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Kurzzusammenfassung

Schlagworte: Hyperflachensingularitaten, ”orbifold”-Landau-Ginzburg-Modelle, Milnorzahl,
Frobenius Algebren, invertierbare Polynome, Arnolds seltsame Dualitéat

In der Singularitatentheorie ist die Milnorzahl eine wichtige Invariante einer Hyperflachen-
singularitat. Sie ist die Dimension der Jacobischen Algebra, die iiber die partiellen Ableitungen
eines Polynoms f definiert wird, welches die Singularitat beschreibt. Solche Polynome mit
isolierter Singularitat im Ursprung werden auch in der Physik untersucht und fiihren auf
sogenannte Landau-Ginzburg-Modelle. In dieser Arbeit befassen wir uns mit einer “orbifold”-
Version hiervon. Sei f invariant unter der Wirkung einer endlichen Gruppe G. Wir definieren
axiomatisch eine “orbifold” Jacobische Z/2Z-graduierte Algebra fiir das Paar (f, G) und zeigen
die Existenz und Eindeutigkeit dieser, wenn f ein invertierbares Polynom oder ein Spitzen-
polynom ist. Wir definieren auch eine “orbifold”-Milnorzahl und zeigen den Zusammenhang
zu den Dimensionen der “orbifold”-Vektorraume. Wenn ein invertierbares Polynom eine
ADE-Singularitat oder eine exzeptionelle unimodale Singularitat beschreibt, klaren wir eine
geometrische Bedeutung und finden einen Zusammenhang zu Arnolds seltsamer Dualitéat. Fiir
die restlichen unimodalen Singularitaten, die von Spitzenpolynomen gegeben werden, finden
wir einen Zusammenhang zur Gromov-Witten-Theorie von “orbifold” projektiven Geraden.

Abstract

Keywords: hypersurface singularities, orbifold Landau-Ginzburg models, Milnor number,
Frobenius algebras, invertible polynomials, Arnold’s strange duality

In singularity theory an important invariant of a hypersurface singularity is the Milnor
number. This is the dimension of the Jacobian algebra defined by the partial derivatives of
the polynomial f, which defines the singularity. Such polynomials with isolated singularity at
the origin are also considered in physics, where they are called Landau-Ginzburg models. In
this thesis we study this in an orbifold setting. Let f be invariant with respect to the action
of a finite group G. We axiomatically define an orbifold Jacobian Z/2Z-graded algebra for
the pair (f,G). We show its existence and uniqueness in the case, when f is an invertible
polynomial or a cusp polynomial. We also define an orbifold Milnor number and show the
connection with the dimension of the orbifold spaces. In case if an invertible polynomial
defines an ADE singularity or one of the exceptional unimodal singularities, we illustrate a
geometric meaning and find a connection to Arnold’s strange duality. For the other unimodal
singularities given by cusp polynomials we find a connection with the Gromov-Witten theory
for orbifold projective lines.
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1 Introduction

Singularity theory is well established in mathematics for many years (cf. [AGV85]). For almost
fifty years ([Mi68]) it is known that when a function germ f : (C",0) — (C,0) has an isolated
singularity at O there exists a local fibration over C\{0} with fibre X,, and the middle Betti
number p; called the Milnor number is equal to the dimension of the Jacobian algebra (often

called the Milnor algebra) Jac(f) = Clz1, .., 4] / (2L 21y, Singularity theory also plays

ox1’ ") Oxn
a role in physics. To a given polynomial f with isolated critical point one can associate a so

called Landau-Ginzburg model. In quantum cohomology Landau-Ginzburg models and singu-
larity theory gave some of the first examples of Frobenius manifolds. Here we are considering
Frobenius algebras in more detail. It is well known that Jac(f) has the structure of Frobenius
algebra (cf. [AGV85]). Namely by taking a nowhere vanishing holomorphic n-form there is an

isomorphism Jac(f) = Q; = Qn(cn)/df A Qr=H(Cm)- Ttis on Qf, where a natural or canonical
non-degenerate symmetric bilinear form, called the residue pairing, exists.

In this thesis we study pairs (f, G) of a polynomial f € Clz, ..., xz,| with isolated singularity
at the origin and a finite group G which acts on C" and preserves f. Such pairs are often
called orbifold Landau-Ginzburg models, in which mostly only special groups G are meant (cf.
[BH95], [Kr09]). They have been studied intensively by many mathematicians and physicists
working in mirror symmetry for more than twenty years since it yields important, interesting
and unexpected geometric information. In particular, the so called orbifold constructions are
a cornerstone. An important aspect in the approach of the physicists is the consideration of
so-called twisted sectors. Roughly speaking for an orbifold version of a quotient by a group
action one first defines an object for each element in the group together with a group action
on this object and in the second step takes invariants of all these components. In this sense
an orbifold version g as the invariant part of (2 ; can be defined. This is a Z/2Z-graded
vector space, which also had a G-grading, and a natural non-degenerated bilinear form, called
the orbifold residue pairing, which is a natural generalization of the residue pairing on 2.

Motivated from string theory physicists defined an orbifold Euler characteristic. There are
also many other equivariant Euler characteristics for spaces with an action of a finite group.
First, one can consider the Euler characteristic of the quotient. Then there is defined an
equivariant Euler characteristic as an element of the representation ring R(G) of the group
(cf. [tD79], [Wa80]) or higher generalizations of the orbifold Euler characteristic (cf. [AS89],
[BF98]), which have values in the integers. A more general concept is the equivariant Euler
characteristic, which is an element of the Burnside ring B(G) of the group (cf. [tD79], [EG15]).
The previous versions of the Euler characteristic are specializations of this one. So it is
reasonable to also consider an equivariant version of the Milnor number. In this thesis we



show that the orbifold Milnor number is the Z/27Z-graded dimension of Q¢ (Theorem 4.4.4):
e = dim ()5 — dim (Qp,6)r.

The main construction in this thesis is the definition of an orbifold version of Jac(f). For
that we restrict ourselves to subgroups of G ¢, namely diagonally acting groups. This is the
common restriction for orbifold Landau-Ginzburg models (cf. [BH95], [Kr94], [Kr09], [EG12],
[FJR13]). In a joint work with Atsushi Takahashi and Alexey Basalaev [BTW16] we gave an
axiomatic definition (Definition 5.2.1) of a G-twisted version of the Jacobian algebra, denoted
by Jac'(f,G). Here we consider the pair (Jac'(f,G), Q) in the way it is in the classical
situation when the group G is trivial. As a consequence Jac'(f,G) has many structures
defined naturally on Q’f,G, as a Z/2Z-grading, a G-grading, equivariance with respect to
automorphisms of the pair (f, G), the orbifold residue pairing, and so on.

Certain works towards the definition of the Frobenius algebras associated to the pair (f, G)
were also done previously by R. Kaufmann and M. Krawitz. In [Ka03], R.Kaufmann proposes
a general construction of orbifolded Frobenius superalgebras of (f, G). To build such a Z/2Z-
graded algebra one should make a certain non-unique choice called a “choice of a two cocycle”.
A different choice of this cocycle gives indeed a different product. This construction was later
used by Kaufmann in [Ka06] for the mirror symmetry purposes from the point of view of
physics. In [Kr09], M. Krawitz proposes a very special construction of a commutative (not
a 7/2Z-graded) algebra, for invertible polynomials (cf. [BH93|). Later this definition was
improved and used in [FJJS12] to set up the mirror symmetry on the level of Frobenius
algebras. However, the crucial part of it remained to be the particularly fixed product that
could only be well defined for weighted-homogeneous polynomials. There is also no explanation
why a particular product structure is chosen.

Mirror symmetry on the level of Frobenius algebras is a first step towards the mirror sym-
metry of Frobenius manifolds where the key role is played by the so-called primitive form (cf.
[Sa82], [Sa83], [ST08]). From the point of view of mirror symmetry, the algebras we consider
here are those in the complex geometry side, the so-called B-model side.

The main advantage of our work compared to that of Kaufmann and Krawitz is that our
construction can be used as a starting point for mirror symmetry at the level of Frobenius
manifolds having the notion of a primitive form (cf. [Sa82], [Sa83], [ST08]) in the definition (cf.
the role of ¢ in Definition 5.2.1). Secondly both Kaufmann and Krawitz predefine the product
structure either by a choice of a two cocycle or a direct definition. We do not do this in our
axiomatization and so we are able to consider our algebra also for not weighted-homogeneous
polynomials, like cusp polynomials. Last but not least our algebra inherits a natural Z/2Z-
grading from the Hodge theory associated to (f,G). This Z/27Z-grading occurs only in an
abstract way in the definition of Kaufmann and was not considered at all by Krawitz.

Our Axiomatization of a G-twisted Jacobian algebra lists a minimum of conditions to be
satisfied. In particular we do not predefine any product structure. The Algebra Jac(f, Q)
called the orbifold Jacobian algebra of the pair (f,G) will be, as usual in orbifold construc-
tion, the G-invariant subalgebra of Jac'(f, G). However, it is not clear in general whether such
an algebra as Jac'(f, G) exists or not. Even if it exists it may not be unique.

The main results in this thesis are the existence and uniqueness of a G-twisted Jacobian



algebra Jac'(f, G) for two classes of polynomials f and any subgroup of the maximal diagonal
symmetry group Gy (Theorems 6.2.1 and 7.2.2). Namely it is uniquely determined up to
isomorphism by our axiomatization. Moreover we show that when G is a subgroup of SL(n, C)
the orbifold Jacobian algebra Jac(f,G) is a Z/2Z-graded commutative Frobenius algebra
(Proposition 5.3.7).

The first class of polynomials are the so called invertible polynomials. These are weighted
homogeneous polynomials with the number of monomials coinciding with the number of vari-
ables such that the weights are well defined. These polynomials were introduced in [BH93] to
construct mirror pairs of Calabi-Yau manifolds. Therefore the authors considered f and the
Berglund-Hiibsch transpose f7 (see Definition 6.1.2). As already cited this construction was
generalized to an orbifold setting in [BH95].

The second class of polynomials are the so called cusp polynomials. For a triplet A =
(a1, as, a3) of positive integers there is given the polynomial f4 = z{* + 25% + 25> — ¢ 'z 11273
([IST12],[ST15]).

One of the most famous examples in singularity theory is the ADE-classification of
hypersurface singularities with zero modality (cf. [AGV85]). These singularities can be given
by invertible polynomials. We show for this case, when f is an invertible polynomial giving
an ADE-singularity and G a subgroup of Gy N SL(n,C), that our orbifold Jacobian algebra

Jac(f, @) is isomorphic to the usual Jacobian algebra Jac(f) (Theorem 6.3.7). This result com-
pletes the results of [ET13a] where concerning a crepant resolution C3/G of C*/G it was shown

that the geometry of vanishing cycles for the holomorphic map f: C3/G — C associated to
f is equivalent to the one for the polynomial f. Therefore, our orbifold Jacobian algebra is
not only natural from the view point of algebra but also from the view point of geometry.

Also the hypersurface singularities of modality one are classified (cf.[AGV85]). The parabolic
and hyperbolic singularities can be given by cusp polynomials. Moreover there are 14 excep-
tional families where one can again find invertible polynomials. We state a similar result, as
for the ADE-singularities, for the Berglund-Hiibsch transposes of these polynomials (Theorem
6.4.8).

Arnold [Ar75] observed a “strange duality” in this class of singularities, the Dolgachev
numbers (a triple of algebraically defined positive integers) of one singularity are equal to
the Gabrielov numbers (a triple of positive integers associated to a Coxeter-Dynkin diagram)
of another one and vice versa. It is now naturally understood as one of mirror symmetry
phenomena (cf. [ET11] and references therein). A corollary (Corollary 6.4.9) of the Theorem
6.4.8 shows an isomorphism Jac(f{, G?I;) = Jac(fy) if and only if the associated singularities

of f; and fy are strangely dual.

Last but not least we have mentioned that our construction works as a starting point for the
mirror symmetry on the level of Frobenius manifolds having the notion of a primitive form.
For cusp polynomials there were given primitive forms in [ST15] and [[ST12] and associated
to the Gromov-Witten theory for orbifold projective lines with at most 3 orbifold points (cf.
[IST15]). On the level of Frobenius algebras we associate Jac(f,G) to the Gromov-Witten
theory for orbifold projective lines with at most r orbifold points (cf. [Sh14]) in Theorem 7.3.6.



Structure of the Thesis

This thesis starts with two introductory chapters.

In Chapter 2 we recall the basic facts about hypersurface singularities and define the algebra
Jac(f), the Milnor number /i, the space €2y, and the residue pairing on them. We also give the
definition of the Euler characteristic in Section 2.2 and the connection with the Milnor number.

In Chapter 3 we give all definitions of equivariant Euler characteristics for a space with a
group action. For that we define the representation ring in Section 3.1 and the Burnside Ring
in Section 3.3.

Chapter 4 first introduces the pair (f,G) and defines the action of the group G. Then we
define the orbifold versions of the Milnor number, of €2y and of the residue pairing.

In Section 4.4 we also prove our first theorem about the correspondence between the orbifold
Milnor number and the dimension of the orbifold spaces.

Chapter 5 gives the axiomatic definition of the G-twisted Jacobian algebra Jac'(f, @) in
Section 5.2. In the setup in Section 5.1 we therefore define Aut(f,G), the automorphisms of
the pair (f, G) which act naturally on Qg and Jac'(f, G). Then in Section 5.3 we define the
orbifold Jacobian algebra Jac(f, G). At the end, in Section 5.4, we also give some preliminaries
for the proofs in the next two chapters.

In Chapter 6 we first introduce invertible polynomials and then in Section 6.2 prove the
uniqueness and existence of the G-twisted Jacobian algebra for this class of polynomials.

In Section 6.3 and 6.4 we introduce the ADE and the exceptional unimodal singularities
which can be given by invertible polynomials and show a geometric meaning of the orbifold
Jacobian algebra. This gives in Section 6.4 also a connection to Arnold’s strange duality.

In Chapter 7 we first introduce cusp polynomials and then in Section 7.2 show the uniqueness
and existence of the G-twisted Jacobian algebra for this class of polynomials.

In the last section 7.3 we associate Jac(f,G) for this class of polynomials to Frobenius
algebras associated to the Gromov-Witten theory for orbifold projective lines.



Notation and Conventions

e We will always use the notation

ela] = >Vl

So e.g. e[3] is a k-th root of unity.

e In this thesis we are always thinking of G as a finite group written in multiplicative way
and the element id € G is the neutral element.

e 5, is the symmetric group on n elements. For permutations, we use the cycle notation;
i.e., we write (132) for the permutation (32 3) € S5. Again its neutral element is denoted

by id € 5,,.
e Let the group G act on the set X. Then we denote the G-invariant part of X by
XC={reX|gr=2 VgeG}.

e For the disjoint union we will use U. Otherwise the union need not be disjoint.

e We write A\ B for the set A without the set B. Recognize that this is different from the
next notion.

° H\G or G/H denote the quotient of the group G by the subgroup H.
Normally we think of left cosets G/H, but sometimes it is relevant to consider right
cosets.

e We write |A]| for the number of elements in the set A.

e As always ged(l,m) is the greatest common divisor of the numbers [ and m, and
lem(ag, ag, ag) is the least common multiple of the numbers ay, as, as.
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2 lIsolated Hypersurface Singularities

In this chapter we want to introduce the fundamental and known facts about hypersurface
singularities.

2.1 Milnor Number and Jacobian Algebra

Definition 2.1.1. Let n be a non-negative integer and

f=fx)=f(z1,...,2,) € Clzy,...,x,]
a complex polynomial with f(0) = 0. f has an isolated singularity at 0, if the map

0 0
gradf:(a—i,...,%):cn—)(cn

has an isolated zero at 0, i.e. there exists a neighborhood U of 0 where gradf has no zero in
U except possibly at 0O itself.

Definition 2.1.2. The Jacobian algebra of f is defined as

Jac(f):::(ﬂxlw--aanQéﬁ_ ﬁﬁi).

Ox17 """ Oxn

When f has an isolated singularity at 0, Jac(f) is a finite dimensional C-vector space. We
define iy := dim Jac(f) the Milnor number of f.

Example 2.1.3. e For n =0 we have Jac(f) = C and puy = 1.

o Let be f(x1,22,23) = 23 + 23 + 23 € Clay, 19, 23]. We have uy = 8 and
Jac(f) = C[xl’%’%]/(?)ﬁ,3x§,3x§) = (1,21, 29, T3, T1T2, T1T3, T2T3, T1T2T3) ¢ -

e Let be f(xq, 29, 23) = 23 + 2323 + 23 € Clzy, 29, 23]. We have iy = 14 and
1 2 3 f

Jac(f) = C[Il’x%x?’]/(?)x%,33:%:63,90% + 323)
>~ (1,31, 2, T3, T3, T3, T2T3, ToTy, T1Ta, T1T3, T1T3, T1T3, T1T2T3, x1x2x§>(c.
Definition 2.1.4. The index ind(gradf) of the map gradf is the degree of the map
grad f
||grad f|]

from a sufficient small sphere ||x|| = ¢ in C” to the unique sphere. This number is well defined,
when f has an isolated singularity at O.

. 86271—1 N SQn—l



Proposition 2.1.5. We have

ind(gradf) = puy.
Proof. There is a good proof of this in [AGV85, sect..5]. O

2.2 Euler Characteristic and Milnor Fibre

Definition 2.2.1 (cf. e.g. [Eb0T7]). Let X be a topological space and
k
AF = {Z Aiei | Z/\i =1,0< )\ <1} eq,..., e standard basis of RF?
i=0

a standard-k-simplex. A singular k-simplex is a continuous map o : A¥ — X. Let Ci(X) be
the free abelian group of all singular k-simplices and Cy(X) = 0 for k£ < 0.

We define a boundary operator dy : C(X) — Ci_1(X) which sends a singular k-simplex to
its boundary

0o = 3 (~1)70] .

J
where A is the j-th face of A*, which is a (k — 1)-simplex.

Remark 2.2.2. We can calculate directly 0r0x—1 = 0 and so (Ce(X),0) is a complex (cf. e.g.
[Eb07, Prop 4.8]).

Definition 2.2.3. We define the homology groups
Hk(X7 Z) = ker ak Im@kH :

We suppose that X is a topological space, s.t. each homology group is finitely generated, then
we call

bp(X) = rank Hy(X,Z)
the k-th Betti number.
Definition 2.2.4. We define the Fuler characteristic of X as

X(X) =) (=1 o(X).

NE

i
o

We will give a well known other definition

Proposition 2.2.5. We also have

(—1)*rank Cy(X).

WE

X(X) =

i
o



Proof. By the definition of 0 and Hy(X,Z) it is clear that we have the two short exact

sequences:

0 — ImOy,1 — ker Op,—Hy(X,Z) — 0

So we have
rank Cy(X) = rank ker 0 + rank Imo,
and
rank ker 0y = rank Im0y; + rank Hy (X, Z)
and so
rank C'x (X) = rank Hi(X,Z) 4+ rank Im0y,1 + rank Imo.

In total we get

Z Y¥rank Oy (X) = Z(— 1)¥ (rank Hy(X, Z) + rank Imd, 1 + rank Imd,)
k=0 k=0
= Z(— Yerank Hy (X, Z) + Z Y rank Imoy41 + Z(—l)krank Imo;,
k=0 k=0 k=0

X) + Z(—l)k (—rank Im0y, + rank Imdy) = x(X).

k=0

Remark 2.2.6 (cf. [Vo02]). The same definitions can be done for the dual complex (C*(X

[]

), d)

and cohomology. Of course we get the same Euler characteristic. We also get the same Euler
characteristic, when we take the de Rham cohomology which is defined over the k-forms on a

manifold X.

Definition 2.2.7. We define the de Rham cohomologies
d
H*(X,C) = ker <Qk(X) — QkH(X))/Im (Qkil(X) LA Qk(X)) .

Remark 2.2.8 ([Vo02, Thm. 0.8]). So we can write

o0

Z ¥ dim H*(X, C)

k=0

and especially we have H*(X,C) = H*(X,Z) ®7C.



Remark 2.2.9 (cf. [Fu93, p. 141-142], [Di04, Cor. 4.1.23]). For “good enough” spaces X, e.g.
a union of cells in a finite CW-complex or a quasi-projective complex analytic variety, we can
take the cohomology with compact support instead of the normal cohomology and the Euler
characteristic stays the same. Then we see that the Euler characteristic is additive in the
sense

X(XUY) =x(X) + x(Y).
All spaces in this thesis will be “good enough”.

Now we define a fibration.

Definition 2.2.10 (cf. e.g. [EbOT7]). A locally trivial differentiable fibre bundle is a
tupel (E,m, B, F) where E, B, F' are differentiable manifolds and = : F — B is a surjective
differentiable map and they satisfy: Each point b € B has a neighborhood U and there exists
a diffeomorphism

Vo (U) = UxF

such that the following diagram commutes:

Y U) L UxF
T\ v PIy
U

Here pr, is the projection onto the first factor. E is called the total space, ™ the projection, B
the basis and F' the fibre of the bundle.

Let us now come back to a polynomial f € C[zy,...,x,] with an isolated singularity at the
origin.

Remark 2.2.11 (cf. [AGV85]). We are only interested in polynomials. One can prove that
each function germ with an isolated singularity at the origin is right-equivalent to a polynomial.

Definition 2.2.12 (cf. [Eb07]). An unfolding of f is a holomorphic function germ
F:C"xC"™—=C with F(x,0)= f(x).

Two unfoldings F' : C" x C™ — C and G : C" x C™ — C are called equivalent if there is a
holomorphic map germ 1 : C" x C™ — C™ with ¢(x,0) = x such that

G(x,u) = F(¢(x,u),u).

Definition 2.2.13. Let F' : C"xC™ — C be an unfolding of f and ¢ : C! — C™ a holomorphic
map germ. The unfolding G : C* x C! — C with

G(x,t) = F(x, 6(t))

is called the unfolding induced from F. We call an unfolding F' : C* x C™ — C of f versal if
all unfoldings of f are equivalent to an unfolding induced from F'. A versal unfolding is called
universal if m is minimal.

10



Proposition 2.2.14 (cf. e.g. [Eb07, Prop. 3.17]). Let f € Clzy,...,x,| have an isolated
singularity at 0. Then

F:C"xC —=C
py—=1
(x,0) = f(x) + ) d5(x)uy
§=0

is a universal unfolding of f, where ¢o(x) = 1,¢1(X),...,du,-1(X) is a basis of Jac(f).

We will now define the Milnor fibration. The results were shown by Milnor [Mi68]. We will
take the notations of [Eb07, 5.4], where one can also find proofs for the statements.

Remark 2.2.15. Let f € C|xy,...,z,] have an isolated singularity at 0. From the implicit
function theorem we know that f~'(w) for w € C, w # 0, |w| small enough, is a complex
manifold in the neighborhood of 0 € C. Let ¢ > 0, we define X = {x € C" | ||x|| < ¢} and
A ={weC||w <n} for ny > 0, ny < ¢, such that 0 is the only critical point of f in
XnfYA).

Definition 2.2.16. The fibration
Flxar1angy : X NFHAN0} — A\{0}

which exists due to [Eb07, 5.1] is called the Milnor fibration. The fibre
Xo=ftw)nX

over w € A\{0} is called the Milnor fibre of f. It is a 2(n — 1)-dimensional differentiable
manifold with boundary and is up to diffeomorphism uniquely determined.

Theorem 2.2.17 ([Mi68]). The Milnor fibre X,, of f is homotopy equivalent to a bouquet of
wy real (n — 1)-dimensional spheres. So we have for the dimensions of the cohomology groups
H{(X,,C)

1 ifi1=0
dim H' (X, C) = ¢ py  ifi=n—1.
0 otherwise

So for the Fuler characteristic we have
X(Xw) =1+ (_1)nilruf'

Here we see another meaning of the Milnor number pf. In [Eb07] one can find a proof of
this, where the universal unfolding of f plays a role.

11



2.3 The Space (; and the Residue Pairing

Definition 2.3.1. Let Q?(C") be the C-module of regular p-forms on C". We consider the
C-module

Q = Q"(C">/df A QL(Cm) -

Remark 2.3.2. Note that Qy is a free Jac(f)-module of rank 1. For a nowhere vanishing
n-form @ € Q"(C") we have the following isomorphism

Jac(f) = Q  [6(x)] = [B(x)]Jw = [B(x)], (2.1)

where w = [@] is the residue class of @ in . Such a class w € Q giving the isomorphism
(2.1) is a non-zero constant multiple of the residue class of dzy A -+ A dxy,.

Example 2.3.3. e For n = 0 we have

Q= Q"({o})/(df Q7' ({0})) = Q"({0})
is the C-module of rank one consisting of constant functions on {0}.
e For f =z} + 23 + 23 we have

Qf == <dZE1 VAN dl’g VAN dl’g, ZL‘ldl’l A dl‘g A dIg, N ,J]lxglfgdl'l A dl’g VAN dCL’g) .

e For f =12} + 2323 + 23 we have
Qp = <da:'1 ANdxo N\ dxs, xidry Adrg N\ dzs, ... ,:I;lxgxgda:l A dxoy A dx3> )
Corollary 2.3.4. As C-modules we have
Jac(f) = Q = H' (X, C),
since they all have the dimension py.

Definition 2.3.5. We define the Hessian of f as the polynomial

o0 f
heSS(f) = det ((‘)@85@)2-,]-—1 n .

-----

The class of the Hessian is always a non-zero element in Jac(f).
Example 2.3.6. e For n = 0 we define hess(f) =1 € Jac(f) = C.

e For f =1} + 23 + a3 we calculate

61 0 0
hess(f) = det < 0 6z 0 ) = 216212923 = 8 - 2721 29%3.
23

12



e For f =1} + x3z3 + 23 we calculate
621 0 0
hess(f) = det ( 0 6wzows 3963) = 216217973 — 542175,

0 323 63
So we have in Jac(f) with 23 + 322 =0
hess(f) = 216z 29235 — H4x175 = 216312975 + 54 - 3012005 = 14 - 27729775,
Definition 2.3.7. We define a C-bilinear form, the residue pairing J; : Q; ® Qp — C as

d(x)Y(x)dxy A -+ - Adxy,
Jf (w1, ws) := Rescn ﬁ af
81'1 o 8%

where wy = [p(x)dzy A -+ Adxy)| and we = [(x)dzy A -+ A dxy,) and

o(x)(x)dxy A - ANdxy, 1 (X)¥(x)

Rescn of of = - 5 dri N\ -+ Ndx,
= .. 2my/—1 o oL
81‘1 al‘n ( T ) Oz Oz,

where the integration is along the small cycle, given by the equations |§—£€|2 = O (see [AGVS5,
1.5.18]).

Proposition 2.3.8 ([AGVS85, 1.5.11]). The bilinear form J; on ) is non-degenerate.
Moreover, for ¢(x) € Clxy,...,x,),

Je([p(x)dzy A -+ Adwxy), [hess(f)dzy A -+ Adxy]) #0
if and only if $(0) # 0. In particular, we have
Je([dxy A -+ ANdxy], [hess(f)dxy A -+ ANdxy]) = py.
Example 2.3.9. e For n =0 we have J; (a,b) = ab for a,b € Qy = C.

e For f =z} + 23 + 23 we calculate
1
Jf (dIl A dﬂ?g A d.ﬁL’g, %1%2.13301%1 A d.ﬁlfg N dQJg) = ﬁ

since hess(f) = ps - 2721 2923.

e For f =z} + z3x3 + 23 we calculate
2 1
Jy (d:z:l A dxo N dxs, x1T905dT1 N dXg N d:cg) =3

since hess(f) = uy - 27212923

13



Definition 2.3.10. An associative C-algebra (A, o) is called Frobenius if there exists a non-
degenerate bilinear form 7: AQ A — Csuch that n(X oY, Z) =n(X,Y o Z) for XY, Z € A.

Proposition 2.3.11. Under the isomorphism (2.1), the residue pairing endows the Jacobian
algebra Jac(f) with the structure of a Frobenius algebra.

Proof. The residue pairing J; is non-degenerate (Proposition 2.3.8) and the shifting of the
multiplication can be directly seen by Definition 2.3.7. O]

Remark 2.3.12. If f is even defined over the real numbers, we can define everything similarly.
But then ind(gradf) need not any more be the same as the Milnor number. In this case we
have the Theorem of Eisenbud-Levine-Khimshiashvili:

Theorem 2.3.13 ([EL77], [Kh77]). Let f € Rlzy,...,x,] be a polynomial with an isolated
singularity at 0. Then we have:

ind(gradf) = sign.Jy,

where signJy is the signature of the symmetric bilinear form Jy.

14



3 Equivariant Euler Characteristic

Let X be a topological space and G a finite group acting on X. In this chapter we want to
discuss two equivariant versions of the Euler characteristic. The first one was introduced in
[tD79, 5.1.2] and used in the way we need it in [Wa80]. It is an element of the representation
ring R(G). The second more general one is an element of the Burnside ring B(G). This was
also introduced in [tD79, 5.4.5] and used in [EG15].

3.1 The Representation Ring

Definition 3.1.1 (cf. [FHI1]). A representation of a finite group G on a finite dimensional
vector space V' is a homomorphism

from G into the group of linear automorphisms of V. We will often regard V itself with a group
action as a representation. A subrepresentation of a representation V is a linear subspace W
of V' which is invariant under G. A representation V' is called irreducible if V and {0} are the
only subrepresentations of V.

Remark 3.1.2. If V and W are representations, the direct sum V@& W and the tensor product
V @ W are also representations.

Proposition 3.1.3 (cf. [FHI1, Cor. 1.6]). Each representation is the direct sum of irreducible
representations.

Definition 3.1.4. We can define the character of a representation V. This is a class function
V.G—C,
which we will also describe by V', with the value
V(g) = Tr(pv(9))
the trace of the linear map py(g).
Remark 3.1.5. A class function is constant on conjugacy classes. So we have
V(hgh™) =V(g) Vg,h€Qq.
We can calculate that
V(id) = dimV

for id € @ the neutral element.
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Definition 3.1.6. For a representation V' we define
={veV|gv=v VgeG}
the G-invariant part of V.

We can calculate the dimension of V¢, which is the multiplicity of the trivial representation
in V.

Proposition 3.1.7 ([FHI1, Prop. 2.8]). The map

|va GGL )

geG

is a projection of V into VY. So we have
dim V¢ = Z Z Vg
e = e =

Definition 3.1.8. The ring generated by isomorphism classes of representations with the
operations @ and ® is the representation ring R(G). With Proposition 3.1.3 it is the free
abelian group of isomorphism classes of irreducible representations.

Definition 3.1.9 (cf. [FH91]). The group algebra CG of a group G is the C-vector space with
basis {e, | ¢ € G} and the multiplication e, - e, = ey, for g,h € G.

Remark 3.1.10. A representation V with py : G — GL(V) can be extended to a map
p: CG — GL(V) and so V becomes a CG-module, i.e. each representation can be seen as a
CG-module.

3.2 Equivariant Euler Characteristic in R(G)

To introduce the equivariant Euler characteristic in R(G) let X be a finite simplicial complex
and we suppose that GG acts in the way, that if ¢ € G fixes one simplex, then it fixes it
pointwise.

Definition 3.2.1 ([Wa80]). The equivariant Euler characteristic xg(X) € R(G) is defined as

n

Xa(X) = (-1)'[Ci(X)] € R(G).

=0
Here we regard the chain complex
0= Ch(X)—=Crq(X) == Co(X)—0

with complex coefficients as a sequence of CG-modules. The action of G is induced by the
action on the simplices of X.
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With the standard argument (cf. Proposition 2.2.5 ), this is the same as

n

vo(X) = Y (-1 Hi(X,C),

i=0

where the G-action on H;(X,C) is induced by the one on X.

Remark 3.2.2. When we take the character of xo(X) we get as in Remark 3.1.5
xa(X)(id) = x(X).

Proposition 3.2.3 (cf. [Wa80]). The normal Euler characteristic of the quotient X/G can be
calculated as

V(Xq) = |1?\ S (x)
geG

where X9 is the subcomplex fized by g.

Proof. For the character we have as Wall shows in [Wa80] x¢(X)(g) = x(X?). In the quotient
X /G each G-orbit of simplices is collapsed to one single simplex, so it follows

C*(X/G) = C,(X) ®cq C.

Since G is finite, CG is semisimple and we can identify this with the summand of C\(X) which
belongs to the trivial representation, C,(X)%. So the Euler characteristic y (X /) is equal to
the multiplicity of the trivial representation in xg(X), so with Proposition 3.1.7

1 1
X(X/G) = @ZXG(X)(Q) = @ZX(Xg)-

geG geq

3.3 The Burnside Ring

Definition 3.3.1. Let Consub G be the set of all conjugacy classes of subgroups of GG. This
is a partially ordered set (cf. [Ha86, 2.2]) with [K] < [H] if 3K € [K],H € [H] with K C H.

Remark 3.3.2 (cf. [Ha86, Thm. 2.2.1]). On a partially ordered set we can define the Moebius

function
1 [H] = [K]
p(HY IK]) = § = 2 < #H' K] [H] < [KT
0 otherwise

The Moebius inversion formula follows: Let g and f be functions on the partially ordered set.
When g([H]) = X< f([H']) we have f([H]) = 32 < w([H], [H]) g([H]).
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Definition 3.3.3 ([Kn73]). A G-set is a finite set with a group action on it. A G-set is called
irreducible if the group action is transitive, i.e. it only consists of one G-orbit. A G-map is a
map ¢ : A — B between two G-sets A and B such that for a € A we have p(ga) = g(¢(a))
for all g € G. Two G-sets are isomorphic, if there exists a G-map-isomorphism of them.

Definition 3.3.4 (cf. [Kn73]). The Burnside ring B(G) is the Grothendieck ring of finite
G-sets, i.e. it’s the abelian group generated by the isomorphism classes of finite G-sets modulo
the relation [AUB] = [A] + [B]. The multiplication is given by the cartesian product.

Lemma 3.3.5. The group B(G) as a free group is generated by the isomorphism classes of
wrreducible G-sets. This isomorphism classes of irreducible G-sets are in 1 : 1-correspondence
with conjugacy classes in Consub G. So we can write each element of B(G) in a unique way
as

Z ar) [G/H] with ajg) € Z.
[H]eConsub G

Proof. Tt is clear that each G-set is a union of irreducible G-sets. And each G-orbit, so each
irreducible G-set, has |G/H|-many elements for one subgroup H of G. When H, K C G are
in the same conjugacy class in Consub G, the action on G/H and G/K is the same, so we can
associate to a class [H]| € Consub G the isomorphism class [G/H| € B(G), cf. also [Kn73]. O

3.4 Equivariant Euler Characteristic in B(G)

Let X be a topological space and G a finite group acting on X.

Definition 3.4.1. For each point z € X let G, = {9 € G | gr = z} be the isotropy group
of z. Furthermore we define X = {x € X | gr = z Vg € H} the fixed point set of the
subgroup H C G and X) = {z € X | G, = H} the set of points with isotropy group H.
For a conjugacy class [H] € Consub G we set X = Urerm XK and X(HD) = Ukerm X5,

Definition 3.4.2 ([EG15]). The equivariant Euler characteristic x“(X) € B(G) is defined as

)= ) xx"ya)G/H).

[H]eConsub G
The reduced equivariant Euler characteristic of (X, G) is
X (X) = x4 (X) — [G/G].

Remark 3.4.3 ([EG15]). The definition of the equivariant Euler characteristic in B(G) is
more general. For example we can see that the natural homomorphism from B(G) to R(G)
which sends a G-set A to the vector space of functions on A, also sends the equivariant Euler
characteristic Y“(X) € B(G) to the equivariant Euler characteristic xg(X) € R(G).
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Proposition 3.4.4. We can also write

C= Y S )

[H]eConsub G | ‘ [K]eConsub G

Proof. First observe that by Proposition 3.2.3 x(XH /@)

XU — XH) for g € H and XU’ = () for g ¢ H we have
_ |H]
KX /G) = 2 S (x) = HL )
geH

On the other hand we have X (1) is the disjoint union of all X ¥
by the additivity from Remark 2.2.9 also

1H]

KMMMFKH

Mﬂ%)

Then we have

K:UX@

KCH

and when we take the union on both sides we also get

Xm:Ume

KCcH

Again by the additivity from Remark 2.2.9 we have

MMQZEZMMM)

[K]<[H]

So with this and the Moebius inversion formula 3.3.2 we have

S B s e | leym

[H]eConsub G ‘ ’ [K]eConsub G

[G/H].

1 Sgeq X(X 7).

Since

) for H € [H] and so we have

_ Z ’g| ( (X(H]))) [G/H] Z X(X([HD/G)[G/H] = XG(X)'

[H]EConsubG’| | [H]eConsub G
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3.5 The Higher Order Euler Characteristics

Definition 3.5.1 ([BF98] and cf. also [AS89]). Let k be a positive integer. The k-th order
Euler characteristic of the pair (X, G) is defined as

1
B(X Q) = — X (91,925-9%) )
geGk
9i95=9;9;

The first order Euler characteristic is nothing else but the Euler characteristic of the quotient
space X/G. For us the most interesting is the second order Euler characteristic. It is called

the orbifold Euler characteristic (cf. [DHVW] and [HH90]):

1
XX, G) = 1l Z X(X9M),

gh=hg

Definition 3.5.2 ([EG15]). We define homomorphisms from B(G) to Z. The natural mor-

phism | - | sends a G-set A to the number of elements |A|. We define the maps r*) as
1
WG/ H)) = xD(G/H],G) = @ S |Gy H) ).
geGk

The r*) are homomorphisms of abelian groups and in general not ring homomorphisms.

Proposition 3.5.3. We have

X(X)| = ()
B (X)) =xP(X,G).

Proof. For the first statement we can use the same formula as in Proposition 3.4.4 and its
proof:

XXl= > i > wulHLEDx(X™) | 1G/H]

[H]€Consub G ’ | [K]€Consub G

H
SD S < [
[H]eConsub G
= 3 y(x )
[{id}<[H]

= x (X)) = x(X)

For the second statement again like in the proof of Proposition 3.4.4 we first observe

1 S (e eay 1 3 x(x ),

16 et Gl .
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since XH)* = X for g € H and X = () for g ¢ H. The same we see for
1 1
@l Z HG/H]<91,92 ..... gk>‘ — 1 Z \G/H|.
gcGk gcHk

So we have

r® (¢(X))

= Z @ Z u([H], [K])x (X5 1 Z HG/H]<91792 ----- k)
G

G
H]eConsub G | K]eConsub G geGk
(H]

1
= Z @ (X(X([H]))) @ Z |G/H|
H]eConsub G

geHk

(X1

(]
9[-
(]

(X([HD<91792 ,,,,, gk>)

(]
g~
(]

[{id}]<[H]

17 (91,925-.9k)
D IND DR

geG* [{id}]<[H]

_ 1 S (oo
Gl

=" (X, Q).
0

Remark 3.5.4. We are able to write down also other numbers in an equivariant way. This
we will do in the next chapter for the Milnor number.
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4 lIsolated Singularities with Group Action

4.1 About the Group Action

Let f € C[xy,...,x,] be again a polynomial with isolated singularity at O.

Definition 4.1.1. Let G be a finite group acting linearly on C™ which leaves f invariant. So
we have for each ¢ € G and x € C"

fgx) = f(x).
Since G acts linearly we can identify G with a subgroup of GL(n,C).

Example 4.1.2. e The group of maximal diagonal symmetries of f is defined as
Gr={(A,..., ) € (C)" | fMzr, .., xn) = f(o,.. . 20) )

e For f =23+ a3 + 23 we have

Gy = {(el3h 1 D). (L ef3l. 0. 1, Lel) ).

Here we can also take the group G = S3 permuting the coordinates.

e For f =13+ z3z3 + 23 we have

Gy = {(el3l11). (L efzl. 1))

Definition 4.1.3. For each g € G we define the fixed locus Fix(g) :={x € C" | gx = x}. G
acts linearly on C" so Fiz(g) is a linear subspace. We write n, = dim Fix(g) for its dimension
and f9 := flpix(g) for the restriction of f to the fixed locus of g.

Example 4.1.4. (i) Let us consider the pair (f, G) with f = 2% 4+ 2323 + 23 and the group
G = (g) = {id, g, g~ '} generated by one element g = (e[3], e[3],1). Here G is a subgroup
of SL(n,C). We have n, = 1 since only the third coordinate is fixed by g, and f9 = z3.

(ii) Secondly we consider (f,G) with f = 22 4+ z3 + 23 and the group
G = S; = {id, (12), (13), (23), (123), (132)}. We see that the fixed locus of each 2-cycle
is 2 dimensional, so n(19y = 2 since Fix((12)) = ((1,1,0), (0,0, 1)) and the fixed locus of
each 3-cycle is 1 dimensional, so n(123) = 1, since Fix((123)) = ((1,1,1)). To get f1?
we have to think of another basis of C3. Let us take {(1,1,0),(1,—1,0),(0,0,1)}. We
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associate the variables v, yo, y3 respectively. So we have x; = %(?/1 +12), T2 = %(yl —1a),
x5 =ys. So f = 2y} + Sy1y? + yi and so [P = 2y + 3 since only yp is not (12)-
invariant. Similar we do it for the other 2-cycles. For the 3-cycles we can take a basis
{(1,1,1),(1,e[5], e[3]), (1,e[3], e[5])} of C* and get e.g. x1 = 3(y1 + y2 + y3) and since
only y; is (123)-invariant, we get f123) = 2—37yf

Proposition 4.1.5 (cf. [ET13b, Prop. 5]). For each g € G the restriction f9 has an isolated
singularity at 0. There exists a surjective C-algebra homomorphism Jac(f) — Jac(f9). This
means in particular that also the Jacobian algebra Jac(f?) is finite dimensional.

Proof. We may assume that Fix(g) = {x € C" | 2,41 = --- = z, = 0} by a suitable
coordinate transformation. Since f is invariant under G, g - z; # x; for i =n,+1,...,n and
%ij FURERE 887’; form a regular sequence, we have
of of
oo, | C T yee s Ty ) .
(axng—i-l axn ( nott n)

Therefore, we have a natural surjective C-algebra homomorphism

Jac(f) = (C[xl,...,:cn]/<ﬂ” ﬁ)

Oz’ * Oz
Clzq, ...
— [«I17 7‘%71]/(59—2{1’,..’ai—ig’l'ng_;’_l,...,l‘n)
= Cla,... ,Ing]/<% o9 > = Jac(f9).
O0x17 """ Ozpg

]

Corollary 4.1.6. For each g € G, Qo is naturally equipped with the structure of a Jac(f)-
module.

Proof. Since (s is a free Jac(f9)-module of rank one (cf. (2.1)), the surjective C-algebra
homomorphism Jac(f) — Jac(f9) yields the statement. O

Remark 4.1.7. Each g € G is a bi-regular map on C" and so acts also on €2 by the pullback
g* of differential forms. With this Q; is in a natural sense a CG-module.

4.2 Equivariant Milnor Number

Definition 4.2.1 ([Wa80]). Let us consider M = H" !(X,,,C) as CG-module. M is called
the equivariant Milnor number in R(G). Then we have like in Theorem 2.2.17

xa(Xy) =C+ (=) ' M.
Theorem 4.2.2 ([Wa80, Thm. 1]). H" (X, C) and Q; are isomorphic as CG-modules.

Remark 4.2.3. So Q; as an element of R(G) is the equivariant Milnor number M € R(G).
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Definition 4.2.4. We define the equivariant Milnor number in B(G) as
W = (<1 XK.,

So we have also defined the higher order Milnor numbers:

k
:UEC)G rlt )(Mf)
and we call
or 2
Hye = 1y

the orbifold Milnor number.

Proposition 4.2.5. We have:

|u§| =
prjG =T Z )"
géG
oT 1 n—m
Mf,(b; = @ ( 1) <9 h>,uf<g,h>
gh=hg
w _ 1
R T
geGk
9:9=9594

Proof. With Proposition 3.5.3 and Theorem 2.2.17 we get

] = [(=1)" 7R (X))
"X (Xw) - (G/G|

Then observe by Theorem 2.2.17 for g € G* that x(X58) = 1+ (—1)"<&> ' s<e> since the
< g >-invariant subspace of the Milnor fibre X,, of f is the Milnor fibre of f<8~ = f|pix(<g>)-.
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Then we have with Proposition 3.5.3

K Ky
_ 7d(k) ((_1 n—l—G(X—w)>
= (—1)" W (x9(X,) — [G/G))
= (1" (x\M(X,, @) = rP(G/a))
1 :
= (=" 1@ > X5E) -1
gGGk
1 —-n n — v
— o 3 (e e () - 1)
Gl
1
= — —1)"T<E> g
Il gezc;k (—1) f
This is true for all k =1,2,.... O]

Example 4.2.6. Let (f,G) be as in Example 4.1.4.

(i) Set f =} + 23w + 23 and G = ((e[3],e[2],1)). We have seen f9 = 23 and so pps = 2.
Since Fix(g) = Fix(¢g™!) we also have ftyo-1 =2 and we can calculate
= 14, see Example 2.1.3,

1
pf/G:§(14+2+2):6, n—ng=3—1=0 mod 2,

1
H(}fg = g((14 +242)+(2+2+2)+(2+2+2)) =10, since G is abelian.

(ii) Set f = 2% 4+ 23 4+ 23 and G = S3. We have seen f1?) = 23 + 3 s0 p12) = 4 and similar
f(i3) = 4 and pi(23) = 4. For the 3-cycles we have fi(4ee) = 2. We can calculate

pr =8, see Example 2.1.3,
1
/Lf/GI 6(8—4—4—4+2+2):0,
n_n("):3_221 m0d27 n—n(...):?)—lEO mod2,

1
pGe=—(8—4-4—-4+2+2)+2(—4—-4—-4+2+2)+ (2+2)) = 2.
6 ~~ ~ ~~ 7 N —

99 gid and idg (e0e)(00e)
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4.3 Orbifold Version of ();

Definition 4.3.1. We define a Z/2Z-graded C-module ) , = (Q’ﬂa)a <) (Q}’G)T by

(Q/f,G)ﬁ = @ Q;ﬂm (Q/f,G)T = EB Q/f,g’

9€G geG
n—ng=0 (mod 2) n—ng=1 (mod 2)

where Q’ﬂg = Q.

Remark 4.3.2. Each g € G is a bi-regular map on C" and maps Fix(g 'hg) to Fix(h) for
each h € G. So G acts naturally on Q' ; by

! / *
= Qgoing W g lrixw,

where ¢*|pix(g) denotes the restriction of the pullback g* of differential forms to Fix(g). In
order to simplify the notation, for each g € GG, we shall denote by ¢g* the action of g on Q’f’G.

Definition 4.3.3. Define a Z/2Z-graded C-module Qs as the G-invariant part of {2} .,

Qo= (V)"

Of course we have Q¢ = (25,6)5 © (€2f,¢)7 where

(Qr6) = ((Q},G)())Ga Q)= ((Q},G)1>G,

since the dimension of Fix(g) is the same for all g in one conjugacy class.

Example 4.3.4. Let (f,G) be as in Example 4.1.4. We calculate (2}, and Qg (cf. also
Example 2.3.3)

(i) Set f =} + z3xs + 23 and G = ((e[3], e[3], 1)).

Q/f’G = <dw1 Adzy A ds, wrdry A dag Adas, ..., 1 zex5dey A drg A dx3>
® (dxs, v3drs) @ (dxs, v3drs)

and since G is abelian

Qpa = <dx1 AN dxo N\ dxs, x3dry A dxg N dzs, x%dwl A dxo N dxs,
r122dxy N\ dxo A dxs, x1x003dxy A drg A dxs, xlxgx?z)dxl A dzg A dx3>
s> <dl’3,l’3dﬂ?3> ) <dl’3, x3d$3> .
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(ii) Set f=a?+ 23 + 23 and G = S3.

Q’f’G = (dxy N\ dxo A dx3, z1dxy A dxg N\ dxs, ... x1209x3dxy A dzg A das) g=id
@ ((dzy A dxg + dxgy A dxg), (21 + x2)(dxy A dxg + dxg A dxg),
x3(dxy A das + dxg A dxg), (01203 + 2o23)(d2y A dog + drg A dxs))  g—(i2)
@ ((dxy A dxe + dxs A dxs), (21 + x3)(dxy A dogy + dos A das),
To(dxy N dag + dag A dxg), (0122 + xox3)(d2y A dag + drg Adxs))  g—(13)
® ((dxy A\ dxy + dxs A dxy), (22 + x3)(dre A dzy + dxs A dxy),
x1(dxy A\ dxy + das A dxy), (122 + 2123) (dog A day + deg ANdxy))  g=(23)
@ ((dry + dxg + dzs), (1 + 29 + x3)(dxy + dxg + dX3)) g=(123)
@ ((dxy + dxg + dxs), (v1 + 2o + x3)(dxy + drgy + d23)) 9=(132)

and since here G is not abelian, we get sums for every conjugacy class of elements in G:

Q. ={0}
@ ((dzy A dxg + dzg A dxsg) + (dxy A dxg + dxs A dxs) + (dxg A dxy + dxs A dxy),
(r1 + x2)(dxy A dxs + drg Ndxs) + -+ + (9 + x3)(dwg A dxy + dxg A dxy),
x3(dry A drs + dxg A drs) + xo(dey A dxg + des A dxg) + x1(des A dxy + dxs A dxy),
(x123 + xo3)(dry A drs + drg Adxs) + -+ - + (2129 + x123) (dXg A d2y + dxg A dxy))
@ ((dxy + dag + dxs) + (dxy + dry + das),
(21 4+ @2 + x3)(dxy + dag + das) + (21 + 22 + 23)(d2y + dag + dxs)) .

4.4 Dimensions and Milnor Numbers

Remark 4.4.1. As we had in the section about the Milnor number, we have:
1§ = py = dim Qy

Proposition 4.4.2. We have
r(uf) = pugje = dim(Q))¢

is the dimension of the G-invariant part of €y.

Proof. As in the proof of Proposition 3.2.3 the multiplicity of the trivial representation in
M=Q AS R(G) is

1 n—m
Y (D) g = pyja
|G|
geG
and that is directly the dimension of the G-invariant part of M = Q. m

Example 4.4.3. Let (f,G) be as in Example 4.1.4.

28



(i) Set f =} + z3ws + 23 and G = ((e[3], e[3],1)). As we have seen in Example 4.3.4

51 el3]
dlmQ = 6 and dim Q¢ = 10,

which are pf/¢ and ,uorb respectively, see Example 4.2.6. Here we have Q0f ¢ = {0} since

n—ng—OforallgeG

(ii) Set f = a? + 23 + 23 and G = S3. As we have seen in Example 4.3.4
dim QY = 0 and dim Qyc =4+ 2 =6,
which is y17/c, see Example 4.2.6. But for ;¢ we see
dim (Qf,6); = 2 and dim (Qfq); =4
and then we have u9¢ = —2=2—4.
In general we have the following theorem.
Theorem 4.4.4. We have
e = dim (2,¢)5 — dim (Q6)y -
We will first prove a restriction of this theorem.
Proposition 4.4.5. Let G be abelian, then Theorem 4.4.4 holds.
Proof. If G is abelian, each h € G acts on €2, for each g € G and we have
Qo) = P (@)% Q)= b «©,)°
geG geqG
n—nyg=0 (mod 2) n-ng=1 (mod 2)

since we always get h~'gh = g. So we have

dim (Q; ¢)5 — dim (Qp¢); = Z dim(€} )¢ — Z dim(} )¢

geG geG
n—ng=0 (mod 2) n—ng=1 (mod 2)

see Proposition 4.4.2 = Z ,ufg/G — Z Mfg/G

geG geG
n—ng=0 (mod 2) n—ng=1 (mod 2)

= (=1)" g

geG
On the other hand we have, since gh = hg for all g,h € G-

? — | E n n<g’h>Mf<g,h>
gh=hg

§ : § : n ng+ng7n<g,h>luf<g h>

geG heG

R R

geCG heG

= (1) ppesc.

geG
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Now we prepare for the proof.

Definition 4.4.6. For g € G let C(g) = {k € G|gk = kg} be the centralizer of g and C(g) =
{k1, ... ko) }- Let [g] = {h~tgh|h € G} be the conjugacy class of g. Let {hy, ..., hig 1} be
a set, such that [g] = {h;'ghi,. .., hﬁgl”gh‘[g”}.

We now prove a well known fact in group theory:

Lemma 4.4.7. There is a 1 : 1-correspondence between [g] and C(g)\G. So we have

9]l - 1C(g)| = |G|
and
{kjhz | izl?"':”Q” ; j:1,...,|0<g)|}:G.

Proof. We take C’(g)\G ={C(g)h | h € G}. The map

9] — C(g)\G h™gh — C(g)h

is well defined and bijective. For h™lgh = k~'gk we have kh™! € C(g) and so we have
C(g)h = C(g)kh™'h = C(g)k € C’(g)\G and vice versa for C'(g)h = C(g)k we have k = gh
with g € C(g) and so k~*gk = (gh)~*g(gh) = h=*(g ' gg)h = h™'gh. O
Lemma 4.4.8 (cf. also [HH90]). We have
pyE = (=1)"" g0 (),
[g]

where we sum over all different conjugacy classes in G.

Proof. Since €ys and €;n are isomorphic for g and h in the same conjugacy class, we also
have pps = pipn. So we have

1
= g 2 g
gh=hg
1
= Z @ Z (_1)n—ng+ng—n<g,h>luf<g7h>
geG heC(g)
=) (=1)"™][g ]|| el (1) s
9] heC(g)
= (_ n—mng___ — | | Z qu—n<g,h>/1/f<g,h>
9] heC(g)
=) (=1)"" o0
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Lemma 4.4.9. We have

G G
Qo= D (DBY%] Qo= D (DU
9] helg] [g] he[g]
n—ng=0 (mod 2) n—ng=1 (mod 2)
Proof. Of course we can write
G G
Qak=| D DY|  Zahi=| DB DU
9] he[g] [g] helg]
n—ng=0 (mod 2) n—ng=1 (mod 2)

since the action of g € G goes from (2}, to Q’f s-1hg We need to take the invariance only over

the sum in one conjugacy class. O]
Lemma 4.4.10. For there exists a basis {v,,... g9 oY such that
{vg, .. vy Y is a basis onfg

Proof. We can take a basis of the subspace Q?g(g) and can extend it to a basis of {24s. So the
statement is clear. O

Lemma 4.4.11. Let {v},...,v""} be a basis of Qo as in Lemma 4.4.10. For h € G set

p gy = D)), Then {v) 1y, .05 ) is a basis of Qpu1g. as in Lemma 4.4.10.

Proof. Since h induces an isomorphism from {2y to h=1gn, 1t 18 clear that it is a basis. We
have C'(h~'gh) = h='C(g)h, so for each k € C(h~'gh) we have k = h™'kh for k € C(g). So

the basis has the property of Lemma 4.4.10:
k(0 1g,) = (7' kR)*(h*(v]))
pullback = (hhilffh)*(ﬂz)
)

= h*(k*(v}))
_ R(wg) = vy, i< i)
W (k*(vy)) # h*(vg) i > pgascq)

Lemma 4.4.12. For each conjugacy class [g] of G we have

G

dim EBQ’f,h = [ifs/C(g)-

helg]
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Proof. Let {hi, ..., hyg} be as in Definition 4.4.6. We set v = hi(v}). Then

—1

is a basis of <@h€[g] Q’fh) Since each v}, for i > pipe/q is not fixed by h € C(g'), it is not

possible to be fixed by G. So we only concentrate on 7 < pigs/q. Let h € G. From Lemma
4.4.7 we know h = k;h; for h; as above and k; € C(g) so we have

B () = (kihy)" (v) = 3 (R (v))) = B5(05) = vhyy o 0 < pigoge

J

And for each m =1,...,|[g]| we also have h,,h € G and we can again write h,,h = k;h; from
Lemma 4.4.7. So we have for ¢ < jip9/c

Wl ) = B () = (b () = (k)" () = B3k (1) = B3 () = v] 1,

J

So each h € G sends each v} for i < 154/ also to a vl. And since each h,, form =1,...,|[g]|

sends v¢ to v’ _ only the whole sum v/ |+ 40/_ can be invariant by all A € G.

R hitgh  hi ot Y
So

1 1 e e
Vi1, s+ U e, +-Fu
{ hy g Rt "7 Thy g hg1 9P La)

is a basis of the invariant part. So the dimension is as given. O]

Proof of Theorem 4.4.4. As shown before we have

dlm (Qf’G)ﬁ — dlm (Qf:G>T

G G
= > dm (D] - > dm ([P,
[g] helg] (] he[g]
n—ng=0 (mod 2) n—ng=1 (mod 2)
= Z Hfa/clg) — Z Hfa/C(g)
[g] [g]
n—ng=0 (mod 2) n—ng=1 (mod 2)
= (D" )
9]
= Hig:
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4.5 Orbifold Residue Pairing

Now we can also define a bilinear form on Q’f’G and on Q.
Definition 4.5.1. Since the finite group G acts linearly on C" we can diagonalize each g €

G C GL(n,C). So each g € G is up to order uniquely isomorphic to

g = diag(e[ﬂ], . ,e[%])a 0<a; <r,
r r

where r is the order of g.
The age of g is defined (cf. [IR96]) as the rational number

n

age(g) = %Zai.

i=1
For g € SL(n,C) we have age(g) € Z.

Example 4.5.2. (a) If G C Gy, all g are automatically diagonal and
g = diag(e[%],..., e[*]) is given directly and uniquely.

(b) The identity id € G is of the form id = diag(1,...,1) = diag(e[0],...,e[0]). So
age(id) = 0.
(c) For g and ¢! the diagonalization can be chosen in the same way such that they pre-

serve the same coordinates. Then we have g = diag(e[*],...,e[%] e[0],...,e[0]) and

~! = diag(e[=2], ... e[=%],e[0],...,e[0]) for | = ny = ny-1 < n. So we directly see

age(g) +age(g™") = n — ny.
Example 4.5.3. Let (f,G) be as in Example 4.1.4.

(i) Set G = (g) = ((e[3],e[2],1)). So we see directly

age(g) = 1 and age(g~!) = 1.

(ii) Set G = S3 = {id, (12), (13),(23), (123), (132)}. In Example 4.1.4 we have seen a basis
{(1,1,0),(1,—1,0),(0,0,1)} of C3, s.t. (12) is diagonal on it. We have

(12) = ding(e{0], o[, o[0])
and so we see

age((12)) = % and similar age((13)) = %, age((23)) = =
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In the same way we saw

(123) = diag(e[0], e[é], e[%])

and so we see
age((123)) = 1 and age((132)) =1,
since n —npgg) =3 —1=2=1+1=age((123)) + age((132)).

Definition 4.5.4. We define the non-degenerate C-bilinear form Jyq : Q’ﬁG Qc Q}’G — C,
called the orbifold residue pairing, by

Jrc =P Jrg,
geG

where Jy, is the perfect C-bilinear form Jy, : Q) ) @c €Y} 1 — C defined by

¢¢d$11 JANKIEIRIVAN dl’ing

1
Jpg (Wi, we) = (=1)""" - e {_iage@] |G- Respixg) | 0 Of°
8xil o 8xin9

for wi = [¢pdzy, A+ Adwy, | € @ and wy = [Pdzyy A~ -~ Adwy, | € Q) 1, where @y, ..., @,
are coordinates of Fix(g) = Fix(¢g™!).
For each g € G with Fix(g) = {0}, we define

T3 (L 1) = (1" ¢ |~ aeels)| - 6],

where 1, € ) and 1,1 € €, _, denote the constant functions on {0} whose values are 1.
Example 4.5.5. Let (f,G) be as in Example 4.1.4.

(i) Set f =} + a3xs 4+ 23 and G = ((e[3], e[3],1)). We can calculate with Example 2.3.9
9 0 1 1 1
Jf,id (dl’l VAN dJIQ A d(lfg,xll’gl'gd(l}l A dIg N dl‘g) = (—].) e|l—-0]-3-— = §
With prs = 2 and hessys = 3 - 223 we calculate

1 1
J1g (ds, w3drs) = (=1)% [—5 : 1] 3.2 =1

(ii) Set f =%+ 23 + 23 and G = S3. We can calculate with Example 2.3.9

1 1 2
Jf,id (dl‘l A dl‘g A dl’3,$11‘2$3d$1 N dﬂfz N dJTg) = (—1)06 |:—§ : 0:| -6 - 2—7 = §
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With ppa2) =4 and hesspaz) =3 -2+ %(561 + x9) - 3+ 223 we calculate

Jia2) (dxy A dzg + dog A dxs, (2123 + 29w3) (day A dxg + dog A das))

- (1[5 3] 65 = vy - 2L

With f1pa2s) = 2 and hesspa2s) =3 -2 - %(xl + x9 + x3) we calculate

Jf7(123) (dl‘l + d(L’Q + d?[)g, (ZL‘l + ) + xg)(dl'l + dl‘g + dIg))

=(-1)% {_% . 1} .6 - g = (+1)(—-1)18 = —18.

Proposition 4.5.6. The orbifold residue pairing is G-twisted 7./27-graded symmetric in the
sense that

Jyc(wi,wa) = (=1)""" - e[—age(g)] - Jyc(w2,wi)

/ /
forwy € vag and we € vag_l.

Proof. We have Fix(g) = Fix(¢7!), and so f¢ = f¢ ' and age(g) + age(g™) = n — ng, see
Example 4.5.2(c). So we have

Jf,G(W1>W2) = Jrg (Wi, w2)

= (1) e | gagelo)| 1G] Rest-+]

— | paes) + gaeelg™)| (-1 te |~ Jaeely )| 161 Rt
=e -—%age(g) + %age(g_l)} It g1 (wa,w)
=e %(age(g) + age(gl))} e[—age(g)] - Jyg-1 (wa, wi)

= (=1)""" -e[~age(g)] - Jr.c (w2, 1)
O

Remark 4.5.7. In [EG15] there is defined an equivariant index in B(G). So we could also
define some higher order indices. But since this bilinear form is Z/2Z-graded one would need
a good version of the signature to find an equivariant version of Theorem 2.3.13. On the other
hand for a good orbifold version of Jac(f) (cf. next chapter and Proposition 5.3.7) we only
take G C SL. And then a group in SL(n,R) would be very small, such that this is no fruitful
direction.
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5 Orbifold Jacobian Algebra

In a joint work with Alexey Basalaev and Atsushi Takahashi we constructed this orbifold
version of Jac(f). The Chapters 5 and 6 are mainly an elaborated version of the paper

[BTW16].

5.1 Setup

Let f € Clxy,...,x,] be a polynomial with isolated singularity at 0. From now on, we shall
denote by G a finite subgroup of Gy, cf. Example 4.1.2, unless otherwise stated.

Remark 5.1.1. We will restrict ourselves to subgroups of the diagonal symmetries of f,
G C Gy (cf. Example 4.1.2). For the defining axioms this is not totally necessary as we write
in Remark 5.2.4. But the commutativity of the group simplifies the proofs considerably.

This is also a common assumption:

Remark 5.1.2. The pair (f,G) for a weighted homogeneous f (cf. Definition 6.1.1) and a
finite subgroup G' C Gy is often called a orbifold Landau-Ginzburg model (cf. [BH95], [Kr94],
[Kr09], [EG12], [FJR13]).

Definition 5.1.3. We will additionally define
G?L = Gy N SL(n;C).

Remark 5.1.4. We recall Example 4.5.2. Each element g € G has a unique expression of
the form

g:diag<e[@],...,e[a—n}> with 0 < a; <,
r r

where r is the order of g. We use the notation (a1 /7, ..., a,/r) or £(ai,...,a,) for the element
g. And we had defined the

1 n
age(g) := . Z a;.
i=1

Note that if g € G then age(g) € Z.
Definition 5.1.5. Define the group Aut(f, G) of automorphisms of (f, G) as
Aut(f,G) == {p € GL(n,C) | fpx) = f(x), ¢ 'gp € G for all g € G}.

It is obvious that G is a subgroup of Aut(f,G). Note that a ¢ € Aut(f, G) is G-equivariant
if and only if p~tgp = g for all g € G.
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Definition 5.1.6. For a C-algebra R, denote by Autc_ae(R) the group of all C-algebra auto-
morphisms of R. Note that Aut(f,G) is identified with a subgroup of Autc ae(Clz1, ..., z,])
by the action (¢*¢)(x) = ¢(¢x) for ¢ € Aut(f,G) and ¢ € Clzy, ..., x,].

Remark 5.1.7. Let Clxy,...,z,] * G be the skew group ring which is the C-vector space
Clzy,...,2,] ®c CG with a product defined as (¢1 ® g1)(¢2 ® g2) = (9197(d2)) ® g1g2 for
any ¢1,¢s € Clzy,...,2,] and g1,¢92 € G. Then the group Aut(f,G) can be regarded as the
subgroup of all ¢’ € Autcag(Clzy, ..., z,]*G) such that ¢'(f®id) = f®id. For ¢ € Aut(f, G),
the corresponding element in Autc e (Clz1, ..., 2,] * Q) is given by ¢ ® g — ©*(¢) @ (¢ Lgep).

Remark 5.1.8. As we have said for G in Remark 4.3.2 also each ¢ € Aut(f, G) is a bi-regular
map on C" and maps Fix(p lgy) to Fix(g) for each g € G. Hence, the group Aut(f, G) acts
naturally on €} , by

! ! E3
Qfﬁg — Qf,so‘lgw W e |Fix(9)w’

where ¢*|pix(g) denotes the restriction of the pullback ¢* of differential forms to Fix(g). In
order to simplify the notation, for each ¢ € Aut(f, G), we shall denote by ¢* the action of ¢
on 2 5. It also follows that Aut(f,G) acts naturally on Q.

5.2 Axioms

In order to introduce an orbifold Jacobian algebra of the pair (f,G), we first define axiomat-
ically a G-twisted Jacobian algebra of f.

Definition 5.2.1. A G-twisted Jacobian algebra of f is a Z/27-graded C-algebra Jac'(f, G) =
Jacd'(f, G)g @ Jac'(f, G)1, i € Z/2Z, satistying the following axioms:

(i) Foreach g € G, there is a C-module Jac'(f, g) isomorphic to Q' , as a C-module satisfying
the following conditions:

a) For the identity id of G,

Jac'(f,id) = Jac(f).
b) We have

Jad'(f,.G)g= @  Jad(f.9),

geG
n—ng=0 (mod 2)

Jad(f,G)r= @ Jad(f.9).

geG
n—ng=1 (mod 2)
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(ii) The Z/2Z-graded C-algebra structure o on Jac'(f, G) satisfies
Jac'(f,g) o Jad'(f, h) C Jac'(f,gh), g,h € G,
and the C-subalgebra Jac'(f,1d) of Jac'(f, G) coincides with the C-algebra Jac(f).

(ili) The Z/2Z-graded C-algebra Jac'(f, G) is such that the C-module 2} ; has the structure
of a Jac'(f, G)-module

FJad (f,G) @ Qg — e, X@wr X Fuw,

satisfying the following conditions:

a) For any g,h € G we have
Jac/(f, g) - Q/f,h - Q;‘,ghv

and the Jac’(f,1d)-module structure on €2}  coincides with the Jac(f)-module struc-
ture on (2ss given by Corollary 4.1.6.

b) By choosing a nowhere vanishing n-form, we have the following isomorphism

o

Jacd(f,G) — g, X = X, (5.1)

where ( is the residue class in Q4 = Q of the n-form. Namely, O, is a free
Jac'(f, G)-module of rank one.

(iv) There is an induced action of Aut(f, G) on Jac'(f,G) given by
(X)) (Q) =" (X F(), ¢e€Aut(f,G), X € Jad(f,q), (5.2)

where ¢ is an element in (2}, giving the isomorphism in Axiom (iiib). The algebra
structure of Jac'(f, G) satisfies the following conditions:

a) It is Aut(f, G)-invariant, namely,
P (X)op"(Y)=¢" (X oY), ¢eAut(f,G), X,Y € Jad(f,G).

b) It is G-twisted Z/2Z-graded commutative, namely, for any g,h € G and X €
Jac'(f,g), Y € Jac'(f, h), we have

XoY = (~)"Vg'(¥)o X,

where X =n —n, and Y = n — ny, are the Z/2Z-gradings of X and Y, and g* is
the induced action of g considered as an element of Aut(f,G).

(v) For any g,h € G and X € Jac'(f,g), w € Q}, o' € 4, we have
Jra(X Fw,o) = (=1)%%Jrq (w, (B X) F o),

where X =n —n, and @ = n — n;, are the Z/2Z-gradings of X and w, and (h™1)* is the
induced action of h~! considered as an element of Aut(f,G).
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(vi) Let G’ be a finite subgroup of G such that G C G’. Fix a nowhere vanishing n-form
and denote by ( its residue class in € ;4. By Axiom (iiib) for G, G’, fix the isomorphisms
given by (;

Jac'(f, )—)Qfg, X = X,
Jac’(f,G');QfG,, X'— X'+ (.

Then, the injective map Q) — Q) induced by the identity maps Q) — Q) ,
g € G yields an injective map of the Z/ZZ graded C-modules Jac'(f, G) — Jac'(f,G’),
which is an algebra-homomorphism.

Remark 5.2.2. Such a class ¢ € ;4 giving the isomorphism in Axiom (iiib) is a non-zero
constant multiple of the residue class of dzy A --- A dx,. It follows that the Aut(f, G)-action
on Jac'(f,G) does not depend on the choice of ¢. In particular, the Aut(f, G)-action on
Jac'(f,id) = Jac(f) is nothing but the usual one which is induced by the natural Aut(f, G)-
action on Clzy, ..., x,|. For different choices of ( we get isomorphic algebras.

Remark 5.2.3. Axioms (iva), (ivb) and (v) are naturally expected by keeping the skew group
ring C[zy,...,z,]) * G in mind (see also Remark 5.1.7). Indeed, our axioms are motivated by
some intuitive properties of the “Jacobian algebra of f over the non-commutative skew group
ring”. Axiom (ivb) can also be found in [Ka03|, while the others seem to be new in [BTW16].

Remark 5.2.4. We have not used the commutativity of G C G in the axioms in Definition
5.2.1 except for the last one (vi). Instead of Gy there, by the use of the largest group like
Aut(f, {id}) the definition can naturally be extended to the non-abelian case, namely, the case
when G is any group like in Chapter 4.

5.3 Orbifold Jacobian Algebra

Lemma 5.3.1. Let us denote by viq the residue class of 1 € Clay,...,z,] in Jad'(f,id) =
Jac(f). viq is the unit with respect to the product structure o and viq is G-invariant.

Proof. By Axiom (v) we have
Jf(;((X o Uid) + C,w) = Jf7g(X H (Uid H Q),w) = Jﬁg(X F C,w)

for all X € Jac'(f,G), w € ;4 and ¢ € Q44 giving the isomorphism (5.1). Note also that

©*(via) = viq for all p € Aut(f, G) since p*(via) F ¢*(¢) = ¢ (via - () = ¢*(C) = via F ¢*(¢)-
And so vyq is in particular G-invariant. O

Remark 5.3.2. By the isomorphism (5.1), it follows from Remark 5.1.8 that

o (Jad'(f,9)) = Jac'(f, 0 'gp), ¢ € Aut(f,G).

In particular, g*(Jac'(f, h)) = Jac'(f, g 'hg) for g,h € G. Now, G is a commutative group, we
have g*(Jac'(f,h)) = Jac'(f, h). Since the product structure o is also G-invariant by Axiom
(iva) it follows that the G-invariant subspace of Jac'(f, G) has the structure of a Z/2Z-graded
algebra, which is Z/2Z-graded commutative due to Axiom (ivb).
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A priori there might not be a unique Z/2Z-graded C-algebra satisfying the axioms in Defi-
nition 5.2.1, nevertheless we expect the following:

Conjecture 5.3.3. Let the notations be as above.
(a) A G-twisted Jacobian algebra Jac'(f,G) of f should exist.

(b) The subalgebra (Jac'(f, G’))G should be uniquely determined by (f, G) up to isomorphism.

Definition 5.3.4. Suppose that Conjecture 5.3.3 holds for the pair (f, G). The Z/2Z-graded
commutative algebra

Jac(f, G) = (Jac'(£,G))"
is called the orbifold Jacobian algebra of (f,G).

Remark 5.3.5. Under the isomorphism in Axiom (iiib), it follows from Axiom (v) that
the non-degenerate G-twisted Z/2Z-graded symmetric C-bilinear form J;s on Q' ¢ equips
Jac'(f, G) with the structure of Z/2Z-graded G-twisted Frobenius algebra.

Remark 5.3.6. Often we will have G C G?L. We don’t need this from the definition of
Jac(f, @) but only then we get a “good” orbifold Jacobian algebra. Namely only for G C
SL(n,C) we have the following proposition.

Proposition 5.3.7. Let G C G?L and suppose the orbifold Jacobian Algebra exists. Then
Jac(f, G) = Qf’G

as vector spaces. And the orbifold residue pairing endows Jac(f, G) with the structure of a
Z./27-graded commutative Frobenius algebra, which will be of our main interest.

Proof. When G C SL(n, C) the residue class ¢ is G-invariant. So we get the isomorphism by
the isomorphism (5.1). Furthermore we have age(g) € Z for all g € G5* and so the pairing
Jr.¢ induces a Z/2Z-graded symmetric pairing on ¢ due to the G-twisted Z/2Z-graded
commutativity (Proposition 4.5.6). With this and Remarks 5.3.5 and 5.3.2 we see that we
have here even a Z/27Z-graded commutative Frobenius algebra. O

5.4 Preliminaries for the Proofs

In the next chapters we will prove Conjecture 5.3.3 (actually a stronger statement) for some
classes of polynomials.
We will need some common definitions for the proofs.

Definition 5.4.1. Let I, := {iy,...,i,,} be a subset of {1,...,n} such that Fix(g) = {z €
C" | z;=0,j ¢ Iy} In particular, Iig = {1,...,n}. Denote by I§ the complement of I, in [
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Definition 5.4.2. For each g € G let us define w, € ), as

¢ if g=1id
wg = 4 [dx;, /\---/\d.ﬁlﬁing] if I, = (il,...,ing), i < <y, -
1, if Fix(¢g) = {0}

Remark 5.4.3. It might not be necessary to distinguish ¢ and wjq, however, we regard ( as
a “primitive form” (cf. [Sa82], [Sa83], [ST08]) at the origin of the base space of the “properly-
defined deformation space” of the pair (f, G) while we consider wyq as just a Jac'(f,id)-basis
of Vy ..

frid

We will have to proof the uniqueness and the existence.

Idea of the Uniqueness Proof

For the stronger statement we will show that for any G C G5 the axioms in Definition 5.2.1
determine Jac'(f, G) uniquely up to isomorphism. We only have to show that for g, h € G the
product o : Jac'(f, g) ®c Jac'(f, h) — Jac'(f, gh) is uniquely determined up to rescaling of
generators of Jac(f?)-modules Jac'(f, g).

Definition 5.4.4. Let ¢ be a non-zero constant multiple of the residue class of dzi A---Adzx,.
For each subgroup G C Gy, fix an isomorphism in Axiom (iii) in Definition 5.2.1

F:Jacd (f,G) — Qse, X = X F,
where ¢ is considered as an element in % ;; = Q (recall Definition 4.3.1).
Definition 5.4.5. For each g € G, let v, be an element of Jac'(f, g), such that
Vg = ¢ = agwy,
where a4 is given by a map
a:Gp—C", g ay,
with ajq = 1, which is given in more details in the different proofs.
Remark 5.4.6. We see directly that the definition of v;q is the same as in Lemma 5.3.1 and
this says that viq o vy = v, 0 v;q = v, since vyq is the unit.
Axiom (iiia) in Definition 5.2.1 implies that for all Y € Jac'(f, g) there exists X € Jac'(f,id)
= Jac(f) represented by a polynomial in {x; };c;, such that Y = Xov,. For any X € Jac'(f,id),

we shall often write X o v, as X|pix(g)vy Where X|pixg) is the image of X under the map
Jac(f) — Jac(f9).
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Idea of the Existence Proof

Afterwards we will prove the existence of a G-twisted Jacobian algebra of f. We will first
show this when G = G.
We will give a Definition:

Definition 5.4.7. Define a Z/2Z-graded C-module A" = A5® A~ as follows: For each g € Gy,
consider a free Jac(f?)-module A} of rank one generated by a formal letter v,,

A, = Jac(f9)v,.

and set
[ / /. !
0 @ Ag’ ‘AT T EB Ag'
geGy geGy
n—ng=0 (mod 2) n—ng=1 (mod 2)

By definition, Axiom (i) in Definition 5.2.1 trivially holds for A’.

Remark 5.4.8. We will then define a multiplication o : A’ ®c A" — A’ and a C-bilinear
map F: A" @c ;; — A’ and show all axioms of Definition 5.2.1. Where Axiom (vi) is
trivially satisfied for A’ since G = Gy.

And then we can get in all proofs

Proposition 5.4.9. For each subgroup G C Gy, there exists a G-twisted Jacobian algebra of
f.

Proof. Consider the subspace Ay, of A’ defined by

Al = @A'g,

geG

the restriction of the product structure map o : A ®c A — A’ to A, ®c A and the
restriction of the A’-module structure map F: A" ®¢ Q}’Gf — A" to Ag ®c 5. By the
construction of these structures on A’, it is almost obvious that they satisfy all the axioms in
Definition 5.2.1. ]
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6 Orbifold Jacobian Algebras for
Invertible Polynomials

6.1 Invertible Polynomials

Definition 6.1.1. A polynomial f € Clzy,...,x,] is called a weighted homogeneous polyno-
mial if there are positive integers wy, ..., w, and d such that

FOW 2y, X)) = M (zy, .. 1y,)

for all A € C*. We call (wy,...,w,;d) a system of weights of f. A weighted homogeneous
polynomial f is called non-degenerate if it has at most an isolated critical point at the origin
in C", equivalently, if the Jacobian algebra Jac(f) of f is finite-dimensional.

Definition 6.1.2 (cf. [BH93], [Kr94]). A weighted homogeneous polynomial f € Clxy, ..., z,]
is called invertible if the following conditions are satisfied.

(i) The number of variables (= n) coincides with the number of monomials in the polynomial

f, namely,
n n
E..
flxy, ..., xn) = E ainj”
=1 j=1
for some coefficients a; € C* and non-negative integers £;; for 7,5 = 1,...,n.

(ii) The matrix £ := (E;;) is invertible over Q.

(iii) The polynomial f and the Berglund-Hiibsch transpose fT of f defined by

n n

E..

oy, .. 2,) = Zainj“
i=1 =1

are non-degenerate.

Remark 6.1.3. Usually a polynomial f is called invertible if only conditions (i) and (ii) are
satisfied. It is called a non-degenerate invertible polynomial, if f has additionally only an
isolated singularity at the origin. This is equivalent to condition (iii), see e.g. [EG12]. Here
we will only say invertible polynomial, if it satisfies all three conditions.
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Definition 6.1.4. Let f(z1,...,2,) = >0, ¢ [[_, xf” be an invertible polynomial. Define

rational numbers ¢y, ..., ¢, by the unique solution of the equation
0 1
El:|=]:
In 1

Namely, set ¢; := w;/d, i = 1,...,n, for the system of weights (wy, ..., w,;d).
Example 6.1.5. Let (f,G) be as in Example 4.1.4.
23+ 23z + 23 and G = ((e[3],e[2],1)). [ is an invertible polynomial. We have
E = §%g>, which is obviously invertible. So the system of weights is (3,2,3;9) and
¢ =3, ¢2 = 3, g3 = 3. The group is directly G = G$* (cf. Example 4.1.2).
(i) The polynomial f = x? + 23 + 3 is also an invertible polynomial. We have E = <§ % §>,
1
3

which is obviously invertible. So the system of weights is (1,1, 1;3) and ¢; =
t=1,2,3. But the group S3 is no subgroup of GY.

Remark 6.1.6. If f(xq,...,z,) is an invertible polynomial, then we have

[l = -1}
j=1 j=1

and hence Gy is a finite group. It is easy to see that Gy contains an element go := (¢1,. .., ¢n).

Gy = {(Al,...,An) e (C)"

It is important to note the following
Proposition 6.1.7. The group G3* = G; N SL(n; C) is a proper subgroup of Gj.

Proof. Let fT be the Berglund-Hiibsch transpose of f. It is known by [ET11] and [Kr09] (see
also Proposition 2 in [EGT16]) that

G = Hom(Gr/((1, - -, Gn)), C*) € Hom(Gr,C*) = Gy,

where (q1, .. .,Gy,) is the unique solution of the equation (qi,...,¢,)E = (1,...,1). ]
Remark 6.1.8. Let f(z1,...,2,) = >0 e[}, xJE“ be an invertible polynomial. Without
loss of generality one may assume that ¢; =1 for ¢« = 1,...,n by rescaling the variables.

M. Kreuzer and H. Skarke showed the following

Proposition 6.1.9 (cf. [KS92]). An invertible polynomial f can be written as a Sebastiani-
Thom sum f = f1 @ --- @ f, of invertible polynomials (in groups of different variables) f,,
v=1,...,p of the following types:

(1) 2V'@o + 252@s + -+ + o' T + 2% (chain type; m > 1)

(il) 27'@e + a3 + - + 2,5 @ + 23y (loop type; m > 2)
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Remark 6.1.10. In [KS92] the authors distinguished also polynomials of the so called Fermat
type: x7', which is regarded as a chain type polynomial with m = 1 in this thesis.

We shall use the monomial basis of the Jacobian algebra Jac(f,).

Proposition 6.1.11 (cf. [Kr94)). For an invertible polynomial f, = x{'xe + x5%x3 + -+ +

o + 2% of chain type with m > 1, the Jacobian algebra Jac(f,) has a monomial basis

consisting of all the monomials z¥* - - - 2Fm such that

2) if
b {ai—lfor all odd i, 1 < 2s—1,
' 0 for all even i, 1 <2s—1,
then kog = 0.
For an invertible polynomial f, = x{'xs + 25223 + -+ + 2" T + 2% 0f loop type with

m > 2, the Jacobian algebra Jac(f,) has a monomial basis consisting of all the monomials
gk with 0 < ky < ag — 1.

6.2 Theorem for Invertible Polynomials

Theorem 6.2.1. Let f be an invertible polynomial and G a subgroup of Gy. There exists a
unique G-twisted Jacobian algebra Jac'(f,G) of f up to isomorphism. Namely, it is uniquely
characterized by the axioms in Definition 5.2.1.

In particular, the orbifold Jacobian algebra Jac(f, G) of (f,G) ewists.

We will first prepare some notations and then show the uniqueness and the existence as
stated in Section 5.4.

Notations

Let f= f(x1,...,m) = > [[j ;Uf” be an invertible polynomial.
In what follows, we are mostly interested in special pairs of elements of GY.

Definition 6.2.2. (i) An ordered pair (g, h) of elements of G is called spanning if

IgUIhU[gh:{l,...,n}.

(ii) For a spanning pair (g, h) of elements of Gy, define I, := I N I},

(iii) For a spanning pair (g, h) of elements of G, there always exist g1, g2, h1, ho € Gy such
that ¢ = 192 and h = hihy with goho = id and Iy, ,, = 0. The tuple (g1, g2, h1, ho) is
called the factorization of (g, h).
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Remark 6.2.3. For a spanning pair (g,h) of elements of Gy, up to a reordering of the
variables, we have

g=(0,....,0,0q,...,0p,51,...,05,)
h:(%,...,%,O,...,O,l—61,...,1—ﬂq),

(6.1)

for some rational numbers 0 < «;, 3;,7 < 1 and integers p,q,r such that 0 < r < n, and
ng+p+q=r+n,+q=n. In this presentation, we have I, N I}, = {ir41,.. ., in—qp},
I =A{tn—g+1,...,in} and

g1 =00,...,0,a1,...,0,0,...,0),
g2 =(0,...,0,0,...,0,51,...,5):
hi =(71,---,%,0,...,0,0,....,0),
hy =(0,...,0,0,...,0,1 = Bu,...,1—B,).

We introduce one of the most important objects in this section.

Definition 6.2.4. For each spanning pair (g, h) of elements of G, define a polynomial H, €
Clzy, ...,z by

~ 62f .
mg,h det <a$i8xj)ij€1. N lf ]g,h # @
9 g, 3

1 if I, =0

Hg,h =

where my;, € C* is the constant uniquely determined by the following equation in Jac(f9")

! [hess(f9"™ H, 1] = L

o o Thess(77), (62)

where 9" is the invertible polynomial given by the restriction f|pix(g)nFixnr) of f to the locus
Fix(g) N Fix(h).

Remark 6.2.5. The polynomial H,, is a non-zero constant multiple of the determinant of a
minor of the Hessian matrix of f(x1,...,2,). Since I, NI, C I, and I, C I, hess(f9™")
and H,, define elements of Jac(f9").

Remark 6.2.6. Let (g, h) be a spanning pair of elements of G;. Suppose that Fix(g) = {0}.
Then h = g~ !'. It is easy to check that H, ) = t[hess(f)] by the explanation of m, ) below.

Recall also Example 2.1.3 that if Fix(g) N Fix(h) = {0} then pzn = 1 and hess(f9™") = 1.

Example 6.2.7. Let f = z} + 2323+ 23 and G = ((e[3], e[2],1)) be as in Example 4.1.4. We
have that (g, ¢™") is a spanning pair, with I, = {3} = I,-1 and so I, ;-1 = {1,2}. We calculate

O*f )
det ( =det (%1 .0 ) = 36717073
axiawj ie(12) ( 0 6z2 3)
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which is an element in Jac(f% ) = Jac(f). With

1 1
,u—f[hess( = 74 27017973
1
1

[hess(f9"9 ")H, 1] = 52 - 3x1 - My g-136T1 7273

:ufgﬁg_l
- 5 =1
we see directly mgy 1 = 7. So we have

H

g9~ = 9[L‘1IQZ’3.

We have to show the uniqueness of my ;. First observe:

Lemma 6.2.8. Let (g, h) be a spanning pair of elements of Gy. Suppose that f = fr@--- B f,
1s a Sebastiani- Thom sum such that each f,, v = 1,...,p is either of chain type or loop
type. Fix one v. Let I, = {i1,...,in} be the index set of the variables of f,. Then, for
fo = fulxi, ...,z ), precisely one of the following holds:

(i) f, is of chain type and, for some 0 <[ < m,
(a) {i1,... im} C Iy, {i1,..., 0} C I and {ii41, ..., im} C Ip,
(a’) {iv, - sim} C I, {in, ... i} C IS and {iga, ..o im} C 1y,
(b) {ir,...,u} CIyp and {igpr,. .. im} C Iy N ).

(i) f, is of loop type and
(a) {i1,... im} CI,N I,
(b) {ir,...,im} C I,N I,
(b)) {ir, .. im} C I N I,
(c) {ir,. . im} C Iyp.

Proof. From the explicit form of an invertible polynomial of each type and the group action
on it the following facts are straightforward for each g € Gy:

o If f, is of the chain type f, = 'z, +- - -+x;" 'z +ai™, then there exists [, 0 <1 < m

Im—1

such that {iy,...,4} C Iy and {ij11,. .., im} C I
o If f, is of loop type f, = '@, + - + 2" 'wy, + 2im 2y, then I, C I, or I, C I,
And so the cases above are clear. [
Lemma 6.2.9. m,, exists and is uniquely determined by the equation in Definition 6.2.4.

Proof. Suppose that f = f1 @ --- @ f, is a Sebastiani-Thom sum as in Lemma 6.2.8.
Then Jac(f) = Jac(f1) ® - - - ® Jac(f,) and

2 p 2
det(af) :Hdet(afy> '
0207 ) ; i, 0002 ) ijer,

v=1

Obviously, only polynomials f, satisfying I, N I, # () contribute non-trivially to Hyp. Such
a f, satisfies one of the following two by Lemma 6.2.8:
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(a) I, = {i1,...,im} C Iyn

(b) f, is of the chain type and, for some 0 <1 < m—1, {iy,...,4} C I, and {ij1q,. ..

I,N I,

Set I', := {v | f, satisfies (a)} and I', := {v | f, satisfies (b)}. Since I,

have

gh:@fua@@fub@ @ fua

v €l vpel v s.t.
a a b b IVCIngh

where @ denotes a Sebastiani-Thom sum and hence

Jac(f9h) = ® Jac(f,,) ® ® Jac(f,,) ® ® Jac(f,).

ve €l vpel v s.t.
a a b b L,CIgﬂIh

Consider the factorization

0 f ~ ~
det = I[ &% - T #
(§] (ax‘ial'j)i’jelgﬁ H a H b

va€lg l/bEFb

where

82 v 77 (v 82 v
H¥a) -_dt( fa) ; H[Sb)::det( fb> :
axiaxi 1,j€Iy, 81’181‘] 4,j€1y, Mg p

im} C

h U ([g N [h), we

Suppose for simplicity that f,, = x{'@s + -+ + 2o @y, + 2% with I, N I, = {1,...,1}.

By a direct calculation, we have the following equalities in Jac(f,,):

RN AR -

j=1 i=1

[heSS(fub|Fix(g)ﬁFix(h))] = (H ai) . (Z(_l)mj H a@,) [x?_l:ll 2£Cal+2 I

i=1+1 j=l i=l+1

[hess be (ﬁ%) (i 1)m—jﬁai> [xti‘bl 21,%2 1. x?nm—l ‘

i=1 7=0 =1
Note that
m J m J
Hfy, = Z(_l)mﬂ Hai’ Fofoy lrix(g)nmixny — Z<_1)mﬁ H ;-
j=0 i=1 j=l i=l+1

Hence, it is straightforward to see the existence and the uniqueness of mg .

20

(6.3a)

am—1
]

(6.3b)
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Proposition 6.2.10. For each spanning pair (g, h) of elements of Gy, the following holds:
(i) The class of H,} is non-zero in Jac(f9").
(i) If Iy, = 0, then [Hy -1 Hy p-1] = [Hgp (gny-1] in Jac(f).

(iii) For any j € I, 1, the class of x;H,y, is zero in Jac(fo").

Proof. Let the notations be as above. We may assume that I, # () since the statements are
trivially true, if I,;, = (). Part (i) is almost clear by the equation (6.2) since [hess(f9")] is
non-zero. Part (ii) follows from the normalization of H,j by the equation (6.2) in view of the
equations (6.3).

To prove part (iii), first note that there is v, 1 < v < p, such that j € I, for some f,
satisfying either (a) or (b) above. Due to the factorization of Jac(f9"), it is enough to show
that [z;H"] = 0 if v € T, and [z;H"] = 0if v € T,. Since the first case is almost clear,
suppose that f, € I'y, I, = {1,...,m} and I, N [, = {1,...,1}. Recall again that [ﬁéy)] is a

non-zero constant multiple of [2¢" ~2252~" .. 22, 4]. Tt is easy to calculate by induction that
(29" '25] = 0 and [z 2j1] = 0 in Jac(f,) for j = 2,...,1. Therefore, we have [xjﬁb(”)] =01in
Jac(f,) for j =1,...,1 (see also the description of the monomial basis in Proposition 6.1.11).
This completes part (iii) of the proposition. H

Proposition 6.2.11. For each spanning pair (g, h) of elements of G, we have
(n—mngy) + (n—np) = (n — ngy) (mod 2).
Moreover, if I,, =0 then (n —ngy) + (n — ny) = (n — ngp).
Proof. First of all, note that n — ny, = |I7|. Therefore, the following equalities yield the
statement:
n—ng = [T\ gn| + [Ignl, 1 —nn = [T\l + gl
n—ngn = [g| = [I\Ign| + [T\ Lgnl-

]

Definition 6.2.12. For each g € Gy, the set I, C {1,...,n} and its complement I will often
be regarded as a subsequence of (1,...,n):

[g = (il, ce ,ing), << 'l:ng, Ig = (jl,. .. ,jn,ng), jl <0 < .].nfng'
Let g1, ..., gr be elements of Gy such that I, , =0 if i # j.

(i) Denote by I, 5 U 15, the sequence given by adding the sequence Ij, at the end of the
sequence [ . Define inductively I U---UI7 by (I;l .- ) U Iy, . Obviously, as

k-1
(& c __ C
aset, Io U---UIo =17 .

(ii) Let oy, g, be the permutation which turns the sequence I U ---U IS to the sequence

I¢ Define &,,,. 4, as the signature sgn(oy,, . ) of the permutation oy, .

91---9k* k
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Remark 6.2.13. [t is straightforward from the definition that

Egid = 1 = Eia g, g € Gy, (6.4a)
gg,h — (_1)(n—ng)(n—nh)§h7g, g, h e Gf7 Ig,h — @7 (64b)
€9.9€99'.9" = Eg.9'.9" = Eg.9'9"Eg'g"» 9.9.9" € Gy, Iy =lgg =1l =0. (6.4c)
Uniqueness
Throughout this subsection, f = f(x1,...,2,) denotes an invertible polynomial. And we

show, as mentioned in Section 5.4, the uniqueness of Jac'(f, G) for any G C Gy.
Take a nowhere vanishing n-form dxy A --- A dx,, and set ¢ := [dzy A -+ Adx,]| € Q.

Definition 6.2.14. Fix also a map
a:Gr—C", g ay,

such that a;q = 1 and
QgQrg-1 = (—1)%(”’"9)(”’”9“), g € Gy.

Such a map « always exists since for each g we may choose «, as
ag=¢e|=(n—ny)(n—ny,+1)].

For each g € G, let v, be as in Definition 5.4.5
Vg (= ayw,.

Proposition 6.2.15. For a pair (g,h) of elements of G which is not spanning, we have
vgou, =0 € Jad'(f, Q).

Proof. Denote by [y, ,(x)] the element of Jac(f9") satisfying v, o v, = [Vg.n(X)]Vgn. Suppose
that f = fi®--- @ f, is a Sebastiani-Thom sum such that each f,, v = 1,...,p, is either
of chain type or loop type. Without loss of generality, we may assume the coordinate xy,
k¢ 1,U1I,U I, to be a variable of the polynomial f;. Consider the following two cases;

(a) fi =2V @ + 282w + - + 2y 3 Ty + 2% s of chain type.

(b) fi1 = x{'ze + 223+ -+ + 2o Ty + 2%mxy s of loop type.
Case (a): First, note that 1 ¢ I,UI,Ulg. Consider (%, 0...,0) € Aut(f;,G) and extend it

)
naturally to the element ¢ € Aut(f, G). Since 1 ¢ I, U I, U I ;,, we have ¢*(vy) = e [—i} Vg

(see Equation (5.2)) for ¢’ € {g,h,gh}. Axiom (iva) yields ¢*([7; ,(%)]) = e | == | [v,4(%)].
On the other hand, we have ¢*([v; ,(x)]) = [v; ,(x)] since 1 & I,;. Hence, [y, ,(x)] = 0.
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Case (b): First, note that 1,...,m ¢ I, U I, U Iy Choose an element of Gy, \G7", which
exists due to Proposition 6.1.7, and extend it naturally to the element ¢ € Aut(f, G). There
exists a complex number A, # 1, the determinant of ¢ regarded as an element of GL(n;C),
such that ¢*(vy) = AJlvy for ¢ € {g,h,gh} since 1,...,m ¢ I, U I, U Iy, Axiom (iva)
yields ¢*([v, ,(x)]) = A, [v)4(%)]. On the other hand, we have ¢*([y; ,(x)]) = [, ,(x)] since

L...,m & L. Hence, [v;,(x)] = 0. O
We consider the product v, o vy, for a spanning pair (g, h).

Proposition 6.2.16. For each spanning pair (g,h) of elements of G, there exists ¢y € C
such that

Ug O Vp = Cg,h[Hg,h]vgh~
Moreover, cqp, does not depend on the choice of the subgroup G of Gy containing g, h.

Proof. We only need to show the first statement since the second one follows from it together
with Axiom (vi), the Definition 5.4.5 of v, and the independence of Hy ) from a particular
choice of G. Based on Lemma 6.2.8, we study which variable in f, can appear in the product
structure.

Lemma 6.2.17. Let the notation and the cases be as in Lemma 6.2.8 above. There is a
polynomial v, 5(x) € Clzy,...,x,] which doesn’t depend on x;,, ..., x;, such that one of the
following holds:

(1) () vg0vn = [Yn(x)]Vgn

ai;—2 aj,—1 A4y, —1 : _
(b) vyov, = (%) Tyt Tyt Ty Ugh if l=m
o (x) - P i Vg if L<m
’y‘g,h 71 12 3 141 gh

(it) (a) vgouvp = [ygn(x)]vgn
(b) Vg O Up = [Wg,h(x)]vgh
aj;—1 aj,—1 Ay, —1
(c) vgouvy = [vgﬁ(x) . (mil e >] Ugh
Here, we denote by [y,1(x)] the class of v,1(x) in Jac(f9").

Proof. (i): We may assume f, = x{'xo + 5223 + - - - + a%m. For each r = 1,...,m, there is
a unique element ¢, € Aut(f,,G) such that ¢}(z;) = z; for all i = r + 1,...,m, which is
explicitly given by

orl(ar) =e Li} T,

1 1 1 1
gpj(xﬂ:—e[—(l— (1—---— (1——)))]xi,1§i<r.
a; Qi1 Qp—1 Qy

Denote also by ¢, its natural extension to Aut(f,G) and by A, € C* the determinant of ¢,
as an element of GL(n; C).
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(a) For each 7 = 1,...,m, we have @}(vy) = vy, @i(vn) = A on and @ (ven) = A vgn.
Suppose that a polynomial v, ,(x) € C[xl, ..., Ty, satisfies vy 0 v, = [Ygn(X)|vgn. By
Axiom (iva), we obtain

[or (Von (X))Jvgn = Mg, 07 ([1g,n(3)]vgn) = A, 7.(vg © va)
= Ao (Vg) © 97 (vn) = g 0 vn = [79,0(X)]Vgn,
and hence ¢ ([v,1(X)]) = [1y4(x)] in Jac(f9"). In view of the above action of ¢, and

Proposition 6.1.11, the polynomial v, 5(x) can be chosen so that it does not depend on
i, t=1,...,m.

(b) For each r = 1,...,m, we have @i(vy) = A lvg, @i(vn) = A on and @ (vgn) = vgn.

Suppose that a polynomlal Yon(Xx) € C[xl, ..., Ty satisfies vy o vy = [, (X)]vgn. By
Axiom (iva), we obtain
o7 (Ygn CNJvgn = @7 (16,0 () vgn) = 7 (vg © va)
= ©r(vg) 0 @ (vn) = A5 (vg 0 v) = A [ 0 (%)]Ugn,
and hence [p(7) ,(x))] = A\2[7) ,(x)] in Jac(f9"). In view of the above action of ¢,
and Proposition 6. 1 11, the polynomial 77 ,(x) can be chosen so that it is divisible by

a1—2 .az—1 a;—

Mgl gL if [ = m and by o7 Pag Tl

o o Yo if 1< m.

(ii): We may assume f, = x{'xs + 25°x3 + -+ + %"z, For each element ¢ € Gy, C
Aut(f,,G), denote also by ¢ its natural extension to Aut(f,G). Let A\, € C* be the de-
terminant of ¢ as an element of GL(n;C). Note that if ¢ # id then ¢*(x;) # z; for all
i1=1,...,m

(a) For all ¢ € Gy,, we have ¢*(vy) = vy, ©*(vy) = vy and *(vgn) = vgn. Suppose that a

polynomial v, ,(x) € Clzy,...,,| satisfies v, 0 v, = [y5.0(X)]vgn. By Axiom (iva), we
obtain

[0 (Yan(xX))vgn = " (79,0 (X)Vgn) = " (vg © 1)
= ¢"(vg) © @"(vn) = vg 0 vh = [Ygn(X)]Vgn,
and hence [p*(7,4(x))] = [4.1(x)] in Jac(f9"). In view of Proposition 6.1.11, the poly-

nomial v, (x) can be chosen so that it does not depend on z;, i =1,...,m.

(b) Suppose that a polynomial v, ,(x) € Clxy,. .., z,] satisfies v, 0 v, = [y51(X)]vgn. Since
1,...,m do not belong to I, N I nor I, it is obvious that the polynomial v, ;(x) can
be chosen so that it does not depend on z;, i =1,...,m.

(c) For all ¢ € Gy,, we have ¢*(vy) = A\ vy, ©*(vn) = A vp and @*(vgn) = vgn. Suppose
that a polynomial 7, j,(x) € Clxy, ..., z,] satisfies vjovy = [v, ;,(X)]vgn. By Axiom (iva),
we obtain

2" (Vgn CNvgn = " (Vg 1 ()vgn) = @* (v © vn)
= ©"(vg) 09" (vn) = A% (vg 0 v) = A [0 (X)]vgn,
and hence [¢*(7) 1, (x))] = A\;%[7,,(x)] in Jac(f9"). In view of Proposition 6.1.11, the

a11a21

polynomial 7 , (x) can be chosen so that it is divisible by 2} 3 R ]
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Now the first statement of the proposition is a direct consequence of Lemma 6.2.17, since
Hg is a constant multiple of the product of the monomials in the round brackets there. We
have finished the proof of the proposition. n

By Proposition 6.2.16, we may assume that G = Gy. We give some properties of ¢, .

Lemma 6.2.18. For each g € Gy, we have

Cy,g

1
1 = (—1)%(’”’7”9)(”7”971) e |:_§age(g):| .
Proof. We have

1 agag_l

Lo Jpg([hess(f9)]vg b Cvg-1 = () = g

Jyg([hess(f7)]wy, wy-1)

L (n—ng)(n—ng— 1
—= (—1)2( 9)( g 1) e [_iage(g)] . ’G|

On the other hand, by Axiom (v) and normalization (6.2) of H, ), we have

1 1
ol Gty Q) = i sl o0 )
1
= . Jt,id(wid, ¢g g-1[hess(f9)Hy g1 |wiq)
C —
= 0 I ia(wia, [hess(f) wia)
My
= Cg g1 ’G|

Lemma 6.2.19. For each pair (g, h) of elements of Gy such that I,, =0, we have
CohCh—1 g1 = (_1)(%7%9)(”7”}1).
In particular it follows that cgp # 0.

Remark 6.2.20. If [, = 0 for a pair (g, h) of elements of Gy, it is spanning.
Proof. We have

Vg © (Up 0 Vp-1) 0 V-1
1 1

—sage(g) — zage(h)| [¢" (Hpp-1)Hgg-1]vid,

(1)) b ) (o) g {
> 2

(vg 0 vp) 0 (V-1 0 Vy-1)
1 n—m n—m - 1
= (—1)2( gh)( Ve {—gage(gh)] Cg,hc}rl,gfl[th,(gh)*l]vid
The proposition follows from the facts that the product o is associative, ¢*(Hj p-1) = Hj, -1

since Iy, =0, [Hy -1 Hpp—1] = [Hgp (gny-1] in Jac(f), age(g) +age(h) = age(gh) since Iy ), = 0,
and (n —ny) + (n —ny) = (n —ng,) (mod 2) by Proposition 6.2.11. O
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Corollary 6.2.21. Let (g,h) be a spanning pair of elements of Gy with the factorization
(91, g2, ha, ha). The complex numbers cg, p,, Cgyhy aNA Cgy p, aTE NON-ZETO.

Proof. 1t follows from the fact that I, p, =0, Iy, n, = 0 and Iy, 5, = 0. O

Proposition 6.2.22. Let (g, h) be a spanning pair of elements of Gy with the factorization
(91, g2, h1, ha). We have

Lip _ _ 1 Cqgi.h
Is — _1 Q(n n92)(n gy 1) .e |:__a e g :| . L
g = (=1) 5a8e(g2) oo
In particular, ¢, # 0.
Proof. We have

1
Vg, © (Ug2 © vh2) O Unhy = (_1)%(n—ng2)(n—n92—1) e |:_§age(92):| " Vg, © [Hgmg;l]vid © Un,

Ln—ngy)(n—ng,— 1
= () o | Sage(g)| [ T

On the other hand, we get:

(vgl © ng) © (Uh2 © Uh1) = Cg1,92Vg192 © Cho,h1Vhiho

= Cgy,95Cha by Co,h [ Hg n]Ugh-

Note that H,) = Hg2’g2_1 = th,hgl by the definition of the factorization (g1, go, h1, h2). By

Corollary 6.2.21, we know that ¢y, 4, and cp, 5, are non-zero, which gives the statement. [

Hence, by this proposition, we only have to determine c,, for all pairs (g, h) of elements of
Gy such that I, = 0.

Remark 6.2.23. Suppose that f = f1 @ --- @ f, is a Sebastiani-Thom sum such that each f,,
v =1,...,p, is either of chain type or loop type. Then, we have a natural isomorphism G =
Gy, x -+ x Gy,. Therefore, it follows that each g € Gy has a unique expression g = g;--- g,
such that g; € Gy, for all i = 1,...,p, hence Iy, ,, = 0 if i # j and I = I U.. . UI{ .

Definition 6.2.24. With this notation, define v, by

Ug 1= E€gy,..,gpUgs O *** O Vg,
Obviously, v, is a non-zero constant multiple of v, for all g € G.

Remark 6.2.25. It is also easy to see that v, does not depend on the choice of ordering in
the Sebastiani-Thom sum and by having equation (6.4) in mind for a pair (g, h) of elements
of Gy with I, = () we have

- 1

Vg © Up = ——Ugh-
€g,h
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Proposition 6.2.26. For each g € G, we have
- 1 ~
Ug ©Ug-1 = <_1)%(ning)(ningil) "€ {—Eage(g)} +[Hyg-1]0ia.

Proof. There is an inductive presentation of v, given by

o= Vgy if g=0a0
9= Y ~ ~ . . .
€91...91,9i+1Yg1..9; © Vgiya it g=g1...6i9i41, 1=1,...,p—1

The statement follows by induction from the following calculation:

Vg O Vg1 = (591 9i,9i+1Vg1...9; © Ugi+1) © (59; gy 7gz+11Ug71 g7t Qg ! )

gH»l
— ()Tt V) ~
= (-1 * (Vgy...g: © vgl_l.‘.gi_1> 0 (U, © Ug;ll)
— ( 1) n—ng;...g;)(n— ”g¢+1)JF%(n*ngyugi)(”*”mmgi*1)+%("*n9¢+1)(n*”gi+1*1)

1
age(g1 - - 9i) — §age(9i+1)} ’ [HgL.-gi,gfl...gflHgi+179;31]vid
1

l n—nm n—mgqg— ~
= (_1)2( n=ng=l) e {—éage(g)} : [Hg,g*l]vid

l\Dll—

]

This proposition states that by replacing the map o : Gy — C* by a suitable one we have
a new basis {U, }geq, instead of {v,},ec,. To summarize, we finally obtain the following:

Corollary 6.2.27. Let (g,h) be a spanning pair of elements of Gy with the factorization
(g1, g2, h1, ha). We have

- 1 €g1,92E ] -
Ug o) rUh — (_1)%(7177@2)(7177192*1) e |i_§age(g2>‘| . é@gﬂ[ﬂ—g,h]vgh'
g1,h1

In particular, for any subgroup G of Gy, if a G-twisted Jacobian algebra of f exists, then it is
uniquely determined by the azioms in Definition 5.2.1 up to isomorphism.

Existence

Throughout this subsection, f = f(xi,...,x,) denotes an invertible polynomial. And we
show, as mentioned in Section 5.4, the existence of Jac'(f, G) for any G C Gy. Let A’ be as
in Definition 5.4.7.

Definition 6.2.28. For a spanning pair (g,h) of elements of Gy with the factorization
(91, g2, h1, ha), set

1
Cgp i= (—1)%(717"92)("7"92*1) -e {—éage(%)] 8917925h2,h1 (6.5)
ggl’hl
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Remark 6.2.29. It is easy to see that

Cgid = 1 = Ciq g, g € Gy,
1
Cogt = (_1)%(n—ng)(n—ng—1) .e [—§age(g)] , g € Gy,
Coh = Eghs g.he Gy, Iy, =0.

Definition 6.2.30. For each g,h € G, define an element of A}, by

o Con [Hgn)Ugn if the pair (g, h) is spanning
Uy O Uy, 1= )
g 0 otherwise

It is clear that Tiq 0 U, = U, = U, 0 Tiq since Liqy = I;3q = 0 and hence [Hiq ] = [Hyua) = 1.

Proposition 6.2.31. For a spanning pair (g,h) of elements of Gy with the factorization
(91,92, h1, ha), we have

Con = (=) e [age(g)] T
Hence, we have
Ty 0Ty = (=1)" 7 - (e [—age(g2)] Th 0 Ty)

Proof. We have

Cop =(—1)2" o)1) g {—lage(gz)}  CogeChan
7 2 €g1,m
= (—1) (= 01) (r=ngy)+(n=iny ) (n=ing)—(n=ngy ) (n=nny ) +(0=Ngs) . & [ _age(gs)]

(1)) =) [—lage(hz)} . EhihaCoagn
2 ghlvgl

=(—1) ) e [—age(ge)] - Cag,
where we used that hy = g5 ', n — n,, = age(ga) + age(ha) and Proposition 6.2.11. O
Proposition 6.2.32. For each g,¢, 9" € Gy, we have
(Vg 0 Tyr) 0 Vg = Vg 0 (Tgr © Vgr). (6.6)
Proof. First, we show the following

Lemma 6.2.33. For g, g’, g” € G, suppose that g,g’ and gg’,g” are spanning pairs with
f
Ig,g’ - [9”-

(i) There exist g1, 9o, 93, 91, 95, 93, 91, 95, 95 € Gy such that

"o

9= 019293, § = 919505, 9" = 19595, 9197 =1d, gog5 = id, g3g5 = id,

and (9192, 93, 9192, 93) s the factorization of (9,9') and (9195, 9291, 95, 9193) is the fac-
torization of (g9q,g").
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1" I

(ii) The pairs (¢',9") and (g,9'g") are spanning such that 1, ,» C I, and (955, 91, 9595, 97)

is the factorization of (¢', ") and (g1, 9293, 9594, 95 95) s the factorization of (g,9'g").
Proof. (i) Similarly to the presentation of (6.1), the elements g, ¢’, ¢” satisfying the conditions
can be expressed, in the multiplicative form, as follows:

g = g - g - id - id - g3 - id
g id - id - g - gy - g5 - id
g id - g5 - gy - id - id - g5

(ii) By the above presentation, it is easy to see that (g, ¢’) and (g¢’,¢”) are spanning pairs
with the given factorization. It follows from ¢} ¢{ = id that I, o C I,. O

Lemma 6.2.34. The LHS of (6.6) is non-zero if and only if the RHS of (6.6) is non-zero.

Proof. By Proposition 6.2.10 (iii), the LHS of (6.6) is non-zero only if both pairs (g, ¢’) and
(9¢',¢") are spanning and I, , C I, and the RHS of (6.6) is non-zero only if both pairs
(9,9'¢g") and (¢', ¢") are spanning and I, 4 C I,. Lemma 6.2.33 together with Proposition
6.2.31 yields the statement. [

Lemma 6.2.35. Let the notations be as above. We have

H

9,9 —

H

93,959

H

999" —

H

9291,95 9%

"o H H 11 ol H

9.9'9" = tlgags,gighs Hlg'.g"” — L1gi 97>

!

and hence [Hy g Hyy o] = [Hyggr Hy o] in Jac(f9997).

Proof. The first statement follows from the definition of H,; and the second one does from
Proposition 6.2.10 (ii). O

Therefore, we only have to show the following

Lemma 6.2.36. Let the notations be as above. We have

Cg,9'Cqg’,g" = Cg,9'g" Cg'.g" -

Proof. 1t follows from the definition (6.5) that

—§age(g3)

Y

g g/ ’

r— (—1)%(”‘“93)(”‘”93_1) .e 1 . _9192,93793:9192
9,9 g /o
9192,9192

e

) - o
_ Yn_ n-n_ ,—1 1 €9195.929,€all g} g
Cogr g = (—1) 2" oast) 0 Monet )-e[——age(gzgi)}- 2P RRE,

2 €g19%.9Y
_ Lipe _ _ 1 g9179293gg”9/ 9595
Co,9'9" = (—1)20mazas) = azas =) e | ——age(gags) | - =
' 2 I 11
91,9293

1 1 g/ / /g// "o
— _(_ E(nfng/)(nfng’ 71) . . / . 9293,91~ 91,9293
g = (D0 o [ gy ] bt o

€qbgs.94 g5
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Since all I, Ig,_ and Ig,_, are mutually disjoint, we get

1 1
L\ hengy) (=g 1)+ (nny (e —1)
Cg.9Cag g =(—1) 291 291
i 1 1 g g/ i g / /6 110 1
/ 9192,93~ 93,9195 ~9192,9291~ 92 971,93
re | —5age(gs) — age(ga91) | - —= =
L 91929194 €9195.94

_(_ 1) %(nfng?))(nfng3 71)+%(n7n92 +nfng/1 )(nfng2 +nfng/1 -1)

1

1
e | —5age(gs) — jage(ge) —
//8 "

591 92E91,92,08 593,91 A 591 A Eq1 ,95€91.95,97,92€9}.92 591 9y €Y gl g4

1
Eage(gi)

€91,92E91,92.94,94E 5,94 91,9,E 1.9} 94

(—1)? ((n=ngg)?—(n—ngy)+(n—ngy)2 —(n—ngy)+(n—ny )2 ~(n—n )+ 2n—ng;)(n—n))

1
—age(g;)

1 1
-€e ——age(g3) - —age(gQ) )

2 2

591 92,93 593 4105 1.05.0,.92E 64,9260l 9l E ot 94

~ Y

8gl 92 791 792 891 792 »93

and
L 1
Cq.g'g"Cq' g"" = 1)5 " Ta03) (P Ta0s 1)+§(n—ng/l)(n—ng,1—1)
1 1 g 5 "o /7 8 5 "o
/ 91,9293 92937929 9293’91 91 392 93
o] goelng) - jae(a)| - 222 -
€91,9594 €gb94.94 94
1)% Nn—ngy+n—ngs)(N—ngy+n—ngs — )+%(nfng/1)(nfng/171)
1 1,
e —Qage(gs) — jage(g2) — ;age(g1)

//8 //8

591 92,93 892 93 592 793 592 793792793 92,93 ”8 5

95,94 592,93,91 591 95 .94 €al gy

€ 01,9494 € 0.9 € 9,94 E 095,94 911 E gt 51
(_1)$(<n—ng3> —(n—ngy ) +(n=ngy)*—~(n—ngy )+ (n—n ) —(n—ny )+2(n—ng, ) (n—ng,))

1 1 1

‘e —éage(gs) - §age(gz) — §age(9’1)

591 92,93E 92,08 592 A 592 9,059 892 950} 591 95 .94

Eq 79279”6 95.9%.94.94

Therefore, we only have to show that

(_1)(n—ng2)(n—ng/1) 91.92.9594.91,95%91,95,91,925 91,92 Egll giEqt gl g

€91.92,91,95€91.95.95

= (—1)ne2)(n=ngg) €91.92.935 92,9594 9, gl 9%94.9% E 9,549 E 9 91

5g1,g2,93 592,93,92 9
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Since ¢1g] = id, gog4 = id and g3¢5 = id, we have [;’1 = [;i,, I, = Igg and I = [gg' We also

have that £2 = 1 for any expression . Hence, the problem is reduced to showing the following
equation:

(- 1)(n—ngz,)(n—ngxl)  €91.92.95%93.91,95%91,95,91,92€ 91,9294

€91,92,9}.95€ 91,9594

— (1) na) () €91.92,93592,93.95.95 € 9b.,93.91 £ 91 .92.9

€91.95,95 € 9.93.92.95

Recall also that &, is the signature of a permutation o, based on the expression e (see Definition
6.2.12), and hence we get a suitable sign by interchanging two indices, for example, £, o1 o =

)z The LHS of the above equation is given by
93,92-91

(—1) (n—ngy)(n—ngr) €91,92,95€93.91.95€ 91,95.91,925 9’ .92.,94

€g1,92,91,95 91,9594
1)(”*719/1 )(n=ng)

€g3,95.9,€9}.92,94

(_ 1)(n7ng2)(nfng/1) ) g91792793 (_

€g1.9.94

(—1) ) g ) mng g g

891 g2 ,9’1 ,9'2

(=1) (n=ngy)(n=ng) €91,92.95%93.95.91 €9 92,94

~ Y

€g1.95.95

while the RHS is given by

nen. N n—n..) 91.92,93€92,93.95.94 € g5.93.9, € 9’ 92,95
(-

€g1,95,94 €94.93,92,9%
~ (n—ng)(n—ngy)~ ~
(— 1)(”—ng2)(n—n93) C91.92.93 (1) ? €93.95.9191.92.95

€q1.9.94

(1) ey ) (g S )

€q4.93.92,9%

(_1)(,1,%2)(”,%,2) 91,9295 93,95,91 € 91 92,94
~ )
€91.95.94

which coincides with the LHS. O]
We have finished the proof of the proposition. m
Now it is possible to equip A" with the structure of a Z/2Z-graded C-algebra.

Definition 6.2.37. Define a C-bilinear map o : A'®c A" — A’ by setting, for each g,h € Gy
and ¢(x), ¥ (x) € Clzy,...,x,],

([o(x)]Tg) © ([W(X)]Un) == Cg,n [9(X)8(X) Hy p] Ugn-
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It is easy to see that the map o is well defined by Proposition 6.2.10 (iii).

Proposition 6.2.38. The map o equips A" with the structure of a Z/27Z-graded C-algebra
with the identity Uiq, which satisfies Azxiom (ii).

Proof. The associativity of the product follows from Proposition 6.2.32. It is obvious by
Proposition 6.2.11 that .A%oA%. C A;Tj for all i, j € Z/27. 1t is also clear by the definition of the

map o above that the natural surjective maps Jac(f) — Jac(f9), g € Gy, equip A" with the
structure of a Jac(f)-module, which coincides with the product map o : Ajy®@c A, — A,. [

Definition 6.2.39. Take a nowhere vanishing n-form dx; A - -+ Adz, and set ¢ := [dzy A+ A
dx,| € Q. Define a C-bilinear map : A’ ®¢ Q/f,Gf — Q’ﬁcf by setting, for each g,h € Gy

and 6(x), ¥(x) € Clay, ... ],
(6()]5,) F () ]wn) = 22 ()b () Hy ] i,

where o : G — C*, g — @, is the map given by

@, =e %(n—ng)(n—ng—i—l) . (6.7)

Remark 6.2.40. The map @ : G — C* satisfies a;q = 1 and
agag,l — (_1)%(n—ng)(n—ng+1)’ g c Gf

Proposition 6.2.41. The map +: A’ ®c¢ Q’ﬁGf — Q}’Gf satisfies Aziom (iil) in Definition
5.2.1.

Proof. The map  induces an isomorphism - ¢ : A" — Q}’Gf of Z/2Z-graded C-modules:

A — Dy [0V = [0(x)]0, F ¢ = g [o(x)]wy-

So we directly see Axiom (iiib). Then we can show for each g,h € Gy and ¢(x),9(x) €
C[l’l, Ce ,CIZ’n]

X)4p(x) Hy ] wan

So we have seen the A"-module structure of 2, ;. Axiom (iiia) is clear from the definition. [J

On A’ we have the action of ¢ € Aut(f, G) induced by the isomorphism + ¢ : A" — Qlf,va
which is denoted by ¢*. We also use the notation of Remark 5.1.8.

Proposition 6.2.42. Aziom (iv) in Definition 5.2.1 is satisfied by A’, namely, Azxioms (iva)
and (ivb) hold.
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Proof. Let (g, h) be a spanning pair of elements of Gy with the factorization (gi, g2, b1, ha) and
© € Aut(f,G). For simplicity, set ¢’ := p~tgp, V' := ¢ hy, ¢, := ¢ gip and K} := o hp
for i = 1,2. Note that the pair (¢’, k') is a spanning pair with the factorization (g}, g5, b}, h%)
since ¢ induces a bi-regular map ¢ : Fix(g)) — Fix(g;). It also follows that there exist

Aoy Mgy s Mg, € C*, 1= 1,2 such that

i’ Phy

P (wid) = Apwid, ¢ (wg,) = )‘wgiwgb " (wn,;) = >‘90hiwh§> 1=1,2,

and that, by (6.7), @y = 0y, O = i, Oy = @y, and ay = @y, for i =1,2.

For each ¢(x) € C[xy,...,x,], we have

¢ ([o(x)]7g) = [¢" ()" (Ty),

since

" ([0(x)]7g) F ©*(¢) = @™ ([0(X)]Tg I €) = " (a[d(x)]wy)

Therefore, we only need to show that ¢*(7,) o p*(v),) = ¢*(v, 0 Up).

It easily follows that

O (Ta) =Tia, ¢ (,) =

Qg

oy

P
Ap

([p* o (x)]0* (D)) F 0" (C) = ([p"d(x)]" (V) F ™ (C)

since " (Vi) = ¢*(¢) = ¢*(Via I () = ¢*(¢) and

()\9097;69;) (= )‘vgiagéwgi = 90*(agiwg¢) = 90*(7%) - ‘P*@) = (/\ng*(vgi)) =,
(/\cphighjb,) H C = )‘whiah;wh; = w*(ahiwhi) = 90*(5111-) - 90*<C) = (/\9090*(@%)) = C

Lemma 6.2.43. We have
Ao A

¥Yg1 " Pa2 _591,92

* —
% ((.Ug) - >\ g/ ,
Y 91:92
which 1mplies
“@,) = Aoy Mooy Eotuh
PN
¢ 91,92

. wg’a

. Ug’v

©*(wn) =

©*(Un) =

A )\WLQ Ehy,ho

©hq

Ao Enmy

Agy A

©hq

®ny ChihL,
2 . 12'%2 T

A

Eh1,ho

Wht,

Proof. Let Tcn be the tangent sheaf on C". For each ¢” € Gy, define a poly-vector field

09/, c F (Cn) /\n—ngu%n) by

~ Oz, ox

O ANvoopN—0

P In—n g
" — £
0, )

1

if [gCH = (jl, e
].f ]gC// - @

7jnfngu>7 jl << jnfng//
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Since we have p*(wia) = Apwia and p*(wy,) = Ay, wy for i = 1,2, the poly-vector field ggi
transforms under ¢ as

~ A g
Py i
Qgii—>—g'~i-994,
Ao Ey

k3

i=1,2,

where €, is the signature of the permutation iy — I U Iy, and £y is the signature of the
permutation Ljg — I3 L I;. Suppose that ¢*(wy) = Ay wy for some A, € C* and let &
be the signature of the permutation I,y — Ig U I, and €, be signature of the permutation
fiq — I, U Iy. Then, 6, transforms under ¢ as

e S5 7,
Ao Ey

~ A
0y

Note that 59 = ggl,gzégl A 592 and 59’ = E‘“g/l,gé@v% A §g,2. Hence, we have

A

g 6989/1:!]& - >\4P91 >\4P92 . 891892
o~ o~ i 2 ~ ~ .
Ao Eg€g100 )\cp A

Therefore, the statement is reduced to showing that

€1€gs _ Eg\Egh

g Eq'

However, by calculating the number of elements less than j in the sequences Ij, Iy, and I]

for each element j in I or I , it turns out that the LHS of the above equation is equal to

(—1)(m=ma)(n=ng2) - Similarly, the RHS is equal to (—1)(n_n93)(n_ng'2). They coincide since we
have ng, =ngy and ng, = ngy. O

Lemma 6.2.44. We have

2

[p"Hyp] = ;52 [Hy ]

©

Proof. Recall Definition 6.2.4, where H,} is defined as a non-zero constant multiple of
82 c __ C J— c __ C 3 3 1
det ( f )i’jdg}h. Now, Iy =15, = I}, Iy = [gg =1 /- This is nothing but the

8xi8xj 27

transformation rule of the determinant under the automorphism . O]
Since goho = id and ghh!, = id by definition of the factorizations,
Mgy = Npy = Npy = Ny, )\@92 = )\%2,

where we identify wy, with wy, under Qyp, = Q4. and wy, with wy, under Q= Qf .

64



By the above lemma, it follows that

" (V) © " (Un)
Xow Ao, Apn, A

®91 Py \Phy Nhy Egr,g2 Ehahg

= - = - = < Vg O Upy
4 g
Ag Soigh  EMLI,
. )\90!]1 >\‘F’92 >\‘Ph1 >\‘Ph2 . €91.92 . €hy,ho
= 1 — —
X Sgigh  ERYRY
lin—n n—m_;—1 1 ggl 95 ghl A —
. (_1)2( gé)( 9/2 ) e __age<gé) . 1~2 20 [Hg/ h’] Ug’h’
2 E 1 h ’
91"
Lin—n n—mg,—1 1 8917925}12,}”
— (—1)2( 92)( 92 ) - e _§age(g2) ——
€g1,h1

2 ~
| (A% 4, ’h’]) (A%l o S /h/)
g? ~ g
)\92" )‘920 Egi,h0)
= Con (" Hyp] 9" (Vgn) = ¢" (Vg 0 ),

where we also used that

(_1)(n—nh/1)(n—nh/ )~

=~ n—mn n—np, )= ~
Sy = (=) T)OTIE, L Sy = 2 Eny s -

Hence, we proved that the algebra structure o of A" is Aut(f, G)-invariant.

The G-twisted Z/27Z-graded commutativity, Axiom (ivb), is a direct consequence of Propo-
sition 6.2.31 since H, , = Hy 4 and ¢*(v5,) = e[—age(gz)] - U), which follows from the calculation

9" () ¢ = g"(tn) F (e[—age(g)] g7(¢)) = e[—age(g)] - g" (@nwn)
= e[—age(g2)] - (@nwn) = (e[—age(g2)] - Un) - C.

We have finished the proof of the proposition. O

We show the invariance of the bilinear form Jy g with respect to the product structure of
A’. We use the notation in Definition 6.2.4.

Proposition 6.2.45. For a spanning pair (g, h) of elements of Gy, we have

Jf.gn (Eg F wp, { hess(fgmh)} w(gh)1>
/,Lfgr‘]h

= (-t gy, (Wh’ ((h1)7,) ({

hess( fgﬁh)} w(gh)l)) . (6.8)

IU/fgr‘]h

As a consequence, the algebra A’ satisfies Aziom (v) in Definition 5.2.1.
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Proof. Let (g1, ga, h1, ha) be the factorization of the spanning pair (g,h). The LHS of the
equation (6.8) is calculated as

1
Jtgh (Eg - wh, { hess( f9") } )
qugﬂh

_ 1 It oh (( o) F ¢, [ heSS(fg”h)] )
,ufth
hess(f9"™)H,, h} Wig )

ay,

QgnCqy p,
. gh*g,
= — " Jrgn (wgh’ [

ap

Iu/fgﬁh

«

_ “gh (_1)%(nfng2)(nfn92 1) . |:__age 591 92€h2 h1

ap, €g1,h1

(—1)"maen . e {—%age(gh)] |G

_ Doh (g (nnay D)
ap
1 1

1 €g1.02C ho.h
_ - _ = h _ = . 91’732 2,1 G
e | Jouetan) ~ Josehn) - Gomelan)| - 2T )

On the other hand, the RHS of the equation (6.8) can be calculated by having in mind that
(h~Y)*v, = e[—age(h; " )]v, by Equation (5.2), since only h; ' acts on variables not fixed by g:

(_1)(n—ng)(n—nh) Jen (w’“ ((h_l)*ﬁg) - (LL 1 hess(fgﬁh)} W(gh)l>)
fanh

1
— _1 (nfng)(nfnh) . e _age hil
—— (1 [~age(ls")]

“Jin (Wm ({ ! heSS(fgmh)] Ug © V(gh)- ) - C>
,ufgmh

Qp-1C -
_ h_1 g9,(gh)~! (_1)(n—ng)(n—nh) -e[—age(g2)] - Jpn | wh, hess(fgmh) -
Q(gh)—1 ’ M ponh
ap— 1 g, , £ -1
= T (Cp)rmnm) ) ) g [_ﬁage(gl) —age(92)] LB e
Agh) €g2,m
n 1
(e < age(h)] 6l
= ah_l (_1)("_ng+1)("—nh)+%(n_ng1)(”_”91_1)_("—”92)+("_n91)(n_”92)
X(gh)=1
1 1 1 €g1.02E]
e {—56@6(91) - éage(hl) - iage(gz)] ek
€g1,m

where we used that € = Egslhy = Ehahy and Egrl b = Eq iy = €, - We have ag,agn)—1 =

,1 hl
(—1)5("*"%)("*"9”1) and Apap—r = (—1)2(=m)(=nnt)) e Remark 6.2.40. Hence, it follows

glh
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from a direct calculation by the use of

n_ngz(n_n91)+<n_n92)v n_nh:<n_nh1>+(n_nh2)a

n_ngh:n_n9192:(n_ngl)+(n_nh1)7 Ngy = Npy,

(cf. Proposition 6.2.11) that

S0 = m) (1 = gy + 1)+ 51— 1)1 = g, — 1) + (1.~ )

_ %(n—nh)(n—nh—i— 1) + (n = ng + 1)(n — ny)
+;( ngl)(n_ngl_1)_(n_ng2)+(n_n91)(n_ng2)
= 0 (mod 2),

which gives the equation (6 8)

For X € Ay, w e 0}, ' € O, Jpa(X Fw,w) is non-zero only if ' € ), 1 and the
pair (g, h) is a spanning pair. Note that I,UI, Ul = L4 if and only if [hUIgh) 1U L1 = I,
which means the pair (g, k) is a spanning pair if and only if the pair (h, (gh)™!) is so. Therefore,
Jra(X B w,w) is non-zero if and only if J;g(w, (h1)*X F w') is so. It follows that Axiom
(v) can be reduced to the equation (6.8). O

So we have shown all axioms and with Proposition 5.4.9 we have finished the proof of
Theorem 6.2.1.

Example 6.2.46. Let f = 2} + 2323 + 23 and G = ((e[3],e[2],1)) be as in Example 4.1.4.
With Example 4.3.4 we see

Jac(f,G) = <Uid> 23], [%]2, [z122], [1179] 23], [$1$2][$3]Z> D (vg, [T3]v,y) ® (vg-1, [$3]Ug*1>
with the following relations
[z125]* = 0, [23]° =0, vj =0, vgfl =0, vy0v,-1 = 9[x1T223],

see the normal multiplication in Jac(f) = Jac(f,id), Proposition 6.2.15, Example 6.2.7 and
observe that

1 Bagfot
Cogt = (_1)%(71_”9)(”_”9_1) e [——age(g)} R id

= (—1)z6-D6-1-D g {—51
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6.3 Orbifold Jacobian Algebras for ADE Singularities

Definition 6.3.1. The classification of invertible polynomials in three variables giving ADE
singularities and the subgroups of their maximal diagonal symmetries preserving the holomor-
phic volume form is given in Table 6.1 (see also [ET13a, Sec. 8 Table 3]).

Type H f(x1, 29, x3) ‘ G?L ‘ Singularity Type
I |2 o422 k>1 (1(0,1,1)) Aoy,
e+ ad+ad, k>1 (3(0,1,1),3(1,0,1)) Aogpy
a} + a3 + a3 (5(1,2,0)) D,
a} + a3 + a3 (3(1,0,1)) Eg
5+ a3 + 73 {1} Es

I 23+ 2+ e, k> 1

£E1 + 332 + x2x§k+1, k Z 1

(17()’ ]-)> A4k:—1
(07 1a 1)> A4k+l

P
N N N

w24 gl k>4 (1,0,1)) D,
o3+ 23 + 1913 {1} Es
T3+ 23 + vou {1} E;
| 23 4 w323 + woxh T k> 1 {1} Dojio
1\Y o+ wymy + ol k1> 2 {1} A
23+ o2k + woxd, k> 2 {1} Dopi1
\Y T179 + Thas + by, k1> 1 {1} Ap

Table 6.1: Classification of invertible polynomials giving ADE singularities and the groups of

their diagonal symmetries preserving the holomorphic volume form.

Remark 6.3.2. As it is explained in Section 8 in [ET13a], ~one can describe explicitly the
geometry of vanishing cycles for the holomorphic map ]? C3 / G — C. Here C3 / G is a
crepant resolution of C*/G and f is the convolutlon of the resolution map C3 / G — C¥/@
and the induced one f : C3/G — C. Note that C? / G is covered by some charts all isomorphic
to C3.

Remark 6.3.3. When G respects one coordinate we only need to look at the resolutions of
C? given in [BK91|. For G = Z /27 acting (x;, x;) — (—x;, —x;), we have C3/G = C x {2* =
zy} € C* by x = 27,y = 23, 2 = x;7; and we have the two charts C* — C*:

(t,u,v) = (t,u,uv®, uv) and (t,u,v) — (t, u*v, v, uv)

For G = Z/3Z = (g) acting by g*z; = e[5]x;, g*z; = e[3]a; , we have C*/G = C x {2* =
ry CC by x=2a},y= x;’, z = x;x; and we have the three charts C* — C*:

(t,u,v) = (t,u, u*v®, w) |, (t,u,v) = (4, v, uwv?, w) and (t,u,v) = (¢, u0?, v, wv)
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Example 6.3.4. We will calculate the restriction of fon each chart based on the classification
in Table 6.1.
1. For the pair

1
f=a vl (k>1), G:= <§(0,1, 1)>,

we have in the two charts

Flt,u,v) = " 4w+ w? and f(t, u, v) = " 1wt o
Critical points of fare on the intersection of the two charts.
2. For the pair

1

f=a it (k>1), G:= <§(1,0,1)>,

we have in the two charts

~ ~

flt,u,v) =2 +uf +w? and f(t,u,v) = t* + u*o* + 0.

Critical points of ]?are on the first chart.
3. See Example 6.3.5.
4. For the pair

1
fr=al+ad+a3, G:= <§(1,2,0)> :

we have in the three charts

fltu,v) =t +u+u*®, f(t,u,v) =t +u’v+uw? and f(t,u,v) = t* +u’v? + 0.

Critical points of fare on the second chart.
5. For the pair

1

[ G::<§<1,o,1>>,

we have in the two charts
f(t, u,v) = t* + u* + wv? and f(t, u,v) = t* + u*v® +v.

Critical points of anre on the first chart.
6. For the pair

1
fr=at+ a2+ (k>1), G:= <§(1,0, 1)>,

we have in the two charts
Ft,u,v) = 2 + tuFo® + u and f(t, u,v) = t* + to* + vu’.

Critical points of fare on the second chart.
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7. For the pair
1
fri=a a8 +aad (k> 1), G:= <§(0,1,1)>,

we have in the two charts
Flt,u,v) = 2+ u+uF 0™ and f(t,u,v) = £ 4+ vu® + w

Critical points of fare on the second chart.
8. For the pair

1
= v ab b mal (k>4), G:= <§(1,0, 1)>,

we have in the two charts
Fltu,v) =t 4 tun® + w and f(t,u,v) = 5 + to 4 ou’.

Critical points of ]?are on the second chart.

Example 6.3.5. For £ > 1, set

1 1
f=a® 122422 (k>1), G:i= <§(0, 1.1), 5(1,0, 1)>.

Here, since the resolution is not unique, we take A-Hilb C? of [CR02] where A = Z/27Z x Z./27Z.
We have C3/G = {2? = wry} C C' by w = 2}, 2 = 23,y = 23, 2 = 212923 and we have four
charts C* — C*:

(t,u,v) = (t,u, tuv?, tuw) |, (t,u,v) = (¢, tuv, v, tuw) |

(t,u,v) = (tPuv,u, v, tuv) and (¢, u,v) = (tu, uv, tv, tuv)

Then we have in the four charts

f(t, u,v) = t* +u 4 tuv? f(t, u,v) = t* + tuPv + v,

f(t, u,v) = t*uFo* + u + v and fA(t, u,v) = thuF + uv + to.

Critical points of J?are on the fourth chart.

Remark 6.3.6. To summarize, we observed that critical points of the map ]?are contained in
one chart isomorphic to C3. The restriction of f to the chart is given by f defined in Table 6.2.

Concerning the geometry of vanishing cycles, the pair (f,G) is equivalent to the pair
(f,{id}). Then, it is quite natural to expect that the orbifold Jacobian algebra Jac(f,Q)
of (f, G) is isomorphic to the one Jac(f, {id}) of the pair (f, {id}), the usual Jacobian algebra
Jac(f) of f, which is the following theorem.
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f(w1, 20, 73) G 7(yl,y2,y3)
Lofai™ +ag+a3, k21 (3(0,1,1)) i e ey
2. || 2t +af+af, k=1 (3(1,0,1)) Y+ Ys + yay3
3. et +ad+a, k>1 (3(0,1,1),5(1,0,1)) || y1ys + y1ys + yays
4. | o} + 23 + 23 (3(1,2,0)) Yt + Ysys + yay3
5. || o1 + a3 + 23 <%(1,0,1)> YP + Y3+ Yoyl
6. || 23 + 23 + zoxF, k>1 <%(1,0,1)> Y? + y1ys + yaya
70 22 + 2 + zpxF T E>1 (3(0,1,1)) Y2+ ysyd + yoyh
8. || a4+ ab 4 g2, k>4 <%(1, 0, 1)> Yy e + yy?
Table 6.2: (f,G) = (f)

Theorem 6.3.7. There is an isomorphism of Frobenius algebras

Jac(f, @) = Jac(f)

for all f and f in Table 6.2.

Proof. We shall give a proof of this theorem based on the classification in Table 6.2. Let the
notation be as in the sections before. For each g € G let K, be the maximal subgroup of G
fixing Fix(g). Let v, € Jacd(f,G) be the elements with v, - ( = ayw,, cf. Definition 5.4.5.

-1
We will now define e, € Jac(f,G) by e, := %vg, which is a more natural element than v,,.
1. For k > 1, set

1
fr=ay i ag, Gi={g), ¢:=5(0,1,1),

F= o g+ o
The Jacobian algebra Jac(f) can be calculated as
Jac(f) = Clay, xa, 5] / ((k + 1)af, 229, 223) = (1,24, ... ,x’f’1>(c,

so piy = k. With hess(f) = k(k+1)-2-2- 2} we can calculate the bilinear form J; on

1
Ty ([dr A dey A ], [ ey A das]) = 7=

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f,G) = <eid, (4], ..., [ml]k_1>(c & <eg, [z1]eg, - - -, [ml]k_leg>(c )
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Note that dim¢ Jac(f, G) = 2k. The bilinear form J; ¢ on ¢ can be calculated as

Jf,id (eid |_ C, [{L‘l]k_l |_ C) = Jf,id ([dl‘l N d{L‘Q A\ dftg], [J,’]f_ldl‘l A\ de‘g A d$3])
I
4(k+1)  2(k+1)

— 2 .
and with pips = k, hess(f9) = (k + 1)kat™!

_ 1 B
Jt.g (69 =<, [xl]k 169 - C) - Z‘If’g ([deL [xlf 1d$1])
1 1 1
—Z.(=1)-2. — — _
4 (=1) E+1 2(k + 1)
which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :

[xl]k =0, 63 = —€iq-

The first relation is clear from the relation in Jac(f,id) = Jac(f)“. The second one we get

by having Axiom (v) in mind. We see that e, o [z1]¥7'e, = —[z;]*7! from the calculation
of the orbifold residue pairings. And since e, o [21]¥ ey, = [21]"! o €2, we see the relation
ef] = —ejq with Remark 5.4.6 in mind. In similar way we always get the relations for the other
calculations.

On the other hand, the Jacobian algebra Jac(f) is given by
Jac(f) = Clyi, y2,ys] / ((k + D)yi, 1+ 43, 240ys)
=~ Clyr,ys) /(yi,y3 + 1) .

Note that dim¢ Jac(f) = 2k. Therefore, we have an algebra isomorphism

~

Jac(f) — Jac(f,G), w1~ [1], ys3 — ey,

which is, moreover, an isomorphism of Frobenius algebras since we have

hess(f) = —(k + 1)k -2-2yf'y2 = 2(k + 1) - 2kyt™" and so

1

Ty (A dy 1y, ™ dp A dys 1 dys]) = 55

2. For k > 1, set

1
f=a* il Gi={g), g:= 5(1,0, 1),

F=vi+ys + 2.
The Jacobian algebra Jac(f) can be calculated as

Jac(f) = Clxy, 22, 23] /(Qk:xfk_l, 219, 223) = (1, 4,... 2= 2>C ’
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so piy = 2k — 1. With hess(f) = 2k(2k — 1) - 2-2- 2372 = 8k(2k — 1)22*~? we can calculate
the bilinear form J; on €2

1
Jp ([dzy A dwy A das), [27°2dzy A das A das)) = %

As a C-module, the orbifold Jacobian algebra Jac(f, @) is of the following form:

Jac(f, G) = <6id7 ["L‘%]v SRR [‘r%]k_1>(c D <69>(C .
Note that dim¢ Jac(f, G) = k + 1. The bilinear form J o on 2 can be calculated as

Jria (eia B ) 7 Q) = Jpsa ([doy A das A das), [27F2day A dao A das))
11

8k 4k’
and with ppe = 1, hess(f9) = 2

1
Jrg(egt Cegh Q) = ijﬁg ([dzs], [dzs])

1 1

(—1)'25:—1,

1

4

which imply the following relations in the orbifold Jacobian algebra Jac(f, G) :
1 oe, =0, e = —k[zi]"".

Here the first relation is clear since z; is not fixed by g. The second one is again as in the last
calculation directly seen by the residue pairings.
On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Clyr, y2, ys) / (21, k5™ + 43, 2y2u3)
Clya, ys) / (kys ™" + 3, y2us) -

I

Note that dim¢ Jac(f) = k + 1. Therefore, we have an algebra isomorphism

Jac(f) — Jac(f,G), w2+ [27), ys = ¢,
which is, moreover, an isomorphism of Frobenius algebras since we have

hess(f) = 2-k(k—1)-2y571 —2.2.2y2 = 4k(k — 1)y + 8- kyb ™ = 4k(k—1+2)yb™" € Jac(f)
and so

|
5 ([dys A dyo A dys], [y~ dys A dyo A dys]) = -
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3. For k > 1, set

1 1
f = x%k +$% —{—93'%, G = <g7h>7 g = §(Oa 171)7 h = 5(1707 1)7

T = y¥ub + y1ys + yaus.
The Jacobian algebra Jac(f) can be calculated as
Jac(f) = C[xh L2, x3] /(Qka‘?k_lv 219, 2:L’3) = <1, T1, ... ,x%k_2>c ,

so yuy = 2k — 1. With hess(f) = 2k(2k — 1) - 2- 2 - 272 = 8k(2k — 1)23* 2 we can calculate
the bilinear form J; on €

1
Tp ([dey A des A dag], (2372 day A ds A dag]) = -

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jac(f, G) = <eid7 [l’%], B [x%]kilkc D <elg> [x%]elga BRI [x%]ki2e; ol

where e := [1]e, since Jac(f,h) = {0} and Jac(f,gh) = {0}. Note that dimc Jac(f,G) =
2k — 1. The bilinear form J¢ g on Q¢ can be calculated as

Jria (eia B 3] 7 Q) = Jpsa ([doy A dag A das), [27F2day A dao A das))
11
8k 2k’

and with g s0 = 2k — 1, hess(f9) = 2k(2k — 1)z3+2

1
Tpo (&) F G2, b Q) = 1y, (fmrde). 57
1 1 1
=~ (=1) 4 — = ——
4 (=1) 2k 2k’
which imply the following relations in the orbifold Jacobian algebra Jac(f, G) :

B ody =0, () =[]

On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Clyr, v, ys] / (kYY" vh + ys, kyfvs ™ + ys, 9 + v2) -

Note that dim¢ Jac(f) = 2k — 1. Therefore, we have an algebra isomorphism

Jac(f) —> Jac(f,G), wyiye — [23], y1 > €,
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which is, moreover, an isomorphism of Frobenius algebras since we have

hess(f) —k2 R Ny 1)y'f*2y§ Kk — Lyry,

=2k, k(k Dy - 21/5 3(2442) = A%yl —k(k=1)y Y5 (Y2 +u1)* —25192)
= (2k:2 + 2k(k — D)yt = 2k(2k — 1)yt~ 1y§ ! e Jac(f) and so

1
Tz ([dys A dya A dys], [y~ 95 dys A dys A dys]) = -

4. Set

1
f=al+al+a3, Gi={(g), g:= 5(1,270),

F= i+ ysys + yaus.
The Jacobian algebra Jac(f) can be calculated as
Jac(f) = Clzy, v2, 73] /(3$%7 31’37 21’3) = <17$17$2,Jf1l’2>@7

so g =4. With hess(f) =6-6-2-x129 = 4- 182,29 we can calculate the bilinear form Jy on
Qf

Jf ([dlEl VAN dZE'Q VAN d.Tg] [xledxl VAN dlEQ VAN de’g]) ]_8

As a C-module, the orbifold Jacobian algebra Jac(f, G) is of the following form:
Jac(f, G) = (e, [1172]) ¢ ® (eg, €4-1)¢ -
Note that dim¢ Jac(f, G) = 4. The bilinear form J; g on Q¢ can be calculated as

Jf,id <€id + C, [‘TlIg} - C) = Jf,id ([dl’l A dIQ A dIg], [$1I2dl’1 A dl‘g A dIg])

and with e = 1, hess(f9) = 2

1
Jrg(egt Ceg1 E() = §vag ([dz3], [dz3])

1 1

()3 =

1
9
which imply the following relations in the orbifold Jacobian algebra Jac(f, G) :

e;=0, e_1=0, ejoe,1=—[x122].

The first two relations are proven in Proposition 6.2.15.
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On the other hand, the Jacobian algebra Jac(f) is given by

Jac(?) = Cly1, y2, y3] /(lea 2y3y2 + 932,, y% + 2y2y3)
= Clyz, ys) /(2y3y2 + 93,95 + 2y2y3) .

Note that dim¢ Jac(f) = 4. Therefore, we have an algebra isomorphism

Jac(f) — Jac(f, G),
1

2 2 1
Yo > e[g]eg + e[g]egfl, Y3 > e[g]eg + e[g]egq,

which is, moreover, an isomorphism of Frobenius algebras since we have

hess(f) = 2(2-2-yays — (252 +2y3)?) = 2(4yays — Y3 — 8yays —4y3) = 2(—4y2ys+8yay3+8y2ys)
=4 - 6ysys € Jac(f) and so

1
J5 ([dyr A dya A dys), [y2yadys A dya A dys]) = 5
5. Set

1
f= a:lll—i—xg—kxg, G:={g), g:= 5(1,0,1),

J=yl+y3 +yeus.
The Jacobian algebra Jac(f) can be calculated as
Jac(f) = Clxy, 29, x3] /(4xi’,3x§,2xg) = <1,x1,x2,x%,x1x2,x%x2>c,

o puy = 6. With hess(f) = 12-6-2 - a3zy = 24 - 62325 we can calculate the bilinear form J;
on Qf

1

24"

As a C-module, the orbifold Jacobian algebra Jac(f, @) is of the following form:
Jac(f, G) = (eia, [22], [#7], [#1][22]) ¢ B (g, [w2]eg)c -

Note that dim¢ Jac(f, G) = 6. The bilinear form J; g on Qs can be calculated as

Jp ([day A dag A das), (2 zaday A das A das)) =

Jf,id (eid |_ C, [I%][l’g] I_ C) = Jf,id ([d!L‘l A\ d{L’Q N dl)?g], [C(]%{L‘le'l A\ dl‘g A\ d{L’g])

and with e = 2, hess(f9) = 3 - 2z,

Jpo(eg F G lmaley F €)= =5 ([dns), [radds])

1 1
(=1)-2.2 = =
( ) 3 67

s
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which imply the following relations in the orbifold Jacobian algebra Jac(f, G) :
[22)? =0, [27]oe, =0, €)= —2[zi].
On the other hand, the Jacobian algebra Jac(f) is given by

Jac(?) = Cly1, y2, y3] /(3yf, 2y, + y?,, 2y2y3) .

Note that dim¢ Jac(f) = 6. Therefore, we have an algebra isomorphism

Jac(f) ; Jac(f, G)v Y1 — [22'2], Yo [l‘%]a Y3 697
which is, moreover, an isomorphism of Frobenius algebras since we have

hess(f) =6-2-2-y1yo — 6-2-2- 3192 = 249195 + 24 - 25192 = 6 - 129195 € Jac(f) and so

1
Jr ([dyr A dya A dys], [yryedys A dys A dys]) = L

6. For £k > 1, set

1
fr=at ol Gi=(g), g:= 5(1,0, 1),

F=yi + s + 205
The Jacobian algebra Jac(f) can be calculated as

Jac(f) = Clxy, z2, x3] /(23;1, 21y + 22F, Qkxgx?“’l)

2k—1 2k—2
§<1,x3,...,x3 , T2, LT3, ..., TaLy >(C,

so pif = 4k — 1. With hess(f) = 2-2-2k(2k — D)aga3* 2 — 2.2k - 2k - 23" 2
= 8k(2k — 1)zox2* 2 + 8k? - 2w902 ™% = 8k(4k — 1)ayx2*~? € Jac(f) we can calculate the
bilinear form J; on €2y

1
Jp ([dzy A dag A das), [w0a3"*day A day A das)) = R

As a C-module, the orbifold Jacobian algebra Jac(f, @) is of the following form:
Jac(f,G) = (e, [23], ..., [23]" 7", [wa], [wo] [23], .. ., [372][5U§}k_1>c D (eg)c -
Note that dim¢ Jac(f, G) = 2k + 1. The bilinear form J¢ s on Q¢ can be calculated as

Jfia (eid =, [$2][x?2,]k_1 + C) = Jyia ([d% A dzy A dxs], [$2$§k_2d$1 A dxo N dfl‘:s])
1 1

8k 4k’
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and with ppe = 1, hess(f9) =2

Jrg(egtCreg () = _Jfg ([dza], [dz])

which imply the following relations in the orbifold Jacobian algebra Jac(f, G) :

@3 = —2fea], [Boe, =0, &= —klaslledF .

On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Clyr, y2, ys] / (2y1 + vb, kyays ™" + 3, 2y2y3) -

Note that dim¢ Jac(f) = 2k + 1. Therefore, we have an algebra isomorphism

~

Jac(f) —> Jac(f,G), w1+ [xa], yo > [23], ys = ey,

which is, moreover, an isomorphism of Frobenius algebras since we have
hess(f) = 2 k(k -2yt —2-2-2-92 -2 k- ky2h! B
= 4k(k — Dy 4+ 8- by 4 2k2 - 2y1ys = 4k(2k + Dyrys ' € Jac(f) and so

1
J7 ([dys N dyo A dys], [y~ dys A dys A dys]) = .

7. For k > 1, set

1
f - 371 +272 +T x?‘)kJrlv G = <g>7 g = 5(07 17 1)7

F= i +ysys +yays
The Jacobian algebra Jac(f) can be calculated as

Jac(f) = Clay, x2, 23] / (221, 220 + 237, (2k + 1)z223")

k 2k—1
%<1,x3,...,x3,x2,x2x3,.. , Loy >C,

so piy = 4k + 1. With hess(f) = 2-2- (2k + 1)2kzoz3*' — 2. (2k + 1) - (2k + 1) - 23*
= 8k(2k + D)aow2™' + 2(2k + 1) - 22022" 1 = 4(2k + 1)(4k + Vw2 € Jac(f) we can
calculate the bilinear form Jy on

1
A2k + 1)

As a C-module, the orbifold Jacobian algebra Jac(f,G) is of the following form:

Jy ([dxl A dxg A dzs), [:1:2933 “Ldxy Adry A davg]) =

Jac(f,G) = (e, [23], -, [43]", [waws], [waws][23], ..., [wams][23]F ) . @ ()¢
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Note that dim¢ Jac(f, G) = 2(k + 1). The bilinear form J; ¢ on Q¢ can be calculated as

Jfid (eid = ¢, [wows] (23] - C) = Jfia ([dzl A dxy A das), [ex3* oy A dag A dxg])
1 1
— 2 . —
42k +1) 22k +1)’

and with ppe = 1, hess(f9) = 2

Jrg(egt Cegh () = _Jfg ([dz1], [dz1])
1_ Ll

which imply the following relations in the orbifold Jacobian algebra Jac(f, G) :

]k+1 2 2k + 1 Z]kfl

—2[womws], [13]oe, =0, e =-— [zox3][2]

[.1’3 g 2

On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Clyr, y2,y3] / (251, 20392 +y5™ 93 + (b + )ays)
= Clyz,ys] / (2us9 + 5™ y5 + (b + 1)yays) -
Note that dim¢ Jac(f) = 2(k + 1). Therefore, we have an algebra isomorphism

e 1
JaC(f) — Jac(f, G)7 Yo = eg - i[xg]kv Y3 = [953],

which is, moreover, an isomorphism of Frobenius algebras since we have
hess(f) =22 (k+ 1)k - yayh — 2- (240 + (k + 1)y})?

= 4k(k + 1)yays — 2(4y3 + 4(k + Dyays + (k +1)%3%)

= 4k(k + Dyays — 2(—4(k + V)yays + 4(k + 1)yayf — (k +1)% - 2y0y5)

= (4k(k + 1) + 4(k + 1)?)yoys = 2(k + 1)(4k + 2)y2y5 € Jac(f) and so

1

J7 ([dys A dys A dys], [yay5dys A dys A dys]) = 202k + 1)

8. For k > 4, set

1
fr=ait o targ, Gi=(g), g:=5(1,0,1),

F=u"" 4 yiye + 213
The Jacobian algebra Jac(f) can be calculated as

Jac(f) = Clry, 12, 73] /(2$1, (k— 1)$§_2 + x%, 2x2x3)

=~ <1,{E2,.. I’é 2,1’3>(C,



so ity = k. With hess(f) = 2-(k—1)(k—2)-2-257°—2-2-2.2% = 4(k—1)(k—2)2§ >+8-(k—1)a}
= 4(k — 1)(k)25~% € Jac(f) we can calculate the bilinear form J; on Q

Ty ([d A dey A s, [ A vy A ds]) = s

As a C-module, the orbifold Jacobian algebra Jac(f, @) is of the following form:
Jac(f,G) = <eid, [a], ..., [$2]k_2>(c b <eg, [z2]eg, .- ., [l’g]k_369>c )
Note that dim¢ Jac(f, G) = 2k — 3. The bilinear form J¢ s on ¢ can be calculated as

Jf,id (eid |_ C, [xg]k_2 |_ C) = Jf,id ([d!El A\ dl"z N dxg], [[E’;_Zdl"l A dﬂ?g A d$3])
1 1
_2'4(/<;—1) T 2(k—1)

and with s =k — 2, hess(f9) = (k — 1)(k — 2)z5~3

Tra g Gl ey - Q) = L (il )

1 1
(—1)'2'm=—m7

1
!
which imply the following relations in the orbifold Jacobian algebra Jac(f,G) :
]k:—2

[9]" 20, =0, € =—[xs].

On the other hand, the Jacobian algebra Jac(f) is given by
Jac(?) = Cly1, y2, y3] /((k - 1)3/1#2 + Y2, Y1 + 3/:3’ 2923/3) .
Note that dim¢ Jac(f) = 2k — 3. Therefore, we have an algebra isomorphism
Jac(f) =, Jac(f,G), w1+ [2a], ya > —(k — D[22, yz > ey,
which is, moreover, an isomorphism of Frobenius algebras since we have

hess(f) = —(k—1)(k—2)-2-2- 9y %3 —2yp = 4(k — 1)(k = 20y >+ 2 (k — D)y}
=2(k —1)(2k — 4 + 1)y 2 € Jac(f) and so

Ty ([dyn A dys A dyal, ™~y A dye A dyel) = 57—

We finished the proof of Theorem 6.3.7. n
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6.4 Orbifold Jacobian Algebras for Exceptional Unimodal
Singularities

Definition 6.4.1 ([AGV85, p. 247]). There is a list of 14 exceptional families of unimodal
isolated hypersurface singularities. In the notation of Arnold they are called E1o, F13, Fh4, Z11,
Zho, L1z, Wia, Whs, Qro, Q11, @12, S11, S12 and Ujs. One can give invertible polynomials in
three variables belonging to these families. In Table 6.3 there are listed all possible choices of an
invertible polynomial, representing an exceptional unimodal singularity (see [RN16, Table 1]).

Singularity Type f (v1) f(v2) f(v3)
By 2?4y + 2T - -
Fis 22 4y 4y ) B}
Fu By yt | 2P+t B}
Zn 2+ Pz + 20 - -
Ty 22 4 1P + gt ) B}
Z13 2+ ayd oyl | Pyt 4 20 -
Wis 4yt oy | 24yt 420 -
Wis 22+ ay? oyt | 2 oyt oyt -
Q10 Pz + 2 - -
Q11 vy +yz 4 20 - -
Q12 B+t +yd | B4 yta 420 -
S vy +y*z 4 2* - -
S12 3y + 9Pz + w2 - -
Uis Pz 4y | P4yt 2t | ot 4y oy

Table 6.3: All invertible polynomials, representing the exceptional unimodal singularities.

Remark 6.4.2. In some cases G?L is not the trivial group. We can try to do the same as in
Remark 6.3.2 and consider a crepant resolution of C?/ G?L. We observe:

Only in the cases, where f and f7 are of the same singularity type, the critical points of ]?
are isolated and contained in one chart isomorphic to C3.

Example 6.4.3. For Fy, and the pair (f, G)

1
fmdraea 6= (j00n).
we have in the two charts

f(t, u,v) = t* + u + (uww?)* and f(t, u,v) = 3 + uv + o,

81



Critical points of fare on the second chart. _
We see f = f and the restriction of f to the chart is given by f = y{ + y3 + y1y3 which is
of singularity type @19 which is strangely dual (cf. [Ar75]) to F14.

For Z;3 and the pair (f,G)

1
=y + a2+, Gi= <§(1, 1,0)> ,

we have in the two charts
Flt,u,v) =+ wuw + (w?)? and f(t, u,0) = £ + v2ouv + v*.
There are no isolated singularities in the first chart.

Proposition 6.4.4 ([ET11, Table 9]). For the polynomials (v1) of Table 6.3 we always have
G?I; = {id}. And we get:

When f (v1) is of one singularity type, fT is of the singularity type of the strangely dual in
the sense of Arnold (c.f. [Ar75]).

Proof. One can easily see that there are no elements in G, that are also in SL(3,C) for all
polynomials (v1). The second statement is shown in [ET11]. O

Remark 6.4.5. From Remark 6.4.2 and Proposition 6.4.4 it is straightforward to consider
the pairs (f7, G7¥).

Example 6.4.6. With Remark 6.3.3 we will calculate the restriction of ﬁ for all f in Table
6.3 with G}SCI; 2 {id}.

1. For By and the pair (f7,G)

1
ff=ai+ad+a8 G:= <§(1,0, 1)> :
see Example 6.4.3.

2. For Zi3 and the pair (f7,G)
T 2 3 6 1
f = :Cl +LE’2+$21‘3, G = 5(1’071) y
we have in the two charts

ﬁ(t, u,v) = t* + u + t(uww?)?® and ﬁ(t, u,v) = t* + v + t®.

Critical points of ﬁ are on the second chart.
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3. For Wy, and the pair (f7, Q)

1

ff=? oy +25, G:= <§(1, 1,0)> ,

we have in the two charts
ﬁ(t, u,v) = t° 4+ u + (uv?)? and ﬁ(t,u,v) = t° 4+ uPv + 02
Critical points of fT are on the second chart.

4. For Wiz and the pair (fT,G)

1
fl=al+ oy +a3, G:= <§(1, 1,0)> ,

we have in the two charts
ﬁ(t, u,v) = t* + u + t(uww?)? and ﬁ(t, u,v) = t* + v + v,
Critical points of ﬁ are on the second chart.

5. For Q1 and the pair (f1,G)

1
fl=ad v 2 a0, Gi= <§(0, 1, 1)> ,

we have in the two charts

—

Tt u,v) =t* + u+ uv(uv®)® and ﬁ(t, u,v) = t* + u*v + uvv®,
Critical points of fAT are on the second chart.

6. For U, and the pair (f7,G)

1

frmateated, 6o (30.20),

we have in the three charts

]/“:\F(t, u,v) = t'+u+ (u*v?), ]/‘“:\F(t, u,v) = t* + u*v + uv?
and ﬁ(t, u,v) =t + uPv® + v,

Critical points of fAT are on the second chart.
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7. For Uy, and the pair (f7, Q)

1
fr= ff + xgxg + x%, G = <§(0, 1, 1)> ,
we have in the two charts
FT(tu,0) = t* + wuv + (wo?) and fT(tu,v) = 4 + wdouv + v.

Critical points of ﬁ are on the first chart.

Remark 6.4.7. Here we observed that critical points of the map ﬁ are contained in one
chart isomorphic to C3. The restriction of f7 to the chart is given by f defined in Table 6.4.

Type of f fr G?I; f Type of f
1. Eyy T3+ a3 + 2§ <%(1,0,1)> Y+ ysys + U3 Q10
2. 713 23+ x5 + 2oz | (3(1,0,1)) | viye + viys + v Q1
B Wi | at+astad | GLLO)Y | ity | W
4. Wis T3 + rhw3 + T <%(1, 1, O)> Yiys + Ysys + Ui St
5. Q12 23+ a3 + x| (3(0,1,1)) || v + ydys + yous Q12
6. U i+ a4+ x| (3(1,2,0)) | vl + ydys + vous Uiz
7. Uis ot + adwg + 2d | (3(0,1,1)) || yf + y3ys + vou3 Uis

Table 6.4: (f7T, GJSCITJ) =~ (f)

It is again natural to expect that the orbifold Jacobian algebra Jac(f7, G?If) of (7, G?I;)

is isomorphic to the usual Jacobian algebra Jac(f) of f, which is the following theorem.
Theorem 6.4.8. There is an isomorphism of Frobenius algebras

Jac(f7, G%) >~ Jac(f)
for all fT and f in Table 6.4.

Proof. We give a proof of this theorem based on the classification in Table 6.4. Let the

—1

notation be as in the sections before and again e, := laKLg‘vg € Jac(f, @) the element already
mentioned in the proof of Theorem 6.3.7.
1. Set

1
fT — m% + ;1;% —|—$§, G:={g), g:= 5(1,0, 1),

f=v +vysys + v
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The Jacobian algebra Jac(f7) can be calculated as
Jac(fT) = Clzy, 2o, 23] /(2x1, 323, 8x§) = <1,x2,:£3, TS, ToTs, ,:BQ:):g>C ,

so prpr = 14. With hess(f?) =26 56 - xox§ = 14 - 48x22 we can calculate the bilinear form
Jpr on pr

Jyr ([dxl A dxy A dxs), [TexSdry A drg A d.Tg]) =5
As a C-module, the orbifold Jacobian algebra Jac(f”, ) is of the following form:
JaC(fT, G) = <€id, 4], [3:%], [95%]2, [95%]3, [$2][$§]> [952][35:%]27 [$2][$§]3>@ D (eg, [x2]€g>(c .
Note that dimc Jac(f”, G) = 10. The bilinear form J;r g on Qs ¢ can be calculated as

']fT,id (ejd - C, [.1'2] [1’%]3] + C) = JfT,id ([dl’l A\ d$2 A d.’l?g], [l‘g.ﬁﬂgdiﬁl A d[lfg N d.ﬁEg])
11
48 24’

and with piprs = 2, hess(f77) = 3 2z,

Jir g (eg =, [xﬂeg () = iJfT,g ([dxs), [xodx,))

1 1

(-1)20 5=,

1
4
which imply the following relations in the orbifold Jacobian algebra Jac(fT,G) :

(29 =0, [23]o0 eg =0, 63 = —4[x3)>.

On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Clyr, ya, ys) / (397, 2y0y3, y5 + 4v3) -

Note that dimg¢ Jac(f) = 10. Therefore, we have an algebra isomorphism

JaC(T) i JaC(fT7 G)7 U1 = [x2]7 Y2 — eg7 Y3 — [xg]v

which is, moreover, an isomorphism of Frobenius algebras since we have _
hess(f) =6-2-12-y1ys —6-2-2- 4193 = 24 - 6y, 95 + 24 - dyyy5 = 24 - (10)y195 € Jac(f) and so

1
Jf ([dy1 A dys A dys], [ylyg’dyl A dys A dy3]) =5
2. Set

, 1
fT = ;1:% +x§ +x2xg, G:=(g), g:= 5(1’0’ 1),
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T = viye + y3ys + 43,
The Jacobian algebra Jac(fT) can be calculated as
Jac(f) = Clay, xa, x5 /(2%, 3r3 + s, Gxgxg)
= <1,x2, x%, T3, ... ,mg, Tols, ... ,Igﬂig, xgxg, .. ,x§x§>c ,
s0 pyr = 16. With hess(f7) =2-6-30- 2323 —2-6-6- 230 = 36 - 102325 + 2 - 36 - 3x323

= 36 - 162325 € Jac(f7) we can calculate the bilinear form Jyr on Qr

Jpr ([da:l A dxs A dxs), [x%wédml A dzs N\ dxg]) =%

As a C-module, the orbifold Jacobian algebra Jac(f”, Q) is of the following form:
Jac(f", G) = (eia, [va], [w2]?, [#3], [23]7, [wa] [23], [w2][03]?, [wo]?[23], [w2]*[23]7),.
@ (ey, [x2]€g><c .
Note that dimc Jac(f”, @) = 11. The bilinear form Jyr g on Qr ¢ can be calculated as

Jpria (eid F ¢, [5’32]2[373]2 - C) = Jyriq ([dl’l A dxg A dxs), [x%azgd:cl A dxzy A d133])
11
36 18’

and with fiyre = 2, hess(f77) = 3 - 21,

Jir g (eg =, [I2]€g () = %ljfT,g ([ds), [xodzs))

which imply the following relations in the orbifold Jacobian algebra Jac(f”,G) :

[x§]3 = _3[:62]27 [$§]€g = O, 63 = —3[$2$§]

On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Cly1, y2, ys] / (2y12, y1 + 3ysys, ¥ + 343) -

Note that dim¢ Jac(f) = 11. Therefore, we have an algebra isomorphism

Jac(f) — Jac(fT,G), Y1 > eg, Yo [:vg], Y3 > [xa],

1%

which is, moreover, an isomorphism of Frobenius algebras since we have
hess(f) =2-6-6-y5y3 —2-3-3-y5 —2-2-6-yiys = T2y5y3 + 18- ysy3 + 24 - 6y5u3
= 18(4 + 3 + 4)y3y2 € Jac(f) and so

1
T7 ([dyn A dys A dys], [ysysdyn A dys A dys]) = 22
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3. Set

1
fle=ai+ay+a3, Gi=(g), g:= 5(1’1’0)’

F=yl + 5+ s
The Jacobian algebra Jac(fT) can be calculated as
Jac(fT) = Clzy, 2o, 23] /(21:1, 43, 5:v§) = <1,x2,x3, T3, T3, T, ToTs, . . . ,x%x§>c ,
so pipr = 12. With hess(f7) =2-12-20- 2323 = 12- 402323 we can calculate the bilinear form

JfT on QfT

1
JfT ([dl’l VAN dl’Q A dl’?:]v [xgl'gdl‘l A di’g A dl’g]) = E

As a C-module, the orbifold Jacobian algebra Jac(f”, Q) is of the following form:

Jac(f", G) 2= (e, 23], [w3], [xa]?, [ws]’, [23][ws], [w3][ws]?, [23][ws]" )¢

52 <69> [z3]eq, {x3]2€ga [x3]369><c :
Note that dimc Jac(f”, G) = 12. The bilinear form J;r g on Qr ¢ can be calculated as

Jersa (eia b ¢ [23)[2s]® B Q) = Jpria ([doy A dag A das), [2325day A dos A das))
r_1
40 20°

and with pipre = 4, hess(f77) =5 - 423

1
JfT7g (eg ~ C, [l'g]geg - C) = Z_lJfT’g ([dl’g], [.ﬁﬂgdx'g])
1 1 1

:Z_l.(_l).g.g:_m7
which imply the following relations in the orbifold Jacobian algebra Jac(fT,G) :
[23]* =0, [23]oe, =0, &= —2[x).
On the other hand, the Jacobian algebra Jac(f) is given by
Jac(f) = Cly1, y2, ys] / (5y1, 2y2 + 3, 24y3) -

Note that dimg Jac(f) = 12. Therefore, we have an algebra isomorphism

Jac(?) i) JaC(fT, G)7 Yy > [xS]v Y2 = [1’%], Y3 egv
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which is, moreover, an isomorphism of Frobenius algebras since we have _
hess(f) =20-2-2 -4y, — 2022 - y3y2 = 80ySys + 80 - 2y3y, = 20 - 12y3y» € Jac(f) and so

1
T7 ([ A dya A dys], [yiyadys A dys A dys]) = .

4. Set

1
fli=aitagrstag, Gi=(g), g:=5(1,1,0),

T =iy + y3us + v
The Jacobian algebra Jac(f7) can be calculated as
Jac(f1) = Clay, 29, 73] /(2x1, 4aSxs, Ty + 4x§)
= (1,2, 45, 23, T3, &5, 13, ToT3, Loy, Toly, T3T3, THTS, T515) -,
so pyr = 13. With hess(f7) = 2-12-12 - 2223 — 2 -4 -4 - 2§ = 2882323 + 32 - dadal =

32(9 + 4)z323 € Jac(fT) we can calculate the bilinear form Jpr on Qr

1
Jpr ([dxy A dxy A das), [2325dey A dy A das]) = 3

As a C-module, the orbifold Jacobian algebra Jac(fT, Q) is of the following form:
Jac(f", G) = (eia, [23], [w3], [25]?, [23]’, [w3][s], (3] ], [w3][2s]*),
= <€9= [IS]ega [$3]269>(c :
Note that dimc Jac(f”, @) = 11. The bilinear form Jsr g on Q7 ¢ can be calculated as

Ji7 ja (eid F ¢, [x%][xg]g - C) = Jpriq ([dxl A dxs A dxs], [x%xgdxl A dxy N\ dxg])
11
32 16

and with yipre = 3, hess(f77) = 4 - 323

1
Jirg (69 G lusleq 1 C) = LT pr g ([das], [23ds])
1 1 1
-~ (=1).-2- == —=
4 (=1) 4 8’
which imply the following relations in the orbifold Jacobian algebra Jac(fT,G) :

(3" = —4fws]’,  [23]oeg =0, ;= —2fxms]

On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Cly1, y2, y3] /(2y1y27 Yt + 292y, Y5 + 4y§) .
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Note that dimg¢ Jac(f) = 11. Therefore, we have an algebra isomorphism
Jac(f) =, Jac(f1,G), ey yo — [73], yz — [23],

which is, moreover, an isomorphism of Frobenius algebras since we have
hess(f) =2-2-12-yoy3 —2-2-2-y5 —2-2-12- y7y5 = 48ysy3 + 8 - duoy3 + 48 - 243
= 16(3 4+ 2+ 6)y2y5 € Jac(f) and so

1
J7 ([dys A dyo A dys], [yayidin A dys A dys]) = 25

5. Set

1
fT = J,‘i{’ —}-:L‘g —I—JZQZL‘g, G = (g), g = §(Oa 1, 1)7

F=y + vys + yavs.
The Jacobian algebra Jac(fT) can be calculated as

Jac(f1) = Clay, xs, 73] /(3$%, 229 + xg, 5m2w§)

~ 2,3 ,4 .5 .6 .7 .8 8
= <17 L1, X3, X3, X3, T3, L3, L3, L3, L3, LT1L,y - .. ,.T11'3>C )

so pyr = 18. With hess(f7) =6-2-20- zy2z003 —6-5-5- 212§ = —15-16 - L2125 — 15 - 1025
= —15- 18z125 € Jac(f”) we can calculate the bilinear form Jpr on Qr

-1

JfT ([dl‘l A diL'Q A dl‘g], [.]3133'261331 A dl'g A dl’g]) = E

As a C-module, the orbifold Jacobian algebra Jac(f”, Q) is of the following form:
JaC(fT, G) = <eid7 [IIL [xg]u [x§]27 [xg]ga [$§]4, [ﬁl][ﬁg]a [xl][$§]27 [xl][x§]37 [xl][x§]4>(c
@ (eg, [$1]€g>(c :
Note that dime Jac(f?, G) = 12. The bilinear form Jpr ¢ on Qyr ¢ can be calculated as

JiT ia (eid = ¢ [ [23)* C) = Jiriq ([dl’l A dxy A dxs), [v125dx, A dog A dl’g])
-1 =2
15 15’

and with pipre = 2, hess(f77) = 3 2z,

1

Jyr g (eg =, [xﬂeg () = Jpr g ([dz+], [z1dz1])

RPERTS
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which imply the following relations in the orbifold Jacobian algebra Jac(f”,G) :

5
[x1]2 =0, [l‘%] O€g = 0, 63 = Z[xg]

On the other hand, the Jacobian algebra Jac(f) is given by

Jac(f) = Clyr, vz, ys] / (37, 2y2ys + 43, y3 + 3y213)
= (1,1, Yo, Y3s Ysr Ui Us Y1, Y1Y3, V1Y, Y1V, Y1Vs )¢ -

Note that dime Jac(f) = 12 and we have y3 = —3yyi = (-3)(Fys) = 2yi € Jac(f).
Therefore, we have an algebra isomorphism

Jac(f) = Jac(f7. @), [yi] = [x], [y2] = %% [ys] > (23],

which is, moreover, an isomorphism of Frobenius algebras since we have
hess(f) = 6y (2- 6y2y_§— (2y2+3y3)*) = 6y1(12y2y3 — 4y3 — 12y213 — 9y5) = 6y1(—4- 53 — 9y3)
= —6(15)y,y; € Jac(f) and so

J7 ([dy1 A dya A dys), [y1ysdys A dys A dys]) = iR

6. and 7. Set

1
Ni=ai+ay+ay, Gi=(g), 9= 3(1,2,0),
1
[y =2+ 8+ 23, Gyi=(h), h:= 5(0, 1,1),

T =y +3ys + 205,
The Jacobian algebra Jac(f]) can be calculated as

Jac(f1') = Clay, w5, 3] /(3x%,3x3,4x§)

2 2 3 2
= <17 X1,T2,X1T2, T3, 13, T2X3,LT1T2X3, T3, T1X3, T2T3, $1$2$3>C )

S0 pgr = 12. With hess(f{) =6-6-12- 2 2923 we can calculate the bilinear form Jyr on Qpr

1
Jpr ([da1 A dzy A das), [z13025d2y A day A das]) = TR

As a C-module, the orbifold Jacobian algebra Jac(f{,Gy) is of the following form:

Jac(f{', Gv) = (e, [ara], [w3], [wa]?, [2120] [w3], [w122] 3]

@ (eg: [wsleg, [r3]"eg)c @ (g1, [w3]eg1, [ws]Peg1)c
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Note that dim¢ Jac(f{, G1) = 12. The bilinear form Jyr g, on Qyr g can be calculated as

Jr i (eia b ¢, [mrmo][zs)® - ¢) = Jr i ([dz1 A dzy A das), [x12225d2s A ds A das))
r_1
36 12

and with fiyrs = 3, hess( T9) = 4 - 322

Jr g (eg ¢, [m3]%eg1 H () = éJfIT’g ([ds], [x5ds])

1 1 1
—Z.(=1)-3- == ——
9 (=1) 4 12’

which imply the following relations in the orbifold Jacobian algebra Jac(fl,G) :

(23] =0, =0, €e..=0, e oe,1=—[z179]

Secondly the Jacobian algebra Jac(f{) can be calculated as
Jac(fy ) = Clz1, 22, 23] /(4219’,32523,23 + 223)
= <17 21, Z%? 22, Z%u Z3, 2223, 2172, 21237 Z1%3, 217273, 23227 Z%Z§7 23237 2%2223, >(C )
50 piyr = 15. With hess(fy) =126 -2 22023 — 123 - 3+ 2725 = 144272923 + 108 - 2272923

= 24(6 +9)2{ 2223 € Jac(f; ) we can calculate the bilinear form Jyr on Qr

1
JfQT ([le VAN dZQ VAN ng], [Z%ZQngZl VAN dZQ VAN ng]) = ﬂ
As a C-module, the orbifold Jacobian algebra Jac(f],Gs) is of the following form:
Jac(fy, G2) = (e, [21], [21)% 23], [2223], [21] (23], [21][222), [21)2123], (1) 22 2s] )

D <6h7 [zl]eha [21]26h>(c .
Note that dim¢ Jac(f7,Gy) = 12. The bilinear form Jir., on g1 o, can be calculated as

JfQT,id (eid F <, [21]2[2223] F <) = JfQT,id ([le A dZ2 A ng], [Z%Z2Z3d21 A dZQ A ng])
11
24 12

and with jupn = 3, hess(fI™) = 4322

Jr (enF ¢ [m)Pen1 HQ) = i:]sz’h ([dz1], [z1dz1])

i.(_l).g._:__
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which imply the following relations in the orbifold Jacobian algebra Jac(f],G) :

-3
(4] =0, [2oe,=0, [2?=—2[znz] €= 7[2223].

Therefore, we have an algebra isomorphism
Jac(ff,Gh) =, Jac(ff,Gy),

v—1 1 —v/—1
~—[22] + —=en, eg-1 = ———
2 V3 2
which is, moreover, an isomorphism of Frobenius algebras since we have

1

Jir (eia b ¢, [mana3] F () = Jir (eia b ¢ [2zems] F Q) = ok

1
V3"

[122] ¥ [2223], [x3] — [21], €4 — (23] +

On the other hand, the Jacobian algebra Jac(f) is given by
Jac(f) = Clyr, y2, ys] / (497, 2032 + Y3, 95 + 2u2v3) -

Note that dim¢ Jac(f) = 12. Therefore, we have an algebra isomorphism
Jac(f) = Jac(fF,Gy),

1 2 2

y1 — [xs], Y2 e[g]eg + e[g]egfl, Yz — e[g]eg - e[g]egfl,
which is, moreover, an isomorphism of Frobenius algebras since we have
hess(f) = 12y1(2 - 2 - yays — (2y2 + 2y3)%) = 1247 (4yys — 4y3 — Syays — 4y3)
= 12y (—4yays + 4 - 2yoy3 + 4 - 2y0y3) = 12(12)yiyays € Jac(f) and so

1
J5 ([dp A dya A dys], [y yaysdys A dys A dys]) = TR
Then it is clear that there is also an algebra isomorphism

Jac(f) = Jac(f], Gy)

by the composition of the last two isomorphisms.

We finished the proof of Theorem 6.4.8.

Corollary 6.4.9 (cf. also our note [BTW17]). Let fi and fy be invertible polynomials defin-
ing exceptional unimodal singularities see Table 6.3. There is an isomorphism of Frobenius

algebras
Jac(fT, G%%) 2 Jac(f2)

if and only if the associated singularities of fi and fy are strangely dual to each other in the

sense of Arnold.

Proof. 1t is clear that for two polynomials of the same singularity type the normal Jacobian

algebras are isomorphic. So the statement is clear, if one can show it for one polynomial

f2 which is strangely dual to f;. For all polynomials f; with G?I; = {id} the statement is
1

clear from Proposition 6.4.4. The rest follows from Theorem 6.4.8 since there f is always the

strangely dual to f.
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7 Orbifold Jacobian Algebras for Cusp
Polynomials

7.1 Cusp Polynomials
Let A be a triplet (aq, az, az) of positive integers such that a; < ay < ag. Set
pa=ap+az+az—1

and

1 1 1
Xa=—+—+——1
aq a9 as

Definition 7.1.1. A polynomial f4 € Clxy, o, 23] given by
fa=aP +25 + 08 — ¢ trwaas
for some ¢ € C\{0} is called a cusp polynomial of type A.
Definition 7.1.2. We have three cases for fa:
(i) If x4 > 0 we call f4 an affine cusp polynomial.

(ii) If x4 = 0 we have the following three cases:
a) fa=af+23+ 25 — ¢ 11207
b) fa=at+ x5+ 25— q w1702

c) fa=ai+a3 4135 —q 1707y
(iii) If x4 < 0 f4 defines a cusp singularity.

Remark 7.1.3. In case (i) the polynomial has many singularities and the Milnor fibre at
0 is not the right one to consider. So we will only concentrate on cusp polynomials with

X4 < 0. These are the parabolic (case (ii)) and hyperbolic (case (iii)) unimodal singularities
(cf. [AGVS5, p.146))

Lemma 7.1.4. In case (iii) for all ¢ € C\{0} the polynomial fa has an isolated singularity at

0. In case (i) we exclude ¢ = 432 in (iia), ¢~ = 64 in (iib), ¢~3 = 27 in (iic) respectively.
For all other ¢ € C\{0} the polynomial f4 has an isolated singularity at 0.
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Proof. This is an easy computation. We see that Jac(f4) has always a finite dimension over
C. See also Definition 7.1.8. O

Definition 7.1.5 (cf. [ST15]). We can consider the universal unfolding of f4 (cf. Proposition
2.2.14). A holomorphic function F4(x;s,s,,) defined on a neighborhood of (0;0,¢) of C* x
(Cra=t x C\{0}) is given as follows:

3 a;—1
. — 01 az as -1 J
Fa(x;8,5,,) =27 + 25> +25° — s, 17973 + 51 - 1 + g g Si 1.
i=1 j=1

Of course we have

Fa(x,0,q9) = fa(x).

Remark 7.1.6. In [ST15] and [IST12] it was shown that for a cusp polynomial a good
primitive form (cf. [Sa82], [Sa83], [ST08]) is given by

CA == [S;jd[lfl N d.ﬁEQ A dfljg]

In [IST12] it is even done for x4 > 0. There is defined an algebra as an O,y module for
M = (CHa~1 x C\{0}), or for M = (CHa~1 x C).

We will still use our normal C-module Jac(f4). But we will always use this primitive form
¢ = [¢7'dzy A dxg A dxs] for the isomorphism (2.1).

Definition 7.1.7. We can calculate the hessian of f4:

hess(fa) = ai(ay — 1)as(ay — 1ag(ag — 1)z 2oy 2252

€ Jac
—(2+a; —14ay—1+asz—1)g >v12073 (F4)

We define k = 1 for ya < 0 and xk = 1 — 432¢° for (iia), x = 1 — 64¢* for (iib), k = 1 — 27¢3
for (iic) respectively for x4 = 0. So we get

hess(fa) = —kpys,q *z120w3 € Jac(fa).

Definition 7.1.8. The Jacobiam algebra Jac(f4) has the monomial basis

o1

oz, 12, .. 2!
o 1y, 23, ... a0t
o a3, 7%, ... 2!

° I{q_l.%'lZL'Ql’g.

So we have pup, = (2+a1 —1+a—1+a3—1) = pa.
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Remark 7.1.9. We see
Ji (¢ kg myonsC) = Jyp (g dy Adag A dxs, kq ' mi39x3q  dy A dzg A das) = —1.
That is the reason for this monomial basis.
Remark 7.1.10. If f4(z1,x2,23) is a cusp polynomial, then we have
Gy =G,
and hence age(g) is an integer for all g € Gy.

Let now be G again a subgroup of Gy.

Definition 7.1.11. For ¢+ = 1,2,3 let K; be the maximal subgroup of G fixing the i-th
coordinate z;, whose order |K;| is denoted by n;.

Proposition 7.1.12 ([ET14, Cor. 2]). We have

3
Gl =1+2jc+ Y (ni—1),

i=1
where jg is the number of elements g € G such that age(g) =1 and n, = 0.

Remark 7.1.13. From this we also see directly that each group K;, i = 1,2, 3 can only have
the form K; = Z/niZ and we can choose generators for these cyclic groups. All elements
g € G, that are not in one K;, ¢ = 1,2,3 have n, = 0. And we directly have always pairs
g,9~!. When we have age(g) = 1 we get age(g~!) = 2.

Remark 7.1.14. From Remark 7.1.6 we see that ¢ plays an important role for cusp polyno-
mials. We have to consider this as an additional variable. So we will define Aut(f,G) in a
little different way.

Definition 7.1.15. For a cusp polynomial fa4 = z{* + 25? + 23° — ¢ 'z12973 and a group
G C Gy, we define

Aut(fa,G) :={p € GL(3+1,C) | Fa(p(x;0,q)) = Fa(x;0,q), ¢ 'gp € G for all g € G}.

Here we see G C Gy, as a subgroup of GL(3+ 1, C) which leaves ¢ invariant. Then it is again
obvious that G is a subgroup of Aut(fa,G).

7.2 Theorem for Cusp Polynomials

We cannot give the uniqueness in total for all cusp polynomials, for the following pair we
cannot give the uniqueness:

Definition 7.2.1. Let f = z{' + 252 + 25> — ¢ 'z17923 be a cusp polynomial and G be a
group of diagonal symmetries of f, such that there exists a id # g € G and i € {1, 2,3} with
x; € Fix(g) and a; = 3. Such a pair (f,G) is called of bad type.
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Theorem 7.2.2. Let f = x{* + 23> + 25> — ¢ ' x12913 be a cusp polynomial and G a subgroup
of Gy. There exists a G-twisted Jacobian algebra Jac'(f,G) of f. Furthermore when (f,G) is
not of bad type it is a unique G-twisted Jacobian algebra Jac'(f,G) of f up to isomorphism.
Namely, it is uniquely characterized by the axioms in Definition 5.2.1.

In particular, the orbifold Jacobian algebra Jac(f,G) of (f,G) ezists.

We will first define some elements and then show the uniqueness and the existence as stated
in Section 5.4.

Definition 7.2.3. We choose a generator g; of Kj.
Let ¢;; € GL(3,C) be the automorphism which interchanges the i-th and j-th coordinate.
If (gpl_jlglgplj) is a generator for K;, j = 2,3, we choose g; = (gol_jlglgplj). Otherwise we
choose other generators g; for K;, j = 2, 3.

Definition 7.2.4. Let ¢; € Aut(f, G) be the element, which sends z; to e[-]z; and ¢ to e[-]g
and preserves the other coordinates.

Uniqueness

Throughout this subsection, f = z{' 4+ 232 + 5> — ¢~ 'x12923 denotes a cusp polynomial. And
we show, as mentioned in Section 5.4, the uniqueness of Jac'(f, G) for any G C Gy, such that
(f,G) is not of bad type.

Take the nowhere vanishing 3-form ¢~ 'dx Adzg Adzs and set ¢ := [q~'dxy Adzg Adzs) € Q.

Definition 7.2.5. Fix also a map
a:Gy—C", g ay,
such that o;q = 1 and
agog1 =1, g€ Gy.

Such a map « always exists since for each g we may choose o, = 1. For each g € G, let v, be
as in Definition 5.4.5

Vg = ¢ = agwy.

Proposition 7.2.6. For g,h € G with g, h,gh # id and Fiz(g) = {0} or Fiz(h) = {0}, we
have vy 0 vy, =0 € Jacd'(f, Q).

Proof. W.lo.g. Fiz(g) = {0}. Denote by [vg’h(x)] the element of Jac(f9") satisfying v, o v, =
[ 1 (X)]vgn. We have four cases:

(i) Fiz(h) = {0}, Fix(gh) = {0}

(ii) Fiz(h) = {0}, gh € K, for one i € {1,2,3}

(iii) h € K; for one i € {1,2,3}, Fiz(gh) =0

(iv) h € K, for one i € {1,2,3}, gh € Kj for one i # j € {1,2,3}
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We prove it in every case:
(1) Here we have vy, vy, vy, € Jac'(f, G)7 so we get zero by the Z/2Z-grading.

(ii) We have ¢f(vy) = vy and @} (vy) = vp, but ©f(vg) = e[]vg,. Axiom (iva) yields

1

o ([, (X)) = e[ZH [, 1 (x)], so [7) ,(x)] has to be a constant multiple of z{*~* or of

q¢~'. We have x;-”_l = 0 in Jac(f9"). And for ¢~! we get a contradiction by taking ¢;,
J # %, which leaves all vy, vp,, vy, invariant.

(iii) When we take g € G C Aut(f,G), we have g*(vy) = vy, g*(Vgn) = vgn, but g*(vs) = Boy,
for 8 # 1 € C, since ¢ is G-invariant. Axiom (iva) yields g*(h;h(x)]) _ ﬁ[vé,h(x)]’ SO
[, 1 (x)] = 0 since Jac(f9") = C.

(iv) Here we have v, € Jac'(f, Q)1 and vy, vy, € Jac'(f,G)g so we get zero by the Z/2Z-
grading.

[]

Proposition 7.2.7. For g,h € G with g € K; and h € K;, i # j, we have vgov, = 0 €
Jac'(f, Q).

Proof. Denote by [, ,(x)] the element of Jac(f?") satisfying vy o vy = [y} ,(x)]vgn. We have
again two cases:

(i) Fix(gh) = {0}
(ii) gh € Ky for one k € {1,2,3}\{i,7}
We prove it in every case:

(i) Here we have v, € Jac'(f,G)y and vy, vy, € Jac'(f, G)1 so we get zero by the Z/27-
grading.

(ii) As in the second case of Proposition 7.2.6, we get with ¢, that [y; ,(x)] has to be a
constant multiple of :L’Z’“_l or of ¢g~1, which is zero or gives a contradiction by taking ¢;
or ¢;.

[
So we only have to consider g, h € K; for each i € {1,2,3} and g, ¢~ with Fix(g) = {0}.

Proposition 7.2.8. For g € G with Fix(g) = {0} we have
Vg © Vg1 = (—1)age(g)/@q_1x1x2x3vid

with the k of Definition 7.1.7.
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Proof. Since agzo,-1 = 1, we have
Jria (G vgovg-1tC) = Jpg(vgF Cvg-1 ()
— (-1 e |- guseto)] - [0
— —(-) |G
and on the other hand

Jtid (C> Kq T30 C)
= |G| J; (q_ldxl A dxs A des, kg e oxsq ey A dzy A d.tl:g)
= —|G|.

]

For each i = 1,2, 3, we take the generators g; of the group K; = Z/n;Z (cf. Definition 7.2.3).

We define the elements w of Jac'(f, gl) as wg = vy for each | € Z with | ¢ n;Z and we set

the element wy = z;viq € Jac'(f,id) for each I € n;Z.

Lemma 7.2.9. Fori # j € {1,2,3} and all l;,l; € Z, we have the following equality in
Jac'(f. glgy)

w iy, oW 1, =
gil gjj

{akqxzklvid li e niZ and l; € n;Z, k € {1,2,3}\{7, 5}

0 otherwise

Proof. If I; € nyZ,l; € n;Z, then wyo 0 OWyH = Tiliq O TjLid = akqxi’“flvid in Jac'(f,id) = Jac(f).
If I; € n;Z and l; ¢ n;Z, then wp OW I = TVAOV Iy = TV 1y = 0 in Jac'(f, gé.j) and vice versa.
. : ,

If l; ¢ nyZ and l; ¢ n;Z, we are in the case of Proposition 727, ]

Proposition 7.2.10. For each pair |,m € 7Z there exists ¢, € C such that

Wi © Wym = Cp @i Wyt+m € Jacd'(f,go™).

9;

Remark 7.2.11. The ¢;,,, € C can depend on ¢ in the case x4 = 0 as we will see in Lemma
7.2.14.

Proof. Denote by [v;,,(x)] the element of Jac(fgﬁm) satisfying wg o wgm = [7,,(x)Jwgp. With
the Aut(f, G)-element p; we get ;(wy) = e[L -Jwye and so since the multiplication is Aut(f, G)-

invariant, we get ¢} ([v;,,(x)]) = [a‘][%,m( )] 50 it has to be a multiple of x; or of q. For j # i
we have ¢ (w, z_) = Wy, S0 a constant multiple of x; is the only possibility. O

Remark 7.2.12. In the proof of Proposition 7.2.10 we assumed that w, 10 Wym s always a
multiple of w g which is a priori not clear for [ +m € n;Z. But even there we can only have

that w, 10 Wgm is a constant multiple of ¢? T 72x§’“ ? this is not zero only for a; = ar = 3 but

then thls is not possible, since we would have 0 — Jr.g(Tiwg, wom) = Jpia(vid, Tiwgr © wgm) =
Jtia(vid, cq®xixjxr) # 0. So we get a contradiction.
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We give some properties of ¢ ,.

It is obvious that ¢ pmin, = Cim = Cignym- 1 € niZ or m € n,;Z it is clear that ¢, = ;0 =1
because of Axiom (iiia) and the definition of wg. Nevertheless for a; = 2 the multiplication
need not to be nonzero.

Lemma 7.2.13. We have ¢, = ¢ .

Proof. Since n —n, =0 mod 2 for g} for all I € Z, this multiplication is in Jac'(f, G)g, the
commutative subalgebra. O

Lemma 7.2.14. We have ¢;_; = k from Definition 7.1.7 for | € Z, | ¢ n;Z. So for x4 <0
we even have ¢;_; =1 for all l € Z.

Proof. For | € n;Z it is clear that ¢;_; = 1. For [ ¢ n;Z we have

a;—

2 —2
S g (@7 "0 vt - ()= ozggag;zjf,g(x? W, Wy—1)

1 1
— 1 (-1 | gagelah)| 161 1
_lGl
a; )
On the other hand, by Axiom (v), we have
Jf:g(xgl_2vgi |_ C? /Ug_*l |_ C) = Jf,ld<wld7 ‘T?l_Qvgﬁ © /Ug_il |_ C)
= Jtida(wid, clv_lx?i_lvgg F )
= 1,1 fid(wid, 77 wia)

1
—1
= Cl,fl!]f,id(widy a_q $1$2$3wid)
i

1
=c¢_—- |G]Jf(q’1dx1 A dwy A das, ¢ oimowsq tday A dog A das)
1 —1
=q_1—|G[(—).
c—1—|GI(—)

(2

]

Remark 7.2.15. Note that if a; = 2 then Wi © Wgm # 0 if and only if [ + m € n;Z and the
product structure is uniquely determined by these lemmata.

Also for the three polynomials with x4 = 0 and a; # 2 we can only have K; = Z /27 when
K; is not trivial. For the polynomial with a; = 3 for all z = 1,2, 3 we would otherwise have a
pair of bad type (cf. Definition 7.2.1). So for all three polynomials with x4 = 0 the product
structure is also uniquely determined by these lemmata.

So from now on we can assume x4 < 0 and a; > 4, since for a; = 3 we would have a pair of
bad type.

Lemma 7.2.16. Assume that a; > 4. We have ¢ mCiimn = ClmtnCmn for all l,m,n € Z.
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Proof. We have
_ _ 2
(vgé 0 Vgm) 0 Vgn = (cl,mxivg§+m> O Ugn = CLmClamnT; Ugitmn,

2
’Ugé o (’Ug;ﬂ ¢] ’Ug?) = /Ugﬁ o} <Cm,nxivg;n+n> = Cl7m+ncm,n$i 'Ugi—&-m+n.
The associativity of o yields the statement. O

Lemma 7.2.17. Assume that a; > 4. For alll,m € Z, we have ¢;,c—i—m = 1, in particular,
cm # 0 for alll,m € Z.

Proof. We have

o OV 10V —m = ; 0] U —1—
Ugﬁ ngm Ugiz Ugim <Cl’m$l'l)gzl_+m) (C,l,,ml‘lvgil m)

_ 3 _ 4
= CmC—1,—mCi4+m,—l-mT; Ug? = C,mC—1,—mT; Vid,

Ugﬁ e} Ugfz o} ngm o} Ug_—m = (Cl,_lxﬂ)go> o} (Cm’_mxﬂ)g?>

7 K3

2,2 4
I3 Z/Uld_x/Uld

= C,—1Cm,—mT;

The statement follows from the associativity and the commutativity of the product o with
Lemma 7.2.14. O

Lemma 7.2.18. Assume that a; > 4. For all l,m € Z>1, we have

I+m—1
d=0 Clyd

(T cra) (T ers)

Proof. By Lemma 7.2.16 and Lemma 7.2.17, we have

Clom =

. C1
Com = C1m—1—"""
Cl,m—1
and hence
I+m—1
o= Cll+m—2 Cii+1 Cg d=0 C1,d
tom — Cl+m—-1,1 cee -
€11 €1,m—2 Clm—1 (Ha =0 a)(Hb 0o 1 b)

For each [ € Z>4, set

ni—l “n

H Cla | | Cla
a=0 a=0

Lemma 7.2.19. Assume that a; > 4. For alll € Z>,, we have

Cl4n; = (.
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Proof. Note that Hlﬂ“ Cla = szz)l C1q SINCE €1 = €1 pin, for all b € Z. Then the statement

follows from the following equation.

_l+ni _1
n;—1 n; l+n;—1 n;—1 l+n;—1
Cln; = H Cla H Cla | = C H Cl,a H Cla | = C-
a=0 a=0 a=0 a=l

By this Lemma, for all | € Z we can define ¢; as ¢;1,,n by choosing a positive integer N
such that [ +n; N > 0, which is independent of the choice of such an N.

]

Lemma 7.2.20. We have:

G =1

CiCpy—1 =1
Proof. ¢,, = (HZZ 01 1 a)_% (HZI 01 c1 a) =1 and
it = (5 ) ™ (Michere) (T2 >* (5" 1)
= (Hi_:lo Cl,a) (HZZJ_I Cl,a) (an_ol ¢ a)il = it = L 0
For each | € Z, set &795 = Ac’lwgﬁ.
Lemma 7.2.21. Assume that a; > 4. In Jac'(f, gl+m), we have the following equality
{Dgé 0 Wym = xi@g§+m.
Proof. Tt follows directly from Lemma 7.2.18. O

This lemma states that by replacing the map o : Gy — C* by a suitable one we have a
new basis {Ug }4eq, instead of {v,}geq,. To summarize, we finally obtain the following

Corollary 7.2.22. Let g,h € G and (f,G) not of bad type. We have

(D, if h =
Up, if g =1d
- T;Wgh, if Fix(g) = Fix(h) = {z;} = Fix(gh)
KRG RT;Wgp, if Fix(g) = Fix(h) = {z;}, gh =id
(—1)2°@D kg oy mows  if Fix(g) = Fix(h) = {0}, gh =
0 otherwise

with the k from Definition 7.1.7.

In particular, for any subgroup G of Gy and (f,G) not of bad type, if a G-twisted Jacobian
algebra of f exists, then it is uniquely determined by the axioms in Definition 5.2.1 up to
1somorphism.
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Existence

Throughout this subsection, f = z{' 4+ 232 + x35* — ¢~ 'x1 7923 denotes a cusp polynomial. And
we show, as mentioned in Section 5.4, the existence of Jac'(f,G) for any G C Gy. Let A’ be
as in Definition 5.4.7.

Definition 7.2.23. For each g,h € Gy, define an element of A}, by

(T, if h=1id
T, if g=1id
_ ZTiUgh if Fix(g) = Fix(h) = Fix(gh) = {z;}
Vg O, = KI2Tiq if Fix(g) = Fix(h) = {z;}, gh =1id
(—l)age(g),%qflxlxzxgﬂid if Fix(g) = Fix(h) = {0}, gh =1id
0 otherwise

\

with the s from Definition 7.1.7.

Lemma 7.2.24. For g,h € Gy we have
Ty 0T, = (—1)m=m)n=m) (5, 075, .

Proof. This is clear from the definition, since only for Fix(g) = {0} we have n—n, =1 mod 2
and so in this case we have if g = (%, %2, %) is an element of age 1 with 0 < a; <7r,i=1,2,3,

then g7! = (©=%, =92 =9 j5 an element of age 2 and vice versa (cf. Proposition 7.1.12). O

Proposition 7.2.25. For each g,¢', 9" € Gy, we have
(@g O @g/) (@] gg// = EQ @) (591 O @g//),
Proof. We only do not get zero on both sides, if one of g, ¢, ¢g” is the identity, or if Fix(g) =

Fix(¢') = Fix(¢") = {z;} for one i € {1,2,3}. If one of g, ¢, ¢g” is the identity, this is trivially
satisfied since Ty 0 Tiq = T,. For the other case we define the elements w, of Jac'(f, g}) as

W, = v, for each | € Z with [ ¢ n;Z and we set the element W, = z;viq € Jac'(f,1d) for each
[ € n;Z. Then we have for y4 < 0 and so k = 1: (W, 0Wy) 0 Wy = X;Wyy © Wyr = T2 Wygrgn =
LWy 0 Wy gn = Wy 0 (Wy 0Wyr). For x4 = 0 we either have a; = 2 and so both sides are zero

or we have a; = 3 for all © = 1,2,3. Then we could have K; = Z/gz and then we get either
99'g" =id and so g = ¢’ = ¢” so it is clear or g¢'¢” # id. Then we get on both sides a multiple
of x;U,g 4 which is zero in Jac(f, gg'g"). O

Now it is possible to define a Z/2Z-graded C-algebra structure on A’.
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Definition 7.2.26. Define a C-bilinear map o : A'®@¢. A" — A’ by setting, for each g, h € Gy
and ¢(X)7 1/1(X) € C[l’1,$2,l’3],

([o(x)]vy) o ([¥ (x)on)
([6(x)¢(x)]7, if h=id
[6(x) P (x)[vn if g = id
_ J[6(x)(x)i]vgn if Fix(g) = Fix(h) = Fix(gh) = {z:}
K[p(x)1)(x) 23] Vi if Fix(g) = Fix(h) = {z;}, gh =id
(1) @r[p(x)(x)g  w1aas)Tia  if Fix(g) = Fix(h) = {0}, gh =1id
0 otherwise

with the s from Definition 7.1.7.

Proposition 7.2.27. The map o equips A" with the structure of a Z/27Z-graded C-algebra
with the identity Tiq, which satisfies Axiom (ii) in Definition 5.2.1.

Proof. The associativity of the product follows from Proposition 7.2.25. By the definition
7.2.23 it is obvious that Ao .A% C AéTj since we always have zero, when (n—n,)+ (n—ny) #
(n — ngy,) mod 2. It is also clear by the definition of the map o above that the natural
surjective maps Jac(f) — Jac(f?), g € Gy, equip A’ with the structure of a Jac(f)-module,
which coincides with the product map o : Ajy ®@c A, — Aj. O

Definition 7.2.28. Take the nowhere vanishing 3-form ¢ 'dz; A dzy A dos and set ¢ =
lg  day A dxg A das] € Q. Define a C-bilinear map +: A’ ®¢ Q},Gf — Qlf,Gf by setting, for
each g, h € Gy and ¢(x), ¥(x) € Clzy, z2, 3],

([o(x)]7g) F ([ (3)Jewn)
(2 () (x)Jg if h = id
L 5 x)15 (o) o, if g = id
) 0w om i it Fix(g) = Fix(h) = Fix(gh) = {a:}
ngzh [¢(X)¢£x)x?]wid if Fix(g) = Fix(h) = {z;}, gh =1id
(—1)aeel9) F"gzh [p(x))(x)qg 'z w9m3|wiq  if Fix(g) = Fix(h) = {0}, gh =1id
0 otherwise

\
with the x from Definition 7.1.7 and @ : G — C*, g — @, is a map we will define now:

Definition 7.2.29.
@, := 1 if Fix(g) = {0}.

All other g € G can be written as ¢! for the generators g; of K;, i = 1,2,3. We define for
i €{1,2,3} and m € Z>( the numbers:

1 m=0 mod n;
c =<1 m=n; —1 mod n;

v—1 otherwise
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Then we define

l
ni—1 Thp [1-1

— ‘ i

i (1) (I0e)
m=0 m=0

Lemma 7.2.30. This is well defined since o, = Q tn; and o =1 for alli=1,2,3.

Proof. Note that [ e = [T%Z) ¢, since in both products we have twice a 1 and (n; —2)-

Cm m=0 ~m

times a v/—1. Then the statement follows from the following equation.

l+ni 1
n;—1 n; I4+n;—1 n;—1 - I+n;—1
= (T1e)  (Ta) = (1) (11 =5
m=0 m=0 m=l

For all i = 1,2,3 we have: @ = (H"Fl ct )7% (Hn’fl i) =1 O

m=0 "m mOm

Lemma 7.2.31. The map & : G — C* satisfies aig = 1 and
agag—l = 1, g < Gf.

Proof. For all i = 1,2,3 we have ajq = @,~ = 1. For Fix(g) = {0} and for g = id the second
statement is trivially satisfied. In the other cases for i € {1,2,3} we can take 0 < < n; and

have
1 n;—1
n;—1 T ng -1 n;—1 Ty n;—l—1
- - _ i i i i
Qglg-1 = éOAg;i—l = C, Cm Cm, Cm
m=0 m=0 m=0 =0

(1<) (1<) i) - (1) (1) 1)

_ \/_—1171+ni7l717(ni72) _ \/_—10 _
The map F induces an isomorphism + ¢ : A" — Q}’Gf of Z/27Z-graded C-modules:

FC A — Q) [0(x)]Tg = [0(x)]T, F ¢ = ag[o(x)]w,,
Note that for each g, h € Gy and ¢(x), 1 (x) € Clzy, x2, x3] we have
([o(x)]7g) F ([¥()Jon F €) = (([9(x)]7g) o ([ (%)]on)) F €,
by which we obtain the following

Proposition 7.2.32. The map b: A" ®c Qfq, — ¢, satisfies Aziom (iii) in Definition
5.2.1.

104



On A’ we have the action of ¢ € Aut(f, G) induced by the isomorphism + ¢ : A" — Q’fgf,
which is denoted by ¢*. We also use the notation of Remark 5.1.8.

Proposition 7.2.33. Aziom (iv) in Definition 5.2.1 is satisfied by A’, namely, Azioms (iva)
and (ivb) hold.

Proof. Let g € G;. For simplicity, set ¢’ = ¢~ 'gy. There exist A\, and A, such that
90* (&-}id) = )\goa)ida 90* ((“T‘)g) = )\@ga}g/

First note that A\, = %1, since all ¢ € Aut(f, G) preserve f and so also preserve ¢~ 'z1z213
and so they leave wiq = [¢7'dxy A dzo A dz3) invariant except perhaps the order of the dux;.
For each ¢(x) € Clxy, x9, 3], we have

" ([p(x)]Tg) = [¢"O(x)]0" (Ty),

" ([#(x)]vy) = 0"(¢) = ¢"([0(x)]Ty F ¢) = " (Ay[d(x)|wy) = [ d(x)]0" (Agw,)
= [p"o(x)] F " (@gw,) = [¢"o(x)] F 0™ (T, () = [p"d(x)] F (0" (Ty) F ()
= ([¢"o(x)]¢™(7y)) F " (C).

Therefore, we only need to show that ¢*(v,) o ¢*(Ts) = ¢*(V, © Ty).
It easily follows that

©* (Vi) = Via, ¢ (Vy) = = Vg,
since ¢ (Tia) F ¢*(¢) = ¢*(Tia - () = ¢*(¢) and

_ _ L _ 1
(Ao Ugr) F € = Ay @gwy = ayp*(w,y) =g p (a_vg =)

So for the multiplication with Tyq the Aut(f, G)-invariance is clear.

Since the fixed loci of g and ¢’ have the same dimension, we only have to show the Aut(f, G)-
invariance for each case of Definition 7.2.23.

For Fix(g) = Fix(h) = {0} and gh = id, we have @, = @), = 1 and also A,, = A,, = 1 since
wy = 1, and ¢*(1,) = 1,. So we have to show that

* [— % /— Oég)\(pg O[hAsp ]_ ( )
= —Vy = —(—1 agelg ;
¥ <U9> o (Uh) ag’>\ ay U o Up )\?0< ) Kq $1$2$3’U d

is the same as

0" (Vg 00p) = gp*((—1)age(g)/<;q’1x1x2:c3@id) = (—1)age(g)<p*(/i)q’lazlxgxgﬁid.
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Since A\, = 1 we only have to show ¢*(k) = x. For x4 < 0 we have x = 1 and this is clear.
In the other three cases k depends on a multiple qlcm(“l’“w?’) see Definition 7.1.7. So we see
directly, when ¢ € Aut(f,G) C GL(3+1,C) leaves f = x{* + x5? + 23* — ¢~ ‘w1973 invariant
it also leaves ¢'e™(@1:02:33) and so £ invariant.

For Fix(g) = Fix(h) = {a;} for a fixed i € {1,2,3} we have ¢*(z;) = A, x; for one
J € {1,2,3}, since ¢ € Aut(f,G) and w,, = [dx;]. So it is also clear that Ao = g, for all
| € Z\n;Z. By the definition of the g; we have for A\, = —1 that g, = gj’1 and for A, = 1 that
gi' = g} for one a € Z with ged(a,n;) = 1. That is because ¢ is G-equivariant and we also

have n; = n;. (Usually we have ¢ = j but it it also possible that i # j.) So we have to show
for 0 < [y, 1y < n; that

« l.1>‘50 o a 12/\%’ Jl2

(v = Ji Vo oV
¥ (Ugél) 1”2 a )11)\ @, )\(p (ghh © Y(gh2

a 110‘ 12 ‘qu

2/<::v Diq ifly+1=n;
%y )ll (g >l2
o 110‘ l2 LPgZ .
11 +1lg if ll + lg 7é n;
(9 )ll (9] iz A “’ (gl)
is the same as
* 2 3 —
o (00 0T 1) = ©*(kx?) if l1+ 15 =n;
1 2 - — .
9; 9; SO*(IL'iUgU“?) if ll + lg ?é n;
)\igl K,.T2 if ll + lz =N,

= @ itz )‘ng

m/\%zxﬂv(g yari il 4+l # g

For [ 41y = n; this is clear because a ;-1 = 1. So we only have to show, for 0 < I3, 1l < n,,
ll -+ 12 # n;.

a1 O QO 141
g1k | Qg

i

Vgpr Fgpyade  Cghts

For A\, =1 thisis 1 = 1 since a, L= O‘(gz)l'
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For A, = —1 we have n; = n; and so ¢, = ¢J. So we can calculate the LHS as

a1, NN
gt g2 gt g2

O[(gz()ll O{(g;)lg )\<,0 ozg;zjlea ;zjfl2

() (Then) (s ) (el
_ni—h _ni—lg
(Mosen) ™ (Do) Mhissen) ™ (TTze " eh)
1 -t -1 lo—1
(Tizoen) ™ (v=17") (v=1")
(Mspe) (V=) (v=r )

2n,;—1l1 =1y

1+l

(Hni;l c )_ h 201 +21>—2n;
= ( ml . ;n_znlzle (_1) v—l1 e
Hnmz;o Chn "
n;—1 —llJr.l2
(Hrrzzo Cin) "

The RHS is given by

1+l
- - ni=l i\~ s (prate—1
ag%1+12 agl_1+12 (Hm:() Cm) Hm:O Cm
1 B 7 PR
— = - n;—l1+n;—lg
Ql(gryla+l A n—lq—1 ni—1 : \— "5 —= n;—li+n;—la—1
g) 1T J 12 ( Q 7 ) n. 7 1 702 7
¢ 9j Hm:O Cm ¢ Hsz Cm
( n;—1 4 >—M( 19+ 1)
M ch,) o (VT
I, T T li+1la<mn

(MyiZg )™ ™ (vt
(H:Lni;ol cin)*%ﬁ(\/jlll+l2—1—2)

BT li + 1 > n;
B 2n;—1q —lp—1
C(hizo cha) ™ (VAT )
4 ( 1 )7l1+l2
K3 2 ng .
—0 Cm 201 +2l0—2n;+2
= o =1 V —1 L+ 1y < ny
_ ) (Iise ) ™
- 1+l

(g ciy) ™ 201 +215—2n;—2
- _Mv_l L +1lp >mny

which coincides with the LHS.

Hence, we proved the algebra structure o of A" is Aut(f, G)-invariant.

The G-twisted Z/2Z-graded commutativity (ivb) is a direct consequence of Lemma 7.2.24
since g*(vy,) = vy, for Fix(g) = Fix(h) or g = id, h = id and in all other cases our multiplication
is zero.

We have finished the proof of the proposition. m

We show the invariance of the bilinear form Jy g with respect to the product structure of

A
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Proposition 7.2.34. For each g,h € Gy, we have
Tp.gh (g b wh [B(X)] wigny-1) = (1)) ey (wn, (B F ([0(x)] wigny—1))

for a suitable ¢(x) that this is not zero. As a consequence, the algebra A’ satisfies Axiom (V)
in Definition 5.2.1.

Proof. We only have to look at the cases for g, h of Definition 7.2.28.

If g or h are the identity the statement is directly clear.

For Fix(g) = Fix(h) = {x;} for i € {1,2,3} and Uy, 12,11 + lo ¢ n;Z we have: (In this case
a; > 3, otherwise we directly have @gil H Wiz = 0.)

a; —

— 3
J 11+1 Uy Fwa, W n;—1y—1 :J 11+l LW 11+19, T
f,gil 2 gil gi27 7 gi"z 1—42 f7gi1 2 1 gil 2

a;
i

’_3009;1-711712)
1
- ()i
(2
and
(_1)(3_1)(3_1)Jf7gl_2 (nga; (gzmib)*ﬁgl_l = (x?iigwgm—ll—b))
= Jf7g£2 (wgll?,ﬂgél H <x?i_3w9;i711712>)
=J gi2 ~ (-1iq
= f,gﬁz Wg?ax@' Wgzm'—b = (_ )_‘ |

For l; + Iy € n;Z we have:

7

— a;—2 2 a;—2
Jtid (Ugl; - Wtz s T wid) = Jtid (f%i Wid, T;' wid)
1 1

1
-|G]
a;

and
(_1>(371)(371)Jf7gé2 (wg?a (gini_l?)*@gil - (x?i_2wid)>
- Jf,gl~2 <wgl.2’ﬂgl.1 - (‘T?i_Qwid))
ai—2 1
= Iyl (wg?’xi wgﬁl) - (_1);|G‘
Let Fiz(g) = {0} and h = ¢g~! then we have

Jtid (Vg b whywigny-1) = Jfia ((—1)age(g)/‘€q_1iﬂ1f€2£l73wid,wid)
= (G

and
(=17 s (wony (BT b (wia)) = (= 1) g (wh, Ty b (wia)
— (_1)(_1)3—0—age(h)|G|
= (—1)72e)|q|
and (—1)780) = —(—1)720) = —(—1)*(9) since h = g~". O
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So we have shown all axioms and with Proposition 5.4.9 we have finished the proof of
Theorem 7.2.2.

Remark 7.2.35. We have shown the existence for all cusp polynomials, even for those pairs
(f,G) of bad type (Definition 7.2.1). The crucial reason why we cannot prove the uniqueness
there can be seen in Lemma 7.2.17. Namely, we cannot prove that the ¢;,, are not zero. If we
take a zero multiplication there, we would also satisfy the axioms.

7.3 Frobenius Algebras Associated to the Gromov-Witten
Theory for Orbifold Projective Lines

Remark 7.3.1. In [ST15] and [IST12] it was shown that the Frobenius manifold associated

to the pair of a cusp singularity f4 and its canonical primitive form ( is isomorphic to the

one constructed from the Gromov-Witten theory for an orbifold projective line with at most
three orbifold points.

We are only interested in the Frobenius algebra Jac(fa). The proofs in [ST15] and [IST12]
were done with the uniqueness theorem for Frobenius manifolds of orbifold projective lines
from [IST15]. The interesting facts for the Frobenius algebra are:

Proposition 7.3.2 (cf. [ST15]). For A = (a1,a9,a3) the Frobenius algebra Jac(fa) has
dimension

and a basis {1,y,,,vi; | 1=1,2,3; j=1,2,...,a; —1}. The bilinear form J;, satisfies

JfA(17yuA) =—1

=Loifii=ir=iand 1+ o =a;
TraWir o Yiniga) = { & .
0 otherwise

(cf. Condition (ii) of [IST15, Thm 3.1], where we only have another scaling and —1 instead
of +1).
In the limit ¢ — 0 the Frobenius algebra is isomorphic to

Jac(fa)lg—o = C[yl’y%y?’]/(ylyz,yw& Yay1, a1yt — azys”, asys® — asys’, azys® — aryyt)
where y; j — y! and y,, — ay® (cf. Condition (v) of [IST15, Thm 3.1)).
Proof. This is an easy computation when we take the basis

{1, kg 'wywoms, (VR |i=1,2,3; j=1,2,...,a; — 1}

(cf. Definition 7.1.8) of Jac(fa). We have ¢~ zxox3 = a;x’ € Jac(fa) and so kg 'zixozs =
a;( /kx;)* € Jac(fa). Then we can take the limit ¢ — 0. For ¢ — 0 we even have k — 1. [
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Remark 7.3.3. A uniqueness theorem for Frobenius manifolds for orbifold projective lines
with 7 orbifold points, where r is an arbitrary positive integer was given in [Sh14].

Definition 7.3.4 (cf. [ET13a, Thm. 5.12]). Let f4 be the cusp polynomial of the tuple
A = (ay,ay,a3) and G C Gy,. For i = 1,2,3 let be K; be the subgroup of G preserving the
i-th coordinate with |K;| = n;. We define

/ a;

a; = .
|G/ K|

Define a tuple B = (by,...,b,) by
(bh...,br) = (CL; *ni,i = 172,3)
where ux v = (u,u,...,u). So we have r =30 n,.
o

Remark 7.3.5. We are only interested in the commutative part Jac(fa, G)g of our orbifold
Jacobian algebra. For G with jg = 0 (cf. Proposition 7.1.12) this is the total orbifold Jacobian
algebra.

We will now prove a similar statement as Proposition 7.3.2 for Jac(fa, G)y:

Theorem 7.3.6. Let B = (by,...,b.) be as in Definition 7.3.4. The Frobenius algebra
Jac(fa, G)g has dimension

r

MBZZ(bi—1)+2

i=1

and a basis {1, Yy, yi; |1 =1,2,...,r; j=1,2,...,b;—1}. The bilinear form J;, ¢ satisfies
‘]fAG(l?yuB) = -1

71 . . . . . .
— dfiy =iy =1 and j1 +j2 = b;
JfAvG(y’ilvjl’yi%j?) = { bi

0 otherwise
(cf. Condition (i) of [Sh1{, Thm 3.1], where we only have another scaling and —1 instead of

+1).
In the limit ¢ — 0 the Frobenius algebra is isomorphic to

Jac(fa, GYglgo = Clyrs - ’yT}/(yiyjy bitl" — by Ni<izsr

where y; ; — y! and Ypp by’ (cf. Condition (v) of [Sh1{, Thm 3.1]).

We will prove the first statement and then give some definitions to prove the remaining
parts.
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Lemma 7.3.7. We have
dim Jac(fa,G)g = Z (b — 1)

Proof. We have

s n;

MBZZb—l iZa—l

i=1 i=1 j=1
a; 1 >
= ST = D2 = (3 e — 3wl + 26)
i EDNLE
On the other hand from Theorem 4.4.4 or since G is abelian from Proposition 4.4.5 we know:

. 1 ng—n
dim (Qﬁg)ﬁ = Z Mya/q = @ Z Z(—l) 9TSGR> Y e g >

geG geqG heG
n—ng=0 (mod 2) n—ng=0 (mod 2)

Since G C SL(n, C) this is also the dimension of Jac(f, G);. We have

3

fpciaias = fiq = Y (a;—1)+2, ppane- =1 if g K; Vi=1,2,3,
=1
Up<gh> = (ai — 1) if g, h e K;, Hf<gh> = 1 if g c K;, h ¢ K;.

So we calculate with |G| =14 Y27, (n; — 1) + 2jg, cf. Proposition 7.1.12:

: 1 ng—mn
dim Jac(f,G)g = €] Z Z(—l) 9TI<I> [ g n>

9eG heG
n—ng=0 (mod 2)

:ﬁ > (= f<ldh>+z D DM

heG =1 geK;\{id} heG
3
1
el pa+ Y (ni—1)(a; — 1) — 2 - 1+Z —1)—]G\Ki\-1)>
i=1
3
1 .
— €] Z(ai - +2+ Z(nZ —D(a; —1) = 2jg + Z(nl — 1) (nsa; — |G])>
i=1 i=1 i=1

3 3
1
=1q > niai—|G|) ni+3\G’—\G!>=HB
i=1 =1
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Remark 7.3.8. Now we want to give a basis. For this let v, € Jad (fa,G) be the elements
with v, F ¢ = ayw,, cf. Definition 5.4.5. We will define e, € Jac'(fa,G) by e, := ‘K i, Vg» Which
is the more natural element as stated in the proof of Theorem 6.3.7. So here since we are
only interested in the commutative part, we can write each g € G with Fix(g) # {0} as g! for
1=1,2,3 and [ € Z as in the last section.

We will now define suitable elements.

Let us first consider the case x4 < 0: So we have €gl = n%vgé, [ ¢ n;Z and eiq = vyq, since
K, = K;. We will additionally define e = niixivid for I € n;,Z (cf. w in Lemma 7.2.9).

From our last section we know

niia:iegum 1=
€gl © Egm = arqry e i # jlenZand m € nZ, k€ {1,2,3}\{4,5} - (7.1)
0 otherwise
ey need not be in Jac(fa, G) because it is not necessarily G-invariant. But a:lG/ i= 1691_ is

G invariant for all [ € Z.
Definition 7.3.9. For eacht=1,2,3 and k=1,...,n;, put
n;—1
P G ) [ e
= X e [ 2t
1=0
It is straightforward that all [x; ] are G-invariant.

Lemma 7.3.10. In Jac(fa,G), we have the following equalities
[xi,k] o) [l’l’k] = $LG/Ki|[$i7k], 1= 1, 2, 3, k= 1, ey Ny,
wn particular,

ag

1
a’li['ri,k]aé - | i

aaix
And

[Tigy] 0 [Tiny] =0, 1=1,2,3, ky # ko,
Proof. By direct calculation we get:

—1n;—
\ JI+m)| 1 -
sl olan] = 3 3o [ DR Lo

m=0 [=0

Y e = 1><l>1 L 26,

1 qg:
1=0 i i Z
N |G/K;|
n;

112



So we have

/
/ o / (a)=1)|G/Ki| a; a}|G/K;| a; erelGIKLap g,
i)t = d| wia] = S p 0= i

ni G/Kn; R

For ky # ky we always have a sum of all different e[™] in each summand and we know that
the sum over all roots of unity is zero. O

Remark 7.3.11. For x4 = 0 we define e, = n%( /kx;)viq (cf. Proof of Proposition 7.3.2).
Here we have

%xie Im Lym,l+m ¢ n;Z
i 9;
— ) 1L ) ) )
€gl © €gm = 77 V/KLi€ lem l € n,Z orm e n;Z
ni( “«/E)“i_lxieg#m l,m ¢ n;Z and | +m € n;Z

So we can calculate

(Zl e [(k ;1)1] ( %xi)Gm—legi_) " ¢(H>nlzx

=0

where ¢(k) is a complex number which can depend on x and we always have ¢(1) = 1.

Example 7.3.12. We will calculate ¢(x) explicitly for A = (3,3,3) and G = K; = Z/3Z =
{id, g1,9%}. So we have a} = = 3 and a] = mlf’w = 1 for i = 2,3. So we can
calculate: e.g. for k = 2

(5[5 ) = (s v ve[3] )

=0
211, 211 3|1
( \/—2 2 + 2e |:3:| \/_ZL‘leg1 + 2e |:3:| g%xlegf +e |:§:| g[L‘leg% + 2e |:§:| 51{1’%

411 1 2
+e [5] §x169‘1‘) o <§%x1 +e {—} ey +€ [g} eg%)

— (G + SVRVRR + G+ gymle 5] VRnew + G + gymle 5] Viney )

1 1 2
o (§%x1 +e {51 eq, +€ {51 egf)

_3
| K1/ K|

1 2 1
=(§+§€/E)§€/E3x§’+o+0+o+o
2 1 3 2 1 2 1 3 1
+ (— 3\3/_)e [—] VK ZL‘1§I-€SB% +0+ (§ + ﬁ)e [5] %xlgmﬁ +0

2 1 1 r 2,1
-3 5tV \/E$1+9/<&$1+9/%§’) (5 +3VR)ghai
3V

So here we have ¢(k) =

W=
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Definition 7.3.13. For each i =1,2,3 and k = 1,...,n;, we define

e

Lemma 7.3.14. In Jac(fa, G), we have the following equalities

[xz k

] (&) /K1

iz j]% = ——a;kx

[xiJﬂ] © [mi7k2] - O’ 1= 172737 kl 7£ kQ-

Proof. The first equation is clear from the definition of ¢(x) and the second one is the same
as in Lemma 7.3.10. O

Remark 7.3.15. Note that for ¢ — 0 we have K — 1 and so the Definitions 7.3.9 and 7.3.13
coincide in the limit.

Lemma 7.3.16. In the limit ¢ — 0 we have for all 1 < k; < ny, @ = 1,2,3 the following
equalities in Jac(fa, G)|4—0

[l’@/ﬁ.] o [xj,kj] = O fOTi 7é j

Proof. In the limit we have z;2; = 0 € Jac(fa,1d)|;—0 = Jac(fa)|4—0 and from Equation (7.1)
eqoegm =0 € Jac'(fa, G)|g—0 for i # j. O

Proof of Theorem 7.3.6. Let us rewrite

(b17 sty bT) as (b1,17 sty bl,n17b2,17 ey b2,n27b3,17 ey b3,n3)'

So we have b, = a; fori—l 2 3, k=1,.
We take the ba81s {1 arhd Ly xoms, [xzk] | i=1,23;k=1,...,n;; j=1,...,a, —1}.
Therefore the lemmata above yield Theorem 7.3.6. O

Problem 7.3.17. For future research it might also be possible to associate a Frobenius
manifold to the pair (f4,G) and the canonical primitive form ¢ and show that it is isomorphic
to the one constructed from the Gromov-Witten theory for an orbifold projective line with at
most r orbifold points.
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