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ABSTRACT

Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although
insight into the physical and chemical stabilization of soil organic matter (SOM) and into microbial
community composition in these horizons is being gained, information on microbial functions of subsoil
microbial communities and on associated microbially-mediated processes remains sparse. To identify
possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil pa-
rameters, as well as with microbial community composition, estimated using phospholipid fatty acid
profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calcu-
lated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-
acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in
soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from
seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic
enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons
were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly be-
tween ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil
horizons were correlated with SOM content (i.e., C and N content) and microbial community composi-
tion. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH
and microbial community composition. The lack of correlation between enzyme patterns and SOM
quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization
of SOM rather than SOM content might determine substrate availability for enzymatic breakdown. The
correlation of microbial community composition and enzyme patterns in all horizons, suggests that
microbial community composition shapes enzyme patterns and might act as a modifier for the usual

dependency of decomposition rates on SOM content or C/N ratios.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Extracellular enzymes break down soil organic matter (SOM) at
every depth of the soil profile. Nonetheless most studies on enzyme
activities focused on topsoil horizons in the upper 20 cm of the soil
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et al., 2010) although up to 60% of the carbon stored in soils are
located below 30 cm (Jobbagy and Jackson, 2000). These subsoil
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horizons differ from well studied topsoil horizons in a number of
physical and chemical conditions that might influence enzyme
activities and decomposition in general (Rumpel and Kogel-
Knabner, 2011): Temperature decreases from topsoils to subsoils
whereas soil moisture increases with depth, either improving
conditions for decomposition in arid systems (Rovira and Vallejo,
2002), or impairing them in systems where water logging occurs
and O, availability is low (Kleber, 2010; Davidson et al., 2012). Soil
pH, one of the factors often associated with enzyme activities
(Sinsabaugh et al., 2008), also changes with depth (Eilers et al.,
2012). In addition to these direct influences on enzyme activities,
the availability of substrate for enzymatic breakdown decreases
with depth. First, SOM is less abundant in subsoils, which leads to a
high probability of a spatial disconnection of enzyme and substrate
(Holden and Fierer, 2005). Second, a high proportion of SOM in
subsoils is bound to minerals, stabilized by metal ions, or occluded
in aggregates and therefore access for microorganism is limited
(von Liitzow et al., 2006). In addition to physical hurdles for
decomposition, SOM in subsoils is chemically different from topsoil
SOM. While the main proportion of SOM in topsoils is plant derived
material, SOM in subsoils is microbially transformed (Wallander
et al.,, 2003). During this microbial transformation of SOM, carbon
is lost, mainly as CO;, whereas most of the nitrogen (N) is recycled
and remains in the system, resulting in lower C/N ratios of subsoil
SOM (Rumpel and Kogel-Knabner, 2011).

To fulfill the microbial demand for energy and nutrients, mi-
croorganisms need to adapt to the chemical composition of SOM
and to the C/N ratio of the available substrate by adjusting their
enzyme production (Sinsabaugh et al., 2008). Changes in enzyme
production might either be physiological (Stone et al., 2014) or they
might result from a shift in microbial community composition
(Kaiser et al., 2014). Although the influence of microbial community
composition on major microbial processes, such as C mineralization
and N mineralization, has been recently challenged (Colman and
Schimel, 2013), its influence on enzyme activities has been
demonstrated repeatedly (e.g. Strickland et al., 2009; McGuire and
Treseder, 2010; Schnecker et al., 2014). Microbial community
composition, as another potential control on enzyme activities, has
already been shown to change more strongly with soil depth,
within ecosystems, than between topsoils of different ecosystems
(Eilers et al., 2012; Gittel et al., 2014).

Relations of enzyme activities to key factors such as pH, mois-
ture, SOM content (Keeler et al., 2009), chemical composition of
SOM (Grandy et al., 2009; Sinsabaugh and Follstad Shah, 2010), and
microbial community composition (Waldrop and Firestone, 2006;
Talbot et al, 2013) are well established in topsoil horizons.
Whether enzyme activities in the subsoils are related to these key
factors is still largely unknown since few studies have addressed
changes of enzyme activities and their potential controls with soil
depth so far (e.g.: Brockett et al., 2012; Kramer et al., 2013; Turner
et al., 2014; Schnecker et al., 2014; Stone et al., 2014).

In this study we investigated enzyme patterns in different soil
horizons, including mineral subsoils, from a wide range of ecosys-
tems to identify potential drivers for these enzyme patterns. We
measured potential activities of six extracellular enzymes in
organic topsoil horizons, mineral topsoil horizons and mineral
subsoil horizons in seven ecosystems along a 1500 km-long
north—south transect in Western Siberia. In addition to enzyme
activities, we analyzed microbial community composition (using
phospholipid fatty acid analysis) as well as abiotic soil parameters
and related these factors to the enzyme patterns.

We hypothesized: (1) enzyme patterns in topsoil and subsoil
horizons are both related to the same key parameters, such as SOM
content, pH and microbial community composition. Microbial
community composition has been shown to differ more strongly

between topsoils and subsoils than between topsoils of different
ecosystems (Meyer et al., 2006; Eilers et al., 2012). Since enzyme
activities and enzyme patterns are often related to microbial
community composition; (2) enzyme activities and enzyme pat-
terns change with depth and differ more strongly between hori-
zons than between ecosystems. The ecosystems along the transect
showed large differences in vegetation and presumably in the
chemical composition of litter entering the soil; (3) enzyme pat-
terns would be more variable and show greater differences be-
tween ecosystems in the topsoil horizons, where the main
constituents of SOM are plant-derived, than in mineral subsoil
horizons.

2. Material and methods
2.1. Sampling sites

Soil samples were taken from seven ecosystems along a
1500 km latitudinal transect in Western Siberia, in August and
September 2012. The ecosystems included tundra, northern taiga,
middle taiga, and southern taiga, forest steppe (one forest site and
one meadow site), and steppe. All soils were sampled from the
active layer in an unfrozen state. Basic soil and climate parameters
are provided in Table 1 and Table S1. Climate data are derived from
Stolbovoi and McCallum (2002), soil classification follows the
World Reference Base for Soil Resources (IUSS Working Group
WRB, 2006).

At all sites, we sampled the three dominant soil horizons of five
replicate soil pits. We categorized the three horizon types as
organic topsoil horizon (uppermost horizon, O), mineral topsoil
horizon (second horizon, A), and mineral subsoil horizon (third
horizon, M). We removed living plant roots from the samples and
sieved them to <2 mm. We did this for samples from all sites,
except for the tundra, where samples were manually homogenized
because they were too moist for sieving. Before further analyses,
soil water content was adjusted to a minimum of 60% for organic
topsoils (except steppe), to 15% for mineral topsoils and steppe
organic topsoils, and to 10% for mineral subsoils, respectively.

2.2. Soil parameters

Soil pH was determined in 1 M KCl extracts. Samples for
determination of organic C, total N content, and 5'3C were dried at
60 °C and ground with a ball mill. Ground samples were analyzed
with EA-IRMS (CE Instrument EA 1110 elemental analyzer, coupled
to a Finnigan MAT DeltaPlus IRMS with a Finnigan MAT ConFlo II
Interface, Thermo Fisher Scientific, Waltham, MA, USA). Mineral
topsoils and subsoils at both forest steppe sites, as well as all ho-
rizons of the steppe site, contained traces of carbonate. Carbonate
was removed from these samples by acidification with HCI before
EA-IRMS analysis. Water holding capacity (WHC) was determined
as the amount of water that remained in saturated soil, from which
water could be lost by drainage but not by evaporation after two
days (Reynolds and Topp, 2007).

Microbial C and N were estimated using chloroform-fumiga-
tion—extraction (Kaiser et al., 2010 modified after Brookes et al.,
1985): Soil samples, fumigated with chloroform, as well as unfu-
migated samples were extracted with 0.5 M K;SO4. Dissolved
organic C and total dissolved N were determined in both sets of
extracts with a DOC/TN analyzer (Shimadzu TOC-VCPH/CPN/TNM-
1, Vienna, Austria). Microbial C and N were calculated as the dif-
ference between fumigated and non-fumigated samples, without
correction for extraction efficiency. C/N ratios of SOM and microbial
biomass were calculated on a mass basis.
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Table 1

Basic soil and site characterization of sites along the latitudinal transect. MAT is mean annual temperature; MAP is mean annual precipitation. Aridity index has a threshold for

drylands at 0.65 (Maestre et al., 2012).

Coordinates MAT MAP  Aridity index  Soil type Organic topsoils Mineral topsoils Mineral subsoils
¢ mm Horizon  Depth Horizon Depth  Horizon  Depth
cm cm cm
Tundra 67°16'N 78°50'E -7.6 391 1.30 Turbic Cryosol 0] 0-6 A 2-13 Bg, BCg 6—57
Northern taiga 63°17'N 74°32E  —-4.6 430 1.06 Histic Podzol 0i, Oe 0-22 AE, EA 8—-30 Bg 14—-47
Middle taiga 60°09'N 71°43'E 2.2 438 0.89 Endogleyic Regosol ~ Oi 0—-6 A, AE, EA 6-14 E, EA 12-55
Southern taiga 58°18'N 68°35E —-0.5 396 0.71 Albic Podzol Oi 0-7 A, AE 4-18 E, EA 15-59
Forest steppe: Forest 56°14'N 70°43'E 0.7 340 0.53 Haplic Phaeozem 0, Oa 0-10 A 7—46 B 57—-109
Forest steppe: Meadow  56°14’N 70°43’E 0.7 340 0.53 Luvic Phaeozem Oa 0-7 A 4-35 Bt 26—84
Steppe 54°41’'N 71°38'E 1.0 309 0.44 Calcic Kastanozem OA 0-12 Ak 8-37 Bk 27—-109

2.3. Potential extracellular enzyme activities

We measured potential enzyme activities fluorimetrically and
photometrically using a microplate assay (Kaiser et al., 2010). For
the fluorimetric assay, we used MUF (4-methylumbelliferyl)
labeled substrates: B-p-cellobioside for cellobiohydrolase (CBH),
triacetylchitotrioside for chititriosidase (CHT), N-acetyl-f-p-gluco-
saminide for N-acetyl-glucosaminidase (NAG) and phosphate
for phosphatase (PHO). i-leucine-7-amido-4-methyl coumarin
was used as substrate for leucine-amino-peptidase (LAP). Pheno-
loxidase (POX) activities were measured using L-3,4-
dihydroxyphenylalanine (DOPA) as substrate in a photometric
assay. Assays for CBH, CHT, NAG, PHO and LAP were incubated for
140 min at room temperature in a sodium acetate buffer (pH 5.5)
and activity was measured fluorimetrically (excitation 365 nm and
emission 450 nm). Plates for POX activity were measured photo-
metrically (absorbance 450 nm) at the beginning and after incu-
bation for 20 h at room temperature. POX activity was than
calculated as the increase in color during the incubation time.

2.4. Phospholipid fatty acid (PLFA) analysis

Extraction and measurement of PLFAs followed the procedure
described by Frostegard et al. (1991) with the modifications by
Kaiser et al. (2010). PLFAs were extracted from 1 g soil with chlo-
roform/methanol/citric acid buffer and purified on silica columns
(LC-Si SPE, Supleco, Bellefonte, PA, USA) using chloroform, acetone,
and methanol. After addition of the internal standard (methyl-
nonadecanoate), PLFAs were converted to fatty acid methyl esters
(FAMEs) by alkaline methanolysis. Samples were analyzed on a
Thermo Trace GC with FID detection (Thermo Fisher Scientific,
Waltham, MA, USA), using a DB-23 column (Agilent, Vienna,
Austria). FAMEs were identified using qualitative standard mixes
(37 Components FAME Mix and Bacterial Acid Methyl Esters CP
Mix, Supelco) and quantified using the internal standard. We
categorized the fatty acids according to Kaiser et al. (2010). The
markers 18:1w9, 18:2w6,9, and 18:3w3,6,9 were used as markers for
fungi; i15:0, a15:0, i16:0, i117:0, a17:0, cy17:0 (9/10), cy19:0 (9/10),
16:1w7, 16:1w9, 18:1w7, 15:0, and 17:0 as bacterial markers. We
used the above mentioned markers together with 14:0, i114:0, 16:0,
18:0, 20:0, 22:0, 16:1w11, and 19:1w8 for the calculation of total
PLFA content (Schnecker et al., 2012).

2.5. Statistics

We calculated enzyme patterns to identify differences between
horizons and between sites. To account for the different methods of
measuring enzyme activities and the inherent differences in
enzyme activities of different horizons, the individual enzyme ac-
tivities per gram dry soil were log transformed and standardized by
calculating the proportion of each enzyme to the sum of all

enzymes. With these values, we calculated Euclidean distance
matrixes. We used these matrixes to create Nonmetric Multidi-
mensional Scaling (NMDS) plots. To identify differences between
sites and horizons we used Permutational Multivariate Analysis of
Variance Using Distance Matrices (ADONIS). This analysis is
implemented in the R-package vegan (Oksanen et al, 2013).
Additionally we used Mantel tests based on Spearman correlations
of the calculated enzyme distance matrices with soil parameters
and with microbial community composition (represented as a
distance matrix based on relative abundances of individual PLFA
biomarkers). We performed these analyses for the whole data set,
as well as for data sets of the three horizon classes individually.

To evaluate whether differences between horizons or sites were
stronger, we used two-way-ANOVA. To find differences within sites
or within horizons, we used one-way ANOVA and Tukey HSD as
post-hoc test. We did this for soil parameters, enzyme activities,
and fungi:bacteria ratios, as well as for distances between different
horizons and within horizons (variability). Before analysis, data
were log-transformed or rank-normalized to meet the assumptions
for ANOVA. Differences and correlations were assumed to be sig-
nificant at p < 0.05. Statistics were performed in R 3.0.2 (R
Development Core Team, 2013) using the vegan package
(Oksanen et al., 2013).

3. Results
3.1. Enzyme activities

All measured hydrolytic enzyme activities — calculated per gram
dry soil — differed more strongly between horizons than between
sites (Table 2). Hydrolytic enzyme activities were highest in organic
topsoil horizons followed by mineral topsoils and mineral subsoil

Table 2

Two-way ANOVA R? for enzyme activities, based on dry soil and on microbial C
basis; only significant differences are shown. Bold letters indicate whether horizon
or site have the stronger influence on enzyme activities (higher R?). Asterisks
indicate significance (**mean p < 0.01; ***mean p < 0.001).

Activities per g DM Activities per g Cmic

Horizon Site Interaction Horizon Site Interaction

cellobiohydrolase  0.80 0.05 *** 0.36 0.52 ***
(CBH)

chititriosidase 0.82 0.06 *** 0.24 0.32 ***
(CHT)

N-acetyl- 0.84 0.06 *** 043 016 **
glucosaminidase
(NAG)

phosphatase (PHO) 0.79 0.16 *** 0.03 0.56 ***

leucine-amino- 0.83 0.01 *** 0.05 0.28 ***
peptidase (LAP)

phenoloxidase 0.03 0.17 *** 0.73 0.10 ***
(POX)
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Fig. 1. Extracellular enzyme activities per gram dry soil. Left panels (a—f) show activities on a log-scale for each horizon (O are organic topsoils, black; A are mineral topsoils, light
gray; M are mineral subsoils, dark gray) at each site (TU = Tundra; NT = northern taiga; MT = middle taiga; ST = southern taiga; FF = forest steppe forest; FM = forest steppe
meadow; SP = steppe) individually. Right panels (g—1) show the mean of the individual horizons over all sites. Significant differences for horizon means are derived from ANOVA
and Tukey HSD tests and are indicated by small letters (p > 0.05). Results from two-way ANOVAs are given in Table 2.
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Fig. 2. Extracellular enzyme activities per gram microbial C. Left panels (a—f) show activities for each horizon (O are organic topsoils, black; A are mineral topsoils, light gray; M are
mineral subsoils, dark gray) at each site (TU = Tundra; NT = northern taiga; MT = middle taiga; ST = southern taiga; FF = forest steppe forest; FM = forest steppe meadow;
SP = steppe) individually. Right panels (g—1) show the mean of the individual horizons over all sites. Significant differences for horizon means are derived from ANOVA and Tukey
HSD tests and are indicated by small letters (p > 0.05). Results from two-way ANOVAs are given in Table 2.
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horizons, with the exception of LAP in steppe where the highest
values were found in organic topsoil horizons and mineral subsoil
horizons and lower values were found in mineral topsoil
horizons (Fig. 1). The oxidative enzyme POX did not follow this
pattern and showed greater differences between sites than be-
tween horizons (Table 2, Fig. 1). When hydrolytic enzyme activities
were calculated on a microbial C basis, differences between hori-
zons were often smaller than differences between sites (Table 2,
Fig. 2). POX activity, on a microbial C basis, was highest in the
mineral subsoils followed by mineral topsoils (except northern
taiga). The lowest rates were found in organic topsoil horizons at all
sites. Differences between sites were ambiguous and POX activities,
on a microbial C basis, in mineral subsoil horizons was the only
enzyme activity that showed a clear north—south trend and
decreased from the tundra site in the north to the steppe site in the
South (Fig. 2).

3.2. Enzyme patterns

To evaluate differences in the way microbes decompose SOM in
different horizons, we used log-transformed and standardized
enzyme activities to calculate distance matrixes. The resulting
enzyme patterns differed more strongly between horizons than
between sites (ADONIS: horizons R? = 0.66, sites R? = 0.14; Fig. 3).
The mean distances and thus the variability of enzyme patterns
were greatest in the mineral subsoil horizons, followed by mineral
topsoil horizons, and organic topsoil horizons (Fig. 3b). Enzyme
patterns of different horizons in the South clustered closer together
than enzyme patterns of different horizons in the North in the
NMDS plot (Fig. 3). This trend was more pronounced for differences
(mean distances) between organic topsoils and mineral subsoils,
which were significantly higher in the northern sites (tundra and
taiga) than in the southern sites (forest-steppe and steppe; Fig. 5a).
This trend was weaker but could also be seen for differences be-
tween organic topsoils and mineral topsoils (Fig. 5b). The differ-
ences between mineral topsoils and mineral subsoils did not show
a decrease from North to South (Fig. 5¢).

0.10
(a) e
stress=0.0542 i 'g
@ Tundra ;
@ Northern taiga g
0.05 @ Middle taiga =
Y27 @ Southem taiga LAP 2
O Forest steppe forest s
@ Forest steppe meadow i g
@ steppe CBH
n
o 0.00 = 9} I—%ﬂ
= CHT o ®
Z AL
NAG
-0.05 A
ADONIS:
Horizon R?= 0.66***
Site R?=0.14***
-0.10 T T
-0.2 -0.1 0.0 0.1 0.2
NMDS 1

Fig. 3. Enzyme patterns. NMDS plot of enzyme patterns calculated from a distance
matrix of standardized enzyme activities (a). Symbols are the mean values of the
replicated individual horizons of each site. Error bars are SE. Sites are indicated by color
(Tundra is purple; northern taiga is blue; middle taiga is dark green; southern taiga
light green; forest steppe forest is yellow; forest steppe meadow is orange; steppe is
red). Horizons are indicated by different symbols (circles are organic topsoils; triangles
are mineral topsoils; squares are mineral subsoils). The insert in the upper right corner
(b) shows the distances within the horizons. The results of the ADONIS analysis show
that horizon has a stronger effect than site. Asterisks indicate significance (*** mean
p > 0.001). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 3

Results of Mantel tests of enzyme patterns (distance matrix with standardized
enzyme activities) and microbial community composition (distance matrix of rela-
tive amounts of PLFA) with abiotic and biotic variables. Only significant relations are
shown (p < 0.05). Values are R.

Enzyme patterns Microbial community

composition

Organic Mineral Mineral Organic Mineral Mineral
topsoils topsoils subsoils topsoils topsoils subsoils

C content 0.06 0.29 0.03

N content 0.22 0.30

SOM C/N 0.05 0.04 0.27 0.04

SOM 3'3C 0.27 0.29 0.12 0.03
Microbial C 0.11 0.03
Microbial N 0.03 0.02 0.18

Microbial C/N 0.05 0.24 0.02

pH 0.02 0.03 0.29 0.05 0.14 0.09
Water holding 0.03 0.20 0.25 0.05

capacity

Fungi:bacteria ratio 0.10 0.03 0.24 0.49 0.08 0.20
Mic. community 0.16 0.04 0.17 - - -
comp.

Enzyme patterns - - 0.16 0.04 0.17

Correlations (Mantel tests) of enzyme patterns with biotic and
abiotic factors varied between horizons (Table 3). The most striking
difference between organic topsoils and mineral subsoils is the
absence of a correlation between enzyme patterns and SOM
properties (C, N, C/N ratio) in the mineral subsoils.

3.3. Microbial community composition

Microbial community composition differed significantly be-
tween horizons and between sites with both factors exerting a
similar influence (site R?> = 0.26 and horizon R? = 0.25). Differences
between horizons were mainly caused by a decrease in fungal
markers (18:3w3 and 18:2w6) with soil depth (Fig. 4). The
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Fig. 4. Microbial community composition. NMDS plot of microbial community
composition calculated as distance matrix of the relative abundances of all individual
PLFA markers (a). Symbols are the mean values of the replicated individual horizons of
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differences in microbial community composition between horizons
were further reflected in the fungi:bacteria ratios which decreased
from organic topsoils, to mineral topsoils and mineral subsoils
(Fig. 6). A clear north—south trend is also seen in the fungi:bacteria
ratios in the topsoil and therefore differences between horizons
were lower in the south located ecosystems. Although differences
between horizons were not as pronounced for microbial commu-
nity composition as for enzyme patterns, the variability within the
horizons was also highest in mineral subsoils followed by mineral
topsoils and organic topsoils (Fig. 4b). Microbial community
composition in organic topsoils and mineral subsoils differed more
in the North than in the South (Fig. 5d). With the exception of
tundra, differences between organic topsoils and mineral topsoils
also showed a decrease from North to South (Fig. 5e). Correlations

of microbial community composition with biotic and abiotic factors
were similar to those observed for enzyme patterns (Table 3). The
correlations of microbial community composition and SOM pa-
rameters (C, N, CN ratio, 83C) were strongest in the organic top-
soils, but decreased to mineral topsoils and further to mineral
subsoils (Table 3).

4. Discussion
4.1. Enzyme activities and enzyme patterns
Subsoil horizons differ in a range of physical and chemical pa-

rameters from topsoil horizons (Fierer et al., 2003; Salome et al.,
2010; Rumpel and Kogel-Knabner, 2011). They also exhibit a
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reduced influence of plants and a higher proportion of the present
SOM is associated with minerals (Rumpel and Kogel-Knabner,
2011). These factors are most likely responsible for the clear sepa-
ration of enzyme patterns according to horizons (R? = 0.66), which
was stronger than the differences in enzyme patterns between sites
(R? = 0.14; Fig. 3), in our study. A similar picture in enzyme pat-
terns, with R? for horizon of 0.48 and R? for site of 0.23 could be
found when POX was not included in the analysis (data not shown).
The higher R? for horizon when POX was included, indicate that the
different change of oxidative and hydrolytic enzyme activities with
depth was a major factor responsible for the distinct enzyme pat-
terns in topsoils and subsoils. While hydrolytic enzyme activities
generally decreased with depth, POX activities did not change from
topsoil to subsoil (Fig. 1). An explanation for this might be that the
activity of hydrolytic enzymes is often directly related to SOM
content (Sinsabaugh et al., 2008; Schnecker et al., 2014). Since SOM
content and the amount of regular polymers, that can be broken
down hydrolytically, decrease with depth (Rumpel and Kogel-
Knabner, 2011), hydrolytic enzyme activities can be expected to
decrease accordingly. Oxidative enzymes, in contrast, are unspecific
and are often not produced to directly acquire nutrients
(Sinsabaugh, 2010). Instead, oxidative enzymes can degrade humic
complexes and thereby free substrates for other enzymes (Hobbie
and Horton, 2007; Talbot et al., 2008) or degrade toxic substances
such as phenols (Sinsabaugh, 2010). The production of oxidative
enzymes might thus be related to the amount of irregular polymers
or the amount of toxins, which are both independent from SOM
content. In addition, and in contrast to hydrolytic enzymes,
oxidative enzymes are preferentially stabilized on mineral surfaces
and might thus prevail longer in mineral subsoils (Kramer et al.,
2013). Overall, the contrasting behavior of hydrolytic and oxida-
tive enzymes presumably led to the more pronounced differences
in enzyme pattern between horizons than between sites.
Differences between sites and a latitudinal trend could be found
for differences between enzyme patterns (expressed as mean dis-
tances), in organic topsoil and mineral subsoil horizons (Figs. 3 and
5). We found that enzyme patterns in topsoils and subsoils were
most similar at the southernmost site, although organic topsoils
and mineral subsoils in this steppe ecosystem were up to one meter
apart from each other (Table 1). In contrast, at the tundra site
enzyme patterns showed the greatest differences of all sites be-
tween organic topsoils and mineral subsoils, which are less than
50 cm apart. This trend from North to South was not caused by the
variability of enzyme patterns in topsoils, but by the large vari-
ability in mineral subsoils (Fig. 3). This is in contrast to our hy-
pothesis that greater differences between ecosystems would occur
in organic topsoil horizons due to the diverse litter inputs in
different ecosystems. Again, these differences between ecosystems
in mineral horizons could be found with and without POX, but POX

activity, on a microbial C basis (Fig. 2) was the only individual
enzyme activity that decreased from North to South. Also in this
case enzyme activities might have been controlled by physical
parameters, which vary especially in subsoils of different ecosys-
tems. Anoxia and water saturation for instance are common fea-
tures of subsoil horizons of high latitude ecosystems, whereas they
can be neglected as important factors in arid steppe subsoils.
Fluctuating oxygen conditions might lead to abiotic oxidation of
organic material in the presence of iron or manganese and mimic
oxidative enzyme activities (Bach et al., 2013; Hall and Silver, 2013).
This might explain the high oxidative activities found in the
northern ecosystems. Lack of oxygen influences oxidative enzyme
gravely and although it has been proposed that anoxia does not
directly affect hydrolytic enzyme activities (Hall et al., 2014), indi-
vidual enzymes or their substrates might be differently stabilized
on mineral surfaces (Turner et al, 2014). These stabilization
mechanisms can be influenced by physical and chemical factors
such as O, availability and pH or by the mineralogical composition
of soils (von Liitzow et al., 2006). Along the transect parent material
changed from marine deposits at the tundra site to fluvi-glacial
deposits in the northern and middle taiga to eolian deposits
south of the middle taiga (Archipov et al., 1970). These differences
in parent material might be reflected in the mineralogical compo-
sition of the soils at these sites.

4.2. Enzyme patterns and microbial community composition

Physical factors in subsoil horizons might also have indirectly
influenced enzyme patterns by affecting microbial community
composition (Schnecker et al., 2014). In all three soil horizon types,
we found significant correlations between enzyme patterns and
microbial community composition (Table 3). Microbial community
composition itself was significantly different between horizons
along this 1500 km long Siberian transect (ADONIS in Fig. 4). The
differences between horizons even outranked differences between
ecosystems in topsoil horizons, with a mean distance between
organic topsoils and mineral subsoils of 17.1 + 0.4 (Fig. 5) and mean
distance within organic topsoil horizons of 10.9 + 0.2 (Fig. 4b).
Similar trends were found for North-American forest systems
where the variability of the microbial community composition was
greater within soil profiles than between 54 topsoil horizons
collected from a wide range of ecosystems (Eilers et al., 2012). This
clear picture of the stronger influence of depth than of geographical
distance on microbial community composition becomes however
blurred when subsoil horizons were also considered. When we
included mineral topsoils and mineral subsoils in the statistical
analyses, we found significant differences in microbial community
composition between ecosystems (R? = 0.26), which were as strong
as differences between horizons (R? = 0.25).
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These findings might have two implications: First, the consis-
tent correlations of enzyme patterns and microbial community
composition, and the different enzyme activities on a microbial C
basis (Fig. 2), point to distinct functional capacities of individual
microbial communities in different soil horizons. This also indicates
that enzyme patterns are an estimate for a functional community
composition. Second, the differences between horizons were more
pronounced in enzyme patterns than in the microbial community
composition (Fig. 5), which might indicate an additional physio-
logical adaptation of the microbial communities on top of com-
munity shifts from topsoils to subsoils.

4.3. Enzyme patterns and soil organic matter

So far, we have shown relations of enzyme patterns and mi-
crobial community composition and argued the potential controls
of physical parameters over both. Enzyme patterns may however
also reflect the availability of different substrates, as well as mi-
crobial energy and nutrient demand, and are often related to C/N
ratios of the microbial biomass or of the SOM (Sinsabaugh et al.,
2008). While, in this present study, enzyme patterns and micro-
bial community composition were related to C and N content in the
organic topsoil horizons, these relations were not found in mineral
topsoils and mineral subsoils. In contrast to SOM quantity, SOM
chemistry might be more important in subsoil horizons. Here, the
distinct microbial communities that are presumably adapted to the
different environments along the transect could have led to a
diverging chemical composition of SOM, similar to a proposed
diverging of litter chemistry with ongoing decomposition
(Wickings et al., 2012). This divergence has been found in a litter
decomposition study and has not been shown for SOM. Enzyme
patterns might, nonetheless, reflect a diverged SOM chemistry, and
therefore show greater variability in subsoils, where a high pro-
portion of SOM is microbially transformed, than in topsoils, where a
higher amount of plant components is present.

In summary our findings show that topsoil horizons and subsoil
horizons harbor different microbial communities, which support
distinct ways to decompose the available SOM. In accordance to our
first hypothesis (i.e., that enzyme patterns in topsoil and subsoil
horizons are both related to the same key parameters), we found
that differences in enzyme patterns between horizons outranked
the differences between ecosystems. However, in contradiction to
our third hypothesis (i.e., that enzyme patterns would be more
variable and show greater differences between ecosystems in
topsoil than in subsoil horizons), we found a higher variability of
enzyme patterns in subsoil horizons, which might have been
caused by an interplay of physical conditions, microbial community
composition and chemical composition of SOM. Although we were
not able to identify and describe the mechanisms that shape the
microbial community and control enzyme patterns in subsoil ho-
rizons in detail, we found that enzyme patterns and thus the
strategy of the microbial community to decompose SOM, were not
related to SOM content and C/N ratios, which contradicts our sec-
ond hypothesis. In subsoil horizons, the microbial community, with
its functional abilities, might be responsible for the way in which
SOM is decomposed. In addition to SOM content or C/N ratios, the
microbial community composition might therefore constitute an
important factor controlling decomposition rates, especially in
subsoil horizons.
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