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Zusammenfassung 

 

Das bessere Verständnis um die Transport- und Anreicherungsprozesse von Metaboliten 

und Speicherreserven in Samen von Brassica napus ist ein wesentlicher Bestandteil 

aktueller Forschung. In dieser Arbeit wurde ein experimenteller Aufbau etabliert, der es 

erlaubt, den Fluss von Saccharose von maternalem Gewebe bis in den Samen zu verfol-

gen (mit Hilfe von 13C markiertem Substrat). Es konnte gezeigt werden, wie Zucker 

(und andere Assimilate) in frühen Stadien der Entwicklung durch den Funinkulus und 

die Samenschale in den Samen eindringen und sich anschließend gleichmäßig über das 

flüssige Endosperm im Samen verteilen. Entgegen vieler Vermutungen, gab es keine 

Hinweise über einen Transport der Saccharose zum Embryo über den Suspensor. Des 

Weiteren konnten organspezifische Unterschiede in metabolischer Aktivität, im Ver-

gleich von flüssigem Endosperm sowohl zum Embryo als auch der Samenschale mit 

zellularisiertem Endosperm, aufgezeigt werden. Diese Daten repräsentieren wichtige 

Erkenntnisse um den generellen Samenmetabolismus und die Aufnahme von Assimi-

laten besser zu verstehen. 

 Ein weiterer wichtiger Bestandteil meiner Arbeit war die Charakterisierung von 

transgenen Linien von B. napus, welche eine Reduzierung der PEPC Enzymaktivität 

sowie eine massiv reduzierte Speicherproteinanreicherung anstrebten. Der erhaltene 

samenspezifische Phänotyp erleichterte die Identifizierung vieler wichtiger Änderungen 

auf metabolischer und genetischer Ebene. Die Samen der transgenen Linie zeigen einen 

Ausgleich im Proteingehalt, indem sie andere Proteinmengen, vor allem Oleosin2, für 

das fehlende Napin und Cruciferin erhöhen. Dies führt zu Änderungen in genetischen 

und zellulären Prozessen, die sich unter anderem in sehr ungewöhnlichen zellulären 

Membranstrukturen äußern. Entgegen vorangegangener Hypothesen, führte die Verrin-

gerung im Speicherproteingehalt zu einem erniedrigten Lipidgehalt im Samen mit etwas 

geändertem Fettsäureprofil. Die Analyse der transgenen Pflanzen führte zu neuen Ein-

sichten im Kohlenhydratstoffwechsel und den Kontrollmechanismen für die Samen-

zusammensetzung. Die gewonnen Erkenntnisse sind Teil zukünftiger Projekte. 

 

Schlagworte: Rapssamen, Lipidstoffwechsel, Speicherproteine, 13C –

Isotopenmarkierung, Oleosin 

  



Abstract & Summary 

 

Understanding the delivery and accumulation processes of metabolites and storage re-

serves in seeds of Brassica napus is in the focus of modern research. In this work an 

experimental setup was established, tracing the flow of sucrose from maternal source 

tissues toward the seed (feeding of13C labelled substrate). It is demonstrated how sugars 

(and other assimilates) travel through the funinculus, and then disperse through the seed 

coat and then evenly spread through the liquid endosperm during early stages of devel-

opment. Against the expectations, no indications were found for movement of sucrose 

to the embryo via the suspensor. Furthermore, spatial differences in metabolic activity 

could be unraveled for the endosperm in comparison to both embryo and seed 

coat/aleurone layer. These data present important findings for general understanding of 

seed metabolism and assimilate uptake. Further important aim of my work was the 

characterization of transgenic lines of B. napus with reductions in PEPC enzyme activi-

ty and impaired storage protein accumulation. The observed seed-specific phenotype 

identified distinct molecular and metabolic rearrangements.Seeds of transgenic plants 

rebalance their protein content, with oleosin2 beeing one of the main substituents for the 

loss in napins and cruciferins. This caused changes in molecular and cellular processes 

including the appearance of very unusual membrane structures. Against previous hy-

pothesis, the transgenic modulation of seeds, caused a lower lipid content with slightly 

changed fatty acid profile. The analysis of transgenic plants led to novel insights into 

carbon partitioning and control mechanisms for seed composition. These will be fol-

lowed up in future work. 

 

Keywords: Rapeseed, lipid metabolism, Seed storage proteins, 13C Isotope labelling, 

oleosin 
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1. Introduction 

 

In the family of Brassicaceae, oilseed rape (Brassica napus L.) is the most popular cul-

tivated crop worldwide. B. napus ssp. napus includes winter and spring oilseed, fodder 

and vegetable rape forms, and ranks third in the global consumption of vegetable oils 

after oil palm and soybean oils (http://www.statista.com). Rapeseed oil is highly nutri-

tional food oil and provides the raw materials for biodiesel production. The oil content 

ranges from 40 to 50% and the residual meal is rich in protein and used mainly for ani-

mal feed and human food. Rapeseed is mostly produced for low erucic and low glucos-

inolate varieties or so-called canola (Canadian oil low acid) quality. It contains the low-

est level of saturated fatty acids and is recommended as healthy fatty acid profile. This 

composition maintains the balance of blood cholesterol and prevents heart disease risks 

(Gillingham et al., 2011). Due to the remarkable increase of oilseed rape production in 

recent years it has become a focus for breeding and molecular genetics.  

 

1.1 B. napus as a target of crop improvement 

 

1.1.1 Breeding success in oilseed rape 

 

Advanced breeding programs aiming to produce edible rapeseed oil with low erucic 

acid as well as glucosinolates (Low Erucic Acid Rapeseed- LEAR) have greatly influ-

enced the increase of oilseed rape production (Snowdon et al., 2007). More challenging 

was the breeding of high oleic and low linolenic acids varieties (HOLL). These are low-

er in saturated lipids and thus favorable for food productions (Mailer 2009). As a result 

of B. napus breeding, Canola (Canadian oil) quality was originally produced which in-

clude all LEAR varieties that contain very low amounts of erucic acid (< 2%; Kimber 

and McGregor 1995). In addition to edible oils, oilseed rape has advanced applications 

to produce biodiesel as a source of energy and rape meal for livestock feed having high 

protein amount (Snowdon et al., 2007). 
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1.1.2 Genetic engineering of B. napus to improve crop quality 

 

With the development of genetic engineering and transgene production, there have been 

many efforts toward improving crop or seed products. The main focus in rapeseed has 

been the elevation of triacylglycerol (TAG) levels inside the seed and the modification 

of fatty acid composition (Dyer and Mullen, 2008; Napier, 2007). The main strategies 

for increasing plant lipids either interfere in the fatty acid biosynthesis pathway by up-

regulation of relevant enzymes, increasing TAG assembly or preventing TAG break-

down (which occurs at the end of seed maturation by targeting TAG lipases and β-

oxidation). One successful approach used the overexpression of fatty acid synthesis 

related genes like diacylglycerol acyltransferase (DGAT) in seeds (Weselake et al., 

2008; Jako et al., 2001). Previous experiments with developing seeds of B. napus have 

suggested that DGAT activity may have a substantial effect on carbon flow into seed oil 

(Perry and Harwood, 1993; Perry et al., 1999). Upregulation of DGAT in seeds resulted 

in an increase of lipid content of up to 14% (Jako et al., 2001). Another study showed 

that an overexpression of acetyl-coenzyme A carboxylase in B. napus resulted in 6% 

seed oil increase (Roesler et al., 1997). A much higher increase in oil content  of  up to 

40% in B. napus could be achieved when overexpressing the glycerol-3-phosphate de-

hydrogenase GPD1 (Vigeolas et al., 2007). Approaches that try to block TAG break-

down at the end of seed maturation have used suppression of Sugar-dependent 1 

(SDP1), which is a specific lipase for the first step of TAG catabolism during seed ger-

mination (Eastmond et al., 2006). The RNAi suppression of SDP1 led to an increase in 

seed oil content of up to 8% in B. napus and up to 30% in Jatropha curcas (Kelly et al., 

2013; Kim et al., 2014). More recent approaches have discovered the advantages of 

combining different genetic targets in one approach. For example, a combined overex-

pression of dgat and wri1 in Nicotiana benthamiana transient leaf expression system 

resulted in TAG levels exceeding those expected from an additive effect (Vanhercke et 

al., 2013). Another push and pull strategy in A.thaliana showed that even a stack of 

three genes - a combined overexpression of dgat and wri1 and a down-regulation of 

sdp1 led to an increase in seed lipid content (van Erp et al., 2014). 
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1.2 Brassica napus seed development 

 

In the life cycle of plants, seed production is an essential process for plant reproduction. 

Male and female gametes are produced during meiosis within the anthers and ovaries. In 

angiosperm, the fusion of male and female gametes in a double fertilization event pro-

duces a single-cell diploid zygote (the embryo) and the triploid endosperm. The embryo 

consists of embryonic axis with shoot and root poles required for seedling growth and 

development, and two (inner and outer) cotyledons. The cotyledons in the mature seed 

contain high levels of storage products such as proteins and lipids (West and Harada, 

1993; Möller and Weijers, 2009, Borisjuk et al., 2013). The production of storage re-

serves in the embryo is highly dependant on assimilate supply from maternal tissues. In 

the early stages of seed development, sugars (sucrose) enter the seed and are converted 

to hexoses via invertases located in the endosperm. This is connected with water uptake 

and volume increase. At a certain time point, the embryo switches from cell division to 

cell expansion, and sucrose is primarily used to build up storage reserves (Baud et al., 

2002; Hill et al., 2003). To understand the development of the embryo inside the seed, it 

is crucial to unravel the pathways of nutrient supply from maternal tissues and subse-

quent metabolism inside the seed. There is evidence that the pod becomes the main pho-

tosynthetically active source for assimilate delivery from maternal tissue during later 

development (there is significant leaf senescence before and during seed filling). Thus, 

the pod is not only protection against adverse external influences (Mendham and Salis-

bury, 1995). But also the seed organs themselves have distinct functions during devel-

opment. The triploid endosperm is consumed during embryogenesis but plays an im-

portant role in providing carbon resources (Hill et al., 2003); it also contributes to seed 

size control and correct anatomical structure (Borisjuk et al., 2013). For Arabidopsis 

and Lepidium spp. it was shown that the endosperm undergoes a cellularization process 

that begins in the micropylar region and spreads to central and chalazal region (e.g. 

Brown et al., 1999, Debeaujon et al., 2000, Nguyen et al., 2000, Windsor et al., 2000). 

Also in mature B. napus seeds, the endosperm is depleted to a single aleurone layer 

(Müller et al., 2006). Consequently after maturation the embryo is entirely filling the 

whole seed (figure 1). The contribution of the seed-coat (testa) to the metabolism of B. 

napus seeds has not been studied extensively; there are some studies focussing on the 

biosynthesis of flavonoids (Auger et al., 2010). The seed coat is the maternal tissue that 

channels sugars from the source to the embryo and there is evidence that carbon flow 
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from the maternal photosynthetic active tissue is facilitated by the seed coat (King et al., 

1997; Sheen et al., 1999; Weber et al., 1995; Wobus and Weber, 1999).  

 

 

 

 

 

Figure 1: The stages (I – V) of B. napus seed development based on embryo shape and age (A; 

taken from Borisjuk et al., 2013) and the increase in seed oil content with increasing embryo 

fresh weight during development (B). ra - radicula, co - cotyledons, ic - inner cotyledon, oc - 

outer cotyledon 
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1.3 Main seed storage components 

 

1.3.1 Lipids  

 

The seed of B. napus has several ways to store carbon and energy (to be used upon ger-

mination). One of the major sources for high-density energy are lipids, mostly triacyl-

glycerols (TAG). These may account for up to 50% of mature seed dry weight (Baud et 

al., 2002; O’Neill et al., 2003). In germinating seedlings, TAG is broken down through 

β–oxidation to yield acetyl–CoA for energy production and gluconeogenesis (Theodou-

lou & Eastmond, 2012). The distinct functions and the value of seed oil is mainly de-

pendant on the fatty acid composition of the TAGs. B. napus mainly consist of primari-

ly five different FA, the saturated 16:0 and 18:0, the monounsaturated 18:1 and the pol-

yunsaturated 18:2 and 18:3 (carbons:double bonds). The generation of TAGs occurs 

mainly in the embryo, which has to import sucrose and further degraded via phosphoe-

nolpyruvate (PEP) and the (mostly cytosolic) glycolytic pathway (figure 2). Next, PEP 

is imported into the plastids and irreversibly converted to pyruvate by plastidic pyruvate 

kinase (Andre et al., 2007; Baud et al., 2007). Subsequently, acetyl-CoA is produced by 

the pyruvate dehydrogenase complex (PDC) in an oxidative decarboxylation reaction 

(Lutziger and Oliver, 2000; Lin et al., 2003). The first enzyme of de novo fatty acid 

synthesis is ACCase, which initiates the ATP-dependent carboxylation of acetyl-CoA to 

form malonyl-CoA in the plastids (Turnham and Northcote, 1983; Harwood, 1996, Sa-

saki and Nagano, 2004). In particular this reaction is believed to be a key regulatory 

step in fatty acid biosynthesis (Thelen and Ohlrogge, 2002). There is evidence, that the 

production of malonyl-CoA by ACCase is regulated and represents a rate-limiting step 

for fatty acid biosynthesis in plants (Post-Beittenmiller et al., 1991, 1992; Roughan, 

1997). The substrate for the following sequential two carbon elongation is catalyzed by 

different 3-ketoacyl-ACP synthase (KAS) enzymes. FA synthesis up to 18 carbons and 

one double bond takes place within the plastid (Li-Beisson et al., 2010). The fatty acids 

are then transferred to the cytoplasm. The final assembly of TAG takes place in the en-

doplasmatic reticulum (ER). Biosynthesis of TAG mainly occurs via the Kennedy or 

glycerol-3-phosphate (G3P) pathway in which three acyl chains are esterified to a glyc-

erol backbone (Kennedy, 1961). Several pathways interconnected with TAG biosynthe-

sis have been described in maturing oilseeds, including the generation of membrane 

phospholipids (Bates et al., 2009; Bates et al., 2011). Storage of TAG occurs in special-

ized organelles, the oil bodies in the cytosol. TAGs in the oil bodies are surrounded by a 



1 Introduction 18 

phospholipid monolayer (Yatsu and Jacks, 1972). This monolayer also contains pro-

teins, making up about 4% of the total oil body weight. Among these proteins, oleosins 

are the most abundant ones (Huang, 1992; Tzen and Huang, 1992; Tauchi-Sato et al., 

2002). The regulation of TAG synthesis has been elucidated to a large extend. For A. 

thaliana there are several transcriptional regulatory factors known that play an im-

portant role in lipid synthesis in oilseeds (Baud and Lepiniec, 2009). Especially WRIN-

KLED1, a transcription factor of the AP2/EREB family, has been shown to control 

genes involved in sugar transfer/breakdown (glycolysis), fatty acid biosynthesis and 

TAG assembly (Cernac and Benning, 2004). Also FUS3, ABI3 and LEC2, as well as 

the transcriptional activator LEC1, have been shown to be master regulators of seed 

development and reserve product accumulation (Santos-Mendoza et al., 2008).  

 

 

Figure 2: Schematic overview over TAG synthesis in the embryo. Taken from 

http://www3.botany.ubc.ca/kunst/oil.htm; modified from Hills M.J. (2004) Control of storage 

product synthesis in seeds. Current Opinion in Plant Biology Volume 7, Issue 3, Pages 302–

308. 
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1.3.2 Storage proteins 

 

In B. napus the major seed storage proteins are cruciferins (12S globulins) and napins 

(2S albumins), which account for 60% and 20%, respectively, of total protein in mature 

seeds (Crouch & Sussex, 1981). These storage proteins serve as an important nitrogen 

and carbon source during germination and are rapidly degraded. The main synthesis 

phase of the napins and cruciferins occurs following embryo expansion at ~25-30 days 

after pollination (DAP). Both storage proteins are synthesized as precursors, which are 

transported to the vacuoles via the ER and the Golgi apparatus. These vacuoles then 

form protein bodies and the precursors are further processed to the final napins and cru-

ciferins (Chrispeels et al., 1982; Rödin et al., 1990). The expression of the correspond-

ing genes in the tissues of the embryo is concisely controlled and can be considered as 

an important characteristic of seed maturation (Gutierrez et al., 2007). Studies in Ara-

bidopsis have shown that the regulation of seed storage proteins is mainly enforced by 

B3 and bZIP transcription factors, which bind to cis-elements in the promotor regions of 

the seed storage protein (SSP) (Ellerstrom et al., 1996; Ezcurra et al., 1999; Ezcurra et 

al., 2000; Nakabayashi et al., 2005; Suzuki et al., 2005). Overall there is only little 

knowledge about mutants with defects in SSP-encoding genes. Due to the large gene 

redundancy, single mutants often lack a phenotype (Kohno-Murase et. al., 1994). The 

structure of the cruciferin complex of B. napus has recently been shown to possess a 

unique octameric barrel-like structure, optimized for maximal storage of amino acids 

within minimal space. Each subunit consisting of an α- and β-chain linked by a disulfide 

bond, which are present in various isoforms (Nietzel et al., 2013). In B. napus, five dif-

ferent cruciferins exist, that belong to three different families. In contrast, the 2S albu-

mins form a heterodimer, built by a large and small peptide, that are linked by a disul-

fide bond (Krebbers et al., 1988; Guerche et al., 1990).  

During seed maturation of B. napus, besides accumulation of nutritional seed 

storage proteins, seeds also accumulate other proteins such as oleosins. As mentioned 

before, these are small hydrophobic proteins proposed to function in maintaining the 

structural integrity of oil bodies and serving as a recognition signal for lipase binding 

during oil mobilization in seedlings (Lee et al., 1991; Huang, 1996, Hsieh and Huang, 

2004; Siloto et al., 2006; Wilfling et al., 2013). Studies also show a possible role in oil 

body stability (Leprince et al., 1998; Shimada et al., 2008) and in the regulation of oil 

body repulsion (Heneen et al., 2008), preventing the fusion of oil bodies into a single 
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organelle (Schmidt and Herman, 2008). In A. thaliana the major oleosins found in de-

veloping seeds are OLE1 (At4g25140), OLE2 (At5g40420), and OLE4 (At3g01570) 

(Jolivet et al., 2004). 

 

1.3.3 Carbohydrates 

 

In seeds of B. napus, starch plays an important role as a transiently stored seed compo-

nent (Andriotis et al., 2010). Studies suggest that starch accumulation is functionally 

linked to cell division and differentiation of the embryo (Andriotis et al., 2010). In em-

bryos of early to mid storage phase high starch deposition was associated with cell 

growth; starch content later declined during later stages when lipid accumulation occurs 

(Borisjuk et al., 2013). In mature seeds, starch is nearly absent. 
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2. Aims of this work 

 

I. Unravel the pathway and characteristics of sucrose uptake and subse-

quent metabolism in developing B. napus seeds 

As the understanding of assimilate and sugar delivery from maternal source organs 

to the seed/embryo still remains fragmentary, one aim of this study was to investigate 

how sugars are provided to the developing embryo. This needed to establish a method 

which delivers 13C - labelled sugars toward seed/embryo in a procedure which closely 

mimics maternal sugar supply in vivo.  This method should then be used to investigate 

the temporal and tissue-specific distribution as well as subsequent metabolism of sugars. 

It eventually aimed to unravel potential functions and metabolic contributions of the 

various seed organs. 

 

 

II. Characterization of transgenic B. napus plants with seed-specific modu-

lation of storage activity (knockdown of PEPC + Napin + Cruciferin) 

Previous work has suggested that a combined down-regulation of PEPC and the ma-

jor storage proteins (napin and cruciferin) might shift storage activity from proteins to-

wards lipids, resulting in higher oil content of mature seeds. Transgenic plants have 

been generated to test this hypothesis. My aim was to characterize these transgenic 

plants, in particular relevant seed traits including storage compounds and potential met-

abolic shifts. To this end, a combined analysis of the transcriptome, the proteome and 

the metabolome was performed as well as various physiological assays were done using 

the developing embryo. This part of work aimed to elucidate control mechanisms for 

storage metabolism. 
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3. Methods and Material 

 

3.1 Plant material and growth conditons 

If not stated otherwise, B. napus plants were grown in a glasshouse with 16 h light: 8 h 

dark, 250 µmol photosynthetically active radiation m-2, s-1, at 22°C and 60% relative 

humidity. Plant growth was restricted to the main stem and two lateral stems, side 

shoots were removed upon emergence. Flowers were tagged on the day of anthesis. 

Plants used in these experiments were either natural accessions derived from the IPK 

Gatersleben genebank (CR3231, CR3170, Reston) or provided by the company Bayer-

Crop Science (BCS transgenic lines and corresponding wild type segregants). 

3.2 Silique culture and isotope labelling 

For isotope labelling experiments, siliques from B.napus were harvested, cut with scal-

pel and immediately placed in the solution containing ¼ Murashige and Skoog medium, 

2mM MES and a pH of 5,6. Additionally an appropriate quantity of labelled compounds 

- as a sugar source either 13C12 - sucrose or 13C6 – glucose (Campro Scientific; Berlin, 

Gemany) – was used. In some experiments as a nitrogen source, 15N glutamine was used 

(Campro Scientific; Berlin, Gemany).The incubation time varied for the different exper-

iments and is described in each chapter, if not differentially mentioned, incubation con-

ditions were similar to the growth conditions. At the end of the incubation, seeds were 

removed from the siliques; embryos were rapidly dissected and frozen at -80°C or dried 

at 70°C until further analysis. The measurement of 13C/15N label in the carbon and ni-

trogen fraction was carried out using dried, pulverized plant material by an elemental 

analyzer coupled to an isotope ratio mass spectrometer (EA-IRMS; Elementar Analy-

sensysteme GmbH, Hanau, Germany).   

3.3 Germination  

Mature seeds were sprinkled on three 10 cm diameter glass-microfiber filter discs 

(Whatman GF/A paper) wetted with 1.0 ml sterilized water and placed in 10 cm diame-

ter Petri-dishes, which were sealed with Parafilm, packaged in aluminum foil and put in 

a growth chamber (23°C, 14h light of 100 µE m2s-1). Germination was followed and 

germinated seeds were counted.  
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3.4 Measurements of seed components 

3.4.1 Calculation of the protein content based on the measurement of the total 

nitrogen content 

The protein content was calculated on the basis of nitrogen content, which was meas-

ured using an elemental analyzer - Vario Micro Cube (EA-IRMS; Elementar Analysen-

systeme GmbH, Hanau, Germany). Thoroughly dried samples were ground and 

weighted in thin zinc foils to enhance combustion with pure oxygen. High purity helium 

is used as carrier gas. The resulting gases CO2 and NOx (the latter is further reduced to 

N2) are brought to a defined pressure/volume state and are passed to a gas chromato-

graphic system. Blank values are taken from empty zinc foils. Acetanilide was used as a 

standard for calibration with known C (71.09 %) and N (10.36 %) content. The obtained 

N content of the samples was multiplied with the factor 5.7 (Sosulski and Imafidon, 

1990) to yield total protein content in the analysed sample. This approach is based on 

two assumptions that seed carbohydrates and lipids do not contain nitrogen, and that 

nearly all of the nitrogen in the seed is present as amino acids in proteins. 

3.4.2 Measurement of Starch  

Seeds were ground in a Retsch TissueLyser (Quiagen GmbH, Hilden, Germany) and 

dried overnight at 70°C to remove traces of water. 20 mg of seed powder were used for 

extraction and mixed throughoutly with 1 ml 80% ethanol and then incubated for 30 

minutes at 60°C. After centrifugation at 13.000 rpm for 10 minutes, the supernatant was 

removed and the pellet mixed with 500 µl 80% ethanol. The subsequent incubation and 

centrifugation was repeated twice. The yielded pellet was rinsed with distilled water and 

taken for starch extraction. For starch extraction, the remaining pellet was suspended in 

a solution containing 0.5 M KOH and incubated at 95°C shaking for 1 h, followed by 

the adjustment of the pH to 5-7 using 5 N hydrochloric acid. 20 µl of this sample were 

then mixed with 100 µl of amyloglucosidase buffer (100 mM tri sodium citrate dihy-

drate pH 4.6 and amyloglucosidase 75 U/ml) and incubated for 30 minutes shaking at 

60 °C. To measure the starch content, in a cuvette, the prepared starch extract together 

with 750 µl of the measurement buffer (100mM imidazole pH 6.9, 5mM MgCl2, 2 mM 

NAD and 1 mM ATP) and 2 µl of glucose – 6 – phosphate – dehydrogenase were mixed 

and after 10 minutes the absorbance was measured at 340 nm to yield a baseline value. 

Subsequently 10 µl of hexokinase (diluted 1:1) was added and after an incubation time 
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of 25 minutes the second measurement at 340 nm was carried out. From the difference 

in absorbance, one can calculate the amount of starch present in the sample.  

 

3.4.3 Total seed lipid and fatty acid measurement 

 

Lipid content in mature seeds of B. napus cultivars was measured in a low-field TD-

NMR machine for high-throughput measurements (Minispec mq60 Bruker BioSpin 

GmbH, Rheinstetten, Germany). The NMR instrument has proton frequency of 60 MHz 

(1.4 T). The applied pulse sequence was set as described previously in Rolletschek et al. 

(2015). Fatty acid composition was assessed by gas chromatography, following a pro-

cedure with transesterification as in Borisjuk et al. (2013a). 

 

3.5 Enzyme assays 

3.5.1 Preparation of plant enzyme extracts 

For the preparation of enzyme extracts, samples of frozen seeds were preweight and 

ground in liquid nitrogen using prechilled mortar and pistil. To the powder 3x extraction 

buffer containing 100 mM  MOPS, 10 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 2 mM 

DTT, 1 mM PMSF adjusted to a pH of 7.4 was immediately added. The mixture was 

then transferred to a prechilled 2 ml reaction tube and kept on ice. In a centrifuge cooled 

to 4°C, the sample was spun at maximum speed for 5 minutes and the supernatant was 

transferred to a fresh prechilled tube on ice. The extract was then either used for prompt 

measurement or frozen at –80°C for longer storage.  
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3.5.2  Measurement of phosphoenolpyruvate carboxylase enzyme activity 

 

The measurement of the PEPC enzyme activity is based on the following reaction: 

                                              PEPC                                                  Malatdehydrogenase  

PEP + HCO3                    Pi + OAA                                         Malate       

  
          NADH   �  NAD 

The reaction buffer contained the following substrates: 25 mM TRIS, 5 mM  MgCl2, 2 

mM  DTT, 1 mM  KHCO3, 0.2mM  NADH, 5 mM  Glu-6-P and was adjusted to pH 8.0 

using hydrochloric acid. All enzymes and samples should be kept on ice. If the buffer 

was used for measurement, to 20 ml of buffer 14,4 µl malate dehydrogenase was added. 

Immediately before the start of the measurement 50mM phosphoenolpyruvate (PEP) 

was added to start the reaction. Each sample was measured twice in parallel. The de-

cline in absorbance at 340 nm was monitored and activity was then calculated as µmol/g 

fresh weight * min. 

3.6 Methods for transcriptome analysis 

3.6.1 RNA extraction and RNA-sequencing  

 

Total RNA was extracted from various tissues at different stages following the instruc-

tion manual of the Spectrum™ Plant Total RNA Kit (Sigma-Aldrich Chemie GmbH, 

Germany), as  and it was then treated with RNase-free DNaseI (NEW ENGLAND Bi-

olabs, Ipswitch, MA, USA) to remove any contaminating DNA. A 1 μg aliquot of total 

RNA extracted from the embryo material was converted to single stranded cDNA using 

a RevertAid First Strand cDNA Synthesis kit (ThermoScientific, Germany). A 100 ng 

template of this cDNA provided the template for a qPCR based on the SYBR® Green 

PCR Master Mix (Invitrogen, Germany). The necessary primers, designed with Primer3 

software (http://primer3.ut.ee) to generate an amplicon size of 150–200 bp, targeted 

mainly the 3′-UTR of the selected genes (three pairs of primers per gene). The specifici-

ty and amplification efficiency of each primer pair was checked by means of running 

standard curves with melting curves. The quantitative real-time PCR conditions were as 

follows: 95°C for 1 min; 40 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s; and 

72°C for 10 min for the final extension. The primers used for real-time PCR are listed in 
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Table. Each assay comprised three biological replicates, each of which was repeated 

three times. Relative transcript abundances were estimated using the 2-ΔΔCt method 

(Livak and Schmittgen, 2001). The chosen reference sequence for normalization pur-

poses was the housekeeping gene ubiquitin carrier protein 9 (UBC9). Means were statis-

tically compared using the Students' t-test. Primer sequences used in qPCR are listed in 

Table 1. 

 

Table 1: The primers used for quantitative real – time PCR analysis of PEPC, napins 

and cruciferins in B. napus embryos 

Gene name Sequence  5’ � 3’ 

PEPC 3 fwd AACCTCCACATGCTGCAAGA 

PEPC 3 rev TACAATGCAGCGATCCCAGG 

PEPC 2 fwd TGGTGTTCGCTAAAGGAGATCC 

PEPC 2 fwd TCGCCTTCAAGCAGATCCTT 

PEPC 1 fwd ACCTAGGAGATGGTGCTGGT 

PEPC 1 fwd TCTCCATAGCTTCACCATCGG 

Napin4 fwd TTCCTTCTCACCAACGCCTC 

Napin4 rev ACTACCGGACTGCATTGCCT 

Napin3 fwd GCCACTTTGTGTTTGCCCAA 

Napin3 rev GCTAACTTGCGGGATGTTGC 

Napin2 fwd CCTTCTCACCAATGCCTCCA 

Napin2 rev ACTACCGGACTGCATTGCCT 

Cruciferin 1 fwd GTCAAAACGCGATGGTGCTT 

Cruciferin 1 rev CCGGAACTGTTCGCTTGTTG 

Cruciferin 2 fwd GGTGCACGGATAACCTCGAT 

Cruciferin 2 rev ACGTAGAGAACCGCGTTTGA 

Cruciferin 4 fwd TAACGCGATGGTCAGCACTT 

Cruciferin 4 rev TCTCCTCGATCAACTGGGGT 

UBC9 fwd TGGCTTTTAGGACGAAGGTG 

UBC9 rev AAGATGTCGAGGCAGATGCT 
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3.6.2 Library construction and sequencing 

The samples for transcriptome analysis were prepared using an Illumina kit following 

the manufacturer's instructions. Briefly, beads with Oligo(dT) were used to isolate 

poly(A) mRNA from the total RNA. Fragmentation buffer was added in order to con-

vert mRNA into short fragments. Taking these short fragments as templates, random 

hexamer-priming was used to synthesize the first-strand cDNA. The second-strand 

cDNA was synthesized using buffer, dNTPs, RNaseH, and DNA polymerase I. Short 

fragments were purified with the QiaQuick PCR extraction kit and resolved with EB 

buffer for end repair and for addition of poly(A). Subsequently, the short fragments 

were connected with sequencing adapters. Following agarose gel electrophoresis, the 

suitable fragment fraction was selected for PCR amplification. Finally, the library was 

sequenced using Illumina HiSeq™ 2500 (100bp, paired-end). 

3.6.3 Transcription estimation  

 

High-throughput sequencing reads of the six samples were aligned against B. napus 

transcripts using bowtie2 (Langmead and Salzberg, 2012). Paired reads alignments; 

only paired end alignments were counted. To assess the alignment quality we extracted 

statistical information provided by bowtie2 in the SAM-format output (“mapping quali-

ty”). Accordingly, for 87% of the read alignments there is less than 1% probability that 

the alignment does not correspond to the read's true point of origin in the genome. Read 

alignment to 101,040 predicted B. napus transcripts resulted in detectable transcription 

for 67885 of the B. napus protein encoding genes (67%). In addition, DE analysis was 

repeated after aggregation of all B. napus read counts into a new gene set based on the 

orthology relations to A. thaliana. Accordingly, 99.5% of the B. napus level reads were 

aggregated into 19062 Arabidopsis genes, while only 0.5% of read counts were associ-

ated with 1591 B. napus genes that are left without orthology relation. 

We assembled a draft transcriptome-wide collection of 222,331 (average length 

1452 bp) putative cDNA sequences by aligning RNA-seq reads to the genome refer-

ences of diploid progenitors Brassica rapa and Brassica oleracea using the splice-

aware aligner TopHat (v2.0.8b) (Trapnell et al., 2009) and subsequently applying the 

Cufflinks (v 2.0.2) reference annotation based transcript assembly (Roberts et al., 2011). 

Reads that did not align to the reference genomes were assembled separately using Trin-

ity (trinityrnaseqr20130814) (Grabherr et al., 2011). Gene expression estimation was 
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subsequently done by using RSEM (Li and Dewey, 2011) which deconvolutes expres-

sion coming from very similar sequences such as homeologs. Expression estimates from 

splicing isoforms were summarized to a gene-level transcript per million and inferred 

gene-specific read counts. 

3.6.4 Differential transcription 

 

The estimateSizeFactors and estimateDispersions functions in the DESeq package 

v1.12.1 (www.bioconductor.org) using default parameters were run for the normaliza-

tion of the RNA-seq read count data. The negative binomial test implemented in DESeq 

was used to assess differential expression between the two genotypes. Variance stabiliz-

ing transformation (varianceStabilizingTransformation function in the vsn package 

v3.28.0) was performed on the normalized expression estimates. 

 

3.6.5 Data visualization using mapman software and AgriGO 

The MapMan visualization tool (http://mapman.gabipd.org) was used for the functional 

characterization of differential expressed transcripts. The threshold for significance was 

set to p<0.01 with a minimum log2 (fold change) of 2. Differentially expressed tran-

scripts that exhibited similarity to annotated A. thaliana genes, but showed an opposing 

trend in expression level were sorted out for further analysis. To asses the affiliation of 

the differentially expressed genes to a certain gene ontology (GO), the web based soft-

ware AgriGO was used (http://bioinfo.cau.edu.cn/agriGO/). 
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3.7 Comparative proteomics of the B. napus embryo  

3.7.1 Phenolic extraction of proteins and two dimensional (2D) IEF/SDS 

PAGE 

Total soluble proteins were extracted from the embryos according to Colditz et al. 

(2004) and Lorenz et al. (2014). For the analysis embryos aged 30 DAP from three dif-

ferent plants each, were separated from the seeds and immediately frozen in liquid ni-

trogen and subsequently homogenized using a bead mill. Pulverized samples of the em-

bryos were then homogenized in extraction buffer (700 mM sucrose, 500 mM Tris, 

50 mM EDTA, 100 mM KCl, 2% (v/v) β-mercaptoethanol and 2 mM PMSF, pH adjust-

ed to 8.0). Then, saturated phenol (pH 6.6/7.9; Amresco, Solon, USA) was added. After 

several rounds of centrifugation proteins were precipitated with 100 mM ammonium 

acetate in methanol at -20 °C over night. In total 18 mg protein pellet per sample were 

resuspended in 350 µl resuspension buffer (8 M urea, 2 M thiourea, 2% (w/v) CHAPS, 

100 mM DTT, 12 µl/ml DeStreak-reagent, 0.5% (v/v) IPG-buffer pH 3-11 NL, GE 

Healthcare, Freiburg, Germany) and directly loaded onto an IPG strip (18 cm pH 3-11 

NL, GE Healthcare, Freiburg, Germany). Isoelectric focussing was performed as de-

scribed in Mihr and Braun (2003) using the IPGphor system (GE Healthcare, Freiburg, 

Germany). Prior to second gel dimension, IPG strips were equilibrated for 15 minutes 

with DTT solution (30 % (v/v) glycerol, 50 mM Tris-HCl pH 8.8, 6 M urea, 2 % (w/v) 

SDS, bromophenol blue, 1% DTT) followed by equilibration with iodoacetamide solu-

tion (30 % (v/v) glycerol, 50 mM Tris-HCl pH 8.8, 6 M urea, 2 % (w/v) SDS, bromo-

phenol blue, 2.5% iodoacetamide) for another 15 minutes. Then, IPG strips were fixed 

horizontally onto 12 % acrylamide SDS gels. The gel run was performed for 18 h at 30 

mA per gel using the Biorad Protean IIXL gel system (Biorad, München, Germany). 

 

3.7.2 Gel staining procedure 

 

All two-dimensional gels were fixed with 10% (v/v) acetate in 40% (v/v) methanol for 

90 minutes and stained with Coomassie Blue CBB G-250 (Merck, Darmstadt, Germa-

ny) as described by Neuhoff et al. (1990, 1985). 
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3.7.3 Quantitative gel analysis and mass spectrometry  

 

Coomassie colloidal stained gels were first scanned and then analysed by using the Del-

ta2D Software 4.3 (Decodon, Greifswald, Germany) according to Berth et al. (2007) 

and Lorenz et al. (2014). In total 1124 spots were detected automatically, though minor 

corrections of obvious gel disturbances were performed manually. The analyses of 

changes in protein abundances in the embryos were based on protein identifications by 

mass spectrometry (MS). Tryptic digestion and MS analysis was performed according 

to Klodmann et al. (2010) using the EASY-nLC System (Proxeon) coupled to a Micro-

TOF-Q II mass spectrometer (Bruker Daltonics, Bremen, Germany). Identification of 

proteins was carried out using the MASCOT search algorithm 

(www.matrixscience.com) against the SwissProt (www.uniprot.org) database. 

 

3.8 Metabolite Measurements 

3.8.1 Steady state metabolite analysis 

Metabolic intermediates were extracted and measured by liquid chromatography cou-

pled to mass spectrometry as detailed in previous studies (Hay et al., 2014). The identity 

of the various compounds was verified by comparison of their mass and retention time 

with those of authenticated standards. External calibration was applied for all com-

pounds using these standards.  

3.8.2 Isotope enriched metabolite extraction and analysis  

For analysis of 13C - labelled target analytes frozen material (seed coat/embryo) were 

homogenized in 1.5 mL microcentrifuge tubes (Eppendorf, Hamburg, Germany) by 

manual grinding with a pestle. After homogenization, the samples were extracted with 

0.2 mL 1:1 (v/v) methanol/chloroform containing 2.5 nmol Acephate® (Sigma Aldrich, 

Germany) as internal standard in a Retsch TissueLyser (Quiagen GmbH, Hilden, Ger-

many) for 180 s at 1800 strokes-1(racks precooled at -80°C). 0.1 ml water was added 

and vortexed, followed by centrifugation at 2000 g for 5 min (to achieve two separate 

layers). The main part of the upper water/methanol layer (ca. 0.15 ml) was filtered with 

Vivaclear centrifugal filters (0.8 µm pore size, SatoriusStedim biotech, Göttingen, Ger-
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many) at 2000 g for 2 min. Endosperm was diluted 10-fold with water/methanol 1:1 

(incl. int. Std.) and filtered. Samples were analyzed in an LC-MS/MS system (Dionex 

Ulimate 3000 RSLC, Dionex, Sunnyvale, CA, USA and API 4000, Applied Biosystems, 

Ontario, Canada). The methods were performed as Hydrophilic interaction chromatog-

raphy with an aminopropyl column (Luna NH2, 250 mm x 2 mm, particle size 5 µm, 

Phenomenex, Torrance, CA). Carbohydrates and organic acids were measured in nega-

tive mode with varying eluent gradients. Injection volume was 2 µl. The LC eluents 

were: Solvent A, 20mM ammonium acetate + 20mM ammonium hydroxide in 95:5 wa-

ter:acetonitrile, pH 9.45; Solvent B: acetonitrile. The gradients in the negative mode to 

determine the metabolites are as follows: t = 0, 75% B; t = 8 min, 70% B; t = 22 min, 

0% B; t = 32 min, 0% B; t = 33.5 min, 75% B; t = 44 min, 75% B. The gradients in the 

positive mode to determine the metabolites are as follows: t = 0, 80% B; t = 6 min, 75% 

B; t = 14 min, 0% B; t = 24 min, 0% B; t = 25 min, 80% B; t = 35 min, 80% B. Nitrogen 

was used as a curtain gas, nebulizer gas, heater gas and collision gas. The ion spray 

voltage was set to -4000V, the capillary temperature was 450°C and the dwell time for 

all compounds was 25 ms.  

 

3.8.3 Visualisation of sugars in MALDI–ICP– MS measurements 

 

Incubated seeds were typically flash frozen in liquid nitrogen to prevent enzymatic deg-

radation or analyte migration, and then stored at −80°C. Subsequently samples were 

cryosectioned (most commonly used method to prepare plant tissue slices). The thick-

ness of most plant sections in current MSI studies is about 50 μm and was also used in 

this study (Peukert et al., 2012). Carboxymethyl cellulose (CMC) (Goto-Inoue et al., 

2012) has been successfully employed as MSI-compatible embedding medium. Thaw-

mounting is usually used to attach tissue sections acquired by cryosectioning. Thaw 

mounted samples are usually dried within a desiccator at a reduced pressure (Lee et al., 

2012; Boughton et al., 2015). For ionisation 2,5-dihydroxybenzoic acid (DHB) was 

used as a matrix applied with TM Spray (50mg/mL, 1200mm/min, 150uL/min, 30°C, 

1.5mm/0.75mm, 4 passes).  
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3.9 Investigation of photosynthesis and respiration rates 

For that purpose non-invasive optical oxygen microsensor spots of the company Pre-

Sens (Regensburg, Germany) were used. This system measures the partial pressure of 

dissolved & gaseous oxygen and thus allows to follow the O2 consumption of a sample 

over time (according to Borisjuk et al., 2013). The photosynthetic activity, measured as 

operation efficiency of photosystem II, was measured using PAM fluorescence (accord-

ing to Borisjuk et al., 2013). 

3.10 Histology 

3.10.1  Staining of protein storage vacuoles 

 

Sections of embryos were either stained with Ponceau or Coomassie following the pro-

tocol of Kang et al. (2002). For the Ponceau staining, 0.1% Ponceau S (w/v) was dis-

solved in 5% acetic acid (w/v) (according to the manufacturer Sigma). The microscope 

slides were placed on a heating plate (60°C) and covered with the staining solution. Af-

ter 2 minutes, the slides were carefully rinsed with destilled water and dried. 

3.10.2  Immunostaining of curciferins, napins and oleosin 

Isolated embryos were fixed for 2 h in 2% (w/v) paraformaldehyde and 2.5% (v/v) glu-

taraldehyde in phosphate buffer 0.1 M, pH 7.4. Following fixation, the embryos were 

washed with phosphate buffer 0.1 M, pH 7.4, for 10 min, resuspended in 1% (w/v) para-

formaldehyde for 2 h, and rinsed three times with phosphate buffer. Embryos were post-

fixed for 2 h with 1% (w/v) osmium tetroxide containing 0.8% (w/v) potassium hexacy-

anoferrate prepared in phosphate buffer, followed by four washes with deionized water 

and sequential dehydration in acetone. All procedures were performed at 4°C. Samples 

were embedded in Spurr’s resin and polymerized at 60°C for 48 h. Ultrathin sections 

(0.5 µm) were obtained with a diamond knife (45°, Diatome) and were mounted on a 8-

well-microscope slide and dried at 60°C. The microscope slides were placed in a wet 

chamber containing a blocking buffer. After 20 minutes, the blocking buffer was re-

moved and the slides were washed with washing buffer (0.5% (v/v) Tween 20 in phos-

phate-buffered saline) for 2 minutes. Next, the primary antibody was placed onto the 

slides and incubated for 45 minutes at 37°C. After five washing steps, the slide was kept 

in the dark for 30 minutes incubated with the second flourescence antibody at 37°C. The 

subsequent steps were carried out under low illumination. The slides were again washed 
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five times with washing buffer and moistened with antifade. The slides were then sealed 

with a cover slip and fixugum. The slides were examined transmission electron micro-

scope. Embryos from three individual plants were used in each analysis.  
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4.1 Results Part I - The use of 
13

C labelling to unravel sucrose 

uptake in developing oilseed rapeseed 

4.1.1 Establishing a procedure that allows 
13

C-label uptake of seeds under 

near in vivo conditions 

 

Previous work has demonstrated that in vitro culture of developing embryos is well 

suited to perform stable isotope labelling and metabolic flux analysis (Schwender et al., 

2004, 2006, 2008). However, this procedure also has some limitations, and causes 

growth patterns which differ from the in planta situation (Borisjuk et al., Plant Cell 

2013). My work aimed to setup a procedure, where the developing seed/embryo has not 

to be isolated for subsequent in vitro cultivation, but rather receives nutri-

ents/assimilates/water via the funiculus from maternal tissues (Chan and Belmonte, 

2013; Khan et al., 2015), thereby mimicking the in planta situation. To achieve this, the 

procedure for incubating intact siliques in buffer containing nutrients and (13C/15N-

labelled) sugars/amino acids described previously by Morley-Smith et al. (2008) was 

evaluated and further refined. Siliques of B. napus were cut from plants using a scalpel 

and immediately placed in a solution that contained 100mM sucrose (figure 3B). Seeds 

of siliques that were either kept in culture or grown in planta in the greenhouse were 

harvested at the same time points and the embryo weight was determined. As shown in 

figure 3A, after one week of incubation the weight increase was about 0.5 mg dry 

weight; embryo weights were comparable between in planta and in silique-culture 

grown ones. Embryos grown in silique-culture for four days did not reveal any signs of 

anatomical aberrations (as observed under in vitro culture; see Borisjuk et al., 2013) 

(figure 3C). Over the entire incubation period, siliques took up water and nutrients from 

the incubation media and looked healthy.  
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Figure 3: Silique incubation – (A) Comparison of dry weight of embryos grown in planta (light 

green) versus those grown in silique culture (dark green). (B) Schematic view of the experi-

mental setup of silique incubation. (C) The embryos inside incubated siliques grow with similar 

dynamics as in planta. (siliques at 30 DAP, incubated for 4 days). 

 

4.1.2 Test for various sugar substrates 

We incubated 30 days old siliques in a solution containing 100mM of either fully la-

belled 13C-sucrose or 13C-glucose. Following incubation for 2, 4, 8, and 24 hours, seeds 

were taken off from the siliques and dried at 70°C. The amount of total carbon and the 
13C-fraction was measured using EA-IRMS. The results in figure 4 demonstrate, that the 

ncubation in 13C sucrose gives a 10-fold higher labelling (13C abundance) as compared 

to 13C glucose. The preferential sucrose uptake corresponds to the fact that sucrose is 

also the natural (phloem) substrate for sugar supply toward seeds. It should thus be used 

for efficient label transfer into the seed.  
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Figure 4: Differences in 13C-

carbon uptake per mg seed after in-

cubation of siliques in a solution 

containing either 100 mM 13C su-

crose or 13C glucose. The age of the 

incubated siliques was 30 DAP. 

 

 

 

4.1.3 The uptake of label is equal in all seeds along the silique  

 

We further tested if the position of seeds inside the silique has an effect on the uptake of 

labelled assimilates. Siliques were incubated for 24 hours and then each seed (from top 

to bottom) was analysed with respect to dry weight and 13C/15N label abundance. We 

observed that neither seed weight nor uptake of label (13C sucrose and 15N glutamine) 

was dependent on the position of the seed inside the silique (figure 5). 

In an additional experiment, siliques were incubated for four days and samples of 

both seeds and siliques were taken every 24 hours, followed by analysis of 13C/15N label 

abundance. As shown in figure 6, siliques don’t show a significant increase in label 

abundance after 24 hours while seeds continue to accumulate label. After three days of 

incubation, seeds have incorporated about 3-fold higher amounts of labelled sucrose 

than siliques. The same results were observed when using 15N - glutamine as nitrogen 

source (see Supplement).  
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Figure 5: Distribution of seed weight and isotope abundance in seeds along the silique (30 

DAP) after incubation in a solution containing 100mM fully labelled sucrose and 50mM fully 

labelled glutamine. 

 

 

 

Figure 6: Uptake of labeled 13C su-

crose into either silique or seed over a 

time period of 4 days. For the incuba-

tion 100 mM 13C sucrose were added 

to the media. 
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4.1.4 Use of 
13

C labelling to follow sucrose uptake and metabolism in 

developing seeds 

 

In the following experiment, we separated the seed into three organ fractions: embryo, 

seed coat (which includes the attached cellular endosperm/aleurone) and the non-

cellular, liquid endosperm. Siliques (with seeds in early-cotyledon stage; ~21 DAP) 

were incubated. This stage of seed development was chosen because the massive expan-

sion of the embryo has just started and the liquid endosperm is about to decline but can 

still be sampled separately from the other fractions. The uptake of labelled compounds 

in the distinct organs was measured using EA-IRMS. The results in figure 7 show that 

the seed coat/aleurone is the component which initially takes up most of the 13C label 

(sucrose), followed by the liquid endosperm fraction and the embryo. The seed coat 

represents the tissue where sucrose enters the seeds. Following 4 hours of incubation, a 

steady increase in label abundance in the liquid endosperm was visible. After 24 hours, 

the highest accumulation of 13C label was found here, corresponding to around 60 µg 

per whole organ. At that time point, the seed coat/aleurone had incorporated about 50 

µg and the embryo around 15 µg. The increase of label in embryo started around 6 

hours after incubation in a steady manner. A similar pattern was observed for the uptake 

of 15N glutamine (see Supplemental data).  
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Figure 7: Label uptake of seed organs. (A) 

Accumulation of 13C label inside the dis-

tinct seed organs. (B) The fresh-weight 

contribution of seed coat/aleurone, liquid 

endosperm and embryo to the total seed 

fresh-weight. 

 

 

 

4.1.5 Label transfer along metabolic pathways differs among seed organs 

Besides the calculation of total sucrose uptake in the seed fractions, we also applied 

mass spectrometry to follow label transfer among some metabolic intermediates (su-

crose, hexoses, hexose-P, PEP, malate, citrate). In general, the hexose concentration in 

the seed coat/aleurone layer and embryo was rather low while the liquid endosperm was 

the hexose storage pool of the seed. The concentration of sucrose was nearly compara-

ble between embryo and liquid endosperm. Because of the higher volume of the endo-

sperm, the total amount of sucrose in the liquid endosperm was much higher than that of 

the embryo. Thus, the liquid endosperm is also the main sucrose storage organ in the 

seed. The seed coat/aleurone layer accumulated similar concentrations of sucrose and 

hexoses. The liquid endosperm showed a nearly balanced hexose to sucrose ratio, 

whereas in the embryo the sucrose to hexose ratio was much higher (table 2). The levels 

of hexose-P were similar between the organs and the concentration was in all cases ra-

ther low (0.7-2.9 mM). The concentration of malate was similar in embryo and liquid 

endosperm but lower in seed coat/aleurone. Citrate showed lowest concentration in the 

liquid endosperm followed by seed coat/aleurone layer and embryo. PEP levels were 

highest in embryo. 
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Table 2: Concentrations of metabolites in the distinct seed organs given in mM and 

measured using LC/MS. 

Concentration of metabolites 

 seed coat / aleurone liquid endosperm embryo 

sucrose  mM 12.45 ± 8.3% 60.77 ± 8.8% 49.75 ± 6.9% 

hexoses mM 7.01 ± 4.2% 85.9 ± 6.1%  3.75 ± 6.7% 

hexose-P mM 0.74 ± 5.5% 1.39 ± 6.5% 2.93 ± 0.5% 

malate mM 7.49 ± 0.6% 26.88 ± 9.0% 24.78 ± 7.2% 

citrate mM 4.71 ± 7.8% 1.43 ± 2.3% 10.3 ± 5.8% 

PEP mM 0.01 ± 5.2% 0.01 ± 3.7%   0.04 ± 9.5% 

 

We also calculated the labeled proportion for each metabolite (figure 8). All metabolites 

showed the first significant enrichment in 13C abundance in the pools of the seed 

coat/aleurone layer (already after 4 hours of incubation). This again corresponds to the 

fact that 13C sucrose is taken up by the seed coat first. In contrast, the embryo did not 

showed labeling in intermediates at four hours of incubation, and the liquid endosperm 

only displayed a slight enrichment in the labelling of sucrose, glucose, hexose phos-

phates and citrate. After 24 hours of incubation, a clear label in the sucrose pool as well 

as other metabolites was visible in all three seed organs. In general only very few of the 

entered label was detectable in the hexose pool (which corresponds to earlier findings 

by Morley-Smith et al., 2008).  
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Figure 8: The icrease in 13C-labelled metabolites in seed coat, endosperm and embryo after an 

incubation time of either 4,8 or 24 hours in a solution containing 100 mM 13C-sucrose shown in 

% of total metabolite in the compartement.  
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4.1.6 Visualisation of 
13

C-sucrose uptake in developing seeds of B. napus 

 

Previous data clearly indicated a flow of sucrose from the seed coat towards both liquid 

endosperm and (finally) to the embryo. In collaboration with the group of Prof. Dr. Ute 

Rössner (Metabolomics Unit, Melbourne/Australia), we applied MALDI–FT–ICR–MS 

to visualize the pathway for sugar uptake inside the seeds. This method enables to spe-

cifically detect 13C-labelled sugars with spatial resolution. Seeds, that were previously 

incubated in 13C sucrose-containing media, were sectioned, mounted on glass slides 

(figure 9 A&D) and after applying DHB as a suitable matrix the slides were measured 

using a Bruker Solarix XR instrument. As shown in the figure 9 B & E, unlabeled di-

saccharides like sucrose, maltose and lactose (identical sum formula: C12H22O11) were 

detectable in all seed compartments. Figure A-C further show, that the pattern for 13C 

sucrose uptake can clearly be followed: At two hours after the start of incubation, the 
13C-sucrose was detectable in the branch point of funiculus and started to spread to-

wards the inner cells. After three hours, the 13C-sucrose was already spread evenly 

through the first third of the seed. Notably, label accumulated in the aleurone layer and 

liquid endosperm, but was not detectable in either suspensor or embryo.  

 

 

 

A B C 

D E F 
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Figure 9: Mass spectrometry imaging of 13C sucrose uptake into seeds. Seed sections (30 µm) 

of B. napus at 15 DAP (A, B, C) and 12 DAP (D, E, F); measurements were done using MAL-

DI–FT–ICR–MS. Matrix: DHB, TM Spray, 50mg/mL, 1200mm/min, 150uL/min, 30C, 

1.5mm/0.75mm, 4 passes. The seeds were previously incubated in a solution containing 100mM 
13C sucrose for either 60 minutes (A, B, C) or 120 minutes (D, E, F). A and D show the section 

through the seed, B and E show the distribution of unlabeled disaccharides with the sum formu-

la of C12H22O11, pictures C and F show the distribution of 13C sucrose in the seed section (previ-

ous page). 

4.1.7  Using 
13

C - sucrose labelling to compare high-oil and low oil lines 

 

A further aim of my work was to demonstrate that the silique culture is applicable to 

analyse contrasting genotypes of oilseed rape. To this end, I used two rapeseed acces-

sions (CR3170 and CR3231) which have been previously characterised (Schwender et 

al., 2014): CR3231 shows an increased starch accumulation and a decreased lipid con-

tent in comparison to CR3170. I applied the silique incubation approach to see if poten-

tial differences in uptake and metabolism of labelled sugars can be detected. We incu-

bated siliques as described above, separated the seeds and measured the 13C label abun-

dance. As shown in figure 10, there was evidence for a higher uptake of 13C sucrose of 

about 20% in the high-oil line CR3170. 

 

 

Figure 10: Uptake of 13C sucrose in two distinct 

rapeseed lines. The uptake of 15N labelled glu-

tamine and 13C labelled sucrose after 24 hours of 

incubation in a solution containing either 50mM 
15N glutamine or 100 mM 13C sucrose. Siliques 

used for incubation: 30 DAP. 

 

 

 

In previous work, Schwender and colleagues could demonstrate that the high–oil line 

CR3170 differed in flux pattern around the hexose pool/hexose–P/glycolysis 

(Schwender et al., 2015). In own preliminary experiments, there was a hint to a faster 

sucrose breakdown in the high-oil line CR3170: when measuring the 13C labelled frac-

tions of some central metabolites, we observed a higher isotope label in hexoses and 

hexose–P in high-oil line CR3170 (data not shown). To show the faster sucrose uptake 

and turnover rates in the high-oil line CR3170, we measured enzyme activity of sucrose 
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synthase and the mRNA expression levels of sucrose synthase 2 (which is the main iso-

form in seeds at 30 DAP) in the two rapeseed lines. As shown in figure 11, we observed 

a two-fold higher enzyme activity in high-oil line CR3170 and additionally ~50% in-

crease in mRNA abundance of sucrose synthase 2.  

 

A                                                    B 

 

Figure 11: Sucrose synthase mRNA expression level and enzyme activity in two contrasting 

rapeseed lines. (A) The sucrose synthase activity (in µmol/g*h) of high-oil line CR3170 in 

comparison to low-oil line CR3231; (B) mRNA expression level of Sucrose Synthase 2 of high-

oil line CR3170 in comparison to low-oil line CR3231. 
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4.2 Results Part II - Characterisation of a transgenic B. napus plants 

with knockdown of PEPC-Napin-Cruciferin  

4.2.1  Analysis of down-regulation efficiency in the transgenic lines 

4.2.1.1  The down-regulation of cruciferin, napin and pepc in embryos at 30 days 

after pollination 

The plants analysed in this study were generated and provided by Bayer CropScience 

within the frame of previous collaborations. Transgenic lines have been generated as 

double haploids. The down-regulation constructs of B. napus napin2 and cruciferin 

(targeting mostly the p1, p2 and p3 chain) were both set under the B. napus napinA 

promotor, which is known to be active throughout the seed storage phase. The down-

regulation construct for pepc (in particular targeting pepc1 and pepc2) was set under 

two different promotors. For the lines BCS 566, 568, 570, 572 and 574 the promoter 

FatB4 was used. In the lines BCS 576, 578, 580 the constructs were set under the pro-

moter Ole1At. It was previously shown that both promoters confer seed-specific expres-

sion with slightly different activity patterns (Borisjuk et al., unpublished data). Based on 

the measurement of GUS activity in a fluorimetric assay, it was shown, that the Ole1At 

promoter is active in all seed tissues during development, with increasing amount in the 

embryo tissues during maturation. The fatB4 promotor is mainly active in the cotyle-

dons and shows a stable expression level during development. In later stages of seed 

storage initiation and maturation the activity of the fatB4 promotor reached only 50% of 

the activity measured for Ole1At. For each transgenic line, a corresponding wild type 

segregant (WTS) was available for analysis. To assess down-regulation efficiency of 

cruciferin, napin and pepc transcript, three isoforms were chosen each, because of their 

prediction to be highly abundant in seeds. Primers used for this analysis were generated 

by sequence alignment to B. napus sequences (provided by BAYER Crop Science, con-

fidential). All tested cruciferin isoforms were strongly down-regulated, ranging around 

a log2 fold change from -2 to -6. This implies a change in cruciferin transcripts from 8 

to 70 fold. The tested isoform cruciferin3 shows the strongest down-regulation in all 

tested transgenic lines. The strongest rate in down-regulation was observed in the trans-

genic lines BCS568, followed by BCS572, BCS578 (figure 12A). The strongest down-

regulation in the transgenic lines was achieved for napins, ranging around a log2 fold 
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change from -3 to -7, which implies a reduction in transcript amounts from 8 to 700 

fold. The down-regulation was similar for all tested isoforms. The strongest down-

regulation was observed in the transgenic lines BCS570, followed by BCS568, BCS580 

(figure 12B). Figure 12C shows, that for all transgenic lines, the downregulation of the 

tested pepc isoforms was rather low, with the efficiency of down-regulation ranging a 

log2fold change around -1, which means a fold change of 0.5. This indicates a rather 

weak reduction of transcript amount (~50%). 

 

 

 

Figure  12: Transcript level changes displayed as log2fold changes of cruciferin (A), napin (B) 

and pepc (C) isoforms in transgenic lines and corresponding wild type segregants (WTS). Total 

RNA was extracted from the embryos of 30-days-old seeds and the transcript levels of the genes 

were analyzed by quantitative real-time PCR. The expression level was normalized to that of 

BnUBC9. Values are mean ± SD (n = 3). 
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4.2.1.2 The down-regulation of napins and cruciferins shows a developmental 

pattern  

To assess the expression profile of the napA promotor (and thus the time point, when 

the down-regulation effect for the storage proteins napin and cruciferin in the embryo 

might be at maximum), we isolated the RNA of B. napus embryos at six different time 

points during development and performed a quantitative real-time PCR. We did chose 

the line BCS580 and its WTS BCS581 as an example for all other transgenic lines. The 

degree of down-regulation of napins and cruciferins is shown as log2fold expression 

change. As shown in figure 13, the expression levels of cruciferin and napin isoforms 

show a similar developmental profile. The strongest down-regulation for the tested 

isoforms of napins and cruciferins in the transgenic plants was reached between 35 and 

47 days after pollination. This corresponds to the main storage phase in seeds. At 45 

days after pollination, the log2fold change of the napin isoforms was about -10, which 

means a more than 1000-fold decrease in transcript abundance. At the same time point 

also the expression values for cruciferins was lowest with a log2 fold change of around -

6, giving a 60-fold decrease in transcript abundance.  

 

Figure 13: Transcript level changes displayed as log2fold change of napin and cruciferin 

isoforms. Total RNA was extracted from the embryos at different developmental time points 

(22, 27, 30, 35, 45, 55 DAP); transcript levels of the genes were analyzed by quantitative real-

time PCR. The expression level was normalized to that of BnUBC9. Values are mean ± SD (n = 

9). 
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4.2.2 The low level of down-regulation of PEPC transcripts is reflected in enzyme 

activity measurements 

To show whether the low down-regulation of the pepc transcripts in transgenic plants 

was reflected on the protein/activity level, the maximum catalytic activity of the PEPC 

enzyme was measured using a spectrophotometric assay (figure 14). The measurements 

were carried out with embryo material, previously used also for real-time PCR analysis. 

The results show that a significant reduction in PEPC activity could only be obtained for 

the two lines: 570 (versus WTS 571) and 580 (versus WTS 581). These results corre-

spond to the low level of down-regulation of PEPC transcripts obtained in the real-time 

PCR analysis. The line BCS580 and its corresponding wildtype were chosen for further 

analysis. 

Figure 14: Measurement of the Vmax PEPC enzyme activity in µmol/g fresh weight per minute 

of transgenic lines (light grey bars) compared to their corresponding WTS (black bars). Stars 

indicate statistical significance determined by student’s T-Test (p=0.01). Values are mean ± SD 

(n=6). 
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4.2.3  Characterisation of major seed traits 

All transgenic plants and corresponding WTS were grown at IPK greenhouse (in total 

16 lines with 5 plants each). After maturation, the seeds of all plants were harvested and 

weighted. To investigate the effect of down-regulation of major storage proteins in the 

mature seeds of transgenic plants, various seed traits were analysed. Total lipid content 

was measured non-invasively using TD-NMR. As shown in figure 15A, the total lipid 

content in transgenics was significantly decreased compared to the WTS plants. Mature 

seeds of transgenics showed an average ~15% reduction in lipid content. Total protein 

content in mature seeds was analysed as total nitrogen content (TN*5.7) using elemental 

analysis, and, alternatively, using near-infrared spectroscopy). Our data indicate that the 

levels of protein in mature seeds of transgenic lines are reduced by ~10 % as compared 

to corresponding WTS (figure 15B). However, mature seeds of the transgenic plants 

reached dry weights similar to those of WTS (figure 15C). In contrast to the WTS,  the 

transgenic lines showed a continously higher fibre content of about 25 % (figure 15D). 

In mature seeds, starch was equally low (<2 % of DW) in all tested lines, though the 

difference in starch content varied between the transgenic lines and their correnspond-

ing wildtype (supplemental data, figure S2). However, the embryos of the transgenic 

line BCS580, which we later focussed on, stored about 30% less transient starch com-

pared to the WTS (supplemental data, figure S3).  
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Figure 15: Overview on major seed traits at maturity. (A) Measurement of the total lipid con-

tent as % of seed dry weight (dw). Values are mean ± SD (of about 10 seeds per 3 different 

batches). (B) Protein content in % of seed dw; Values are mean ± SD (of about 10 seeds per 3 

different batches). (C) Dry weight of mature seeds in mg; values are mean  ± SD (n = 60-90). 

(D) Fibre content in % of seed dw. Values are mean ± SD (n = of about 10 seeds per 3 different 

batches).  
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4.2.4 Evaluating the transgenic effect on embryo metabolism 

4.2.4.1 Steady-state metabolite levels 

 

The use of the liquid chromatography/mass spectrometry (LC/MS) enabled the quantifi-

cation of 79 metabolites, representative of embryo´s central metabolism. Work was 

done under supervison of Dr. Nicolas Heinzel (IPK Gatersleben). For analysis, three 

biological and three technical replicates each were used; embryo material was isolated 

from greenhouse grown plants at 30 DAP. Overall, our analysis revealed rather few 

changes in steady state levels of metabolic intermediates (figure 16). Major statistically 

significant changes were visible for some free amino acids (glutamine, arginine, valine, 

tryptophane, proline, serine, histidine, methionine and aspartic acid). Further differences 

were apparent for the organic acids oxaloacetate and malate (participating in both TCA 

cycle and amino acid metabolism). There was also a change for glucose-1-phosphate 

with higher abundance in the transgenic plants.  
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Figure 16: Steady state metabolite levels in embryos of transgenic and WTS plants measured 

by liquid chromatography/mass spectrometry. The standard error was calculated from meas-

urements taken from five technical replicates per each of three biological replicates. Asterisks 

indicate means differing significantly (p<0.05, t-test) between both genotypes. 
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4.2.4.2 Fatty acid profile of embryos at 30 DAP 

We aimed to investigate if the decrease in lipid content in seeds of transgenics is ac-

companied by changes in the fatty acid (FA) profile. As shown in figure 17, the most 

abundant FA in embryos of WTS were oleic acid (~55%), linoleic acid (~25%) and 

linolenic acid (~10%). In transgenics, lower percentage of oleic acid (~35%) in favour 

of more unsaturated linoleic (~40%) and linolenic acid (~15%) were detected. The re-

maining FA did not show any significant changes in abundance. 

 

Figure 17: Fatty acid composition of embryos; fatty acids were extracted from the embryos of 

30-days-old seeds and analysed by gas chromatography. Values are mean ± SD (n = 3). 

4.2.5  Proteomics studies 

4.2.5.1 Staining of protein storage vacuoles indicates less soluble protein  

We performed staining of storage proteins in sections of outer cotyledons of embryos 

isolated at 37 DAP. The results for staining with Ponceau and with Commassie are 

shown in figure 18. Staining in the WTS BCS581 indicated the presence of protein vac-

uoles with accumulation of soluble proteins. In contrast, there were hardly visible pro-

tein storage vacuoles in the transgenic line BCS580.    

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BCS580 BCS581

%
 o

f 
to

ta
l f

at
ty

 a
ci

ds

erucadic acid
eicosenic acid
arachidic acid
linolenic acid
linoleic acid
vaccenic acid
oleic acid
stearic acid
palmitic acid



4.2 Results Part II - Characterisation of a transgenic B. napus plants with knockdown of PEPC-Napin-
Cruciferin 54 

 

Figure 18: Staining of protein vacuoles with 0.1% Ponceau - (A) or 0.02% Comassie solution 

(B). Sections were obtained from outer cotyledons of embryos at 37 DAP of transgenic line 

BCS580 and the WTS BCS581. 

4.2.5.2 Quantification of total soluble protein using IEF SDS –PAGE 

 

To investigate the molecular pattern of protein accumulation, a proteomics approach 

was initiated in collaboration with Prof. Hans Peter Braun (Leibniz University Hanno-

ver, Institute of Plant Genetics). Embryos of three independent plants of the transgenic 

line and the corresponding WTS were harvested at 30 DAP. Protein isolation and the 

subsequent steps were carried out under supervision of Dr. Christin Lorenz. Three gels 

were run per line; Coomassie staining revealed a good and proper separation of the pro-

tein spots (figure 19). Software evaluation was carried out by generating an overlay im-

age, originating from all 3 gels run per line. Subsequently the two resulting representa-

tive gels were compared and spot volume differences were monitored. The threshold to 

distinguish between higher and lower abundant proteins was set to a change in normal-

ized relative spot volume of ≥ 1.5 and a high significance of Students t-test: p-value 

0.01. In total, we could identify 1124 spots of which 109 were differentially expressed. 

The embryos of transgenic line BCS580 showed an increase in spot volume for 40 

spots, whereas the volume of 69 spots was significantly decreased as compared to the 

WTS BCS581. 
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Figure 19: Overview on the calculation of protein spot volume difference in the Coomassie gels 

based on three replicates per line and the generation of an overlay image. Black spots in the 

color coding image indicate equal abundance of protein spot volume. The pink colour shows the 

spots with higher protein abundance and the green colored spots feature a lower spot volume in 

the transgenic embryos versus the WTS. 

4.2.5.3 Mass spectrometry analysis and outcome of the proteomics study 

Based on the colour coding image (figure 19), the protein spots with differential vol-

umes were picked and analysed using mass spectrometry. We were able to identify 49 

proteins with higher abundance in the transgenic line BCS580 out of the 40 picked 

spots. For the lower abundant proteins in BCS580 we could identify 165 proteins out of 

69 picked spots (see Supplemental data). The top-ten candidates, that either showed a 

higher or lower protein spot volume in the transgenic line BCS580 are shown in Table 3 

and 4. It became apparent that oleosin 2 seems to be the storage protein that highly sub-

stitutes the loss of napins and cruciferins in the embryos of transgenic, with an average 

6-fold increase in protein abundance compared to the WTS. Biotin carboxyl carrier pro-

tein 2 (BCCP2) showed an about 5-fold increased amount in the transgenics; this pro-

tein is a component of the acetyl coenzyme A carboxylase complex (ACCase). Amongst 

the top-ten candidates we also found EF-1 alpha, which appears to have a volume in-
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crease of nearly four-fold compared to WTS; this protein is known to be essential for 

protein synthesis. There are several proteins that showed a spot volume increase of 2-

2.5 (see Supplemental table), which indicates an enrichment in protein abundance about 

2-fold. Some of them might be interesting candidates for explanation of the transgenic 

phenotype, e.g. Protein disulfide isomerase (PDI) - like 1- 2, and the plastidic pyruvate 

kinase (key enzyme of the glycolytic pathway; it catalyzes the substrate level phosphor-

ylation of ADP at the expense of phosphoenolpyruvate (PEP), yielding pyruvate and 

ATP). 

 

Table 3 -  Top 10 proteins, that show a higher abundance in the transgenic line BCS580 

Volume 

Diff. 
Protein identification Taxonomy 

6,75 Oleosin S2-2  B. napus 

5,18 Oleosin S2-2  B. napus 

4,71 
Biotin carboxyl carrier protein of acetyl-CoA carbox-

ylase 2, chloroplastic 
A. thaliana 

3,73 Elongation factor 1-alpha 1  A. thaliana 

3,32 60S ribosomal protein L10 E. esula 

3,32 Osmotin-like protein  S. lycopersicum 

3,18 MLP-like protein 31 A. thaliana 

2,74 Oleosin S2-2 O B. napus 

2,72 Oleosin 21.2 kDa  A. thaliana 

2,66 Glutathione S-transferase U5  A. thaliana 
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Table 4 - Top 10 proteins, that show a lower spot volume in the transgenic line BCS580  

Volume 

Diff. 
Protein identification Taxonomy 

10,17 Cruciferin CRU1  B. napus 

10,17 Malate dehydrogenase B. napus 

5,94 12S seed storage protein CRU1  A. thaliana 

5,94 12S seed storage protein CRU4  A. thaliana 

5,94 Cruciferin CRU1  B. napus 

5,77 Cruciferin CRU1  B. napus 

5,63 Cruciferin CRU4  B. napus 

5,63 Napin-2 B. napus 

4,89 Elongation factor 1-gamma 1 O. sativa 

4,89 Elongation factor Tu, chloroplastic G. max 

 

Proteins with lower spot volume in the transgenics were dominated by Napin2, Crucif-

erin1 and Cruciferin4 (5-10 fold reduction). A massive reduction of ~10fold in the 

transgenics was also observed for malate dehydrogenase, which plays an important role 

in the TCA cycle and converts malate to oxaloacetate. The protein abundance of PEPC 

isoforms 1 & 2 was ~ 5fold reduced in the transgenics, indicating some success in 

down-regulation. Noticeably, CRU1 appeared several times in spots captured from the 

gels. As published recently, in IEF/SDS – PAGE the chains of cruciferin are separated 

into different spots (Nietzel et al, 2013). In our Comassie stained gel, it was clearly vis-

ible that certain chains show a massive reduction (α P1, β P2), whereas others exhibited 

only minor changes (α P2, α P3, β P1 + P3) (figure 20). 
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Figure 20: Proteome structure of cruciferin chains obtained after separation for pI and kDa in 

WTS BCS581and transgenic line BCS580 as well as the published separation of cruciferin 

chains (Nietzel et al., 2013). 

4.2.6  Transcriptomics - Impact of the triple knockdown on gene expression 

pattern of embryo 

4.2.6.1 General aspects 

We performed an RNA sequencing analysis in collaboration with Dr. Himmelbach (IPK 

Gatersleben). The obtained sequencing raw data from transgenic and wildtype plants 

were processed by Dr. Jörg Schwender (Brookhaven National Laboratory, USA). Ac-

cording to the analysis, expression was detectable for 67.885 (67%) protein encoding 

genes in B. napus. Out of these, 184 genes showed a significant change (p<0.01) and a 

log2fold change of 2 or higher. In total 90 genes showed a lower abundance in the 

transgenic line BCS580 and 94 showed an increased transcript abundance. Out of these 

(due to gene redundancy in A. thaliana), 129 genes could be assigned to the Arabidopsis 

genome (63 down-regulated, 66 up-regulated). Analysis using Mapman software (figure 

21) revealed that only very few transcripts matched the central metabolic categories of 

CHO metabolism, photosynthesis as well as lipid metabolism. Major changes were visi-

ble for the category of amino acid metabolism (5 diff expr.), stress related genes (9 diff 

expr.) and protein synthesis related genes (13 diff expr.). A lot of genes could not be 

assigned to a certain functional group. Overall we don’t see a significant enrichment in 

any of the categories.  

 

 

 

 

BCS580  

BCS581 
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Figure 21: Overview over 

differential expression of 

genes in 36 categories, that 

show higher (red) or lower 

(blue) abundance in the 

transgenic line BCS580 

compared to the wildtype 

line BCS581. The align-

ment is based on A.thaliana 

annotation using the soft-

ware program Mapman. 

Categories 1 PS, 2 major 

CHO metabolism, 3 minor 

CHO metabolism, 7 OPP, 

10 cell wall, 11 lipid me-

tabolism, 13 amino acid metabolism, 14 sulfur assimilation, 16 secondary metabolites, 17 hor-

mone metabolism, 20 stress, 21 redox, 23 nucleotide metabolism, 25 C-1 metabolism, 26 misc, 

27 RNA, 28 DNA, 29 protein, 30 signalling, 31 cell, 32   , 33 development, 34  transport, 35, 36 

not assigned 

 

 

Figure 22: GO ontology mapping of the reads regarding biological processes overrepresented in 

the embryo of the transgenic line BCS580 compared to the WTS BCS581. The threshold was 

set to log2-fold-change >1 and p-value <0.05. 
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If we consider the GO categories in the reads of genes that are enriched in the embryo 

of the transgenic line BCS580, we mainly found gene groups associated to lipid locali-

zation and transport and also proteolysis (figure 22). Furthermore the GO groups of re-

sponses to salt and osmotic stresses showed a read accumulation. 

 

4.2.6.2 Transcript abundance of storage proteins  

For the triple transgenic line the expression of storage proteins was found to be dramati-

cally reduced. In comparison to the WTS, 12 B. napus gene transcripts annotated as 

napin and 7 annotated as cruciferin were significantly reduced with up to 10-fold and an 

up to 111-fold reduction in read counts. Surprisingly in the WTS ~50% of the total read 

counts mapped to 25 napin and cruciferin transcripts. In contrast, the transgenic line 

showed only 5% of total counts mapping to the same genes. These results corresponded 

well to the trends seen in proteomic data. 

4.2.6.3 Rebalancing of amino acid demands in transgenic plants 

 

Based on the transcript data we estimated the amino acid (AA) demand of embryos for 

protein biosynthesis. The demands for a particular protein were computed based on 

multiplying the relative abundance of each amino acid in the protein with normalized 

RNAseq read counts (read counts divided by the length of the protein encoding mRNA). 

As shown in figure 23 the need for certain AA shifted clearly in the transgenics. Signifi-

cant changes (p < 0.01) were obtained for alanine, aspartic acid, asparagine, glutamine 

and serine. The strongest difference was visible for glutamine, which showed a reduc-

tion in demand of ~50% in the transgenics compared to the WTS. This corresponded to 

the shift in the steady state levels of free amino acids: transgenics showed strongly in-

creased levels of glutamine. 
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Figure 23: Calculated amino acid demands for protein synthesis in the transgenic line BCS580 

compared to the WTS based on differential expression of genes, obtained from the RNA Seq 

data. 

 

4.2.6.4 No significant changes in PEPC transcript abundance in transcriptomics 

Previous datasets already revealed that the down-regulation of the PEPC via the RNAi-

construct is rather low: neither in real-time PCR analysis nor in enzyme activity meas-

urements we detected strong changes (However, a ~5-fold reduction in protein abun-

dance of PEPC was seen in proteomics). To verify these data, we checked if a decrease 

in transcript amount of PEPC isoforms was detecable in the transcriptome. While A. 

thaliana encodes for 5 isoforms of PEPC in B. napus we have 27 orthologs. About 97% 

of the reads assigned to PEPC account for the orthologs pepc1 and pepc2. Although 

transgenics showed a decrease in transcript abundance of about 2-fold, this was not sta-

tistically significant. 

4.2.6.5 No significant increase in transcript abundance of oleosins in the embryo of 

the transgenic line BCS580 

 

The proteome data revealed a strong rise of oleosin protein in transgenics. The tran-

scriptomic data also showed an enhanced oleosin transcript abundance in embryos of 

the transgenic plants. However, for none of the 19 genes encoding oleosin isoforms the 

increase was found to be statistically significant. This might already indicate that the 
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stimulation of oleosin synthesis rather occurs at the translational level but not at the 

transcriptional level. In addition multiple members of a family of non-specific lipid 

transfer proteins were found to be upregulated, most evident for BnaC04g30640D. A 

subsequently performed real-time PCR analysis on the temporal expression of the oleo-

sin isoforms in transgenic and wildtype embryos, revealed a strong increase in oleosin 

transcript in the transgenic plants from day 32 to 40 (see supplement figure S4). 

4.2.6.6 Transcriptomics revealed changes in sulfur metabolism 

Out of the 129 genes that show an altered expression, 9 genes belong to the subgroup of 

sulfur metabolism and transport (Table 5). All of them were down-regulated in the 

transgenic plant. Multiple genes of the pathway for reduction of sulfate were found sig-

nificantly downregulated, among them orthologs to an Arabidopsis sulfate transporter of 

the chloroplast envelope (AT5G13550), chloroplastidic isoforms of ATP sulfurylase 

(AT3G22890), 5'-adenylylsulfate reductase (AT1G62180) and sulfite reductase 

(AT5G04590). In addition, two orthologs of Arabidopsis adenylyl-sulfate kinase 

(AT2G14750; providing activated sulfate for secondary metabolism synthesis) were 

downregulated. Also related to sulfur metabolism, Serine acetyltransferase 

(AT2G17640; an enzyme active in cysteine synthesis), was downregulated. On the pro-

teome level, S-adenosylmethionine synthase (AT4G01850, AT2G36880) was downreg-

ulated. 

Table 5: Overview over differential expressed genes related to sulfur metabolism and transport 

log2foldc

hange 

ortholog in     A. 

thaliana 

TAIR gene description 

-5,59 AT1G72810 Pyridoxal-5'-phosphate-dependent enzyme family protein 

-5,44 AT5G48850 SULPHUR DEFICIENCY-INDUCED 1 

-4,74 AT1G04770 Tetratricopeptide repeat (TPR)-like superfamily protein; 

-4,36 AT1G36370 serine hydroxymethyltransferase 7 (SHM7) 

-3,77 AT1G18570 myb domain protein 51 (MYB51) 

-3,76 AT1G62180 5'adenylylphosphosulfate reductase 2 

-3,64 AT5G13550 sulfate transporter 4.1 

-2,10 AT2G17640 ATSERAT3;1 

-2,03 AT3G22890 ATP sulfurylase 1 (APS1 (ATP) activity 
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4.2.7 Further analysis of transgenic plants 

4.2.7.1 Transgenic plants show a reduction in sulphur content 

The transcriptomic data already revealed a significant enrichment in genes that encode 

for sulphur metabolism and transport related genes in transgenics. The two sulfur (S) 

containing amino acids cysteine and methionine contribute to 2.5% (cruciferins) and 

10% (napins) of total seed amino acids (Schwenke et al., 1981; Monsalve et al., 1991). 

We analysed the total S content of seeds using inductively coupled plasma optical emis-

sion spectroscopy (ICP-OES) in collaboration with Dr. Kai Eggert (IPK Gatersleben). 

As shown in figure 24, seeds of the transgenic plants showed a significant reduction in 

sulphur content at 30 DAP. Same difference was evident for mature seeds (data not 

shown). 

Figure 24: The total sulphur content in seeds 

(30 DAP) was measured by inductively cou-

pled plasma optical emission spectroscopy 

(ICP-OES) as mg per g dry weight material and 

minute. Values are mean ± SD (n = 3). Signifi-

cance is based on students T-Test (p-value = 

0.038). 

 

4.2.7.2 Transgenic seeds show a delayed germination 

As the mobilisation of carbon/energy out of storage lipids and the degradation of stor-

age proteins is crucial for proper germination, we tested if transgenics show any de-

fects/delays in germination. The rate of germination of mature seeds of the same harvest 

of the transgenic line BCS580 and the corresponding WTS BCS581 was determined. 

After 20 hours the first seeds of both transgenic line and WTS started to germinate 

(=visible radicle protrusion; figure 25). After 30 hours almost all seeds of the WTS had 

germinated, while only 50% of the seeds of transgenics had germinated. It took addi-

tional 30 hours until about 90 % of the transgenic seeds were germinated. This evidenc-

es a clear delay in germination rate. 
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Figure 25: Time curve of germination of seeds from transgenic (BCS580) and WTS (BCS581) 

plants taken from the same batch (growth period). Seeds were  

 

4.2.7.3 Respiratory activity does not differ between transgenic and wildtype plants 

Respiration rates of embryos were measured using non-invasive optical oxygen mi-

crosensors. Five isolated embryos (30 DAP) were taken for each measurement. Our data 

indicate that embryos of both transgenic and WT plants have similar respiratory activity 

(figure 26). The uptake of O2 ranged between 1.5-2 µmol per mg embryo fresh weight 

and minute. Differences between transgenics and WTS were not statistically significant. 

This result corresponds to the (unchanged) pattern in metabolic intermediates related to 

energy metabolism (LC/MS-data) as well as transcriptome data 

 

 

 

 

Figure 26: Respiration rates measured as uptake 

of O2. (see methods for details) values are means ± 

SD (n = 5).  
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4.2.7.4  Transgenic and wildtype embryos have similar photosynthetic activity at 

physiological light conditions 

 

To check for photosynthetic capacity of seeds (30 DAP) we measured the operation 

efficiency of photosystem II using PAM fluorescence. The photosynthetic energy trans-

fer occurring within the seed was assessed by the measurement of the linear electron 

transport rate (ETR). When providing photosynthetic active radiation of 37 µmol quanta 

per m2 per second, the embryos of transgenic and WTS plants reached similar ETR´s 

and showed similar gradients across the seed (figure 27 A & B). For both types of em-

bryos, the seed coat displayed substantially higher levels of ETR than the embryo itself. 

A slight gradient was also visible for the outer and inner cotyledon, which is in accord-

ance to earlier studies (Borisjuk et al., 2013). We further determined the rapid light re-

sponse curves for both sample types (figure 27 C). Data indicate that both transgenic 

and WT embryos possess similar photosynthetic activity at physiological light levels 

(maximum of 100 PAR that reaches the embryo inside the seed). Some differences be-

tween transgenic and wildtype embryos became apparent at higher light levels, which 

are, however, physiologically less relevant.  
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Figure 27: Gradients in B. napus seed photosynthesis measured by the Imaging-PAM Chloro-

phyll Fluorometer. The colour-coded map of the effective quantum yield of photosystem II of 

embryos derived from the transgenic line BCS580 (A) or the corresponding wildtype line 

BCS581 (B). The distribution of photosynthetic capability across the seed was measured at 37 

µmol quanta per m2 per second. The diagram (C) shows the rapid light response profiles of the 

photosynthetic ETR in distinct regions of the seed. Each data point represents the mean ± sd (n 

= 10). ic, inner cotyledon; oc, outer cotyledon; ra, radicle; sc, seed coat. 
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4.2.8  Histology – demonstrating an extraordinary phenotype 

 

Seeds at 50 DAP were prepared for transmission electron microscopy (TEM) and pic-

tures of outer cotyledons were taken. As shown in figure 28, the cells of outer cotyle-

dons of transgenic plants looked abnormal (A, C). Protein storage vacuoles (psv) were 

clearly visible in wildtype cells, but were smaller or nearly absent in transgenic cells (B, 

D). Lipid droplets (that usually are found to be attached in an ordered two rowed man-

ner along the cell membrane) were spread across the entire cell in the transgenic plants. 

Most surprisingly, we observed huge membrane foldings in the cytoplasm of transgenic 

plants. The cell sizes were comparable between transgenic and wildtype outer cotyledon 

cells. 

 

 

Figure 28: TEM - Histology of outer cotyledon cells of seeds (50 DAP) (A, B) overview over 

the whole cell. (C, D) detailed view to pinpoint interesting aspects. Ob - oil bodies, psv - 

proteins torage vacuoles 
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We further performed an immunolabelling of napins, cruciferins and oleosins (figure 

29). In WTS, we found a clear localization of cruciferins and napins in protein storage 

vacuoles that were spread evenly throughout the cell. Oleosin in contrast was localized 

to the oil bodies that surrounded the storage vacuoles and were directed toward the cell 

wall. In transgenics, much less labelling of cruciferin and almost no labelling of napin in 

the storage vacuoles was observed. Oleosins show a much higher labelling intensity as 

compared to WTS; they clearly localized to the unusual membrane structures expanding 

toward the inside of the cell.  

 

 

 

Figure 29: Immunostaining of cotyledons cells at almost mature stage of development (50 

DAP). The immunolabeling was carried out as described in the MM section. The sections show 

the distribution of oleosins, cruciferins and napins throughout the cell. Upper row – WTS BCS 

581, bottom row – Transgenic line BCS 580 
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4.2.9 The obtained phenotype in triple knockdown lines is probably not related to 

the low reduction in PEPC 

 

Above results on the triple knockdown (transgenic) plants indicated a strong repression 

of the storage proteins napin and cruciferin but a rather low repression of PEPC. To 

check whether the apparent phenotype relates also to PEPC knockdown – or exclusively 

to the napin/cruciferin knockdown – we additionally analysed transgenic B. napus 

plants where only PEPC was down-regulated.  

4.2.9.1 Low down-regulation effect in pepc knockdown lines 

To investigate the degree of successful down-regulation in all three pepc knockdown 

lines, RNA of 30 days old embryos was isolated and used for quantitative real-time 

PCR analysis. Three PEPC isoforms were tested and the same primers were used as in 

the previous experiment for the triple knockdown lines. As shown in figure 30 the 

transgenic lines BCS1175 and BCS1177 show a reduction in transcript amount of about 

log2 fold -0,5, which means half reduction in PEPC transcript amount compared to their 

corresponding wildtype. For the line BCS1188 no significant reduction in transcript 

abundance for the tested PEPC isoforms could be detected. The overall down-regulation 

thus is rather low, as seen previously in the analysis of the triple construct lines.  

 

 

Figure 30: Transcript level changes displayed as log2fold change of pepc genes in embryos of 

the pepc single knockdown line and corresponding wildtype. Total RNA was extracted from the 

embryos of 30-days-old embryos and the transcript levels of the genes were analyzed by quanti-

tative real-time PCR. The expression level was normalized to that of BnUBC9. Values are mean 

± SD (n = 3). 
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4.2.9.2 The PEPC enzyme activity was not affected in embryos of pepc knockdown 

lines 

We again performed a coupled enzyme activity assay to determine Vmax activity of 

PEPC. Total enzyme extract was prepared from embryos (30 DAP). Data in figure 31 

indicate that PEPC enzyme activity was not statistically significantly changed in the 

transgenics. Enzyme activity ranged between 0.5-1 µmol per g fresh weight and min, 

which was similar to those obtained in the previous measurement. This clearly indicates 

that the efficiency of pepc down-regulation is rather low.  

Figure 31: Measurement of the 

Vmax PEPC enzyme activity in 

µmol/g fresh weight per minute of 

pepc single transgenic lines (grey) 

compared to their corresponding 

wildtype (dark grey bars).Values are 

mean ± SD (n=6). 

4.2.9.3 Mature seeds of PEPC knockdown plants do not show any changes in seed 

traits 

 

We measured major seed traits in pepc knockdown lines in comparison to their WTS. 

As shown in figure 21, the total lipid content of mature seeds was comparable among all 

lines. We also checked for protein content and seed dry weight. In none of these param-

eters we could find any consistent significant changes in transgenics versus WTS (Sup-

plemental table S6).  

Figure 32: Measurement of the lipid content as 

% of dry weight of intact mature seeds of the 

three pepc single transgenic lines and their 

corresponding WTS. Values are mean (10 

seeds each) ± SD (n=3). 
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5.1  Discussion PART I 

 

5.1.1 Establishment and evaluation of an isotope labelling technique for 

developing seeds 

A proper isotope labelling technique for developing seeds has at least two goals: (1) it 

should allow the seed/embryo to grow identical or near to in vivo conditions; and (2) it 

should be able to transfer sufficient label, so that maximum information can be retrieved 

from the experiment. Many different approaches have been developed to trace the up-

take of labelled metabolites and its subsequent metabolic conversion. Initial studies of-

ten used 14C-labelled substrates as the analysis turned out to be pretty sensitive (Keiller 

& Mathers, 1983; Shields & Paul, 1973; Harris & Jeffcoat, 1972). This has shifted to 

the use of stable isotopes like 13C or 15N. One advantage of stable isotopes is the avoid-

ance of hazards as well as radioactive pollution (Derrien et al., 2003; Ghashghaie & 

Tcherkez, 2013). Possibly more important is the option to trace the label transfer among 

metabolites using LC/MS technology. Many approaches describe the labelling of whole 

plants using 13CO2 (Bromand et al., 2001; Berg et al., 1991; Svejcar et al., 1990; 

Thompson, 1996), aiming to study the metabolism of carbohydrates (Meharg, 1994; 

Warembourg & Kummerow, 1991).  To meet (above-mentioned) goal #1, it was the 

initial idea to label the entire plant or the source leaf with 13C-CO2. However, this did 

not provide sufficient amounts of 13C-label toward the seed/embryo (preliminary tests, 

data not shown). Instead, a previously published incubation method (Morley-Smith et 

al., 2008) was evaluated and refined. Siliques were excised from the plant and incubated 

in a medium, containing 13C-labelled sugar and/or 15N-labelled amino acids. In this way, 

we could maintain the environment which seeds/embryos experience in vivo. We could 

also define the quantity and type of sugar taken up by the seed, calculate uptake rates 

and follow subsequent metabolism. To meet the metabolic in vivo scenario, the choice 

of labelled substrate was important to consider. The majority of studies uses either 13C-

glucose or 13C-sucrose as carbon source. While 13C-glucose is generally more affordable 

in terms of costs, our experiments demonstrated that the use of 13C-sucrose results in 

much higher assimilate uptake rates. Sucrose is - as compared to glucose - the preferred, 

natural transport form of photosynthetically assimilated sugars in higher plants (Ward et 

al., 1998). It is derived from maternal source organs like leaf or silique and transported 

via the phloem to the seed coat via distinct sucrose transporters. It was shown in A. tha-

liana that phloem unloading and delivery occurs via the funiculus, which is connected 
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to the outer integument (Stadler et al., 2005). Studies on in vitro culture of early B. na-

pus embryos showed, that the supply of sucrose to the growth medium was the carbon 

source of choice for in vitro culture, providing morphologically normal embryos (Slesak 

& Przywara, 2003). The type of sugar supplied to the seed can also have implications 

for embryo development. Seeds aged 17 days and older exhibit a much higher sucrose 

than hexose concentration (Morley-Smith et al., 2008). This is in concert with a fall in 

acid invertase activity in the liquid endosperm, a decrease in the overall amount of en-

dosperm, and the onset of storage product synthesis in the embryo (Baud et al., 2002; 

Hill et al., 2003).  As a result of my studies, an experimental protocol for silique culture 

using 13C-sucrose and with well-defined parameters is now available. 

 

5.1.2 The contribution of the silique to the development of the seeds 

 

The main contribution of the silique to the seed development is not only being a shell to 

protect them from environmental influences, but also to provide carbohydrates and other 

nutrients (Major and Charnetski, 1976; Singal et al., 1987; Sheoran et al., 1991; Bennett 

et al., 2011). At the end of maturation, siliques even become the most dominating pho-

tosynthetic organ of the B. napus plant, due to leaf senescence and leaf area decline (Al-

len et al., 1971; King et al., 1997; Mogensen et al., 1997; Berry and Spink 2006). Re-

cent studies showed, that siliques of high oil rapeseed lines contributed to the increase 

in lipid content via superior photosynthetic assimilate production (Hua et al., 2012). 

Photosynthesis of silique seems to make a large contribution to final seed weight as 

could be shown in light shading experiments (Singal et al., 1992). In our experimental 

setup, siliques incubated in 13C-sucrose containing medium accumulated label up to 48 

hours of incubation, and maintained a stable level thereafter (which is in contrast to 

seeds which steadily accumulated label also for extended time periods). Siliques do ob-

viously rather support the flow of 13C-sucrose to the seed than store or metabolize it 

themselves. 
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5.1.3 Quantification and visualization of the 
13

C label intake of developing 

seeds 

The developing plant embryo receives its nutrition from the surrounding maternal seed 

coat and endosperm. The molecular mechanisms are still not fully clear, and, in particu-

lar, the pathway of carbon delivery remained controversially discussed. Our studies 

demonstrated that the liquid endosperm accumulates and stores most of the 13C-sucrose 

entering the seed (figure 7). This already pinpoints to the important role of the liquid 

endosperm fraction as sugar storage pool. Besides its function as carbon source, sucrose 

also plays an important role for osmoregulation (King et al., 1997; Hill et al., 2003; 

Morley-Smith et al., 2008). The liquid endosperm also showed highest concentrations 

of 13C-labelled hexoses (released from sucrose). King et al. (1997) showed that hexoses 

in seeds containing early-cotyledon stage embryos were mainly localized to the liquid 

endosperm and that sucrose was evenly distributed between seed fractions (embryo and 

endosperm/seed coat). In our experiments, the unlabeled hexose also showed highest 

concentration in liquid endosperm. We could furthermore detect various 13C-labeled 

metabolites in the seed coat/aleurone layer; they appeared much earlier than in the em-

bryo and liquid endosperm tissue, indicating substantial metabolic activity in this organ.  

For the developing dicotyledonous seed like B. napus, there still exist opposing as-

sumptions about the pathway of sucrose transfer towards the embryo. The funiculus 

links the developing seed to the silique. It terminates in the outer integument that lies 

below the chalazal endosperm, where phloem unloading of sucrose occurs into the outer 

integument (Stadler et al., 2005). The subsequent pathway to the embryo remains elu-

sive. Some have suggested that the suspensor plays an important role in nutrient supply 

to the early developing embryo (Kawashima and Goldberg, 2010), but direct evidence is 

lacking. SUT transporters have been identified in pea (Pisum sativum), bean (Phaseolus 

vulgaris) and others, mediating sucrose efflux from seed coat (Ritchie et al., 2003; Zhou 

et al., 2007). To unravel the sugar transport route in B. napus, one needs to visualise the 

uptake of 13C-sucrose inside the developing seed. For this purpose, we decided to use 

mass spectrometry imaging.  Siliques were incubated using the developed culture ap-

proach (see above) and seeds were sampled at different time points. About 3 hours after 

start of incubation, 13C-sucrose was clearly detectable in the branch point of funiculus 

and outer integument, starting to spread evenly through the first third of the seed; label 

was detectable in both liquid endosperm and aleurone layer attached to the seed coat. 

Notably, there was no signal for 13C-sucrose in the suspensor. Our results do therefore 
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not provide evidence for the suggested nutrient supply function of suspensor. Some 

studies state, that pushing and anchoring the embryo into the inner part of the seed, in 

the surrounding endosperm, is another important function of the suspensor (Yeung and 

Clutter, 1979). At least for A. thaliana, the expression of transporters involved in nutri-

ent transport in suspensor cells was shown (Friml et al., 2003; Hruz et al., 2008). Stud-

ies on the suspensor length showed an embryo growth inhibition for shorter suspensors 

(Babu et al., 2013). 

Taken together, I propose a scenario where the phloem-derived sugars spread to the 

aleurone layer and further to the endosperm. From there, sugars are taken up by the em-

bryo. We did not found support for the proposed sugar transport function of suspensor. 

 

5.1.4 The silique culture approach can be used to model metabolism in 

contrasting genotypes 

 

My work demonstrates that silique culture in combination with 13C-labelling and subse-

quent LC/MS analytics can be a versatile tool to identify metabolic modes in distinct 

rapeseed accessions. Exemplarily, I have chosen two contrasting rapeseed genotypes 

(CR3170 and CR3231), previously characterised by Schwender et al. (2014).  CR3231 

represents a low-oil genotype with compensatory increased starch accumulation com-

pared to the high-oil genotype CR3170. Their siliques were incubated (as described 

above) and their seeds were analysed. High-oil line CR3170 took up about 20% more 
13C-sucrose than CR3231. Furthermore, the high-oil line was capable of elevated su-

crose breakdown/glycolysis, indicated by higher 13C-labeling in hexoses/hexose-P but 

less label in sucrose. Sucrose uptake and conversion via glycolysis to fatty acids/lipids 

is a major metabolic activity in developing embryos of B. napus (Baud et al., 2008; Wei 

et al., 2008). Our experimental data fit to this general activity profile as well as to more 

specific findings on these two contrasting rapeseed accession (Schwender et al., 2014).  

From this one can conclude that the developed silique culture approach is suitable for 

more widespread applications in plant biochemistry and physiology. 
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5.2  Discussion PART II  

 

5.2.1 The triple knockout lines show massive down-regulation of major 

storage proteins 

 

The generation of triple knockout lines followed the idea that reductions in storage pro-

teins synthesis would favour oil biosynthesis. These two storage compound classes rep-

resent competing sinks for both energy and carbon. To achieve an apparent reduction in 

seed storage proteins, the down-regulation constructs for cruciferin and napin2, respec-

tively, were set under the seed-specific napin-promoter. For napins in rapeseed, the dif-

ferent large and short chains share a high similarity in amino acid composition (Lön-

nerdal & Janson, 1972). Thus, one can expect that a down-regulation in napin2 will also 

influence other napins. The napin promoter, used here, was shown to induce a strong 

seed-specific expression (Stålberg et al., 1996) and to successfully express foreign 

genes or down-regulate unwanted genes in a seed specific manner in several plants such 

as Lesquerella fendleri (Lin & Chen, 2012), B. napus (Hitz et al., 1995) and chili pepper 

(Subramanyam et al., 2010). In the closely related A. thaliana, five At2S gene homo-

logues to napA are described. Four of them are found in a cluster (van der Klei et al., 

1993). Sequence alignment revealed that the At2S3 promoter in A. thaliana is very 

similar to the napA promoter (Martin et al., 2008). Napin gene expression is regulated 

at the transcriptional level in a strict temporal and spatial pattern during early and mid 

seed maturation and reaches very high levels of transcript. Previous studies on the napA 

promoter indicated that the sequences between −152 and +44 are essential for the seed-

specific expression pattern in transgenic tobacco plants, and several cis-elements up-

stream from −152 were found to act as positive or negative regulatory motifs (Stålberg 

et al., 1993; Ellerström et al., 1996). The B. napus napin promoter is known to be con-

trolled by the transcriptional activator ABI3 and ABA (Ezcurra et al., 2000) ABI3 is a 

key regulator of gene expression during embryo maturation in crucifers (Marion-Poll, 

1997; Phillips et al., 1997). The phytohormone abscisic acid (ABA) is the key hormone 

required throughout the process of seed maturation (Nambara et al., 2003). ABA is nec-

essary both for storage product deposition and for induction of seed dormancy (Philipps 

et al., 1997). 

Our studies on down-regulation of different B. napus cruciferin and napin isoforms re-

vealed a high success for all tested transgenic lines from mid to late stages of seed de-
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velopment. The transcript amount was reduced up to 1000 - fold for napins and 120 - 

fold for cruciferins at 45 DAP in transgenic versus wildtype (WT) embryos. Cruciferin1 

and cruciferin2 exhibit 70% identity and are of similar size, while cruciferin3 has an 

extended glutamine rich region in the center of a larger polypeptide that contributes to 

its divergence from the other family members, with only approximately 50% identity 

(Lin et al., 2013). The success in down-regulation could further be seen in the prote-

omics approach (reduction of cruciferin spot volumes from 3-10 fold; for napin2 the 

spot volume was reduced about 5-6 fold). As mentioned before, five different B. napus 

cruciferins belong to three different families. Recently it has been shown that cruciferin 

exhibits an octameric structure and the different chains can be separated in an IEF SDS 

Page (Nietzel et al., 2013). Our Coomassie stained gel clearly showed that certain 

chains are massively reduced (α P1, β P2), whereas others exhibit minor changes (α P2, 

α P3, β P1 + P3). It appears likely that the construct used for transformation has prefer-

entially hit certain chains, which in turn lead to an ineffective assembly of the crucifer-

ins. 

 

5.2.2 The down-regulation of major storage proteins leads to protein rebalanc-

ing 

Although the accumulation of specific major storage proteins was significantly reduced 

in transgenics, the overall seed protein content remained surprisingly stable (~10% re-

duction as compared to WTS). There are reports on the expression of foreign proteins in 

plants, where protein rebalancing was observed. For example in rice, the expression of a 

sulfur rich sunflower protein gene does not alter overall protein content, due to the 

downregulation of endogenous reserve proteins (Hagan et al., 2003). Also for wheat, 

there is a report on glutenin overexpression, which causes a compensatory reduction in 

endogenous prolamins (Scossa et al., 2008). Most of the studies, aiming to manipulate 

certain protein reserves by enhanced expression of target proteins, lead to a protein re-

balancing effect. More recent studies aimed to down regulate unwanted proteins by an-

tisense/RNAi technology. There are reports on the introduction of antisense genes for 

either napins or cruciferins in B. napus that lead to the increase of the other without 

causing any changes to the overall protein or lipid content, nor fatty acid composition 

(Kohno-Murase et al., 1994, Kohno-Murase et al., 1995). In Arabidopsis, there are stud-

ies that deal with seed storage protein mutants, one of them is ssp1. A stop codon in 

cruciferin3 leads to a repression in cruciferin synthesis and seeds exhibit lower protein 
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content of ~15% compared to WT. Surprisingly, ssp1 seeds also contain about 15% less 

oil than those of WT (Lin et al., 2013). Taken together, it is likely that seeds somehow 

exhibit a function in “sensing” the total protein (nitrogen) content and tending to keep it 

in balance. Regulation of seed storage protein accumulation likely involves an integrat-

ed genetic and physiological network (Golombek et al., 2001; Brocard-Gifford et al., 

2003; Elke et al., 2005; Fait et al., 2006). Tight genetic control of storage protein accu-

mulation is also depending on a range of maternal, nutritional and environmental effects 

(Weber et al., 2005). For example, ABA has been extensively studied to modulate na-

pin/cruciferin levels. Isolated embryos at the beginning of seed storage protein accumu-

lation, cultivated with ABA, aggregated usual levels of seed storage proteins, whereas 

under absence of ABA, the mRNA levels of seed storage proteins decreased dramatical-

ly (Crouch et al., 1985, Finkelstein et al., 1985). Transcriptional regulation of storage 

product related gene expression is complex. For example in A. thaliana the gene FUS3 

is known to regulate storage protein synthesis by affecting transcript amounts. Further-

more studies on a fus3 mutant showed that it also affects lipid and carbohydrate metabo-

lism (Bäumlein et al., 1994). The primary role of these transcription factors (TFs) dur-

ing seed development involves the control of accumulation of storage reserves and re-

lated processes (Kroj et al., 2003; Gutierrez et al., 2007; Santos-Mendoza et al., 2008). 

To better understand the protein rebalancing phenotype, we performed a detailed prote-

ome analysis. All together 1124 protein spots could be identified of which 109 showed 

differential spot volumes. Increased spot volumes in the transgenics became apparent 

for Oleosin2 (~6-fold increase compared to WT). No other storage proteins were detect-

ed to compensate for napins/cruciferins, but some additional changes in enzyme pro-

teins were seen (e.g. biotin carboxyl carrier protein of acetyl-CoA carboxylase 2, gluta-

thione S-transferase, nitrogen regulatory protein, alpha-galactosidase). Unfortunately, 

our proteomics approach did not account for (rather hydrophobic) membrane associated 

proteins (Nagaraj et al., 2007). Membrane proteins play important physiological roles 

and constitute ~20-30% of all open reading frames (ORFs) in fully sequenced genomes 

(Nam et al., 2009). 
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5.2.3 Protein rebalancing also affected amino acid composition of the seed 

To uncover potential changes in seeds amino acid composition, we analysed metabolite 

and calculated the respective pool sizes. Transgenics showed clear changes in steady 

state levels of free amino acids compared to WT (more His, Ser, Trp, Val, Arg and Gln, 

but less Pro). Notably, oleosin proteins comprise a proline knot motif in the hydropho-

bic domain, which is required for oil body targeting (Abell et al., 1997). The lower pro-

tein biosynthetic demands in transgenics are believed to cause the higher abundance of 

most free amino acids. Amino acid demands were also calculated based on transcript 

data, indicating that transgenics have ~2-fold lower demands for Gln as compared to 

WT. This is in accordance with our measurements of (elevated) steady state levels of 

free Gln.  

 

5.2.4 Down-regulation of PEPC is unlikely to contribute to the transgenic 

phenotype 

The enzyme PEPC (one target of the triple knockdown) is responsible for the irreversi-

ble conversion of PEP to OAA, enriching the organic acid pool (anaplerotic function), 

which are subsequently used up by the TCA cycle and/or as precursors for amino acid 

synthesis (Chollet et al., 1996; Stitt, 1999). Repression of PEPC was proposed to chan-

nel carbon from organic acid/amino acid synthesis toward fatty acids/storage lipids. 

Elevation of its substrate PEP was proposed to allosterically enhance the flux toward 

acetyl-CoA/fatty acids/TAG (Schwender et al., 2015). Correspondingly, overexpression 

of PEPC in Vicia narbonensis caused an increase in protein content to up to 20% of 

total dry weight and additionally a higher seed weight of 20-30% (Rolletschek et al., 

2004). Furthermore, metabolite profiles of developing embryos revealed a shift of car-

bon from starch to amino acids and organic acids. In leaves of A. thaliana, PEPC1 and 

PEPC2 turned out to be the most highly expressed isoforms and their activity ranked for 

around 93% of total PEPC activity in the leaves. The pepc1/pepc2 double mutant exhib-

ited a severe growth phenotype whereas the single mutants showed no phenotype (Shi et 

al., 2015). In our approach the RNAi construct for pepc was either set under the pro-

moter FatB4 (lines BCS 566, 568, 570, 572 and 574) or Ole1At (lines BCS 576, 578, 

580). Both were shown in preliminary studies to work well in seeds. To quantify the 

success in repressing PEPC in transgenics, we determined gene expression, protein 

abundance and enzyme activity. The down-regulation of expression of all three tested 
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pepc isoforms in the transgenic plants was rather low (1-4 fold compared to WT). When 

measuring the maximum catalytic activity (Vmax) of this enzyme, only two lines 

(BCS570, BCS580) showed a statistically significant reduction (up to 75% compared to 

WT), most obvious for line BCS580. PEPC activity is known to be allosterically con-

trolled. Malate, aspartate and glutamate are known as negative regulators, whereas sugar 

phosphates stimulate PEPC (O’Leary et al., 2011a). As transgenics show significant 

reduction for malate and oxalacetate, one can exclude negative feedback regulation. Our 

proteome study revealed a reduction in PEPC protein abundance of ~ 70%, confirming 

the results of the enzyme assay. We also noted a higher abundance of chloroplastic py-

ruvate kinase (PKc). This is interesting, because PEPC was shown to build an alternative 

flux mode to PKc when combined with malate dehydrogenase and mitochondrial NAD 

malic enzyme or plastidial NADP malic enzyme, respectively (Schwender et al., 2006). 

Taken together, the changes related to PEPC are regarded as less significant with re-

spect to the seed phenotype observed in the transgenics. 

To confirm this assumption we also analysed transgenic plants, where only PEPC was 

down-regulated using the same pepc RNAi construct. As expected, the knockdown of 

pepc transcript was rather low in all single RNAi lines and enzyme activity was even 

unchanged between transgenic and wildtype embryos. None of the tested lines showed a 

reduction in either lipid or protein content nor any other obvious phenotype. 

 

5.2.5 Triple knockdown lines accumulate less lipid  

Protein storage and oil accumulation do sometimes but not always compensate for each 

other. For example, in Arabidopsis abi and aba mutants where storage protein content is 

strongly reduced, oil content does not change (Finkelstein and Somerville, 1990). In the 

wri1 mutant, oil is reduced by 80% but storage protein content is similar to that of WT 

(Focks and Benning, 1998). In two lines of B. napus with a 10% difference in oil con-

tent there is only a 1% difference in protein content (Li et al., 2006). In our study, the 

triple knockdown lines showed (to our surprise) a significant reduction in lipid content 

of ~15% in all tested lines, whereas the overall protein content was much less affected. 

Fatty acid analysis showed only minor changes (slightly less oleic acid in favour of lino-

leic and linolenic acid). The reduction in oleic acid might be related to lower protein 

abundance of stearoyl-acyl carrier protein desaturase in the transgenics. This enzyme is 
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known to catalyse the first desaturation step on the stearic acid (C18:0) chain (Los & 

Murata 1998; Kachroo et al., 2007). Studies on soybean identified a quantitative trait 

loci for seed oil and protein content in recombinant inbred lines (RIL). Seed oil was 

found to be inversely correlated to protein content (Lark et al., 1994). There are hypoth-

eses according to which the protein-to-oil ratio is generally maintained (e.g. in the cru-

ciferin3 mutant). Our transgenics do not support this. 

 

5.2.6 Possible effects of oleosin on oil body formation  

Previous investigations showed, that up to 4% of the seed oil body weight accounts for 

proteins, mainly oleosins (Huang, 1992; Tzen and Huang, 1992, Jolivet et al., 2004; 

D’Andréa et al., 2007; Vermachova et al., 2011). Our transgenics show a 6-fold in-

crease in Oleosin2 while TAG content was ~15% lower. This relationship is in contrast 

to what is generally believed: oleosins correlate with lipid content in a positive manner. 

Overexpression of the oleosin 3 (OLE3) gene in S. cerevisiae resulted in an increased 

accumulation of diacylglycerols and triacylglycerols. There is a direct role for oleosin3 

in the biosynthesis (and mobilization) of plant oils (Parthibane et al., 2011). Overex-

pression of oleosin in the Pa19 cell culture line Pimpinella anisum resulted in higher oil 

content (Radetzky & Langheinrich 1994). On the other hand, older studies demonstrated 

that species containing higher amounts of oleosin (e.g. B. napus) have generally smaller 

oilbodies compared to those with lower oleosin content. The content of lipids decreases 

whereas the protein content increases with increasing oil body diameter (Tzen et al., 

1993). Furthermore, low oil lines of maize showed a reduced TAG – to – oleosin ratio, 

whereas high oil lines had a higher TAG – to – oleosin ratio (Ting et al., 1996).  Over-

expression of soybean oleosin in transgenic rice leads to an increase of seed lipid con-

tent and in more numerous and smaller oil bodies compared to WT, suggesting an in-

verse relationship between oil body size and oleosin level (Liu et al., 2013). Studies on 

the oleosin1 mutant in A. thaliana showed a significant decrease in oil content, but an 

increase in protein accumulation in an almost compensatory manner (Siloto et al., 

2006). Ablation of a major oleosin resulted in an aberrant phenotype of embryo cells 

that contain large oil bodies, which were not observed in normal seeds. Studies on dif-

ferent A. thaliana oleosin mutants showed that oil body sizes and distributions differ 

amongst the single, double, and triple mutant backgrounds (Miquel et al., 2014). They 

concluded that especially oleosin4 (which is the homolog to B. napus oleosin2, which 
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shows an increase in our study) prevents oil body fusion. This would explain why an 

elevated level of B. napus oleosin2 in our transgenics leads to the formation of more 

frequent and smaller oil bodies. From a physical point of view, the optimization of in-

tracellular space by compaction is more efficient with very small oil bodies but de-

mands much more membrane surface (Walther and Farese, 2009; Yang et al., 2012). A 

plausible mechanism for the oil body size reduction is the direct filling or reattachment 

to the ER, where the TAG content is spread into newly formed oil bodies (Miquel et al., 

2014). Overall, the correlation of oleosins to lipid content is controversially discussed, 

but it seems certain that oleosins have direct impact on oil body size and formation. 

Probably, a balanced amount of oleosins is necessary to keep an optimal TAG content 

inside the seed. 

5.2.7 The transgenics show a massive cellular phenotype  

The use of histology provided additional insights into the transgenic phenotype. Stain-

ing of protein storage vacuoles unravelled less soluble protein and empty storage vacu-

oles during early to mid development. Transmission electron microscopy unlocked an 

extraordinary cellular phenotype: the transgenics show protein storage vacuoles with 

crystalline structures, while WT comprises voluminous storage vacuoles filled with sol-

uble proteins. The structure of oil bodies was also changed: they were no longer evenly 

formed and uniformly spread along the plasma membrane but smaller and spread irregu-

larly. Most surprisingly, we observed abnormal membrane appearance and folding in-

side the cells of transgenics. In regular plant cells, the endomembrane system is com-

posed of the endoplasmic reticulum (ER), golgi stacks, endosomes, and vacuoles. These 

structures are interconnected with one another and with the continuous membrane of the 

outer nuclear envelope (Herman et al., 1990; Boevink et al., 1996). Vacuoles, which are 

the most prominent compartment in the plant cell, may also have a dynamic and com-

plex membrane structure. Studies found that spherical structures consisting of a double 

membrane were often observed within the lumen of vacuoles and were connected with 

the vacuolar membrane (Saito et al., 2002; Uemura et al., 2002). They move around 

within or along the outline of the membrane, mediated by actin filaments but not by 

microtubules (Uemura et al., 2002). Plant cells have developed unique actin-dependent 

mechanisms for endomembrane organization (Boevink et al., 1998; Brandizzi et al., 

2002). In our transcriptomics dataset we identified candidates assigned to membrane 

structure formation like an exostosin family protein. One prominent member of this 
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large family is katamari1/mur3 which has been reported to interact with actin and to be 

required for the proper endomembrane organization and for cell elongation. Investiga-

tions have been made on an A. thaliana mutant, katamari1 (kam1), which has a defect in 

the organization of endomembranes and actin filaments. The kam1 plants form abnor-

mally large aggregates that consist of endoplasmic reticulum with actin filaments in the 

perinuclear region within the cells and are defective in normal cell elongation (Tamura 

et al., 2005). Unfortunately there are no reports on an overexpression of katamari1, but 

because of its huge influence on intracellular organization, one can assume that elevated 

abundance of exostosin family protein might contribute to a change in endomembrane 

formation. Immunostaining of oleosins in our transgenics showed that the membrane 

structures contain oleosins. The observed increase in oleosins might lead to the for-

mation of more oil-body surface (to utilize the larger amounts of oleosin) but decreases 

in volume, which eventually might be causative for the observed decrease in seed lipid 

content. 

5.2.8 The reduction in sulphur content might additionally contribute to 

the low oil phenotype 

Beside changes in protein and lipid we detected a change in sulphur metabolism in the 

transgenics. In higher plants, sulphur is an essential macronutrient for several processes. 

It is essential for the synthesis of the S-containing amino acids methionine and cysteine 

as well as for a range of cofactors and prosthetic groups (Hesse and Hoefgen, 2003; 

Saito, 2004). The seeds of transgenics (line BCS580) show a significant reduction in 

total sulphur content compared to WTS. This corresponds to the trend of reduction in 

sulphur-containing metabolites like methionine and glutathione. There is evidence in the 

literature showing a massive reduction in lipid content for plants grown under sulphur-

limiting conditions (Nikiforova et al., 2005). Under sulphur fertilization, the activity of 

acetyl-CoA carboxylase, the contents of acetyl-CoA, soluble protein, total RNA and 

sugar were significantly higher in the developing seeds of Brassica juncea compared to 

sulphur starved ones. As a consequence, sulphur fertilized seeds contained much more 

oil than sulphur starved ones (Fazili et al., 2010). Our transcriptome data unravelled 

about 8% of the differentially expressed genes belonging to sulphur metabolism and 

transport, with the most prominent one being ATP sulfurylase 1 (APS1). APS1 is one of 

the key enzymes in sulphur metabolism and catalyses the first step in sulfate assimila-

tion pathway. It mediates selenate reduction, and promotes Se and sulfur uptake and 
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assimilation by the following reaction: ATP + sulfate = diphosphate + adenylyl 5’ phos-

phosulphate. The latter is further reduced by adenosine 5′-phosphosulfate reductase to 

sulfite and subsequently by sulfite reductase to sulfide. This sulfide can then be used to 

form cysteine (Takahashi et al., 2011). A lower abundance of aps1 transcript as well as 

the APS1 protein content, in turn lead to a lower metabolism of inorganic sulphur into 

sulphur containing metabolites. Our transgenics with reduced translation of cruciferins 

and napins exhibit a lower need for sulphur containing amino acids, especially cysteine. 

Recent studies showed a connection of sink strength and sulphur metabolism (Tabe & 

Droux, 2002). Seed tissues are the dominant site of ATP sulfurylase activity during re-

productive growth of soybean (Sexton and Shibles, 1999). Beside S-converting enzymes 

also sulphur transporters can be of significance (Kataoka et al., 2004), and contribute to 

the phenotype observed here. For example, the sulfate transporter 4.1 that shows a 

down-regulation in the transgenic line is responsible for the remobilisation of sulfur out 

of storage vacuoles, where sulfur is stored as sulfate.  

5.2.9 Factors which might additionally contribute to the transgenic pheno-

type  

 

We also considered other parameters as contributing to the transgenic phenotype. Alt-

hough starch content in mature seeds did not differ between transgenics and WT, differ-

ences in transient accumulation during development were visible. Mutants of A. thali-

ana with defects in plastidic starch biosynthesis (loss-of-function of plastidic phos-

phoglucomutase) showed lowered seed oil content, which emphasizes the importance of 

transient starch as a carbon source supporting seed oil biosynthesis (Periappuram et al., 

2000). Our proteomics data revealed a lower abundance of phosphoglucomutase 1 and 2 

in transgenics, accompanied by lower levels of transient starch. 

Furthermore, germination of seeds of the transgenic lines was compromized. This was 

not further studied here, but there is sufficient evidence showing a link between proper 

germination and mobilization of storage reserves (Fu et al., 2005, Soltani et al., 2006). 

Interestingly, our proteomics approach detected a higher spot volume for 1-Cys perox-

iredoxin PER1 in transgenics. This gene/protein is known to inhibit germination under 

stress conditions. It protects tissues from reactive oxygen species during desiccation and 

early imbibition, and is involved in protection during dormancy (Haslekas et al., 2003). 
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Furthermore, biotin carboxyl carrier protein of acetyl-CoA carboxylase 2 

(BCCP2) shows a higher spot volume in transgenics (~5fold). BCCP2 is a component of 

the acetyl-coenzyme A carboxylase (ACCase) complex, which is itself the key enzyme 

in the de novo fatty acid biosynthesis (Roesler et al., 1997; Baud et al., 2003). Notably, 

overexpression of BCCP2 was shown to inhibit ACCase, resulting in altered oil, pro-

tein, and carbohydrate composition in mature Arabidopsis seed (Chen et al., 2009). This 

is in accordance to Thelen & Ohlrogge (2002), where the seed-specific overexpression 

resulted in seeds with ~3fold reduced ACCase activity and less oil. 

 

5.2.10 Transcriptomics and proteomics data show rather low concordance  

When comparing the differentially expressed genes/proteins identified by either tran-

scriptomics or proteomics, we found only 5 ATG numbers that were present in both 

datasets and showed the same pattern of regulation. Four of these show a downregula-

tion in transgenics (AT4G28520/cruciferin3; AT5G44120/cruciferin1; 

AT4G27140/napin1; At3g22890/ATP sulfurylase 1 (APS1)). In the transcriptomics 

dataset we also find AT1G62180 as a down-regulated candidate, which encodes 

5'adenylylphosphosulfate reductase 2 (APR2). Studies in A. thaliana reported that the 

sulphate content is mainly controlled by the two genes APS1 and APR2 (Koprivova et 

al., 2013). The remaining top - candidate shows an upregulation in transgenics: 

At5g08370 encodes for alpha-galactosidase 2 (AGAL2). This enzyme plays a role in 

various pathways. AGAL2 protein is localized to cell wall/apoplast (Chrost et al., 2007; 

Floerl et al., 2012), and is important for wall loosening/wall expansion. Furthermore, 

AGAL2 enzyme activity plays a role in glycerolipid (and galactose) metabolism, e.g. 

for the formation of glycerol. It has a role in germination (McCleary and Matheson, 

1975; Feurtado et al., 2000). 
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6 Outlook 

 

The use of labelling experiments in plant research unravels the opportunity to follow 

certain metabolic steps in plant physiology. Especially for metabolic flux analyses, the 

incubation of embryos with defined amounts of labelled compounds is crucial for the 

overall calculation of metabolic activities (Schwender et al., 2015). Unfortunately the in 

vitro cultivation of embryos often leads to a loss of the phenotype, that is observed, 

when embryos/seeds grow in planta. For that reason, the establishment of a labelling 

approach, that is near the in vivo situation might in future not only enable the trace of 

substrates, that are naturally delivered by maternal tissue but also improve the results 

that are obtained by calculated flux analyses. Furthermore the 13C labelling of intact 

siliques enables the tracking of carbon atoms throughout the metabolism in near in vivo 

situations, for example into fatty acid and subsequently synthetisised TAGs. This might 

thus give deeper insights into carbon flow to lipids and other storage components and 

might furthermore allow the comparism between different high and low oil varieties and 

transgenic lines. Additionally, the cultivation of siliques in sterile incubation medium 

theoretically allows to grow the seeds until maturity, however this has to be proven in 

future experiments.  

The characterization of a storage protein deficient mutant has led to vital insights 

towards the regulation of seed storage product synthesis and accumulation. Although 

the approach has not led to the anticipated increase in seed lipid content, the results ob-

tained contribute to a better understanding of regulation of storage protein accumulation 

and rebalancing mechanisms occurring in the seed. The complex regulation, beginning 

with changing amino acid demands, thus lower needs for sulphur and ending in histo-

logical relevant phenotypes is a good model to understand protein rebalancing in seeds, 

with one of the main substituents being Oleosin, which has been reported to be tran-

scriptionally regulated by LEC2 (Che et al., 2009), however LEC2 did not appear to be 

differentially expressed in our approach. Thus the transgenic lines might help to find 

other factors controlling Oleosin2 expression. The achieved increase in Oleosin2 protein 

amount and the resulting cellular phenotype might additionally be interesting in future 

work, especially when combined with an overexpression of genes related to fatty acid 

synthesis and TAG assembly and/or oil body trafficking. Because of the extraordinary 

cell phenotype, the characterized transgenic plants might also be a good model to study 

membrane expansion and fibre formation.  
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Supplement 

 

Table S 1: Filtered Masses and potentials of MS/MS transitions in negative mode. DP 

Declustering Potential, EP Entrance Potential, CE Collision Energy, CXP Collision Cell 

Exit Potential. 

 

Compound Q1 mass Q3 mass DP EP CE CXP 

       

Acephate 182 141 -40 -10 -18 -25 

3-PGA 185 97 -35 -10 -20 -15 

3-PGA M+1 186 97 -35 -10 -20 -15 

3-PGA M+2 187 97 -35 -10 -20 -15 

3-PGA M+3 188 97 -35 -10 -20 -15 

PEP 167 79 -35 -10 -14 -5 

PEP M+1 168 79 -35 -10 -14 -5 

PEP M+2 169 79 -35 -10 -14 -5 

PEP M+3 170 79 -35 -10 -14 -5 

Glucose 179 89 -50 -10 -12 -10 

Glucose M+1 180 89 -50 -10 -12 -10 

Glucose M+1 B 180 90 -50 -10 -12 -10 

Glucose M+2 181 89 -50 -10 -12 -10 

Glucose M+2 B 181 90 -50 -10 -12 -10 

Glucose M+2 C 181 91 -50 -10 -12 -10 

Glucose M+3 182 89 -50 -10 -12 -10 

Glucose M+3 B 182 90 -50 -10 -12 -10 

Glucose M+3 C 182 91 -50 -10 -12 -10 

Glucose M+3 D 182 92 -50 -10 -12 -10 

Glucose M+4 183 90 -50 -10 -12 -10 

Glucose M+4 B 183 91 -50 -10 -12 -10 

Glucose M+4 C 183 92 -50 -10 -12 -10 
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Glucose M+5 184 91 -50 -10 -12 -10 

Glucose M+5 184 92 -50 -10 -12 -10 

Glucose M+6 185 92 -50 -10 -12 -10 

Fructose 179 89 -55 -10 -12 -8 

Fructose M+1 180 89 -50 -10 -12 -10 

Fructose M+1 B 180 90 -50 -10 -12 -10 

Fructose M+2 181 89 -50 -10 -12 -10 

Fructose M+2 B 181 90 -50 -10 -12 -10 

Fructose M+2 C 181 91 -50 -10 -12 -10 

Fructose M+3 182 89 -50 -10 -12 -10 

Fructose M+3 B 182 90 -50 -10 -12 -10 

Fructose M+3 C 182 91 -50 -10 -12 -10 

Fructose M+3 D 182 92 -50 -10 -12 -10 

Fructose M+4 183 90 -50 -10 -12 -10 

Fructose M+4 B 183 91 -50 -10 -12 -10 

Fructose M+4 C 183 92 -50 -10 -12 -10 

Fructose M+5 184 91 -50 -10 -12 -10 

Fructose M+5 184 92 -50 -10 -12 -10 

Fructose M+6 185 92 -50 -10 -12 -10 

Sucrose 341 179 -180 -10 -18 -15 

Sucrose M+1 342 179 -180 -10 -18 -15 

Sucrose M+1 B 342 180 -180 -10 -18 -15 

Sucrose M+2 343 179 -180 -10 -18 -15 

Sucrose M+2 B 343 180 -180 -10 -18 -15 

Sucrose M+2 C 343 181 -180 -10 -18 -15 

Sucrose M+3 344 179 -180 -10 -18 -15 

Sucrose M+3 B 344 180 -180 -10 -18 -15 

Sucrose M+3 C 344 181 -180 -10 -18 -15 

Sucrose M+3 D 344 182 -180 -10 -18 -15 

Sucrose M+6 347 179 -180 -10 -18 -15 

Sucrose M+6 B 347 180 -180 -10 -18 -15 

Sucrose M+6 C 347 181 -180 -10 -18 -15 
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Sucrose M+6 D 347 182 -180 -10 -18 -15 

Sucrose M+6 E 347 183 -180 -10 -18 -15 

Sucrose M+6 F 347 184 -180 -10 -18 -15 

Sucrose M+6 G 347 185 -180 -10 -18 -15 

Sucrose M+12 353 185 -180 -10 -18 -15 

Hex-P 259 97 -50 -10 -16 -19 

Hex-P M+1 260 97 -50 -10 -16 -19 

Hex-P M+2 261 97 -50 -10 -16 -19 

Hex-P M+3 262 97 -50 -10 -16 -19 

Hex-P M+4 263 97 -50 -10 -16 -19 

Hex-P M+5 264 97 -50 -10 -16 -19 

Hex-P M+6 265 97 -50 -10 -16 -19 

Succinate M+4 121 76 -35 -10 -18 -5 

Succinate M+3 A 120 76 -35 -10 -18 -5 

Succinate M+3 B 120 75 -35 -10 -18 -5 

Succinate M+2 A 119 75 -35 -10 -18 -5 

Succinate M+2 B 119 74 -35 -10 -18 -5 

Succinate M+1 A 118 74 -35 -10 -18 -5 

Succinate M+1 B 118 73 -35 -10 -18 -5 

Succinate 117 73 -35 -10 -18 -5 

Malate 133 115 -60 -10 -16 -7 

Malate M+4 137 119 -60 -10 -16 -7 

Malate M+3 136 118 -60 -10 -16 -7 

Malate M+2 135 117 -60 -10 -16 -7 

Malate M+1 134 116 -60 -10 -16 -7 

Citrate 191 87 -55 -10 -24 -5 

Citrate M+6 197 90 -55 -10 -24 -5 

Citrate M+5 196 90 -55 -10 -24 -5 

Citrate M+5 B 196 89 -55 -10 -24 -5 

Citrate M+4 195 90 -55 -10 -24 -5 

Citrate M+4 B 195 89 -55 -10 -24 -5 

Citrate M+4 C 195 88 -55 -10 -24 -5 
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Citrate M+3 194 90 -55 -10 -24 -5 

Citrate M+3 B 194 89 -55 -10 -24 -5 

Citrate M+3 C 194 88 -55 -10 -24 -5 

Citrate M+3 D 194 87 -55 -10 -24 -5 

Citrate M+2 193 89 -55 -10 -24 -5 

Citrate M+2 B 193 88 -55 -10 -24 -5 

Citrate M+2 C 193 87 -55 -10 -24 -5 

Citrate M+1 192 88 -55 -10 -24 -5 

Citrate M+1 B 192 87 -55 -10 -24 -5 

 

 

Table S 2: Primers used for Oleosin real-time PCR 

Gene name Sequence  5’ � 3’ 

Oleosin S1-1 fwd ACAGGATTCATGGCGTCAGG 

Oleosin S1-1 rev CATCTTTTGTCCTCTGCCCC 

Oleosin S2-1 fwd GGTTATGGTGGTCGTGCTGA 

Oleosin S2-1 fwd GATAGCGGCCGGGACAATAA 

OleosinS2-2  fwd GCTGGACTCACTCTAGCCGG 

OleosinS2-2  fwd CTTAGCATAGTCCAATTGCTC 

Oleosin S3 fwd CATAACCAGCCGTGACCAGT 

Oleosin S3 rev AGGGTGAGACTGGAGAGGAC 

Oleosin S4 fwd TCCTCTTCAGCCCGGTCATA 

Oleosin S4 rev CTGCCCCATTCCTTTTCCCT 

Oleosin 5 fwd TCATCACTGGGTTCCTTGCC 

Oleosin 5 rev TGGTGTTGCTGATGGACTCC 
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Figure S 1: Uptake of 15N glutamine into 1 mg of siliques or seeds that were incubated 

in a solution containing 20mM of 15N gklutamine for 24 to 96 hours. 

 

 

 

Figure S 2: Starch content in % of the seed dry weight in mature seeds of all tested 

transgenic lines.  
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Figure S 3: Starch content in mg per g embryo dw at 37 DAP  

 

 

Figure S 4: Temporal expression profile of oleosins in transgenic lines compared to 

their wildtype.  
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Table S 3: Proteins with higher spot volume inthe transgenic line (BCS580) 

Volume 

Diff. 

Protein name Taxonomy 

6,75 Oleosin S2-2  B. napus 

5,18 Oleosin S2-2  B. napus 

4,71 Biotin carboxyl carrier protein of acetyl-CoA car-

boxylase 2, chloroplastic 

A. thaliana 

3,73 Elongation factor 1-alpha 1  A. thaliana 

3,32 60S ribosomal protein L10 E. esula 

3,32 Osmotin-like protein  S. lycopersicum 

3,18 MLP-like protein 31 A. thaliana 

2,74 Oleosin S2-2 O B. napus 

2,72 Oleosin 21.2 kDa  A. thaliana 

2,66 Glutathione S-transferase U5  A. thaliana 

2,66 Ribulose-phosphate 3-epimerase, chloroplastic 

(Fragment) 

S. tuberosum 

2,56 Nitrogen regulatory protein P-II homolog  A. thaliana 

2,35 Beta-galactosidase 3  A. thaliana 

2,35 Probable serine protease EDA2  A. thaliana 

2,32 Isopentenyl-diphosphate Delta-isomerase II A. thaliana 

2,25 Alpha-galactosidase C. arabica 

2,25 UDP-sulfoquinovose synthase, chloroplast precur-

sor 

A. thaliana 

2,19 Importin subunit alpha-1  A. thaliana 

2,19 Protein disulfide isomerase-like 1-2  A. thaliana 

2,19 Pyruvate kinase isozyme A, chloroplastic  N. tabacum 
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Table S 4: Proteins with lower spot volume in the transgenic line (BCS580) 

Volume 

Diff. 

Protein name 

  

Taxonomy 

10,17 Cruciferin CRU1  B. napus 

10,17 Malate dehydrogenase B. napus 

5,94 12S seed storage protein CRU1  A. thaliana 

5,94 12S seed storage protein CRU4  A. thaliana 

5,94 Cruciferin CRU1  B. napus 

5,77 Cruciferin CRU1  B. napus 

5,63 Cruciferin CRU4  B. napus 

5,63 Napin-2 B. napus 

4,89 Elongation factor 1-gamma 1 O. sativa 

4,89 Elongation factor Tu, chloroplastic G. max 

4,89 Probable monodehydroascorbate reductase, 

cytoplasmic isoform 3 

A. thaliana 

4,89 S-adenosylmethionine synthase  B. rapa 

4,89 S-adenosylmethionine synthase 2 N. tabacum 

4,89 S-adenosylmethionine synthase 3 S. lycopersicum 

4,53 Methylenetetrahydrofolate reductase 1 A. thaliana 

4,53 Probable phosphoglucomutase, cytoplasmic 1 A. thaliana 

4,53 Probable phosphoglucomutase, cytoplasmic 2 A. thaliana 

4,53 Pyruvate decarboxylase isozyme 1 (Fragment) N. tabacum 

4,35 Cruciferin CRU1   B. napus 

4,35 Succinyl-CoA ligase [GDP-forming] subunit 

alpha-1, mitochondrial  

A. thaliana 

4,22 Biotin synthase   A. thaliana 

4,22 Fructose-bisphosphate aldolase, cytoplasmic 

isozyme 

S. oleracea 

4,22 Fructose-bisphosphate aldolase, cytoplasmic 

isozyme  

C. arietinum 
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4,15 Cruciferin CRU1   B. napus 

4,08 Branched-chain-amino-acid aminotransferase-

like protein 2  

A. thaliana 

3,97 Glutathione S-transferase U17   A. thaliana 

3,96 Eukaryotic translation initiation factor 3 subunit 

H  

A. thaliana 

3,96 Probable UDP-arabinopyranose mutase 5 A. thaliana 

3,96 Spermidine synthase   C. arabica 

3,96 Thylakoid lumenal 33.6 kDa protein (Frag-

ment)  

S. oleracea 

3,77 Aldo-keto reductase family 4 member C9  A. thaliana 

3,77 Cruciferin CRU1   B. napus 

3,77 Malate dehydrogenase 1, mitochondrial  A. thaliana 

3,77 Malate dehydrogenase, chloroplastic  A. thaliana 

3,77 Phosphopantothenate--cysteine ligase 2  A. thaliana 

3,77 Unknown protein 1 (Fragment)   V. rotundifolia 

3,65 Chalcone synthase 1   S. alba 

3,65 Peptidyl-prolyl cis-trans isomerase CYP40  A. thaliana 

3,64 4-alpha-glucanotransferase DPE2  A. thaliana 

3,51 Allergen Bra j 1-E  B. juncea 

3,51 Cruciferin  B. napus 

3,51 Napin  B. napus 

3,51 Napin-3  B. napus 

3,51 Unknown protein 1 (Fragment)  V. rotundifolia 

3,46 Cruciferin CRU1   B. napus 

3,45 Phosphoenolpyruvate carboxylase 1  A. thaliana 

3,45 Phosphoenolpyruvate carboxylase 2  A. thaliana 

3,45 Probable E3 ubiquitin-protein ligase ARI12 A. thaliana 

3,05 Alpha-L-fucosidase 2   A. thaliana 

3,05 Alpha-xylosidase   A. thaliana 
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3,05 Unknown protein 1 (Fragment)   V. rotundifolia 

3,01 Peptidyl-prolyl cis-trans isomerase CYP20-3, 

chloroplastic  

A. thaliana 

2,96 Annexin D2  A. thaliana 

2,96 L-lactate dehydrogenase  Z. mays 

2,96 Ribulose bisphosphate carboxylase large chain A. magnifica 

2,96 Transcription factor Pur-alpha 1  A. thaliana 

2,95 Cruciferin CRU1  B. napus 

2,95 Malate dehydrogenase 1, mitochondrial A. thaliana 

2,95 Serine acetyltransferase 5  A. thaliana 

2,91 3-ketoacyl-CoA thiolase 2, peroxisomal  A. thaliana 

2,91 Citrate synthase 3, peroxisomal  A. thaliana 

2,91 Unknown protein 1 (Fragment)   V. rotundifolia 

2,91 ATP sulfurylase 1, chloroplastic  A. thaliana 

2,91 Glutamate-1-semialdehyde 2,1-aminomutase, 

chloroplastic 

B. napus 

2,91 Probable sarcosine oxidase  A. thaliana 

2,87 Beta-glucosidase 18   A. thaliana 

2,82 Beta-glucosidase 18  A. thaliana 

2,64 3-ketoacyl-CoA thiolase 2, peroxisomal  A. thaliana 

2,64 Citrate synthase 3, peroxisomal  A. thaliana 

2,62 Cruciferin CRU1  B. napus 

2,62 Probable protein phosphatase 2C 39  A. thaliana 

2,55 Ran-binding protein 1 homolog a  A. thaliana 

2,55 Sedoheptulose-1,7-bisphosphatase, chloroplas-

tic  

A. thaliana 

2,54 Catalase-3  A. thaliana 

2,54 Cruciferin CRU1  B. napus 

2,54 NADP-dependent glyceraldehyde-3-phosphate 

dehydrogenase 

A. thaliana 
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2,46 Elongation factor Tu, mitochondrial A. thaliana 

2,46 Glutamate-1-semialdehyde 2,1-aminomutase, 

chloroplastic 

B. napus 

2,46 LL-diaminopimelate aminotransferase, chloro-

plastic 

A. thaliana 

2,46 30S ribosomal protein S5, chloroplastic  A. thaliana 

2,46 Cruciferin CRU1  B. napus 

2,46 Cruciferin PGCRURSE5  R. sativus 

2,43 Cruciferin CRU4  B. napus 

2,43 Napin-B  B. napus 

2,33 3-ketoacyl-CoA thiolase 5, peroxisomal  A. thaliana 

2,33 Aspartate aminotransferase P2, mitochondrial 

(Fragment)  

L. angustifolius 

2,33 Aspartate aminotransferase, chloroplastic  A. thaliana 

2,28 Cruciferin   B. napus 

2,28 Peptidyl-prolyl cis-trans isomerase CYP20-3, 

chloroplastic  

A. thaliana 

2,28 Proteasome subunit beta type-6  A. thaliana 

2,27 L-ascorbate peroxidase 1, cytosolic A. thaliana 

2,27 Proteasome subunit alpha type-6-B A. thaliana 

2,27 Triosephosphate isomerase, cytosolic  A. thaliana 

2,26 Cruciferin  B. napus 

2,26 Cruciferin CRU1  B. napus 

2,26 Cruciferin CRU4  B. napus 

2,26 Proteasome subunit beta type-7-A A. thaliana 

2,17 Cruciferin BnC1  B. napus 

2,17 Cruciferin CRU1  B. napus 

2,17 Unknown protein 1 (Fragment)  V. rotundifolia 

2,13 Actin-depolymerizing factor 2 - Petunia hy-

brida (Petunia) 

P. hybrida 

2,13 Actin-depolymerizing factor 3 - Arabidopsis A. thaliana 
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thaliana (Mouse-ear cress) 

2,13 Glycine-rich RNA-binding protein GRP1A  S. alba 

2,13 MLP-like protein 329  A. thaliana 

2,11 Cruciferin B. napus 

2,11 Cruciferin BnC1 B. napus 

2,11 Cruciferin CRU1 B. napus 

 

 

Table S 5: Amino acid sequences of seed storage proteins  

Amino acid  Napin short 
chain 

Napin large 
chain 

Cruciferin Oleosin 

Ala (A)    10.0% 3.3% 6.7% 9.0% 

Arg (R)    7.5% 5.5% 5.6% 4.8% 

Asn (N)    0.0% 2.2% 5.8% 1.1% 

Asp (D)    0.0% 0.0% 4.0% 4.8% 

Cys (C)    5.0% 6.6% 1.0% 0.0% 

Gln (Q)   17.5% 24.2% 12.3% 4.3% 

Glu (E)   2.5% 3.3% 3.8% 3.7% 

Gly (G)    7.5% 5.5% 10.7% 12.2% 

His (H)    5.0% 2.2% 2.0% 2.1% 

Ile (I)    2.5% 4.4% 4.8% 4.3% 

Leu (L)    5.0% 7.7% 8.3% 11.2% 

Lys (K)    7.5% 4.4% 3.0% 3.7% 

Met (M)   2.5% 0.0% 1.2% 2.1% 

Phe (F)    5.0% 1.1% 4.0% 1.6% 

Pro (P)   10.0% 11.0% 5.0% 4.8% 

Ser (S)   7.5% 4.4% 7.7% 7.4% 

Thr (T)    0.0% 5.5% 3.8% 8.0% 

Trp (W)    5.0% 0.0% 1.0% 0.5% 

Tyr (Y)    0.0% 2.2% 2.2% 4.8% 

Val (V)    0.0% 6.6% 6.9% 9.6% 
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Table S 6: Seed relevant traits for the tested PEPC single transgenic line (grayed) and 

the corresponding WTS. 

 Seed dry weight in mg Protein content in % 

BCS1175 5,19±0,52 35,23 ±1,98 

BCS1176 5,89±0,12 34,31±0,62 

BCS1177 5,67±0,19 31,02±6,42 

BCS1178 5,52±0,33 35,30±0,45 

BCS1188 5,81±0,10 32,94±3,28 

BCS1189 5,57±0,01 31,77±4,56 
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