence of apoplastic solutes (Wada et al., 2008, 2009), 

possibly as a result of a compartmental breakdown (Lang and Düring, 1991). 

Whether the same explanation applies to sweet cherry is not known. Thirdly, and 

most surprisingly, we detected water uptake from juice extracted from the same 

batch of fruit. This effect was reproducible across all sweet cherry and two of three 

sour cherry cultivars. Also, it was not caused by any enzymatic reactions in the juice 

that could have altered its composition or osmolarity. Furthermore, at equal tonicity 

there was no difference in water uptake between natural and artificial juice or 

glucose-only solutions. These observations are particularly difficult to explain. This is 

because, at first sight, one would expect a fruit incubated in its own juice to represent 

an isotonic system. Such a system should – at best – yield only a very slight 

decrease in fruit mass with time due to a very low value of fruit Ψ𝑃 . In the complete 

absence of fruit Ψ𝑃  one would expect no change at all in fruit mass. Finally, there is 

clear evidence for leakage of osmolytes from the fruit into the incubation solution.  

Thus, the hypothesis that a sweet cherry is an ideal osmometer must be 

rejected. Some other factors are clearly involved and a more complex model must be 

postulated.  

 

The CM has a reflection coefficient <1 for small osmolytes.  

An ideal osmometer allows penetration of the solvent, but totally excludes penetration 

by solutes (osmolytes). The results for cherry, however, demonstrate that the CM 

allows some passage of osmolytes from the fruit into the incubation solution. In 

membrane studies, the permeability to solutes relative to the permeability to solvents 
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is characterized by the dimensionless 𝜎. Thus, for a cherry, the value 𝜎 = 1 implies a 

membrane permeable only to water. While a 𝜎 < 1 would imply diffusional inflow and 

outflow of osmolytes depending on the magnitude and direction of any chemical 

potential gradients in addition to diffusional inflow and outflow of water depending on 

the magnitude and direction of water potential gradient. Because for a given 

membrane the 𝜎 depends on the size of the osmolyte, the values of 𝜎 differ for each 

solute species. For osmolytes too large to penetrate, the sweet cherry CM has a 𝜎 = 

1 and for those below some size exclusion limit a 𝜎 < 1.  

The leakage of glucose (180 g.mol-1), fructose (180 g.mol-1), and sorbitol (182 g.mol-1) 

from the fruit into the incubation solution indicates that the size of these solutes is 

below the exclusion limit of the CM and hence, the value of 𝜎 for these osmolytes is 𝜎 < 1. These findings are consistent with the size exclusion limits of the sweet cherry 

CM estimated earlier (Weichert and Knoche, 2006a). The largest penetrating 

osmolyte was sucrose that had a 𝜎 = 0.74 (MW 342 g.mol-1), the smallest non-

penetrating osmolyte was PEG 1500 (MW 1500 g.mol-1) (Weichert and Knoche, 

2006a). Consequently, the PEG 6000 (Mean MW 6000 g.mol-1) also used in the 

present study is size-excluded (𝜎 = 1).  

 It is interesting to note the outflow of glucose, fructose, and sorbitol was 

closely correlated to the water movement, suggesting identical pathways for water 

uptake and osmolyte outflow. In principle, two pathways may be thought of. First, 

polar pathways that are present in sweet cherry (Weichert and Knoche, 2006a). Polar 

pathways result from the orientation of polar functional groups in the hydrated CM 

(Schönherr, 2006). They bypass the lipophilic CM and allow viscous flow and 

diffusion of polar substances and water in an aqueous continuum across the CM 

(Weichert and Knoche, 2006a; Schönherr, 2000, 2006). Second, microcracks in the 

CM that form upon exposure of the strained CM to water (Knoche and Peschel, 

2006). The relative contribution of microcracks to the movement of water and 

osmolytes across the skin is unknown, but expected to be highly variable.  

  These findings have consequences for experimental determinations of the Ψ𝑓𝑟𝑢𝑖𝑡 where fruit is incubated in solutions of osmolytes at different tonicity and the 

change in fruit mass is recorded. Two situations must be distinguished, i.e., fruit 

incubated in solutions of osmolytes that (1) exceed the size exclusion limit of the CM 

(𝜎 = 1) or (2) are below the size exclusion limit (𝜎 < 1).  
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The first situation would be typical for fruit incubated in PEG 6000 solutions, where  𝜎 = 1 (Fig. 2 and Table 1). The osmolytes present in the sweet cherry including 

glucose, fructose, and sorbitol, were size permitted (𝜎 < 1; Weichert and Knoche, 

2006a). For these osmolytes a chemical potential gradient exists from the fruit (high 

concentration) to the solution (low concentration). Thus, an outflow of osmolytes will 

occur when incubating fruit in PEG 6000 solutions (Fig. 7A). Meanwhile, water 

movement (uptake, loss) will depend on magnitude and direction of the water 

potential gradient. As a consequence of the outflow of osmolytes, the apparent Ψ𝑓𝑟𝑢𝑖𝑡 
determined by monitoring the change in fruit mass gravimetrically is less negative 

than the “true” Ψ𝑓𝑟𝑢𝑖𝑡 that reflects water transport only. Also, when subtracting the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 from the apparent Ψ𝑓𝑟𝑢𝑖𝑡, an unrealistically high calculated Ψ𝑃  is obtained 

(Fig. 2 and Table 1). It is worth noting that the artefactual high calculated Ψ𝑃  that 

may be estimated for fruit of other species when incubated in PEG 6000 (grape and 

Ribes berries (Becker and Knoche, 2011; Khanal et al., 2011), would probably also 

be accounted for by 𝜎 < 1.  

The second situation – fruit incubated in solutions of osmolytes below the size 

exclusion limit – is mimicked for example by fruit incubated in its own juice, in artificial 

juice, or in glucose (Fig. 7B). Solutions of these osmolytes were selected, because 

they are identical to most or at least one of the major osmolytes of the sweet cherry 

juice. Also, these osmolytes were recovered in the outflow (Table 2 and Fig. 2-4; 

Herrmann, 2001) indicating that the 𝜎 < 1.  Thus, the osmolytes would penetrate 

along their gradients in chemical concentration and in Ψ𝑓𝑟𝑢𝑖𝑡. In hypotonic solutions, 

outflow of osmolytes would occur out of the fruit into the incubation solution. As the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  is decreased and becomes more negative and hypertonic, the outflow from 

the fruit would decrease, cease, and then become an inflow of osmolytes into the 

fruit. As a consequence, the concurrent diffusion of the osmolytes would decrease 

the slope of the relationship between the gravimetrically determined flow and the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 compared to that between the flow of water only and the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛. Because 

the relationship is not displaced, the x-axis intercept and hence, the Ψ𝑓𝑟𝑢𝑖𝑡 remain 

constant.  

These arguments demonstrate that the sweet cherry CM has a 𝜎 < 1 for low 

molecular weight osmolytes and that this accounts for both osmolyte outflow and 
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inflow. The movement of osmolytes occurred in gravimetrically detectable amounts. 

Furthermore, an outflow of osmolytes from the fruit accounted for the excessively 

high Ψ𝑃  calculated from apparent Ψ𝑓𝑟𝑢𝑖𝑡 determined in PEG 6000.  

 

Active uptake of solutes from apoplast into symplast  

Experiments in this and earlier studies (Grimm and Knoche, 2015) established that 

the Ψ𝛱𝑠𝑘𝑖𝑛 is less negative than Ψ𝛱𝑓𝑟𝑢𝑖𝑡. The data herein demonstrate that this gradient 

remained essentially constant despite of very significant transpiration or despite of 

extended holding periods under non-transpiring conditions. Thus, the fruit 

represented a fairly stable two compartment system of skin and flesh. If a less 

negative Ψ𝛱𝑠𝑘𝑖𝑛 (irrespective of its mechanistic basis) was driving water uptake, the 

juice of the flesh would resemble a hypertonic solution relative to the skin. Under 

these conditions, we would expect a fruit incubated in its own juice to lose water from 

the skin to the incubation solution. Instead, water uptake occurred consistently and 

regardless of the type of osmolyte used (e.g., natural juice with and without heating 

or pH adjustment, isotonic artificial juice, or isotonic glucose solutions). A conceivable 

explanation for this reproducible observation would be an active mechanism of 

uptake of osmolytes from the apoplast into the symplast following penetration of the 

CM. An active accumulation of osmolytes in the skin would result in a more negative Ψ𝛱𝑠𝑘𝑖𝑛 and hence, a steepening of the water potential gradient that drives osmotic 

water uptake into the fruit. To the best of our knowledge, however, there is no 

conclusive or direct evidence supporting a role of active water uptake. Wade (1988) 

investigated the effects of metabolic inhibitors on water uptake and cracking. Of the 

five inhibitors investigated, NaF (-43% after 16 h at 50 mM), NaN3 (-10% after 16 h at 

2 mM), and AgNO3 (-43% after 16 h at 10 mM) significantly reduced water uptake 

consistent with a role of active processes in water uptake. However, decreased water 

uptake in the presence of AgNO3 was also reported by Weichert et al. (2004), but 

attributed to a precipitation reaction that plugged polar pathways across the CM 

(Weichert and Knoche, 2006b). Further, recent experiments investigating the effects 

of NaN3 and CCCP on water uptake did not yield consistent or conclusive data (A. 

Winkler, unpublished data). Thus, direct evidence for active water uptake remains to 

be established. 
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The role of the cell wall 

  It may be argued that the phenomenon of water uptake from its own juice was 

an artefact resulting from the juice not being representative due to the extraction by 

pressing. Following pressing, the residue in the press largely comprises cell walls. 

The water potential associated with the cell wall residue is missed when sampling the 

juice for osmometry. Cell walls swell and swelling is a typical characteristic of 

ripening fruit including sweet cherry (Redgwell et al., 1992, 1997; Grimm and 

Knoche, 2015). Swelling results from water partitioning into the cell wall (Redgwell et 

al., 1997). A preferential movement of water into the cell wall implies a more negative 

water potential of the cell wall relative to the symplast. However, there was no 

difference in osmolarity and – in the absence of cell Ψ𝑃  – no difference in water 

potential between the cell wall pellet and the supernatant juice when separating a 

homogenate of sweet cherry fruit (minus pit) by centrifugation into juice and cell wall 

fractions (C. Schumann, unpublished data). Also, the water potential of apoplast and 

symplast are expected to be in equilibrium (Knoche et al., 2014; Schumann et al., 

2014). Thus, at present the cell wall is considered to be an unlikely candidate for the 

unknown driving force.  

 However, the cell wall could still play a role in water uptake from fruit incubated 

in its own juice provided that swollen cell walls of some cells generated a significant 

boundary layer resistance for water movement. The plasmolysis experiments in this 

and our earlier study revealed a marked difference in osmotic potentials between the 

onset of plasmolysis as indexed by the first cell plasmolyzing and the completion of 

plasmolysis as indexed by the last cells plasmolyzing (Grimm and Knoche, 2015). 

This indicates considerable heterogeneity within the population of cells in a fruit 

(Grimm and Knoche, 2015). Assuming cells to be in water potential equilibrium, this 

response range reflects the range in cell Ψ𝑃 . Also, our earlier study indicates that cell 

walls swell essentially instantaneously when the cell Ψ𝑃  decreases. Hence, when 

incubating fruit in more negative Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, the Ψ𝑃  of cells having a less negative 

osmotic potential resulting in the swelling of cell walls. In contrast, cells having a 

more negative osmotic potential remain turgescent and with non-swollen cell walls. If 

swollen cell walls represented a significant boundary layer resistance in water 

movement compared to non-swollen cell walls, diffusive resistance would increase 

for uptake into cells having a less negative osmotic potential, but not or less for those 
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that are more negative. Since the Ψ𝛱𝑓𝑟𝑢𝑖𝑡 represents the driving force for water 

uptake, cell wall swelling would introduce a bias in permeability towards cells having 

a more negative osmotic potential. It is the latter fraction of the population of cells that 

remains to have a lower diffusive resistance (high permeability) and a driving force 

exceeding (more negative) the average osmolarity of the juice. This phenomenon 

would account for water uptake from its own juice. Clearly, these arguments are 

highly speculative and direct supporting evidence is needed in further studies.  

 

Practical implications 

Our data have important implications for research on water relations in sweet cherry. 

The gravimetrically measured change in fruit mass during incubation represents a net 

change comprising the flow of water plus that of osmolytes. The osmolytes present in 

the fruit are low molecular weight solutes. For these, 𝜎 < 1, possibly resulting in 

outflow of osmolytes from the fruit into the incubation solution. In addition, an inflow 

of osmolytes from the incubation solution to the fruit may also occur when the 

osmolytes in the incubation solution are sufficiently small to allow passage through 

the CM (𝜎 < 1).  Quantifying water uptake by incubating a fruit in an aqueous solution 

and determining the change in mass is a convenient and precise method to study 

water movement. This technique is used in practically all studies in sweet cherry and 

other fruit. The question arising now is how large the errors in typical incubation 

assays are, if the change in mass is not solely due to water movement, but also to 

the movement of osmolytes into and out of the fruit. A first estimate of the magnitude 

of the error may be obtained from the outflow experiments in our study. The gross 

uptake rate determined from the change in fruit mass amounted to 8.6 ± 0.6 mg.h-1 of 

which 1.3 ± 0.1 mg.h-1 was attributed to osmolyte outflow. This yields a net rate of 

water uptake of 9.8 ± 0.6 mg.h-1. In this experiment, the osmolyte outflow accounted 

for 14% of the total weight change recorded.  

A robust procedure to quantify the outflow of osmolytes during a standard incubation 

in deionized water is to directly determine the dry mass of the lyophilized incubation 

solution. In our experiment, the dry mass of the incubation solution was very closely 

related to a more sophisticated HPLC analysis of carbohydrates (glucose and 

fructose r² = 0.99***, sorbitol r² = 0.97***).  
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Alternative procedures to quantify water flow directly would require labelled 

water, e.g., THO, DHO, or D2O. Due to safety considerations (THO) and the 

requirement for complicated analyses by NMR or mass spectrometry (DHO; D2O) the 

use of labeled water represents a considerable obstacle in experimentation. 

Furthermore, a non-destructive monitoring of water movement on an individual fruit 

basis in repeated measures designs is technically impossible. Thus, gravimetry is 

likely to remain the standard procedure for quantifying water uptake into sweet cherry 

and other soft and fleshy fruit.  

 

Conclusions 

A sweet cherry is more complex than a simple osmometer. First, the CM has a 𝜎 < 1 

for a number of common solutes including glucose, fructose, and sorbitol. Second, 

the fruit resembles a two-compartment system, where an active component may 

modify the Ψ . In addition, the swelling of cell walls may represent a significant 

boundary layer resistance that results in confounding between the cell’s water 

permeability and the osmotic potential of this cell as the driving force for water 

uptake. Cells having a high osmotic potential (less negative) would have a low water 

permeability. These subjects merit further study.  
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Table 1. Osmotic potential (Ψ𝛱𝑓𝑟𝑢𝑖𝑡), apparent fruit water potential (Ψ𝑓𝑟𝑢𝑖𝑡), and the 

calculated fruit turgor (Ψ𝑃 ) of selected cultivars of sweet cherry. Fruit were incubated in 

PEG 6000 solutions ranging in osmotic potential from -5.4 to 0 MPa. The rate of water 

uptake was determined gravimetrically. The apparent Ψ𝑓𝑟𝑢𝑖𝑡 was calculated as the point 

of zero mass change. The calculated Ψ𝑃  was determined as the difference between Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and the apparent Ψ𝑓𝑟𝑢𝑖𝑡. 

Cultivar 

Ψ𝛱𝑓𝑟𝑢𝑖𝑡  
[mean ± SE (MPa)] 

apparent Ψ𝑓𝑟𝑢𝑖𝑡  
[mean ± SE (MPa)] 

 calculated Ψ𝑃  

[mean ± SE (MPa)] 

Adriana -2.1 ± 0.1 -1.4 ± 0.0 0.7 ± 0.1 

Regina -3.4 ± 0.1 -3.0 ± 0.2 0.4 ± 0.3 

Sam -3.0 ± 0.1 -2.6 ± 0.3 0.4 ± 0.3 

Samba -2.8 ± 0.1 -2.4 ± 0.0 0.4 ± 0.3 

Grand mean  -2.8 ± 0.2 -2.4 ± 0.3 0.5 ± 0.1 
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Table 2. Osmotic potentials (Ψ𝛱𝑓𝑟𝑢𝑖𝑡) and rates of water uptake (F) from deionized water 

and from juice extracted from selected cultivars of sweet (Prunus avium) and sour cherry 

(Prunus cerasus). Cherry juice was extracted from the same batch of fruit. 

Species Cultivar 

Ψ𝛱𝑓𝑟𝑢𝑖𝑡 
(MPa) 

F  

[mean ± SE (mg.h–1)] 

Water Juice 

Prunus avium Adriana -1.5 4.4 ± 0.4 1.0 ± 0.1 

 Hedelfinger -2.9 12.0 ± 1.1 3.2 ± 0.4 

 Regina -2.6 8.6 ± 1.1 1.3 ± 0.2 

 Samba -2.4 9.9 ± 1.1 1.5 ± 0.1 

 Schneiders Späte Knorpel -2.6 15.1 ± 2.5 1.4 ± 0.2 

Prunus cerasus Achat  -3.0  7.4 ± 0.8 -0.1 ± 0.0 

 Morellenfeuer -2.8 21.6 ± 1.8 2.8 ± 0.2 

 Ungarische Traubige -2.9 11.5 ± 1.1 0.3 ± 0.1 

Grand mean   -2.5 11.3 ± 0.6 1.4 ± 0.1 
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Table 3. Osmotic potential (Ψ𝛱𝑓𝑟𝑢𝑖𝑡), apparent fruit water potential (Ψ𝑓𝑟𝑢𝑖𝑡), and the 

calculated turgor (Ψ𝑃 ) of sweet cherry fruit held for 4 d at ~100% RH or ~0% RH at 

22°C. Fruit were incubated in glucose solutions ranging in osmotic potential from -

5.8 to 0 MPa. The rate of water uptake was determined gravimetrically. The 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 was calculated as the point of zero mass change. The Ψ𝑃  was 

calculated as the difference between Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and the apparent Ψ𝑓𝑟𝑢𝑖𝑡. 
Treatment RH (%) 

Ψ𝛱𝑓𝑟𝑢𝑖𝑡  
[mean ± SE 

(MPa)] 

apparent Ψ𝑓𝑟𝑢𝑖𝑡 
[mean ± SE 

(MPa)] 

calculated Ψ𝑃  

[mean ± SE 

(MPa)] 

0 d - -2.7 ± 0.1 -3.8 ± 0.1 -1.1 ± 0.1 

4 d 100 -2.6 ± 0.1 -3.7 ± 0.3 -1.1 ± 0.3 

4 d 0* -3.3 ± 0.1 -4.4 ± 0.3 -1.1 ± 0.4 

*Mass loss averaged 1.4 g  
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Table 4. Difference between the osmotic potential of the flesh (Ψ𝛱𝑓𝑙𝑒𝑠ℎ) 

and the skin (Ψ𝛱𝑠𝑘𝑖𝑛) of mature sweet cherry fruit after holding up to 48 d 

at ~100% RH or for 4 d at ~0% RH at 22°C. The Ψ𝛱𝑠𝑘𝑖𝑛 is estimated from 

the osmotic potential of the incubation solution yielding 50% plasmolysis 

of the epidermal cells (see Fig. 5).  

Treatment RH (%) 

Ψ𝛱𝑓𝑙𝑒𝑠ℎ 

[mean ± SE 

(MPa)] 

Ψ𝛱𝑠𝑘𝑖𝑛 

[mean ± 

SE (MPa)] 

Ψ𝛱𝑓𝑙𝑒𝑠ℎ - Ψ𝛱𝑠𝑘𝑖𝑛 

[mean ± SE 

(MPa)] 

0 d - -2.6 ± 0.1 -1.9 ± 0.1 -0.7 ± 0.1 

19 d 100 -2.4 ± 0.1 -1.7 ± 0.0 -0.7 ± 0.1 

48 d 100 -2.2 ± 0.1 -1.8 ± 0.0 -0.4 ± 0.1 

0 d - -2.7 ± 0.1 -1.8 ± 0.1 -0.9 ± 0.1 

4 d 0* -3.0 ± 0.0 -2.3 ± 0.1 -0.8 ± 0.1 

*Mass loss averaged 1.4 g.  
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Table 5: Osmotic potential (Ψ𝛱𝑓𝑟𝑢𝑖𝑡), apparent fruit water potential (Ψ𝑓𝑟𝑢𝑖𝑡), and the 

calculated fruit turgor (Ψ𝑃 ) of different Ribes species and grape cultivars from the 

literature. The rate of water uptake was determined gravimetrically by incubating fruit in 

PEG 6000 solutions with different osmotic potentials. The Ψ𝑓𝑟𝑢𝑖𝑡 was calculated as the 

point of zero mass change. The Ψ𝑃  was calculated as the difference between Ψ𝛱𝑓𝑟𝑢𝑖𝑡 and Ψ𝑓𝑟𝑢𝑖𝑡. 
Species Cultivar Ψ𝛱𝑓𝑟𝑢𝑖𝑡  

[mean ± SE 

(MPa)] 

Ψ𝑓𝑟𝑢𝑖𝑡  
[mean ± SE 

(MPa)] 

Ψ𝑃   

[mean ± SE 

(MPa)] 

Refere

nce 

Ribes nigrum -* -2.7 ± 0.0 -2.1 ± 0.2 0.5 ± 0.2 Khanal 

et al., 

2011 

Rives uva-crispa - -1.9 ± 0.0 -1.2 ± 0.0 0.7 ± 0.1 

Ribes × nigridolaria - -2.5 ± 0.0 -1.9 ± 0.2 0.6 ± 0.2 

Vitis vinifera Chardonnay -3.9 ± 0.0 -1.7 ± 0.1 2.3 ± 0.1 Becker 

and 

Knoche

, 2011 

Vitis vinifera Müller-Thurgau -3.5 ± 0.0 -2.3 ± 0.1 1.2 ± 0.1 

Vitis vinifera Riesling -3.7 ± 0.0 -1.6 ± 0.0 2.1 ± 0.0 

* cultivar unknown 

  



Chapter 2: A sweet cherry fruit: An ideal osmometer? 

47 

 

Fig. 1. Relationship between the rate of water uptake (F; g·h-1; A and C) or the flux in 

water uptake (J; kg m-2 s-1; B and D) and the surface area (A; cm²) or the osmotic 

potential (Ψ𝛱𝑓𝑟𝑢𝑖𝑡; MPa) of mature sweet cherry fruit. The equations of the linear 

regression lines were: F (g.h-1) = 1.71 (± 0.24) × A (cm²) – 25.86; r² = 0.22 (A); J (×10-

6 kg m-2 s-1) = 0.15 (± 0.03) × A (cm²) – 1.75; r² = 0.13 (B); F (g·h-1) = -4.78 (± 0.20) × Ψ𝛱𝑓𝑟𝑢𝑖𝑡 (MPa); r2 = 0.76 (C); J (×10-6 kg m-2 s-1) = -0.57 (± 0.02) × Ψ𝛱𝑓𝑟𝑢𝑖𝑡
 (MPa); 

r²=0.78 (D). The intercept terms for C and D were not significant. Data symbols 

represent individual fruit. 
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Fig. 2. Effect of the osmotic potential (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) of polyethylene glycol 6000 (PEG 

6000) (A) and artificial or natural sweet cherry juice (B) on the time course of water 

uptake and rates of water uptake (F) (C). Artificial cherry juice was prepared using 

the five most abundant osmolytes of sweet cherry fruit, i.e., glucose, fructose, 

sorbitol, malic acid, and potassium malate. The apparent fruit water potential (Ψ𝑓𝑟𝑢𝑖𝑡) 
equals the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 causing no change in fruit mass. The apparent Ψ𝑓𝑟𝑢𝑖𝑡 is 

indicated by arrows. The dashed vertical line represents the Ψ𝛱𝑓𝑟𝑢𝑖𝑡. 
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Fig. 3. Effect of the osmotic potential of glucose incubation solutions (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) on 

the rates of water uptake (F) and the apparent fruit water potential (Ψ𝑓𝑟𝑢𝑖𝑡) of 

developing sweet cherry fruit [(A) 32, (B) 52, (C) 71, and (D) 91 days after full bloom 

(DAFB)]. The open circle in (D) represents water uptake from juice extracted from the 

same batch of fruit. (E) Apparent Ψ𝑓𝑟𝑢𝑖𝑡 and osmotic potentials (Ψ𝛱𝑓𝑟𝑢𝑖𝑡) in the course 

of development. (F) Difference between apparent Ψ𝑓𝑟𝑢𝑖𝑡 and Ψ𝛱𝑓𝑟𝑢𝑖𝑡 in the course of 

development. The apparent Ψ𝑓𝑟𝑢𝑖𝑡 equals the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 causing no change in fruit 

mass and is indicated by vertical arrows (A-D). Vertical dashed lines in A-D indicate 

the Ψ𝛱𝑓𝑟𝑢𝑖𝑡. 
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Fig. 4. Time course of water uptake into discs excised from the flesh of mature sweet 

cherry fruit (A) and whole fruit (B). (C) Rates of water uptake (F) as affected by the 

osmotic potentials of the glucose incubation solutions (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). The apparent fruit 

water potential equals the water potential of a solution causing no change in fruit 

mass and is indicated by arrows. The dashed vertical line represents the osmotic 

potential of the fruit. 
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Fig. 5. Effect of the osmotic potential of sucrose incubation solutions (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) on 

the percentage of plasmolyzed epidermal cells of sweet cherry fruit held under non-

transpiring conditions (A) or transpiring conditions (B). Non-transpiring and 

transpiring conditions were imposed on the fruit to equilibrate (non-transpiring) or to 

induce a gradient (transpiring) in the osmotic potential between fruit and skin. Fruit 

was held under non-transpiring conditions (~100% RH) for up to 48 d or under 

transpiring conditions (~0% RH) for 4 d.   
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Fig. 6. Time course of water uptake (A). Outflow of osmolytes from the sweet cherry 

fruit into the incubation solution as affected by water uptake. The incubation solution 

was concentrated by lyophilizing and then subjected to osmometry (B). Anthocyanin-

leakage as a function of water uptake (B inset). Outflow of the three main osmolytes 

of the sweet fruit as a function of water uptake (C). Total outflow of osmolytes and the 

sum of the three main osmolytes glucose (G), fructose (F), and sorbitol (S) as 

affected by water uptake (C inset). 
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Fig. 7. Simulated change in fruit mass due to inflow and outflow of water and 

osmolytes into and out of the fruit when incubated in solutions ranging from 

hypertonic to hypotonic osmolarity (Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). (A) Parallel displacement of the 

relationship caused by the hypothetical outflow of low molecular weight osmolytes 

(𝜎 < 1) from the fruit into the incubation solution. There is no inflow of osmolytes from 

the incubation solution into the fruit when the osmolyte is size-excluded (𝜎 = 1) due 

to its large molecular weight as would be the case for fruit incubated in PEG 6000. 

The water potential (Ψ𝑓𝑟𝑢𝑖𝑡) equals the Ψ𝛱𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 causing no change in fruit mass and 

is indicated by arrows. The measured apparent Ψ𝑓𝑟𝑢𝑖𝑡 is higher (less negative) than 

the real Ψ𝑓𝑟𝑢𝑖𝑡. (B) Change in slope of the relationship due to the outflow of 

osmolytes from fruit into a hypotonic solution and to inflow of osmolytes from a 

hypertonic solution into the fruit. The osmolytes in fruit and in solution are identical. 

This situation mimics sweet cherries incubated in artificial juice comprising the most 

abundant osmolytes of the fruit (all 𝜎 < 1).  The measured apparent Ψ𝑓𝑟𝑢𝑖𝑡 is 

identical to the real Ψ𝑓𝑟𝑢𝑖𝑡. 
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6. General discussion 

New and important results of this work are: 

1) Water uptake into the sweet cherry fruit is a complex phenomenon and the 

sweet cherry fruit is not a simple osmometer. There is evidence for the 

concurrent transport of osmolytes that occurs in gravimetrically detectable 

amounts. This transport may cause artefacts when determining water 

potentials by incubating fruit in osmolyte solutions. These curves are displaced 

or change in slope yielding different apparent water potentials due to the 

inflow or outflow of osmolytes that accompanies water flow (chapter 2).  

2) Xylem flow through the pedicel of detached fruit occurs when the fruit is 

allowed to transpire, but also when transpiration is completely inhibited. The 

xylem flow of sweet cherry fruit is at maximum at the transition stage II/III and 

decreases towards maturity. Flow into transpiring fruit exceeds that into non-

transpiring fruit. This difference, however, decreases from early stage III on to 

maturity. Xylem flow cannot be stopped by ‘feeding’ hypertonic sucrose 

solutions of osmotic potential down to -10 MPa. An effect of xylem flow on 

cracking is unlikely (chapter 3 (Winkler et al., 2016a)). 

3) Malic acid, a major osmolyte of the sweet cherry symplast, markedly increases 

cracking when brought into contact with an intact fruit. The effect of malic acid 

on cracking is a simple function of the pH of the incubation solution and can be 

reproduced with other acids. Malic acid weakens cell walls and increases 

permeability of membranes as indicated by the leakage of anthocyanins even 

in hypertonic incubation solutions (chapter 4 (Winkler et al., 2015)). 

4) Cracking of sweet cherry fruit is a local phenomenon that is not accounted for 

by the “critical turgor pressure model” of Considine and Kriedemann (1972) 

that at present is almost universally used to explain cracking. Hence, a revised 

model is needed that accounts for cracking also when local exposure leads to 

cracking. This new model is proposed here and referred to as the zipper 

model (chapter 5 (Winkler et al., 2016b)). 

 

These findings are discussed in detail together with the relevant literature in the 

respective chapter. The general discussion here will now concentrate on (1) some 

puzzling aspects relating to the mechanism of water uptake via the skin and the 

xylem of the pedicel and (2) an alternative view of the mechanism of cracking.  



Chapter 6: General discussion 

83 

6.1 Mechanisms of water uptake via the skin and the xylem of the pedicel of sweet 

cherry fruit 

The mechanisms and pathways of water uptake via the skin have been examined in 

many publications (Christensen, 1972a; Beyer and Knoche, 2002; Beyer et al., 

2002a,b,2005; Weichert et al., 2004; Weichert and Knoche, 2006a,b). The results 

about the mechanism of water uptake in the literature are described in chapter 1.6. 

However, there are several findings that have been difficult to explain till now when 

plausible explanations can be offered using the results from this dissertation. These 

findings include (i) the “water uptake” of fruit that is incubated in its own juice and (ii) 

the unrealistic high (less negative) “water potential” (and thus an extremely high 

turgor) identified in a concentration series of PEG 6000 solutions.  

This work demonstrates for the first time the outflow of osmolytes when incubating 

sweet cherry fruit in water. It is likely this outflow will also occur when fruit is 

incubated in solutions of osmolytes that do not occur in sweet cherry fruit. Thus, the 

gravimetric determination of water uptake yields data that reflects the net change in 

mass due to water uptake and osmolyte inflow and outflow. As pointed out in chapter 

2, the error in assuming the mass changes observed were due to water uptake alone 

is about 14%. This error is small and for most practical purposes acceptable, 

considering the ease of the procedure relative to the effort and instrumentation 

required to use radioactive or stable isotopic tracers.  

 

However, some points remain to be clarified in further research:  

1) The permeances of the fruit skin for the typical osmolyte constituents of sweet 

cherry juice are unknown. Knowing just those for glucose, fructose, and sorbitol 

would provide sufficient information on which to base corrections accounting for 

osmolytes outflow- and/or inflow-rates with roughly 80% accuracy, since these 

comprise about 80% of the fruit’s osmolytes. Permeances can be determined using 
14C labeled sugars and the infinite dose system (Bukovac and Petracek, 1993; 

Weichert and Knoche, 2006).  

2) At this stage, there are two possible explanations for the consistent observation of 

mass uptake from its own juice: First, the presence of an active transport mechanism 

for osmolytes into the symplast. This hypothesis may be tested using uptake 

experiments of 14C labelled osmolytes applied with and without respiratory inhibitors, 

e.g. sodium azide and sugar transport inhibitors, i.e., p-chloromercuriphenylsulphonic 
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acid or phloretin. Second, the presence of swollen cells walls that represent a 

significant boundary layer for diffusion processes (unpublished data). Experiments 

investigating plasmolysis of the skin upon exposure to juice from the same fruit 

revealed considerable variability indicative for heterogeneity of the cells osmotic 

water potentials (Grimm and Knoche, 2015). When incubating fruit in its own juice, 

cells with higher (less negative) osmotic potential plasmolyze, causing their cell walls 

to swell. As a consequence, a significant boundary layer is formed that increases 

diffusive resistance and hence, decreased water transport (uptake and loss). In 

contrast, cells having a more negative (lower) osmotic potential will remain 

turgescent with non-swollen cell walls and hence, no or little change in boundary 

layer resistance. This may result in a net uptake of water under seemingly isotonic 

conditions. This hypothesis may be tested using tritiated water (3H2O) fed to skin 

segments mounted in infinite dose diffusion cells. Swelling of cell walls may be varied 

by inducing plasmolysis.  

3) Flow and tension when feeding hypertonic sucrose solutions (up to osmotic 

potentials down to about -10 MPa) via the pedicel have been observed (chapter 3 

(Winkler et al., 2016a)). The driving force responsible for this effect is unknown. 

Several hypothetical explanations may be offered: First, cell wall swelling may be 

involved.  Incubating tissue in hypertonic solutions results in plasmolysis of cells and 

– as a consequence – in swelling of cell walls. If the water partitioning into the cell 

wall generated a tension in the apoplast, this could result in water uptake beyond that 

expected from the osmolarity of the juice. Second, a chemical gradient between the 

feeding solution and the apoplast may cause diffusion of osmolytes into the apoplast. 

Any active component that loaded these osmolytes into the symplast would generate 

an osmotic gradient at the ends of the xylem strands for the subsequent inflow of 

water. This could account for the apparent flow and water uptake from hypertonic 

solutions. 

Whether one of these theories accounts for this tension and flow, is unknown and 

further studies are required to evaluate these hypotheses.  

 

6.2 Mechanism of cracking of sweet cherry fruit – the zipper model 

The results of this work demonstrate that cracking of sweet cherry fruit is not a simple 

function of water uptake as postulated in the “critical turgor pressure model”. It is 

more complex than implied by the analogy of the bursting of an over-inflated balloon. 
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In chapter 5 (Winkler et al., 2016b) a detailed list of arguments based on own data 

and those in the literature is provided for why the “critical turgor pressure model” 

cannot be applied to sweet cherry fruit. Also, an alternative hypothesis – the zipper 

model – was presented that is consistent my own data and also that in the literature. 

In the following section a more detailed account of the cracking process is given. 

 

Sequence of cracking in detail 

1) Cracking is initiated by localized water uptake through microcracks in the 

cuticle. These microcracks are primarily located in the pedicel cavity and at the 

stylar end of the fruit (Peschel and Knoche, 2005). These regions of the fruit 

surface are characterized by suffering the longest durations of wetness after 

rainfall. This is, after rainfall, a puddle remains in the pedicel cavity and a 

hanging droplet attaches to the stylar scar region. We know the formation of 

microcracks is triggered by surface wetness (Knoche and Peschel, 2006). 

Microcracks impair the barrier function of the cuticle. Water uptake is thus 

focused through the microcracks onto the few epidermal cells immediately 

underlying the crack. Water is taken up osmotically into the symplast of these 

skin cells. Due to a more negative osmotic potential of flesh cells compared to 

epidermal and hypodermal cells (Grimm and Knoche, 2015), water would 

penetrate into the symplast of the flesh. In contrast with the epidermal and 

hypodermal cells, flesh cells are large and thin-walled and consequently, 

structurally weak and prone to bursting. As a consequence, water uptake 

leads to the bursting of individual cells as indexed by the leakage of 

anthocyanins in this (chapter 4 (Winkler et al., 2015)) and earlier studies 

(Simon, 1977).  

2) The bursting of individual cells leads to the leakage of cell content into the 

apoplast. The five major osmolytes of the sweet cherry fruit are glucose, 

fructose, sorbitol, malic acid, and potassium malate. These account for about 

98% of the osmolarity of the fruit (Herrmann, 2001). Malic acid weakens cell 

walls and increases membrane permeability even at a concentration of 1 mM 

which is nearly two orders of magnitude lower than that of the expressed juice 

of the fruit (70 mM; Herrmann 2001). Even very low concentrations (1 mM) 

show this effect. The effect is not specific for malic acid but can be reproduced 

by other organic acids at the same pH. While low pH stimulates cracking, 



Chapter 6: General discussion 

86 

cracking is reduced at high pH (chapter 4; Winkler et al., 2015). The leakage 

of cell contents from the symplast into the apoplast decreases the osmotic 

potential of the apoplast and eventually causes cells of the skin to plasmolyze.  

Plasmolysis is associated with the swelling of cell walls (Grimm and Knoche, 

2015). Additionally, malic acid extracts Ca ions from the cell wall. These Ca 

ions are responsible for cross-linking of cell wall constituents and for inhibiting 

cell-wall swelling (Demarty et al., 1984; Glenn and Poovaiah, 1989; Hepler, 

2005; Schumann, personal communication). Incubating epidermal segments in 

CaCl2 solutions results in thinner cell walls as compared to with water or malic 

acid (Brüggenwirth and Knoche, 2016a). Alternatively, incubating fruit in the 

presence of the chelate EGTA, which has a high affinity for Ca, markedly 

increases cracking susceptibility (Glenn and Poovaiah, 1989). This suggests 

an important role for Ca in cell-wall swelling and cracking. Consistent with this 

theory, and with the stylar scar as a site of preferential cracking, is that a 

gradient in Ca concentration exists in the fruit that decreases in the direction 

from the pedicel to the stylar end (unpublished data).  

3) Swollen cell walls are mechanically weaker than non-swollen cell walls. The 

fracture pressure and the modulus of elasticity are negatively correlated with 

the extent of swelling as indexed by the thickness of the anticlinal cell walls 

(Brüggenwirth and Knoche, 2016a). As a consequence, stress increases, 

while the resistance to strain decreases. If these processes continue, the main 

structural elements of the fruit skin, the epidermal and hypodermal cells, 

(Brüggenwirth et al., 2014) cannot withstand the strain (Grimm et al., 2012; 

Knoche et al., 2004) and the skin begins to “unzip”. Thereafter, the skin will 

contract, the swollen cell walls will separate, presumably along their middle 

lamellae allowing more water to penetrate, more cells to burst, and so on. The 

force of the contracting skin will “unzip” itself to a depth of several layers into 

the flesh and along a considerable distance (Brüggenwirth and Knoche, 

2016a). As a consequence, the crack gapes and so a microcrack develops 

into a macrocrack.  

 

This zipper hypothesis is consistent with the literature. It provides a logical and 

plausible explanation for sweet cherry fruit cracking. Microcracking, localized water 

uptake, and the effect of malic acid on the cell wall mechanics are identified as critical 
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steps in the process of cracking. What remains to be clarified is the mechanism by 

which the swollen cell walls separate and what biochemical changes in the cell wall 

precede swelling. Presumably, separation is along the middle lamellae and pectin 

solubilization is a plausible candidate for the biochemical change. However, direct 

experimental evidence for this is still lacking. 

 

From a practical point of view, decreasing the cracking susceptibility of fruit is highly 

desirable. In principle, two approaches may be considered: 1) by breeding and 2) by 

cultural practices. In both cases, cell-wall swelling would offer a new and interesting 

target.  

Breeding efforts could focus on manipulating biochemical changes in the cell wall 

and the pectin middle lamella that precede swelling. There are numerous reports on 

the molecular and biochemical background to fruit softening (Brummel, 2006). 

Efficient use of such techniques requires a better understanding of the process of 

cell-wall swelling.  

Among the cultural practices, an increase in Ca content of the cell wall is a promising 

target. Indirect evidence suggests Ca plays a critical role in the swelling of cell walls 

(Demarty et al., 1984; Tibbits et al., 1998). Furthermore, Ca has been reported to 

reduce cracking of sweet cherry fruit (Verner, 1937; Glenn and Poovaiah, 1989). 

Little is known about the Ca content of fruit in the course of development. Calcium is 

translocated solely in the xylem (Bukovac and Wittwer, 1957; Clarkson, 1984). 

Unfortunately, the hydraulic conductance of the xylem of sweet cherry fruit decreases 

from the beginning of stage III to maturity (chapter 3 (Winkler et al., 2016a); 

Brüggenwirth et al., 2016). In the mature fruit, the xylem is essentially non-functional. 

Thus, the Ca import into the fruit does not keep pace with the increase in fruit mass 

causing the Ca concentration (mg.g-1 dry matter) to decrease (unpublished data). At 

the same time, the swelling of cell walls increases as development proceeds 

(Redgwell et al., 1997).  

The inconsistent response of Ca spray applications at the whole tree level on 

cracking (chapter 1, Table 1) may be due in part to lack of uptake of Ca into the fruit. 

Low penetration of Ca through fruit cuticles and skins is not unique for sweet cherry, 

but has also been documented for apple (Schlegel and Schönherr, 2002).  
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Further research in the field of cracking should focus on the cell wall. In particular, the 

following questions should be addressed: Which cell wall component is responsible 

for swelling? What are the biochemical processes that precede swelling? How can 

these processes be manipulated in order to reduce cell-wall swelling? Is spray 

application of Ca salts the only possibility for reducing cell-wall swelling and, if so, 

how can we maximize Ca import via the vasculature of developing fruit and uptake 

through the fruit surface following spray application. These subjects merit further 

study.  
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