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ABSTRACT: 
 
A fully automated reconstruction of the trajectory of image sequences using point correspondences is turning into a routine practice. 
However, there are cases in which point features are hardly detectable, cannot be localized in a stable distribution, and consequently 
lead to an insufficient pose estimation. This paper presents a triplet-wise scheme for calibrated relative pose estimation from image 
point and line triplets, and investigates the effectiveness of the feature integration upon the relative pose estimation. To this end, we 
employ an existing point matching technique and propose a method for line triplet matching in which the relative poses are resolved 
during the matching procedure. The line matching method aims at establishing hypotheses about potential minimal line matches that 
can be used for determining the parameters of relative orientation (pose estimation) of two images with respect to the reference one; 
then, quantifying the agreement using the estimated orientation parameters. Rather than randomly choosing the line candidates in the 
matching process, we generate an associated lookup table to guide the selection of potential line matches. In addition, we integrate the 
homologous point and line triplets into a common adjustment procedure. In order to be able to also work with image sequences the 
adjustment is formulated in an incremental manner. The proposed scheme is evaluated with both synthetic and real datasets, 
demonstrating its satisfactory performance and revealing the effectiveness of image feature integration. 
 

1. INTRODUCTION 

Relative pose estimation is the problem of recovering the relative 
orientation of images and is an indispensable ingredient for any 
3D exploitation of imagery such as structure from motion 
(Scaramuzza and Fraundorfer, 2011). Numerous solutions can be 
found in the literature. Most feature-based techniques for pose 
estimation of image sequences were designed in conformity with 
the following brief description. Features in each image are 
extracted independently and then tracked/matched into pairs 
(Jazayeri, 2010; Barazzetti et al., 2011) or triplets (Nistér, 2000; 
Bartelsen et al., 2012) to estimate fundamental matrices (Torr and 
Murray, 1997; Nistér, 2004;) or trifocal tensors (Spetsakis and 
Aloimonos, 1991; Hartley, 1997; Nistér et al., 2004; Reich et al., 
2013), often using RANSAC (Fischler and Bolles, 1981) to deal 
with blunders. Subsequently, the image pairs or triplets are 
transformed into a common projective frame and image 
orientation is refined using bundle adjustment (Beder and Steffen, 
2008; Sibley et al., 2010; Fraundorfer and Pollefeys, 2010; 
Schneider et al., 2013). The majority of existing methods was 
established under the assumption that sufficient image point 
features can be accurately detected, tracked and matched. 
However, scenes such as indoor environments, consisting mainly 
of planar surfaces with little texture, are frequently encountered, 
and in these environments point features may be hardly detectable, 
so that a stable point distribution for pose estimation may not be 
available. In contrast, line features are usually abundant in such 
conditions and can be more reliably detected and matched despite 
partial occlusion. Since point and line features supply 
complementary information of scene geometry, using the 
combination of these two primitives should render a more robust 
estimation than those only using one type of feature.  
 
This paper proposes a scheme that solves relative pose estimation 
using calibrated cameras from point and line triplets, and 
investigates the effectiveness of feature integration. Compared to 
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image pairs, a triplet-based scheme poses strong and reliable 
constraints on pose estimation, and is thus preferred, also because 
a pair-wise approach for lines is not possible. In this work, 
acquisition of homologous point triplets is conducted using 
existing techniques. However, line matching across images raises 
challenges due to the deficiencies in line extraction and the 
absence of strong geometric constraints. These often lead to 
problems such as unreliable endpoints, incomplete topological 
connections, and asymmetrical radiometric information among 
putative line matches. Geometric parameters (Roux and 
McKeown, 1994; Heuel and Förstner, 2001), trifocal tensors and 
epipolar geometry (Hartley, 1995; Schmid and Zisserman, 1997), 
radiometric information (Baillard et al., 1999; Scholze et al., 2000; 
Herbert et al., 2005), and image gradients (Baillard and Dissard, 
2000; Wang et al., 2009) are common foundations used to 
overcome ambiguities in line matching. However, the trifocal 
tensor as well as epipolar methods generally need known relative 
orientation parameters, in particular, when using point-to-point 
correspondences along line segments (Schmid and Zisserman, 
2000). Besides, matching groups of line features has the 
advantage that more geometric information is available for 
disambiguation (Beder, 2004; Deng and Lin, 2006; Ok et al., 
2012), yet it usually is computationally expensive and susceptible 
to incorrect topological connections or inaccuracy of endpoints. 
Other methods exploit assumptions such as the projective 
invariant (Lourakis et al., 2000) or specific configurations of lines 
in space (Elqursh and Elgammal, 2011), and thus these methods 
are limited to specific conditions.  
 
In summary, the necessity of accurate prior knowledge, 
computational complexity, and limitations in specific 
assumptions are the problems in line matching which need to be 
addressed according to current literature. We propose a line triplet 
matching method considering the multiple view geometric 
relations as well as image gradient similarity, based on available 
point matches for generating initial values for the pose, to 
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alleviate the problems mentioned above. Rather than randomly 
choosing potential line matches, we generate an associated 
lookup table that stores information of line candidates to guide 
the process of selecting putative lines. Thus, the number of 
potential matches to be checked is reduced. Subsequently, an 
incremental adjustment (Beder and Steffen, 2008; Reich et al., 
2013) for simultaneous pose estimation based on point and line 
triplets is carried out. 
 
To address this work, the proposed methodology is elaborated in 
section 2. Afterwards, an experiment using synthetic data is 
performed to assess the effectiveness of the line matching scheme 
and to quantify the performance of the proposed approach. These 
results and the results achieved for a real image sequence are 
presented in section 3, where we additionally compare the 
proposed method with a point-based non-commercial software 
tool. Finally, section 4 concludes this work and gives an outlook 
into future prospects. 
 

2. METHODOLOGY 

Our workflow can be split into two threads for points and lines, 
respectively.  
 
2.1 Extracting and Matching Points 

For point matching, we detect SURF features (Bay et al., 2008) 
for pair-wise point correspondences, and then perform a cross-
search between consecutive pairs for point triplet acquisition. As 
previously mentioned, the number of point measurements might 
be inadequate in unfavourable scenes, such as indoor 
environments. We thus use SURF with loose thresholds to collect 
more potential point matches. This, however, results in a 
potentially high number of outliers.  
 
Rather than using RANSAC for blunder elimination, we 
developed a more specific scheme, which makes use of the fact 
that the 3D structure of indoor scenes is normally simpler than 
that of outdoor scenes and mainly consists of planar surfaces. We 
thus eliminate blunders based on the consistency of local 
projective transforms. In light of our experiment results, this 
method rendered good repeatability of correct matches and was 
found to be robust in dealing with data containing a high ratio of 
blunders. We do acknowledge, however, that the developed 
method is not as generally applicable as RANSAC.  
 
The approach starts with a 2D Delaunay triangulation for all 
matched points in one image of the pair. Then, pairs of triangles 
that share the longest edge are merged to form a quadrilateral for 
calculating local projective transformations. OPTICS (Ankerst et 
al., 1999) and k-means are used to identify the clustering structure 
of the local transformation parameters. OPTICS was proposed to 
cluster data based on the notion of density reachability. 
Neighbouring points in parameter space are merged into the same 
cluster as long as they are density-reachable from at least one 
point of the cluster. Then, k-means clusters the filtered 
transformation parameters into k clusters. Consequently, points 
belonging to transformations that are not part of any cluster are 
considered as outliers and are removed. Also, clusters containing 
less than a minimum of three transformations are deemed to be 
outliers. Subsequently, a rigorous least-squares adjustment with 
outlier detection is performed for each accepted cluster. The 2D 
points that contributed to every transformation are used to 
calculate the projective parameters for the whole group. A 
rejection threshold is set for the process in order to remove any 
points that have a high residual and are potentially outliers. This 
threshold is calculated dynamically during every iteration of the 

adjustment while the value of one pixel is set as the maximum. 
Finally, all remaining points are considered as correct point 
matches. More details can be found in (Stamatopoulos et al., 
2012). 
 
2.2 Extracting and Matching Lines  

Line features are extracted using the LSD detector (Grompone 
von Gioi et al., 2010) from each image, and introduced into the 
proposed matching procedure. Based on local projective 
transformations estimated from the point correspondences (see 
section 2.1) we start the matching process by mapping lines from 
the two search images into the reference image. Compatible lines 
are found as projected lines that lie within a distance tolerance	߬௦ 
and an angular tolerance 	߬௔ of the lines in the reference image. 
Then, we construct a lookup table of all triplet combinations 
based on the list of the compatible lines and perform similarity 
measures in terms of three-view geometry and image gradients on 
each potential line triplets as follows.  
 
The geometric relations among the lines are modelled following 
Petsa and Patias (1994): As shown in Figure 1, assume that lines 
݈ଵ, ݈ଶ, ݈ଷ are a potential match in an image triplet (ܫଵ, ,ଶܫ  ଷ), whereܫ
each line is described by two parameters ܽ௜  and ܾ௜  serving as 
observations in the following estimation process.  
 

 
Figure 1. Triplet-line geometry for lines. 

 
For each line	݈௜, the projection plane is constructed using the line 
and the projection centre. This plane is described by its normal 
vector ݊௜ which is given by the cross product of the imaging rays 
through the start and the end point of the line. In model space 
these planes can be expressed as:  
 

݊௜
்ܴ௜ሺܺ ൅ ௜ሻݐ ൌ 	0                                  (1) 

 
where ܴ௜ is the rotation matrix, ݐ௜ describes the projection centre 
(ܴ௜ and ݐ௜ thus containing the parameters of relative orientation) 
and ܺ is a point on the projection plane. We define the datum by 
fixing the orientation parameters of the first image and the base 
between the first and the second images. 
 
Setting the normal vector ݊௜  expressed in model space, to  
݊௜
்ܴ௜ ൌ ሾݑ௜ ௜ݒ  ௜ሿ and intersecting the three lines a conditionݓ

equation can be derived (see Petsa and Patias 1994 for details) 
reading:  
 
ଷݓଶݒଵሺݑ െ ଷሻݒଶݓ ൅ ଷݑଶݓଵሺݒ െ ଷሻݓଶݑ ൅ ଷݒଶݑଵሺݓ െ ଷሻݑଶݒ ൌ 0 

(2) 
 
Note that while eq. 2 contains the elements of the rotation it does 
not contain the translations	ݐ௜ . These can be determined when 
considering the fact that a point in model space must result in 
homologous points in image space, yielding eq. (3); for details 
see again Petsa and Patias (1994):  
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݀ଶሺݍଵݒଶ െ ଷݓଷݍଵሻሺݒଶݍ െ ଷݒଷݍଵሻሺݓଶݍ െ ଵሻݒଶݍ 	െ
						݀ଷሺݍଷݒଷ െ ଶݓଵݍଵሻሺݒଶݍ െ ଶݒଵݍଵሻሺݓଶݍ െ ଵሻݒଶݍ ൌ 0   (3) 
 

where	ݍଵ ൌ ଶݍ	;ଷݑଵݑ ൌ ଷݍ	;ଷݑଶݑ ൌ ݀௜	ଶ, andݑଵݑ ൌ ݊௜
்ܴ௜ݐ௜. 

 
Consequently, a discrepancy value ߝଵfor the line triplet can be 
computed from the mean of the two formulae when the initial 
values of the orientation parameters are provided. Besides, the 
overlapping neighbourhoods between the two lines in the search 
images and the line in the reference image are identified after the 
initial mapping. Then a discrepancy value ߝଶ is determined using 
the mean differences of normalized image gradients, compared to 
those of the line in the reference image: 
 

ଶߝ ൌ
|௚തమି௚തభ|ା|௚തయି௚തభ|

ଶ
                                   (4) 

 
where ݃̅ଵ, ݃̅ଶ, and ݃̅ଷ indicate the mean image gradients across 
the overlapping neighbourhoods of ݈ଵ, ݈ଶ, and ݈ଷ in each image, 
respectively. If the mapped line does not overlap the reference 
line, the gradient difference will be assigned a pre-defined value 
so as to decrease the similarity of the potential match. Finally, the 
similarity measure of the line triple is computed: 
 

ܵ݅݉ሺ݈ଵ, ݈ଶ, ݈ଷሻ ൌ ሺെ݌ݔ݁ ቀ
|ఌభ|

ఈ
൅

|ఌమ|

ఉ
ቁሻ                  (5) 

 
where ߝଵ and ߝଶ indicate the discrepancy values of the geometric 
relations and the image gradients, respectively. The parameters ߙ 
and ߚ control the relative impact of the two indices, and should 
be adjusted experimentally. ܵ݅݉ሺ݈ଵ, ݈ଶ, ݈ଷሻ ranges from 0 to 1, a 
larger value reveals stronger similarity among the line matches.  
 
Since we use the relative orientation parameters estimated from 
corresponding points as initial values, the similarity measures are 
correlated to the quality of the prior knowledge. We thus only use 
it to arrange the order of the combinations in a lookup table 
containing potential line matches, instead of regarding the score 
as a criterion for matching. Consequently, line candidates with a 
higher degree of similarity will be investigated first. Besides, to 
alleviate the dependency on the quality of the initial values, we 
gradually refine the orientation parameters and rearrange the 
lookup table during the matching process. 
 
Once the preliminary lookup table is generated, an iterative 
procedure is carried out to verify the combinations of potential 
matches. In view of the geometric conditions, six line triplets 
suffice for determining the parameters of relative orientation of 
two images with respect to the reference one. Thus in each 
iteration of the procedure, six candidate triplets are selected from 
the lookup table. The selection starts with the six best 
combinations. From the selected six triplets the relative pose is 
estimated via a least-squares adjustment. We then check whether 
the adjustment has converged, and we also check whether the 
residuals lie below a given threshold	߬௥. Candidate triplets that do 
not satisfy the checks are excluded from further computations, 
otherwise they are enrolled as accepted triplets, and in the next 
iteration the next best set of six lines is investigated. After 
obtaining ݊ sets (݊ ൌ 5 in this work) of six the accepted triplets, 
a cluster analysis is performed for the pose parameters. The idea 
is that the valid pose parameters should be similar and thus 
clustered together in parameter space. All the accepted triplets 
whose estimations are assembled in the main cluster are used to 
determine new pose parameters, refining the initial values, and 
the lookup table is updated accordingly. The matching process is 
repeated until all the potential line matches in the lookup table are 
investigated. 

 
2.3 Unified Adjustment for Point and Line Features 

Following the matching process described in Section 2.2, for each 
image triplet, we unify point and line triplets into a common 
estimation procedure, allowing for the recovery of the optimal 
relative orientation. For the line triplets we use eqs. (2) and (3), 
yielding two condition equations per line triplet. For each point 
triplet, three condition equations are formulated according to the 
well-known coplanarity condition: for each of the three pairs 
which can be formed from the three images, the two imaging rays 
of the corresponding points and the base vector must lie in a plane.  
 
The estimation of the relative orientation of an image triplet with 
calibrated sensors has 11 degrees of freedom. Thus, the minimal 
required information is four point triplets or six line triplets or a 
combination of these, disregarding degenerate cases. Besides the 
distinctive geometric characters of the individual feature types, 
considering the combination of features in a minimum solution 
for an image triplet, which can be realized by one point + four 
lines, two points + three lines, three points + two lines, or three 
points + one line, is practically meaningful. 
 
The problem of estimating relative orientation parameters of an 
image triplet can be formulated using the Gauss-Helmert model: 
 

ݓ ൌ ߦܣ ൅ ݕሺܤ	 ൅ ݁ሻ,		݁~ሺ0, ߑ ൌ ଴ߪ
ଶܲିଵሻ                (6) 

 
where ߦ ,ݓ ,݁ ,ݕ, and ܲ denote the observation vector, the error 
vector, the discrepancy vector, the vector of incremental 
unknowns, and the weight matrix, respectively; ܣ and ܤ are the 
partial derivative coefficient matrices with respect to unknowns 
and observations, respectively. The mathematical model in eq. 6 
is utilized during the line matching process, see section 2.2. In 
order to be able to also work with image sequences the adjustment 
is formulated in an incremental manner. We reformulate the 
Gauss-Helmert model into a Gauss-Markov model and use the 
incremental least squares adjustment technique described in 
(Beder and Steffen, 2008; Reich et al., 2013) using sliding image 
triplets. We first rearrange eq. 6 as	ݓ െ ݕܤ ൌ ߦܣ ൅  Then, let .݁ܤ	
തݕ ൌ ݓ െ ̅݁ be the new observation vector and ݕܤ ൌ  be the ݁ܤ
new error vector. The linear model is yielded: 
 

തݕ ൌ ߦܣ ൅ ݁̅,	݁̅~ሺ0, ௘̅ߑ ൌ ்ܤߑܤ ൌ ଴ߪ
ଶ തܲିଵ)            (7) 

 
The unknowns are obtained via: 
 

መߦ ൌ ሾ்ܣሺିܲܤଵ்ܤሻିଵܣሿሾ்ܣሺିܲܤଵ்ܤሻିଵݕതሿ           (8) 
 
The incremental solution is then found as described in Reich et 
al., 2013). 
 

3. EXPERIMENTS 

In this work, we used synthetic and real datasets to validate our 
approach. The synthetic test is designed to quantify the 
performance with respect to line triplet matching and pose 
estimation. The results conducted under realistic conditions serve 
to better evaluate the potential and limitations of the proposed 
method. They are evaluated and compared to the result obtained 
from a point-based software tool (VISCODA, 2012). 
 
3.1 Synthetic Data Test 

As shown in Figure 2, image features comprising 10 points and 
50 lines, were generated in three views by projecting simulated 
features, residing in a box of approximately 10×10×10 ݉ଷ  in 
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model space, into image space. Outliers (30 lines) were also 
included in the dataset. The imaging distance was about 5 to 15 
m with respect to the box. The focal length and pixel size were 9 
mm and 7 ݉ߤ	 , respectively, yielding an image scale of 
approximately 1:1,000. The lines were derived via fitting of 
sampled points. A noise of zero mean and ߪ  pixels standard 
deviation, where	ߪ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, was 
added to the image coordinates of these points. In addition, due 
to the lack of grey value information, the discrepancies of the 
image gradients were given a constant value for the similarity 
measures. Each test was repeated 1,000 times with feature 
reallocation. Thus, the feature primitives in each computation 
differed in distribution, as well as in length and image coverage. 
The unstructured distribution of the simulated features 
demonstrated in Figure 2 is notably more complex than the one 
in a common man-made environment, increasing potential 
problems in line matching. 
 

 
Figure 2. Demonstration of feature distribution. 

 
Tables 1 and 2 provide an insight into the matching results of the 
synthetic data. Under each specific standard deviation of feature 
observations, the effectiveness of the proposed method in terms 
of the matching performance (Table 1) and the pose estimation 
(Table 2) is reported. Table 1 indicates that the proposed 
matching scheme achieved an average matching rate up to 98% 
in which the false cases were largely caused by unsatisfactory line 
candidates contaminated by the random errors. Besides, it also 
reveals that the matching effectiveness is stable and robust to 
outliers especially when the standard deviation of the coordinates 
is below three pixels.  
 

Std. deviation (pixel) േ0.5 േ1.0 േ1.5 േ2.0 േ2.5
Average rates (%) 98 96 95 93 91 
Std. deviation (pixel) േ3.0 േ3.5 േ4.0 േ4.5 േ5.0
Average rates (%) 88 83 79 74 73 

Table 1. Matching performance with synthetic data. 
 
Table 2 contains the estimated relative orientation parameters for 
the different cases. It can be seen that the differences to the true 
values (ߪ ൌ േ0) are rather small. The findings validate the pose 
estimation approach acceding to the proposed method and 
suggest, not surprisingly, that more accurate orientation 
parameters are produced when more accurate feature primitives 
are available. 
 

 ߪ

Rotations (degree) Translations (m) 

߱ଶ ߮ଶ ߢଶ ݐ௫ଶ ݐ௬ଶ ݐ௭ଶ 

߱ଷ ߮ଷ ߢଷ ݐ௫ଷ ݐ௬ଷ ݐ௭ଷ 

േ0.0 
0.3 4.2 -6.0 - -0.3 -0.5 
-0.5 -6.0 -2.0 1.5 -0.4 -0.6 

േ1.0 
0.302 4.194 -6.001 - -0.301 -0.501
-0.505 -5.998 -2.001 1.501 -0.401 -0.598

േ3.0 
0.299 4.205 -6.007 - -0.301 -0.500
-0.514 -5.977 -1.967 1.500 -0.402 -0.601

േ5.0 
0.317 4.193 -6.023 - -0.300 -0.502
-0.461 -5.986 -2.003 1.503 -0.403 -0.603

Table 2. Results of estimated orientation parameters. Note that 	
 .is not estimated but set to a constant, defining the scale	௫ଶݐ

Moreover, as shown in Table 3, we quantified the advantages of 
using both point and line features for pose estimation via the root 
mean square error (RMSE) derived from 40 check points. As 
anticipated, the result of the combined features outperformed 
those obtained from using only points or only lines due to the 
better distribution and redundancy.  
 

ߪ  Points Lines Points and lines

RMSE (m)
േ1.0 0·021 0·016 0·013 
േ3.0 0·028 0·019 0·015 
േ5.0 0·037 0·026 0·021 

Table 3. Assessment of estimation quality. 
 

3.2 Real Data Test 

This experiment involved an image sequence, it was undertaken 
to verify the results of the simulations under realistic conditions 
and to conduct a comparison with a purely point-based method. 
To highlight the advantages of involving line features for relative 
pose estimation, the images sequence used for the study shows an 
indoor scene with little texture. It was captured using a hand-held 
camera in a corridor, see Figure 3. Starting from one point, a 
person holding the camera moved forward to the end of the 
corridor and took images at approximately a 45 degree horizontal 
angle with respect to the direction of movement. The image 
sequence consists of 40 frames and can be split into two sections. 
The scene in the first 30 frames contained distinct grey value 
variations and is favourable for image point detection. On the 
other hand, the rest of the views consist mainly of planar surfaces 
with little texture. 
 

   
(a) Frame 1              (b) Frame 10             (c) Frame 22 

   
(d) Frame 27            (e) Frame 33             (f) Frame 40 

Figure 3. Six frames from the corridor sequence. 
 
As described, points were automatically extracted and matched 
using the SURF descriptor coupled with the introduced outlier 
removal process. Lines were detected via the LSD detector and 
matched using the proposed procedure. Figure 4 shows the 
matching results of the homologous lines in one of the triplets. 
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Figure 4. Illustration of the line triplets. 

 
After that, we used the acquired point and line triplets to conduct 
the relative pose estimation, and compared the recovered 
trajectory with the one estimated by the point-based software. 
Figure 5 shows the reconstructed trajectories of the camera 
motion based on our method and the point-based method, 
respectively. The two reconstructed trajectories are quite similar 
until frame 29, from where the point-based method failed to 
deliver a correct pose estimation for the remaining images (see 
Figures 5(b) and 5(d)). It is largely due to the fact that the scene 
in frames 30 to 40 mainly consists of planar surfaces with poor 
texture. Thus, the point-based method does not have sufficient 
point features to maintain the computation. Even though we do 
not have reference data for quality assessment, we can say that 
our method is superior to the point-based method, because it is 
able to recover the whole trajectory of this indoor sequence. The 
result not only highlights the effectiveness of the proposed 
scheme but also underlines the advantages of feature integration 
in visual odometry applications. 
 

  
(a) Top view of our method    (b) Top view of the software 

 
(c) Side view of our method 

 
(d) Side view of the software 

Figure 5. Top and side views of the reconstructed trajectories 
using our method (a)(c) and the point-based software (b)(d), 

respectively. 
 

4. CONCLUSIONS  

In this work, we have presented a triplet-wise approach for 
relative pose estimation from image point and line triplets. The 
line triplet matching and estimation scheme has been successful 
and has demonstrated its robustness and effectiveness using 
synthetic and real datasets. In light of the experiments, our 
approach outperformed a purely point-based method for an 
indoor image sequence. This highlights the advantages of 
integrating different image features and suggests a 
comprehensive way of dealing with different geometrical 
structures of scenes. As a result, our approach can be considered 
as an effective addition to point-based methods for computing the 
relative pose in unfavourable environments.  
 
Future improvements of the proposed method will address 
computational optimization and the exploitation of further 
advantages of line geometry in 3D space. Considering that 
reconstructed model lines supply more degrees of freedom than 
model points, it seems promising to align model lines with 
provided 3D control entities, such as 3D digital vector maps, 
revealing a potential for automated absolute pose estimation. 
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