
TH E MU L T I -AG E N T FL O O D AL G O R I T H M
A S A N AU T O N O M O U S SY S T E M F O R

SE A R C H A N D RE S C U E AP P L I C A T I O N S

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

DOKTOR DER NATURWISSENSCHAFTEN

Dr. rer. nat. -

genehmigte Dissertation

von

M.Sc. Florian Andreas Blatt

2017

Referentin: Prof. Dr.-Ing. Helena Szczerbicka

Korreferent: Prof. Dr.-Ing. Christian Müller-Schloer

Tag der Promotion: 26.10.2017

Keywords: multi-agent, search & rescue, communication, cooperation

Schlagwörter: Multi-Agenten System, Search & Rescue, Kommunikation,

Kooperation

2

A B S T R A C T

Technology should be used to help and aid mankind. This is especially

true in the case of disasters. Potential victims have to be helped as soon as

possible to ensure the survival of as many of them as it is achievable. For

example after an earthquake the rescue teams have about 48 to 72 hours to

find the victims, if it takes them any longer the probability to find victims alive

decreases dramatically.

The aftermath of different disasters in the recent years have already seen

the use of various robotic helpers. Currently the rescue teams use one or two

robots guided by human teleoperators to search for victims or to enter spaces

that are too small for human team members to reach or too dangerous for

them to enter.

This thesis proposes a new algorithm to control multiple robots autonomously

in urban search and rescue scenarios. The algorithm will be able to manage

the movement of multiple autonomous robots in unknown terrain to find

possible victims. Besides maintenance work the robots controlled by this

method will not need any human input or help. The cooperation between the

robots will be achieved by using two different ways of communication, direct

and indirect, to allow data transfer between the robots to overcome certain

hazards that can hinder direct communication or prevent it completely. Thus

the robots will still be able to cooperate, even if only one part of the commu-

nication model is available. Another advantage of the proposed algorithm is

the ability of the robots to return any time to the head quarter. A robot will

return to the base as soon as it has found a victim. An important point made

possible this way is that the human rescue team can start to rescue the found

victims as soon as the robots share the information about the location of the

victim. Thus, a parallel rescue process is made possible. This capability also

allows the maintenance of the robots, repair of defective parts or simply allow

the possible recharge of the battery.

The introduced algorithm is evaluated by simulating the agents on different

test cases to show that the algorithm is a viable way to send autonomous

agents into unknown terrain without further human interaction. The agents

will also follow the specific constraints required by rescue robots, which in

turn means that the algorithm can be used in “real world” scenarios.

3

A B S T R A K T

Technologie soll zum Wohle der Menschheit eingesetzt werden. Dies ist im

Besonderen der Fall wenn es um den Schutz und die Rettung von Menschen-

leben geht. Zum Beispiel nach einem Erdbeben ist es wichtig die verschütteten

Opfer so schnell wie möglich zu finden und zu bergen. Hierbei sind die ersten

48 bis 72 Stunden entscheidend, da danach die Chance rapide sinkt noch

Überlebende in den Trümmern zu finden.

In den letzten Jahren wurden bei diversen Einsätzen immer wieder Roboter

eingesetzt um das Rettungsteam zu unterstützen. Dabei wurden ein oder

auch zwei Roboter eingesetzt, die ferngesteuert nach Opfern gesucht oder

die Räume erkundet haben, die für einen Menschen nicht erreichbar oder zu

gefährlich waren.

Diese Dissertation stellt einen neuen Algorithmus vor, der dazu benutzt wer-

den kann multiple Roboter autonom in urbanen Rettungsszenarien einzuset-

zen. Mit Hilfe dieser Methode können mehrere Roboter unbekanntes Ge-

biet erkunden und dort mögliche Opfer aufspüren. Der Vorteil ist, dass

die Roboter keinerlei Eingreifen von menschlichen Teammitgliedern benöti-

gen. Die Kooperieren der Roboter untereinander wird mit Hilfe von zwei

Kommunikationswegen ermöglicht: Indirekt und Direkt. Dadurch werden

mögliche Einschränkungen der Direkten Kommunikation umgangen, so dass

die Roboter trotzdem in der Lage sind ihre Aufgabe zu erfüllen. Ein weit-

erer Vorteil dieses Algorithmus ist es, dass die Roboter jederzeit zur Basis

zurückkehren können. Sollte ein Roboter ein Opfer gefunden haben, so wird

diese Möglichkeit genutzt und ein Rettungsteam kann parallel zum laufenden

Suchvorgang der Roboter starten und das Opfer bergen. Die Rückkehr zur

Basis ermöglicht auch die Wartung und Aufladung der Roboter, wodurch

diese längere Zeit im Betrieb sein können.

Der hier vorgestellte Algorithmus wird anhand einer Simulation evaluiert.

Dafür werden die Agenten auf verschiedenen Karten simuliert. Dabei unter-

liegen die Agenten gewissen Einschränkungen, die für diese Art von Roboter

nötig sind. Durch Einhaltung dieser Einschränkungen kann der Algorithmus

auch leicht für reale Roboter adaptiert werden.

4

A C K N O W L E D G E M E N T S

I would like to thank Professor Helena Szczerbicka for her continuous

support and supervision during my work on my thesis. Without her guidance,

suggestions, and comments my whole research would not have been possible.

Further I would also like to thank all of my coworkers, who also helped me

a lot with their advice and their ideas.

Last but not least, I would like to thank my parents and my brothers for

their support and their encouragement.

5

CONTENTS

Abstract . 3

Acknowledgements . 5

List of Figures . 11

List of Algorithms . 15

1 . I N T R O D U C T I O N 17

1.1. A short Historical Overview about Rescue Robotics 18

1.2. Thesis outline . 20

1.3. Publications . 21

2 .S T A T E O F T H E A R T 23

2.1. Rescue Robots . 23

2.1.1. IUB Rugbot . 23

2.1.2. Quince . 25

2.1.3. ICARUS robots . 26

2.1.4. Hector robots . 28

2.1.5. Snake robots . 29

2.1.6. Summary . 30

2.2. Multi-Agent Search & Rescue Algorithms 31

2.2.1. Ants . 33

2.2.2. Brick&Mortar . 34

2.2.3. HybridExploration . 40

2.2.4. Rendezvous . 46

2.2.5. Requirements for a search & rescue algorithm 50

2.2.6. Summary . 51

3 .T H E M U L T I -A G E N T F L O O D A L G O R I T H M 53

3.1. The Multi-Agent Flood Algorithm 55

3.1.1. Assumptions and Definition of the Scenario 56

7

Contents

3.1.2. Design of the Agent . 56

3.1.3. Comparison with existing algorithms 65

3.2. Experimental Simulation Setup 67

3.2.1. The Simulator . 67

3.2.2. Definition of the Scenario 68

3.2.3. Selection of the simulated Maps 69

3.2.4. Results of the Simulation 72

3.3. Advantages and Disadvantages of the Multi-Agent Flood algorithm 76

4 . I D E A S F O R A L AY E R E D C O M M U N I C A T I O N 79

4.1. Direct and Indirect Communication 81

4.1.1. Ad-hoc Networks . 81

4.1.2. Stigmergy . 84

4.2. Layered Communication . 86

4.2.1. Adapting the Multi-Agent Flood algorithm 88

4.3. Simulating the layered communication algorithm 90

4.3.1. Changes to the experimental simulation setup 92

4.4. Comparison of the algorithms . 94

4.5. Chapter Summary . 100

5 .L E AV I N G T H E G R I D 103

5.1. A mesh of RFID tags . 105

5.1.1. Different kinds of RFID chips 105

5.1.2. Changes to the Multi-Agent Flood agent 105

5.1.3. Changes to the simulation setup 110

5.1.4. Results of the new simulation 111

5.2. Reliability of the RFID tags . 114

5.2.1. Modelling the different errors 115

5.2.2. How to handle these malfunctions 115

5.2.3. Evaluating the reliability of RFID tags 115

5.3. Optimizing the search time of the agents 120

5.3.1. Frontier-based exploration 121

5.3.2. Bug algorithms . 124

5.3.3. Improving the cooperation 126

5.3.4. Results of the modified algorithm 127

8

Contents

5.3.5. Summary of the Results . 132

5.4. Changing the size of the agents 133

5.4.1. Modifications to the agents 134

5.4.2. Simulation of the algorithm with bigger agents 135

5.4.3. Comparison with Rendezvous 137

5.5. Chapter Summary . 140

6 .C O N C L U S I O N 143

6.1. Summary of the Thesis . 143

6.2. Future Work . 147

A.R E F E R E N C E S 151

9

L IST OF F IGURES

2.1. Modelling a grid as a graph . 34

2.2. Von Neumann neighborhood . 35

2.3. Brick&Mortar loop problem . 37

2.4. HybridExploration loop problem 43

3.1. Moore neighborhood . 57

3.2. Directions in a grid . 57

3.3. Example of the flooding algorithm for graphs 61

3.4. Example of the Bellman flooding algorithm as a cellular automaton 62

3.5. Single MAF agent marking the grid 63

3.6. Two MAF agents marking the grid simultaneously 63

3.7. Two MAF agent marking the grid, the second overwriting the

mark of the first . 64

3.8. Scenario Plain with obstacles, 500×500 cells 70

3.9. Scenario House, 500×500 cells 71

3.10. Scenario Street of Houses, 1000×1000 cells 71

3.11. Results MAF and Brick&Mortar, House, 500×500 cells 72

3.12. Results MAF and Brick&Mortar, Obstacles, 500×500 cells . . . 73

3.13. Results MAF and Brick&Mortar, Plain, 500×500 cells 73

3.14. Results MAF and Brick&Mortar, Plain, 1000×1000 cells 74

3.15. Results MAF and Brick&Mortar, Street of Houses, 1000×1000

cells . 74

3.16. Normalized results of the simulation of the MAF algorithm . . . 76

4.1. Example of a spanning tree . 82

4.2. Example of a triangular network on the left side, rectangular

search pattern on the right . 83

4.3. Example of a multi-agent system using direct and indirect com-

munication . 87

4.4. Example of the radio emitter range of modified agents 91

11

List of Figures

4.5. Scenario House, 500×500 cells 92

4.6. Scenario Office, 500×500 cells 93

4.7. Scenario Park, 500×500 cells . 93

4.8. Scenario Cubicles, 1000×1000 cells 94

4.9. Results of the MAF variants, House, 500×500 cells 95

4.10. Results of the MAF variants, Obstacles, 500×500 cells 95

4.11. Results of the MAF variants, Park, 500×500 cells 96

4.12. Results of the MAF variants, Cubicles, 1000×1000 cells 96

4.13. Comparison between the combined MAF algorithm and Brick&Mortar,

House, 500×500 cells . 97

4.14. Results of the MAF algorithm, House, 500×500 cells 98

4.15. Results of the MAF algorithm, Obstacles, 500×500 cells 99

4.16. Results of the MAF algorithm, Park, 500×500 cells 99

4.17. Results of the MAF algorithm, Cubicles, 1000×1000 cells . . . 100

5.1. Turning in form of a teardrop . 106

5.2. Problem while turning with sensing RFID tags near obstacles . 106

5.3. Trail of RFID chips, dropped at a specific interval 107

5.4. Partial mesh of RFID chip trails, with gap 107

5.5. Trail of RFID chips with corresponding stored data 108

5.6. Results of the grid-less MAF algorithms, House, 500×500 cells 111

5.7. Results of the grid-less MAF algorithms, Obstacles, 500×500 cells112

5.8. Results of the grid-less MAF algorithms, Park, 500×500 cells . 112

5.9. Results of the grid-less MAF algorithms, Cubicles, 1000×1000

cells . 113

5.10. Test cases for the reliability evaluation 116

5.11. Results of the RFID reliability evaluation, Factory, 300×300 cells116

5.12. Results of the RFID reliability evaluation, Office, 500×500 cells 117

5.13. Results of the RFID reliability evaluation, Cubicles, 1000×1000

cells . 117

5.14. Comparison of 30 agents between the different error rates, Fac-

tory, 300×300 cells . 118

5.15. Comparison of 30 agents between the different error rates, Of-

fice, 500×500 cells . 118

5.16. Comparison of 30 agents between the different error rates, Cu-

bicles, 1000×1000 cells . 119

12

List of Figures

5.17. Markings cutting off unexplored terrain 120

5.18. List of available frontier points 123

5.19. Result of the Bug1 algorithm . 125

5.20. Result of the Bug2 algorithm . 126

5.21. Results of Frontier Detection adaption, Factory, 300×300 cells 128

5.22. Results of Frontier Detection adaption, House, 500×500 cells . 129

5.23. Results of Frontier Detection adaption, Office, 500×500 cells . 129

5.24. Results of Frontier Detection adaption, Park, 500×500 cells . . 130

5.25. Results of Frontier Detection adaption, Cubicles, 1000×1000 cells130

5.26. Best case comparison between 30 and 45 agents, Cubicles,

1000×1000 cells . 132

5.27. Results of agent size adaption, House, 500×500 cells 135

5.28. Results of agent size adaption, Office, 500×500 cells 136

5.29. Results of agent size adaption, Park, 500×500 cells 136

5.30. Results of agent size adaption, Cubicles, 1000×1000 cells . . . 137

5.31. Scenario for the MAF and Rendezvous comparison 139

5.32. Results of the comparison between MAF and Rendezvous 140

13

L IST OF ALGORITHMS

1. Brick&Mortar Without Loop Handling 36

2. HybridExploration, Behavior of the virtual agent 45

3. Multi-Agent Flood algorithm movement 59

4. Multi-Agent Flood algorithm Return Mode 64

5. Protocol for the use of the direct communication part 89

6. Adaption of the Search Mode of the MAF agents 109

7. Changes to the Return Mode of the MAF agents 109

8. Frontier Detection . 121

9. Frontier Assignment . 122

10. Coordination of the frontier points between the agents 127

15

CHAPTER 1.

INTRODUCTION

Time is of essence in the aftermath of disaster. Helpers have to arrive as

quickly as possible to find victims after an earthquake, to help buried miners,

or simply to avert any additional damage. Especially after an earthquake the

rescue team has to find the victims as soon as possible, as the chance to find

them alive decreases rapidly in the first 48 to 72 hours [Murphy et al. (2008);

Murphy (2014)]. Current and new technologies offer various advantages that

can be used to help, aid, and support search and rescue efforts in different

ways.

Different rescue missions have shown that a robot guided by members of

the human rescue team can be used to aid in the search for victims. Most of

the time these mechanical helpers are used to scout ahead and to enter areas

that are not safe for a human rescue team to enter. Various rescue robots

exist already, either as science projects or in commercial applications. Some

of these have already been used at different disaster sites around the globe.

But all of them have in common that they need to be controlled by a human.

In addition only one or maybe two robots are used at the same time, not really

realizing the advantages of the synergies that a team of robots could bring.

This work will introduce a short overview of existing robots and in turn

will take a look at existing algorithms which can be used to control multiple

robots, thus enabling the robots to work as an autonomous team with the

same goal. With the use of communication and cooperation the robots will be

able to support the human rescue team, searching for victims after a disaster

without any input from human teleoperators.

After taking a look at the various advantages and disadvantages offered

by existing algorithms, a new algorithm is proposed. This algorithm will be

able to send robots autonomously into unknown terrain, allow them to find

17

Chapter 1. Introduction

victims, and to send the information about said victims back to the human

rescue team in parallel to the ongoing robotic search process. This allows the

human team to start the rescue process as quickly as possible, increasing

the chance to find victims alive. The proposed algorithm will be evaluated by

simulating the different agents to show that it is a viable approach. It will also

adhere to the specific constraints required by rescue robots, thus creating an

approach that can be used in “real world” scenarios.

1.1. A short Historical Overview about Rescue Robotics

The first robots used to help after a disaster were big and slow machines, sent

into action just some months after the Three Mile Island nuclear incident in

1979 and a few years later again after the Chernobyl nuclear catastrophe in

1986 (Murphy, 2014, p. 3). These robots were heavily shielded to survive

exposure to radiation and required multiple human operators.

Additional motivation for research on dedicated search and rescue robots

was sparked by the big earthquake in Kobe and Osaka in 1995 and the

bombing of the Alfred P. Murrah Federal Building in Oklahoma City in the

same year [Davids (2002); Murphy et al. (2008); Murphy (2014)]

The first example of a search and rescue operation using dedicated robots

was the morning after the attack on the twin towers in New York on the

September 11th, 2001 [Davids (2002); Murphy et al. (2008); Murphy (2014)].

Five different robots were used to support the human search and rescue

teams searching remains of the destroyed twin towers. These robots helped to

find more than ten victims, although one got stuck and another one lost the

wireless connection to the teleoperator (Murphy, 2014, p. 44).

The following years saw an increased application of rescue robots at various

disaster and emergency sites. These included searching for victims after an

earthquake, trying to find victims in the rubble of collapsed buildings, or

trying to find a missing miner after a mine collapse, c.f. (Murphy, 2014,

p. 25–28). Another well-known use of search and rescue robots was after

another nuclear disaster at the Fukushima Daiichi Nuclear Power Station in

2011 [Nagatani et al. (2011); Murphy (2014)]. The robot that was used in this

scenario was named Quince [Rohmer et al. (2010)].

Compared to the first robots that were used in ’79 and ’86 at the previous

18

1.1. A short Historical Overview about Rescue Robotics

nuclear catastrophes, this robot is rather small and was especially created for

urban search and rescue missions. Before it was used, the base variant of

the robot was adapted to allow the collection of a sample of the contaminated

water in the reactor room and to be able to install a water-gauge in the

basement of the reactor building (Nagatani et al., 2011, p. 14).

Comparing these newer robots to their ancestors, two things always remain

the same: first every one of these robots needs a human to control and steer

it. Second, none of these robots acts in a team with other robots. Although

each robot is well designed to handle their specific task, they are not equipped

with enough “intelligence” to act as a team or to act autonomously. The

ability to work as a team requires some specific algorithms to control the

communication and cooperation between multiple robots, especially if the

teamwork should happen without any human interference. Some ideas on

how this could work were already proposed in Koenig et al. (2001) for example.

In this example multiple robots are able to communicate by leaving chemical

markings in the environment and thus all the robots act as a team. More

recent examples, such as Ferranti et al. (2007), showed how communication

between robots can be expanded to increase the search speed of the robot

team.

Another example is the RoboCup, Kitano et al. (1998), which started out

as a soccer competition between real or simulated robots to foster research

in the field on intelligent multi-agent algorithms for the control of multiple

robots. This concept was later expanded to the RoboCup Rescue, Kitano et al.

(1999); Kitano and Tadokoro (2001), based on the experience gained after the

earthquake in Kobe and Osaka in ’95. This way the insights gained from the

RoboCup competition could be applied to a real world scenario and it also

allowed the use of different features, for example reconnaissance of unknown

terrain or manage relief units that were not applicable to the first scenario.

This thesis extends the current possibilities by investigating a concept for

the use of multiple autonomous robots at the same time, which will act as a

team. In turn their cooperation will speed up the search process and thus will

cut down the time required to find as many victims as possible in an urban

search and rescue scenario. The algorithm proposed in this work will adhere

to the three design principles for rescue robotics stated by Murphy (2014).

Robots must:

19

Chapter 1. Introduction

1. operate in extreme, even unknown, terrain and operating conditions

2. have the ability to function in GPS- and wireless-denied environments

3. provide appropriate human-robot interaction

Especially the second principle has to be kept in mind in case of a search

and rescue scenario, because an algorithm that uses multiple robots needs

a robust way to let them communicate and share data with each other. The

method put forward in this work is based on indirect communication and

only uses direct communication as an additional way to exchange data. If

the surrounding terrain does not allow the use of radio signals for a direct

communication, then the algorithm is still able to function, although not as

fast. This approach leverages the advantages of a multi-agent system, even if

only indirect transmission is possible through the use of graceful degradation

of the communication channel.

1.2. Thesis outline

The reminder of this thesis is structured in the following way: Chapter 2

contains a survey of the current state of the art. We will take a short look at

some existing rescue robots and survey different multi-agent algorithms for

search and rescue scenarios. For each algorithm described in this chapter we

will briefly discuss its advantages and disadvantages.

The next chapter, Chapter 3, will propose a multi-agent algorithm that tries

to address the various disadvantages of the existing methods. This version of

the algorithm will use only indirect communication. At the end of the chapter

we will evaluate the algorithm and compare it with existing algorithms. The

following chapters will contain improvements to this base algorithm, where

each optimization is a step towards a realistic implementation.

Chapter 4 introduces an improvement of the algorithm proposed in Chapter

3. We will suggest concepts showing how to combine indirect and direct

communication and how graceful degradation of the communication channel

is possible. The results of these improvements will be evaluated and compared

with the original version.

In Chapter 5, we will recommend a way to remove the grid abstraction made

in the original version of the multi-agent algorithm proposed in Chapter 3.

20

1.3. Publications

This way the algorithm is easier to adapt to real world robots. Furthermore an

improvement of the behavior will be proposed that adds more sophisticated

capabilities to the agents, allowing them to explore the unknown terrain in a

better way.

The last chapter of this thesis, Chapter 6, encloses a summary of the whole

work and look at future work, based on the different proposals made in this

thesis.

1.3. Publications

Parts of this work have been presented and published in the proceedings of

the following conferences:

• Matthias Becker, Florian Blatt and Helena Szczerbicka: A Multi-agent

Flooding Algorithm for Search and Rescue Operations in Unknown Ter-

rain, German Conference on Multiagent System Technologies (MATES),

pages 19–28, 2013

• Matthias Becker, Florian Blatt and Helena Szczerbicka: A Concept of

Layered Robust Communication between Robots in Multi-agent Search

& Rescue Scenarios. IEEE/ACM 18th International Symposium on Dis-

tributed Simulation and Real Time Applications (DS-RT), pages 175–180,

2014

• Florian Blatt, Matthias Becker and Helena Szczerbicka: Optimizing the

exploration efficiency of autonomous search and rescue agents using

a concept of layered robust communication. IEEE 20th Conference on

Emerging Technologies & Factory Automation (ETFA),pages 1–6, 2015

• Florian Blatt and Helena Szczerbicka: Realisation of Navigation Concepts

for the Multi-agent Flood Algorithm for Search & Rescue Scenarios Us-

ing RFID Tags. IEEE/ACM 20th International Symposium on Distributed

Simulation and Real Time Applications (DS-RT), pages 112–115, 2016

• Florian Blatt and Helena Szczerbicka: Combining the Multi-Agent Flood

Algorithm with Frontier-Based Exploration in Search & Rescue Applica-

tions. International Symposium on Performance Evaluation of Computer

and Telecommunication Systems (SPECTS), 2017

21

CHAPTER 2.

STATE OF THE AR T

This Chapter will give a short introduction of currently used rescue robots and

current concepts for multi-agent algorithms for search and rescue scenarios.

All of the robots described in this chapter are research robots, only one of

them has been used in a disaster at this time. The same caveat applies to the

various multi-agent algorithms in the second part of this chapter, as not one

of those was yet used for a real search and rescue scenario either.

2.1. Rescue Robots

This section will showcase different rescue robots that are currently in use.

For each robot there will be a short description given and a short discussion

about its advantages and disadvantages.

This work will discuss only unmanned ground vehicles (UGV). Due to

specific design principles, for example the locomotion of the different robots,

maritime disaster robots and unmanned air vehicles are not able to enter

collapsed buildings or small cracks.

2.1.1. IUB Rugbot

The IUB Rugbot was introduced in 2006 by the International University

Bremen and created by Birk et al. (2006b).

The first version of the Rugbot was used in the RoboCup competition in 2005

in Osaka. The design of the robot is based on the CubeSystem, a collection of

hardware and software components which allows for fast robot prototyping,

Birk (2004). The CubeSystem offers controller hardware, a special operating

system and libraries for common robotic tasks, c.f. Birk et al. (2006b).

23

Chapter 2. State of the Art

Hardware

The Rugbot uses tracks and is a relatively small vehicle. It has a footprint

of roughly 50×50 cm2 and weighs about 35 kg. In addition to the tracks the

Rugbot also has a “flipper mechanism” available, which is a movable arm,

that allows the robot to navigate over rubble and even enables the robot to

move up stairs.

The standard sensor suite of the robot includes a laser rangefinder, an

ultrasound sensor, four cameras, one thermo camera and rate gyroscopes

(a type of gyroscope that indicates the rate of change of angle over time).

Additional sensors can be added if they are needed.

Each Rugbot also has its own onboard PC available which offers sufficient

computational power to control the movement of the robot.

The onboard batteries allow for two to three hours of continuous operation,

this also includes the movement through rough terrain.

Software

The CubeSystem software used to operate the robot is designed to provide the

realtime functionalities, required to compute the path and in turn steer the

motor of the robot. Higher “intelligence”, from teleoperation to full autonomous

behaviour, is supported through the onboard PC.

The onboard software is able to detect humans from the input of the various

sensors and to create maps without the need for connections to additional

servers [Birk et al. (2006b,a)].

Advantages and Disadvantages

The advantages of the Rugbot are, that it is able to navigate through an

obstacle course and find human victims without the help of a human operator.

The addition of the flipper mechanism allows the tracked robot to traverse

stairs, which are usually something that robots can not handle very well.

The main disadvantage of this robot is, that it is designed for the operation

as a single entity without any other possible input from other team members.

A radio network communication between multiple robots would be possible

but the current software lacks the capabilities that are needed for a full

cooperation between these robots.

24

2.1. Rescue Robots

2.1.2. Quince

Quince is another small robot that was conceived as a highly maneuverable

and modular platform for robot rescue research and development [Rohmer

et al. (2010)].

Hardware

The original concept of Quince is based on “modularity, interoperability and

customization to simplify the integration of the different robotic technologies”

(Rohmer et al., 2010, p. 1). This robot was built to especially handle uneven

terrain, stairs, and rubble. It can achieve this kind of mobility by combining a

main track with four smaller sub-tracks. The main track encloses the whole

robot, removing more or less the possibility of getting the robot stuck on a part

of the chassis without the opportunity to apply any friction. The sub-tracks,

which are adjustable and are also called flippers, add further gripping power

and allow Quince to traverse stairs. The complete chassis has a length of 71

cm and a width of 48 cm, with a weight of 27 kg.

In general the center of gravity of the robot is kept low, as everything is kept

inside of its body.

The basic sensor layout of Quince includes two Position Sensitive Devices

(PSD, which are able to measure the one- or two-dimensional position of a

light point), an Inertial Measurement Unit (IMU), a current sensor and an

encoder for each of the six motors, and three cameras. Additional sensors can

be installed rather easily.

Software

Quince’s operating system is a highly customized Linux version. The robot

only supports the minimal operations that are needed for movement and for

teleoperability. Additional functionability would have to be added on a per use

basis. Remote control is established using a standard wireless IP network.

Advantages and Disadvantages

The design goals for this robot were to create a small, maneuverable, and

highly customizable machine. The only problem is, that the basic variant of

25

Chapter 2. State of the Art

the robot is dependent on a human controller, who can pilot it as long as a

wireless connection is available.

The Redesign of Quince

The first big mission where Quince was used, was after the nuclear accident

at the Fukushima Daiichi Nuclear Power Station on March 2011 [Nagatani

et al. (2011); Murphy (2014)].

A high priority requirement for this mission was the hardware reliability

and the communication reliability, due to the massive radiation in the target

zone. The first part means, that the electronic components of the robot

had to withstand the exposure to gamma rays. As Quince is a teleoperated

robot it also needed a communication line to the teleoperator, but wireless

communication may be blocked in the nuclear reactor. As a consequence

non-wireless communication was a requirement for this mission, in this case

a cable and tether were used.

2.1.3. ICARUS robots

The European ICARUS project tries to develop integrated components to assist

search and rescue teams after an urban or maritime disaster, De Cubber et al.

(2013a).

For example, the Belgian First Aid and Support Team (B-FAST) needed two

different kind of robots to help in urban search and rescue scenarios, see

De Cubber et al. (2013b):

• A larger robot, which can be used as a mobile base and sensor platform.

It should be able to broadcast the data that it collects to the field oper-

ators. Another very important requirement is, that the robot is able to

traverse rugged terrain.

• The second robot should be small and thus be able to enter collapsed

buildings to search for buried victims

Hardware

The larger variant of the robots should be able to act autonomously, but still

be able to act on human intervention, and collect data about the surrounding

26

2.1. Rescue Robots

area by itself. It should also act as a carrier for the smaller UGV.

To support these three requirements, the large robot is powered by a

combustion engine and moved by a chain-drive. The planned sensors for this

platform should include a GPS receiver, a panning laser, bumper sensors,

a stereo camera system, a time-of-flight camera for terrain traversability

analysis, and victim detection sensors. The manipulator is designed to lift up

a weight up to 250kg. An additional camera on the robot provides image data

for teleoperation. As stated by De Cubber et al. (2013b) the whole concept is

still in design.

The small UGV, that is carried by the larger one as a support unit, is also

based on a tracked chassis and possesses a smaller manipulator. It is mainly

designed to help the larger UGV, as it is able to enter smaller enclosed spaces

and may find victims in places that can not be reached by the bigger robot. It

also has a camera that forwards the pictures through the bigger robot to the

teleoperator.

Software

Another aim of the ICARUS project is to develop robot-independent monitoring

and control capabilities. This should allow the rescue team to tie a heteroge-

neous team of robots together and in turn optimize the flow of the data and

information from the various robots to the team.

For this to work the whole robot team has to have access to a working

communication network between themselves and the human team members.

The ICARUS project proposes a multi-level network infrastructure, that should

offer a reliable communication channel for all affiliated members. This in-

frastructure contains mobile and wire-less ad-hoc communications, mixed in

with line-of-sight communication possibilities. Additionally the robots should

be able to adapt the different radio signal settings to maximise the possible

connectivity and data transfer, as proposed in De Cubber et al. (2013a).

Advantages and Disadvantages

The ICARUS project offers a whole range of tools for the use in search and

rescue scenarios. These software and hardware tools should all be able to

interact together to create a coherent search and rescue team, consisting of

27

Chapter 2. State of the Art

human controllers and robotic search units. Although the proposed larger

unmanned ground vehicle may not be usable in all scenarios, depending on

the designed size of the chassis.

2.1.4. Hector robots

The Heterogeneous Cooperating Team of Robots, or Hector in short, is a

RoboCup Rescue league team, that participated since 2009 in the competition

[Kohlbrecher et al. (2015)].

The team consists of three different types of unmanned ground vehicles:

• A tracked robot with flippers, similar in design to the aforementioned

robot Quince

• A tracked robot without flippers

• A wheeled robot

Hardware

As mentioned above two of the robots are using tracks. One of those is also

using additional flippers for more mobility in rugged terrain. The third robot

is based on a four wheeled chassis.

Each robot is divided into two parts, the chassis and the autonomous

box, which enables the robot to explore autonomously and victim detection.

The sensors a also contained in this box and consist of a laser scanner, an

ultrasound range finder, an inertial measurement unit, a RGB-D camera, and

a thermal camera.

The different robots communicate between themselves using a standard 2.4

GHz 802.11g/n network.

Software

The software used in the different robots of Hector is based on the Robot

Operating System (ROS). Usually the robots will act autonomously according

to a specific mission statement. If this algorithm is not sufficient, each robot

can be teleoperated by a human controller.

28

2.1. Rescue Robots

The autonomous box of each robot also allows for Simultaneous Localization

And Mapping (SLAM), c.f. Durrant-Whyte and Bailey (2006), which uses the

sensor input and produces a map for the use of navigation, while trying to

keep track of the location of the robot in this map. Two team members can

then exchange the map data and merge the different versions together to

create a more complete map from the two partial maps.

Advantages and Disadvantages

The Hector robots are able to explore the disaster scenario autonomously and

act according to a specific mission statement. The main point of interest of

the inventors of team Hector was to create a cooperating team of robots that

are able to work without human supervision.

2.1.5. Snake robots

The robots introduced above have either a tracked or a wheeled chassis. This

allows for fast movement on flat terrain and enables them to traverse some

rubble. The drawback of this type of locomotion is that a minimum size of

the robot is needed to create sufficient traction. Otherwise the tracks or the

wheels are too small to efficiently move over rugged terrain.

Another approach for a different type of locomotion is the snake robot. This

UGV mimics the movement pattern of a snake by connecting small segments

together. There are different types of locomotion for snake robots: tracked

segments [Ito and Maruyama (2016)] or servo motors, that try to mimic snake

like shifting [Crespi et al. (2005); Wright et al. (2007)].

Each segment has its own motor to control its movement. This design

allows for a smaller robot that is able to crawl into cracks that maybe to small

for normal tracked and/or wheeled robots. The snake like movement also

enables the robot to enter terrain that would be unreachable for the other

types of locomotion.

For example, a size comparison between the crawler introduced by Ito and

Maruyama (2016) and Quince, Rohmer et al. (2010), shows that the snake

robot has a length, width, and height of 103 cm × 20 cm × 13 cm, while

Quince has a size of 111 cm × 42 cm × 21 cm. Comparing the weight shows

that the crawler weights only 8 kg and Quince weights almost three and a

29

Chapter 2. State of the Art

half times as much with 27 kg.

Advantages and Disadvantages

The main advantage of this type of robot is the ability to get into smaller

spaces and to reach areas, that may be to small for the bigger variants. The

smaller size of the chassis also creates some drawbacks. A smaller body

means, that the room for sensors is minimal, as each segment has to house

its motor and its own battery. Adding additional computer power and sensors

for example to the crawler proposed in Ito and Maruyama (2016) would be

simple, but this in turn would change the size of the robot and thus may

compromise the ability to enter cracks and small holes in the rubble.

2.1.6. Summary

This section gave a short overview about different existing rescue robots.

Almost all of these robots are using tracks for locomotion, usually combined

with some sort of arm to allow the robot to lever itself up. This enables the

robot to climb over rubble or traverse stairs. Only one of the robots used

wheels, the older variant of one of the Hector robots, and the chassis of the

last one is based on another concept altogether, imitating the movement of a

snake.

The sensor suite of each robot is almost identical and usually expandable.

This suite includes one or more cameras (normal and/or heat vision), a

gyroscope, a laser range finder, and the sensors needed to keep track of the

locomotion. Only the snake robot deviates from this, as the chassis does not

allow for a lot of sensors.

Usually each robot can communicate either with other robots or with the

human team using a typical WiFi connection. Although, if it is required, the

robots can also use a tether with a cable for the communication with the

human team. Inter robot communication does only exist between the ICARUS

and Hector team members. The other robots are usually sent out on their

own.

All of the robots mentioned here are devised as teleoperated robots, needing

the input of a human team member to control them. Only the Hector team

offers the possibility for a completely autonomous movement.

30

2.2. Multi-Agent Search & Rescue Algorithms

2.2. Multi-Agent Search & Rescue Algorithms

The previous sections discussed a selection of existing rescue robots or con-

cepts and ideas for the design of new ones. This section contains a short

survey over different algorithms that will try to use multiple robots cooperating

together to find human victims after an urban disaster in a search and rescue

scenario.

The main idea behind this concept is very simple: multiple robots will try

to explore the unknown terrain of the scenario and during the exploration

will look out for victims (or points of interest in general). To speed the whole

process up and to take advantage of the use of multiple robots, these entities

will try to communicate between themselves and thus exchange collected

data about the already explored terrain. Each robot should be able to act

autonomously according to the main goal, while trying to share its collected

data with others, helping them and removing the need for them to collect

this data themselves. Each of these robots can also be called an agent and a

multitude of these agents form a multi-agent system.

The conventional definition of a multi-agent system is offered by Michael

Wooldridge, (Wooldridge, 2009, p. 5):

“An agent is a computer system that is capable of independent ac-

tion on behalf of its user or owner. In other words, an agent can

figure out for itself what it needs to do in order to satisfy its design

objectives, rather than having to be told explicitly what to do at

any given moment. A multiagent system is one that consists of a

number of agents, which interact with one another, typically by ex-

changing messages through some computer network infrastructure.

In the most general case, the agents in a multiagent system will

be representing or acting on behalf of users or owners with very

different goals and motivations. In order to successfully interact,

these agents will thus require the ability to cooperate, coordinate,

and negotiate with other people in our everyday lives.”

Not everything of this definition is applicable for search and rescue scenarios.

Usually the agents will cooperate, as the goal of each agent is the same. Also

each agent will have the same owner, further diminishing the chance for any

31

Chapter 2. State of the Art

sort of conflict between two agents. As mentioned earlier in a search and

rescue scenario a multi-agent system simply consists of multiple agents that

will work together using communication and cooperation to search for as many

(or all) human victims as possible. However some specific constraints apply for

a search and rescue scenario that each multi-agent system has to respect and

handle. The agents have little to no knowledge about the terrain, as already

existing maps may be invalidated by an earthquake. Additionally the agents

can not rely on a global positioning system, thus their exact location is more

or less unknown. But the most crucial restraint, which affects a multi-agent

system the most is the constraint on the use of direct communication. As

already mentioned previously, the robots used at the World Trade Center were

not able to communicate via radio signals with the human team members.

Also Quince could not rely on radio signals as it entered the reactor core of

the Fukushima Daiichi Power Station. As a consequence each algorithm has

to find a way to still be able to communicate despite these restraints.

The main research effort in this direction in the last years was concentrated

on the RoboCup Rescue Simulation [Kitano et al. (1999); Kitano and Tadokoro

(2001)], which is a comprehensive simulation environment for research in

disaster response management. This project is a competition operated by

the RoboCup, best known for the Robot Soccer World Cup competition, see

Kitano et al. (1998), and the RoboCup Rescue competition. The difference

between the Rescue and the Rescue Simulation projects is that the first one

is for real robots, while the latter one is intended for multi-agent simulations1.

The main goal of the rescue simulation is to evaluate the effectiveness of

rescue team agents in a city scenario, for example fire brigades extinguishing

fires or ambulances rescuing civilians after an earthquake happened. The

simulator offered by the project and the algorithms used in the project aim at

a greater scope. For this reason other multi-agent algorithms were considered

and the following subsections will showcase a selection of these multi-agent

algorithms for search and rescue scenarios.

1see also http://roborescue.sourceforge.net

32

2.2. Multi-Agent Search & Rescue Algorithms

2.2.1. Ants

The first ideas to borrow from biology to create a multi-agent system was

described by Marco Dorigo and others [Dorigo et al. (1996); Dorigo and Gam-

bardella (1997)]. They proposed to use agents similar to ants as a new opti-

mization method and applied it to find solutions for the Travelling Salesman

Problem [Jünger et al. (1995)].

Sven Koenig and Yaxin Liu proposed to use the idea behind this concept to

apply it to robots [Koenig and Liu (2001)]. Instead of creating intelligent agents,

they created multiple ant agents that explore the terrain and leave markings

in it to communicate with other robots. This kind of indirect communication

via markings in the environment is called stigmergy.

The term was devised by the zoologist Grassé in 1959 and he defined it as a

means of communication through modification of the environment [Grassé

(1959); Marsh and Onof (2008)]. Ants use a trail of pheromones to navigate

towards food or back towards the hive.

The first advantage of the approach by Koenig et al. is that the multiple ant

robots offer fault tolerance, as one failing robot will not hinder the exploration

of the other robots. The second advantage is, that multiple agents offer

parallelism, meaning a group of agents will usually explore faster than a

single agent. Another asset would be, that one single robot does not have to

possess a lot of computational power or a lot of sophisticated sensors.

The algorithm

Koenig et al. modelled the terrain as a directed graph, Koenig and Liu (2001).

This can be done by simply overlaying the terrain with a regular grid. Figure

2.1 shows how a grid can be seen as a graph, where each cell in the grid is

represented by a vertex and the edges are the connections to the neighboring

cells.

As the algorithm is based on stigmergy each ant robot needs to be able

to mark the environment, representing a pheromone. These markings are

stored in a value called u in each vertex s ∈ S: u(s). This value represents

the strength of the pheromone marking and starts at 0, stating in this case

that no marking is present. The robots can read the markings stored in the

neighboring vertices surrounding their current position and will only decide

33

Chapter 2. State of the Art

Figure 2.1.: Modelling a grid as a graph

their next movement based on this value alone, by choosing the one with

the smallest u-value. Before leaving a vertex an agent is able to change the

corresponding u-value, depending on the used update rule (the base rule is to

simply count the nodes or vertices: u(s) := 1 + u(s)).

Feasibility

Jonas Svennebring and Sven Koenig did a feasibility study of this algorithm,

Svennebring and Koenig (2004), showing that the algorithm is usable with

real robots instead of a simulation. The markings are realised using drops of

chemical substances. This experiment illustrated the robustness of this ap-

proach despite the limited hardware and software used, even if the technique

used for the markings does not allow for erasing them again.

2.2.2. Brick&Mortar

The second multi-agent algorithm is called Brick&Mortar (or simply B&M) and

was created by Ettore Ferranti and others in 2007, Ferranti et al. (2007). This

algorithm is an optimization of the Ant algorithm from the previous subsection.

The drawbacks of this algorithm are that agents do not know, if they have

finished the exploration and that a lot of agents will stay in already explored

terrain. Thus, the advantage of using multiple agents is degraded.

34

2.2. Multi-Agent Search & Rescue Algorithms

Model of the Algorithm

The base model for this algorithm is the same as in the Ants algorithm. The

terrain gets divided into square cells. Each cell is either traversable or it is

not. A non-traversable cell is considered a wall. A traversable cell can either

be empty, contain a victim or another agent. The markings of each cell can be

either one of the following, taken from (Ferranti et al., 2007, p. 2):

Wall: This is a non-traversable cell

Unexplored: This cell has not been visited yet

Explored: This cell was already visited once, but the agents may need to go

through it again to reach other unexplored cells

Visited: This is also an explored cell, but the agents know that they do not

need to enter it again. The agents treat these cells like a wall

Each agent is able to move from its current cell into one of the four adjacent

cells in the North, South, West, or East. This pattern of surrounding cells is

also called the Von Neumann neighborhood [Von Neumann and Burks (1966)],

as seen in Figure 2.2.

Figure 2.2.: Von Neumann neighborhood, as seen from the dark gray center

The only possible way for the different agents to communicate between

each other, and in the end to create a cooperation between themselves is to

use the markings of the cells. The authors assume that the building already

possesses some uniformly distributed miniature devices (for example RFID

chips), which are able to store a small amount of information to store the

markings described above, and that the robots can deposit additional devices

35

Chapter 2. State of the Art

Algorithm 1 Brick&Mortar Without Loop Handling

1: Marking Step
2: if the current cell is not blocking the path between any two explored or

unexplored cells around then
3: mark the cell as visited
4: else
5: mark the cell as explored
6: end if
7: Navigation Step
8: if at least one of the four cells around is unexplored then
9: for each of the unexplored cells see how many wall or visited cells

are around it, then go to the cell with highest number of these cells
surrounding it, which is most likely to be marked as visited in the
marking step

10: else if at least one of the four cells around is explored then
11: go to one of them. Avoid selecting the cell where you came from unless it

is the only candidate. Instead select the first explored cell in an ordered
list of adjacent cells, e.g. [North, East, South, West] {The order of cells
in the list depends on the agentID, so that different agents disperse in
different directions}.

12: else
13: terminate {All adjacent cells are inaccessible, i.e. visited or wall cells}
14: end if

in cells, which are not covered, as they explore the area for the first time. For

the model Ferranti et al. presume the abstraction that the terrain is divided

into square cells and at least one device exists per cell (Ferranti et al., 2007,

p. 2).

How it works

The Brick&Mortar algorithm tries to address the shortcoming of the Ants

algorithm, which in this case would be the lack of knowledge when the

agents can stop exploring the area and the algorithm ends. Additionally, the

algorithm is constructed in the way that one cell will only be traversed at a

maximum of two times, further minimizing the amount of time that the agents

will spend on already explored terrain.

The main idea behind this algorithm, shown in Algorithm 1 and taken from

(Ferranti et al., 2007, p. 5), is to mark as many cells as possible and as fast

as possible as visited. As a visited cell is non-traversable for the agents the

36

2.2. Multi-Agent Search & Rescue Algorithms

C
1

C
2

C
1

C
2

Explored Visited Wall

Figure 2.3.: Brick&Mortar loop problem: two agents traverse the same loop, but
marking the cells independently. This way an agent can not discern the
closure of the loop anymore without help.

amount of traversable cells will be reduced with each former reachable cell

that gets marked as visited. The agents will steadily increase the number of

visited cells, while always keeping the cells connected that are still needed

for movement, see line 2 in Algorithm 1. This means, that the agents will

create corridors of cells that are only marked explored (still allowing agents

to traverse these cells, which is not possible as soon as a cell is marked

as visited), which in turn combine all unexplored elements of the grid. The

primary rule, which all robots must follow is to never set a cell to visited, if

this will block the way between two traversable cells.

The algorithm described above will work without a problem, as long as the

agents will not traverse the same path of explored cells multiple times, while

being unable to change the status of at least one cell to visited. This behavior

is called a loop. These loops will occur if there are unconnected walls in the

middle of the map. If at least one of these obstacles is present in the scenario

it will trap the agents and the algorithm will not terminate. A single agent

traversing a loop is able to mark the explored cells in a loop without a problem

and in this way the loop can be closed. If multiple agents traverse on the

same loop agents are not able to close the loop without additional help.

Figure 2.3 depicts an example of the loop problem, (Ferranti et al., 2007,

p. 5). The two dots represent the agents, while the white cells in the grid

show the already explored cells, the black cells represent walls. The grey cells

37

Chapter 2. State of the Art

in the right picture represent the cells that are marked as visited. The two

agents A1 and A2 can move around the obstacle in the loop depicted on the

left hand side in Figure 2.3, starting at point C1 and C2 respectively. As they

move they will mark each visited cell as explored. Once they have surrounded

the obstacle and are back at their starting points, C1 and C2, they will detect

the loop. Using the procedure described in the paragraphs above the agents

now would mark each cell as visited. The problem will arise as soon as the

two agents meet, as shown in the left side of the picture. The surrounding

cells are all marked as visited and both agents are stuck and can not move

anymore.

This is a known problem and other algorithms either dismiss it, as Icking

et al. (2005) have done or need a human operator to solve it manually, as

in Howard et al. (2006). As human intervention may not be possible at

a disaster area, Ettore Ferranti and his coauthors added a loop handling

routine to the B&M algorithm, so that this method is able to solve the problem

autonomously, c.f. Ferranti et al. (2007).

Loop Handling

To add the ability to detect and handle loops to the algorithm, the authors

made an additional assumption: an agent can mark a cell with its own unique

ID (in this case a simple number) and the directions (North, South, West, or

East) which the agent enters or leaves the cell. With the help of this new

information an agent can now detect a loop as soon as it enters the same

explored cell a second time from the same direction.

This works fine, if only a single agent is used. But as this method is a

multi-agent algorithm using only one agent is not the goal. As long as only

one agent is used, it can simply mark one of the cells as visited after the loop

was detected. But doing this in a scenario with multiple agents may block the

way of other agents and in turn trap these robots, so that they are unable to

leave their area and can not help any further with the rest of the exploration.

The procedure to detect and “close” a loop for multiple agents is divided

into four steps: Loop detection, Loop control, Loop closing, and Loop cleaning.

The Loop detection phase is the same as described above, but the agent will

switch into the Loop control phase as soon as a loop is detected.

In the Loop control phase the agent starts following the loop a second time

38

2.2. Multi-Agent Search & Rescue Algorithms

in the same direction. This time each cell will be annotated with its ID, as

long as it is not already marked this way by another agent (agent A can only

mark “empty” cells and will not overwrite agent B’s notations). The agent will

realize, that it has taken control of the loop as soon as it enters a cell with its

own marking again. If an agent has taken control of a loop in this matter it

will switch to the Loop closing phase.

Having taken control over a loop in the previous phase allows an agent

in the Loop closing phase to break said loop by changing the status of the

current cell from explored to visited. The agent will continue to do so with

each subsequent cell belonging to the loop until it reaches the first cell that

has an explored neighbor cell which does not belong to the loop, a so called

intersection. This enables the agent to enter the last phase of the loop handling

algorithm, the Loop cleaning.

In the last phase the agent will remove any of its own footprints from the

Loop control phase. It will move backwards through the loop and erase its

own markings in each cell it visits.

If an agent is not able to take control of a loop in the Loop control phase,

for example because agent B has also started marking the same loop, it will

either switch directly to the cleaning phase and abandon the loop handling

for this specific loop permanently or it will wait in a cell, going into a standby

mode, until the state of the cell is changed.

To define the behavior of the agent in this specific case, the authors provided

a set of rules that the agent will use to decide whether to continue the loop

control, quit it permanently, or pause the controlling phase by going into

standby. These rules are as follows for an agent as it decides to move into the

next cell:

• control cell: if cell is explored without control

• start loop cleaning: if cell is visited

• start loop cleaning: if agent B controls cell & (IDB > IDA)

• start loop cleaning: if agent C is in standby & (IDC > IDA)

• switch to standby: otherwise

Finally a set of rules is needed for an agent to decide when to leave the

standby state. The agent will switch directly to the Loop cleaning phase, if its

39

Chapter 2. State of the Art

current cell is replaced by another agent or if its cell becomes visited. It will

continue with the Loop control phase, if its cell is cleaned and it will remain

in standby in all other cases.

The whole loop detection and handling algorithm works like a semaphore

system, which is used to manage access to a common resource to allow

concurrent operations of the agents, while keeping the whole system in a

logical and consistent state. This system was first proposed in Dijkstra (1968).

Which in case of the Brick&Mortar algorithm means, that all explored and

unexplored cells will remain connected and no agent will be trapped behind

visited cells. Ferranti et al. also state, that they can prove, that this algorithm

will never cause a deadlock and that the agents will never get trapped, see

(Ferranti et al., 2007, p. 6).

Advantages and Disadvantages

This algorithm is an improvement upon the Ants algorithm. Through the

use of the markings in the environment the agents are now able to discern

which cells were already visited and if a cell is not needed for the remaining

exploration. This lessens the need of the agents to traverse the same cell

multiple times.

The drawback of this method is, that it requires devices for the storage of the

markings in the environment. Also the authors do not supply a feasible way

to distribute these markings. Another point, which is not further explained by

the authors is, how the collected information at the end of the algorithm gets

communicated to the rescue team. The robots will all stop moving, one after

the other until no agent is able to move anymore, as all cells are marked as

visited. If this is the case the algorithm will terminate successfully. But as

the agents do not have any way to communicate with each other or the base

there is no way to send the information about the found victims onward, such

that that the rescue team could do its job.

2.2.3. HybridExploration

The HybridExploration algorithm is another method introduced by Ferranti

et al. (2009). It is an extended version of the Brick&Mortar algorithm presented

in the last subsection.

40

2.2. Multi-Agent Search & Rescue Algorithms

The assumptions for this version are the same as for the Brick&Mortar

algorithm: the agents do not know the terrain, no access to a global positioning

system, and no centralized control of the agents. The HybridExploration

algorithm also makes use of distributed devices (in this case RFID tags) to

store information in the environment. Although the authors make use of

active RFID tags, which are able to communicate between themselves. This

technique is used to optimize the loop handling part of the Brick&Mortar

algorithm.

As described in the last subsection the B&M algorithm has to have a way

to solve the problem of agents getting stuck trying to get around a single

obstacle, as an agent usually can not determine, if he is stuck in a loop. The

Brick&Mortar algorithm offers a solution for this problem, but this in turn

requires the agent to travel at least two to three times around the obstacle:

the first time to detect, that there is a loop, the second time to mark all cells

belonging to the loop, and the third time to change the state of all the cells

included in the loop. By using the newer available technology, in this case

the ability of the active RFID tags to initiate communication between the

distributed tags, the HybridExploration algorithm removes the need for the

agent to circle the obstacle multiple times.

For the whole idea to work the authors had to make some specific additional

assumptions, c.f. (Ferranti et al., 2009, p. 214):

1. Every communication in this model is free from any errors:

Perfect tag-to-tag and agent-to-tag communications

2. As the whole model is still based on a grid the agent is able to move from

one center of a cell to the next. The agent is also able to identify without

any error to which cell a tag belongs:

Perfect agent movement and localisation of the tags

3. The environment does not change dynamically during the simulation:

Static environment

4. The batteries used in the tags will last for the whole runtime of the

simulation:

Abundant network lifetime

41

Chapter 2. State of the Art

5. Each tag is able to perform one operation at each time, if multiple agents

are communicating with the same tag, the requests will be handled on

a first come, first served base and additional requests are stored in a

queue:

Atomic operations

How it works

Ferranti et al. mention, that the drawbacks of the physical agents are twofold.

Firstly physical agents are often inefficient in exploring the area, as they will

cover already explored terrain more often instead of focusing on unexplored

terrain. Secondly the agents will sooner or later visit every cell at least once,

but they do not realise when the exploration is finished.

The HybridExploration algorithm combines two parts: agents and dispersed

tags. The distributed active RFID chips are combined into a network. The most

important change to the Brick&Mortar algorithm is that the agents do not need

to circle an obstacle multiple times to detect a loop. The HybridExploration

algorithm uses the ability of the tags to communicate with each other to

exchange messages and with the help of these messages to detect a loop.

These messages represent the virtual agent component of the algorithm.

The virtual agents are messages propagated from one cell, respectively from

one active sensor node, to another. This in turn works only on already visited

cells, as the robots need to distribute the tags in the terrain, if there are no

tags available. Like their physical counterparts, the virtual agents also can

only “move” through explored cells, they will ignore visited cells.

The physical agent algorithm controls the robots and decides how the robots

will explore the unknown terrain. This part is covered by the Brick&Mortar

algorithm. As stated in the previous subsection, this algorithm is able to

explore the terrain, but as soon as there are obstacles in the area the runtime

will increase, as the loop handling part of the algorithm will need additional

steps to solve the loops around the various obstacles.

Ferranti and his coauthors differentiated between two objectives to assess

the performance of the algorithm (Ferranti et al., 2009, p. 214):

1. Exploration Objective: all traversable cells in the scenario are at least

42

2.2. Multi-Agent Search & Rescue Algorithms

Explored Visited Wall

Figure 2.4.: HybridExploration loop problem

visited once, resulting in the state, that no cell will still be unexplored

2. Termination Objective: the state of all cells will be either visited or wall

The authors claim, that the physical agents are able to successfully fulfill the

Exploration and the Termination Objective as long as there are no obstacles

in the scenario present: in other terms, as long as there is no loop to resolve.

If the agents have to resolve one or more loops in the map, the Brick&Mortar

algorithm is not able to achieve the Termination Objective anymore.

Figure 2.4 shows, how a physical agent alone cannot handle the loop

correctly. Usually the agent only has to mark one of the explored cells as

visited to close the loop, but as each cell has two explored cells as neighboring

cells, the agent is not allowed to change the state of the cell (see also line 2

in Algorithm 1). Thus the agent will continue to try to close the loop as it

surrounds the obstacle ad infinitum.

With the help of the virtual agent protocol, which works on the active tags,

that are dispersed in the area or are distributed by the physical agents as they

move through the terrain, the combined algorithm is able to still terminate

successfully and achieve both objectives. The virtual agent protocol builds a

tree data structure out of the explored cells and initiates a recursive search

through this tree. This is a Depth-First-Search tree (DFS), Tarjan (1972). The

goal of this data structure is to remove loops or better cyclic paths from the

explored cells.

43

Chapter 2. State of the Art

The virtual agent protocol sends messages around to the cells and extends

the DFS tree with each new cell, that a physical agent has found and marked

as explored. The algorithm will mark these cells as visited when it iterates

through the nodes of the tree in the upward direction. While doing this it has

to follow two rules:

1. The algorithm cannot mark a cell as visited as long as a physical agent

is in the same cell.

2. A cell cannot be marked as visited, if at least one unexplored adjacent

cell exists.

By following these two rules the algorithm will follow the physical agents

and will remove any loops that are found by the Brick&Mortar algorithm. The

messages sent through the RFID tags, each representing a virtual agent, do

not delay or trap the physical agents and in turn the combined algorithm is

able to fulfill the Exploration and the Termination Objective again.

The implementation of these two rules are shown in lines 9-12 and 22-25

in Algorithm 2, which shows how the behavior of the virtual agent is realised,

(Ferranti et al., 2009, p. 225). The current cell in the code describes the cell

in which the agent is currently located. The previous cell is the cell, from

which the agent is coming. In the DFS tree the relationship between the cells

is defined as parent and child. Each parent cell has a counter for each of

its children cells. This counter expresses the number of virtual agents, that

moved through the parent cell into this specific child.

Advantages and Disadvantages

Ferranti and coauthors showed in Ferranti et al. (2009) that the use of the

virtual agent decreases the runtime as compared to Brick&Mortar algorithm,

c.f. Ferranti et al. (2007).

An additional assumption that was made for the algorithm to work, was the

use of active RFID tags that are able to communicate among each other to

facilitate the virtual agents. Without this sort of data exchange between the

tags the algorithm will fall back to the behavior of the B&M algorithm.

Another disadvantage is the applicability of the algorithm. The virtual agents

have to follow two rules, as described above. The second rule states, “that a

44

2.2. Multi-Agent Search & Rescue Algorithms

Algorithm 2 HybridExploration, Behavior of the virtual agent

1: if you are coming from a cell which is child of the current one then
2: decrease the counter of the current cell associated with the child
3: end if
4: if the current cell is not part of the DFS tree then
5: mark the current cell as part of the DFS tree;
6: define the previous cell as parent of the current one
7: end if
8: if the parent of the current cell is visited and the current cell has one

child cell only and all the adjacent explored cells are part of the DFS tree
then

9: if there are any adjacent unexplored cells or a physical agent is in the
curren cell then

10: stay in the current cell;
11: return
12: end if
13: mark the current cell as visited
14: end if
15: if there are explored adjacent cells which are not part of the DFS tree

then
16: go to one of them [each agent chooses a different cell according to its ID]
17: else if there is at least a one child which is not visited then
18: go toward the child cell with the minimum associated counter;
19: else
20: if there are any adjacent unexplored cells or a physical agent is in the

current cell then
21: stay in the current cell;
22: return
23: end if
24: mark the current cell as visited;
25: go to the parent cell
26: end if
27: if you are going to a cell which is child of the current cell then
28: increase the counter associated to that cell
29: end if

45

Chapter 2. State of the Art

virtual agent cannot mark a cell as visited if at least one of the adjacent cells

is unexplored. . . . the virtual agent stops any activity until the adjacent cell is

explored by a physical agent.” (Ferranti et al., 2009, p. 224). Currently the

only data stored in the tags is the state of the cell, which is one of the three

possible states: unexplored, explored, and visited. It is especially unclear,

if this rule can be implemented by the virtual agents with the data that is

currently available to the agents, both virtual and physical. How does a virtual

agent distinguish between a wall and an unexplored cell? Both of those are

for the virtual agent the same, a blank spot.

Also the problem of relaying the information about the victims forward to

the rescue team was not really addressed in this paper. One possibility would

be the use of the dispersed RFID tags as a communication network to forward

any information about a found victim towards the rescue team, but this was

not clearly described by the authors.

2.2.4. Rendezvous

The usual problem in a search and rescue scenario is, that there is no way to

guarantee a reliable form of wireless communication between the agents or

between the agents and the rescue base. Julian de Hoog, Stephen Cameron,

and Arnoud Visser proposed another solution for a multi-agent algorithm

to help in a search and rescue scenario. They introduced the idea to use

optimized meeting points for robots to share and exchange data, De Hoog

et al. (2010).

The central idea behind the algorithm is to use a heterogeneous agent pop-

ulation: one part of the population tries to explore the unknown terrain and

to find the victims. The other agents will act as relay to forward any collected

data between the exploring agents or directly towards the headquarter. This

results in a role-based exploration scheme. As wireless communication may

not be possible in a search and rescue scenario the agents have to meet phys-

ically to exchange data. For the most efficient use of the relay agents de Hoog

et al. created an algorithm that calculates optimal meeting or rendezvous

points for the data exchange in the scenario.

Each agent is assigned one of the following roles:

• Explorer: The exploring agent will move through the unknown terrain

46

2.2. Multi-Agent Search & Rescue Algorithms

and will communicate its collected data to the nearest relay agent, which

will wait at a specific calculated rendezvous point.

• Relay: The relay agent will exchange data with one or more exploring

agents and in turn it will periodically return to the headquarter. Addi-

tional information that is gathered as the relay agent is on its way will

be added to the data store and in turn shared.

The team hierarchy is determined at the start of the algorithm. As stated

above, one relay agent may collect the data from more than one exploring

agent. There may be also multiple relay agents between one relay agent in

the field and the headquarter. Also if an exploring agent meets a relay agent

before the specific rendezvous point is reached, the data exchange will be

done in this instant instead of waiting for them both to move to the meeting

point.

An explorer will exchange its complete knowledge with a relay agent, result-

ing in the state that both agents will know the exact same things (all gathered

sensor input is collected in a map by the exploring agent). Also both types

of agents share the same movement model, this in turn allows the exploring

agent to calculate how much time the relay agent needs to move back to the

next relay agent or to the headquarter. Thus enabling the exploring agent to

predict when it needs to return to the rendezvous point at exactly the right

time to meet the relay again.

If the explorer saves the exchanged map from the relay agent separately,

it is able to predict the position of the relay robot, even if they are not in

range to communicate (the map of the relay agent will not change that much).

Additionally a pair of exploring and relay agents can specify a fallback point,

in case that the “normal” rendezvous point may not be reachable (which is

only the case, if the scenario allows a dynamic change of the environment).

How it works

The exploration is based on the frontier exploration algorithm introduced by

Yamauchi (1998). This concept is based on the central question in exploration:

“Given what you know about the world, where should you move to gain as

much new information as possible?”, (Yamauchi, 1998, p. 47). The frontier

47

Chapter 2. State of the Art

based algorithm will answer this question by moving its agents to the boundary

between known and unknown terrain.

Brian Yamauchi defined a frontier as a region on the boundary between

open space and unexplored territory. As a robot reaches a specific frontier it

can gather new information about the formerly unknown terrain and in turn

create new frontiers. By successively moving from frontier to frontier an agent

can continually increase its knowledge of the world.

In a multi-robot scenario each robot will use its own sensor data to create

its own list of frontiers, which are detected by this robot. In turn this data is

also broadcasted to all other robots. This allows for a decentralized approach

and the failure of a single robot will not restrict or hinder the other robots.

The main idea behind the rendezvous algorithm is not the specific type of

exploration method, but the precise calculation of meeting points for the data

exchange between the different agents. Previous versions of the Rendezvous,

see De Hoog et al. (2010), algorithm simply used the position of the exploration

agent, as it has to turn back for the data exchange as the future meeting point.

This led to a deeper exploration of the environment, as the relay agent had to

follow the exploration agent into the explored terrain. But this approach also

had its drawbacks, creating inefficiencies and unnecessary backtracks, c.f.

(De Hoog et al., 2010, p. 4).

De Hoog et al. introduced another idea to calculate meeting points: the

use of thinning algorithms from digital image processing to “. . . reduce a

shape to its skeleton by making the shape as thin as possible while keeping

it connected and centered.” (De Hoog et al., 2010, p. 4). The agents gather

information about the terrain as they explore the unknown area and build a

map based on this data. A two dimensional representation of this map can

now be used with the help of a thinning algorithm to calculate the rendezvous

points.

After the list of possible rendezvous points is available the algorithm has to

choose the optimal point, so that the meeting point is still deep in the explored

terrain but not far enough away to provide a good communication range for

the agents. Points with the highest neighbor traversal value will be preferred,

as these points mark important junctions. If two or more points share the

neighbor traversal values, the rendezvous point with the best communication

range is chosen.

48

2.2. Multi-Agent Search & Rescue Algorithms

Improving the Rendezvous algorithm

In 2014 Victor Spirin and Stephen Cameron introduced an improvement to

the Rendezvous algorithm, as described by Spirin and Cameron (2014). They

argued that a single rendezvous point for a pair of agents is easy to implement

and robust to communication failure, but it may not make use of the whole

communication range available to the robots. While the robots may be able to

exchange data through some obstacles or over rugged terrain, which would

either hinder the robots or add a lot of travel time, the version from De Hoog

et al. would ignore this advantage and force the robots to still meet at the

meeting point although this would increase the movement time.

Spirin and Cameron proposed to use two rendezvous points or a point pair.

A pair, a and b, of these points would have to comply with two conditions:

1. a and b are in a range, that would allow a communication to take place

between two agents

2. The distance from b to the base has to be closer or at least equal to a.

This would lead an explorer to meet at a and relay to b.

If a = b, then the usual rendezvous algorithm applies.

In the end the improvement does not speed up the exploration time signifi-

cantly, but it does enable a faster message propagation, which in turn allows

the rescue team to act faster, c.f. (Spirin and Cameron, 2014, p. 5).

Implementation

The authors of the Rendezvous algorithm implemented their method in their

own simulator called Multi-Robot Exploration Simulator (MRESim), see also

Spirin et al. (2014). It supports multiple algorithms that were used in the

research of Julian de Hoog and Victor Spirin respectively, c.f. De Hoog et al.

(2010); Spirin et al. (2013); Spirin and Cameron (2014). The software is

available at GitHub2 released under the GNU GPL 3.0.

Advantages and Disadvantages

The Rendezvous algorithm allows the use of two different populations of

robots to act as a team for the exploration of an unknown terrain. Especially
2https://github.com/v-spirin/MRESim

49

Chapter 2. State of the Art

the communication structure offered by the relay agents allows for a faster

and more robust message propagation between the agents and especially

towards the headquarter. While the exploration of the terrain is not faster

than a traditional frontier based algorithm, the information available at the

headquarter is about 9 to 10% higher, see Fig. 6 in (De Hoog et al., 2010, p.

9).

2.2.5. Requirements for a search & rescue algorithm

This is a short summary of the points and restrictions that a viable multi-agent

search & rescue algorithm has to adhere to:

1. The agents should be able to operate in extreme terrain and operating

conditions

2. The algorithm has to function in GPS- and wireless-denied environments

3. The agents have to act autonomously without any help of a human

teleoperator

4. The algorithm should find as many victims as possible in the shortest

time frame

The first two points are taken from (Murphy, 2014, p. 5). The ability to

operate in extreme terrain and conditions depends mostly on the hardware

used for the actual robots. The agents need sufficient sensors to be able to

sense their surroundings and gather enough data to act accordingly. The

second point is, especially pertaining to this thesis, the more important point.

The agents of a multi-agent algorithm need to communicate between each

other to achieve the synergy between the team members. This means that

the algorithm has to provide a robust mechanism to communicate between

the agents. Additionally, the agents can not rely on GPS signals to determine

their exact position in the terrain. Thus the algorithm has to work without

any GPS signals. The third requirement is the capability of the algorithm and

the agents to work without any additional input from a human team member

as soon as the algorithm is started. The last objective for every viable search

& rescue algorithm is to find as many victims as possible in the shortest time

frame attainable.

50

2.2. Multi-Agent Search & Rescue Algorithms

2.2.6. Summary

Four different multi-agent algorithm were presented in this section. Each of

these methods is able to explore unknown terrain and still allows communica-

tion between the agents, despite the constraints imposed due to the search

and rescue scenario.

The common way to still offer a possibility to communicate data from one

agent to another is the use of indirect communication. Be it either through

chemical markings used in the Ants algorithm or by leaving sensor nodes in

the terrain as the HybridExploration algorithm does. Each variant has its

own advantages and disadvantages. A chemical marking is easier to read,

but harder to overwrite. A sensor node needs to be distributed in the terrain

and, in the case of the HybridExploration algorithm, it still has to be able to

send signals from one sensor node to another. This in turn could be prone to

errors as the scenario specified that radio signals may not be reliable. The

Rendezvous algorithm also relies on radio signals for communication, but

imposes additional restraints, which in turn decrease the error rate drastically.

It specifies that the agents can only use a line of sight communication at

specific points in the terrain, thus decreasing the range of the wireless data

transmission and in turn increasing the reliability.

Of all described algorithms only the Rendezvous algorithm offers a way to

get information about the found victims back to the human team members.

The other algorithms do not specify how the information at the end of the

algorithm is passed on, thus allowing the rescue team to start its work.

The HybridExploration algorithm looks the most promising, but has the

inherent drawback of the direct communication between the sensor nodes.

Each of the listed algorithms follows the four requirements for multi-agent

search & rescue algorithm in their own way. None of the algorithms presented

here offers a specific hardware layout for their agents. Each of the algorithms

works without GPS. The main difference between the algorithms introduced

in the second part of this chapter is the way how they allow their agents

to communicate between each other. The Brick&Mortar algorithm relies

on indirect communication between the agents, using RFID chips that are

not further specified. This applies also to the HybridExploration algorithm.

The authors only specify that the RFID chips should be some kind of an

active sensor. The Rendezvous algorithm uses direct communication via radio

51

Chapter 2. State of the Art

Name Goal
Communi-
cation

Movement
Information
back to HQ

Maintain-
ability

Size

Ants PoIs Indirect Grid-based ✗ ✗ ✗

Brick&Mortar Explore Indirect Grid-based ✗ ✗ ✗

HybridExploration Explore Indirect Grid-based ✗ ✗ ✗

Rendezvous Explore Direct Grid-less ✓ ✗ ✗

Table 2.1.: Comparison of the different existing algorithms

signals, shortening the range between the agents until a data transfer between

two agents should be possible. The only similarity between the algorithms, is

the use of a single type of communication: either indirect or direct.

A comparison of the different features of the presented algorithms is listed

in Table 2.1. The goal row describes if the algorithm tries to explore the

terrain or find points of interest. The communication column shows what kind

of communication model the algorithm uses. The movement column describes

if the agent of the algorithm uses a grid or is able to function without a grid.

The column information back to HQ shows whether the algorithm has a way to

communicate any gathered information back to the base during the runtime.

The second to last column, maintainability, represents the ability of the agents

to return to the base for maintenance during the runtime. The last column,

size, illustrates the ability of the algorithm to stipulate a specific size for the

agents.

52

CHAPTER 3.

THE MULTI-AGENT FLOOD

ALGORITHM

The previous chapter introduced different rescue robots that are currently

used in real rescue scenarios and/or are used in research projects for future

use in these scenarios. Each of these robots offered different kinds of ad-

vantages and disadvantages, but almost all of them have in common, that

they currently need a human operator to do their work. This means that a

human needs to control each robot used in a rescue mission, which in turn

also implies, that each robot has to have some sort of connection back to

the headquarters. Other examples show, as the attack on the twin towers

in New York in 2001 or the nuclear disaster in Fukushima in 2011 [Davids

(2002); Murphy et al. (2008); Murphy (2014)], that one cannot use wireless

communication for the teleoperation of rescue robots. As a consequence each

robot needs a wire that connects it with the base. This cable does have some

advantages, as it can be used as a tether to pull the robot back if it gets stuck

or to belay it. The main drawback remains, be it by wire or by tether, that the

robot is connected to the base and the movement of the robot has to adapt to

this trailing cable.

Another handicap of most of the introduced robots is, that they act alone

and that teamwork is only the job of the human controllers. The ICARUS

project tries to implement some teamwork between the robots, as the larger

unmanned ground vehicle will carry the smaller robot to where it may be

needed. The robots of the Hector team try to solve the problems of the

RoboCup competition using teamwork, which is one of the few instances

where the robots try to act autonomously and use the team as an advantage

to reach the desired goal faster through communication and cooperation.

53

Chapter 3. The Multi-Agent Flood Algorithm

Each of the machines mentioned in the previous chapter show what current

technology is able to do for search and rescue scenarios. Robots are able

to find buried victims in the case of an urban search and rescue mission.

They are able to move autonomously and they can work as a team, if they are

programmed accordingly.

Chapter 2 also put forward different types of multi-agent algorithms. Meth-

ods that are based on agents, which use teamwork, and the ensuing commu-

nication and cooperation to reach the goal of the algorithm. Applying these

algorithms to a team of robots will allow them to act autonomously, so that

no human teleoperator will be needed for each robot, and it will also grant

the rescue team the ability to insert multiple robots into the disaster area.

Whereas “multiple” can in the simplest case still mean only one or two robots,

or if the scenario warrants it the numbers can easily rise to fifty or sixty robots

for example.

As the methods mentioned previously have illustrated, the different multi-

agent algorithms are able to explore the unknown terrain with out any addi-

tional input by human controllers and they are able to find points of interest,

or in this case victims. Similar to the different rescue robots, each algorithm

has its own advantages and disadvantages. The main point that links most of

the introduced algorithms is that each method needs to create some kind of

markings in the environment, so that the agents can communicate with each

other. The Ants algorithm proposed to use chemical markings, whereas the

Brick&Mortar and the HybridExploration algorithm rely on electronic tags or

Radio-frequency identification (RFID) chips. However the authors do not offer

any more information on how RFID tags are distributed in the environment

and which kind of chips are used for the algorithms.

Nevertheless each algorithm follows the same premise: Find as many victims

as possible in an unknown terrain and do this as fast as possible. Additionally

information about any victim should be forwarded to the search and rescue

headquarter, so that the rescue teams can start to work. Time is very valuable

in this case, as the chance to find surviving victims after 48 to 72 hours after

the disaster declines rapidly [Murphy et al. (2008); Murphy (2014)].

Only the Rendezvous algorithm, from all of the different shown methods,

really addresses this aspect. It may not be really faster to search the terrain

as a simple frontier based algorithm [De Hoog et al. (2010)], but it tries to

54

3.1. The Multi-Agent Flood Algorithm

get the information about any new found victim to the headquarter without

any delay. Whereas the authors of the Brick&Mortar algorithm and the

HybridExploration algorithm do not even mention it, although one could

argue that the active tags used by the HybridExploration method could be

used to send messages to communicate this information to the headquarter.

The method proposed in this chapter will provide a solution to the two

main points of a multi-agent search and rescue algorithm: be able to explore

unknown terrain autonomously, without relying on GPS signals and radio

communication, and find possible victims in the first 48 to 72 hours. Addition-

ally it will forward the information about any found victim to the headquarter

as fast as possible by returning to the starting point. This way the human

rescue team members can start the rescue process in parallel with the still

ongoing search process. This return to the base also allows for a maintenance

of the robots, which is completely ignored by the existing algorithms.

The next chapters of this work introduce further changes to the algorithm

presented here, so that the method is more applicable to real hardware. Chap-

ter 4 demonstrates how the communication model can be extended to create

a robust communication channel for the agents of the algorithm. Further

optimizations are shown in Chapter 5, as more of the initial abstractions are

removed. Additionally concepts about the use of RFID chips are discussed,

which offer additional enhancements and an increased application for the

communication between the agents.

3.1. The Multi-Agent Flood Algorithm

This algorithm represents the first version by the author, proposed in Becker

et al. (2013). The difference to already existing algorithms is the possibility

to send information about any found victims back to the base during the

runtime. Another advantage of this approach is to enable a maintenance

of the different agents and an accumulation of the already collected data

at a single point. Furthermore the agents using this method are able to

monitor already explored terrain and thus enables the algorithm to adapt to

any possible changes in the environment.

55

Chapter 3. The Multi-Agent Flood Algorithm

3.1.1. Assumptions and Definition of the Scenario

To ensure the communication and the cooperation between the agents the

algorithm uses indirect communication by using markings in the environment,

this way each agent can read and then act based on this data. The algorithm

uses RFID chips distributed in the environment and to store the data, that

is intended for the other agents. The map of the disaster area is divided

into a grid, akin to the model used by the Brick&Mortar algorithm. The

cell-size of the grid depends on the used RFID tag, as an agent should be

able to read the chips surrounding its current position. Each cell represents

either traversable space or a non-traversable wall. Additionally, a traversable

cell can contain either the starting point or the headquarters, or a point of

interest, a victim in this case. As a consequence the agent has to be able

to “see” its surrounding environment. To be able to sense adjacent cells the

agent has to be equipped with different sensors. For example, to calculate

the distance to the nearest walls a laser-range finder can be used. Otherwise

the agent can also employ a camera to discern different characteristics of the

environment. The combination of various sensors, the laser-range finder, one

or more cameras, a bumper sensor, et cetera, allows the agent to detect the

diverse objects in the neighborhood. This algorithm is called the Multi-Agent

Flood algorithm or MAF.

As a consequence a robot controlled by this algorithm needs at least a laser-

range finder and a bumper sensor to gather all data relevant for movement.

Further sensors like at least one or two infrared cameras are needed to identify

a victim in the environment.

3.1.2. Design of the Agent

The base agent of the MAF algorithm can only react to the environment that it

can currently sense and to the markings, which it can currently read. Each

cell, with exception of the cells at the border of the grid, has eight neighboring

cells. This is called the Moore neighborhood, after Edward F. Moore, as

depicted in Figure 3.1.

56

3.1. The Multi-Agent Flood Algorithm

Figure 3.1.: Moore neighborhood, as seen from the dark gray center

North

(0,1)

NE

(1,1)

East

(1,0)

SE

(1,-1)

South

(0,-1)

SW

(-1,-1)

West

(-1,0)

NW

(-1,1)

Figure 3.2.: Directions in a grid

Search Mode

Each agent has an orientation in which it will move. With a high probability

(95%) an agent will move in this direction, in the case of the other five percent

it will either move to the cell to the left of the current direction or in the cell to

the right.

Let directionList[] be an array of direction modifiers (or a an array of two

dimensional vectors):

directionList[] = [(0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1)]

These direction modifiers in directionList[] represent the following directions

in the exact same order: North, North-East, East, South-East, South, South-

West, West, North-East. In other words these are the directions on the

compass rose starting from the North and going clockwise around the rose,

ending at North-West. This is also shown in Figure 3.2. For example agent A

has a direction of East or 90°. In 95 times out of one hundred it will follow this

57

Chapter 3. The Multi-Agent Flood Algorithm

direction, with a chance of two and a half percent it will change its heading to

North-East or 45°, and in the case of the other two and a half percent it will

switch to the South-East direction or 135°.

Each agent will store its current heading in a variable called currentDirection,

represented by an integer between zero and seven. The next direction for an

agent is then simply calculated by generating a random number and in case

of a change of heading by either adding one or substracting one from the

currentDirection using modulo eight:

newDirection =



















currentDirection 95%

currentDirection− 1 mod 8 2.5%

currentDirection+ 1 mod 8 2.5%

Let NewPos(pos) : (x, y)→ (x′, y′) be a function to calculate the new position

of an agent. It is defined by adding the specific direction modifier to the

current position of the agent.

As this does not yet include any communication or even cooperation between

the agents, an agent will need to mark its current cell to store information for

the next agent, that visits this cell.

Each agent will count its steps from one cell to another, starting with zero at

the starting point, or the headquarter. These steps are counted in a variable

called stepCounter and it is incremented by one as soon as the position of an

agent is updated. As an agent enters a new cell it will store its current value

of the stepCounter variable in this specific cell. If the agent has entered a cell

which already has a marking, then the stored value from this cell is read out

first. The agent will then compare the newly acquired step counter with its

internal stepCounter. If the internal value is smaller than the stored value in

the cell, then the agent will overwrite the stored value with the number from

its own stepCounter, otherwise it will leave the stored number alone. In no

case will the internal stepCounter be changed or overwritten, as without it a

continuous marking is not possible.

This describes the communication between the agents, and the movement

algorithm has to be adapted to include these markings to achieve a cooperation

between the agents. The algorithm introduced above does not take any

markings into account. To change this, additional cases have to be taken into

58

3.1. The Multi-Agent Flood Algorithm

consideration:

• If any neighboring cell contains a point of interest, then the agent will

move directly into this cell. If multiple points of interest are found in the

neighboring cells, then go to the first one found in the list of cells (the

list will start at the upper left and end at the lower right).

• Already marked cells will be ignored as long as unmarked cells are

available.

• If only marked cells are available, the agent will move to the cell with the

highest marking with a chance of 95% and to any other cell otherwise

Algorithm 3 Multi-Agent Flood algorithm movement

1: if is a point of interest in a neighboring cell then
2: point newDirection to this cell
3: else if are there any unmarked cells left in the neighborhood then
4: generate a random number i between 0 and 1;
5: if i ≤ 95 then
6: newDirection = currentDirection
7: else if 95 < i ≤ 97.5 then
8: newDirection = currentDirection - 1 mod 8
9: else

10: newDirection = currentDirection + 1 mod 8
11: end if
12: else
13: generate a random number i between 0 and 1;
14: if i ≤ 95 then
15: point newDirection to the cell with the highest marking
16: else
17: repeat
18: r = random number between 0 and 7
19: newDirection = r
20: until r 6= currentDirection
21: end if
22: end if
23: return NewPos(oldPosition)

The code listed in Algorithm 3 describes the searching part of the Multi-

Agent Flood algorithm. Agents are now able to start from the starting point,

explore the unknown terrain, and find victims in the scenario. This is the one

59

Chapter 3. The Multi-Agent Flood Algorithm

part of the algorithm, the second part handles the conduct of an agent after it

has found a point of interest. To simplify this the “intelligence” of an agent

is split into two parts: The first part, that describes the search for possible

victims is called the Search Mode, the second part, which controls how an

agent should act after it has found a point of interest is called the Return

Mode.

Return Mode

After an agent has found a point of interest in the recently explored terrain

it will move to this point, accordingly to the movement algorithm described

above. As soon as it reaches the cell, where this victim is located, the mode

of the agent will switch and it tries to get back to the starting point on the

shortest currently known path. The agent is able to detect the currently

shortest known path through the markings in the environment, that were

created during the Search Mode by itself and the other agents. This is also

were the “flood” part of the name of the algorithm comes into play.

Consider a graph G = (V,E) containing V vertices and E edges, whereas

an edge is an unordered pair of two vertices en = {vx, vy}. Let node v0 be a

randomly chosen starting point in the graph. To apply a flooding algorithm

one starts at v0 and marks it with one. Now create a subset s1 of all edges

that are connected to v0 and mark all corresponding vertices, that are part of

these edges with the number two. In the next step create a new subset s2 and

chose all edges, where only one of the nodes is already marked and select the

unmarked vertices from these edges. Mark these unmarked vertices with the

number three.

The following is a formal description on how to choose the edges for a subset

sn with n > 0:

sn := {∀e ∈ E : e = {vn−1, x}, for x ∈ V and x 6= vn−1}

After all nodes are marked in this manner, the algorithm will terminate

successfully. This results in a marked graph and by using the markings the

shortest way back from any node to the starting node v0 can be found. To do

this simply pick any node, for example vx. Now check all edges that contain vx

and read the markings in the nodes that are connected through these edges

60

3.1. The Multi-Agent Flood Algorithm

v0

∈e1 s1

∈e2 s1

1

2

2

∈e3 s2

∈e4 s2

3

3

∈e5 s3

∈e6 s3

4

4

Figure 3.3.: Example of the flooding algorithm for graphs

to vx. Pick the node with the smallest marking in it and repeat this procedure

from this node onwards. By always picking the node with the smallest mark,

the algorithm will move through the graph by using the shortest path which

connects the chosen end point vx with the starting point v0. The graph in

Figure 3.3 shows an example how the algorithm works. v0 is colored in white

and marked with the start counter 1. The edges are named from e1 to e6 and

each edge also shows to which subset of sn it belongs. The rest of the vertices

is already marked with the step counter and colored in a color that is getting

darker as the step counter gets higher. This is called a flooding algorithm for

graphs.

Richard Bellman proposed a cellular automaton in Bellman (1972), which is

able to compute the shortest path between the starting point and one or more

end points. His version is based on the flooding algorithm for graphs and

works in the same way. By choosing a starting point in a cellular automaton

p0 = (x, y) with an initial marking of one and the following rule to update

any cell: If a cell has an already marked neighbor cell, using the Moore

neighborhood, then also mark said cell with the same number incremented

by one as the already marked cell.

When all cells in the automaton are marked stop the automaton and a

shortest path will be available from any arbitrarily chosen cell back to the

starting point p0. This works just as in the flooding algorithm for graphs: Take

a look at the markings of the neighboring cells, pick the one with the smallest

marking and repeat the steps in this cell until the starting point is reached.

61

Chapter 3. The Multi-Agent Flood Algorithm

1

2 2

2

22

3

3

3

333

4

4

4

4

4444

5

5

5

5

5

55555

6

6

6

6

6

6

Figure 3.4.: Example of the Bellman flooding algorithm as a cellular automaton

Figure 3.4 shows an example of the algorithm in a 6×6 grid with the starting

point shown in white and the mark set to one. Successive steps are colored a

little bit darker and the mark is always incremented by one until the whole

grid is covered and each cell is marked with a step counter.

Bellman’s approach is easily adaptable to be used in a multi-agent algorithm.

Each agent possess a step counter, which is incremented by one as the agent

moves from one cell to another, and as soon as an agent enters a cell, it will

mark said cell with the current counter, as long as the specific cell is yet

unmarked.

As depicted in Figure 3.5 one agent is able to mark all cells in this fashion

after enough time has elapsed. Although the markings will not really represent

the same pattern as shown in Figure 3.4. The markings will not be concentric

and there may be huge differences in the values of the markings of two

neighboring cells. It is easily seen, that the current, while flawed approach, is

usable by multiple agents. Each agent uses his own step counter and is able

to mark the cells independently as shown in Figure 3.6.

To achieve the functionality of the flood algorithm proposed by Richard

Bellman the agents have to be able to overwrite already existing marks in the

cells. An agent is allowed to overwrite a mark, if the value of said marking is

higher than the current step counter stored in this agent. This is illustrated

in Figure 3.7, where the blue agent marks the cells first and the second agent,

in red, overwrites the cell with the mark containing the nine, changing it to a

62

3.1. The Multi-Agent Flood Algorithm

1

2

3 4 5

6

7 9

10

11

Figure 3.5.: Single MAF agent marking the grid

1

2

3 4 5

6

7 8

9

10

2

3 4

5

7

8

9

10

6

Figure 3.6.: Two MAF agents marking the grid simultaneously

63

Chapter 3. The Multi-Agent Flood Algorithm

1

2

3 4 5

6

7 8

10

2 3

4

5

6

Figure 3.7.: Two MAF agent marking the grid, the second overwriting the mark of
the first

six.

As the step counter is only incremented by the movement of the agent and

never decremented the algorithm also needs a method to reset the counter, so

that an update is even possible. The step counter of an agent will be reset to

one as soon as it reaches the starting point again. This allows the agents to

start the marking process again with a fresh step counter and enables them

to update already existing marks in cells. Now it is only a matter of time until

the same concentric pattern as presented in Figure 3.4 will emerge.

Algorithm 4 Multi-Agent Flood algorithm Return Mode

1: List neighbors[] = getNeighboringCells(currentPosition);
2: int min = MAX_INTEGER_VALUE;
3: for all Cell c ∈ neighbors[] do
4: if c.getMark < min then
5: min = c.getMark
6: newDirection = getDirection(currentDirection, c)
7: end if
8: end for
9: return NewPos(oldPosition)

The code shown in Algorithm 4 describes how the movement will work in

the Return Mode of the Multi-Agent Flood algorithm. An agent will switch

from the Search Mode to the Return Mode as soon as it enters a cell with a

point of interest in it. In turn it will switch back from the Return Mode to the

64

3.1. The Multi-Agent Flood Algorithm

Search Mode as soon as it arrives back at the starting point. This will also

reset the step counter, as mentioned above, and will enable the agent to start

the search again.

The combination of these two modes allows an agent to explore the unknown

terrain, search for victims, and return as soon as a victim is found to the

headquarter with the information about the victim and the currently shortest

known path to reach said victim.

3.1.3. Comparison with existing algorithms

Chapter 2 lists four different variants of multi-agent algorithms for the use in

search and rescue scenarios. Two of them, Brick&Mortar and HybridExplo-

ration, are more or less the same algorithm, whereas the HybridExploration

variant is an improvement to the base Brick&Mortar algorithm.

The Ants algorithm was one of the first proposed multi-agent algorithms

for search and rescue scenarios based on the biological ant. It showed that

the approach using simple robots to do a complex task like a search process

after a disaster was a feasible thing, although the way to use the indirect

communication was yet not very practicable. Using chemicals to mark the

surrounding terrain does not allow for a lot of information to be stored in the

markings and depending on the chemicals may not be very reliable, if there is

water from rain or a destroyed pipe around. Even an open fire, which is a real

possibility after a disaster, may hinder the use of these chemicals for storing

information the environment.

The Brick&Mortar algorithm and its improved version, the HybridExplo-

ration algorithm, proposed to use electronic markings or tags to store infor-

mation in the environment. This is usually realised by either using already

existing tags or by distributing these tags while exploring the unknown terrain.

Although the authors of the algorithms proved that their method will explore

the whole terrain and, under these circumstances, will find all the points

of interest spread through the scenario, did not really provide a way for the

agents to rely the information about any found victims back to the base.

Instead the algorithm was based on the behavior, that the robots will stop

moving as they have finished exploring and thus are unable to transfer the

vital information to the rescue team. Additionally, as the agents controlled by

65

Chapter 3. The Multi-Agent Flood Algorithm

these algorithms would ignore already explored terrain and would never visit

it again, these algorithms would not be very applicable in a dynamic scenario,

where the terrain may change or where the victims may be mobile and could

move from unexplored terrain into already explored terrain. The latter case

would result in stuck robots who would ignore said victims completely.

The fourth method introduced in the second chapter, the Rendezvous

algorithm, was the first algorithm that was designed from the ground up

to rely information as fast as possible to the headquarter. By introducing a

second population of agents whose job it is to solely handle the communication

between the population of the searching agents it is able to transfer vital

information back the base. But as the authors stated it was not optimized to

improve the exploration and search by itself, c.f. De Hoog et al. (2010).

The Multi-Agent Flood algorithm tries to combine the good parts of each of

those algorithms into one. The use of indirect communication offers a robust

framework so that the algorithm can still function, if no direct transmission via

radio signals is possible. The split into two modes offers further advantages.

By returning to the base after a victim was found on the currently shortest

known path the agent will provide vital information to the rescue team. The

team is able to act on this information as soon as the agent arrives at the

base, starting the rescue process in parallel with the search process. Gaining

an important time advantage and raising the chance to find victims still alive.

This behavior offers also the option to do maintenance on the robots as they

return to the starting points. Usually rescue robots are powered by batteries.

These batteries allow a robot to work for an average of three hours in the

field [Birk et al. (2006b); Rohmer et al. (2010)]. By always having an option

available to return to the headquarter a robot is now able to automatically

initiate a switch to the Return Mode in time and find its way back to the

starting point if the power is low. As the MAF agents do not completely ignore

already visited terrain, they are also able to act in a dynamic scenario, as

they will simply check their surroundings for any victims and, if a victim is

found in already explored terrain, will trigger the mode switch and return

homeward.

66

3.2. Experimental Simulation Setup

3.2. Experimental Simulation Setup

To show that the Multi-Agent Flood algorithm is applicable and a working

solution to find victims in unknown terrain in a search and rescue scenario it

was simulated multiple times using different numbers of agents and different

maps.

3.2.1. The Simulator

The simulator used for the simulations is based on the Multi-Agent Simulator

Of Neighborhoods framework, abbreviated as MASON, which was created by

Sean Luke and others.

“. . . MASON is a general-purpose, single-process, discrete-event

simulation library intended to support diverse multiagent models

across the social and other sciences, artificial intelligence, and

robots, ranging from 3D continuous models, to social complexity

networks, to discretized foraging algorithms based on evolutionary

computation (EC). MASON is of special interest to the social sciences

and social insect algorithm community because one of its primary

design goals is to support very large numbers of agents efficiently.

As such, MASON is faster than scripted systems such as StarLogo

or breve, while still remaining portable and producing guaranteed

replicable results.”

The quote from (Luke et al., 2003, p. 2) describes the design goals of

the library written in Java, which was improved and extended into a whole

framework in Luke et al. (2004, 2005).

The MASON framework provides a suitable environment for the testing of

the Multi-Agent Flood algorithm, as the underlying tools of the simulator were

already available, namely the scheduler and the interfaces to the graphical

visualization. This allowed for a rapid programming and testing of the al-

gorithm, without having to worry about the correctness of the core of the

simulator.

67

Chapter 3. The Multi-Agent Flood Algorithm

3.2.2. Definition of the Scenario

The model used for the Multi-Agent Flood algorithm was in part described

above. The map is modelled as a grid or two dimensional matrix Mm×n. Each

cell of the matrix can have four different states:

1. Wall: This state represents an obstacle and is not traversable for the

agents

2. Empty: This is the “usual” state of the cells, agents can freely traverse

this cell

3. Point of Interest: This designates a victim or PoI and agents can move

onto this cell, initiating a mode switch in the specific agent

4. Starting Point: This cell is the starting point for all agents and the agents

will return to this cell if they are in the Return Mode

To store the step counter markings from the various agents, each cell also

has an assigned integer value, that will be used to represent these markings.

As the algorithm does not include a way to handle the case of agents being

positioned on the margin of the map, each map will have a wall around the

border. The starting point will be placed randomly in a cell adjacent to this

border. Only one starting point may be designated in the scenario and all

agents will start from this point. The points of interest or victims will be

uniformly distributed in empty cells through the matrix.

The time in the simulation was measured in steps. Each agent is able to

move from one cell to another in each step. Changing the heading does not

take any time and will be done instantly before the agent moves. Marking a

cell or updating the already existing mark will also not consume any further

steps.

The steps will also be the main measurement of the algorithm, as they will

represent the time, that the MAF agents need to explore the terrain, find the

victims, and transport the information about the victims back to the starting

point. As the Multi-Agent Flood algorithm has no internal termination a set of

rules was defined to terminate the algorithm. To finish the run successfully

the agents have to find at least 95% of all points of interest and they have to

explore at least 95% of the explorable and traversable cells. If they could do

68

3.2. Experimental Simulation Setup

that before the time limit was reached, the run was considered a success. If

they did not reach these goals in the allotted time frame, the run resulted in a

failure. The time limit was dynamically set to depend on the size of the map.

The maximum number of steps, which were allowed to be used before the

termination of the simulation was the product of the length and the height of

the grid, meaning tmax = m · n, for m, n from Mm×n. This time limit was chosen

so that a single agent should be able to traverse a map with the size of m× n

cells at a maximum of tmax steps, as long as no obstacles are present. As a

consequence an algorithm using multiple agents should be faster than tmax,

even if obstacles are present. Otherwise using multiple agents would not be

beneficial.

To compare the results of the MAF algorithm, the Brick&Mortar algorithm

was implemented and also simulated. Furthermore to see how the number of

agents contribute to the result of the algorithm, the simulations started using

only one agent for each of the algorithms. Additional runs then incremented

the number of agents by one until the count of agents reached 20. Each

simulation configuration, composed out of the map, the number of agents,

and the type of algorithm, was simulated 30 times to create an average of all

results.

3.2.3. Selection of the simulated Maps

As the primary goal of the Multi-Agent Flood algorithm is to support search

and rescue teams in urban search and rescue scenarios, the maps for the

simulation were chosen to represent typical urban terrains. Additionally dif-

ferent maps were chosen to showcase simple scenarios and maybe structural

difficulties, that may hinder agents depending on the obstacles provided in

the map.

For this reason the MAF algorithm was simulated on five different maps,

starting with two plain maps, without any obstacles and only the border to

confine the agents in the scenario. The only differences between these two

maps were the size of the maps.

The third map, shown in Figure 3.8, was chosen to represent very small

paths were the agents could only move forward or backward, trying to trip

them up, as the markings of different agents could block the movement

69

Chapter 3. The Multi-Agent Flood Algorithm

Figure 3.8.: Scenario Plain with obstacles, 500×500 cells

through these narrow gaps.

The fourth and fifth map on the other hand were based on the layout of a

house or a street of houses, respectively depicted in Figure 3.9 and 3.10.

The size of the maps was deliberately chosen to be on the bigger side. The

algorithms described in the Chapter 2 of this work were usually simulated

on rather small maps. The Ant algorithm provides results for tests done on

a map containing 40×30 cells (Koenig and Liu, 2001, p. 4). Ferranti et al.

tested the Brick&Mortar algorithm by using a map with 2500 cells or 50×50

cells (Ferranti et al., 2007, p. 6). Also the improved version of their work,

the HybridExploration algorithm, was only run on maps using the same size

(Ferranti et al., 2009, p. 226). To show that the MAF algorithm is able to

be used in bigger scenarios the minimum map size of 500×500 cells was

selected, resulting in 250.000 cells for the whole map, represented in the

smaller Plain variant, Obstacles, and House. Additionally bigger maps were

chosen to showcase that the algorithm is able to also solve these kind of

scenarios. These two maps, Street of Houses and the bigger Plain variant,

have a size of 1000×1000 cells, or 1.000.000 cells overall.

These sizes also limit the runtime of the MAF algorithm, as described in

the simulation setup subsection. The simulation of the algorithm on the

smaller maps will terminate at a maximum of 250.000 steps and on the bigger

map the algorithm will shut down as soon as 1.000.000 steps are reached.

Those two numbers are the maximum allowed number of steps that the MAF

70

3.2. Experimental Simulation Setup

Figure 3.9.: Scenario House, 500×500 cells

Figure 3.10.: Scenario Street of Houses, 1000×1000 cells

71

Chapter 3. The Multi-Agent Flood Algorithm

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rk

o
fk

S
te

p
s

NumberkofkAgents

MAF Brick&Mortar

Figure 3.11.: Results MAF and Brick&Mortar, House, 500×500 cells

algorithm is allowed to run. Naturally if it finishes before these limits are

reached the algorithm will terminate successfully.

Each map has a finite number of points of interest, or victims in this case,

uniformly distributed in any traversable cell in the scenario (there are no

points of interest in the starting point). The smaller maps have ten points of

interest, while the bigger map has 15 points of interest.

3.2.4. Results of the Simulation

The four diagrams illustrated in Figures 3.11 to 3.15 present the results of

the simulation of the Multi-Agent Flood algorithm compared to the simulated

results of the Brick&Mortar algorithm. The X-axis in these diagrams depict

the number of agents and the Y-axis delineates the number of steps. The

lines, one for each of the simulated algorithms, will show the steps it took for

this specific number of agents to finish the algorithm. The blue line portrays

the MAF algorithm and the green line the Brick&Mortar algorithm. A number

of steps below the runtime limit will be considered as a successful run of the

algorithm. This means for the Multi-Agent Flood algorithm that the agents

have found at least 95% of the points of interest and have explored at least

95% of all traversable terrain. The Brick&Mortar algorithm will terminate as

soon as the step limit is reached or all the agents will stop moving.

As the diagrams show, depending on the scenario, at least three to five

72

3.2. Experimental Simulation Setup

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rk

o
fk

S
te

p
s

NumberkofkAgents

MAF Brick&Mortar

Figure 3.12.: Results MAF and Brick&Mortar, Obstacles, 500×500 cells

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rk

o
fk

S
te

p
s

NumberkofkAgents

MAF Brick&Mortar

Figure 3.13.: Results MAF and Brick&Mortar, Plain, 500×500 cells

73

Chapter 3. The Multi-Agent Flood Algorithm

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rk

o
fk

S
te

p
s

NumberkofkAgents

MAF Brick&Mortar

Figure 3.14.: Results MAF and Brick&Mortar, Plain, 1000×1000 cells

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rk

o
fk

S
te

p
s

NumberkofkAgents

MAF Brick&Mortar

Figure 3.15.: Results MAF and Brick&Mortar, Street of Houses, 1000×1000 cells

74

3.2. Experimental Simulation Setup

agents are needed for the Multi-Agent Flood algorithm to successfully finish

the simulation. In comparison the Brick&Mortar algorithm usually terminates

below the runtime limit as soon as two agents are available. Adding further

agents will improve the search time, shortening the number of steps that it

takes for the algorithms to accomplish their goal.

The diagrams in Figures 3.11-3.15 show that both algorithms will reach

their search targets as soon as enough agents are available. One can also

see that the results from the Multi-Agent Flood algorithm do not deviate

that much from the results of the Brick&Mortar method. Although the MAF

agents need some more steps to finish successfully in four of five cases. In

the fifth case, illustrated in Figure 3.10, the MAF algorithm is faster in the

comparison. This is especially interesting as the movement routine of the

MAF agents is quite simple and not in any way optimized. Additionally as

soon as an agent finds a victim, the mode switch will get triggered and the

agent will stop any further exploration and searching until it has returned to

the starting point, from which it will start the search anew. The Brick&Mortar

algorithm does not have this “drawback” and the agents can continue to

move to unexplored terrain. The results reinforce the statement made by

Ferranti and his coauthors in Ferranti et al. (2007) that the loop detection

and handling mechanism in the algorithm is costly and increases the time

that it takes to finish the search process massively. Specifically as the map,

Figure 3.10, used in this simulation configuration contains many loops.

If the results of the Multi-Agent Flood algorithm for all five scenarios are

taken together, it can be seen, that the algorithm scales very well, almost

independently from the structures on the different maps and more important

independent from the size of the map. This is depicted in Figure 3.16, the

diagram shows the normalized results of all five simulations for the MAF

algorithm, where the X-axis represents again the number of agents used and

the Y-axis the normalized number of steps it took the algorithm to finish

the calculation. Only five agents at a minimum are needed to successfully

terminate the algorithm and find 95% of victims, while exploring at least 95%

of all available and traversable cells.

75

Chapter 3. The Multi-Agent Flood Algorithm

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NumberloflAgents

House,l500x500 Obstacles,l500x500

Plain,l500x500 StreetloflHouses,l1000x1000

Plain,l1000x1000

Figure 3.16.: Normalized results of the simulation of the MAF algorithm

3.3. Advantages and Disadvantages of the Multi-Agent Flood

algorithm

The simulations have shown that this algorithm is able to successfully explore

unknown terrain and find possible victims in an urban search and rescue

scenario. Specifically the additional movement of the agents by returning to

the base to communicate the information about a found victim does not really

interfere with the runtime of the algorithm.

The possibility to return to the headquarter of the search and rescue team

at any time allows for the maintenance of the agents: repairs can be made,

batteries charged, and information exchanged. The main advantage of this

approach is the ability to start the rescue process in parallel with the search

process.

These results are based on a very simple algorithm, where the agents

are not really sophisticated. The movement algorithm is intentionally kept

uncomplicated, as not that much computational power is needed to keep these

agents running. The algorithm does not depend on wireless communication

that may not be possible in these specific scenarios, following the three design

constraints stated by Robin Murphy, (Murphy, 2014, p. 5), that rescue robots

should follow:

76

3.3. Advantages and Disadvantages of the Multi-Agent Flood algorithm

Name Goal
Communi-
cation

Movement
Information
back to HQ

Maintain-
ability

Size

Ants PoIs Indirect Grid-based ✗ ✗ ✗

Brick&Mortar Explore Indirect Grid-based ✗ ✗ ✗

HybridExploration Explore Indirect Grid-based ✗ ✗ ✗

Rendezvous Explore Direct Grid-less ✓ ✗ ✗

MAF Both Indirect Grid-based ✓ ✓ ✗

Table 3.1.: Comparison of the different algorithms, with MAF added to the list

1. The robot should be able to function in extreme terrain and operating

conditions

2. Operate in GPS- and wireless-denied environments

3. Provide appropriate human-robot interaction for the operators and the

victims

The first rule is accomplished by being using already existing hardware, for

example building on robots described in Chapter 2. By only using indirect

communication and no global positioning system, rule number two is satisfied.

The data exchange between the agents and the human rescue team in the

headquarter, after an agent has returned to the starting point during the

Return Mode, also helps to realize the second rule. The third point is also

based on the information exchange at the headquarter.

Table 3.1 is the same as Table 2.1 from Chapter 2 but with the Multi-

Agent Flood algorithm added to the end. The goal of the MAF algorithm is

a combination of exploring the unknown terrain and finding the points of

interest dispersed in the scenario. Additionally the MAF algorithm is the only

algorithm, which offers a possible maintainability of the agents. It is also one

of the two algorithms that will communicate gathered information back to the

base during the runtime of the algorithm.

Nevertheless this version of the algorithm still offers many possibilities of

improvement. Additional data exchange could speed up the search process

further, decreasing the runtime and allowing for a shorter execution of the

algorithm. This can be achieved by adding more data to the markings in the

environment or by making the agents more “intelligent”.

77

CHAPTER 4.

IDEAS FOR A LAYERED

COMMUNICATION

Chapter 3 described the Multi-Agent Flood algorithm and showed that it is

a feasible solution for the use of a multi-agent system in an urban search

and rescue scenario. The last section of the previous chapter also provided

a short conclusion about the advantages and disadvantages of the method.

Especially as the simulation results presented for the MAF algorithm revealed

that, while the algorithm is viable and practicable, it was only faster in one

of five times than the benchmark algorithm. This chapter will offer some

improvements that try to aim to speed up the search process of the Multi-

Agent Flood algorithm by providing additional data exchange between the

agents. Due to diverse restrictions present in the typical urban search and

rescue scenario, codified in the second rule by Murphy in (Murphy, 2014, p.

7), using direct communication will not reliably work:

“Rescue robots typically function in GPS- and wireless-denied en-

vironments. The material density of commercial buildings inter-

feres with GPS and wireles networks for robots working in the

interiors of commercial buildings. However, interference is not lim-

ited to interiors; urban structures such as buildings or bridges can

create shadows or multiple paths that affect approaching UAVs and

UMVs. . . Wireless communication can be boosted with more power,

but that leads to a trade-off between making the robot larger to

carry the power and it becoming too large to use.”

Currently the agents of the MAF algorithm only rely on indirect communica-

tion. This is achieved by marking the environment, or as an abstraction the

79

Chapter 4. Ideas for a Layered Communication

cell in the grid, where the agent is currently located. While this type of data

transfer is viable it is in no way optimal. An agent is required to be in the cell

or in a neighboring cell to read this marking, thus the agent has to move to or

near a specific cell to access the information stored there. This in turn adds

increased movement to each of the agents. Resulting in a longer search phase

of the algorithm, which is diametrical to the design goal. As the first 48 to 72

hours after a disaster offer the highest chance to find victims still alive, the

algorithm has to find as many victims as possible in this time frame.

To improve the runtime of the Multi-Agent Flood algorithm an increased

data transfer is needed. On one hand additional data can be stored in the

markings, but as explained above, this would only help the algorithm partially.

Another possibility would be that agents should be able to exchange data

wirelessly. As explained by Murphy, wireless communication my not always

be possible. As a consequence implementing wireless transmission has to be

done in a specific way or has to adhere to specific restrictions. The algorithm

must not depend on this data transfer, if wireless communication is not

possible, the algorithm still needs a way to function and to finish the search

successfully. Hence additional information gained by communicating by radio

signals should be seen as bonus information. With the use of this extra data

the algorithm should speed up the search process, but as soon as this input

is not available anymore the agents should still be able to finish the run, even

if it is at a slower pace.

The Rendezvous algorithm [De Hoog et al. (2010); Spirin and Cameron

(2014)] introduced in Chapter 2 relies on an ad-hoc network created by at

least two agents, the Explorer and the Relay. These two agents will meet at

specific points in the map, called rendezvous points, giving the algorithm its

name. While the agents meet, they are near enough so that they can initiate

a wireless data transfer. Murphy describes, in the quote written above, how

structures and hazards can hinder the radio waves. By moving the agents

near each other, resulting in a line of sight communication, most of these

interferences can be safely ignored and the assumption can be made, that as

soon as there are no obstacles between two agents and the range between

said agents is not too big, wireless communication is possible.

This chapter will describe how wireless communication can be added to the

Multi-Agent Flood algorithm, while still keeping the indirect communication

80

4.1. Direct and Indirect Communication

between the agents via markings on the floor. This concept of using two

communication models and a way to ignore the direct communication part if

it is not working at the moment is called layered communication and offers

the best of both types of data transfer. Especially as it allows for a graceful

degradation of the type of communication, if wireless data transmission should

not be available anymore. Thus allowing the MAF agents to finish the search

process either way. The whole concept of robust layered communication was

first introduced by the author in Becker et al. (2014).

4.1. Direct and Indirect Communication

The two different types of communication are direct and indirect communi-

cation. Both types offer particular advantages and disadvantages. The first

type relies on radio or light signals to transmit data from one agent to the

other. The second type changes the environment for other agents to read and

exchanges data this way. This section will give a short overview over the two

types of information exchange and how each of them is achieved.

4.1.1. Ad-hoc Networks

In the simplest case two agents will find each other and will initiate a data

transfer between themselves, using for example typical WiFi hardware. Direct

communication offers the advantage to create a whole network of agents who

are able to transfer data between each member of the network, using the

members as relay nodes to send the data onwards from one agent to the other

until it arrives at the right recipient. This network creation out of the blue is

called an ad-hoc network. Each agent represents a node in this network and

is able to forward messages from its neighbors.

This approach offers a lot of flexibility, as agents can join or leave the

network as soon as they enter the range of another agent, or move out of the

range respectively. On the other hand this type of network may not be very

reliable, as the nodes of an ad-hoc network usually form a spanning tree. This

means, if an agent from the middle of the tree moves out of range the tree

will be halved, resulting in a loss of communication, as the first half cannot

communicate anymore with the second half until another agent replaces the

81

Chapter 4. Ideas for a Layered Communication

Figure 4.1.: Example of a spanning tree

leaving agent.

The spanning tree approach is fundamental for a lot of ad-hoc network

algorithms. An example is provided in Figure 4.1. One can easily see, that

the tree is not really robust and the controlling algorithm of the agents needs

to keep the agents in range of each other, constricting the movement of each

single agent to keep the ad-hoc network intact. Nevertheless this approach

is often used in various multi-agent algorithms to create an ad-hoc network

[Nguyen et al. (2004); Rekleitis et al. (2004); Rooker and Birk (2005); Witkowski

et al. (2008); Takahashi et al. (2012)].

The method presented in Rooker and Birk (2005) keeps the “traditional”

spanning tree approach in its multi-agent algorithm, others try different ways

to create more robust ad-hoc networks. Ioannis Rekleitis and others try to

create a line of robots, Rekleitis et al. (2004), reminding of the typical search

line used by human search teams. They are also using some additional

robots to circumvent obstacles, these robots are also sending information

about these obstacles back to the search line. This idea is based on the

Boustrophedon decomposition and agents can only communicate with each

other as long as they do have a line of sight. Nguyen proposed an idea in

Nguyen et al. (2004), that was later used for the Rendezvous algorithm. He

and his coauthors introduced additional relay robots, that act as nodes of the

spanning tree, allowing the exploring robots to move further out. Witkowski

82

4.1. Direct and Indirect Communication

Figure 4.2.: Example of a triangular network on the left side, rectangular search
pattern on the right

et al. improved on this idea, but instead of using a spanning tree, the agents

form a triangular network between themselves, Witkowski et al. (2008). An

example is depicted in Figure 4.2 on the left side.

A similar idea was proposed by Toru Takahashi in Takahashi et al. (2012).

He proposed two different versions of a multi-agent system using an ad-hoc

network for communication. The first version also declares some rendezvous

points, where agents will meet to exchange information. The second version

tries to create a rectangular search pattern, shown in the right side of Figure

4.2. The range of this pattern depends on the range of the communication be-

tween the different agents. Nevertheless his proposal sacrifices free movement

for communication stability.

Another approach to enhance the use of direct communication, especially

if there a few nodes in an ad-hoc network or only a few messages are send

between those nodes, is the use of specific ad-hoc routing protocols. For

example the gossip/rumor protocol family or flooding protocols. This means

that the use of the protocol depends on the number of agents in a specific area

and how these agents will move. Compare Becker et al. (2007) for an analysis

of various routing protocols and how they perform in sparse communication

networks.

On the other hand, if sufficient wireless communication is possible between

the agents, and there are enough nodes available, then more refined routing

protocols can be used. These may include the proactive protocols OLSR/DSDV

or on demand protocols AODV/DSR.

This short overview shows, that a lot of different algorithms and protocols

are available to support an ad-hoc network sufficiently. But the main draw-

83

Chapter 4. Ideas for a Layered Communication

back remains: if an agent is not in range of the other agents and can not join

the network it may not be able to function at all or with a reduced efficiency.

4.1.2. Stigmergy

This term was already mentioned in Chapter 2 of this work. It describes

the indirect communication between two agents through modification of the

environment.

The differences between stigmergy and ad-hoc networks are profound. Ad-

hoc networks allow for almost instantaneous data transfer between two agents.

Even if larger chunks of data are transmitted, the transmission speed is

staggering, going up to 6.77 Gbit/s using the newest IEEE 802.11ac standard,

which is equivalent to 846.25 Megabyte every second, Verma et al. (2013).

While the indirect communication does not offer this sort of data transmission

rates, it has other advantages.

The use of indirect information exchange is very decentralized, meaning

that agents do not have to keep track of each other and, contrary to the direct

communication, they do not have to form a network to achieve cooperation.

Each agent is able to mark the environment and leave this marking for any

other agent to read. This frees the agents from the inherent movement con-

straints enforced by the ad-hoc network. The downside of this decentralized

communication is the time that it takes one agent to get the information from

another agent. For another agent to read the mark of a specific agent, the

first one has to find said mark in the first place. This may take a while or,

under certain circumstances, this may take forever. Another disadvantage is

the amount of information that can be stored in a mark. This largely depends

on the technique used to mark the environment. The work in Koenig and

Liu (2001) describes how agents can use a chemical marker. This restricts

the amount of information severely. The only way information can be stored

using this sort of marking is the intensity of the chemical marker. This allows

for a small range of numbers to be encoded, using a small intensity for one

boundary and a very big intensity for the other end of the range. A similar

way to mark things would be to spray some kind of bar code on surfaces, but

which may be harder for other agents to find again.

A more sophisticated approach is the use of Radio-frequency identification

84

4.1. Direct and Indirect Communication

(RFID) chips. The multi-agent algorithms from Ferranti et al. are using this

method to create an indirect communication between their agents, Ferranti

et al. (2007, 2009). Toshiki Sakakibara and coauthors show in Sakakibara

et al. (2007), and Vittorio Ziparo and others describe in Ziparo et al. (2007)

how RFID chips can be used as markings in the environment and how the

agents can drop them at regular intervals to exchange the data stored in

them. In addition to Ettore Ferranti, Marco Baglietto proposed a multi-robot

coordination system based on RFID chips, Baglietto et al. (2009).

The advantage of RFID chips is the variability that the different types of

chips offer and the size of the chips. The types range from completely passive

to active chips using their own batteries. This also shows in the size of the

chips. Some are as small as a rice kernel, others are a lot bigger, needing the

space for a battery and other additional equipment. There are currently five

different classes of RFID chips available, taken from Weis (2007) and Sen et al.

(2009):

1. completely passive, smallest available class of chips, range of some

centimeters

2. passive, including a read-only chip, effective range is also only some

centimeters

3. offers read and writable storage in the size of some kilobytes, can still

only be accessed in the range of some centimeters

4. semi-passive, first class to use a battery, which allows for higher storage

values and higher access range (up to 4 meters)

5. active, permanently powered by battery, through powering the antenna

the access range is raised to about 150 meters

Although the class 5 chips would offer the best of both worlds, increased

storage and range, the main drawback is the same that applies to conventional

direct communication: the range can not be guaranteed. Furthermore these

chips are the largest chips available, decreasing the number of chips that

an agent could carry around. For this reason the use of class 4 chips offer

the most practicable solution. Especially as the quantity of the data that

needs to be exchanged in most algorithms is not that big. As the previously

85

Chapter 4. Ideas for a Layered Communication

introduced algorithms that propose the use of RFID chips have shown, this

data is usually in the range of some integers. The Brick&Mortar algorithm

stores the state of the cell in the chip and the Multi-Agent Flood algorithm

only needs to store a step counter. Only the HybridExploration algorithm uses

active chips to allow for a communication between the chips themselves.

4.2. Layered Communication

The idea behind the concept of layered communication is to create a combina-

tion of direct and indirect communication. Thus trying to get the advantages

from both types of information transfers, while negating the disadvantages, as

described by the author in Becker et al. (2014) and Blatt et al. (2015). Direct

communication offers fast exchange of a lot of information, while suffering

from outside influences created by the environment. Indirect communication,

on the other hand, allows for a robust exchange of information, although

the time of the exchange can not be guaranteed. A combination of both

approaches should result in a communication that enables the agents to

transmit a lot of data in a small time frame, but if this sort of transmission is

not possible, reverts to the use of indirect communication to still allow the

agents to finish their mission. Figure 4.3 illustrates an example of this. On

the left side is a spanning tree, usually found in ad-hoc networks. Each node

represents a single agent. The middle picture shows agents moving out of

range of the base tree, being able to explore without having to rely on the

tree structure. The third picture on the right depicts how additional networks

can be formed between other agents, thus allowing the creation of multiple

networks, if these agents are not in range of the rest of the agents. This

decentralized behavior allows each agent maximum freedom of movement,

while still keeping the advantages of creating communication structures on

the fly.

By adapting this concept to the Multi-Agent Flood algorithm only the direct

communication part of the concept has to be realised. The indirect part can

be used as it is and serves as a fallback mechanism, in the case that the

direct communication is not possible or only rarely available. This means,

that the agents will still disperse their markings in the terrain, using them to

cooperate and to mark the currently shortest known path from any position

86

4.2. Layered Communication

Figure 4.3.: Example of a multi-agent system using direct and indirect communica-
tion

back to the starting point. The ability to communicate directly between the

agents offers the possibility to exchange additional data, for example maps

created during the exploration of the unknown terrain. The agents can use

their sensor data to create maps during the exploration of the environment.

This is called Simultaneous Localization and Mapping (SLAM). These maps

can then be shared between the agents, increasing the amount of knowledge

that an agent has about the terrain, without ever visiting some parts of it.

Simultaneous Localization and Mapping is crucial for robots without any

access to a global positioning system. The original version of the Multi-Agent

Flood algorithm did not store any information about the environment and

the agents could only act on the currently available sensor data from the

immediate neighborhood. Different approaches to solve this problem already

exists, see for example Grisetti et al. (2010).

If two agents are now in range to initiate direct communication they will be

able to exchange the collected map data and the agents can merge their own

map with the newly received information, as long as one point on each of the

maps is the same, see Pfingsthorn et al. (2008). The point on each map that

is always at the same coordinates for each agent is the starting point. This

is also the reason, why multiple starting points would not be really feasible

using this approach.

The ANSI committee defines robustness as follows, ANSI/IEEE (1991):

. . . the degree to which a system or component can function cor-

rectly in the presence of invalid inputs or stressful environmental

conditions.

87

Chapter 4. Ideas for a Layered Communication

The use of both types of communication also offers this robustness to the

MAF algorithm, as it does not depend on one sort of communication anymore.

By allowing a graceful degradation of the direct communication, should it not

be available anymore, the algorithm still has the means to finish its calculation

and will be able to terminate successfully. The first part, invalid input, can

be ignored for the application to this concept. Much more interesting is the

second part: “stressful environmental conditions”. If the direct part of the

combined communication is not available anymore, the indirect will still work.

4.2.1. Adapting the Multi-Agent Flood algorithm

To adapt the Multi-Agent Flood algorithm to work with layered communication

the agents simply need to include a WiFi capability and they have to be able

to use SLAM techniques to create maps based on their sensor inputs and

store these maps. As the environment in this model is represented as a

grid, no specific algorithms will be needed. The agents will simply store the

environment of their current position in an internal map. Additionally any

other useful information can be stored and forwarded through this system.

This means, that the usual behavior of the agents will not change. They will

continue to mark cells with their step counter and use these markings if no

other information is available. The new communication capabilities will come

into play as soon as two agents are in a specific range and have established a

line of sight. These two restrictions enable a guaranteed data transmission

using radio signals between two agents. This adaption also changes the way

how the navigation process works for each agent, as it now has more data

available and can make more informed decisions.

The main advantage of this approach is, that the extra information provided

by the data transmission between the agents is only seen as a bonus and

the agents are still able to find currently known shortest paths from their

positions back to the starting points without having access to current map

data. Even if an agent should not encounter another agent in the whole

runtime of the algorithm it will still be able to function. Another asset is that

agents will return to the base from time to time, allowing the rescue team at

the base to not only get information about a recently found victim but also

to get an update of the map currently stored in these agents. This allows

88

4.2. Layered Communication

the base to merge all map data it receives from the agents and in turn it can

also start to distribute this data to the outgoing agents again. Thus even

if an agent will never encounter another agent during the execution of the

algorithm, it will gain access to shared map data as soon as it returns to the

starting point.

Algorithm 5 Protocol for the use of the direct communication part

1: table recentCommunication;
2: if another agent B in range then
3: if B /∈ recentCommunication then
4: initiate communication;
5: exchange data;
6: recentCommunication.add(B,timestamp);
7: merge maps;
8: else if B ∈ recentCommunication and recentCommunication.get(B) +

cooldown < currentTime then
9: recentCommunication.remove(B);

10: end if
11: end if

The code provided in Algorithm 5 gives an overview how the communication

protocol between the agents A and B work. Each agent will check, whether

another agent is in communication range. If this is the case, each agent will

check his table of recent communications, checking if the new found agent is

already in this table. If there is no entry representing the agent B in the table,

then agent A will initiate communication with B and a map exchange will

occur. A will then add B to its table including a time stamp, B respectively

will do the same for A.

If B is already represented in A’s table, then A will check the time stamp

stored in the table and will compare it with the current time. In the case

that the time stamp plus a additional cooldown time is equal or less the

current time, A will remove the entry about B from its table. This will stop the

same agents to always initiate a map exchange as long as they are near each

other, until some time has elapsed and the changes in the internal maps may

be significant enough to warrant another data transmission. The enforced

pause between the same two agents will keep the count of map merges down

and enables the agent to process multiples merges from multiple agents

without getting an information overload through the request for numerous

89

Chapter 4. Ideas for a Layered Communication

map merges.

This approach can by easily expanded to use one of the various ad-hoc

network algorithms to disseminate the stored information from one agent to

all other agents that are in range of each other. Thus information assembled

by agent A can be forwarded through agents B, C, and D until it finally

reaches agent E. This means in turn that the map data from A will be shared

with four other agents, although A may be only in range of B, as long as A

and B are part of an ad-hoc network connecting all five agents together at the

same time. The use of possible ad-hoc networks allows for a faster dispersion

of information through the agents without the need of two agents to be in

range of each other, as in this example agents A and E.

The communication between agents will happen in both modes: Search

Mode and Return Mode. Although the map information will only be used

during the return to the starting point. The returning agent will be able to

compute the currently shortest known path from its internal map, either

using a flood algorithm or other path planning algorithms, like Dijkstra, A*, et

cetera, see also Cherkassky et al. (1996). Additionally as the agent follows the

computed path back to the starting point, it will still read the markings that

it will encounter on its way and update the map with new found information,

that may differ from the data stored in the map. Using this new information

will lead to a recalculation of the path.

4.3. Simulating the layered communication algorithm

For the simulation of the layered communication algorithm the assumptions

made for the wireless communication to work have to be specified. This

means that agents will only be able to initiate a transmission if they have

a line-of-sight connection. Although a radio signal is able to travel through

walls or obstacles, or even reflect around obstacles, simulating this would be

very complicated. As the behavior of waves depends on the material and the

surface of the walls and obstacles, the simulation would have to know which

wall consists of which type of material and has which kind of surface. These

attributes also affect the range of the radio emitter. Using a WiFi connection

on an open field would allow for a much farther range than using the same

connection in a rubble strewed building. To simplify these calculations the

90

4.3. Simulating the layered communication algorithm

Figure 4.4.: Example of the radio emitter range of modified agents

signal strength is assumed to be the same in every direction, resulting in the

distance being represented as the euclidean distance between two agents. As

the agents are operating on a two dimensional map, this is simply calculated

using the following function:

distance(p1, p2) =
√

(p2.x− p1.x)2 + (p2.y − p1.y)2

In the simulation communication using WiFi is allowed, as soon as the

distance between two agents is smaller or equal to five cells. An example of

the ranges of the emitter of modified agents is presented in Figure 4.4.

This way allows the simulation to simply ignore any reflection, refraction, or

interference of any radio waves. Further a high enough throughput is assumed

for the direct data transmission. Using the WiFi protocol standard 802.11g

provides a minimum throughput of 6 MBit per second up to a maximum

throughput of 150 MBit per second if the current standard, 802.11n, is used,

see [IEEE (2003, 2009)].

During the simulation the agents will now be able to build a map of their

sensed surroundings. As the map in the simulation is based on a matrix

calculating a merge of two maps is a rather simple process. The common

starting point is used to pin the two matrices together. If the algorithm

uses real sensor input and builds a map based on these inputs by applying

the SLAM techniques a map merging will be possible using already existing

algorithms, for example one proposed by Pfingsthorn et al. (2008).

These changes to the agents can be simply achieved by adding a WiFi

module to a real robot and increasing the computation power. The onboard

processor should be fast enough to merge maps in a reasonable time and the

91

Chapter 4. Ideas for a Layered Communication

Figure 4.5.: Scenario House, 500×500 cells

data storage should be big enough to hold enough data for the map.

4.3.1. Changes to the experimental simulation setup

The base experimental simulation setup is the same as the one described

in the third chapter. Four new test cases were chosen to simulate the lay-

ered communication version of the Multi-Agent Flood algorithm, these are

illustrated in Figure 4.5-4.8. These test cases were picked again due to the

similarity to typical urban terrains.

For the comparison of this version of the algorithm also the indirect com-

munication version was simulated and an additional version using only direct

communication was run. The termination rules of the algorithms stay the

same as those described in the third chapter: finish successfully if 95% of the

traversable cells are explored and if 95% of the victims are found. Otherwise

the runtime is capped based on the size of the used map (250.000 steps and

1.000.000 steps respectively). As in the previous simulation ten points of

interest were dispersed in the smaller maps and 15 points of interest in the

bigger map.

Again the three algorithms were simulated in different configurations. Each

simulation was started by using one agent and going up to twenty agents. As

before each configuration was simulated thirty times and the results are the

average of these calculations.

92

4.3. Simulating the layered communication algorithm

Figure 4.6.: Scenario Office, 500×500 cells

Figure 4.7.: Scenario Park, 500×500 cells

93

Chapter 4. Ideas for a Layered Communication

Figure 4.8.: Scenario Cubicles, 1000×1000 cells

4.4. Comparison of the algorithms

The diagrams in Figures 4.9 to 4.12 illustrate the results of the simulation.

As before the X-axis depicts the number of agents used in this configuration

and the Y-axis the average number of steps it took for each algorithm to finish.

The blue line shows the indirect variant, the yellow line the direct algorithm

and the green line represents the results of the layered algorithm, usually

titled as both.

The indirect version of the Multi-Agent Flood algorithm is able to terminate

successfully in each test case but the last, as shown in Figure 4.12. On

average it was able to do this using around half the allotted time. The

diagrams also show that the indirect version of the algorithm needed at least

five or even ten agents to explore at least 95% of the map and find 95% of

the victims distributed through the terrain. The algorithm was not able to

terminate successfully in the big map, Cubicles, reliably, as even twenty

agents were not enough to explore enough of the unknown terrain for the

algorithm to end without reaching the maximum number of allowed steps.

The direct algorithm based on direct communication, simply provided for the

comparison, was faster than the version using only indirect communication.

This result was expected, but using only direct communication is not really

feasible in the scenario and was only simulated for the contrast and the

comparison. This algorithm was able to finish the calculation in a fourth of

94

4.4. Comparison of the algorithms

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rI

o
fI

S
te

p
s

NumberIofIAgents

Both Direct Indirect

Figure 4.9.: Results of the MAF variants, House, 500×500 cells

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rI

o
fI

S
te

p
s

NumberIofIAgents

Both Direct Indirect

Figure 4.10.: Results of the MAF variants, Obstacles, 500×500 cells

95

Chapter 4. Ideas for a Layered Communication

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rI

o
fI

S
te

p
s

NumberIofIAgents

Both Direct Indirect

Figure 4.11.: Results of the MAF variants, Park, 500×500 cells

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rI

o
fI

S
te

p
s

NumberIofIAgents

Both Direct Indirect

Figure 4.12.: Results of the MAF variants, Cubicles, 1000×1000 cells

96

4.4. Comparison of the algorithms

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
rk

o
fk

S
te

p
s

NumberkofkAgents

MAF Brick&Mortar

Figure 4.13.: Comparison between the combined MAF algorithm and Brick&Mortar,
House, 500×500 cells

the allowed time, 50.000 steps, on the smaller maps and a fifth on the bigger

map, or 200.000 steps. The number of explored cells is also slightly larger,

compared to the indirect variant. Also it only needed at a minimum around

four agents to finish the exploration in all the test cases.

Theoretically the new version of the algorithm, implementing the concept

of layered communication should be at least as good as either the direct or

the indirect variant, depending on which is faster. The results in all the four

diagrams validate this assumption. Even if the average results of the direct

algorithm in Figure 4.10 are in some cases a little faster. Another advantage

of the combined algorithm is that it needs the minimal number of agents of all

three variants to function, as in some cases two agents are enough to allow

the algorithm to terminate in time. Additionally the combination also has the

steepest progression of explored cells of all three algorithms, thus offering the

fastest exploration in comparison with the other two variants.

The results of the simulation show that the concept of layered communica-

tion is a feasible optimization of the Multi-Agent Flood algorithm and enables

the agents to achieve a valuable speed up in the search and exploration time.

Especially as the agents will still return back to the starting point as soon

as a point of interest is found. Figure 4.13 shows a diagram of the direct

comparison between the new version of the MAF algorithm, blue line, and

97

Chapter 4. Ideas for a Layered Communication

the Brick&Mortar algorithm, red line. The test case used for this comparison

is the map House, depicted in Figure 4.5. The diagram shows that both

algorithms run in more or less the same time, while the MAF algorithm offers

additional advantages not available to the Brick&Mortar algorithm.

The simulations have shown that the combination of the two communication

methods offers a robust framework for information exchange. The use of

direct communication will speed the algorithm up, as long as the agents have

access to this means of transmission, but they will also have the indirect

communication available, should the terrain prohibit the use of radio signals

for contact between two or more agents. Even by asserting very conservative

assumptions for the use of direct communication, in this case only allowing

communication as long as both agents have established a line of sight between

each other and as long as they keep in a specific range, the speed up of this

combined method is very visible.

0

50000

100000

150000

200000

250000

300000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 4.14.: Results of the MAF algorithm, House, 500×500 cells

To further demonstrate the viability of the algorithm additional simulations

were run. Instead of repeating the simulation for each configuration 30

times, each configuration was repeated 250 times. Additionally the maximum

number of agents was raised from 30 agents to 100 agents. The former

simulations resulted in 600 simulated test runs for a single map and a single

algorithm, thus the indirect version of the Multi-Agent flood algorithm was

simulated 3000 times. The new combinations of the different configurations

98

4.4. Comparison of the algorithms

0

50000

100000

150000

200000

250000

300000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 4.15.: Results of the MAF algorithm, Obstacles, 500×500 cells

0

50000

100000

150000

200000

250000

300000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 4.16.: Results of the MAF algorithm, Park, 500×500 cells

and repetitions culminated in 250.000 simulations for a single test case or

1.000.000 simulations for the four test cases combined.

The diagrams shown in Figures 4.14 to 4.17 show the average outcome of

each of the runs. On each data point the 99% confidence interval is also given

for all 250 simulations of this configuration, illustrated by the usual T-capped

line.

99

Chapter 4. Ideas for a Layered Communication

0

200000

400000

600000

800000

1000000

1200000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 4.17.: Results of the MAF algorithm, Cubicles, 1000×1000 cells

In all four diagrams it can be easily seen, that the results of the simulations

are rather stable, as the confidence intervals are relatively small. This means

that the variance of the 250 simulations for each data point is low.

4.5. Chapter Summary

The introduction of a new model of communication allows for a robust frame-

work for data transmission in scenarios, where a working WiFi connection

can not be guaranteed. The possibility to degrade gracefully and fall back on

the use of indirect communication allows agents to still function and to be

able to finish the calculation of the search process, without being dependent

on direct communication. This in turn is essential for a working search and

rescue multi-agent system. Further it allows the agents to use the possible

speed up offered by the use of direct data transfer to finish the search process

much faster.

The table depicted in Table 4.1 presents the new comparison between the

different algorithms. The change to this table is printed in bold and shows

that the MAF algorithm is the only one that is able to use both communication

models.

New simulations have also shown that the Multi-Agent Flood algorithm is

rather stable, delivering on average rather constant results without any big

100

4.5. Chapter Summary

Name Goal
Communi-
cation

Movement
Information
back to HQ

Maintain-
ability

Size

Ants PoIs Indirect Grid-based ✗ ✗ ✗

Brick&Mortar Explore Indirect Grid-based ✗ ✗ ✗

HybridExploration Explore Indirect Grid-based ✗ ✗ ✗

Rendezvous Explore Direct Grid-less ✓ ✗ ✗

MAF Both Both Grid-based ✓ ✓ ✗

Table 4.1.: Comparison of the different algorithms, MAF now uses both communica-
tion models

outliers, and thus confirming that this method is sufficiently robust.

But even the enhanced version of the MAF algorithm, implementing the

layered communication concept, offers various possibilities of improvement.

This version still relies on a grid to work. This abstraction was used to hide

complications in the position measurement and to make the use of markings

in the environment easier. The downside of this specific abstraction is, that

it is not really applicable for the use in real robots. There are two possible

ways on how to adapt the Multi-Agent Flood algorithm to leave this restriction

behind: either simulate a virtual grid in the robots or replace the grid with

another mechanism, one that is usable by robots without trying to press the

“real world” in specific abstractions.

101

CHAPTER 5.

LEAVING THE GRID

Usually in computer science problems get broken down into smaller problems

that are either easier to handle or where some solutions already exists. This

is called divide and conquer. An alternative to this method is to simplify

things and to create abstractions, so that some points that do not seem very

important for the general concept of the algorithm to work can be either

ignored or replaced by other ideas.

The Multi-Agent Flood algorithm is just one example for latter of these two

concepts. At the inception of the method the model used to represent the

surrounding terrain was chosen to be a matrix Mm×n, c.f. Becker et al. (2013).

This sort of abstraction allowed for a simple movement of the agents, as they

had just eight different directions in which to move. Additionally setting the

speed was also very easy, just specify how many cells can be crossed in one

step. Another advantage of this model was the way on how the markings of

the agents can be stored. By using a grid, made out of single square cells,

each marking could simply belong to a single cell. Thus the abstraction of the

grid model served in three different ways. But in the end it is an abstraction

and if the Multi-Agent Flood algorithm should be applicable in the “real world”,

controlling real robots this abstraction does not work anymore and will hinder

further progress.

There are now two possible methods to handle this abstraction and to allow

the adaption of the algorithm. The first possibility would be to program the

robots to see the world as a grid. This would be very cumbersome as the

sensors of the robot have to be programmed to deliver their data in such a

way, that the robot would still move in a grid. But this is not why this solution

becomes impracticable. By changing the robots to see the world in a grid

and dividing the terrain into separate virtual cells the agents still would have

103

Chapter 5. Leaving the Grid

to leave markings in the environment. In general this approach would be

awkward and unwieldy.

The second way to solve this abstraction would be to adapt the algorithm

itself to remove the grid metaphor. This way robot movement and positioning

would not change all that much. Just use a gradient vector as movement

direction and simply set a specific movement speed. This way the robot does

not need to create a virtual grid to keep track of its own position.

Either way, both solutions need to mark the environment to allow the

indirect communication part of the algorithm. How would these markings get

stored? The introduction of the Multi-Agent Flood algorithm by Becker et al.

(2013) already mentioned to disperse RFID chips in the environment to store

these markings. The concept is not a new idea in general, see respectively

[Sakakibara et al. (2007); Ziparo et al. (2007); Baglietto et al. (2009); Khaliq

et al. (2014); Chinnaiah et al. (2016)], but the current implementations may

not be really applicable for a search and rescue scenario, as they in turn

fall back to the use of certain assumptions. For example Ali Abdul Khaliq

proposes to use already existing RFID tags embedded in the floor for the

robots, Khaliq et al. (2014). The same applies to the work of Chinnaiah and

others introduced in Chinnaiah et al. (2016). Both of these proposals assume

that some sort of RFID tags are already available in the terrain and the robots

just have to find some sort of path between the different tags.

A solution for this idea would be to remove the grid abstraction from the

Multi-Agent Flood algorithm and replace it with a loose net formed out of

dispersed RFID tags. The agents will explore the unknown terrain and will

drop the RFID chips at specific intervals. More and more tags will be scattered

through the scenario resulting in a dense mesh, that will replace the grid and

each chip will be able to act as a cell, storing data for the use of the different

agents. This concept to use dynamically dispersed RFID tags in search and

rescue scenarios was introduced by the author in Blatt and Szczerbicka

(2016).

After the change to the communication channel in Chapter 4 the modi-

fications proposed in this chapter are the next step in creating a realistic

multi-agent system.

104

5.1. A mesh of RFID tags

5.1. A mesh of RFID tags

To create this mesh consisting of the different tags the agents of the Multi-

Agent Flood algorithm have to be adapted. Furthermore the kind of RFID chip

which will be used has to be specified.

5.1.1. Different kinds of RFID chips

Chapter 4 provided an introduction into the different types of RFID tags, that

are currently available. For this idea to work, the agents will need chips

whose access range is greater than some centimeters. This means, that all

the passive classes, 1 to 3, will not be usable in this approach. This leaves the

semi-passive type 4 RFID tag and the active type 5 chip. The robots will have

to carry a higher number of chips with them so that they can be distributed

in the unknown terrain, as a consequence, these chips should be cheap and

in the end more or less disposable. Thus the best type of chip to use would be

the class 4 chip. It allows the robots to store data in it and it has a read and

write range of about four meters.

5.1.2. Changes to the Multi-Agent Flood agent

As described above a grid is currently used to abstract the movement and

the positioning of the agents in the algorithm. Each agent can move from cell

to cell and has eight possible neighboring cells, the Moore neighborhood, to

choose from. This also allows the agent to do any turn in the cell without

needing additional time to turn around. By removing this abstraction, and in

turn the grid, the algorithm has to be adapted to include a turning mechanism

that takes the time to finish the turn into account. This also depends on

the type of robot used in the scenario. The robots introduced in the second

chapter were all tracked vehicles except one of the older team Hector variants.

Tracked vehicles have the advantage that they can turn more or less on the

spot, but they offer a slower movement speed. Wheeled ground vehicles can

achieve faster speeds, but they can not really turn on the spot anymore,

needing to switch back between moving forwards and backwards to turn

slowly around.

105

Chapter 5. Leaving the Grid

Figure 5.1.: Turning in form of a teardrop

63

62

61

60

32

33
34

35
63

62

61

60

32

33

34

35
63

62

61

60

32

33
34

35

?

Figure 5.2.: Problem while turning with sensing RFID tags near obstacles

The change to the current Multi-Agent Flood agents was to include a move-

ment direction in degree and a movement speed. Currently the movement

speed is constant, as is the current turning angle to also allow for the sim-

ulation of wheeled robots. Simulating tracked robots with this setup is also

possible, the turning angle has to be raised for this and the movement speed

has to be reduced as long as the agent turns around.

This introduced some further changes in the algorithm, as the agents will

now turn in some kind of tear drop shape, as soon as they want to reverse

their direction, as shown as a gray rectangle in Figure 5.1. Additionally the

agents will now encounter some movement problems as soon as they are

trying to turn near walls and other obstacles. This is illustrated in Figure

5.2. The agent, again represented as a gray box, tries to change its path. The

middle picture shows the new path and the right hand picture exhibits the

problem: the agent tries to move towards the tag with the number 34. Due to

the increased turning radius the agent cannot turn in place and encounters

the wall (represented as the black rectangle). As it stands in front of the wall

it will loose the range towards the tag with 34 stored in it.

Another new point that has to be addressed is the dispersal of the RFID

tags in the environment. The current drop rate of the chips is static and will

106

5.1. A mesh of RFID tags

Figure 5.3.: Trail of RFID chips, dropped at a specific interval

Figure 5.4.: Partial mesh of RFID chip trails, with gap

depend on the speed of the robots and the read and write range offered by

the chips. Figure 5.3 shows an example of a trail created out of RFID tags,

dropped at regular intervals by an agent. Each tag is represented by a smaller

dark blue circle, surrounded by the communication range in a lighter blue

circle. The agent is shown as a gray rectangle, moving along its path (the

black dashed line).

The overlap between the communication range of the different chips should

be as small as possible. This will in turn lead to the problem that there may

be some gaps in the resulting mesh. Which is a natural result as long as a

plane is covered in not overlapping circles, as depicted in Figure 5.4. Two

107

Chapter 5. Leaving the Grid

1

2

3
4 5 6 7

8

9

10

Figure 5.5.: Trail of RFID chips with corresponding stored data

additional RFID tags are shown near the trail, illustrating the resulting gap

between the four chips in red.

Each cell in the former grid held the information about the currently known

distance from said cell to the starting point. This is the same information that

will be stored in the dropped RFID tags. The behavior of the agents does not

change. An agent still reads the tag at the current location and compares the

value it read with its own step counter. Should the current step counter of

the agent be lower than the data stored in the tag, the robot will overwrite

the value stored in the tag with its own step counter. An example of this is

depicted in Figure 5.5.

Another problem that is introduced to the algorithm by using the mesh ap-

proach is that an agent may be in range of two different chips simultaneously.

If this is the case, the agent may not be able to triangulate one or both of

the chips correctly. Thus the agent has no way to pick the right direction in

which to move depending on the data read from both chips.

As stated above the drop interval is static and does not change during

the execution of the algorithm. It also depends on the movement speed of

the agent and the communication range of the chips used. Therefore the

calculation of the interval has to be done by hand, so that the overlap of the

radii is kept as small as possible, while still offering the most coverage of the

terrain without creating too many and/or to big gaps between the tags.

The code presented in Algorithm 6 describes how the changes to the Search

Mode of the Multi-Agent Flood algorithm are realised. The agents checks for

108

5.1. A mesh of RFID tags

Algorithm 6 Adaption of the Search Mode of the MAF agents

1: list tags = getTagsInRange();
2: tag minimum = getNearestTag(tags);
3: if currentDistance >= interval and not isInRange(minimum) then
4: drop next RFID tag t;
5: t.data = tagCounter;
6: currentDistance = 0;
7: else if isInRange(minimum) then
8: if minimum.data > tagCounter then
9: minimum.data = tagCounter;

10: end if
11: currentDistance = 0;
12: else
13: currentDistance++;
14: end if

all tags in its range and calculates the tag which is nearest to its own position.

If the drop interval is reached (line 3) and there is no tag available in the

minimum drop range of the agent, then a new RFID chip will be dropped,

storing the current tag counter of the agent (lines 4-6). If there is a chip in

range, then the data will be read and changed if the current counter is smaller

than the stored counter (lines 8-11). Otherwise just increase the distance of

the agent.

Algorithm 7 Changes to the Return Mode of the MAF agents

1: list tags = getTagsInRange();
2: tag minimum = tags.firstElement();
3: for all i ∈ tags do
4: if i.data < minimum.data then
5: minium = i
6: end if
7: end for
8: if mapUpdate?(tags) then
9: updateMap(tags)

10: end if

The changes to the Return Mode are shown in Algorithm 7. The algorithm

checks for all surrounding tags and searches through that list to get the tag

with the lowest counter (lines 3-7). After it has found this tag, it checks if a

map update based on the information in the surrounding tags is required. If

109

Chapter 5. Leaving the Grid

there is new information available the map will be updated (lines 8-10).

5.1.3. Changes to the simulation setup

There also have to be made some changes to the simulation setup of the

Multi-Agent Flood algorithm. To get a close enough comparison to the grid

based variant of the MAF algorithm most of the settings were kept the same,

although some things had to be changed, so that the simulation of the grid-

less algorithm was possible.

The test cases are the same as proposed in the previous chapter and can be

seen in Figures 4.5 to 4.8. The first difference between the grid-based and the

grid-less algorithm is the way on how the cells are perceived. In the former

variant each cell on the map was seen as one cell in the grid. The grid-less

algorithm will still be able to drop a RFID tag into one cell on the map, but the

range of the chip will cover more cells in a circular radius, where the range

depends on the setting.

The different states of the cells also remain the same: wall or open space.

Whereas the open space can either contain an agent or a point of interest.

Additionally each cell can now also have a RFID tag, which is also not blocking

the cell, thus agents can simply occupy this location.

As before three different versions of the algorithm were modified to remove

the grid abstraction. These three variants are the indirect communication

algorithm, the direct communication algorithm, and the combined version.

The first two variants were only included as a benchmark for the combined,

or layered communication, version.

Based on the previous results the number of agents was also changed for

this simulation. The configurations started with one agent and added an

additional agent for each new configuration until the last configuration was

run with 30 agents. Each configuration was repeated 30 times, thus 10.800

simulations overall were run.

Comparisons with other algorithms are not very easy to do or rather not that

practicable. For example the Brick&Mortar algorithm or the HybridExploration

can not be compared to this version of the MAF algorithm, as those agents still

act on a grid. Thus a direct comparison is not possible between the different

algorithms and no other algorithms are shown in the result diagrams.

110

5.1. A mesh of RFID tags

0

50000

100000

150000

200000

250000

300000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Both Indirect Direct

Figure 5.6.: Results of the grid-less MAF algorithms, House, 500×500 cells

5.1.4. Results of the new simulation

The four diagrams depicted in Figures 5.6 to 5.9 show the results of the

simulation using the adapted Multi-Agent Flood algorithm.

The layout of the diagrams is the same as before, the X-axis shows the

number of agents used and the Y-axis the amount of steps needed for the al-

gorithm to finish the search process. Three different versions of the algorithm

are represented in each diagram: a yellow line for the direct variant, a blue

line for the indirect version, and a green line for the combined algorithm.

The results presented in the four diagrams show that the adaption into a

grid-less variant of the algorithm works, although these versions are not as

fast as the older versions working on a grid. This is a consequence caused

by the changed movement algorithm, as agents now will need longer to turn

in the desired directions. The time it now takes to turn the agent around

was completely ignored in the gris-based iterations of the Multi-Agent Flood

algorithm.

The results of the direct variant of the algorithm show, that using only

this way to exchange data between the robots, especially under the assumed

constraints (only while having a line of sight connection and a small maximum

range), is not really feasible. Additionally this is also expanded by the newly

introduced movement problem already described above. This problem occurs

111

Chapter 5. Leaving the Grid

0

50000

100000

150000

200000

250000

300000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Both Indirect Direct

Figure 5.7.: Results of the grid-less MAF algorithms, Obstacles, 500×500 cells

0

50000

100000

150000

200000

250000

300000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Both Indirect Direct

Figure 5.8.: Results of the grid-less MAF algorithms, Park, 500×500 cells

112

5.1. A mesh of RFID tags

0

200000

400000

600000

800000

1000000

1200000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
u

m
b

e
rc

o
fc

S
te

p
s

NumbercofcAgents

Both Indirect Direct

Figure 5.9.: Results of the grid-less MAF algorithms, Cubicles, 1000×1000 cells

as soon as an agent is near an obstacle and tries to move towards a specific

RFID tag. If the agent tries to turn around and thus the chip gets covered by

a wall, the agent will loose the signal from the tag and in turn it is not able

to find the tag anymore. Currently the agent will try to get back to the old

position to find the chip again and in the worst case, this will start a cycle,

where the agents tries to move in the direction of the tag, gets blocked by a

wall and tries to revert the movement.

The diagrams depict only the average of thirty simulation runs per config-

uration. As mentioned previously they also include the runs that did not

terminate successfully. The grid-less algorithm was only able to finish half of

the simulations illustrated in Figure 5.9 in time.

Nevertheless the results of the different simulations show, that this concept

and its adaption to the Multi-Agent Flood algorithm is working. This allows for

a removal of the grid abstraction from the algorithm and enables the agents

to disperse RFID tags through the terrain to use as a mesh to store the data

needed for the indirect communication. Although this is a workable solution

and enables the use of the MAF algorithm in “real world” problems, it is still

far from optimized. Especially as the map data, that the agents are currently

collecting and sharing, is not really used. The agents are unable to plan

strategies ahead based on the collected and exchanged data.

113

Chapter 5. Leaving the Grid

5.2. Reliability of the RFID tags

The changes towards the communication model used by the Multi-Agent Flood

algorithm presented in Chapter 4 assume very conservative values for the

range and the accessibility of the direct communication to provide an error free

transmission channel. The grid-less version of the MAF algorithm introduced

a more applicable model of the indirect communication, relying solely on the

distribution of RFID chips in the environment to store information used by

the agents to find their way back to the home base. These changes now raise

the question on how reliable the dispersed RFID tags are.

Four general sources of errors in RFID tags are the following, taken from

VDI4472 Blatt 10 (2008):

• Surfaces, including reflective, absorbing, or conductive surfaces

• Radio frequencies sources

• Surrounding environment, for example rain or temperature

• Process conditions, for example the amount of data or bulk reading

Each of these sources can be encountered in a disaster area, for example a

rubble strewn part of a destructed building or a street. This means that each

RFID tag that a robot will drop has a chance of either being unable to respond

to requests, and counting as lost, or having a severely limited range. Thus

restricting the use each agent can get out of a chip. An additional source of

errors concerning the tags is the movement of the robots itself. As a robot

traverses the already explored terrain, it will encounter already dropped RFID

chips and it will move right over them. This can either kick the specific chip

away from its former position, disrupting the laid path, or simply destroying

it.

The fourth source of errors, generally defined as process conditions, usually

stems from the fact that multiple RFID tags may be in the same range and as

soon as the agent tries to read a single chip it will access all available chips in

range. This is a known problem called bulk reading. The agent is not able to

differentiate the tags without help. Various approaches already exists to solve

this, c.f. [Cha and Kim (2005); Cheng and Jin (2007); Klair et al. (2010)].

114

5.2. Reliability of the RFID tags

5.2.1. Modelling the different errors

The first three error sources can be modelled by simply giving each dropped

RFID tag a chance to malfunction. A malfunctioned chip will not work anymore

and thus will leave a hole in the path. Additionally as soon as an agent moves

over an already dispersed chip there exists a chance that the agent will flip

the tag away from its original position. The distance of this flip is randomly

determined in a range from zero to ten units, which in the case of the MASON

simulation means from zero to ten cells.

The bulk reading problem can be ignored as enough algorithms exist, that

an agent is able to read multiple chips at the same time [Cha and Kim (2005);

Cheng and Jin (2007); Klair et al. (2010)].

In the end the model of the emanating RFID tag errors can either result in

a missing chip, or in a chip that was moved from its original position. This

either leaves a hole in an existing path, as described above, or in overlapping

chips, in which one of those has a “wrong” step counter stored in it.

5.2.2. How to handle these malfunctions

The agents of the Multi-Agent Flood algorithm have two work with these two

cases of malfunctions. Missing chips can simply be replaced in the mesh of

RFID tags as soon as another robot will encounter the free space. This newly

dispersed chip will contain the current step counter of the robot. Thus closing

the gap in the path. The same applies to breaks in the path caused by chips

that were kicked away.

Chips that were flipped away will be simply handled like other chips. If an

agent is in range it will be read, or updated, if the conditions are met.

5.2.3. Evaluating the reliability of RFID tags

For the evaluation of the possible RFID errors a new variable was introduced

into the simulator. This variable specified the chance for an error to occur in

the RFID chip, either removing the chip completely from the simulation, or

moving the chip away from its original position.

The tests were done on three different maps, depicted in Figure 5.10 with

three different sizes: 300×300 cells, 500×500 cells, and 1000×1000 cells.

115

Chapter 5. Leaving the Grid

Figure 5.10.: Test cases for the reliability evaluation; Factory, 300×300 cells on the
left, Office, 500×500 cells middle, and Cubicles, 1000×1000 cells on
the right

0

20000

40000

60000

80000

100000

120000

1 5 10 15 20 25 30

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

0% Error 5% Error 10% Error

Figure 5.11.: Results of the RFID reliability evaluation, Factory, 300×300 cells

Each map was tested with 1, 5, 10, 15, 20, 25, and 30 agents, while using an

error rate of five percent and respectively ten percent. Each configuration was

repeated 30 times. Otherwise the same setup as in the previous experiments

was applied. The algorithm will stop as soon as 95% of the terrain was

explored and 95% of all points of interest were found.

The following diagrams in Figure 5.11 to 5.13 depict the results of these

simulations. Each diagram contains three lines, the green one shows the

algorithm with an applied error rate of five percent, the blue line illustrates

an error rate of 10%, and the yellow line represents the originial algorithm

with an error rate of 0.

116

5.2. Reliability of the RFID tags

0

50000

100000

150000

200000

250000

300000

1 5 10 15 20 25 30

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

0% Error 5% Error 10% Error

Figure 5.12.: Results of the RFID reliability evaluation, Office, 500×500 cells

0

200000

400000

600000

800000

1000000

1200000

1 5 10 15 20 25 30

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

0% Error 5% Error 10% Error

Figure 5.13.: Results of the RFID reliability evaluation, Cubicles, 1000×1000 cells

117

Chapter 5. Leaving the Grid

0

0.2

0.4

0.6

0.8

1

1.2

30

P
e

rc
e

n
ta

g
e

 o
f

S
te

p
s

Number of Agents

0% Error 5% Error 10% Error

Figure 5.14.: Comparison of 30 agents between the different error rates, Factory,
300×300 cells

0

0.2

0.4

0.6

0.8

1

1.2

30

P
e

rc
e

n
ta

g
e

 o
f

S
te

p
s

Number of Agents

0% Error 5% Error 10% Error

Figure 5.15.: Comparison of 30 agents between the different error rates, Office,
500×500 cells

118

5.2. Reliability of the RFID tags

0

0.2

0.4

0.6

0.8

1

1.2

1.4

30

P
e

rc
e

n
ta

g
e

 o
f

S
te

p
s

Number of Agents

0% Error 5% Error 10% Error

Figure 5.16.: Comparison of 30 agents between the different error rates, Cubicles,
1000×1000 cells

The outcome of this simulation shows that even a ten percent error rate,

which is quite big for any equipment used in these kind of scenarios (compare

the failure rate which lead to aborted procedures of the Da Vinci medicinal

robot, Andonian et al. (2008), which was 0.05%), does not influence the algo-

rithm all that much. Only in the larger scenario, as the results in Figure 5.13

show, is the discrepancy really visible. On the other hand in the smaller maps

the algorithm with the applied error rate was even faster than the algorithm

without any malfunctioning RFID tags. This can be seen in the diagrams in

Figure 5.14-5.16. The Y-axis of these diagrams show the percentage of the

steps it took the algorithm to finish the calculation without any errors as a

baseline corresponding to 100%. Diagrams in Figures 5.14 and 5.15 clearly

present that the algorithm using malfunctioning RFID tags is even faster than

the original algorithm, which was not expected. The simulation using the

larger test case, shown in Figure 5.16, conforms more to the expected values.

Nevertheless the outcome of the simulated Multi-Agent Flood algorithm

with malfunctioning RFID tags highlights the robustness of this approach of

using RFID chips for the indirect communication. Combined with the very

conservative assumptions for the direct communication proposed in Chapter

4 this offers a robust framework for a multi-agent system for the use in search

and rescue scenarios.

119

Chapter 5. Leaving the Grid

Figure 5.17.: Markings cutting off unexplored terrain

5.3. Optimizing the search time of the agents

The next step to improve the performance of the Multi-Agent Flood algorithm

would be to enable additional capabilities in the agents, as introduced by

the author in Blatt and Szczerbicka (2017). The current agents are kept

intentionally very simple and the behavior of them has not changed all that

much from the first variant of the algorithm presented in Chapter 3. Chapter

4 introduced a new communication model, thus giving the agents the potential

to store information about the sensed environment and saving this information

in an internal map. Due to the same changes the agents are also capable to

exchange this stored map information between themselves, although the data

was transmitted between two or more different agents, it was not really used

to improve the performance of the algorithm.

The current implementation of the algorithm offers a working solution, but

there is still room for improvement. For example the agents will try to ignore

already visited terrain which is already covered in markings, these markings

can prohibit them from scouting unexplored terrain which may be on the

other side of the markings.

The drawing in Figure 5.17 depicts the problem of already dropped RFID

chips cutting off yet unexplored terrain. This can lead to spaces that will be

ignored for a while, thus decreasing the efficiency of the algorithm. The agents

will prefer to move to unexplored terrain and will only move to space already

120

5.3. Optimizing the search time of the agents

covered with tags if they do not have any other choice.

5.3.1. Frontier-based exploration

The map data stored and exchanged by the agents should help the robots to

decide which part of the terrain is still unexplored and would yield the most

“new information” if an agent would visit it. This divide between explored and

unexplored terrain is called a frontier and the agents select a point on this

frontier to move towards to. By repeating this behavior, choosing a frontier

point, moving towards this position, and choosing a new point based on

the gathered data at the actual position the agent is able to explore the yet

unexplored terrain. This way of exploring the area is called frontier-based

exploration, c.f. [Yamauchi (1997, 1998)].

Algorithm 8 Frontier Detection

1: Frontier s ← ∅
2: for all v ∈ grid cells do
3: if v is frontier edge cell and not processed yet then
4: FrontierRegion = getFrontierNeighbors(v);
5: Frontiers = Frontiers

⋃

FrontierRegion;
6: end if
7: end for
8: return Frontiers

The map stored by the agents is saved as a two dimensional grid and the

state of each cell is either explored (or more specifically visited terrain or an

obstacle) or unexplored. Listing 8 shows how the frontiers are selected based

on the map data. The algorithm searches for unexplored cells which have

already explored cells as neighbors. These cells are called frontier edge cells.

If a frontier edge cell is detected all neighboring edge cells will be merged to

frontier region. These cells will be marked as processed, as the next iteration

will ignore already processed cells.

After creating a list of available frontiers an agent has to select the “right”

frontier as its next target destination. To achieve this the agent simply

calculates the distance from its actual position towards the different frontier

points. As shown in Listing 9.

Is the agent not able to reach its designated point in a specific time frame

then it will add this point to a list of unreachable destinations and compute a

121

Chapter 5. Leaving the Grid

Algorithm 9 Frontier Assignment

1: targetPoint = null;
2: for all FrontierRegion ∈ Frontiers do
3: for all v ∈ FrontierRegion do
4: if targetPoint == null or getDistance(v) < getDistance(targetPoint) then
5: targetPoint = v
6: end if
7: end for
8: end for
9: return targetPoint

new frontier point from the actual position.

This approach is also applicable to a multi-agent system without any prob-

lems. Each agent will use its own data to generate the list of frontier points

based on its own knowledge. As the agents share the map data between them-

selves, new frontier points will be available and former unexplored terrain may

suddenly be already explored. One of the main drawbacks of this method is

the amount of calculation that is needed to recalculate the frontier points as

soon as new information is available, as the algorithm will always iterate over

all cells stored in the map. This will lead to a higher computation runtime if

the maps are bigger.

Wavefront Frontier Detection

Frontiers exist only between known and unknown terrain. This enables an

optimization of the basic algorithm proposed by Yamauchi (1997). Instead

of iterating over the whole map the optimized version of the algorithm only

iterates over already explored terrain, reducing the number of cells which

have to be processed. This variant, proposed by Keidar and Kaminka (2012),

was named the Wavefront Frontier Detection algorithm (WFD). The newer

algorithm will find the frontier points in less time than the basic frontier-

based exploration algorithm, especially if the map is largely unexplored.

The algorithm will return again a list of all available frontier points. The MAF

agent will pick the point depending on two criteria: the euclidean distance

from the point to the robot and the amount of unexplored terrain surrounding

the frontier point.

Figure 5.18 depicts a list of different points to choose from and the point

122

5.3. Optimizing the search time of the agents

Figure 5.18.: List of available frontier points, with the chosen point in green and
discarded points in red

fulfilling the criteria in green. Although the green point matches the rules of

the algorithm it may result in a longer way than other points, in this example

the red point at the bottom of the picture. To counter this a time limit was

introduced, [Yamauchi (1998); Baranzadeh and Savkin (2016)]. If the time

limit is overstepped the agent will chose a new frontier point. This also helps

with navigational errors, which could trap the agent. The point that could not

be reached in time will be marked as unreachable and the WFD algorithm will

compute the list of points again, ignoring any point marked as unreachable.

The frontier-based algorithm helps the Multi-Agent Flood algorithm to

improve the exploration of the unknown terrain. Another point which can

be upgraded is the navigation strategy of the agents. Currently there is no

targeted movement by a single agent and the multiple agents do not really

cooperate with each other to really use the existing team to speed up the

search process. Each agent searches alone and the current cooperation exists

solely through the use of the markings on the floor. With the introduction

of the frontier points the agents are now able to move towards these points

in a targeted manner, instead of moving more or less randomly through the

terrain. The next point of improvement would be the navigation algorithm

used by the agents to travel to the selected frontier points.

123

Chapter 5. Leaving the Grid

5.3.2. Bug algorithms

Finding a way between two points is a known problem and many different

algorithms which solve this problem exist already. As long as there are no

dynamical changes in the environment the well-known A* algorithm may be

used to calculate a way from the agent towards the frontier point, as described

in Hart et al. (1968). The problem with this algorithm is that the agent may

have to recalculate the way multiple times. This will increase the computation

time as no information from a recently calculated way can simply be reused.

Another drawback is, as mentioned above, that the algorithm will only work in

a static environment. A change in the environment will force a recalculation

of the path. An improved version of the A* algorithm, the Jump Point Search

algorithm, Harabor et al. (2011), needs less computation time, but on the

other hand will work only on a grid.

Another way finding algorithm, that does not need as much computations,

was proposed in Lumelsky and Stepanov (1986). The authors proposed two

variants of the same algorithm, called Bug1 and Bug2. These algorithms are

continually planning instead of computing the way one time, thus allowing

for a dynamic environment.

The algorithm devised by Lumelsky et al. is rather simple. An agent starting

from one point trying to get to another point will move in a straight line

until the agent encounters an obstacle, which it will try to circle around and

continue on its way to the target destination.

Bug1

The behavior of the Bug1 is shown in Figure 5.19, c.f. (Rao et al., 1993, p. 12).

Starting from point S the agent will encounter the first obstacle at H1. It will

circle around the object clockwise and as soon as it reaches point H1 again

it will turn back and circle the obstacle counter clockwise until it reaches a

point which is closest to the destination T . This is the leave point L1. The

agent will resume its movement in direction to T until it will arrive at the

second obstacle. The same steps will be applied again until the agent will also

leave this object at the leave point L2.

124

5.3. Optimizing the search time of the agents

S

T

H1 L1

H2 L2

Figure 5.19.: Result of the Bug1 algorithm

Bug2

The second variant of the algorithm is an optimized version of the Bug1

algorithm called Bug2. In this algorithm the agent will only move on certain

segments of the path instead of circling the whole obstacle, resulting in less

time being used to get to the destination point.

This is shown in Figure 5.20, see also (Rao et al., 1993, p. 13). Two

additional distances will be calculated d(Hi), the distance from the entry point

of obstacle i, and d(Q). Where Q is a possible leave point Li. If d(Q) < d(Hi)

and the line QT does not cross obstacle i at the point Q, then Li = Q. The

resulting path that the agent will take is shorter than the path calculated by

Bug1.

As mentioned previously the Bug2 algorithm allows an agent to act rather

dynamically on its environment and does not really need a recalculation of

the whole path. This method, combined with the Wavefront Frontier Detection

algorithm, enables the use of the collected and shared map data. Agents

now identify frontier points, these being points that promise the most “new

information” while still being near enough for the agent to reach, and they are

now capable of reaching a specific point in a timely manner with the help of

the second variant of Lumelsky’s algorithm.

The last point that is still open for optimization is the cooperation between

the agents. As each agent will compute the list of available frontier points

125

Chapter 5. Leaving the Grid

S

TH1 L1 H2 L2

d(Q)

d(H)

Figure 5.20.: Result of the Bug2 algorithm

by itself it may happen that two or more agents will travel to the same spot.

This would decrease the coverage of the terrain, as only one agent is needed

to explore this position. At the same time the other agents could explore other

still unexplored points.

5.3.3. Improving the cooperation

By introducing the concept of frontier-based exploration and subsequently

the way finding through the use of the Bug2 algorithm, the map stored in

each agent is now being incorporated into the search and the return process

of each agent. The agents now only have to share their intentions or in this

case their next frontier point that they want to explore with other agents to

deter multiple agents to converge on the same spot.

This mechanism is added after the map transmission between two agents.

As explained in the previous chapter, as soon as two agents meet and certain

conditions are met a data exchange will be initiated. Additionally to the data

transmission the agents now also exchange their current targeted frontier

point. The agent checks if the currently targeted spot was already explored

by the other agent. If this is the case said agent initiates a recalculation of

the frontier points and chooses a new point. Afterwards the agents swap the

newly chosen points again. These points will get compared while keeping in

mind a radius r, which is based on the range of the sensors. If both agents

chose different points, then nothing happens. In the case that both chose the

126

5.3. Optimizing the search time of the agents

same spot to investigate, the agent with the lower range to this spot keeps

this destination and the other agent starts to select a new point. The listing

in Algorithm 10 describes how this mechanism works.

Algorithm 10 Coordination of the frontier points between the agents

1: if otherAgent.isInRange() then
2: exchangeMap(otherAgent);
3: if goal is explored then
4: frontierpoints = WFD();
5: goal = extractTargetPoint(frontierpoints);
6: end if
7: while goal is in range of otherAgent.getGoal() and otherA-

gent.getDistance() < this.getDistance() do
8: ignoreList.add(goal);
9: goal = extractTargetPoint(frontierpoints);

10: end while
11: end if

The agent that does not change its targeted point has chosen a spot that is

still unexplored, at least by this pair of robots, and the other agent will chose

another spot, thus increasing the diversity of the chosen targeted positions.

This approach does not rule out completely that two different agents target

the same spot, but it decreases the amount of agents converging on the same

position. This in turn increases the speed of the coverage of the terrain, as it

forces the agents to explore different parts of the map.

A slight adjustment that was also introduced, to speed up the initial coverage

of the agents, was a pre-selection of the first target points for the agents. This

facilitates a fast spread of the agents at the start of the search process, as

each agent is forced to explore a different part of the map right from the start.

Should one of these points not be reachable or located within an obstacle the

specific agent will switch the targeted position after a certain time frame has

passed.

5.3.4. Results of the modified algorithm

The simulation setup used for the computation of these results is the same

as before. The main difference this time was, that instead of simulating the

behavior of the changed agents with only one agent and adding an additional

127

Chapter 5. Leaving the Grid

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Factory

N
u

m
b

e
r

o
f

S
te

p
s

Algorithms

Original Bug BugDistributed

Figure 5.21.: Results of Frontier Detection adaption, Factory, 300×300 cells

agent each time until the number of thirty agents was reached, the simulation

was done for only thirty agents. The maps used in this simulation are shown

in Figures 4.5, 4.6, 4.7, and 4.8. These are respectively the House map,

the Office scenario, the Park environment, and the bigger Cubicles outline.

Additionally the agents were also tested on the smaller Factory map, shown

on the left of Figure 5.10.

The following charts shown in Figures 5.21 to 5.25 display the results

of these computations. Each diagram depicts the results of three different

algorithms. The grid-less algorithm without any adaptions (Original), the

modified algorithm as described above (Bug), and the adapted algorithm

using predefined starting points for a better initial distribution of the agents

(BugDistributed). The green bar shows the results of the original algorithm,

the blue bar illustrates the Bug algorithm, and the yellow bar delineates

the BugDistributed version. The Y-axis represents the number of steps each

algorithm needed until it terminated successfully. These step numbers are the

average of thirty iterations. Additionally Figures 5.21-5.25 include a T-capped

line which depicts the 99% confidence interval for the simulations.

As expected with the use of the Frontier Detection algorithm the adapted

versions of the Multi-Agent Flood algorithm could achieve a runtime speed

up in the Factory map, which can be seen in Figure 5.21. The Bug algorithm

needs only about the half of the runtime of the original algorithm. Furthermore

128

5.3. Optimizing the search time of the agents

0

10000

20000

30000

40000

50000

60000

70000

House

N
u

m
b

e
r

o
f

S
te

p
s

Algorithms

Original Bug BugDistributed

Figure 5.22.: Results of Frontier Detection adaption, House, 500×500 cells

0

20000

40000

60000

80000

100000

120000

Office

N
u

m
b

e
r

o
f

S
te

p
s

Algorithms

Original Bug BugDistributed

Figure 5.23.: Results of Frontier Detection adaption, Office, 500×500 cells

129

Chapter 5. Leaving the Grid

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Park

N
u

m
b

e
r

o
f

S
te

p
s

Algorithms

Original Bug BugDistributed

Figure 5.24.: Results of Frontier Detection adaption, Park, 500×500 cells

0

200000

400000

600000

800000

1000000

1200000

Cubicles

N
u

m
b

e
r

o
f

S
te

p
s

Algorithms

Original Bug BugDistributed

Figure 5.25.: Results of Frontier Detection adaption, Cubicles, 1000×1000 cells

130

5.3. Optimizing the search time of the agents

the worst case of the Bug variant needed only about as much steps as the

best case of the original version. The BugDistributed algorithm had about the

same run time as the original algorithm, but the variance of these simulations

is a little bit higher.

The results of the House scenario also show, Figure 5.22 a speed up of the

newer algorithms. In this case both newer variants offer a better runtime

speed up then the original algorithm. The Bug and BugDistributed algorithms

need only around half the number of steps that the original algorithm needed

to finish the simulation. The variance exhibited by the newer versions of

the algorithm is also greater in this test case, then the variance of the older

version of the algorithm.

Figure 5.24 on the other hand illustrates that the original algorithm is

as fast as the BugDistributed variant in the case of the Park map. The Bug

algorithm has an even worse runtime than the other two algorithms. The

computation using the last 500×500 map, Office, turns the result of the

House simulation on its head, as the original algorithm is the fastest, nearly

using only half the steps that the Bug version needed. Although the best

cases of each algorithm needed about the same steps, 20815 and 21765 steps

for the Bug and BugDistributed algorithm respectively, and 23974 steps for

the original algorithm.

This outcome is also true for the bigger map, Cubicles, as can be seen

in Figure 5.25. The original algorithm is the fastest in this case. Although

only half the simulations of the older algorithm finished in time, only one

simulation of thirty of the BugDistributed algorithm was able to terminate

successfully. All other simulations run into the step number termination cap

of 1,000,000 steps.

To investigate these results further an additional simulation was started

on the Cubicles map. This time the number of agents was increased to 45,

leaving the other parameters the same. The diagram in Figure 5.26 shows

the best case results from the different simulations in comparison with the

previous results.

The colors are the same as in the previous diagrams, the green bar repre-

sents the grid-less, Original, algorithm, the blue bar the Bug algorithm, and

the yellow bar the BugDistributed algorithm. On the left hand of the chart are

the results using 30 agents and on the right hand the results using 45 agents

131

Chapter 5. Leaving the Grid

0

200000

400000

600000

800000

1000000

1200000

30 Agents 45 Agents

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Original Bug BugDistributed

Figure 5.26.: Best case comparison between 30 and 45 agents, Cubicles,
1000×1000 cells

are depicted. The main difference between this chart and the previous dia-

grams is, that it compares the best cases, meaning the results which needed

the least steps. This difference in illustration was chosen, as only about

3.3% to 6.6% of the simulations of the newer algorithms finished successfully,

while about 96.6% of the simulated runs of the original algorithm finished

successfully.

As expected the additional number of agents yielded a better result for each

variant of the algorithm. Even if most of the simulations could not finish either

in time or with not enough victims found, the simulations which were able to

finish successfully did so while using only about 200.000 to 300.000 steps

compared to the previous simulation. The best case from the simulation using

only 30 agents needed about 800.000 steps. Even the Original algorithm was

able to offer a veritable speed up while using 50% more agents: the results

dropped from about 450.000 steps to 250.000 steps.

5.3.5. Summary of the Results

The simulations using the newer and adapted algorithms have shown that the

changes made to the Multi-Agent Flood algorithm are working, especially if

there are enough agents available. The inherent drawback of these changes

132

5.4. Changing the size of the agents

is that the Frontier Detection algorithm will force the agents to spread out.

This is on one hand the desired behavior, as the agents will be able to cover

more ground this way, without exploring the same area again and again. On

the other hand this also introduces a new drawback due to the conservative

restrictions applied to the direct communication model. The agents have

to create a line-of-sight connection between themselves and need to be in

a specific range to initiate a direct communication. The increased spread

of the agents will work against this and in turn decrease the cooperation

and communication between the agents. The results on the House map,

Figure 5.22, show that if there are enough agents available to often enable

direct communication between the various agents, these changes lead to an

impressive speed up. But if the map is too big and the agents are too far away

from each other no communication between the agents may be possible, thus

reducing the cooperation and decreasing the speed up or leading to an even

worse result, as depicted in Figure 5.25.

Adding further agents yields a better result, but the number of agents has

to be increased a lot, to turnout a constant improvement. Using 45 instead of

30 agents has shown improvements, compare Figure 5.26, but not enough to

offer a the same impressive result that can be seen on the House map.

The introduction of these adaptions to the Multi-Agent Flood algorithm

changed the cost-value ratio that additional agents offer. This also in turn

changed the ratio of the agents towards the size of the area. Previous sim-

ulations in Chapter 5 show that around thirty agents are enough, even in

the 1000×1000 map, to offer usable results. By using the Frontier Detection

algorithm the number of agents has to be increased, especially on the bigger

maps, to gain better results reliably.

5.4. Changing the size of the agents

The next step to introduce increased realism to the agents is to allow them

to have a specific size. Changing the Multi-Agent Flood algorithm to include

variables for the size of possible robots allows the scenarios to reflect the scale

of different areas.

The change to the size of the agents also includes some changes in the

behavior and in the way the sensors are modeled. Currently an agent only

133

Chapter 5. Leaving the Grid

sees the nearest environment with its sensors and will only mark this seen

environment in its stored map. In the first iteration of the Multi-Agent Flood

algorithm, proposed in Chapter 3, the agents have a sensor range of one cell.

Meaning that the agent can only see the surrounding cells of the current

position and can only act on this information. Due to the changes to the

algorithm, and inherently the agents, in Chapter 5 this sensor range was

converted but not really extended. In current version of the algorithm the

agents also can only act on the surrounding environment.

Another development which is introduced due to this change is the possi-

bility to stagger the start of the agents in the starting point. As the starting

point is needed for the map merging algorithm the agents can not start from

different points. There are two reasons for the introduction of a staggered

start from the same point: first, if an agent starts at a later time, it can use the

information about the terrain already explored by its predecessors; second, it

removes the abstraction that multiple agents can exist in the same place.

5.4.1. Modifications to the agents

Introducing a size is rather straight forward. Each agent now has a specific

length and width in the algorithm. This in turn means that the movement

of the agents had to be modified and the scan range for walls in front of the

agents has been expanded, based on the chosen size of the agents. If an agent

encounters a wall in front of it, it stops its movement and the agent backs

up for some steps. This reverse movement takes some steps, to ensure that

the distance between the obstacle and the agent is big enough to allow the

agent a successful turn. To prevent a loop in the algorithm and a continuous

cycle between moving towards the wall and backing up, the reverse movement

includes a random angle.

The increased sensor range is implemented by using the line drawing

algorithm presented in Bresenham (1965) and the midpoint circle algorithm,

c.f. Van Aken (1984). The current position of the agent is the center of the

circle with the sensor range as the radius. The midpoint circle algorithm

rasterizes the circle using the center and the radius and returns a set of

points. This set of points is used with the line drawing algorithm to scan the

surrounding area around the agent by drawing a line from the agent to each of

134

5.4. Changing the size of the agents

0

10000

20000

30000

40000

50000

60000

70000

20 21 22 23 24 25 26 27 28 29 30

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 5.27.: Results of agent size adaption, House, 500×500 cells

the points contained in the set. The line is drawn from the center of the circle

and stops if either the end point is reached or an obstacle is encountered.

This behavior is similar to a laser range finder and allows for a variable sensor

range.

5.4.2. Simulation of the algorithm with bigger agents

The revised algorithm was simulated with a size of 3×3 for the agents, instead

of a size of 1×1 for the previous variants. Additionally a scan range of 12

instead of 1 was used. The test cases for this simulation are the same as

previously used: House, Office, Park (each with a size of 500×500 cells), and

Cubicles (1000×1000 cells). The number of agents ranged from twenty to

thirty agents in the different configurations.

The charts depicted in Figures 5.27 to 5.30 present the results of the

simulations. As usual the X-axis represents the number of agents used in

the different configurations and the Y-axis shows the number of steps. Each

point is the resulting average of thirty simulations.

The results of all four diagrams show that the modified algorithm works

and the number of steps that are needed for a successful termination of the

algorithm (as soon as 95% of the victims are found and 95% of the terrain

is explored) is far lower than before. The greater sensor range allows for a

135

Chapter 5. Leaving the Grid

0

10000

20000

30000

40000

50000

60000

70000

20 21 22 23 24 25 26 27 28 29 30

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 5.28.: Results of agent size adaption, Office, 500×500 cells

0

5000

10000

15000

20000

25000

30000

35000

40000

20 21 22 23 24 25 26 27 28 29 30

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 5.29.: Results of agent size adaption, Park, 500×500 cells

136

5.4. Changing the size of the agents

0

100000

200000

300000

400000

500000

600000

700000

20 21 22 23 24 25 26 27 28 29 30

N
u

m
b

e
r

o
f

S
te

p
s

Number of Agents

Figure 5.30.: Results of agent size adaption, Cubicles, 1000×1000 cells

faster exploration of the terrain, yielding better results in all four cases. This

is especially the case in diagram 5.29, displaying the results from the Park

test case (which is introduced in Figure 4.7). Comparing the new results with

the results of the former iteration of the algorithm signifies the advantage of

the modifications: Figure 5.24 shows that the BugDistributed algorithm needs

about 30.000 steps to finish the search process successfully; in turn the

outcome of the newer simulations yield an average result of around 14.000

steps for a successful termination of the modified algorithm. The modifications

halved the number of steps despite the size of the changed agents, as the

larger agents may not reach into all cracks and crannies available on this test

case.

5.4.3. Comparison with Rendezvous

The modifications presented in this section make the Multi-Agent Flood al-

gorithm in some ways similar to the Rendezvous algorithm, introduced in

Chapter 2. The main difference is still the different way how the communica-

tion back to the base is achieved. The Rendezvous algorithm uses the multiple

agents to create some sort of relay network, calculating specific points in the

already explored terrain which would offer the best position for a relay agent.

If anything of interest is found by an exploring agent, this agent will try to

137

Chapter 5. Leaving the Grid

contact the next relay agent, which in turn will try to use the existing network

of relay agents to transfer the information back to the base.

This different approach also reflects the way how the Rendezvous agents

are able to communicate. The MAF agents face two specific constraints before

a direct communication channel is allowed: first, to have a line of sight con-

nection, and, second, to be in a specific range of each other. The Rendezvous

algorithm uses “. . . a standard path loss model with a wall attenuation fac-

tor. . . ”, c.f. (De Hoog et al., 2010, p. 6) and Bahl and Padmanabhan (2000).

With the use of this method the agents are able to communicate through walls

combined with a loss of communication range.

The comparison between the two algorithm was done on the map illustrated

in Figure 5.31. The map also includes ten points of interest for the MAF

algorithm to find. The Rendezvous algorithm will ignore these points and will

simply try to explore the terrain. Each algorithm used four agents, whereas

the agents of the MAF algorithm were changed to resemble the Rendezvous

agents. This was done by increasing the sensor range and increasing the

direct communication range, although without removing the line of sight

restriction. To compare the two different algorithms the number of steps each

algorithm took to finish the exploration was measured. For each simulator

the definition of a step is the same: each agent can move once in the terrain

during one step. The results of the simulation of the Rendezvous algorithm

was taken from the work published in De Hoog et al. (2010), as the Multi-

Robot Exploration Simulator [Spirin et al. (2014)], introduced in Chapter 2,

did not work reliably. Especially the number of agents could not be increased

without problems and the simulator stops the simulation after 3000 steps.

Due to this restriction other exhaustive simulations were not really possible.

Additionally further analysis of the source code revealed that a Rendezvous

agent tries to move ten cells in a single step compared to the speed of a MAF

agent, which tries to move one cell in a single step. As soon as the sensor

range of the Rendezvous agents is turned down to the same level as the MAF

agents the simulation will terminate unsuccessfully as the cap of 3000 steps

is reached without exploring 98% of the terrain.

The chart in Figure 5.32 shows the result of the simulation. The X-axis

represents the two different algorithms and the Y-axis depicts the number

of steps it took the algorithms to either explore 98% of the environment

138

5.4. Changing the size of the agents

Figure 5.31.: Scenario for the MAF and Rendezvous comparison

or reach the respective cap of the simulation run. The cap for the MAF

algorithm was set at 480.000 steps (the length multiplied by the width of

the scenario), while the MRESim terminates the simulation after 3000 steps.

The green bar depicting the Multi-Agent Flood algorithm shows the mean of

30 simulations. The blue bar shows the result of the Rendezvous algorithm,

taken from (De Hoog et al., 2010, Fig. 6), as a comparable simulation using

the MRESim was not possible. This publication was also not very clear about

the number of simulations that were calculated to reach this result. Due to

these restrictions the verification of the MAF algorithm using the MRESim

was not really possible.

Figure 5.32 illustrating the results of the modified MAF agents shows that a

simple comparison between the two algorithm is not really straight forward.

The results demonstrate that the Rendezvous algorithm needed fewer steps

than the MAF algorithm. The main reason for this big discrepancy is the

ability of the Rendezvous algorithm to communicate through walls and the

need of the MAF agents to return to the base after a point of interest was found.

Additionally the distance crossed during a step of a single Rendezvous agent

was ten times the length of a single MAF agent. The Rendezvous algorithm

ignored the points of interest and only tried to achieve a 98% exploration of

the terrain.

Although the comparison was possible it is not quite as clear as the data

139

Chapter 5. Leaving the Grid

0

2000

4000

6000

8000

10000

12000

4

N
u

m
b

e
r
o

f
S
te

p
s

Number of Agents

MAF Rendezvous

Figure 5.32.: Results of the comparison between MAF and Rendezvous

suggests. The different approaches still vary in the end. On the other hand the

Multi-Agent Flood algorithm would also benefit from the direct communication

model used by the Rendezvous algorithm, instead of simply restricting the

transmission by line of sight connection. Another point is the robustness

of the algorithms. If the agents of the Rendezvous algorithm are not able to

communicate directly they will start to move towards each other to exchange

messages using a line-of-sight connection.

5.5. Chapter Summary

The previous chapters in this work introduced the first concepts of the Multi-

Agent Flood algorithm and offered some steps to reduce the time needed to

explore the unknown terrain and to find as much victims as possible in this

time frame. The modifications proposed in this chapter, Chapter 5, tried not

to improve the search time of the algorithm but tried to adapt the algorithm

for the use with real hardware.

The first step in this direction was to remove the grid abstraction introduced

in the first version of the MAF algorithm. Additionally another way to store

the markings had to be introduced and the concept of a mesh of semi-passive

RFID chips was conceived for the dispersion of markings that are read and

140

5.5. Chapter Summary

Name Goal
Communi-
cation

Movement
Information
back to HQ

Maintain-
ability

Size

Ants PoIs Indirect Grid-based ✗ ✗ ✗

Brick&Mortar Explore Indirect Grid-based ✗ ✗ ✗

HybridExploration Explore Indirect Grid-based ✗ ✗ ✗

Rendezvous Explore Direct Grid-less ✓ ✗ ✗

MAF Both Both Grid-less ✓ ✓ ✓

Table 5.1.: Comparison of the different algorithms, MAF agents now move in a grid-
less environment and a size can be specified

write able. Simulations did show that the use of RFID chips is a viable

alternative for the grid abstraction, which is also quite robust, depending on

the rate of dispersal of the chips in the environment.

The next change to the algorithm was the addition of the frontier-based

exploration concept to the agents. With the help of this concept the agents are

now able to use the collected map data more efficiently as they are now able to

choose specific spots to explore instead of exploring the area randomly. This

change also introduced a more wide spread movement pattern of the agents,

which turned out to be a disadvantage towards the direct communication due

to the range restrictions introduced in Chapter 4. As a consequence more

agents are needed to reap all benefits offered by the frontier-based exploration

approach.

The last change introduced in this chapter was the modification of the agent

size. Allowing for an increased size of the agent grants the possibility of more

realism. This modification also included a more variable sensor range.

All of the alterations introduced in this chapter allow for an adaption of the

Multi-Agent Flood algorithm on real hardware agents. The removal of the grid

abstraction and the addition of a variable size of the agents eliminated the

main points which made its application unfeasible.

The comparison with the Rendezvous algorithm offered some additional

insights how the MAF algorithm could be further improved. Implementing

a better model for the radio signals used during the direct communication

would remove the line of sight restriction from the MAF algorithm. Also the

way the frontier points are chosen could be evaluated, so that the agents

choose more beneficial points, which in turn may increase the knowledge

about the unknown terrain.

141

Chapter 5. Leaving the Grid

Table 5.1 depicts the changes to the MAF algorithm: instead of a grid-based

movement the agents are now able to move in a grid-less environment, and

the size of the agents is now configurable.

Each multi-agent algorithm for search & rescue applications should follow

the points introduced at the end of Chapter 2:

1. The agents should be able to operate in extreme terrain and operating

conditions

2. The algorithm has to function in GPS- and wireless-denied environments

3. The agents have to act autonomously without any help of a human

teleoperator

4. The algorithm should find as many victims as possible in the shortest

time frame

The Multi-Agent Flood algorithm is able to operate in extreme terrain and

operating conditions, as this is mostly dependent on the hardware used.

The model of layering communication allows for a robust communication

channel. This in turn allows the algorithm to keep working even if the direct

communication using radio signals is not available. The algorithm does also

not rely on any additional help from human team members for the search

process. The algorithm is also the only one that incorporates a possible

maintenance of its agents and allows for a configuration of the agent size.

142

CHAPTER 6.

CONCLUSION

6.1. Summary of the Thesis

Advances in robotics allow for an ever increasing way on how to use these

robots to help society in numerous ways. From automating whole factories

and industries to performing medical surgery on its own without any human

intervention. The point of research would be on how robots can aid and help

further. This work introduced a new concept of a multi-agent system of robots

for the use in search and rescue scenarios.

The first steps of this concept were the creation of a new algorithm for a

multi-agent system, which is able offer a decentralized control structure for

multiple agents. As this algorithm was intended for a search and rescue

scenario specific constrains had to be kept in mind. One of the main con-

straints which severely limit the way on how the algorithm can work is the

complete lack of a global positioning system. This means that the various

agents can not really specify at which point in the scenario they are. They

can only rely on their own sensors to gather enough information to pinpoint

their location. The second constraint that hinders the agents is the way how

they can communicate with each other. Due to the same reason that a GPS is

not available a communication via radio signals may not always be possible

in a search and rescue scenario. This is a huge drawback as a multi-agent

system relies heavily on the possibility of communication between its agents,

as without any communication not cooperation is possible and each agent

would work on its own.

The Multi-Agent Flood algorithm proposed in Chapter 3 of this work ad-

dresses these two constraints and offers a multi-agent system that is able

to find possible victims in unknown terrain without relying on a global posi-

143

Chapter 6. Conclusion

tioning system and without communicating via radio signals. As direct data

exchange is not possible between the different agents, each agent uses the

concept of stygmergy which can also be seen in nature, as it is also used

by ants to communicate with each other and the rest of the hive. Ants will

spray pheromone marks in the environment which other ants can perceive

and act upon. Using this concept the agents are able to leave markings in

the environment, in this case information about the current known distance

to the starting point, which can be used by other agents to find the current

known shortest path back from this point to the headquarter. By using this

means of indirect communication the agents have no need of pinpointing their

exact location in the terrain and they are able to communicate with each other,

resulting in a cooperation and a working multi-agent system. This system is

able to find points of interest in an unknown terrain and relay the information

about the found points of interest back to the starting point, as the rest of

the agents are still searching. This allows a possible human rescue team to

start the rescue of victims in parallel to the still ongoing search process of

the agents. The ability to always find the currently shortest known path back

to the base also allows for an easy maintenance of the various robots. For

example if the battery charge of one agent is getting low, it can decide to head

back to the base in time to switch the battery or recharge it.

The next improvement to the performance of the Multi-Agent Flood algorithm

is to take a look at the constraints of the direct communication. Sending

radio signals from one agent to another is usually not a foolproof way to

initiate a direct data transfer between two agents. Various protocols exist to

facilitate this exchange of information using wireless communication, but in

unknown terrain there are just too many variables to rely only on this kind of

communication. For example an agent in an urban scenario, moving through

a broken down building can not depend on this to be able to cooperate with

the other agents. Thus wireless data transmission is not ruled out from

the start but for the agents to use it some very conservative assumptions

have to be made. The first presumption which has to be stated is that

direct communication between to agents is only reliably working as long as

a line of sight between these two agents exists. If this is the case one can

assume that the radio signals are not hindered by either one of the following:

absorption, refraction, reflection, or other occurrences that will distort the

144

6.1. Summary of the Thesis

wave and essentially will prevent the fault free sending of information. The

second assumption, besides the line of sight between two agents, is the range

between said agents. An error free data transmission can be assumed if the

agents are both in a specific range of each other, coupled with a line of sight

this should provide an accurate and precise connection between those two

agents using radio signals. Using these assumptions allows the merge of

two communication models: indirect communication using markings on the

ground and direct communication via radio signals. This in turn enables

the agents of the Multi-Agent Flood algorithm to store a map of the sensed

environment and exchange this map via direct communication as soon as the

requirements for the data transmission are met. If direct communication is

not possible the agents are still able to use the markings on the ground to find

their way back to the starting point to share the information about any found

points of interest. The additional possibility of sending data from one agent

to another creates a speed up of the search time, which in turn allows for a

faster recovery of any possible victims found by the agents. Another advantage

of this approach is, that it creates a robust communication framework, which

will use radio signals as far as it is possible and will gracefully degrade to rely

on markings on the floor to disseminate information between the agents and

to allow cooperation for the multi-agent system to keep working.

The first variant of the algorithm introduced in this work was based on

some abstractions to simplify the simulation and the creation of the first

version of this concept. These abstractions need to be removed, so that this

method is applicable to real world robots. For this to work the algorithm

needs a way to store the markings on the ground for the indirect exchange

of information in an other way. The current variant of the algorithm to this

date used the cells of the grid for the movement of the agents and to store

the markings. Decoupling the movement from the grid is rather easy to do,

simply add a turning angle to each agent and give each of them a directional

vector, which describes the movement direction. The markings on the ground

were replaced by dropped RFID chips. Each agent will now drop a RFID

tag at specific intervals, creating a breadcrumb trail, which allows the agent

to follow it back to the starting point. As there are multiple agents moving

through the terrain each of those breadcrumb trails will be combined into a

loose mesh of semi-passive RFID tags. Each of those chips is able to store

145

Chapter 6. Conclusion

the distance measured from this point by the robot who dropped it back to

the base, or if another robot visits the chip by an updated number, according

to the algorithm. Simulations have shown that this approach is a viable

proposal to replace the grid abstraction and allows for an adaption to “real

world” problems. Furthermore the reliability of the dispersed RFID tags was

evaluated. The environment could introduce faulty readings or chips could

malfunction in general, disrupting the indirect communication part of the

algorithm, which also is the backbone of the cooperation between the agents,

as the direct communication part is seen only as a benefit and allows for

additional information exchange.

With the creation of a robust communication model, using direct and

indirect methods of data transmission between the agents, the agents are now

able to exchange map information about the already explored environment.

This in turn enables the agents to create more informed decisions about

which parts of the map should be explored next to maximise the gain of “new

information” from the hitherto unknown terrain. The introduction of the

frontier-based exploration in Chapter 5 of this thesis enables the agents to

calculate frontier points. These points offer target destination for the agents as

they are exploring the scenario and promise the most gain in points of newly

explored terrain. Coupling this navigation algorithm with a dynamic way

finding algorithm allows the agents to reach these frontier points faster and

enables the whole Multi-Agent Flood algorithm to spread the agents into more

diverse parts of the yet unexplored parts of the map. This in turn also offers a

speed up of the whole search process, as the various agents are now explicitly

targeting unexplored terrain and further try to ignore already visited terrain.

The use of the frontier points gained from the frontier-based exploration also

enables the agents to share target points with each other as they are in range

for direct communication. As soon as the agents are able to compare their

target points they can now decide whether to keep the assigned target point

or, if another agent is nearer this designated point, to recalculate the points

and chose another target to explore. This way the agents can separate further

and exploration is more evenly divided between the various agents.

Other adaptions towards the use with real hardware include the imple-

mentation of a specific size for the agents and more realistic variable sensor

range. A further comparison with another existing algorithm showed that

146

6.2. Future Work

there are still possibilities for performance optimizations available, even if the

two algorithms differ in the way their mission was accomplished.

6.2. Future Work

The concepts and the algorithm proposed in this thesis should be seen as a

base for a working multi-agent system for search and rescue scenarios.

Every method used in the Multi-Agent Flood algorithm was specifically

chosen to keep the agents as simple as possible. Current search and rescue

robots are moving away from specialised hardware, which made the first vari-

ants of these robots very expensive and hard to maintain. As a consequence a

controlling algorithm should not rely on special hardware, in particular if the

controlling algorithm is based on a multi-agent system which needs a signifi-

cant number of agents to be able to function. The ingrained simplicity and

modularity of the agents also allows for the incorporation of future algorithms,

that may offer more advantages or alternative ways of achieving things, for

example other navigation algorithms.

The concept of layered communication offers the advantage of a very robust

communication model, as the graceful degradation inherent in this method

allows the algorithm to still finish the exploration even if one part of the

possible data exchange between agents is not available anymore. Due to the

very conservative restrictions applied to the direct part of the communication,

there are still ways to improve this algorithm. For example new research or

algorithms could offer a more reliable way for the direct communication to

work. In this case the constraints placed on the Multi-Agent Flood agents

could be lightened or even removed. Using more sophisticated radio signal

models allows the agents to communicate through walls for example, removing

the line of sight restriction. This would offer a tremendous advantage, as the

agents could create ad-hoc networks at longer ranges. The resulting speed

up of the data exchange would allow for an even faster exploration of the

terrain and it would also allow the agents to keep in touch with the home

base. This in turn could also remove the need to return to the base to forward

the information about any victims found in the terrain.

Chapter 5 introduced algorithms and methods to enhance the intelligence

of the agents. In the first few variants of the Multi-Agent Flood algorithm

147

Chapter 6. Conclusion

the agents were kept really simple, just being able to react to the immediate

environment. With the help of the Wavefront Frontier Detection algorithm

the agents are now able to specify points in the map which will offer the

uncover the most unexplored terrain. In addition, as the agents will now

target a specific point, they are now able to use the myriad variants of way

finding algorithms. Other algorithms may offer additional advantages, by

simply computing the optimal path between the current location and the

targeted point. The map data created and stored by the agents can also be

used for other things. With the use of additional sensors the robots could

enhance the stored data and this in turn would allow the robots create a

more detailed map, which would offer more data for other algorithms to use.

These additional sensors could also lead to a faster exploration and faster

recognition of victims in the surrounding environment.

Another part, which invites further research is the use of the MAF algorithm

in a dynamic environment. How would the agents handle disappearing walls

or react to newly created opening. The current model assumes victims that

are remaining in their place without moving around. What would happen if

victims are able to move, especially if they may see a searching robot before

the robot could sense them, or on the other hand that the victim unwittingly

escapes the searching agent?

Last but not least further advances in the RFID technology could decrease

the size of the active chips. By switching from semi-passive chips to active

chips the dispersed tags in the environment could form an ad-hoc network

of its own. This would increase the communication capability of the whole

system. The robots would now be able to disperse a whole network step by

step in the already explored terrain. Depending on the throughput of this

network the human rescue team could receive a live sensor stream from each

of the agents in range of the RFID ad-hoc network, allowing the team members

to get a immediate update on the found victims. This would enable the rescue

team to start an already informed rescue process.

A dispersed ad-hoc network could also offer victims who are still able to

move by themselves and who are in possession of a mobile phone to access

this network and call for aid or receive detailed instructions from the rescue

team were they can reach the nearest first aid station.

In the end the concepts presented in this thesis are also applicable in

148

6.2. Future Work

other scenarios. For example the agents could be used to help to simply find

points of interest in an area where a wireless network will not work reliably.

Changing the sensor layout would also allow the agents to search for mines

in a minefield for example.

149

APPENDIX A.

REFERENCES

Andonian, S., Z. Okeke, D. A. Okeke, A. Rastinehad, B. A. VanderBrink,

L. Richstone, and B. R. Lee

2008. Device failures associated with patient injuries during robot-assisted

laparoscopic surgeries: a comprehensive review of FDA MAUDE database.

Canadian Journal of Urology, 15(1):3912.

ANSI/IEEE

1991. Standard Glossary of Software Engineering Terminology (ANSI). The

Institute of Electrical and Electronics Engineers Inc.

Baglietto, M., G. Cannata, F. Capezio, A. Grosso, and A. Sgorbissa

2009. A multi-robot coordination system based on RFID technology. In

International Conference on Advanced Robotics, Pp. 1–6. IEEE.

Bahl, P. and V. N. Padmanabhan

2000. Radar: An in-building rf-based user location and tracking system. In

INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings, volume 2, Pp. 775–784. IEEE.

Baranzadeh, A. and A. V. Savkin

2016. A distributed control algorithm for area search by a multi-robot team.

Robotica, Pp. 1–21.

Becker, M., F. Blatt, and H. Szczerbicka

2013. A multi-agent flooding algorithm for search and rescue operations in

unknown terrain. In Multiagent System Technologies, Pp. 19–28. Springer.

Becker, M., F. Blatt, and H. Szczerbicka

2014. A concept of layered robust communication between robots in

151

Appendix A. References

multi-agent search & rescue scenarios. In IEEE/ACM 18th International

Symposium on Distributed Simulation and Real Time Applications (DS-RT),

Pp. 175–180. IEEE.

Becker, M., S. Schaust, and E. Wittmann

2007. Performance of routing protocols for real wireless sensor networks. In

Proceedings of the 10th International Symposium on Performance Evaluation

of Computer and Telecommunication Systems. Citeseer.

Bellman, R.

1972. Dynamic Programming. Princeton, New Jersey: Princeton University

Press.

Birk, A.

2004. Fast robot prototyping with the cubesystem. In IEEE International

Conference on Robotics and Automation, 2004. Proceedings. ICRA’04., vol-

ume 5, Pp. 5177–5182. IEEE.

Birk, A., S. Markov, I. Delchev, and K. Pathak

2006a. Autonomous rescue operations on the IUB rugbot. In IEEE Inter-

national Workshop on Safety, Security, and Rescue Robotics (SSRR). IEEE

Press. Citeseer.

Birk, A., K. Pathak, S. Schwertfeger, and W. Chonnaparamutt

2006b. The IUB Rugbot: an intelligent, rugged mobile robot for search and

rescue operations. In IEEE International Workshop on Safety, Security, and

Rescue Robotics (SSRR). IEEE Press.

Blatt, F., M. Becker, and H. Szczerbicka

2015. Optimizing the exploration efficiency of autonomous search and

rescue agents using a concept of layered robust communication. In IEEE

20th Conference on Emerging Technologies & Factory Automation (ETFA),

Pp. 1–6. IEEE.

Blatt, F. and H. Szczerbicka

2016. Realisation of navigation concepts for the multi-agent flood algorithm

for search & rescue scenarios using rfid tags. In IEEE/ACM 20th Inter-

national Symposium on Distributed Simulation and Real Time Applications

(DS-RT), Pp. 112–115. IEEE.

152

Blatt, F. and H. Szczerbicka

2017. Combining the multi-agent flood algorithm with frontier-based ex-

ploration in search & rescue applications. In International Symposium

on Performance Evaluation of Computer and Telecommunication Systems

(SPECTS), 2017. IEEE.

Bresenham, J. E.

1965. Algorithm for computer control of a digital plotter. IBM Systems

journal, 4(1):25–30.

Cha, J.-R. and J.-H. Kim

2005. Novel anti-collision algorithms for fast object identification in rfid

system. In Parallel and Distributed Systems, 2005. Proceedings. 11th Inter-

national Conference on, volume 2, Pp. 63–67. IEEE.

Cheng, T. and L. Jin

2007. Analysis and simulation of rfid anti-collision algorithms. In Advanced

Communication Technology, The 9th International Conference on, volume 1,

Pp. 697–701. IEEE.

Cherkassky, B. V., A. V. Goldberg, and T. Radzik

1996. Shortest paths algorithms: Theory and experimental evaluation.

Mathematical programming, 73(2):129–174.

Chinnaiah, M., S. Dubey, L. Vineela, K. Bindu, and E. B. Babu

2016. An unveiling path planning algorithm with minimal sensing using

embedded based robots. In 2016 International Conference on Advances in

Human Machine Interaction (HMI), Pp. 1–5. IEEE.

Crespi, A., A. Badertscher, A. Guignard, and A. J. Ijspeert

2005. Amphibot i: an amphibious snake-like robot. Robotics and Au-

tonomous Systems, 50(4):163–175.

Davids, A.

2002. Urban search and rescue robots: from tragedy to technology. IEEE

Intelligent Systems, 17(2):81–83.

De Cubber, G., D. Doroftei, D. Serrano, K. Chintamani, R. Sabino, and

S. Ourevitch

2013a. The eu-icarus project: developing assistive robotic tools for search

153

Appendix A. References

and rescue operations. In 2013 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR), Pp. 1–4. IEEE.

De Cubber, G., D. Serrano, K. Berns, K. Chintamani, R. Sabino, S. Ourevitch,

D. Doroftei, C. Armbrust, T. Flamma, and Y. Baudoin

2013b. Search and rescue robots developed by the european icarus project.

In 7th Int. Workshop on Robotics for Risky Environments. Citeseer.

De Hoog, J., S. Cameron, and A. Visser

2010. Selection of rendezvous points for multi-robot exploration in dynamic

environments. In International Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS).

Dijkstra, E. W.

1968. Cooperating sequential processes. In The origin of concurrent pro-

gramming, Pp. 65–138. Springer.

Dorigo, M. and L. Gambardella

1997. Ant colony system: A cooperative learning approach to the traveling

salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–

66.

Dorigo, M., V. Maniezzo, and A. Colorni

1996. Ant system: optimization by a colony of cooperating agents.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

26(1):29–41.

Durrant-Whyte, H. and T. Bailey

2006. Simultaneous localization and mapping: part i. Robotics & Automa-

tion Magazine, 13(2):99–110.

Ferranti, E., N. Trigoni, and M. Levene

2007. Brick & Mortar: an on-line multi-agent exploration algorithm. In

IEEE International Conference on Robotics and Automation, Pp. 761–767.

IEEE.

Ferranti, E., N. Trigoni, and M. Levene

2009. Rapid exploration of unknown areas through dynamic deployment of

154

mobile and stationary sensor nodes. Autonomous Agents and Multi-Agent

Systems, 19(2):210–243.

Grassé, P.-P.

1959. La reconstruction du nid et les coordinations interindividuelles chez

Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Es-

sai d’interprétation du comportement des termites constructeurs. Insectes

Sociaux, 6(1):41–80.

Grisetti, G., R. Kümmerle, C. Stachniss, and W. Burgard

2010. A tutorial on graph-based slam. IEEE Intelligent Transportation

Systems Magazine, 2(4):31–43.

Harabor, D. D., A. Grastien, et al.

2011. Online graph pruning for pathfinding on grid maps. In AAAI.

Hart, P. E., N. J. Nilsson, and B. Raphael

1968. A formal basis for the heuristic determination of minimum cost paths.

IEEE transactions on Systems Science and Cybernetics, 4(2):100–107.

Howard, A., L. Parker, and G. Sukhatme

2006. Experiments with a large heterogeneous mobile robot team: Explo-

ration, mapping, deployment and detection. The International Journal of

Robotics Research, 25(5-6):431–447.

Icking, C., T. Kamphans, R. Klein, and E. Langetepe

2005. Exploring simple grid polygons. In International Computing and

Combinatorics Conference, Pp. 524–533. Springer.

IEEE

2003. Wireless lan medium access control (MAC) and physical layer (PHY)

specifications - amendment 4: Further higher-speed physical layer exten-

sion in the 2.4 ghz band. IEEE Std 802.11g-2003.

IEEE

2009. IEEE standard for information technology – local and metropolitan

area networks – specific requirements – part 11: Wireless lan medium

access control (MAC) and physical layer (PHY) specifications amendment 5:

Enhancements for higher throughput. IEEE Std 802.11n-2009 (Amendment

155

Appendix A. References

to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std

802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009), Pp. 1–

565.

Ito, K. and H. Maruyama

2016. Semi-autonomous serially connected multi-crawler robot for search

and rescue. Advanced Robotics, 30(7):489–503.

Jünger, M., G. Reinelt, and G. Rinaldi

1995. The traveling salesman problem. Handbooks in operations research

and management science, 7:225–330.

Keidar, M. and G. A. Kaminka

2012. Robot exploration with fast frontier detection: theory and experiments.

In Proceedings of the 11th International Conference on Autonomous Agents

and Multiagent Systems-Volume 1, Pp. 113–120. International Foundation

for Autonomous Agents and Multiagent Systems.

Khaliq, A. A., M. Di Rocco, and A. Saffiotti

2014. Stigmergic navigation on an RFID floor with a multi-robot team. In

Workshop on Multi-Agent Coordination in Robotic Exploration, Prague, Czech

Republic, Pp. 1–6.

Kitano, H. and S. Tadokoro

2001. Robocup rescue: A grand challenge for multiagent and intelligent

systems. AI Magazine, 22(1):39.

Kitano, H., S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and

S. Shimada

1999. Robocup rescue: Search and rescue in large-scale disasters as

a domain for autonomous agents research. In IEEE SMC’99 Conference

Proceedings. 1999 IEEE International Conference on Systems, Man, and Cy-

bernetics, volume 6, Pp. 739–743. IEEE.

Kitano, H., M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Osawa, H. Mat-

subara, I. Noda, and M. Asada

1998. The robocup synthetic agent challenge 97. In RoboCup-97: Robot

Soccer World Cup I, Pp. 62–73. Springer.

156

Klair, D. K., K.-W. Chin, and R. Raad

2010. A survey and tutorial of rfid anti-collision protocols. IEEE Communi-

cations Surveys & Tutorials, 12(3):400–421.

Koenig, S. and Y. Liu

2001. Terrain coverage with ant robots: a simulation study. In Proceedings

of the fifth international conference on Autonomous agents, Pp. 600–607.

ACM.

Koenig, S., B. Szymanski, and Y. Liu

2001. Efficient and inefficient ant coverage methods. Annals of Mathematics

and Artificial Intelligence, 31(1):41–76.

Kohlbrecher, S., J. Meyer, T. Graber, K. Kurowski, and O. von Stryk

2015. Robocuprescue 2015-robot league team hector darmstadt (germany).

Technical report, Technische Universität Darmstadt.

Luke, S., G. C. Balan, L. Panait, C. Cioffi-Revilla, and S. Paus

2003. Mason: A java multi-agent simulation library. In Proceedings of Agent

2003 Conference on Challenges in Social Simulation, volume 9.

Luke, S., C. Cioffi-Revilla, L. Panait, and K. Sullivan

2004. Mason: A new multi-agent simulation toolkit. In Proceedings of the

2004 swarmfest workshop, volume 8, P. 44.

Luke, S., C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan

2005. Mason: A multiagent simulation environment. Simulation, 81(7):517–

527.

Lumelsky, V. and A. Stepanov

1986. Dynamic path planning for a mobile automaton with limited in-

formation on the environment. IEEE transactions on Automatic control,

31(11):1058–1063.

Marsh, L. and C. Onof

2008. Stigmergic epistemology, stigmergic cognition. Cognitive Systems

Research, 9(1):136–149.

Murphy, R. R.

2014. Disaster robotics. MIT press.

157

Appendix A. References

Murphy, R. R., S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, and

A. M. Erkmen

2008. Search and rescue robotics. Handbook of Robotics. Springer,

Pp. 1151–1173.

Nagatani, K., S. Kiribayashi, Y. Okada, S. Tadokoro, T. Nishimura, T. Yoshida,

E. Koyanagi, and Y. Hada

2011. Redesign of rescue mobile robot Quince. In IEEE International Sym-

posium on Safety, Security, and Rescue Robotics (SSRR), Pp. 13–18. IEEE.

Nguyen, H. G., N. Pezeshkian, A. Gupta, and N. Farrington

2004. Maintaining communications link for a robot operating in a hazardous

environment. Technical report, DTIC Document.

Pfingsthorn, M., B. Slamet, and A. Visser

2008. A scalable hybrid multi-robot SLAM method for highly detailed maps.

In RoboCup 2007: Robot Soccer World Cup XI, Pp. 457–464. Springer.

Rao, N. S., S. Kareti, W. Shi, and S. S. Iyengar

1993. Robot navigation in unknown terrains: Introductory survey of non-

heuristic algorithms. Technical report, Citeseer.

Rekleitis, I., V. Lee-Shue, A. P. New, and H. Choset

2004. Limited communication, multi-robot team based coverage. In IEEE

International Conference on Robotics and Automation, volume 4, Pp. 3462–

3468. IEEE.

Rohmer, E., T. Yoshida, K. Ohno, K. Nagatani, S. Tadokoro, and E. Koyangai

2010. Quince: A collaborative mobile robotic platform for rescue robots

research and development. In Proc. of Int. Conf. on Advanced Mechatronics,

Pp. 225–230.

Rooker, M. N. and A. Birk

2005. Combining exploration and ad-hoc networking in robocup rescue. In

RoboCup 2004: Robot Soccer World Cup VIII, Pp. 236–246. Springer.

Sakakibara, T., D. Kurabayashi, et al.

2007. Artificial pheromone system using RFID for navigation of autonomous

robots. Journal of Bionic Engineering, 4(4):245–253.

158

Sen, D., P. Sen, and A. M. Das

2009. RFID for energy & utility industries. Pennwell Books.

Spirin, V. and S. Cameron

2014. Rendezvous through obstacles in multi-agent exploration. In IEEE

International Symposium on Safety, Security, and Rescue Robotics (SSRR),

Pp. 1–6. IEEE.

Spirin, V., S. Cameron, and J. de Hoog

2013. Time preference for information in multi-agent exploration with lim-

ited communication. In Conference Towards Autonomous Robotic Systems,

Pp. 34–45. Springer.

Spirin, V., J. de Hoog, A. Visser, and S. Cameron

2014. Mresim, a multi-robot exploration simulator for the rescue simulation

league. In Robot Soccer World Cup, Pp. 106–117. Springer.

Svennebring, J. and S. Koenig

2004. Building terrain-covering ant robots: A feasibility study. Autonomous

Robots, 16(3):313–332.

Takahashi, T., Y. Kitamura, and H. Miwa

2012. Organizing rescue agents using ad-hoc networks. In Highlights

on Practical Applications of Agents and Multi-Agent Systems, Pp. 139–146.

Springer.

Tarjan, R.

1972. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160.

Van Aken, J. R.

1984. An efficient ellipse-drawing algorithm. IEEE Computer Graphics and

Applications, 4(9):24–35.

VDI4472 Blatt 10

2008. Anforderungen an Transpondersysteme zum Einsatz in der Supply

Chain; Testverfahren zur Überprüfung der Leistungsfähigkeit von Transpon-

dersystemen (RFID). Beuth Verlag.

159

Appendix A. References

Verma, L., M. Fakharzadeh, and S. Choi

2013. WiFi on steroids: 802.11 ac and 802.11 ad. IEEE Wireless Communi-

cations, 20(6):30–35.

Von Neumann, J. and A. Burks

1966. Theory of self-replicating automata. Urbana: University of Illinois

Press.

Weis, S. A.

2007. RFID (radio frequency identification): Principles and applications. MIT

CSAIL.

Witkowski, U., E. Habbal, M. A. Mostafa, S. Herbrechtsmeier, A. Tanoto,

J. Penders, L. Alboul, and V. Gazi

2008. Ad-hoc network communication infrastructure for multi-robot sys-

tems in disaster scenarios. In Proceedings of IARP/EURON Workshop on

Robotics for Risky Interventions and Environmental Surveillance.

Wooldridge, M.

2009. An Introduction to MultiAgent Systems. John Wiley & Sons.

Wright, C., A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni,

M. Gonzalez-Rivero, R. Hatton, and H. Choset

2007. Design of a modular snake robot. In 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Pp. 2609–2614. IEEE.

Yamauchi, B.

1997. A frontier-based approach for autonomous exploration. In IEEE

International Symposium on Computational Intelligence in Robotics and Au-

tomation, Pp. 146–151. IEEE.

Yamauchi, B.

1998. Frontier-based exploration using multiple robots. In Proceedings

of the second international conference on Autonomous agents, Pp. 47–53.

ACM.

Ziparo, V. A., A. Kleiner, B. Nebel, and D. Nardi

2007. RFID-based exploration for large robot teams. In IEEE International

Conference on Robotics and Automation, Pp. 4606–4613. IEEE.

160

Curriculum Vitae

Name: Florian Andreas Blatt
Place of Birth: Berlin-Steglitz
Date of Birth: March 12, 1984

Experience

2011–2017 Research Assistant, Leibniz University Hannover

Education

2011–2017 Ph.D. student, Computer Science, Leibniz University Hannover
2009–2011 Master of Science, Computer Science, Leibniz University Han-

nover
2004–2009 Bachelor of Science, Computer Science, Leibniz University

Hannover
2003–2004 Alternative Civilian Service, Lothar-Wittko-Werkstatt, Stadtha-

gen
1995–2003 Matura, Bundesgymnasium/Bundesrealgymnasium Sillgasse,

Innsbruck, Österreich
1994–1995 Gymnasium Stormanschule, Ahrensburg

161

	Abstract
	Acknowledgements
	List of Figures
	List of Algorithms
	Introduction
	A short Historical Overview about Rescue Robotics
	Thesis outline
	Publications

	State of the Art
	Rescue Robots
	IUB Rugbot
	Quince
	ICARUS robots
	Hector robots
	Snake robots
	Summary

	Multi-Agent Search & Rescue Algorithms
	Ants
	Brick&Mortar
	HybridExploration
	Rendezvous
	Requirements for a search & rescue algorithm
	Summary

	The Multi-Agent Flood Algorithm
	The Multi-Agent Flood Algorithm
	Assumptions and Definition of the Scenario
	Design of the Agent
	Comparison with existing algorithms

	Experimental Simulation Setup
	The Simulator
	Definition of the Scenario
	Selection of the simulated Maps
	Results of the Simulation

	Advantages and Disadvantages of the Multi-Agent Flood algorithm

	Ideas for a Layered Communication
	Direct and Indirect Communication
	Ad-hoc Networks
	Stigmergy

	Layered Communication
	Adapting the Multi-Agent Flood algorithm

	Simulating the layered communication algorithm
	Changes to the experimental simulation setup

	Comparison of the algorithms
	Chapter Summary

	Leaving the Grid
	A mesh of RFID tags
	Different kinds of RFID chips
	Changes to the Multi-Agent Flood agent
	Changes to the simulation setup
	Results of the new simulation

	Reliability of the RFID tags
	Modelling the different errors
	How to handle these malfunctions
	Evaluating the reliability of RFID tags

	Optimizing the search time of the agents
	Frontier-based exploration
	Bug algorithms
	Improving the cooperation
	Results of the modified algorithm
	Summary of the Results

	Changing the size of the agents
	Modifications to the agents
	Simulation of the algorithm with bigger agents
	Comparison with Rendezvous

	Chapter Summary

	Conclusion
	Summary of the Thesis
	Future Work

	References

