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ABSTRACT: 
 
This paper proposes a two-layer Conditional Random Field model for simultaneous classification of land cover and land use. Both 
classification tasks are integrated into a unified graphical model, which is reasonable due to the fact that land cover and land use 
exhibit strong contextual dependencies. In the CRF, we distinguish a land cover layer and a land use layer. Both layers differ with 
respect to the entities corresponding to the nodes and the classes to be distinguished. In the land cover layer, the nodes correspond to 
superpixels extracted from the image data, whereas in the land use layer the nodes correspond to objects of a geospatial land use 
database. Statistical dependencies between land cover and land use are explicitly modelled as pair-wise potentials. Thus, we obtain a 
consistent model, where the relations between land cover and land use are learned from representative training data. The approach is 
designed for input data based on aerial images. Experiments are performed on an urban test site. The experiments show the feasibility 
of the combination of both classification tasks into one overall approach and investigate the influence of the size of the superpixels 
on the classification result. 
 
 

1. INTRODUCTION 

1.1 Motivation 

Land use classification is a standard task in remote sensing and 
forms the basis for the verification and update of geospatial land 
use databases. Land use can be obtained by an approach 
consisting of two steps, e.g. (Albert et al., 2014). In a first step, 
land cover information is classified using remote sensing data. 
The second step consists of a segment-based land use 
classification. Both classification tasks pursue different 
objectives. Land cover classification focuses on the assignment 
of land cover labels to small geometrical image sites having the 
same land cover. Land use reveals the socio-economic function 
of a piece of land, which is typically composed of different land 
cover segments. The goal of the land use classification is to 
assign a land use label to such pieces of land, which is based, 
amongst others, on features derived from the land cover 
classification results. For this purpose, a set of adequate features 
has to be derived from the land cover classification results in 
order to enable a correct inference of land use classes. The 
feature selection step requires a certain degree of knowledge 
about the overall characteristics of land use classes and their 
relations to land cover distributions within a land use object.  
 
The two-step approach for land use classification can be 
interpreted as an image interpretation task at different 
interpretation levels. In contrast to land cover, land use cannot 
be derived directly from remote sensing data. Besides spectral 
characteristics, the composition of different land cover elements 
within a land use object is rather important to infer its socio-
economic function. Thus, land use classification represents a 
higher level of image interpretation. In the two-step approach 
semantic relations describing the statistical dependencies 
between land cover and land use are indirectly introduced via 
additional features for the second classification derived from the 

results of the first step. Obviously, there also exist spatial 
dependencies between neighbouring image sites, such as pixels 
or segments in land cover as well as land use classification. In 
both cases, some classes are more likely to occur next to each 
other than others. In particular, land use classes typically occur 
in certain spatial configurations. It can be noted that land cover 
and land use classification exhibit strong contextual 
dependencies, where context incorporates spatial as well as 
semantic relations.  
 
In this paper, we present an approach for land use classification 
of objects from a geospatial database, where the geometry of 
the objects is given and assumed to be correct. The rationale for 
this assumption is that our approach is the first step of a scheme 
for updating the given database. Rather than using a two-step 
procedure as outlined before, we determine land cover and land 
use simultaneously based on an explicit model of the statistical 
dependencies between land cover and land use. A simultaneous 
classification of land cover and land use is achieved by 
combining the two interpretation levels in a unified model, so 
that the information of the lower and the higher interpretation 
levels support each other and can help to improve the overall 
classification accuracy. Also, we avoid taking potentially wrong 
decisions, which cannot be reversed at later stages, too early 
(namely during land cover classification). Rather we try to 
determine the most probable label configuration at each layer 
and allow for the two layers to mutually influence each other. 
For this purpose, we use Conditional Random Fields (CRF) 
(Kumar & Hebert, 2006), which provide a flexible framework 
for contextual classification. The possibility of extending CRF 
to a multi-layer scheme allows modelling dependencies 
between labels of arbitrary image entities as well as semantic 
class structures and the data.  
 
In the proposed a two-layer CRF, we distinguish a land cover 
layer and a land use layer. Both layers consist of nodes and 
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intra-layer edges. The nodes at different layers are connected by 
inter-layer edges, which model the statistical dependencies 
between land cover and land use. Both layers differ with respect 
to the entities corresponding to the nodes and the classes to be 
distinguished, which is caused by the different nature of these 
classification tasks.  
 
The approach is designed for input data based on aerial images. 
Experiments are performed on an urban test site and are carried 
out to evaluate the performance of the proposed method. The 
goal is to show the feasibility of the combination of both 
classification tasks into one overall approach. Furthermore, we 
investigate the influence of the size of the superpixels on the 
classification result. 
 
1.2 Related Work 

Several approaches for land use classification exist, which 
differ with respect to general processing strategy, extracted 
features, classifiers applied and input data. Some of the 
approaches apply a two-step processing strategy (Hermosilla et 
al., 2012; Helmholz, 2012). In a first step, a pixel- or segment-
based land cover classification is performed. In a second step, 
the classification results are transferred to the land use objects 
of a geospatial database. In our previous work, we have 
presented a two-step land use classification approach using CRF 
(Albert et al., 2014). CRF are applied for land cover as well as 
land use classification, separately. Both CRFs model spatial 
dependencies between neighbouring sites, namely pixels in the 
case of land cover and segments in the case of land use 
classification. The benefit of the considering contextual 
knowledge in the classification process has already been 
identified, e.g. for the classification of urban structure types 
(Hermosilla et al., 2012). For this purpose, Hermosilla et al. 
(2012) incorporate contextual features in land use classification, 
which describe the relations of land cover areas within a land 
use object as well as relations between neighbouring land use 
objects. Instead of implicitly integrating context in the 
classification process by using contextual features, CRF offer 
the possibility to model relations between neighbouring land 
use objects as well as between land use and land cover objects 
directly, thus, explicitly considering context in the classification 
process.  
 
Multi-layer CRF have been applied to several tasks in image 
analysis, e.g. hierarchical classification of building facades 
(Yang and Förstner, 2011). Yang and Förstner (2011) model 
spatial and multi-scale relationships between segments obtained 
by a multi-scale watershed segmentation of an image. The 
potential of multi-layer CRF has also been exploited for the 
classification of scenes with occlusions (Kosov et al., 2013) as 
well as the multi-temporal classification of remote sensing data 
(Hoberg et al. 2012). Kosov et al. (2013) propose a CRF which 
models the class labels of the occluded and the occluding object 
for each image site in two separate layers. Hoberg et al. (2012) 
model multi-temporal and multi-scale dependencies of remote 
sensing data at different epochs in a multi-layer CRF for land 
cover classification, where the underlying images of each layer 
can have different resolutions. In this approach, the spatial 
dependencies between image sites for one epoch are modelled 
within each layer. Temporal dependencies of image sites at 
different epochs are modelled by inter-layer edges connecting 
different layers. Most of these approaches aim to classify 
identical classes over time, i.e. change detection is not explicitly 
considered. This also applies to multi-scale approaches, 
although the class structure can slightly differ due to a different 
appearance of the entities to be classified across scale. For 

multi-scale approaches, the class structure complies with a part-
based object model referring to object parts at finer scale and to 
compound objects at coarser scale. The multi-scale approaches 
simultaneously model local and global information in the CRF.  
 
The statistical dependencies between sets of images sites can be 
captured by pair-wise or by higher order cliques. The 
approaches mentioned before only make use of pair-wise 
potentials. Higher order potentials have been exploited e.g. for 
image segmentation (Kohli et al., 2009). Kohli et al. (2009) 
present a class of higher order potentials, referred to as PN-Potts 
model, which can be solved efficiently with move-making 
algorithms based on graph cuts. Higher order potentials allow 
modelling complex dependencies between random variables in 
a graphical model. However, inference on higher order 
potentials is challenging for generic formulations of the higher 
order potentials. This is why in this paper we restrict ourselves 
to a pair-wise model, too.  
 
1.3 Contributions 

To the best of our knowledge, this is the first approach making 
use of a multi-layer CRF for the classification of land use 
objects. The major contribution of this paper is the extension of 
the two-step approach using CRF by introducing statistical 
dependencies between land cover and land use in a multi-layer 
CRF. This paper focuses on the design of the graphical model. 
We explicitly model these dependencies in pair-wise cliques, 
i.e. as pair-wise potentials. Thus, training and inference are 
much easier than for higher order potentials, because algorithms 
can be simply adopted from the standard CRF. The integration 
of both classification tasks into one graphical model overcomes 
the challenge of an adequate feature selection for land use 
classification. Specific knowledge about the overall 
characteristics of certain land use classes and their relations to 
land cover distributions within a land use object is thus not 
required. It is rather important to consider the statistical 
relationships in order to define an abstract model, in which 
specific relations can be learned from representative training 
data. A main benefit of our model is that it tries to determine the 
most probable label configuration of the  two layers 
simultaneously without taking early decisions (by fixing the 
land cover labels after the first classification stage). Explicitly 
modelling the contextual relations between the layers is 
supposed to lead to a better classification accuracy.  
 
In contrast to our previous work (Albert et al., 2014), land cover 
classification is performed at the level of superpixels rather than 
pixels. For the classification of land use objects, the evidence 
and approximate arrangement of certain land cover classes 
within a land use object are more important than their precise 
pixel-wise distribution. The generalization to superpixels 
reduces the computational effort, while still being sufficiently 
detailed for the purpose of land use classification. 
 
This paper is structured as follows. Section 2 introduces the 
standard CRF framework. Section 3 focuses on the 
methodology of the two-layer CRF model. Section 4 describes 
the experimental evaluation of the approach incl. the test setup 
and the feature extraction process. Finally, conclusions and an 
outlook on future work are given in section 5.  
 
 

2. CONDITIONAL RANDOM FIELDS 

Conditional Random Fields provide a flexible framework for 
contextual classification. They were introduced by Kumar and 
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Hebert (2006) for image classification. CRF are undirected 
graphical models, consisting of nodes ݊ and edges ݁. The nodes 
represent the image sites, e.g. pixels or segments. The edges 
link adjacent nodes and model statistical dependencies between 
class labels and data at neighbouring image sites. The class 
labels of all image sites are combined in a label vector ܡ ൌ
ሾݕଵ, … , ,௜ݕ … , 	݅ ௡ሿ, whereݕ ∈ ܵ is the index of an image site and ܵ 
is the set of all image sites. The goal is to assign the most 
probable class labels	ܡ from a set of classes to all image sites 
simultaneously considering the data ܠ. CRF are discriminative 
classifiers, thus directly modelling the posterior probability 
ܲሺܠ|ܡሻ of the label vector ܡ given the observed data ܠ: 
 

ܲሺܠ|ܡሻ ൌ
1

ܼሺܠሻ
ෑ߮௜ሺݕ௜, ሻܠ ∙ෑෑ ߰௜௝൫ݕ௜, ,௝ݕ ൯ܠ

ఠ

௝	ఢ	ே೔௜	ఢ ௌ

.
௜	ఢ	ௌ

 (1) 

 
In equation (1), ߮௜ሺݕ௜,  ሻ are the association potentials andܠ
߰௜௝൫ݕ௜, ,௝ݕ  ൯ are called the interaction potentials. The partitionܠ
function ܼሺܠሻ acts as a normalization constant which transforms 
the potentials into probabilities, whereas ௜ܰ is the 
neighbourhood of image site ݅. The relative weight of the 
interaction potential compared to the association potential is 
modelled by the parameter ߱. The association potential ߮௜ሺݕ௜,  ሻܠ
models the relations between class label ݕ௜ and the observations 
,௜ݕThe interaction potential ߰௜௝൫ .ܠ ,௝ݕ  ൯ models the relationsܠ
between the labels ݕ௜ and ݕ௝ of adjacent nodes and the 
observations ܠ. CRF represent a general framework, which 
allows to introduce various functional models for both 
potentials (Kumar and Hebert, 2006). Thus, it is possible to 
choose any arbitrary discriminative classifier with a 
probabilistic output ܲሺݕ௜|ܠሻ for the association potential. This 
also applies for the interaction potential, where different models 
can be applied. Kumar and Hebert (2006) use a generalized 
linear model for the association potential, but several other 
classifiers have also proven to work well, for instance Random 
Forests (RF) (Breiman, 2001; Schindler, 2012). The models 
applied for the interaction potential are often more simple, 
favouring identical labels and penalising label changes (see 
Schindler, 2012 for a comparison). However, some approaches 
apply more complex models for the interaction potential in 
order to avoid over-smoothing (e.g. Niemeyer, 2014). CRF are 
a supervised classification technique, thus the parameters of the 
potentials are learned. In the inference step, the most probable 
label configuration of the graphical model is determined for all 
nodes simultaneously. This is based on maximizing the 
posterior probability ܲሺܠ|ܡሻ of the labels given the data by an 
iterative optimization process. 
 
 

3. A TWO-LAYER CONDITIONAL RANDOM FIELD 
MODEL 

3.1 Mathematical description 

In order to model the statistical dependencies between land 
cover and land use, we design a two-layer Conditional Random 
Field. The CRF is composed of a land cover layer and a land 
use layer. Figure 1 illustrates the design of the graphical model. 
Each layer consists of nodes and intra-layer edges. The nodes of 
both layers are connected by inter-layer edges. We aim to 
estimate the class labels for land cover ݕ௜

௖ and land use ݕ௜
௨ as 

random variables for each node i in the corresponding layer. 
 
Both layers differ concerning the image entities represented by 
the nodes and the semantic classes to be distinguished. In the 
land cover layer, the nodes correspond to superpixels extracted 
from the image data, whereas in the land use layer the nodes 

correspond to land use objects. Examples for the shapes of both 
sites are shown in figure 2. Superpixels are small sets of pixels 
having similar characteristics. We use a method proposed by 
Achanta et al. (2012) for the generation of superpixels, called 
Simple linear iterative clustering (SLIC), which is based on an 
adapted version of k-means clustering. The size and 
compactness of the generated superpixels can be controlled by 
parameters in order to enable a certain adaptation to spectral 
boundaries in heterogeneous areas. In homogeneous areas, 
SLIC superpixels tend to have a compact shape. Land use 
objects are defined by land use parcels obtained from a 
geospatial database. 
 

 
 

Figure 1: Graphical model consisting of two layers, land cover 
layer (c) and land use layer (u). Nodes are depicted as circles, 
intra-layer edges as solid and inter-layer edges as dashed lines.  

 
 

 
 

Figure 2: Region images representing superpixels (left) and 
land use objects (right). The colours bear no meaning. 
 
The intra-layer edges model the spatial neighbourhood of 
adjacent nodes in the respective layer. The neighbourhood of a 
node i is composed of its first-order spatial neighbours, i.e. all 
sites that share a common boundary with the given site 
represented by node i. The inter-layer edges model the 
statistical dependencies between land cover and land use. Inter-
layer edges form pair-wise cliques connecting two nodes, one in 
each layer. These edges connect spatially overlapping image 
sites, i.e. any node of the land use layer is connected with all 
nodes from the land cover layer having a spatial overlap with 
the object corresponding to the land use node.  
 
The standard CRF notation given in section 2 is extended 
according to the two-layer graphical model described above: 
  

ܲሺ܋ܡ, ሻܠ|ܝܡ

ൌ
1

ܼሺܠሻ
ෑ ߮௖ ሺݕ௜

௖, ሻఠభܠ ∙ ෑ ߮௨ ሺݕ௞
௨, ሻఠమܠ

௞	ఢ	ௌೠ௜	ఢ	ௌ೎

∙ ෑ ߰௖ ൫ݕ௜
௖, ௝ݕ

௖, ൯ܠ
ఠయ

௜௝	ఢ	୽౩
ౙ

. ෑ ߰௨ ሺݕ௞
௨, ௟ݕ

௨, ሻఠరܠ

௞௟	ఢ	୽౩
౫

	

∙ ෑ ߰௖௨ሺݕ௜
௖, ௞ݕ

௨, ሻఠఱܠ

௜௞ ఢ ୽೎ೠ

. 

 

 
 
 
 
(2) 

In equation (2), we have omitted the subscripts in the potential 
functions (e.g.,  c) to indicate that the functional models are 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014
ISPRS Technical Commission III Symposium, 5 – 7 September 2014, Zurich, Switzerland

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-17-2014 19



independent from the image location. S c and S u represent the 
sets of all nodes ݊௜

௖ and ݊௞௨ in the land cover (c) and land use 
layers (u). Εୱୡ and Εୱୡ are the sets of all intra-layer edges 
connecting spatially neighboured sites in the respective layer. 
Inter-layer edges connecting nodes of both layers are collected 
in a set Ε௖௨. The association potentials  c and  u model the 
relations between class labels ݕ௜

௖, ݕ௜
௨ and the data x.  c and  u  

represent the intra-layer interaction potentials, which model the 
spatial dependencies between neighbouring sites within each 
layer in consideration of the data x. The inter-layer interaction 
potential  cu models the statistical dependencies between land 
cover labels ݕ௜

௖	and land use labels ݕ௞௨ at sites i and k being 
adjacent in-between both layers, also considering the data. The 
parameters Ω ൌ ሺ߱ଵ,߱ଶ, ߱ଷ, ߱ସ,߱ହሻ determine the weights of 
each potential term relative to the first potential term (i.e. 
߱ଵ ≡ 1ሻ, which define the individual influence of the 
corresponding potentials in the classification process. Both 
layers differ partly with respect to the models for the association 
and interaction potentials and the chosen model parameters. 
Details are described in the subsequent sections.   
 
3.2 Association Potentials 

The association potential predicts how likely node i belongs to a 
class ݕ௜ given the data ܠ. The data are taken into account in the 
form of site-wise feature vectors ܎௜

௖ሺܠሻ and ܎௞௨ሺܠሻ for the nodes 
݊௜
௖ in the land cover layer and ݊௞௨ in the land use layer (Kumar 

and Hebert, 2006), which may depend on all data. Both 
association potentials take a value proportional to the 
probability of ݕ௜

௖ and ݕ௞௨ given the site-wise feature vectors ܎௜
௖ሺܠሻ 

and ܎௞௨ሺܠሻ, i.e. ߮௖ ሺݕ௜
௖, ሻܠ ∝ ܲ൫ݕ௜

௖ห܎௜
௖ሺܠሻ൯ for the land cover layer 

and ߮௨ ሺݕ௞
௨, ሻܠ ∝ ܲ൫ݕ௞

௨ห܎௞
௨ሺܠሻ൯ for the land use layer. We choose 

the Random Forest (RF) classifier, introduced by Breiman 
(2001), for determining the association potentials of both layers. 
However, each classification is based on different features. RF 
has proven to be an efficient classifier, also in remote sensing 
applications (e. g. Schindler, 2012). The RF classifier complies 
with the above mentioned requirements. In training, RF creates 
an ensemble of randomized decision trees. During 
classification, an unknown sample is classified by each tree 
based on the corresponding feature values, the tree thus casting 
a vote for the class it considers to be the most likely one. The 
sum of the votes for a class divided by the total number of trees 
defines the value of the association potential for that class. 
Some parameters of the RF classifier have to be set beforehand, 
these are, amongst others, the maximum number of samples 
used for training, the maximum depth and the number of trees 
in the forest. Due to considerable differences in the structure of 
both classification tasks, these parameters have to be selected 
individually.  
 
3.3 Intra-layer Interaction Potentials 

The intra-layer interaction potential models the dependencies of 
the labels of nodes ݊௜ and ௝݊ being adjacent within one layer, 
considering the data ܠ. In both layers, the neighbourhood of 
node ݊௜ consists of its first order neighbours in the respective 
layer. The data are taken into account in the form of an 
interaction feature vector ૄ௜௝ሺܠሻ for each edge. We apply 
different models for the intra-layer interaction potentials of both 
layers.  
 
For the interaction potential of the intra-layer edges in the land 
cover layer, we apply the contrast-sensitive Potts model 
(Boykov and Jolly, 2001). This model represents an extension 
of the Potts model, additionally taking into account the data 
(Kumar and Hebert, 2006). Here, the interaction potential is 

based on the probability of both labels ݕ௜
௖ and ݕ௝

௖ being identical 
given ૄ௜௝

௖ ሺܠሻ ൌ ݀௜௝	, i.e. ߰௖ ൫ݕ௜
௖, ௝ݕ

௖, ൯ܠ ∝ ܲ൫ݕ௜
௖ ൌ ௝ݕ

௖ห݀௜௝൯. Thus, the 
sole interaction feature is the Euclidian distance ݀௜௝ between the 
site-wise feature vectors ܎௜

௖ሺܠሻ and ܎௝
௖ሺܠሻ of two adjacent nodes 

݊௜
௖ and ௝݊

௖, and the degree of smoothing depends on the data. 
The contrast-sensitive Potts model defines the interaction 
potential: 
 

߰௖ ൫ݕ௜
௖, ௝ݕ

௖, ൯ܠ ൌ ቐ݁݌ݔ൭݈ଵ ൅ ሺ1 െ ݈ଵሻ ∙ ݁
ି
ௗ౟ౠ

మ

ଶఙమ൱ ௜ݕ	݂݅
௖ ൌ ௝ݕ

௖

1 ݁ݏ݅ݓݎ݄݁ݐ݋

. 

 

(3) 

 
In equation (3), the parameter ݈ଵ ∈ ሾ0; 1ሿ defines the relative 
weight between the data-dependent and data-independent 
smoothing term. If ݈ଵ equals one, the model becomes a Potts 
model (Schindler, 2012). If ݈ଵ is set to zero, the degree of 
smoothing depends completely on the data. The parameter  2 
correspond to the mean value of the squared distances dij

2 and is 
learned during training. We choose the contrast-sensitive Potts 
model for the interaction potential of the land cover layer, 
because we want to achieve a smoothing effect, provided that 
the data support it. Furthermore, this kind of model has proven 
to achieve satisfactory results (Schindler, 2012) in reasonable 
computation time. 
 
Land use classification has different demands for the modelling 
of context. A pure smoothing of the class labels of neighbouring 
land use objects is not desired. In contrast, more probable class 
configurations given the data should be favoured. How probable 
a class relation is, is to be learned from real-world occurrences 
in representative training data given the observations. Thus, the 
interaction potential is modelled as the joint posterior 
probability of both labels ݕ௞

௨ and ݕ௟
௨ given ૄ௞௟

௨ ሺܠሻ, i.e. 
߰௨ ሺݕ௞

௨, ௟ݕ
௨, ሻܠ ∝ ܲ൫ݕ௞

௨, ௟ݕ
௨หૄ௞௟

௨ ሺܠሻ൯. This model formulation 
corresponds to a standard classification task, hence, it is 
possible to handle the interaction potential similar to the 
association potential by applying any discriminative classifier 
with a probabilistic output. The difference is that any pair of 
classes is considered as a single class. Again, and following 
(Niemeyer et al., 2014), we use the RF classifier due to its good 
classification performance. In this case, the interaction feature 
vector ૄ௞௟௨ ሺܠሻ corresponds to the concatenated site-wise feature 
vectors ܎௞௨ሺܠሻ and ܎௟௨ሺܠሻ of two adjacent nodes ݊௞௨ and ݊௟௨. 
 
3.4 Inter-layer Interaction Potential 

The inter-layer interaction potential models the statistical 
dependencies of the land cover and land use labels at nodes ݊௜

௖ 
and ݊௞௨ connected by an inter-layer edge, considering the data ܠ. 
Similar to the interaction potential for adjacent nodes in the land 
use layer, we model this potential relating land cover and land 
use classes based on the joint posterior probability of both 
labels given the data, thus ߰௖௨ሺݕ௞

௨, ௟ݕ
௨, ሻܠ ∝ ܲ൫ݕ௜

௖, ௞ݕ
௨หૄ௜௞

௖௨ሺܠሻ൯. 
Again, we apply the RF classifier and define the interaction 
feature vector ૄ௜௞

௖௨ሺܠሻ as the concatenated site-wise feature 
vectors ܎௜

௖ሺܠሻ and ܎௞௨ሺܠሻ of two adjacent nodes ݊௜
௖ and ݊௞௨. The 

probability for the co-occurrence of land cover and land use 
classes given the observations is learned from training data.  
 
3.5 Training and Inference 

Basically, training and inference require an adequate set of 
features, which we extract beforehand for the nodes of both 
layers. In the training step, all individual potentials, association 
as well as interaction potentials, are trained separately on 
representative training data. This includes the generation of the 
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randomized decision trees as well as the learning of parameter ߪ 
of the contrast-sensitive Potts model. Besides, the user has to 
define the potential weights Ω and the parameter ݈ଵ of the 
contrast-sensitive Potts model. They could be determined by a 
procedure such as cross-validation (Shotton et al., 2009), but 
this has not been carried out yet. During the training of the 
intra-layer interaction potentials of the land use layer, the 
relations between adjacent nodes are learned. This requires 
fully-labelled training data for the corresponding layer. 
Moreover, the training of the inter-layer interaction potential 
requires training data where spatially overlapping image sites in 
both layers are labelled in order to learn the relations between 
land cover and land use appropriately. 
 
In the inference step, we estimate an approximate solution of 
the optimal label configuration in the graphical model, because 
exact inference is computationally intractable (Kumar and 
Hebert, 2006). Here, we apply the max-sum version of the 
message passing algorithm Loopy Belief Propagation (Frey and 
MacKay, 1998). 
 
 

4. EXPERIMENTS 

4.1 Test Data and Test Setup 

The experiments are carried out to evaluate the feasibility of the 
combination of both classification tasks into one overall 
approach. Furthermore, we investigate the influence of the size 
of the superpixels on the classification result. We perform our 
experiments on a test site containing the city of Hameln, 
Germany. The test area shows various urban as well as rural 
characteristics, such as residential areas with detached houses, 
densely built-up areas, industrial areas, a river, cropland and 
grassland. The test area has a size of 2 km x 6 km. The input 
data consist of an orthophoto, a digital terrain model (DTM) 
and a digital surface model (DSM) derived by image matching. 
The orthophoto has a ground sampling distance of 0.2 m and 
consist of four channels (one near-infrared channel, three colour 
channels). The DSM and DTM provide height information at a 
resolution of 0.5 m and 5 m, respectively. Furthermore, GIS-
objects of the German geospatial land use database forming a 
part of the Authoritative Real Estate Cadastre Information 
System (ALKIS®) (AdV, 2008) are used to define the land use 
objects, which correspond to the nodes in the land use layer. 
The nodes of the land cover layer correspond to SLIC 
superpixels. The segmentation is performed on a three-channel 
image, where the channels correspond to the difference between 
the DSM and the DTM (normalised DSM or nDSM), i.e. the 
height above ground, the intensity and the normalized 
difference vegetation index (NDVI) extracted from the input 
data. The use of these three secondary channels instead of the 
original grey values enables a better adaptation to boundaries of 
certain land cover segments. Also, the current implementation is 
restricted to three channels only. We extract SLIC superpixels 
of size 50 x 50 and 20 x 20. Figure 3 shows examples for 
extracted SLIC superpixels in an urban and a rural scene. 
 
For training and evaluation, reference data are available for both 
layers. The reference data for the land cover layer consist of 
pixel-wise reference labels for 37 image tiles, each of size 
200 m x 200 m, obtained by manual annotation. The reference 
for each superpixel is assigned to the most frequent class label 
among its constituent pixels. The reference data for the land use 
layer consist of the geospatial land use database for the whole 
test area, divided into 12 blocks, each of size 1000 m x 1000 m. 
 

  
 

Figure 3: Extracted SLIC superpixels, each of size 50 x 50 
pixels, superimposed to an orthophoto of an urban scene (left) 
and a rural scene (right). The compactness is set to 20 in a range 
of [1;100].  
 
We distinguish the nine land cover classes building (build.), 
sealed area (seal.), bare soil (soil), grass, tree, water, rails, car 
and others, and the seven land use classes residential (res.), 
street, water, railway (rail.), agriculture (agr.), forest and 
others. The number of trees and the maximum depth of the RF 
classifier are set to 200 and 25 in each case this classifier is 
applied. The maximum number of training samples has to be 
adapted to the total number of samples available for training, 
which is much lower for the land use layer compared to the land 
cover layer. Thus, this parameter is set to 10,000 for the 
association potential in the land cover layer, 10,000 for the 
inter-layer interaction potential and 5,000 for the association 
potential and intra-layer interaction potential in the land use 
layer. The weights Ω for the potential terms are equally set to 1, 
thus all potentials have the same impact on the classification.  
 
The quantitative and qualitative evaluation is based on cross-
validation. For that purpose, the reference data are divided into 
12 groups, where each group consist of one of the 1 km2 blocks 
of land use reference data mentioned above combined with 
spatially overlapping land cover reference data. In each test run, 
we use one group for the evaluation and all others for training. 
In the 12 test runs, each group thus contributes to the evaluation 
once. We obtain a confusion matrix by site-wise comparison of 
the classification result to the reference for each layer 
separately; the comparison for the land cover layer is carried out 
on a per-superpixel-basis. The quantitative evaluation is based 
on the overall accuracy, kappa index, correctness and 
completeness values derived from the confusion matrix 
(Rutzinger et al., 2009).  
 
4.2 Feature Extraction 

We extract a set of features for the nodes of each layer. The 
feature extraction for both layers is based on the same image 
and height data, but differs concerning the type of features. 
Additionally, some of the land use features are derived from the 
polygonal representation of the land use objects obtained from a 
geospatial database. 
 
4.2.1 Land Cover Layer: In the land cover layer, spectral, 
textural and three-dimensional features are extracted for 
superpixels. In addition, the feature set is complemented by 
multi-scale features. In a first step, the features are derived for 
each pixel and scaled to the interval [0;1]. In a second step, the 
pixel-wise feature values are averaged for each superpixel. The 
spectral features consist of the original grey values of the 
image, the NDVI, hue, saturation and intensity as well as their 
mean and variance values in a local neighbourhood (here, 
13 x 13 pixels). Furthermore, we estimate the magnitudes of the 
image gradients of the intensity image. The textural features are 
energy, contrast and homogeneity derived from the Grey Level 
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Co-Occurrence Matrix (GLCM) proposed by Haralick (1973). 
The three-dimensional features are the normalized digital 
surface model (nDSM) and derived features, the mean and 
Gaussian curvatures as well as the gradient magnitude. The 
multi-scale features are estimated for linear scale space 
parameters σ taking the values of 2, 5 and 10. The set of 
features for the nodes of the land cover layer consist in total of 
60 features, which are combined in the feature vector ܎௜

௖ሺܠሻ for 
each node ݊௜

௖. 
 
4.2.2 Land Use Layer: In the land use layer, features are 
extracted for land use objects, which are defined by the 
polygonal representation of the GIS-objects of a geospatial land 
use database. We determine spectral, textural, geometrical and 
three-dimensional features. Furthermore, the number of 
neighbouring land use objects is used as a feature. The spectral 
features consist of the mean, standard deviation, minimum and 
maximum of the NDVI, hue, saturation and intensity values, 
which are estimated from all pixels within an object. Again, we 
use the textural features energy, contrast and homogeneity 
derived from the GLCM, with the difference that the GLCM is 
now computed from the co-occurrences of the intensity values 
of all pixels within each object. The geometrical features are the 
area, perimeter and compactness, which can be determined from 
the polygonal representation of each object. The three-
dimensional features consist of the mean value, standard 
deviation, minimum and maximum values of the height above 
ground within each object. In total, the feature set contains 36 
features, which are combined in the feature vector ܎௞௨ሺܠሻ for 
each node ݊௞௨. 
 
4.3 Evaluation of Land Cover Classification 

Figure 4 shows examples of the result for the land cover layer 
using the two-layer CRF approach for two different sizes of the 
superpixels. In both results, most of the buildings and sealed 
areas are classified correctly. The discrimination between grass 
and tree is in parts incorrect due to the fact that the trees did not 
carry leaves at image acquisition time. As a result the trees are 
not represented in the nDSM making the discrimination of both 
vegetation classes difficult. Furthermore, the boundaries of the 
superpixels frequently do not match the building boundaries. 
This is partly caused by inaccuracies in the DSM. Smaller 
superpixels represent the land cover segments more accurately 
in a geometric sense, and they can capture more detail such as 
cars or small trees. Larger superpixels partly cover different 
land cover classes which leads to inaccuracies. 
 

    
 

Figure 4: Pixel-wise ground truth (left), classification result of 
the two-layer CRF approach based on superpixels of size 
50 x 50 (centre) and of size 20 x 20 (right). Colours: build. 
(red), seal. (grey), soil (brown), grass (green), tree (dark green), 
car (red), others (pink). 
 
A quantitative evaluation of the comparison of the results 
obtained with the two-layer CRF approach for two different 
sizes of the superpixels is presented in table 1. The 
completeness and correctness values per class as well as the 
overall accuracy and kappa index are significantly improved for 

a smaller size of the superpixels. The two-layer CRF approach 
based on superpixels of size 20 x 20 yields a mean overall 
accuracy of about 80.8% and a mean kappa index of 75.3%, 
which is improved by 8.0% and 10.3% compared to the results 
obtained for superpixels of size 50 x 50. The completeness and 
correctness for the classes building and sealed area are 
improved by more than 10%. For the class bare soil the 
correctness increases by more than 15% and the completeness 
value by about 2.8%. The classes grass and water show a large 
increase in correctness, which goes along with a small decrease 
in completeness. For the class tree, the correctness value stays 
nearly the same, but the completeness increases by more than 
10%. The class car is not detected when using large superpixels 
due to the lack of detail mentioned before. However, smaller 
superpixels achieve a completeness value of 31.5% and a 
correctness value of 55.9% for the class car. The results for the 
classes rails and others are based on a very small number of 
samples used both in training and for testing, so that these 
numbers are hardly representative.  
 

 
CRFmulti, 50x50 CRFmulti, 20x20

Comp. 
[%] 

Corr. 
[%] 

Comp. 
[%] 

Corr. 
[%] 

L
an

d
 c

ov
er

 c
la

ss
es

 

build. 74.0 77.7 89.0 89.8 
seal. 73.2 58.6 83.2 70.3 
soil 28.5 65.9 31.3 85.0 
grass 79.0 76.3 78.6 85.6 
tree 77.2 77.3 89.7 77.1 
water  85.2 82.8 83.6 97.2 
rails 15.6 77.4 -- --
car -- -- 31.5 55.9 
others 4.3 20.4 3.2 47.5 

OA [%] 72.8 80.8 
Kappa [%] 65.0 75.3 

 

Table 1: Overall accuracy [%], kappa index [%], completeness 
(comp.) and correctness (corr.) values [%] for the land cover 
classes build., seal., soil, grass, tree, water and car obtained by 
classification using the two-layer CRF approach based on 
superpixels of size 50 x 50 (CRFmulti, 50x50) and of size 20 x 20 
(CRFmulti, 20x20). 
 
The best completeness and correctness values are achieved for 
the class building, but also the classes grass, tree and water 
achieve good completeness and correctness values. Lower 
completeness values for the class bare soil could be caused by 
an overall smaller number of training samples for this class, 
thus not sufficiently representing the whole range of 
characteristics of this class. The poor completeness and 
correctness values for the class car result from the size of the 
superpixels. Even for small superpixels, individual cars are not 
represented by a separate superpixel, but rather are merged into 
those mainly covering sealed area. 
 
4.4 Evaluation of Land Use Classification 

The confusion matrix obtained from the comparison of the 
classification results of the two-layer CRF approach based on 
superpixels of the size 20 x 20 with the ground truth is 
presented in table 2. The results for the class residential are 
quite good, with completeness and correctness values better 
than 85%. Lower completeness and correctness values for the 
class street mainly result from problems in the discrimination 
between street and residential. The classes railway, water, 
forest, agriculture and others are underrepresented in the 
training data, in fact only 5% of the objects in the training data 
belong to these classes. As a consequence, the discrimination of 
these classes is difficult, which may lead to lower correctness 
and especially completeness values. The class agriculture 
achieves a completeness and correctness value of better than 
70%. 
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 Classification 
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res. 60.3 4.2 -- -- 0.1 0.1 1.2 91.6 

street 3.3 14.7 -- -- 0.3 0.1 0.6 77.5 

rail. 0.2 0.7 0.1 -- -- -- 0.1 11.4 

water 0.1 0.2 -- 0.3 -- -- 0.1 32.6 

agr. 0.1 0.3 -- 0.1 3.0 0.1 0.5 73.2 

forest 0.1 0.2 -- 0.1 0.2 0.7 0.2 49.7 

others 3.2 0.9 -- -- 0.4 0.1 3.2 40.6 

Corr. [%] 89.6 69.5 53.9 60.9 75.9 59.9 54.6  
 

Table 2: Confusion matrix (in [%] of the total number of 
objects used for testing), completeness (comp.) and correctness 
(corr.) values [%] for the land use classes res., street, rail., 
water, agr., forest and others obtained by classification 
applying the two-layer CRF approach based on superpixels of 
size 20 x 20. 
 
A quantitative evaluation of the comparison of the results 
obtained by the two-layer CRF approach for two different sizes 
of the superpixels is presented in table 3. The two-layer CRF 
model based on superpixels of size 20 x 20 achieves a mean 
overall accuracy of 82.2% and a mean kappa index of 65.2%. In 
comparison to the results based on larger superpixels the overall 
accuracy and the kappa index are improved of more than 3.9% 
and 7.9%, respectively. The class residential area shows the 
lowest increase in completeness of about 1.3% and in 
correctness of about 2.2%. Large increases in completeness of 
more than 10% are achieved for the classes street, water and 
agriculture, which are accompanied by a smaller increase in 
correctness. The completeness and correctness values are also 
improved for the classes forest and others. For the class railway 
the completeness decreases of about 0.8%, but this goes along 
with a large improvement of the correctness of more than 20%.  
 

 
CRFmulti, 50x50 CRFmulti, 20x20 

Comp. 
[%] 

Corr. 
[%] 

Comp. 
[%] 

Corr. 
[%] 

L
an

d
 u

se
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la
ss

. res. 90.3 87.4 91.6 89.6 
street 66.1 64.6 77.5 69.5 
rail. 12.2 26.8 11.4 53.9 
water 20.9 32.7 32.6 60.9 
agr. 63.2 64.3 73.2 75.9 
forest 44.0 40.9 49.7 59.9 
others 36.1 46.8 40.6 54.6 

OA [%] 78.3 82.2 
Kappa [%] 57.3 65.2 

 

Table 3: Overall accuracy [%], kappa index [%], completeness 
(comp.) and correctness (corr.) values [%] for the land use 
classes res., street, rail., water, agr., forest and others obtained 
by classification applying the two-layer CRF approach based on 
superpixels of size 50 x 50 (CRFmulti, 50x50) and of size 20 x 20 
(CRFmulti, 20x20). 
 
 

5. CONCLUSION 

We propose a two-layer Conditional Random Field model for 
simultaneous classification of land cover and land use. The CRF 
represents a consistent model, where the statistical 
dependencies between land cover and land use are explicitly 
modelled and learned from training data. Preliminary results 
show that the presented approach yields good accuracies for the 
land use classes residential area and street. A lower accuracy is 
achieved for land use classes that occur less frequently in the 
test area. Furthermore, we have shown that reducing the size of 
the superpixels has a positive influence on the classification 
accuracy. Nevertheless, further enhancements are required in 
order to improve the classification result.   
 

In future work, we will further investigate the influence of the 
size of the superpixels on the classification result in order to 
determine a level of detail, which represents a good trade-off 
between accuracy and computation time. In this context, we 
will also address further problems associated with the 
superpixels, for instance the congruence of superpixels with a 
land use object as well as inaccuracies in the training data. 
Currently, a land use object is connected with all spatially 
overlapping superpixels not taken into account the degree of 
overlap. Thus, some superpixels are assigned to land use 
objects, even though they cover mostly neighbouring land use 
objects. This may have a misleading effect on the inference, 
which, for instance, can be reduced by defining a threshold for 
the spatial overlap, or even avoided by restricting the 
superpixels to coincide with land use object boundaries. 
Another obvious test is a comparison of the new two-layer CRF 
approach with a two-step processing strategy presented in our 
previous work (Albert et al., 2014). 
 
Furthermore, the “winner-takes-all”-strategy for the assignment 
of the ground truth label to each superpixel leads to inaccuracies 
in the training data. In future work, we will consider uncertain 
superpixels, for instance by eliminating uncertain training 
samples or considering the uncertainty of training data in the 
classification approach.  
 
Remaining problems may also result from the fact that for some 
relations we currently have only a low number of training 
samples, thus not all statistical dependencies are properly 
represented in the training data. Therefore, we want to apply our 
approach on more test areas with different characteristics and 
more training data, especially for currently underrepresented 
class relations. Moreover, complex dependencies, like the 
composition of several land cover classes within a land use 
object, cannot be modelled explicitly using pair-wise potentials. 
In this context, we aim to investigate whether inter-layer 
interaction potentials can be modelled more appropriately with 
higher order potentials using a suitable model, which on the one 
hand, can capture the complex dependencies between land 
cover and land use, and on the other hand, allows efficient 
inference.  
 
Currently we only differentiate a very small number of different 
land use classes, corresponding to the coarsest semantic level of 
the geospatial data base. In our future work, we also aim to 
determine the maximum level of semantic resolution of the land 
use classes which still delivers acceptable results. 
 
Finally, we strive to embed the presented method into the 
overall task of updating the given geospatial database, In this 
context we will also work on automatically inferring changes to 
the geometric delineation of the geospatial objects assumed to 
be correct at this stage, e. g. by deforming the current object 
outlines and by splitting and merging objects.     
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