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Abstract

We consider a strongly elliptic second order differential operator A together with
a degenerate boundary operator T of the form T = ϕ0γ0 + ϕ1γ1, where γ0 and γ1

denote the evaluation of a function and its exterior normal derivative, respectively,
at the boundary. We assume that ϕ0, ϕ1 ≥ 0 and ϕ0 + ϕ1 ≥ c > 0. We show that
a suitable shift of the realization AT of A in Lp(X+) has a bounded H∞-calculus
whenever X+ is a manifold with boundary and bounded geometry.

Keywords: H∞-Calculus, no elliptic, maximal regularity

Zusammenfassung

Wir betrachten einen stark elliptischen Differentialoperator zweiter Ordnung A
zusammen mit einem entarteten Randwertoperator T , welche als T = ϕ0γ0 + ϕ1γ1

gegeben ist. Hierbei sind γ0 und γ1 der Einschränkung der Funktion, bzw. der äuße-
ren Normalen Ableitung, auf den Rand. Wir nehmen an, dass ϕ0, ϕ1 ≥ 0 und
ϕ0 + ϕ1 ≥ c > 0 erfüllt sind. Unter diesen Voraussetzungen hat eine geeignete Ver-
schiebung der Lp(X+)-Realisierung AT von A einen beschränkten H∞-Kalkül, falls
X+ eine Mannigfaltigkeit mit Rand und beschränkter Geometrie ist.

Schlagworte: H∞-Kalkül, nicht elliptisch, maximale Regularität
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1 Introduction and the Main Result

Let (X+, g) be a manifold with boundary and bounded geometry and (κ, Uκ, Vκ) be Fermi-
coordinates, for the definition see Section 2.3. We consider a second order differential
operator A locally given by:

Aκ =
∑

1≤i,j≤n

aκij(x)DiDj +
√
−1

∑
1≤i≤n

bκi (x)Di + cκ(x). (1.1)

The coefficients are assumed to be real valued. We call A M -elliptic if a constant M > 0
which does not depend on κ exists such that for all x ∈ Vκ the following estimate holds:

M−1|ξ|2 ≤
∑

aκij(x)ξiξj ≤M |ξ|2.

We say that A is sufficiently regular if a constant C > 0 exists which is independent of κ
such that ‖aκij(x)‖Cτ (Vκ), ‖bκi ‖L∞(Vκ), and ‖cκ‖L∞(Vκ) are bounded by that constant. After
possibly enlarging M we can assume that C ≤ M . We denote the trace operator by γ0

and the trace of the exterior normal derivative by γ1, for more details see Section 2.3.
Given a pair of non-negative functions ϕ0, ϕ1 ∈ C∞b (∂X+) that satisfy ϕ0 + ϕ1 ≥ c > 0,
we define a boundary operator T of the form:

T = ϕ0γ0 + ϕ1γ1. (1.2)

We obtain the classical Dirichlet problem for ϕ0 = 1, ϕ1 = 0. The choice ϕ0 = 0, ϕ1 = 1
yields Neumann boundary conditions and Robin problems correspond to the case where ϕ1

is nowhere zero. These are the cases in which the Lopatinski-Shapiro ellipticity condition
is satisfied, in general this is not the case. We write A+ := r+Ae+, where r+ denotes the
restriction in the sense of distributions and e+ denotes the extension by zero. We define
an unbounded operator AT that acts like A+ on the following domain:

D(AT ) := {u ∈ H2
p (X+) : Tu = 0}.

The main result is that a suitable shift of AT allows a bounded H∞-calculus. For the
definition of the H∞-calculus see Section 3. In detail the main result is:

Theorem 1.1. Let (X+, g) be a manifold with boundary and bounded geometry. Let T be
as in (1.2) and AT be the realisation given above of an M-elliptic sufficiently regular second
order differential operator. Then, for every 0 < ϑ < π a constant ν = ν(M, |t|∗, ϑ) ≥ 0
exists such that AT + ν allows an H∞(Σϑ)-calculus in Lp(X+). Moreover, a constant
C = C(M, |t|∗, ϑ) > 0 exists such that for all f ∈ H∞(Σϑ) the following estimate holds:

‖f(AT )‖B(Lp(X+)) ≤ C‖f‖L∞(Σϑ).

The problem of providing a bounded H∞-calculus has a long history. Let us mention
some of the main results in the development and refer to the sources for further reading.
The first results in this direction are in the series of papers [41], [40] and [38] by Robert

7



Seeley. He proves that (systems of) elliptic differential operators have bounded imaginary
powers if the underlying manifold has no boundary or the operator is complemented with a
boundary operator which satisfies the Lopatinski-Shapiro condition. However, the notion
of a bounded H∞-calculus was not yet established. In fact, this notion was introduced by
Alan McIntosh in [29] and [11], first for Hilbert spaces and later with his co-authors for
Banach spaces. In [15] and [16], Xuan Thinh Duong established the bounded H∞-calculus
under Seeley’s assumptions. According to the famous result of Giovanni Dore and Alberto
Venni, see [14], the existence of a bounded H∞-calculus implies maximal regularity.
The assumption of smooth coefficients is too restrictive for applications. This led to
further efforts to reduce the smoothness assumptions, see for instance [31], [5], and [12].
In [12], the existence of a bounded H∞-calculus was established for elliptic systems on
compact manifolds under the same sufficient regularity assumptions we impose here. As
pointed out earlier, the boundary operator T does in general not satisfy the Lopatinski-
Shapiro condition. Thus, the boundary value problem is not elliptic. Until now, the
operator AT has been known to generate an analytic semi-group, see [43]. It is well-known
that this is necessary but not sufficient for the existence of a bounded H∞-calculus.

1.1 Outline

In Section 2, we define Bessel potential and Besov spaces on euclidean (half) space and
manifolds with (boundary and) bounded geometry and collect the relevant results for
these spaces, including real- and complex interpolation results, existence of a bounded
extension- and trace operator, and boundedness of multiplication operators. In Section
3, we introduce the notion of bounded H∞-calculus and summarise some known pertur-
bation results. We also sketch the connection to bounded imaginary powers and maximal
regularity. The following technical result is essential for the proof of the main result, the
proof is given in Section 5.4.

Theorem 1.2 (Auxiliary Result). Let X+ = Rn
+ and AT be given as in Theorem 1.1.

Moreover, we assume that the coefficients of AT are smooth and bounded. Then, for every
0 < ϑ < π a constant ν = ν(|a|∗,M, |t|∗, ϑ) ≥ 0 exists such that AT +ν allows an H∞(Σϑ)-
calculus in Lp(Rn

+). Moreover, a constant C = C(|a|∗,M, |t|∗, ϑ) > 0 exists such that for
all f ∈ H∞(Σϑ) the following estimate holds:

‖f(AT )‖B(Lp(X+)) ≤ C‖f‖L∞(Σϑ).

In particular, we are interested in the case where AT is homogeneous of degree two and
has constant coefficients. Under these additional assumptions, we obtain the main result.
Note that for the main result, the constants in the above theorem should only depend
on M and not on additional seminorms |a|∗ of the differential operator. The details are
given in Section 5.4 and the result reads as follows:

Corollary 1.3. Let X+ = Rn
+ and AT be given as in Theorem 1.1. Moreover, assume

that AT is homogeneous of degree two and has constant coefficients. Then, Theorem 1.1
holds.
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For the proof of Theorem 1.2, we proceed as follows: We give a pseudodifferential in-
terpretation of Agmon’s famous idea to consider the spectral parameter as an additional
co-variable, see Section 5.1. Agmon’s point of view allows us to explicitly compute the
slowest decaying part of the resolvent of AT , see Section 5.3. This computation involves
the construction of a parametrix to the extended boundary value problem. In Section
5.2, we carry out the construction. This construction is divided into the construction of a
parametrix to the associated Dirichlet problem and the construction of a parametrix to a
pseudodifferential operator on the boundary: the well-known

”
Reduction to the Bound-

ary“. The assumption made on the trace operator ensures that the second parametrix
exists because the resulting operator on the boundary satisfies Hörmader’s hypo-ellipticity
condition, see Section 5.2.2. The parametrix to the associated Dirichlet problem can be
constructed in Boutet de Monvel’s calculus. This construction is well-known, see Section
5.2.1. The parametrix to the extended boundary value problem is a combination of the
two previously mentioned parametrices. However we have to take a technical hurdle: The
parametrix on the boundary is of Hörmander type with δ = 1/2, hence we need a Boutet
de Monvel calculus based on such pseudodifferential operators. We did not find a source
where such a calculus is treated. Therefore, in Section 4, we establish this calculus for
0 ≤ δ < 1. The proof of Theorem 1.2 depends on explicit estimates which again rely on
the results of Section 5.2 and 5.1. Once Theorem 1.2 is established, we use the technique
of

”
freezing the coefficients“ to remove the smoothness assumption, see Section 5.5.1. The-

orem 1.2 implies the main result via the processes of localization and rectification, see
Section 5.5.3.

In Section 6, we provide a possible application of the main result: the short time
existence for the porous medium equation with general boundary condition of the form
(1.2).
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2 Function Spaces

In this section, we first revise some general results on function spaces. We then introduce
Bessel potential and Besov spaces on Rn, Rn

+, and on manifolds with or without boundary
which have bounded geometry. The well-known results can be found in the textbooks
[47] and [46] by Hans Triebel with one exception: The recent results on manifold with
boundary and bounded geometry are covered in [17].
A Fréchet space is a complete locally convex vector space whose topology is given by an
increasing family of seminorms (| · |n)n∈N0 . We write | · |∗ on the right hand side of an
inequality, if the inequality holds with | · |∗ replaced by | · |n for some n ∈ N0. We write
|k|∗ on the left hand side of an inequality, if it holds for | · |∗ replaced by | · |n for any
choice of n ∈ N0. In this notation, a linear operator A between Fréchet spaces is bounded
if and only if |Au|∗ ≤ C|u|∗.

The inductive limit of Fréchet spaces is defined as follows: Let (Ej)j∈N0 be a sequence of
Fréchet spaces such that Ej ↪→ Ej′ if j ≤ j′. We equip the vector space E := ∪j∈N0Ej with
the finest locally convex topology such that the natural embedding Ej ⊂ E is continuous
for all j ∈ N0. It is well-known that a linear operator A from E into a locally convex
space F is continuous if and only if the restriction to Ej is for all j ∈ N0. Furthermore, we
need the projective limit of Fréchet spaces: Let (Fj)j∈N0 be a sequence of Fréchet spaces
such that Ej ←↩ Ej′ if j ≤ j′. We equip the vector space E := ∩j∈N0Ej with the coarsest
locally convex topology such that the embedding F ⊂ Fj is continuous for each j ∈ N0.
It is well-known that a linear operator A that maps a Banach space E into a projective
limit of Fréchet spaces F is bounded if and only if A ∈ B(E,Fj) for all j ∈ N0. For more
details on the projective and inductive limit, see [26], [33], and [44].

We recall the projective topological tensor product: Let E and F be locally convex
spaces and E⊗F the algebraic tensor product. We consider this space with the projective
topology, with respect to the map E × F 3 (x, y) 7→ x ⊗ y ∈ E ⊗ F . Let (pi)i∈N0 and
(qj)j∈N0 be families of seminorms on E and F which define the topologies. Then, the
topology of E ⊗ F is given by the following family of seminorms:

[pi ⊗ qi](u) := inf

{
n∑
k=1

pi(xk)qj(yk) : u =
n∑
k=1

xk ⊗ yk

}
.

By E⊗̂πF , we denote the completion of the above space. This completion is necessary
because the tensor product of complete space does, in general, not have this property.
The subscript π refers to the choice of the topology, but this is not the only reasonable
choice. For more details and the next result, we refer to [33].

Theorem 2.1 (Structure of Tensor Products). Let E and F be Fréchet spaces. Then,
for any u ∈ E⊗̂πF , sequences (ck) ∈ l1(N0), (xk) ∈ c0(N0;E), and (yk) ∈ c0(N0;F ) exist
such that u admits the following decomposition:

u =
∞∑
k=1

ckxk ⊗ yk.
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The sum converges absolutely and [pi ⊗ qj](u) ≤
∑∞

k=1 |ck|pi(xk)qj(yk) for all pi and qj.

We will use the following notation for interpolation theory: Let E1, E2 be Banach
spaces which are subspaces of a common (Hausdorff) topological vector space. Then,
we say that (E1, E2) is a compatible couple. In this situation, E1 ∩ E2 with norm
‖ · ‖E1∩E2 := max{‖ · ‖E1 , ‖ · ‖E2} is a Banach space, as well as E1 + E2 with norm
‖x‖ = inf{‖x1‖E1 + ‖x2‖E2 : x1 + x2 = x}. These couples form a category. The mor-
phisms are bounded linear maps on the sum which have bounded restriction to the com-
ponents. We use two functors to the category of Banach space. By [E1, E2]θ, we denote
the complex interpolation functor, here 0 ≤ θ ≤ 1. We write [E1, E2]θ,q for the real in-
terpolation functor, with 0 ≤ θ ≤ 1 and 1 ≤ q. For the construction of these functors,
we refer to [8]. We write ∗ instead of θ or θ, p, if a statement holds for the real and
complex interpolation functor. The images of those functors are interpolation spaces, i.e.,
E1∩E2 ↪→ [E1, E2]∗ ↪→ E1+E2 and T : [E1, E2]∗ → [E ′1, E

′
2]∗ is a bounded linear operator,

if T is a morphism between the couples (E1, E2) and (E ′1, E
′
2). Let E and F be Banach

spaces. We say that F is a retract of E, if bounded operators R ∈ B(E,F ) exists and
S ∈ B(F,E) such that RS = 1. The operator R is called a retraction and the operator S
is the coretraction.

Theorem 2.2. Let (E1, E2) and (F1, F2) be interpolation couples of Banach spaces. More-
over, F1 and F2 are retracts of E1 respectively E2, with common retraction R and core-
traction S. Then, [F1, F2]θ = R[E1, E2]θ and [F1, F2]θ,p = R[E1, E2]θ,p.

2.1 Function Space on Euclidean Space

In the theory of differential equation, the use of multi indices is common. We denote the
partial derivatives acting on distributions by Dxi := −i ∂

∂xi
. These operators commute.

Thus, the following notion is defined:

Dα
x := Dα1

x1
· · ·Dαn

xn and xβ = xβ11 · · ·xβnn for α, β ∈ Nn
0 .

A distribution u ∈ D′(Rn) is a rapidly decreasing function, if xβDαu ∈ Cb(Rn) for any
choice of α, β ∈ Nn

0 . We denote the space of these functions by S(Rn), called the Schwartz
space. The topology of this space is defined by one of the following families of seminorms,
with the index set (α, β) ∈ Nn

0 × Nn
0 :

|u|1α,β := ‖xαDβu‖L1(Rn), |u|2α,β := ‖xαDβu‖L2(Rn) or |u|∞α,β := ‖xαDβu‖L∞(Rn).

In the literature, the latter family is most commonly used. However, these families are
equivalent. The following family of seminorms is increasing and induces the same topology
as those mentioned above:

|u|n := sup
|α|,|β|≤n

{|u|1α,β, |u|2α,β, |u|∞α,β} for n ∈ N0.
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S(Rn) is complete and thus a Fréchet space. Additionally, S(Rn) is invariant under the
Fourier transform. We use the following convention:

Fu =

[
ξ 7→

∫
e−iξxu(x)dx

]
and F−1u =

[
x 7→

∫
eiξxu(ξ)d̄ξ

]
, with d̄ξ := (2π)−ndξ.

The Fourier transform of a tempered distribution u ∈ S ′(Rn) is still a tempered distri-
bution. It is defined by [Fu](φ) := u(Fφ) for all φ ∈ S(Rn), as is F−1. We will use the
following properties of the Fourier transform:

(i) F and F−1 are a linear and bounded on S(Rn) resp. S ′(Rn). Moreover, FF−1 = 1.

(ii) ξβD
α

ξF = FDβ
xx

α and xαDβ
xF−1 = F−1D

α

ξ ξ
β for all α, β ∈ Nn

0 .

(iii) F : L1(Rn)→ C0(Rn) and [Fu](ξ) =
∫
e−ixξu(x)dx (Riemann-Lebesgue Lemma).

(iv) F : L2(Rn)→ L2(Rn) and ‖Fu‖L2(Rn) = ‖u‖L2(Rn) (Plancherel’s Theorem).

(v) Fδ = 1.

Note that integration over the covariables always refers to the measure d̄ξ. Thus, no
constants (2π)n appear in the equations above.
Let (φj)j∈N0 be a Littlewood-Paley decomposition of unity. By Φj := φj(D) := F−1φj(·)F ,
we denote the associated Fourier multiplier on S ′(Rn). Note that Φj : S ′(Rn) → Lp(Rn)
is a regularizing pseudodifferential operator. For s ∈ R and p ∈ [1,∞], we define the
Besov spaces and Bessel potential spaces:

Bs
p(Rn) := {u ∈ S ′(Rn) : ‖u‖Bsp(Rn) <∞} with ‖u‖pBsp(Rn) :=

∑
2sjp‖Φju‖pLp(Rn)

Hs
p(Rn) := {u ∈ S ′(Rn) : ‖u‖Hs

p(Rn) <∞} with ‖u‖pHs
p(Rn) :=

∥∥∥∑ 4sj|Φju|2
∥∥∥p
Lp(Rn)

.

These spaces are special cases of the function spaces treated in [45], denoted as Bs
p(Rn) =

Bs
p,p(Rn) and Hs

p(Rn) = F s
p,2(Rn). The topological spaces are well-defined, i.e., different

choices of Littlewood-Paley decomposition of unity give rise to equivalent norms. Ac-
cording to [45], these spaces have the lifting property, i.e., for all m ∈ R the operator
〈D〉m is bounded from the space with parameter s to those with s−m. The definition of
Littlewood-Paley decomposition implies that H0

p (Rn) = Lp(Rn). Therefore, ‖〈D〉su‖Lp(Rn)

is an equivalent norm on Hs
p(Rn), often used to define these spaces. It is well-known that

for s ∈ N0 these spaces coincide with the Sobolev space W s
p (Rn). The spaces introduced

above have the following properties:

Theorem 2.3. Let 1 < p ≤ ∞ and s ∈ R. The following results hold:

• (Multiplier): Let ψ ∈ Bτ
∞(Rn), for some τ > 0. Then ψ is a pointwise multiplication

operator on Hs
p(Rn) and Bs

p(Rn) for all |s| < τ . More precisely a constant C > 0
exists such that

‖ψu‖Hs
p(Rn) ≤ C‖ψ‖Bτ∞(Rn)‖u‖Hs

p(Rn) and ‖ψu‖Bsp(Rn) ≤ C‖ψ‖Bτ∞(Rn)‖u‖Bsp(Rn).

12



• (Dual): Let 1/p+ 1/q = 0. The dual of the Besov and Bessel potential spaces are:

(Hs
p(Rn))′ = H−sq (Rn) and (Bs

p(Rn))′ = B−sq (Rn).

• (Embeddings): For all ε > 0 the following embeddings hold.

Bs−ε
p (Rn) ↪→ Hs

p(Rn) ↪→ Bs+ε
p (Rn).

• (Interpolation): Let s = θs0 + (1− θ)s1 for some θ ∈ [0, 1]. Then

(i) [Hs0
p (Rn), Hs1

p (Rn)]θ,p = Bs
p(Rn).

(ii) [Hs0
p (Rn), Hs1

p (Rn)]θ = Hs
p(Rn).

(iii) [Bs0
p (Rn), Bs1

p (Rn)]θ,p = Bs
p(Rn).

(iv) [Bs0
p (Rn), Bs1

p (Rn)]θ = Bs
p(Rn).

• (Trace): Let γ0u(x′) = u(x′, 0) for all u ∈ D(Rn). If s > 1/p, this operator extends
to an element of B(Hs

p(Rn), Bs−1/p(Rn−1)).

Proof. All of these results can be found in [45].

We recall the definition of weighted Bessel potential spaces for s ∈ R2 and p ∈ (1,∞):

Hs
p(Rn) := {u ∈ S ′(Rn) : ‖u‖Hs

p(R) <∞} with ‖u‖Hs
p(Rn) := ‖F〈ξ〉s1F−1〈x〉s2u‖Lp(Rn).

These spaces are Banach spaces with norm ‖ · ‖Hs
p(Rn). It is well-known that the Schwartz

space and the space of tempered distributions can be expressed via the inductive limes
and the projective limes, respectively:

S(Rn) =
⋂
s∈R2

Hs
p(Rn) =

⋂
s∈N2

Hs
p(Rn) and S ′(Rn) =

⋃
s∈R2

Hs
p(Rn) =

⋃
s∈N2

Hs
p(Rn).

In the following, we need spaces that consist of sequences of functions: Let E and F be
Banach spaces and Γ be a countable index set. We say that a symmetric relation ./ on Γ
has finite width N ∈ N, if

sup
l∈Γ
|{k ∈ Γ : k ./ l}| = N.

Definition 2.4. Let A : l∞(E)→ l∞(F ) and ./ be a symmetric relation of width N ∈ N.
We say that A has band structure, if it is of the form (A(ul)l∈Γ)k =

∑
k./lAklul, where

Akl ∈ B(E,F ) is a uniformly bounded family of operators.

Such operators naturally occur in the localisation process, where the index set labels
the open covering. The indices are related if the intersection of the corresponding open
sets is not empty. This relation is symmetric and has finite width for a suitable chosen
open covering.
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Lemma 2.5 (Band structure operator). Let A : l∞(E) → l∞(F ) have band structure.
Let N be the width of the symmetric relation and C = supk,l∈Γ ‖Akl‖E,F . Then, A ∈
B(lp(E), lp(F )) and ‖A‖ ≤ CN

p+1
p .

Proof. We estimate the norm using the following computation:

‖A(ul)l∈Γ‖plp(F ) =
∑
k∈Γ

‖(A(ul)l∈Γ)k‖pF =
∑
k∈Γ

∥∥∥∥∥∑
k./l

Aklul

∥∥∥∥∥
p

F

≤
∑
k∈Γ

(∑
k./l

‖Akl‖B(E,F )‖ul‖E

)p

≤
∑
k∈Γ

(
NC sup

k./l
‖ul‖E

)p
= (NC)p

∑
k∈Γ

sup
k./l
‖ul‖pE ≤ (NC)p

∑
k∈Γ

∑
k./l

‖ul‖pE

≤ (NC)p
∑
l∈Γ

∑
l./k

‖ul‖pE = N(NC)p
∑
l∈Γ

‖ul‖pE = N(NC)p‖(ul)l∈Γ‖plp(E).

Here, we used the symmetry of the relation to interchange the summation.

For the treatment of differential operators, the natural choice for E and F are Bessel
potential or Besov spaces. In this case, we write Hs

p(Rn) := lp(Γ, H
s
p(Rn)) and Bsp(Rn) :=

lp(Γ, B
s
p(Rn)). Moreover, we define Lp(Rn) := lp(Γ, Lp(Rn)). We do not refer to the index

Γ set in the notation because it should be clear from the context. It is well-known that
the spaces described above behave well under interpolation, see for instance [8, Theorem
5.1.2]. In our notation, the theorem reads as follows:

[Hs0
p (Rn),Hs1

p (Rn)]θ = Hs
p(Rn),

[Hs0
p (Rn),Hs1

p (Rn)]θ,p = Bsp(Rn),

[Bs0p (Rn),Bs1p (Rn)]θ = Bsp(Rn), and

[Bs0p (Rn),Bs1p (Rn)]θ,p = Bsp(Rn),

where θ ∈ (0, 1), s = θs0 + (1− θ)s1, and 1 < p <∞.

2.2 Function Spaces on Euclidean Half Space

In this section, we summarize the relevant results for spaces of functions on euclidean
half space, i.e., Rn

+ := {x ∈ Rn : xn ≥ 0}. The majority of the results follows from the
existence of a bounded extension operator and Section 2.1. We use Hamilton’s definition
of an extension operator, given in [22]. The advantage of his definition, over the one
by Seeley in [39], is that explicit formulas for the dual operator are available. For more
details, we refer to [4]. We define S(Rn

+) := r+S(Rn), where r+ is the restriction to the
closed set Rn

+.

Lemma 2.6. A function h ∈ C∞((0,∞),R) exists that has the following properties:∫ ∞
0

ts|h(t)| dt <∞, (−1)k
∫ ∞

0

tkh(t) dt = 1, and h(1/t) = −th(t),

for all s ∈ R, k ∈ Z, and t > 0.
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For the existence of such a function, we refer to [4, Lemma 1.1.1]. Let u belong to
Cb(Rn

+) or Cb(Rn). Then, for all x ∈ Rn, we define:

[εku](x) = (−1)k
∫ ∞

0

tkh(t)u(x′,−txn) dt.

We further define an operator E that acts on Cb(Rn
+) as follows:

[Eu](x) :=

{
u(x′, xn) if xn ≥ 0,

ε0u(x′, xn) if xn < 0.

We are interested in the mapping properties of the latter operator. To this end, we
observe:

(i) xl
′
nD

l
xn(x′)αDβ

x′ [ε
ku] = εk+l−l′ [xl

′
nD

l
xn(x′)αDβ

x′u] for all l, l′ ∈ N0, k ∈ Z, α, β ∈ Nn−1
0 .

(ii) ‖εku‖Lp(Rn−) ≤ C‖u‖Lp(Rn+), with a constant C = C(k) for k ∈ Z and 1 ≤ p ≤ ∞.

(iii) [εku](x′, xn)→ u(x′, 0) as xn ↘ 0 for all k ∈ Z.

In particular, E is bounded from Hs
p(Rn

+)∩S(Rn
+) to Hs

p(Rn) for all s ∈ N2
0 and 1 < p <∞.

Therefore, E is bounded from S(Rn
+) to S(Rn). Moreover, E is bounded from Ck

b (Rn
+)

to Ck
b (Rn) and thus bounded from Bs

∞(Rn
+) to Bs

∞(Rn) for all s > 0. We define S0(Rn
+)

to be the subspace of functions in S(Rn
+) which vanish with all their derivatives at the

boundary. Thus, the extension by zero, denoted as e+, is a bounded operator from S0(Rn
+)

to S(Rn). The operator Ru := r+(u− ε0u) is bounded from S(Rn) to S0(Rn
+). We define

two pairings:

〈u, φ〉S(Rn)×S(Rn) : =

∫
Rn
u(x)φ(x)dx and

〈u, φ〉S(Rn+)×S0(Rn+) : = 〈Eu, e+φ〉S(Rn)×S(Rn) =

∫
Rn+
u(x)φ(x)dx.

Lemma 2.7. The following identities hold:

〈Eu, φ〉S(Rn)×S(Rn) = 〈u,Rφ〉S(Rn+)×S0(Rn+)

〈r+u, φ〉S(Rn+)×S0(Rn+) = 〈u, e+φ〉S(Rn)×S(Rn)

Proof. The following computation is the essential step for the proof:∫ 0

−∞
[ε0u](x′, xn)φ(x′, xn) dxn =

∫ 0

−∞

∫ ∞
0

h(t)u(x′,−txn)φ(x′, xn) dtdxn

=

∫ ∞
0

∫ ∞
0

h(t)/tu(x′, yn)φ(x′,−yn/t) dtdyn

=

∫ ∞
0

∫ 0

∞
−h(1/s)/su(x′, yn)φ(x′,−syn) dsdyn
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=

∫ ∞
0

∫ 0

∞
h(s)u(x′, yn)φ(x′,−syn) dsdyn

= −
∫ ∞

0

u(x′, xn)[ε0φ](x′, xn)dxn

We obtain the first identity from the computation below:

〈Eu, φ〉S(Rn)×S(Rn) =

∫ ∫ ∞
0

u(x)φ(x) dxndx
′ +

∫ ∫ 0

−∞
[ε0u](x′, xn)φ(x′, xn) dxndx

′

=

∫ ∫ ∞
0

u(x)(φ(x)− [ε0φ](x)) dxndx
′

=

∫
Rn+
u(x)[Rφ](x) dx = 〈u,Rφ〉S(Rn+)×S0(Rn+).

The second identity is obvious.

We define S ′(Rn
+) := r+S ′(Rn). Here, r+ is the restriction of distributions to the inte-

rior of Rn
+. The test functions, with support in the interior of Rn

+, form a dense subspace
of S0(Rn

+). Thus, a unique pairing 〈·, ·〉S′(Rn+)×S0(Rn+) exists which extends 〈·, ·〉S(Rn+)×S0(Rn+).
We define an extension operator R∗ on S ′(Rn

+) which, according to Lemma 2.7, coincides
with E on the dense set S(Rn

+). For consistency, we call this operator E. We observe that
r+Eu = u for all u ∈ S ′(Rn

+). Hence, p+ := Er+ and p− := 1− Er+ are complementary
projections on S ′(Rn) which give rise to the following direct sum decomposition:

S ′(Rn) = p+S ′(Rn)⊕ p−S ′(Rn) = ES ′(Rn
+)⊕ {u ∈ S ′(Rn) : suppu ⊂ Rn

−}.

What we are primarily interested in are the subspaces Hs
p(Rn

+) and Bs
p(Rn

+) of S ′(Rn
+)

which are also defined via restriction. We observe that the restriction of E to Hs
p(Rn

+) or
Bs
p(Rn

+) is a bounded extension operator. We define Hs
p;0(Rn

+) and Bs
p;0(Rn

+) as the closure
of S0(Rn

+), with respect to the induced norm.

Theorem 2.8. Let 1 < p <∞ and s ∈ R. The following results hold:

• (Multiplier): Let ψ ∈ Bτ
∞(Rn

+), for some τ > 0. Then, ψ is a pointwise multipli-
cation operator on Hs

p(Rn
+) and Bs

p(Rn
+) for all |s| < τ . More precisely, a constant

C > 0 exists such that

‖ψu‖Hs
p(Rn+) ≤ C‖ψ‖Bτ∞(Rn+)‖u‖Hs

p(Rn+) and ‖ψu‖Bsp(Rn+) ≤ C‖ψ‖Bτ∞(Rn+)‖u‖Bsp(Rn+).

• (Dual): Let 1/p+ 1/q = 0. The dual of the Besov and Bessel potential spaces are:

(Hs
p(Rn

+))′ = H−sq;0(Rn
+) and (Bs

p(Rn))′ = B−sq;0(Rn).

• (Embeddings): For all ε > 0 the following embeddings hold.

Bs−ε
p (Rn

+) ↪→ Hs
p(Rn

+) ↪→ Bs+ε
p (Rn

+).
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• (Interpolation): Let s = θs0 + (1− θ)s1 for some θ ∈ [0, 1]. Then

(i) [Hs0
p (Rn

+), Hs1
p (Rn

+)]θ,p = Bs
p(Rn

+).

(ii) [Hs0
p (Rn

+), Hs1
p (Rn

+)]θ = Hs
p(Rn

+).

(iii) [Hs0
p;0(Rn

+), Hs1
p;0(Rn

+)]θ,p = Bs
p;0(Rn

+).

(iv) [Hs0
p;0(Rn

+), Hs1
p;0(Rn

+)]θ = Hs
p;0(Rn

+).

(v) [Bs0
p (Rn

+), Bs1
p (Rn

+)]θ,p = Bs
p(Rn

+).

(vi) [Bs0
p (Rn

+), Bs1
p (Rn

+)]θ = Bs
p(Rn

+).

• (Trace): Let γ+
0 := γ0E. This operator is well-defined and bounded from Hs

p(Rn
+) to

Bs−1/p(Rn−1), for s > 1/p.

Proof. For the multiplier result, we observe that ψu = r+EψEu. We thus obtain:

‖ψu‖Hs
p(Rn+) ≤ ‖EψEu‖Hs

p(Rn) ≤ C‖Eψ‖Bτ∞(Rn)‖Eu‖Hs
p(Rn) ≤ C‖ψ‖Bτ∞(Rn+)‖u‖Hs

p(Rn+).

The result on duality follows from the direct sum decomposition which these spaces inherit
from the tempered distributions. We now prove the embedding result. To this end, we
fix u ∈ Bs−ε

p (Rn
+) and ũ ∈ Bs−ε

p (Rn) such that u = r+ũ. Then:

‖u‖Hs
p(Rn+) ≤ ‖ũ‖Hs

p(Rn) ≤ ‖ũ‖Bs+εp (Rn+).

We obtain the first embedding by forming the infimum. The second embedding can be ob-
tained by similar arguments. In the case of Hs

p(Rn
+) and Bs

p(Rn
+), the interpolation results

follow from the fact that r+ is a common retraction. The result for Hs
p;0 is obtained by

duality. The trace is well-defined: For all u ∈ S(Rn
+) we have [γ+

0 u](x′) = limε→0 u(x′, ε).
The trace is bounded as a composition of bounded operators.

We write γ0 instead of γ+
0 . From the context, it should be clear which operator we

refer to.
We define Hs

p(Rn
+) = lp(Γ, H

s
p(Rn

+)), Hs
p;0(Rn

+) = lp(Γ, H
s
p;0(Rn

+)) and Bsp(Rn
+) = lp(Γ, B

s
p(Rn

+)).
Following the same arguments used in the last section, the interpolation results hold:

[Hs0
p (Rn

+),Hs1
p (Rn

+)]θ = Hs
p(Rn

+),

[Hs0
p (Rn

+),Hs1
p (Rn

+)]θ,p = Bsp(Rn
+),

[Hs0
p;0(Rn

+),Hs1
p;0(Rn

+)]θ = Hs
p;0(Rn

+),

[Hs0
p;0(Rn

+),Hs1
p;0(Rn

+)]θ,p = Bsp;0(Rn
+),

[Bs0p (Rn
+),Bs1p (Rn

+)]θ = Bsp(Rn
+), and

[Bs0p (Rn
+),Bs1p (Rn

+)]θ,p = Bsp(Rn
+).

Here, θ ∈ (0, 1), s = θs0 + (1− θ)s1, and 1 < p <∞. Furthermore, we need a well-known
fact from the theory of distribution:
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Lemma 2.9 (Jump relation). Let u ∈ S(Rn
+). Then:

Dne
+u = −iγ∗0γ0u+ e+Dnu and

D2
ne

+u = −γ∗1γ0u+ γ∗0γ1u+ e+D2
nu.

Proof. Observe that e+u = ΘEu, where Θ denotes the Heaviside function, hence:

Dne
+u = −iδEu+ ΘDnEu = −iδ ⊗ γ0u+ e+Dnu = −iγ∗0γ0u+ e+Dn.

The computation above relies on the fact that δEu only depends on the values of Eu
with xn = 0, as well as DnE = EDn on Rn

+. We recall that γ1 = −γ0∂n = −iγ0Dn which
implies γ∗1 = iDnγ

∗
0 . Iterative use of the identity above completes the proof.

2.3 Function Spaces on Manifolds

For the results of this section, we follow [6] and [17].

Definition 2.10. A Riemannian manifold (X, g) without boundary has bounded geom-
etry, if the injectivity radius is positive and all covariant derivatives of the curvature R
are bounded, i.e.,:

‖∇kR‖L∞(X) ≤ ∞ for all k ∈ N0.

Here, ∇ is the Levi-Civita connection.

We are primarily interested in Bessel potential spaces which generalize Sobolev spaces.
The latter are defined as all functions which have Lp-bounded covariant derivatives up to a
given order. For more details on these spaces, we refer to [7]. Robert Strichartz introduced
the Bessel potential spaces as Hs

p(X) := (1−∆g)
−s/2Lp(X), see [42]. Additionally, we need

Besov spaces because they naturally arise if we restrict functions to hypersurfaces. Both
types of spaces can be described locally, using normal coordinates. The preferred point of
view is the local description. For more details, we refer to [46, Chapter 7]. By definition:
Let Γ be an index set for a uniform locally finite cover of X by normal coordinate charts
Ul, with associate coordinates κl : Ul → Vl ⊂ Rn. Let (ψl)l∈Γ be a partition of unity
subordinate to the cover. Given T := {Γ, (Ul)l∈Γ, (Vl)l∈Γ, (κl)l∈Γ, (ψl)l∈Γ}, we define the
following space:

Hs,T
p (X) :=

u ∈ D′(X) : ‖u‖Hs
p(X) :=

(∑
l∈Γ

‖κl,∗ψlu‖pHs
p(Rn)

)1/p

<∞

 , (2.1)

where all functions κ∗lψlu are extended by zero outside of Vl. We define Besov spaces in
a similar fashion:

Bs,T
p (X) :=

u ∈ D′(X) : ‖u‖Bsp(X) :=

(∑
l∈Γ

‖κl,∗ψlu‖pBsp(Rn)

)1/p

<∞

 . (2.2)
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Different choices of T give rise to equivalent norms. In 2.1, each of these norms is equiv-
alent to that of Hs

p(X). In the following, we assume that T has been chosen. Thus,
we drop it from the notation. We define a localization operator L by u 7→ (κl,∗ψlu)l∈Γ.
The operator is obviously linear and bounded from Hs

p(X) to Hs
p(Rn) and from Bs

p(X) to
Bsp(Rn). In fact, a function on X belongs to Hs

p(X) or Bs
p(X) if and only if Lu ∈ Hs

p(Rn) or
Lu ∈ Bsp(Rn), respectively. Moreover, ‖u‖Hs

p(X) = ‖Lu‖Hsp(Rn) and ‖u‖Bsp(X) = ‖Lu‖Bsp(Rn).
For each l ∈ Γ, we fix a bump function χl ∈ C∞0 (Ul) such that χl = 1 on suppψl. We
write χl,∗ := κl,∗χl and define a patching operator P : (ul)l∈Γ 7→

∑
l∈Γ κ

∗
l χl,∗ul. We

define the relation k ./ l :⇔ suppχl ∩ suppχk 6= ∅ which is symmetric and has finite
width because the cover of the manifold is uniform locally finite. The operator D = LP
has band structure and is given by the family Dkl = κk,∗ψkκ

∗
l χl,∗ = κk,∗κ

∗
lψk,∗χl,∗, where

ψk,∗ := κl,∗ψk|Ul . The coordinate changes κk,∗κ
∗
l belong to B(Hs

p(Rn))∩B(Bs
p(Rn)) and are

uniformly bounded with respect to the indices l, k ∈ Γ because the geometry is bounded.
The multiplication operator ψk,∗χl,∗ is similarly bounded. Thus, Lemma 2.5 implies that
LP ∈ B(Hs

p(Rn))∩B(Bsp(Rn)). Therefore, P : Hs
p(Rn)→ Hs

p(X) and P : Bsp(Rn)→ Bs
p(X)

are bounded operators. Note that PL = 1. Thus, P is a retraction from Hs
p(Rn) to Hs

p(M)
with common coretraction L. In particular, the following interpolation results hold. Let
θ ∈ (0, 1), s = θs0 + (1− θ)s1 and 1 < p <∞, then:

[Hs1
p (X), Hs2

p (X)]θ = Hs
p(X),

[Hs1
p (X), Hs2

p (X)]θ,p = Bs
p(X),

[Bs1
p (X), Bs2

p (X)]θ = Bs
p(X) and

[Bs1
p (X), Bs2

p (X)]θ,p = Bs
p(X).

From now on, we consider manifolds with boundaries. We assume that the boundary is a
bounded hypersurface:

Definition 2.11. Let (X, g) be a Riemannian manifold without boundary and bounded
geometry and Y be a hypersurface with (outward) unit normal field ν. We say that Y is
a bounded hypersurface if the following conditions are satisfied:

(i) Y is a closed subset of X.

(ii) The second fundamental form II of Y in X and all its covariant derivatives along
Y are bounded, i.e.,

‖(∇Y )kII‖L∞(N) <∞ for all k ∈ N0.

(iii) There is a δ > 0 such that exp⊥ : N × (−δ, δ)→M is injective.

Here, exp⊥(p, xn) := expMp (−νxn).

If Y is a bounded hypersurface, then (Y, g|Y ) is a manifold without boundary and
bounded geometry, see [6] for the proof. It was observed in [17] that a choice of coordinates
adapted to such a hypersurface exists which is compatible to the normal coordinates. The
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Fermi coordinates are given by exp⊥ close to the boundary and by exp away from the
boundary. With respect to Fermi coordinates, we define the spaces in (2.1). These spaces
are equivalent to those defined by normal coordinates. The Fermi coordinates are used in
the proof of the following result, see [17]:

Proposition 2.12. Let (X, g) be a manifold without boundary and bounded geometry and
Y a bounded hypersurface. For all s > 1/p there is a surjective, bounded and linear map

γ0 : Hs
p(X)→ B

s−1/p
p (Y ) that coincides, with restriction to Y for smooth functions.

The notation of a bounded hypersurfaces allows us to define manifolds with boundary
and bounded geometry:

Definition 2.13. A Riemannian manifold (X+, g+) with smooth boundary ∂X+ has
bounded geometry if there is a Riemannian manifold (X, g) without boundary and bounded
geometry. These manifolds are related as follows:

(i) X+ and X have the same dimension. (If nothing else is mentioned dimX = n.)

(ii) There is an isometric embedding (X+, g+) ↪→ (X, g).

(iii) The boundary ∂X+ is a bounded hypersurface in X.

Theorem [6, Theorem 2.10], given below, proves that Definition 2.13 is equivalent to
the definition provided by Thomas Schick in [34]. Schick’s definition does not require a
surrounding manifold of bounded geometry and is thus intrinsic.

Theorem 2.14. Let (X+, g) be a manifold with boundary such that the following assump-
tions hold.

(N) There is a r∂ > 0 such that the following map is a diffeomorphism onto its image.

∂X+ × [0, r∂)→ X, (x′, xn) 7→ exp⊥(x′, xn).

(I) There is a rinj > 0 such that for all r ≤ rinj and all x ∈ X+\Ur(∂X+) the exponential
map expx : Br(0) ⊂ TxX → X defines a diffeomorphism onto its image.

(B) For every k ≥ 0, we have

‖∇kRX‖L∞(X+) <∞ and ‖(∇∂X+)kII‖L∞(∂X+) <∞.

Then, (M+, g) is a manifold with boundary and bounded geometry.

As a next step, we define Bessel potential spaces on manifolds with boundary and
bounded geometry as Hs

p(X+) := r+
XH

s
p(X). We endow these spaces with the image

norm of r+
X , where r+

X denotes the restriction in the sense of distribution to the open set
X+. We define L+ by u 7→ r+Lũ with r+

X ũ = u. Here, r+ denotes the restriction of
functions over the half space, applied to each component of the sequence. The operator
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is well-defined. It is linear and bounded as a map from Hs
p(X+) to Hs

p(Rn
+). We define

P+ := r+
XPE : Hs

p(Rn
+) → Hs

p(X+), where E is the extension operator on functions over
the half space, applied to each component of the sequence. We see that P+L+ = 1 on
Hs
p(X+) in the calculation below:

P+L+u = r+
XPEr

+Lũ = r+
XPLũ = r+

X ũ = u.

We make use of the fact that the image of 1−Er+ consists of sequences of functions which
have support in Rn

−. In particular, the image of P (1−Er+) consists of functions inX which
have support in X\X+. Thus, EX := PEL+ : Hs

p(X+)→ Hs
p(X) is a bounded extension

operator. Note that this is a common method to construct the extension operator. We can
use the operator to define the trace γ+

0 := γ0EX : Hs
p(X+) → B

s−1/p
p (∂X+). Proposition

2.12 implies that the defined operator is bounded, for s > 1/p. In order to obtain a
more readable notation, we write r+ = r+

X , E = EX , L = L+, and P = P+. We
define Hs

p;0(X+) as the closure of C∞0 (X+) with respect to the Hs
p(X+) norm. We observe

that Hs
p;0(X+) ↪→ Hs

p(X+) for s ≥ 0. We also obtain interpolation results since r+ is a
retraction with coretraction E. Let θ ∈ (0, 1), s = θs0 + (1− θ)s1 and 1 < p <∞, then:

[Hs1
p (X+), Hs2

p (X+)]θ = Hs
p(X+), (2.3)

[Hs1
p;0(X+), Hs2

p;0(X+)]θ = Hs
p;0(X+), (2.4)

[Hs1
p (X+), Hs2

p (X+)]θ,p = Bs
p(X+), (2.5)

[Bs1
p (X+), Bs2

p (X+)]θ = Bs
p(X+) and (2.6)

[Bs1
p (X+), Bs2

p (X+)]θ,p = Bs
p(X+). (2.7)
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3 Bounded H∞-Calculus and Maximal Regularity

Alan McIntosh introduced the concept of a boundedH∞-calculus in [29], first for operators
on Hilbert space and later in [11] for operators on Banach space. For a more recent
reference, we follow the lecture notes [27] provided by Peer Kunstmann and Lutz Weis.
In particular, the perturbation results for this class of operators are important for the
proof of the main result which, at least locally, is a perturbation of the case with smooth
coefficients. We provide the relevant perturbation results in Section 3.2 after introducing
the basic definitions in Section 3.1. Furthermore, in Section 3.3, we include some well-
known results about how these operators relate to those with maximal regularity and
those with bounded imaginary powers.

3.1 Definition of Bounded H∞-calculus

Let E be a complex Banach space. Let D(A) be a subspace of E. A linear operator
A : D(A)→ F is closed if its graph {(x,Ax) : x ∈ D(A)} is a closed subspace of E × F .
It is called densely defined if D(A) is a dense subspace of E. The resolvent set, denoted
as ρ(A), is defined as all λ ∈ C such that λ−A has a bounded inverse. The complement
of the resolvent set is called the spectrum of A and is denoted by σ(A). We define the
sector of angle ϑ ∈ (0, π) as the following subset of the complex plane:

Σϑ := {z ∈ C\{0} : | arg z| < ϑ}.

Definition 3.1. A closed densely defined operator A is sectorial of angle ϑ ∈ (0, π), if

σ(A) ⊂ Σϑ and {λ(λ− A)−1 : θ ≤ arg(λ) ≤ π} is bounded for all ϑ < θ ≤ π.

The infimum over all ϑ, for which A is sectorial, is called the spectral angle of A and is
denoted by ϑ(A). We write S(E) for the set of all sectorial operators which are injective
and have dense range. We denote by H∞(Σϑ) all bounded holomorphic functions on the
sector Σθ. It is well-known that the following subspace is dense with respect to the normal
topology, i.e., uniform convergence on compact sets:

H∞0 (Σϑ) :=
{
f ∈ H∞(Σϑ) : ∃ C, ε > 0 : |f(λ)| ≤ C|λ(1 + λ)−2|ε

}
.

According to the decay properties of functions in the subspace above and of sectorial
operators, the following integral is defined for all ϑ(A) < θ < ϑ:

ΦA(f) :=
1

2πi

∫
∂Σθ

f(λ)(λ− A)−1 dλ. (3.1)

It is well-known that ΦA is an algebra morphism, formulated in the following theorem.
For the proof, we refer to [27, Theorem 9.2].

Theorem 3.2. Let E be a Banach space and A ∈ S(E) be a sectorial operator of angle
ϑ ∈ (0, π). Let ϑ(A) < θ < ϑ. Then, ΦA : H∞0 (Σϑ) → B(E), defined by Equation (3.1),
is a linear and multiplicative map with the following properties:

22



(i) Let fn, f ∈ H∞(Σϑ) be uniformly bounded and fn(λ)→ f(λ) for λ ∈ Σϑ. Then, for
all g ∈ H∞0 (Σϑ)

lim
n→∞

ΦA(fng) = ΦA(fg) in B(E).

(ii) If f(λ) = λ(µ1 − λ)−1(µ2 − λ)−1 with µ1, µ2 /∈ Σθ, then,

ΦA(f) = A(A− µ1)−1(A− µ2)−1.

(iii) A C > 0 exists such that ‖ΦA(f)‖ ≤ C
∫
∂Σθ
|f(λ)| dλ|λ| .

We observe that ΦA is an unbounded operator and consider its closure. To this end,
we provide the following definition:

Definition 3.3. Let A ∈ S(E) and ϑ > ϑ(A). For f ∈ H∞0 (Σϑ), we define

‖f‖A := ‖f‖L∞(Σϑ) + ‖ΦA(f)‖B(E).

We further define H∞A (Σϑ) to be the class of functions f ∈ H∞(Σϑ), for which a sequence
fn ∈ H∞0 (Σϑ) exists with fn(λ)→ f(λ) for all λ ∈ Σϑ and sup{‖f‖A : n ∈ N} <∞.

For functions in this class, the calculus defined in Theorem 3.2 has a unique extension.
The exact result is provided in Theorem 3.4. For the proof, see [27, Theorem 9.6] for the
existence and [27, Remark 9.7] for the uniqueness.

Theorem 3.4. Let A ∈ S(E) and ϑ > ϑ(A). Then, an extension ΦA : H∞A (Σϑ)→ B(E)
of ΦA exists with the following properties:

(i) ΦA is linear and multiplicative.

(ii) τµ := (µ− ·)−1 ∈ H∞A (Σθ) and ΦA(τµ) = (µ− A)−1 if µ /∈ Σϑ.

(iii) If fn ∈ H∞A (Σϑ) and f ∈ H∞(Σϑ) with fn(λ)→ f(λ) for all λ ∈ Σϑ and ‖fn‖ΦA ≤ C,
then f ∈ H∞A (Σϑ) and lim ΦA(fn)x = ΦA(f)x for all x ∈ E and ‖ΦA(f)‖ ≤ C.

The extension is unique, i.e., if Ψ : H∞A (Σϑ)→ B(E) satisfies (i)-(iii) then Ψ = ΦA.

We follow the common notation and write f(A) := ΦAf . In general, H∞A (Σϑ) is a
proper subspace of H∞(Σϑ). What we are interested in is the situation in which these
spaces coincide. Therefore, we define:

Definition 3.5 (Bounded H∞-calculus). Let A ∈ S(E) and ϑ > ϑ(A). We say that A
has a bounded H∞(Σϑ)-calculus if H∞A (Σϑ) = H∞(Σϑ). The infimum over all ϑ for which
A has a bounded H∞(Σϑ)-calculus is denoted as ϑ∞(A).

According to closed graph theorem, A has a bounded H∞-calculus if uniform estimates
(3.1) exist. More formally:
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Remark 3.6. Let A ∈ S(E) and ϑ > ϑ(A). Then, A has a bounded H∞(Σϑ)-calculus if
and only if a C > 0 exists such that ‖f(A)‖B(E) ≤ C‖f‖L∞(Σϑ) for all f ∈ H∞0 (Σϑ).

For later argumentation, we need the following lemma:

Lemma 3.7. Let E be a Banach space, D(A) a dense subspace, and A : D(A) → E a
linear operator. Assume that there a another Banach space F and operators L, P , B, and
B′ satisfying the following criteria exist:

(i) L ∈ B(E,F ) and P ∈ B(F,E) such that PL = 1 on E.

(ii) B,B′ ∈ S(F ) have a bounded H∞(Σϑ)-calculus.

(iii) L : D(A)→ D(B) and P : D(B′)→ D(A).

(iv) LA = BL on D(A) and AP = PB′ on D(B).

Then, A has a bounded H∞(Σϑ)-calculus.

Proof. We first verify that A is a sectorial operator. Let ϑ > ω := max{ϑ(B), ϑ(B′)} and
λ ∈ Σc

ϑ. By assumption, λ ∈ ρ(B) ∩ ρ(B′). We observe that λ − A has a left inverse
P (λ−B′)−1L and a right inverse P (λ−B)−1L. Moreover, the following estimate holds:

‖λ(λ− A)−1‖B(E) = ‖Pλ(λ−B)−1L‖B(E) ≤ ‖P‖B(F,E)‖λ(λ−B)−1‖B(F )‖L‖B(E,F )

In particular, ρ(A) 6= ∅. Thus, A is closed operator. Moreover, we have shown that A ∈
S(E) and ϑ(A) ≥ ω. Now, let ϑ > θ > ω∞ := max{ϑ∞(B), ϑ∞(B′)} and f ∈ H∞0 (Σϑ).
Then:

‖f(A)‖B(E) =

∥∥∥∥∫
∂Σθ

f(λ)(λ− A)−1 dλ

∥∥∥∥
B(E)

≤ ‖P‖B(F,E)

∥∥∥∥∫
∂Σθ

f(λ)(λ−B)−1 dλ

∥∥∥∥
B(F )

‖L‖B(E,F )

≤ C‖P‖B(F,E)‖L‖B(E,F )‖f‖L∞(Σθ).

Here, the constant C > 0 is the smallest which satisfies ‖f(B)‖B(F ) < C‖f‖L∞(Σϑ). We
apply Remark 3.6 to finish the proof.

3.2 Perturbation

This section addresses the question under which condition A+B has a bounded H∞(Σϑ)-
calculus in E, given that A has. First of all, we need the sum to define a sectorial operator.
It is well-known that the sum is sectorial if B is A-bounded, i.e., B is a closed operator
with D(B) ⊃ D(A) and

‖Bx‖E ≤ C‖Ax‖E for all x ∈ D(A).

According to the counterexample by Alan McIntosh and Atsushi Yagi in [30], the above
condition cannot be sufficient for a bounded H∞-calculus. We thus need additional as-
sumptions. For example, the result below holds:
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Theorem 3.8. Let A ∈ S(E) have a bounded H∞(Σϑ)-calculus in E and 0 ∈ ρ(A). Let
γ ∈ (0, 1) and suppose that B is a linear operator in E, satisfying D(B) ⊃ D(A) and

‖Bu‖E ≤ C‖A1−γu‖E for all u ∈ D(A).

Then, ν + A+B has a bounded H∞(Σϑ)-calculus in E for ν ≥ 0 sufficiently large.

For the proof, we refer to [27, Proposition 13.1]. From now on, we assume that E is
a uniformly convex Banach space which is true for all subspaces and quotient spaces of
Lp-spaces with 1 < p <∞. Furthermore, we need a result for small perturbations:

Theorem 3.9. Let E be a Banach space with the UMD property and A ∈ S(E) have
a bounded H∞(Σϑ)-calculus and 0 ∈ ρ(A). Let B be a linear operator in E such that
D(A) ⊂ D(B) and an ε > 0 exist such that

‖Bu‖E ≤ ε‖Au‖E for all u ∈ D(A).

Suppose further that γ ∈ (0, 1) and a constant C > 0 exists such that

B(D(A1+γ)) ⊂ D(Aγ) and ‖AγBx‖E ≤ C‖A1+γx‖E for x ∈ D(A1+δ).

Then, A+B has a bounded H∞(Σϑ)-calculus in E, provided ε is sufficiently small. More-
over, a constant CA+B := CA+B(CA, ε, C) exists such that

‖f(A+B)‖B(E) ≤ CA+B‖f‖H∞(Σθ).

Here, CA is the best constant that satisfies the above estimate with B = 0. For the
proof, we refer to [12]. The size of ε depends on the constant C and the R-bound of the
resolvent of A over the sector Σϑ, see also [27]. There, A is assumed to be R-sectional
which is true for operators with an H∞(Σϑ)-calculus in UMD spaces.
The term UMD is an abbreviation for

”
unconditional martingale differences“. For a

precise definition of the UMD property, we refer to [25]. For this thesis, the most primitive
examples of UMD spaces are sufficient: Any Hilbert space has the UMD property.
Moreover, if (Ω,B, µ) is a sigma finite measure space, 1 < p < ∞ and E has the UMD
property, then, Lp(Ω, µ;E) also has. In particular, Lp(Rn

+) and Lp(Rn
+) = lp(Γ;Lp(Rn

+))
have the UMD property.

3.3 Bounded Imaginary Powers and Maximal Regularity

The functional calculus has a unique extension to slowly growing holomorphic functions.
We write %(λ) = λ〈λ〉−2. For γ > 0, we define H∞γ (Σϑ) as the space of all holomorphic
function on the sector that satisfy the following estimate:

‖f‖H∞γ (Σθ) := sup{|%(λ)|γ|f(λ)| : λ ∈ Σϑ} <∞.
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For each f ∈ H∞γ (Σϑ) and A ∈ S(E) which allows a bounded H∞(Σϑ)-calculus, we define
an unbounded operator f(A). We fix an even integer k > γ and define:

D(f(A)) := {u ∈ E : [%kf ](A)u ∈ D(Ak) ∩R(Ak)} → E, u 7→ ρ−k(A)[%kf ](A)u.

Here, D(Ak)∩R(Ak) is the domain of %−k(A). It is well-known that the operator defined
above is closable. We make no notational distinction for the closure. For more details, see
the appendix in [27]. The extension of the calculus is sufficient to treat complex powers,
i.e., λz ∈ H∞<z(Σϑ) for all ϑ ∈ (0, π). In particular, imaginary powers are defined:

Definition 3.10. Let A ∈ S(E). We say A has bounded imaginary powers if, for all
t ∈ R, the operator Ait ∈ B(E) and constants C, ϑ > 0 exists such that the following
estimate holds:

‖Ait‖B(E) ≤ Ceϑ|t|.

The infimum over all ϑ is called the power angle, we denote it by ϑp(A).

Every operator A ∈ S(E) which has a bounded H∞(Σϑ)-calculus has bounded imag-
inary powers because exp(−ϑ|t|)zit ∈ H∞(Σϑ). Moreover, ϑp ≤ ϑ∞. For an operator
which has bounded imaginary powers, the domain of fractional power can be described
via complex interpolation. For the proof, see [47, Theorem 1.15.2]:

Theorem 3.11. If A ∈ S(E) has bounded imaginary powers and 0 ∈ ρ(A), then

D(Aγ) = [E,D(A)]γ for all γ ∈ (0, 1).

Under suitable conditions, operators which have bounded imaginary powers, also have
maximal Lq-regularity, see Theorem 3.12. We only consider maximal Lq-regularity. Thus,
dropping the specifier Lq is reasonable. We recall the definition: Let −A be the generator
of an analytic semigroup on a Banach space E. The solution to the Cauchy problem
ẏ + Ay = f with data f ∈ Lq([0, T );E) and y0 = 0 is provided by the

”
variation of

constants formula“:

y(t) =

∫ t

0

Tt−sf(s) ds.

We say that A has maximal regularity on [0, T ), if y is differentiable almost everywhere,
takes values in D(A), and the following estimate holds:

‖ẏ‖Lq([0,T );E) + ‖Ay‖Lq([0,T );E) ≤ C‖f‖Lq([0,T );E).

Theorem 3.12 (Dore & Venni). Let E be a Banach space with the UMD property and
let A ∈ S(E) have bounded imaginary powers with ϑp(A) < π/2. Then, A has maximal
regularity.
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For the proof, we refer to [14]. Maximal regularity has several applications, for an
overview and more details, see [27]. A first result, Theorem 3.13, by Philippe Clément
and Shuanhu Li in [10] proves the short time existence of solutions to quasi-linear parabolic
equations such as:

u̇(t) + A(u(t))u(t) = f(t, u(t)) and u(t0) = u0, (3.2)

in Lq(0, T ;E0) for some 1 < q <∞, for some finite T , and D(A(u(t))) = E1.

Theorem 3.13 (Clément & Li). We assume that A(u0) has maximal regularity and a
neighbourhood U of u0 exists in Eq = [E1, E0]1/q,q such that for all u, u′ ∈ U :

(i) ‖A(u)− A(u′)‖B(E1;E0) ≤ C‖u− u′‖Eq .

(ii) ‖f(t, u)− f(t′, u′)‖E0 ≤ C(‖u− u′‖Eq + |t− t′|).

Then, a T∗ > 0 exists such that the Equation (3.2) has a unique solution in:

Lq(0, T∗;E1) ∩H1
q (0, T∗;E0).

According to [3, Theorem III.4.10.2], u ∈ Lq(0, T∗;E1) ∩ H1
q (0, T∗;E0) implies that

u ∈ C([0, T∗];Eq). One of the applications of the theory developed in this thesis is the
short time existence of a solution to the porous medium equation. For the proof, we rely
on the theorem above.
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4 Boutet de Monvel’s Calculus

In [9], Louis Boutet de Monvel introduced an algebra of operators which contains classical
boundary value problems and parametrises, if they exists. Several monographs and re-
search papers exist on this topic, most notably [20], [32], and [35]. The mentioned works
all assume that the underlying pseudodifferential operators have symbols in Sm1,0(Rn×Rn).
For our purpose, we need operators based on symbols in the class Sm1,δ(Rn × Rn). Some
results in the previous literature dealt with these operators, for instance [21]. The purpose
of this section is to extend the basic results on Boutet de Monvel’s calculus to the class
of operators based on symbols in Sm1,δ(Rn ×Rn) with 0 ≤ δ < 1. The proofs given in [20],
[32], or [35] only need minor modifications. Adjusting the definitions and proofs in Boutet
de Monvel’s calculus allows us to fix the notation and conventions. For two reasons, we
focus on operators that act on the half space with uniformly estimated symbols: First, it
is sufficient for later use and second, localisation of symbol classes and transporting the
results to manifolds is a well-known process.

4.1 Pseudodifferential Operators

Section 4.1 summarises the relevant definitions and results on pseudodifferential operators.
We refer to [23] and [28] for more details. Operator-valued symbols, defined below, are
important for later use. We follow [35] for the notation in this context. By σλ, we denote
a strongly continuous group action on a Banach space E. If not specified differently this
action is the trivial one, if E = C, and is scaling action, if E is a function space on the
(half-)line. The latter is defined as [σp,λf ](x) = λ1/pf(λ).

Definition 4.1. Let E,F be Banach spaces with strongly continuous group actions σ on
E and σ̃ and F . A function p ∈ C∞(Rn×Rn×Rn;B(E,F )) is an operator-valued symbol
of order m ∈ R and Hörmander type (1, δ), with 0 ≤ δ < 1, if for any indices α, β, γ ∈ Nn

0

a constant C = Cα,β,γ exists such that

‖σ̃−1
〈ξ′〉D

α
ξD

β
xD

γ
yp(x, y, ξ)σ〈ξ〉‖B(E,F ) ≤ C〈ξ〉m−|α|+δ(|β|+|γ|) (4.1)

We write p ∈ Sm1,δ(Rn × Rn × Rn; (E, σ), (F, σ̃)).

The expression 〈ξ′〉 := (1 + |ξ′|2)1/2 is a standard notation in the context of pseu-
dodifferential operators and is used throughout this thesis. For a shorter notation, the
group actions mentioned above are dropped. To further simplify the notation, we write
σp = σp,〈ξ′〉. It is well-known that these symbol spaces are Fréchet spaces, endowed with
the topology of best constant in (4.1). The definition of operator-valued symbols extends
to projective and inductive limits. Let E1 ↪→ E2 ↪→ . . . and F1 ←↩ F2 ←↩ . . . be sequences
of Banach spaces with the same group action, then:

Sm1,δ(Rn × Rn × Rn;E, proj-limk Fk) := proj-limSm1,δ(Rn × Rn × Rn;E,Fk),

Sm1,δ(Rn × Rn × Rn; ind-limk Ek, F ) := proj-limk S
m
1,δ(Rn × Rn × Rn;Ek, F ), and
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Sm1,δ(Rn × Rn × Rn; ind-limkXk, proj-liml Yl) := proj-limSm1,δ(Rn × Rn × Rn;Ek, Fl).

In particular, Sm1,δ(Rn×Rn×Rn;S ′(R+),C), Sm1,δ(Rn×Rn×Rn;C,S(R+)), and Sm1,δ(Rn×
Rn×Rn;S ′(R+),S(R+)) are defined and play a major role in Boutet de Monvel’s calculus.
For each symbol, we define an operator on Schwartz functions:

op(p) : S(Rn;E)→ S(Rn;F ), u 7→
∫ ∫

ei(x−y)ξp(x, y, ξ)u(y)dyd̄ξ,

with the notation d̄ξ = (2π)−ndξ. It is well-known that the mapping p 7→ op(p) is linear
and bounded. In general, this mapping is not injective. However, it can be made injective,
if we restrict the set of variables that p depends on. The most common restrictions only
allow x-dependence or y-dependence. Then, p is the left or right symbol, respectively.
Furthermore, we need symbols with (x′, yn)-dependency. Restricting the dependency of
symbols is a continuous operation. We assume that symbols only depend on x, if not
mentioned otherwise. Therefore, each pseudodifferential operator has a unique symbol.
We denote operators by capital letters and symbols by small letters, i.e., P = op(p).
It is well-known that pseudodifferential operators form an algebra. In particular, the
composition of two pseudodifferential operators is again a pseudodifferential operator.
More formally:

Theorem 4.2. There is a bounded bilinear map:

# : Sm1,δ(Rn × Rn;E,E ′)× Sm′1,δ(Rn × Rn;E ′, F )→ Sm+m′

1,δ (Rn × Rn;E,F ), (p, q) 7→ p#q

given by the property that op(p) op(q) = op(p#q). Moreover,

p#q ∼
∑
α

1

α!
[∂αx p](x, ξ)[D

α
ξ q](x, ξ). (4.2)

An explicit formula for p#q as an oscillatory integral that depends on the symbols p
and q is available, see for instance [28]. Equation (4.2) gives the asymptotic expansion of
the composed symbol, in the sense of the following definition:

Definition 4.3. Let (mj)j∈N0 be a monotonously decreasing sequence converging to −∞.
Let p ∈ Sm0(Rn × Rn;E,F ) and pj ∈ Smj(Rn × Rn;E,F ). We write

p ∼
∞∑
j=0

pj :⇔ ∀N ∈ N : p−
N−1∑
j=0

pj ∈ SN1,δ(Rn × Rn;E,F ). (4.3)

The symbol p is the asymptotic sum of (pj)j∈N0 which is unique modulo smoothing
symbols, i.e., if p and q satisfy (4.3) then p − q ∈ S−∞(Rn × Rn;E,F ). A key property
of the symbol spaces defined above is that they are closed under asymptotic summation.
This means: Given a sequence (pj)j∈N0 as in Definition 4.3, we can always find a p ∈
Sm0

1,δ (Rn × Rn;E,F ) such that (4.3) holds. For a proof, we refer to [23]. Therefore, the
symbol spaces are closed under parametrix construction. The exact statement is:

29



Theorem 4.4. Let p ∈ Sm1,δ(Rn × Rn) and p(x, ξ) be invertible and |p−1(x, ξ)| ≤ C〈ξ〉−m
for |ξ| ≥ R ≥ 0. Then, a p−# ∈ S−m1,δ (Rn × Rn) exists such that p#p# = 1 + r and

p−##p = 1 + l with r, l ∈ S−∞(Rn×Rn). Moreover, |p−#|∗ ≤ C(ω, |p|∗), |r|∗ ≤ C(ω, |p|∗)
and |l|∗ ≤ C(ω, |p|∗).

Above, we pointed out that every operator whose symbol only depends on x can also
be expressed in terms of a symbol which depends on (x′, yn). These symbols are related
by an asymptotic formula:

Lemma 4.5. Let p ∈ Sm1,δ(Rn × Rn), then a p̃ ∈ Sm1,δ(Rn−1 × R× Rn) exists such that

Pu =

∫ ∫
eix
′ξ′ p̃(x′, yn, ξ)ú(ξ′, yn) dyndξ

′.

Here, ú(ξ′, yn) := [Fx′ 7→ξ′u](ξ′, yn). Moreover,

p̃(x′, yn, ξ) ∼
∑
k∈N0

1

k!
[∂kxnD

k
ξnp](x

′, yn, ξ).

For the proof, we refer to [28]. To close this section, we recall the well-known mapping
properties of pseudodifferential operators. For the proof, we refer to [1, Theorem 3.3 and
3.4]:

Theorem 4.6. Let p ∈ Sm1,δ(Rn × Rn;E,F ), with 0 ≤ δ < 1. The group actions are
assumed to be isometric. Then the following results hold.

(a) If E and F are Hilbert spaces, then

P ∈ B(Hs
p(Rn, E), Hs−m

p (Rn, F )) and ‖P‖ ≤ C|p|∗.

(b) If E and F are UMD spaces, then

P ∈ B(Bs
p(Rn, E), Bs−m

p (Rn, F )) and ‖P‖ ≤ C|p|∗.

4.2 Wiener-Hopf Calculus

The simplest instance of Boutet de Monvel’s calculus is the one dimensional case with
constant coefficients. Here, the operators are Fourier multipliers of a certain type which
are known as Wiener-Hopf operators. We recall some well-known facts about these oper-
ators, for more details, see [9], [20], and [32]. In order to describe Wiener-Hopf operators,
we need additional notation.

Definition 4.7. We write H′d for all polynomials of degree less than d and H := ∪Hd.

1. H+ := {F(e+u) : u ∈ S(R+)},

2. H−−1 := {F(e−u) : u ∈ S(R−)},
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3. H− := H−−1 ⊕H′ and

4. H := H+ ⊕H−.

Well-known is that H, H+, H−, and H−−1 are algebras with respect to pointwise
multiplication. Projections h± : H → H± exist. On H+ ⊕ H−−1 ⊂ L2, these projections
are orthogonal and given by h± = Fe±r±F−1. Moreover, we define the plus integral:∫ +

: H → C, u 7→
∫ +

u(ξ) d̄ξ := γ0r
+F−1u.

The plus integral only depends on h+u, i.e., it is zero on H−. According to the dominate
convergence theorem, if u is integrable, then the plus integral coincides with the usual
integral, justifying the notation. The Cauchy Integral Theorem implies that for u ∈
H+ ∩ L1 the plus integral vanishes. In particular, the plus integral of pu for u ∈ H+ and
p ∈ H only depends on h−p. For more details, we refer to [32]. For Boutet de Monvel’s
calculus, the following definition is crucial:

Definition 4.8. We define a Wiener-Hopf operator:

a =

(
p + g k

t s

)
:
H+ ⊗ E
⊕
F

→
H+ ⊗ E ′
⊕
F ′

The components are defined as follows:

(a) To p ∈ Hm ⊗ hom(E,E ′), we associate the operator pu := h+(pu).

(b) To g ∈ H+⊗̂H−d ⊗ hom(E,E ′), we associate an operator gu :=
∫ +

g(·, η)u(η)d̄η.

(c) To k ∈ H+ ⊗ hom(F,E ′), we associate the operator kφ := kφ.

(d) To t ∈ H−d ⊗ hom(E,E ′), we associate the operator tu :=
∫ +

t(η)u(η)d̄η.

(e) To s ∈ hom(F, F ′), we associate the operator sφ := sφ.

We callm ∈ Z the order and d ∈ N0 the class of the operator and writeWHm,d(E,F ;E ′, F ′)
for the space of all the Wiener-Hopf operators.

The class of Wiener-Hopf operators is closed under summation, given that the vector
spaces match. What is less obvious is the fact that they are also closed under composition:

Theorem 4.9 (Composition). Let a ∈ WHm,d(E,F,E ′, F ′) and a′ ∈ WHm′,d′(E ′, F ′, E ′′, F ′′).
Then, a′′ := aa′ ∈ WHm′′,d′′(E,F,E ′′, F ′′). The order is m′′ = m + m′ and the class is
d′′ = max(m′ + d, d′). The components are given in the following list:

1. p′′ − g′′1 = pp′, with p′′ = pp′ and

g′′1(ξ, η) := h+
ξ h
−
η

([h−p](ξ)− [h−p](η)) ([h+p′](ξ)− [h+p′](η))

i(ξ − η)
.
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2. g′′2 = pg′, with g′′2(ξ, η) := h+
ξ p(ξ)g

′(ξ, η).

3. g′′3 = gp′, with g′′3(ξ, η) := h−η g(ξ, η)p′(η).

4. g′′4 = gg′, with g′′4(ξ, η) :=
∫ +

g(ξ, ζ)g′(ζ, η) d̄ζ.

5. g′′5 = kt′, with g′′5(ξ, η) := k(ξ)t′(η).

6. k′′1 = pk′, with k′′1 := h+(pk′).

7. k′′2 = gk′, with k′′2(ξ) :=
∫ +

g(ξ, η)k′(η) d̄ξ.

8. k′′3 = ks′, with k′′3 := ks′.

9. t′′1 = tp′, with t′′1 := h−(tp′).

10. t′′2 = tg′, with t′′2 :=
∫ +

t(η)g′(η, ξ) d̄η.

11. t′′3 = st′, with t′′3 := st′.

12. s′′1 = tk′, with s′′1 :=
∫ +

t(η)k′(η) d̄η.

13. s′′2 = ss′, with s′′2 := ss′.

For the proof, we refer to Boutet de Monvel’s original work [9, Theorem 1.12]. More-
over, the calculus is closed under inversion:

Theorem 4.10. If a ∈ WHm,d is invertible, then a−1 ∈ WH−m,max{d−m,0}.

A proof can be found in [9, Proposition 1.15]. Additionally, the following result is
true, see for instance [32].

Theorem 4.11. The following map is injective, linear, and bounded:(
Hm ×H+⊗̂Hd

− H+

Hd
− C

)
3 a 7→ a ∈ B(H+ ⊗ E ⊕ F ;H+ ⊗ E ⊕ F )

4.3 Potential, Trace, and Singular Green Operators

In this section, we introduce three types of symbols which are part of the definition of
Boutet de Monvel’s calculus, see Definition 4.12. The action normal to the boundary
of the associated operators can be interpreted as an operator-valued pseudodifferential
operator. This interpretation is particularly useful to provide the composition rule for
Boutet de Monvel operators.

Definition 4.12. Let m ∈ R, 1 < p, q < ∞, 1 = 1/p + 1/q, and d ∈ N0. All functions
below may be matrix valued.
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• A function k ∈ C∞(Rn−1 × Rn−1 × R) belongs to the space Km1,δ(Rn−1 × Rn−1) of
potential symbols of order m and Hörmander type (1, δ), if:

k[0](x
′, ξ′; ξn) := [σqk](x′, ξ′; ξn) = 〈ξ′〉1/qk(x′, ξ′; 〈ξ′〉ξn) ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂H+

ξn
.

• A function t ∈ C∞(Rn−1 × Rn−1 × R) belongs to the space T m,d1,δ (Rn−1 × Rn−1) of
trace symbols of order m, class d, and Hörmander type (1, δ), if:

t[0](x
′, ξ′; ξn) := [σpt](x

′, ξ′; ξn) = 〈ξ′〉1/pt(x′, ξ′; 〈ξ′〉ξn) ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂H−d−1.

• A function g ∈ C∞(Rn−1 ×Rn−1 ×R×R) belongs to the space Gm,d1,δ (Rn−1 ×Rn−1)
of singular Green symbols of order m, class d, and Hörmander type (1, δ), if:

g[0](x
′, ξ′; ξn, ηn) := 〈ξ′〉g(x′, ξ′; 〈ξ′〉ξn, 〈ξ′〉ηn) ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂H+

ξn
⊗̂H−d−1,ηn

.

Note that g[0] = σqσpg, if the group actions are applied to ξn and ηn, respectively.

The spaces Km1,0, T m1,0, and Gm1,0 are denoted as S
m−1/q
1,0 (Rn−1×Rn−1;H+), S

m−1/p
1,0 (Rn−1×

Rn−1;H−d−1), and Sm−1
1,0 (Rn−1×Rn−1;H+⊗̂H−d−1) by Gerd Grubb in [20] . Stephan Rempel

and Bert-Wolfgang Schulze denote them in [32] as Km−1/q(Rn−1×Rn), Tm−1/p,d(Rn−1×Rn),
and Bm−1,d(Rn−1 × Rn+1). The previously defined spaces are Fréchet spaces with the
obvious topologies. For fixed (x′, ξ′), the symbols above define Wiener-Hopf operators.
Via Fourier transform, we obtain an action in the direction normal to the boundary:

k(x′, ξ′) : = r+F−1
ξn→xnk(x′, ξ′, ξn) : C→ S(R+), (4.4)

t(x′, ξ′) : = t(x′, ξ′; ξn)Fyn→ξne+ : S(R+)→ C and (4.5)

g(x′, ξ′) : = r+F−1
ξn→xng(x′, ξ′; ξn, ηn)Fyn→ηne+ : S(R+)→ S(R+). (4.6)

First of all, we focus on operators of class zero. We define the class of symbol-kernels as:

k̃(x′, ξ′;xn) := r+F−1
ξn→xnk(x′, ξ′; ξn),

t̃(x′, ξ′;xn) := r+F−1

ξn→xnt(x
′, ξ′; ξn), and

g̃(x′, ξ′;xn, yn) := r+F−1
ξn→xnF

−1

ηn→yng(x′, ξ′; ξn, ηn).

The action in the direction normal to the boundary on u ∈ S(R+), respectively φ ∈ C,
can thus be written as:

[k(x′, ξ′)φ](xn) = k̃(x′, ξ′;xn)φ,

t(x′, ξ′)u =

∫ ∞
0

t̃(x′, ξ′; yn)u(yn) dyn, and

[g(x′, ξ′)u](xn) =

∫ ∞
0

g̃(x′, ξ′;xn, yn)u(yn) dyn.
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We denote the space of all potential, trace, and singular Green symbol-kernels as:

K̃m1,δ(Rn−1 × Rn−1), T̃ m1,δ(Rn−1 × Rn−1), resp. G̃m1,δ(Rn−1 × Rn−1).

The previous mentioned spaces inherit a tensor product structure from scaled symbol-
kernels, i.e.:

k̃[0] := σ−1
p k̃ ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂πS(R+),

t̃[0] := σ−1
q t̃ ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂πS(R+), and

g̃[0] := σ−1
p σ−1

p g̃ ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂πS(R2
++).

This furnishes a natural topology on the symbol kernel spaces. With these topologies,
the map taking a symbol to its symbol-kernel is bounded. This is a direct consequence
of the interaction of scaling and Fourier transform. We observe that t(x′, ξ′) and g(x′, ξ′)
extend to S ′(R+), because they are integral operators with a kernel in S(R+). It is useful
to have a more explicit description of the topology of symbol spaces and symbol-kernel
spaces available. To this end, we need some properties of the scaling operator.

Lemma 4.13. Let [σpf ](xn) := 〈ξ′〉1/pf(〈ξ〉xn), then the following results hold:

(i)
∫
f(xn)[σpg](xn) dxn =

∫
[σ−1
q f ](xn)g(xn) dxn.

(ii) σpFn = Fnσ−1
q and σpF−1

n = F−1
n σ−1

q .

(iii) ‖σpf‖L1 = 〈ξ′〉−1/q‖f‖L1, ‖σpf‖Lp = ‖f‖Lp and ‖σpf‖L∞ = 〈ξ′〉1/p‖f‖L∞.

(iv) ‖σ−1
p f‖L1 = 〈ξ′〉1/q‖f‖L1, ‖σpf‖Lp = ‖f‖Lp and ‖σ−1

p f‖L∞ = 〈ξ′〉1/p‖f‖L∞.

(v) ξl
′
nD

l
ξn
σp = 〈ξ′〉l−l′σpξl

′
nD

l
ξn

and ξl
′
nD

l
ξn
σ−1
p = 〈ξ′〉−l+l′σ−1

p ξl
′
nD

l
ξn

.

(vi) Dα
ξ′D

β
x′σp = σp

∑
sk,α′(ξ

′)ξknD
k
nD

α′

ξ′D
β′

x′ with sk,α′(ξ
′) ∈ S−|α|+|α

′|
1,0 (Rn−1).

The sum is taken over all α′ ≤ α and k ∈ {0, . . . , |α− α′|}. Moreover, s0,|α| = 1.

Proof. The results (i), (ii), (iii), and (iv) can be obtained by change of variables. The
chain rule implies (v). In combination with induction over |α|, we obtain (vi).

Now, we provide estimates for the symbols and symbol-kernels. The arguments are
similar for potential, trace, and singular Green symbols. We thus focus on potential
symbols. By definition, a smooth function k belongs to Km1,δ(Rn−1 × Rn−1), if and only

if |k[0]|p̃α,β,l,l′ ≤ ∞ for all multi indices α, β ∈ Nn−1
0 and 1 ≤ p̃ ≤ ∞. Here, | · |p̃α,β,l,l′ :=

| · |α,β⊗̂π| · |p̃l,l′ . Moreover, | · |α,β denotes the seminorms in Sm1,δ(Rn × Rn) and | · |p̃l,l′ the
seminorms in H+. More explicitly:

‖[h+ξl
′

nD
l
ξnD

α
ξ′D

β
x′k[0]](x

′, ξ′, ·)‖Lp̃(R) ≤ C〈ξ′〉m−|α|+δ|δ|.
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Lemma 4.13 implies that the above and the following estimate are equivalent.

‖[h+ξl
′

nD
l
ξnD

α
ξ′D

β
x′k](x′, ξ′, ·)‖Lp̃(R) ≤ C〈ξ′〉m+mp̃−|α|+δ|δ|−l+l′ .

The factor mp̃ follows from Estimate (iii) in Lemma 4.13. The factor is 1/p, 0, or −1/q
for p̃ = 1, p̃ = q, or p̃ = ∞, respectively. By definition of the topology, the following
estimate holds for the symbol-kernels:

‖xlnDl′

xnD
α
ξ′D

β
x′ k̃[0]‖Lp̃(R+) ≤ C〈ξ′〉m−|α|+δ|β|.

Concerning Lemma 4.13 and k̃[0] = σ−1
p k̃, the next inequality is equivalent to the one

above.

‖xlnDl′

xnD
α
ξ′D

β
x′ k̃‖Lp̃(R+) ≤ C〈ξ′〉m−mp̃−|α|+δ|β|−l+l′ .

Here, mp̃ is now −1/q, 0, or 1/p if p̃ is 1, p, or ∞, respectively. In the following lemma,
we provide the results for the remaining symbols and symbol-kernels:

Lemma 4.14. Let l, l′, l′′, l′′′ ∈ N0 and α, β ∈ Nn−1
0 . By C > 0, we denote a constant

which may depend on the multi-indices used in the estimate.

(i) A smooth function k belongs to ∈ Km1,δ(Rn−1 × Rn−1), if and only if it satisfies one
(and hence all) of the following family of estimates:

‖[h+ξl
′

nD
l
ξnD

α
ξ′D

β
x′k](x′, ξ′, ·)‖L1(R) ≤ C〈ξ′〉m+1/p−|α|+δ|β|−l+l′ .

‖[h+ξl
′

nD
l
ξnD

α
ξ′D

β
x′k](x′, ξ′, ·)‖Lq(R) ≤ C〈ξ′〉m−|α|+δ|β|−l+l′ .

‖[h+ξl
′

nD
l
ξnD

α
ξ′D

β
x′k](x′, ξ′, ·)‖L∞(R) ≤ C〈ξ′〉m−1/q−|α|+δ|β|−l+l′ .

(ii) A smooth function t belongs to T m,01,δ (Rn−1 × Rn−1), if and only if it satisfies one
(and hence all) of the following family of estimates:

‖[h−ξl′nDl
ξnD

α
ξ′D

β
x′t](x

′, ξ′, ·)‖L1(R) ≤ C〈ξ′〉m+1/q−|α|+δ|β|−l+l′

‖[h−ξl′nDl
ξnD

α
ξ′D

β
x′t](x

′, ξ′, ·)‖Lp(R) ≤ C〈ξ′〉m−|α|+δ|β|−l+l′

‖[h−ξl′nDl
ξnD

α
ξ′D

β
x′t](x

′, ξ′, ·)‖L∞(R) ≤ C〈ξ′〉m−1/q−|α|+δ|β|−l+l′

(iii) A smooth function g belongs to Gm,01,δ (Rn−1 × Rn−1), if and only if it satisfies one
(and hence all) of the following family of estimates:

‖[h+
ξn
h−ηnξ

l′

nD
l
ξnη

l′′′

n D
l′′

ηnD
α
ξ′D

β
x′g](x′, ξ′, ·, ·)‖L1(R2) ≤ C〈ξ′〉m+1−|α|+δ|β|−l+l′−l′′+l′′′

‖[h+
ξn
h−ηnξ

l′

nD
l
ξnη

l′′′

n D
l′′

ηnD
α
ξ′D

β
x′g](x′, ξ′, ·, ·)‖L2(R2) ≤ C〈ξ′〉m−|α|+δ|β|−l+l′−l′′+l′′′

‖[h+
ξn
h−ηnξ

l′

nD
l
ξnη

l′′′

n D
l′′

ηnD
α
ξ′D

β
x′g](x′, ξ′, ·, ·)‖L∞(R2) ≤ C〈ξ′〉m−1−|α|+δ|β|−l+l′−l′′+l′′′
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(iv) A smooth function k̃ belongs to K̃m1,δ(Rn−1 × Rn−1), if and only if it is supported in
R+ and satisfies one (and hence all) of the following family of estimates:

‖[xlnDl′

xnD
α
ξ′D

β
x′ k̃](x′, ·, ξ′)‖L1(R+) ≤ C〈ξ′〉m−1/q−|α|+δ|β|−l+l′

‖[xlnDl′

xnD
α
ξ′D

β
x′ k̃](x′, ·, ξ′)‖Lp(R+) ≤ C〈ξ′〉m−|α|+δ|β|−l+l′

‖[xlnDl′

xnD
α
ξ′D

β
x′ k̃](x′, ·, ξ′)‖L∞(R+) ≤ C〈ξ′〉m+1/p−|α|+δ|β|−l+l′

(v) A smooth function t̃ belongs to T̃ m,01,δ (Rn−1 × Rn−1), if and only if it is supported in
R+ and satisfies one (and hence all) of the following family of estimates:

‖[xlnDl′

xnD
α
ξ′D

β
x′ t̃](x

′, ·, ξ′)‖L1(R+) ≤ C〈ξ′〉m−1/p−|α|+δ|β|−l+l′

‖[xlnDl′

xnD
α
ξ′D

β
x′ t̃](x

′, ·, ξ′)‖Lq(R+) ≤ C〈ξ′〉m−|α|+δ|β|−l+l′

‖[xlnDl′

xnD
α
ξ′D

β
x′ t̃](x

′, ·, ξ′)‖L∞(R+) ≤ C〈ξ′〉m+1/q−|α|+δ|β|−l+l′

(vi) A smooth function g̃ belongs to G̃m,01,δ (Rn−1 × Rn−1), if and only if it is supported in
R2

++ and satisfies one (and hence all) of the following family of estimates:

‖xlnDl′

xn,+y
l′′

n D
l′′′

yn,+D
α
ξ′D

β
x′ g̃](x′, ξ′, ·, ·)‖L1(R2

++) ≤ C〈ξ′〉m−1−|α|+δ|β|−l+l′−l′′+l′′′

‖xlnDl′

xny
l′′

n D
l′′′

ynD
α
ξ′D

β
x′ g̃](x′, ξ′, ·, ·)‖L2(R2

++) ≤ C〈ξ′〉m−|α|+δ|β|−l+l′−l′′+l′′′

‖xlnDl′

xny
l′′

n D
l′′′

ynD
α
ξ′D

β
x′ g̃](x′, ξ′, ·, ·)‖L∞(R2

++) ≤ C〈ξ′〉m+1−|α|+δ|β|−l+l′−l′′+l′′′

For all N ∈ N0, we define |k|N as the infimum over all constants such that the estimates
(i) in Lemma 4.14 hold for all multi-indices with |α|, |β|, l, l′ ≤ N . From the discussion
above, it is clear that the previously defined seminorms are equivalent. Similarly, we
define sets of seminorms on T m,01,δ (Rn−1 ×Rn−1) , Gm,01,δ (Rn−1 ×Rn−1), K̃m1,δ(Rn−1 ×Rn−1),

T̃ m1,δ(Rn−1 × Rn−1), and G̃m1,δ(Rn−1 × Rn−1).
It is well-known for symbols with Hömander type (1, 0) that k(x′, ξ′), t(x′, ξ′) and

g(x′, ξ′) are operator-valued symbols. This result extends to general Hömander type.
In fact, the proof given in [35, Theorems 3.7 and 3.9] can be generalised with obvious
replacements. For completeness, we include the proof.

Theorem 4.15. The following maps are linear, bounded, and bijective:

1. K̃m1,δ(Rn−1 × Rn−1) 3 k 7→ k ∈ Sm1,δ(Rn−1 × Rn−1;C,S(R+))

2. T̃ m1,δ(Rn−1 × Rn−1) 3 t 7→ t ∈ Sm1,δ(Rn−1 × Rn−1;S ′(R+),C)

3. G̃m1,δ(Rn−1 × Rn−1) 3 g 7→ g ∈ Sm1,δ(Rn−1 × Rn−1;S ′(R+),S(R+))
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Proof. Note that σ−1
q Dα

ξ′D
β
x′kφ = σ−1

p [Dα
ξ′D

β
x′ k̃]φ = Dα

ξ′D
β
x′ k̃[0]φ. Which implies:

‖Dl1
xnx

l2
n σ
−1
q [Dα

ξ′D
β
x′kφ]‖Lp(R+) ≤ |k|∗〈ξ′〉m−|α|+δ|β|.

The Bessel potential norm is equivalent to the Sobolev norm for integers. Thus, the above
estimate implies the following.

‖σ−1
p Dα

ξ′D
β
x′k‖B(C,Hs

p(R+)) ≤ C|k|∗〈ξ′〉m−|α|+δ|β| for all s ∈ N2
0.

This proves k ∈ Sm1,δ(Rn−1 × Rn−1;C,S(R+)) and the boundedness of the map. The
linearity and injectivity are obvious. What remains to be proven is surjectivity. For a
given k ∈ Sm1,δ(Rn−1 × Rn−1;C,S(R+)), we define k̃(x′, ξ′;xn) := [k(x′, ξ′)1](xn). For all
multi-indices α, β ∈ N0 and (l1, l2) ≤ s ∈ N2

0, we obtain the following estimate:

‖Dl1
xnx

l2
nD

α
ξ′D

β
x′ k̃(x′, ξ′;xn)‖Lp(R+) = 〈ξ′〉l1−l2‖Dl1

xnx
l2
n [σ−1

p Dα
ξ′D

β
x′k(x′, ξ′)1](xn)‖Lp(R+)

≤ C〈ξ′〉l1−l2‖σ−1
p Dα

ξ′D
β
x′k(x′, ξ′)‖B(C,Hs

p(R+))

≤ C〈ξ′〉m−|α|+δ|β|+l1−l2 .

According to Lemma 4.14, the function k̃ belongs to K̃m1,δ(Rn−1×Rn−1). By linearity, the

operator associated to k̃ coincides with k.
Now, we look at trace symbol-kernels. By 〈·, ·〉, we denote the pairing on S0(R+)×S ′(R+).

|Dα
ξ′D

β
x′t(x′, ξ′)σpu| = |〈Dα

ξ′D
β
x′ t̃(x

′, ξ′;xn), [σpu](xn)〉| = |〈σ−1
q Dα

ξ′D
β
x′ t̃(x

′, ξ′;xn), u(xn)〉|
≤ ‖σ−1

q Dα
ξ′D

β
x′ t̃(x

′, ξ′;xn)‖Hs
p(R+)‖u‖H−s

p;0(R+).

We obtain ‖σ−1
q Dα

ξ′D
β
x′ t̃(x

′, ξ′;xn)‖Hs
p(R+) ≤ |t∗|〈ξ′〉m−|α|+δ|β| based on similar arguments

as for potential-kernels. The combination of previous results yields:

‖Dα
ξ′D

β
x′t(x′, ξ′)σp‖B(H−l

p;0(R+),C) ≤ ‖σ
−s
q Dα

ξ′D
β
x′ t̃(x

′, ξ′;xn)‖Hs
p(R+) ≤ |t∗|〈ξ′〉m−|α|+δ|β|.

This implies that t ∈ Sm1,δ(Rn−1 × Rn−1;S ′(R+),C) and the boundedness t̃ 7→ t. Again,
linearity and injectivity are clear. In the following, we consider surjectivity. For a given
t ∈ Sm1,δ(Rn−1 × Rn−1;S ′(R+),C), we fixed (x′, ξ′). Then, t(x′, ξ′) belongs to (S ′(R+))′.

We identify (S ′(R+))′ with S(R+) and define t̃(x′, ξ′;xn) := [t(x′, ξ′)](xn).

‖Dl1
xnx

l2
nD

α
ξ′D

α
x′ t̃(x

′, ξ′;xn)‖Lq(R+) = 〈ξ′〉l1−l2‖Dl1
xnx

l2
n [σ−1

q Dα
ξ′D

β
x′t(x′, ξ′)](xn)‖Lq(R+)

≤ 〈ξ′〉l1−l2‖Dα
ξ′D

β
x′t(x′, ξ′)σp‖B(H−s

p;0(R+),C)

≤ 〈ξ′〉m−|α|+δ|β|−l1+l2 .

According to Lemma 4.14, the function t̃ belongs to T̃m1,δ(Rn−1 × Rn−1). The associated
operator coincides with t. For a singular Green operator, we observed that the L∞
estimates in (vi) of Lemma 4.14 do not depend on the 1 < p <∞ used for scaling. Thus,
we can assume that p = 2. In this case, the result is [35, Lemma 3.8.].
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Now, we drop the zero class assumption. We consider trace symbols of class d which
have no zero class part. Their form is t[0] ∈ Sm1,δ(Rn × Rn)⊗̂H′d−1 and this implies that
symbols sj,[0] ∈ Sm1,δ(Rn−1 × Rn−1) exist for j ∈ {0, . . . , d− 1} such that:

t[0](x
′, ξ′; ξn) =

d−1∑
j=0

sj,[0](x
′, ξ′)ξjn.

We define sj(x
′, ξ′) := ijsj,[0](x

′, ξ′)〈ξ′〉−1/p−j ∈ Sm−1/p−j
1,δ (Rn × Rn−1). Then,

t(x′, ξ′; ξn) = [σ−1
p t[0]](x

′, ξ′; ξn) = 〈ξ′〉−1/p

d−1∑
j=0

sj,[0](x
′, ξ′)〈ξ′〉−jξjn =

d−1∑
j=0

sj(x
′, ξ′)(−iξn)j.

We include the factor ij to obtain t(x′, ξ′) =
∑
sj(x

′, ξ′)γj from the following computation:∫ +

(−iξn)j[Fne+u](ξn) d̄ξn = γ0r
+F−1

n (−iξn)jFne+u = γ0(−∂xn)ju = γju.

Next, we consider singular Green operators. Let g[0] ∈ Sm1,δ(Rn−1×Rn−1)⊗̂H+⊗H′d−1, i.e.,

it is a polynomial in ηn of degree d− 1, with coefficients cj ∈ Sm1,δ(Rn−1×Rn−1)⊗̂H+. We

define kj(x
′, ξ′; ξn) := ij〈ξ′〉−1−jcj(x

′, ξ′; ξn/〈ξ′〉). Note that kj ∈ Km−j−1/p
1,δ (Rn−1 × Rn−1)

because kj,[0](x
′, ξ′; ξn) = ij〈ξ′〉−j−1/pcj(x

′, ξ′; ξn) ∈ Sm−j−1/p
1,δ (Rn−1 × Rn−1)⊗̂H+.

g(x′, ξ′; ξn, ηn) =
d−1∑
j=0

〈ξ′〉−1cj(x
′, ξ′; ξn/〈ξ′〉)(ηn/〈ξ′〉)j =

d−1∑
j=0

kj(x
′, ξ′; ξn)(−iηn)j.

With the result above we obtain the following equality:

[g(x′, ξ′)u](xn) = r+F−1
ξn 7→xn

∫ +

g(x′, ξ′; ξn, ηn)[Fne+u](ηn) d̄ηn

=
d−1∑
j=0

r+F−1
ξn 7→xnkj(x

′, ξ′; ξn)

∫ +

(−iηn)j[Fne+u](ηn) d̄ηn

=

[
d−1∑
j=0

kj(x
′, ξ′)γju

]
(xn).

A generic symbol of class d is a direct sum of a symbol of class zero and class d with no
zero class part, according to the definition H−d−1 := H′d−1 ⊕H−−1. The previous discussion
and Theorem 4.15 imply the result below.

Corollary 4.16 (operator valued symbols). Let s ∈ R2 with s1 > d− 1/p. The following
maps are linear and bounded.

(i) Km1,δ(Rn−1 × Rn−1) 3 k 7→ k ∈ Sm1,δ(Rn−1 × Rn−1;C,S(R+))
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(ii) T m,01,δ (Rn−1 × Rn−1) 3 t 7→ t ∈ Sm1,δ(Rn−1 × Rn−1;S ′(R+),C)

(iii) Gm,01,δ (Rn−1 × Rn−1) 3 g 7→ g ∈ Sm1,δ(Rn−1 × Rn−1;S ′(R+),S(R+))

(iv) T m,d1,δ (Rn−1 × Rn−1) 3 t 7→ t ∈ Sm1,δ(Rn−1 ××Rn−1;Hs
p(R+),C)

(v) Gm,d1,δ (Rn−1 × Rn−1) 3 g 7→ g ∈ Sm1,δ(Rn−1 × Rn−1;Hs
p(R+),S(R+))

Moreover, the maps (i), (ii), and (iii) are bijections. The maps (iv) and (v) are injective
and their images are operators of the following form:

t(x′, ξ′) =
∑

sj(x
′, ξ′)γj + t′(x′, ξ′) and (4.7)

g(x′, ξ′) =
∑

kj(x
′, ξ′)γj + g′(x′, ξ′), (4.8)

where j ∈ {0, . . . , d − 1}, sj ∈ S
m−j−1/p
1,δ (Rn−1 × Rn−1), kj ∈ Km−j−1/p

1,δ (Rn−1 × Rn−1),

t′ ∈ T m,01,δ (Rn−1 × Rn−1), and g′ ∈ Gm,01,δ (Rn−1 × Rn−1).

Proof. The results in (i), (ii), and (iii) directly follow from Theorem (4.15) and the fact
that the Fourier transform is a bounded linear bijection from symbol spaces to the symbol-
kernel spaces. If the class is not zero, then the symbol is a direct sum of a symbols for
class zero and of class d with no class zero part. Thus, the discussion above finishes the
proof.

We restrict the operator-valued symbols to the form of (4.7) or (4.8). Thus, we obtain
a bijection between symbols and operator-valued symbols. Theorem 4.15 and Corollary
4.16 provide two (three in the case of class zero) interchangeable concepts: The operator-
valued symbols denoted by bold letters, the symbols denoted by plain letters, and the
symbol-kernel denoted by letters with a tilde. From now on, we use these concepts
interchangeably. For example, let k(x′, ξ′) be an operator-valued potential symbol, we
write k(x′, ξ′; ξn) for the symbol, instead of let k(x′, ξ′; ξn) denote the symbol of k(x′, ξ′).
We denote the associated pseudodifferential operator by capital letters, i.e., K = op k.

4.4 Transmission Property

This section introduces a class of symbols with the so-called transmission property. The
associated operators map the space of Schwartz functions into itself. The restricted class
of pseudodifferential operators is still large enough to contain the symbols of differential
operators and their parametrices, if they exists. We show that some well-known relations
between potential-, trace-, and pseudodifferential symbol’s continue to be true for a gen-
eral Hörmander type. Moreover, the action in the direction normal to the boundary can
be interpreted as an operator-valued symbol.

Definition 4.17. A symbol p ∈ Sm1,δ(Rn×Rn) has the transmission property (at xn = 0),
provided that for all l ∈ N0 the following relation holds:

[∂lxnp](x
′, ξ′, 0, 〈ξ′〉ξn) ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂H.
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We write p ∈ Pm1,δ(Rn−1×Rn−1) and p ∈ CPm1,δ(Rn−1×Rn−1), if p does not depend on xn.

The definition is equivalent to the uniform transmission property with respect to Rn
+

and Rn
−, in [21].

Notation 4.18 (Principal symbol). Let Xm
1,δ(Rn−1 ×Rn−1) stand for Pm1,δ(Rn−1 ×Rn−1),

Gm,d1,δ (Rn−1 ×Rn−1), Km1,δ(Rn−1 ×Rn−1), T m,d1,δ (Rn−1 ×Rn−1), or Sm1,δ(Rn−1 ×Rn−1). Then,

x ≈ y :⇔ x− y ∈ Xm−(1−δ)
1,δ (Rn × Rn)

is an equivalence relation on Xm
1,δ(Rn−1 × Rn−1). The equivalence class is the principal

symbol of x. We make no notational distinction between classes and representatives, i.e.,
if x ≈ x0 we say that x0 is a principal symbol of x.

Naturally, x is also a principal symbol of x0. Thus, the notation is only useful if an
explicit description of x0 is available. It is common to speak of the (instead of a) prin-
cipal symbol for classical operators because a conical choice of the representative, as the
homogeneous part of highest order, exists. If an operator is constructed from a classical
operator, we also speak of the principal symbol.
Now, we consider the action in the direction normal the boundary. First, we consider
operators on the whole euclidean space. For a given (x′, ξ′) ∈ Rn−1 × Rn−1, the func-
tion p(x′, ξ′; ·, ·) is a symbol in Sm1,δ(R × R). We denote the associated pseudodifferential
operator as p(x′, ξ′). Then:

Lemma 4.19 (Operator-valued symbol). The following map is linear and bounded:

Pm1,δ(Rn−1 × Rn−1) 3 p 7→ p ∈ Sm1,δ(Rn−1 × Rn−1;S(R),S(R)).

Proof. We prove that, for any α, β ∈ N0 and s ∈ N2
0, the operator below is linear, bounded,

and satisfies symbol estimates, which is sufficient to prove the lemma.

σ−1
p Dα

ξ′D
β
x′p(x′, ξ′)σp : Hs

p(R)→ Hs+(m,0)
p (R).

We can absorb α, β ∈ N0 into the order of p. Thus, we assume that α = β = 0. A
straightforward calculation shows that q(x′, ξ′) := σ−1

p p(x′, ξ′)σp is a pseudodifferential
operator with symbol q(x′, ξ′;xn, ξn) = p(x′, ξ′; 〈ξ′〉−1xn, 〈ξ′〉ξn). The symbol seminorms
of q(x′, ξ′; ·, ·) are related to those of p, as follows:

|Dl
ξnD

l′

xnq(x
′, ξ′;xn, ξn)| = 〈ξ′〉l−l′|[Dl

ξnD
l′

xnp](x
′, ξ′;xn/〈ξ′〉, 〈ξ′〉ξn)|

≤ |p|∗〈ξ′〉l−l
′〈ξ′, 〈ξ′〉ξn〉m−l+δl

′ ≤ |p|∗〈ξ′〉m−(1−δ)l′〈ξn〉m−l+δl
′

≤ |p|∗〈ξ′〉m〈ξn〉m−l+δl
′
. (4.9)

The well-known mapping properties for pseudodifferential operators imply that the oper-
ator σ−1

p Dα
ξ′D

β
x′p(x′, ξ′)σp is indeed bounded and satisfies the symbol estimate.
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Next, we consider operators on the euclidean half space. We are interested in the
truncated operator, i.e., p+(x′, ξ′) := r+p(x′, ξ′)e+. We need the following result to
investigate this operator. The result is interesting in its own right.

Proposition 4.20. Let k(x′, ξ′) := r+p(x′, ξ′)γ∗0 . This is a potential operator and the
map:

Pm1,δ(Rn−1 × Rn−1) 3 p 7→ k ∈ Km+1/q
1,δ (Rn−1 × Rn−1)

is linear, bounded, and surjective. Moreover, k(x′, ξ′, ξn) ≈ h+p′(x′, ξ′; 0, ξn), where p′ is
a principal symbol of p.

Proof. Note that γ∗0φ = φ⊗ δ. We first assume that p ∈ CPm1,δ(Rn−1 × Rn−1). Thus, the
action in the direction normal to the boundary is a Fourier multiplier. Then:

r+p(x′, ξ′)δ = r+F−1
n p(x′, ξ′; ξn)Fnδ = r+F−1

n h+p(x′, ξ′; ξn)1.

The formula shows the symbol of the potential operator: k(x′, ξ′; ξn) = h+p(x′, ξ′; 0, ξn).

Now, we verify that k ∈ Km+1/q
1,δ (Rn−1 × Rn−1). The transmission property implies the

following:

k[0](x
′, ξ′; ξn) = σqh

+p(x′, ξ′; 0, ξn) = 〈ξ′〉1/qh+p[0](x
′, ξ′; ξn) ∈ Sm+1/q

1,δ (Rn−1 × Rn−1)⊗̂πH+.

In general, for p ∈ Pm1,δ(Rn−1 × Rn−1), we can assume that p is given in (x′, yn)-form
because k only depends on p. Using Taylor expansion, as in 4.13 with M = 1, implies:

p(x′, ξ′) = pR0 (x′, ξ′) + pR1 (x′, ξ′)xn.

Clearly, xnδ = 0. Thus, k(x′, ξ′) only depends on pR0 (x′, ξ′) ∈ CPm1,δ(Rn−1 × Rn−1).
Obviously, k(x′, ξ′; ξn) = h+

ξn
pR0 (x′, ξ′; ξn) ≈ h+

ξn
p′(x′, ξ′; 0, ξ′). We have to show surjectivity

of the map to finish the proof. For a given symbol-kernel k̃ ∈ K̃m+1/q
1,δ (Rn−1 × Rn−1), we

define:

q(x′, ξ′; ξn) := F−1
ξn→ξn [Ek̃](x′, ξ′;xn).

Here, E is the extension operator introduced in Section 2. The boundedness of E and
Riemann-Lebesgue’s lemma imply the following estimate:

|ξl′nDl
ξnD

α
ξ′D

β
x′q(x

′, ξ′, ξn)| ≤ ‖Dl′

xnx
l
nD

α
ξ′D

β
x′ k̃(x′, ξ′; ·)‖L1(R+) ≤ |k|∗〈ξ′〉m−|α|+δ|β|−l+l

′
.

The last estimate is (iv) of Lemma 4.14. In particular, for every N1, N2 ∈ N0 with
N1 +N2 = N , the following estimate holds:

〈ξ′〉2N1|ξn|2N2|Dl
ξnD

α
ξ′D

β
x′q(x

′, ξ′, ξn)| ≤ |k|∗〈ξ′〉m−|α|+δ|β|−l〈ξ′〉2N .

〈ξ〉2N is a linear combination of 〈ξ′〉2N1|ξn|2N2 . We thus obtain the following estimate:

|Dα′

ξ′D
β′

x′D
l
ξnp(x

′, ξ′, ξn)| ≤ C|k|∗〈ξ′〉m−|α|+δ|β|−l(〈ξ′〉〈ξ〉−1)2N for all N ∈ N0.
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The estimate above implies that p ∈ Sm1,δ(Rn−1 × Rn): For positive exponents, we can
replace 〈ξ′〉 by 〈ξ〉 because the second term dominates the first. If the exponent is negative,
we choose N ∈ N0 such that 2N exeedes the absolute value of the exponent. Therefore,
we can use the estimate above to make the same replacement. The rapid decay in ξn
for fixed ξ′ implies the transmission property for q. We need to verify that the potential
operator provided by the lemma coincides with the potential operator at the beginning
of the construction:

[r+q(x′, ξ′)δ ⊗ 1](xn) = r+F−1
ξn→xnq(x

′, ξ′, ξn) = r+Ek̃(x′, ξ′;xn) = k̃(x′, ξ′;xn).

Thus, linearity implies k(x′, ξ′) = r+q(x′, ξ′)γ∗0 .

Proposition 4.20 is well-known for δ = 0. In fact, the proof above is a minor modifi-
cation of the proof in [18].

Corollary 4.21. The following map is linear and bounded:

Pm1,δ(Rn−1 × Rn−1) 3 p 7→ p+ ∈ Sm1,δ(Rn−1 × Rn−1;S(R+),S(R+)).

Proof. We use the notation from the proof of Lemma 4.19. Note that the group action
commutes with extension and restriction. Thus, it is sufficient to show that for all N ∈ N0:

‖σ−1
p p+(x′, ξ′)σp‖L(Hs

p(R+),H
s−(m,0)
p (R+))

≤ C|p|∗〈ξ′〉m for 1/p− 1 < s1 ≤ 1/p+ (1− δ)N.

We proceed with induction. The induction hypotheses is that the estimate above holds
for all p ∈ Pm1,δ(Rn−1 × Rn−1) and s ∈ N2

0, if s1 belongs to the interval given above. The
induction start is a direct consequence of Lemma 4.19, based on the well-known fact that
e+ ∈ L(Hs(R+), Hs(R)) for 1/p − 1 < s1 < 1/p. For the induction step, we use the
equivalence of the following norms:

‖ · ‖
H

s+(1,0)
p (R+)

' ‖ · ‖Hs
p(R+) + ‖Dxn · ‖Hs

p(R+).

We recall the jump relation Dxne
+u = e+Dxnu − iu(0) ⊗ δ which implies the following

identity:

Dxnσ
−1
p [p+(x′, ξ′)σpu] =〈ξ′〉−1σ−1

p [Dxnp]+(x′, ξ′)σpu+ σ−1
p p+(x′, ξ′)σpDxnu

+ 〈ξ′〉−1/qσ−1
p r+p(x′, ξ′)[u(0)⊗ δ].

We use the fact that Dxnσ
±1
p = 〈ξ′〉±1σ±1

p Dxn and [σpu](0) = 〈ξ〉1/pu(0). Now, we sepa-
rately estimate the operators on the right hand side of the equation above. The induction
hypotheses imply the following estimate:

‖σ−1
p p+(x′, ξ′)σpDxnu‖Hs−(m,0)

p (R+)
≤ C|p|∗〈ξ′〉m‖Dxnu‖Hs

p(R+) ≤ C|p|∗〈ξ′〉m‖u‖Hs+(1,0)
p (R+)

.

The symbol of Dxnp belongs to Pm+δ
1,δ (Rn−1 × Rn−1). Thus, the induction hypotheses

imply:

‖σ−1
p [Dxnp]+σpu‖Hs−(m,0)(Rn+) ≤ C|p|∗〈ξ′〉m+δ‖u‖Hs+(δ,0)(Rn+).
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We use the induction hypotheses for s + (δ, 0) which explains that in each step of the
induction the interval for s1 increases only by (1 − δ). Proposition 4.20 implies that a

potential operator k ∈ Sm+1/q
1,δ (Rn−1×Rn−1;C;S(R+)) exists such that r+p(x′, ξ′)[u(0)⊗

δ] = k(x′, ξ′)γ0u. Thus, the following estimate holds:

‖σ−1
p k(x′, ξ′)γ0u‖Hs−(m,0)(R+) ≤ C|p|∗〈ξ′〉m+1/q|γ0u| ≤ C|p|∗〈ξ′〉m+1/q‖u‖Hs(R+).

These three estimates for the operators provide the induction step.

Every potential operator can be constructed from a pseudodifferential operator with
transmission property. The situation is similar for trace operators of class zero.

Proposition 4.22. Let t(x′, ξ′) := γ0p+(x′, ξ′). This defines a trace operator. The map

Pm1,δ(Rn−1 × Rn−1) 3 p 7→ t ∈ T m+1/p,0
1,δ (Rn−1 × Rn−1)

is linear, bounded, and surjective. Moreover, t(x′, ξ′; ξn) = h−−1p(x
′, ξ′; 0, ξn) ≈ h−−1p

′(x′, ξ′; 0, ξn),
where p′ is a the principal of p.

Proof. First, we assume p ∈ CPm1,δ(Rn−1×Rn−1). The integral
∫ +

pu only depends on the
h−−1 projection of p. We obtain the following identity:

t(x′, ξ′) = γ0r
+F−1p(x′, ξ′; 0, ·)Fe+u =

∫ +

p(x′, ξ′; 0, ·)Fe+u =

∫ +

h−−1p(x
′, ξ′; 0, ·)Fe+u.

The formula shows the symbol of the trace operator: t(x′, ξ′; ξn) := [h−−1p](x
′, ξ′; 0, ξn).

The transmission property implies that t[0](x
′, ξ′; ξn) = 〈ξ′〉1/ph−−1p[0](x

′, ξ′; ξn) belongs to

S
m+1/p
1,δ (Rn−1×Rn−1)⊗H−−1. Now, if p ∈ Pm1,δ(Rn−1×Rn−1), we use expansion (4.12) with
M = 1, i.e.,

p(x′, ξ′) = p0(x′, ξ′) + xnp1(x′, ξ′). (4.10)

Since γxn = 0, only p0(x′, ξ′) ∈ CPm1,δ(Rn−1 × Rn−1) contributes to the trace operator.

For a given t̃ ∈ T̃ m+1/p,0
1,δ (Rn−1×Rn−1), we define q(x′, ξ′; ξn) := FEt̃(x′, ξ′, ξn). Note that

q ∈ CPm1,δ(Rn−1×Rn−1), following the same argumentation as in the proof of Proposition
4.20. The derivation

γ0q+(x′, ξ′) =

∫ +

[FEt̃](x′, ξ′; ξn)[Fe+u](ξn) d̄ξn =

∫
[FEt̃](x′, ξ′; ξn)[Fe+u](ξn) d̄ξn

=

∫
[Et̃](x′, ξ′;xn)[e+u](xn) dxn =

∫
R+

t̃(x′, ξ;xn)u(xn) dxn = t(x′, ξ′)u

proves surjectivity.

Proposition 4.20 and 4.22 imply the well-known duality of potential and trace opera-
tors:
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Corollary 4.23. The pointwise dual of a trace operator based on σp of order m and type
0 is a potential operator based on σq of order m and vice versa.

Proof. Let t ∈ T m,01,δ (Rn−1×Rn−1). Then, Proposition 4.22 ensures that a p ∈ Pm−1/p
1,δ (Rn−1×

Rn−1) exists such that t(x′, ξ′) = γ0p+(x′, ξ′). Thus, t∗ = r+p∗+(x′, ξ′)γ∗0 . Well-known is

that p∗ ∈ Pm−1/p
1,δ (Rn−1×Rn−1). Proposition 4.20 implies that r+p∗+(x′, ξ′)γ∗0 is a potential

operator of order m, if p and q are interchanged.

Proposition 4.20 and 4.22 provide a possibility to derive results for potential and
trace operators, following from the corresponding result for pseudodifferential operators.
For instance, the mapping properties are derived in this manner, see Section 4.6. Once
these results are established, the corresponding result for a singular Green operator G =
KT follows. Then, the result is also true for generic singular Green operators of type
zero, according to the following observation on the structure of these operators: Let
g[0] ∈ Sm1,δ(Rn−1 × Rn−1)⊗̂H+⊗̂H−−1 be given. According to Theorem 2.1, two sequences

(k[0],j)j∈N0 ∈ l1(N0;Sm1,δ(Rn−1 × Rn−1)⊗̂H+) and (t[0],j)j∈N0 ∈ c0(N0;H−−1) exist such that

g[0](x
′, ξ′; ξn, ηn) =

∞∑
j=0

k[0],j(x
′, ξ′; ξn)t[0],j(x

′, ξ′; ηn).

We identify H−−1 with S0
1,δ(Rn−1 × Rn−1)⊗̂H−−1, by v 7→ 1 ⊗ v. We define kj := σ−1

q k[0],j

and tj := σ−1
p t[0],j which belong to Km1,δ(Rn−1×Rn−1) and T 0,0

1,δ (Rn−1×Rn−1). Thus, each
singular Green operator of type zero is a convergent sum of the following form:

g(x′, ξ′; ξn, ηn) =
∞∑
j=0

kj(x
′, ξ′; ξn)tj(x

′, ξ′; ηn) and g(x′, ξ′) =
∞∑
j=0

kj(x
′, ξ′)tj(x

′, ξ′).

The symbol-classes defined in this and previous sections are closed under asymptotic
summation:

Theorem 4.24. Let (ml)l∈N0 be a monotonously decreasing sequence that converges to
−∞. Then:

(a) Given pl ∈ Pml1,δ (Rn−1 × Rn−1), a p ∈ Pm0
1,δ (Rn−1 × Rn−1) exists such that

p ∼
∑

pl.

(b) Given kl ∈ Kml1,δ(Rn−1 × Rn−1), a k ∈ Km0
1,δ (Rn−1 × Rn−1) exists such that

k ∼
∑

kl.

(c) Given tl ∈ T ml,d1,δ (Rn−1 × Rn−1), a t ∈ T m0,d
1,δ (Rn−1 × Rn−1) exists such that

t ∼
∑

tl.
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(d) Given gl ∈ Gml,d1,δ (Rn−1 × Rn−1), a g ∈ Gm0,d
1,δ (Rn−1 × Rn−1) exists such that

g ∼
∑

gl.

Proof. The discussion about the structure of singular Green operators, Proposition 4.20,
and Proposition 4.22 imply that the proof of (a) is sufficient. By definition: Pm1,δ(Rn−1 ×
Rn−1) ⊂ Sm1,δ(Rn × Rn), thus p ∈ Sm0

1,δ (Rn × Rn) exists. We have to verify that p satisfies
the transmission property. The proof is similar to the proof in [32, 2.2.2.2. Proposition
1].

The idea of Boutet de Monvel’s calculus is to group symbols in a matrix in order to
form an algebra under composition. The matrix consists of a pseudodifferential symbol
which has the transmission property, a singular Green symbol, a potential symbol, a
trace symbol, and a pseudodifferential symbol (on the boundary). The Boutet de Monvel
algebra is:

BMm,d
1,δ (Rn−1 × Rn−1) :=

(
Pm1,δ(Rn−1 × Rn−1) +Gm−1,d

1,δ (Rn−1 × Rn−1) Km1,δ(Rn−1 × Rn−1)

T m,d1,δ (Rn−1 × Rn−1) Sm1,δ(Rn−1 × Rn−1)

)
.

According to Corollaries 4.16 and 4.21, the following map is linear and bounded:

BMm,d
1,δ (Rn−1 × Rn−1) 3 b 7→ b :=

(
p+ + g k

t s

)
∈ Sm1,δ(Rn−1 × Rn−1;S(Rn

+)⊕ S(Rn−1)).

The class of symbols BMm,d
1,δ (Rn−1 × Rn−1) is closed under addition, pointwise multipli-

cation, and under asymptotic summation.

4.5 Composition

In this section, we verify that the Boutet de Monvel operators form an algebra:

Theorem 4.25. A bilinear and bounded map

BMm,d
1,δ × BM

m′,d′

1,δ 3 (b, b′) 7→ b′′ ∈ BMm+m′,max{m′+d,d′}
1,δ

exists such that B′′ = BB′. Moreover, p′′ ≈ pp′ and b′′[0](x
′, ξ′) ≈ b[0](x

′, ξ′) ◦ b′[0](x
′, ξ′).

Here, b[0](x
′, ξ′)◦b′[0](x

′, ξ′) denotes the symbol of the Wiener-Hopf operator b[0](x
′, ξ′)b′[0](x

′, ξ′),
see Theorem 4.9 for explicit formulas.

The asymptotic expansion of b′′ is consistent with the asymptotic expansion for δ = 0,
see for instance [20]. In order to keep the notation simple, we only provide the principal
symbol which is sufficient for our purpose. We follow the standard argument, i.e., prove
the theorem for symbols, with no xn dependence, and then use Taylor expansion and
remainder estimates to generalise. We pointed out in the last section that the action of
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a Boutet de Monvel operator in the direction normal to the boundary can be interpreted
as an operator-valued pseudodifferential operator. In particular, Theorem 4.2 implies:

b′′(x′, ξ′) = b(x′, ξ′)#b′(x′, ξ′) ∼
∑

Dα
ξ′b(x′, ξ′)∂αx′b

′(x′, ξ′). (4.11)

Thus, an investigation of the composition in the normal direction is sufficient.
Now, we assume that the symbols do not depend on xn. Then, the operators on the
right hand side of (4.11) are Wiener-Hopf operators, suitably composed with Fourier
transforms. Therefore, Theorem 4.9 provides the composed symbols. We have proven the
following result:

Lemma 4.26. A bilinear and bounded map

CBMm,d
1,δ × CBM

m,d
1,δ 3 (b, b′) 7→ b′′ ∈ CBMm′′,d′′

1,δ

exists such that bb′ = b′′. Moreover, b′′[0] ≈ b[0] ◦ b′[0].

In this section, we assume that the symbols of the pseudodifferential operators with
transmission property are supported close to the boundary. This is no significant re-
striction because each symbol can be decomposed into two parts. One part has the
support property and the other part vanishes to infinite order on the boundary. The
latter part gives rise to negligible operators when composed with boundary symbols.
Now, we drop the assumption that the symbol does not depend on xn. This only affects
compositions containing pseudodifferential operators with the transmission property. Let
p ∈ Pm1,δ(Rn−1 × Rn−1) and pR be its (x′, yn)-form. We define:

pj(x
′, ξ′; ξn) := (j!)−1[∂jxnp](x

′, ξ′; 0, ξn) ∈ CPm+jδ
1,δ (Rn−1 × Rn−1),

pM(x′, ξ′;xn, ξn) :=
1

(M − 1)!

∫ 1

0

(1− s)M−1∂Mxnp(x
′, ξ′; sxn, ξn) ds ∈ Pm+δM

1,δ (Rn−1 × Rn−1),

pRj (x′, ξ′; ξn) := (j!)−1[∂jynp
R](x′, ξ′; 0, ξn) ∈ CPm+jδ

1,δ (Rn−1 × Rn−1), and

pRM(x′, ξ′; yn, ξn) :=
1

(M − 1)!

∫ 1

0

(1− s)M−1∂Mxnp
R(x′, ξ′; syn, ξn) ds ∈ Pm+δM

1,δ (Rn−1 × Rn−1).

We observe that dependence of pj, pM , p
R
j , and pRM on p is linear and bounded. The

previously defined terms are the coefficients in the Taylor expansion of p (resp. pR) at
zero with respect to the xn (resp. yn) variable. Therefore:

p(x′, ξ′;xn, ξn) =
M−1∑
j=0

xjnpj(x
′, ξ′; 0, ξn) + xMn pM(x′, ξ′;xn, ξn) and (4.12)

pR(x′, ξ′; yn, ξn) =
M−1∑
j=0

yjnp
R
j (x′, ξ′; 0, ξn) + yMn p

R
M(x′, ξ′; yn, ξn). (4.13)
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In particular, we obtain two expansions for the operator valued symbol p(x′, ξ′):

p(x′, ξ′) =
∑
j<M

xjnpj(x
′, ξ′) + xMn pM(x′, ξ′) =

∑
j<M

pRj (x′, ξ′)xjn + pRM(x′, ξ′)xMn .

At first glance, the expansions do not look very promising. The order of the operators
increase with j and xjn is not a uniformly bounded pseudodifferential operator. The key
observation is that xjn has a regularising effect on boundary operators. More precisely,
kj := xjnk, tj := txjn, and gj,l := xjngx

l
n are potential, trace, and singular Green operators

with symbols kj = D
j

ξnk, tj = Dj
ξn
t, and gj,l = D

j

ξnD
l
ηng, respectively. Symbol-kernel

representations and basic results on the Fourier transform are used in the proof. Now, we
focus on the composition p+(x′, ξ′)k(x′, ξ′):

Theorem 4.27. Let k′′(x′, ξ′) := p+(x′, ξ′)k′(x′, ξ′). Then, k′′ is a potential operator of
order m+m′ and the following map is bilinear and bounded:

Pm1,δ(Rn−1 × Rn−1)×Km′1,δ(Rn−1 × Rn−1) 3 (p, k′) 7→ k′′ ∈ Km+m′

1,δ (Rn−1 × Rn−1).

Moreover, k′′(x′, ξ′) ∼
∑

pRj,+(x′, ξ′)k′j(x
′, ξ′) and k′′(x′, ξ′, ξn) ≈ h+p(x′, ξ′; 0, ξn)k′(x′, ξ′; ξn).

Proof. Given the expansion (4.13) for p, we obtain a corresponding expansion for k′′:

k′′(x′, ξ′) := p+(x′, ξ′)k′(x′, ξ′) =
∑
j<M

pRj,+(x′, ξ′)xjnk
′(x′, ξ′) + pRM,+(x′, ξ′)xMn k(x′, ξ′).

According to Lemma 4.26, k′′j := pRj,+(x′, ξ′)xjnk
′(x′, ξ′) is a potential operator of order

m+m′− (1− δ)j. Therefore, we only need to consider k′′M := pRM,+(x′, ξ′)xMn k(x′, ξ′). We
claim the following estimates hold for all l, l′,M ∈ N0 that satisfy M ≥ [m−|α|+δ|β|]++l′:

‖xlnDl′

xnD
α
ξ′D

β
x′ k̃
′′
M(x′, ξ′; ·)‖Lp(R+) ≤ C|p|∗|k|∗〈ξ′〉m+m′−(1−δ)M−|α|+δ|β|−l+l′ . (4.14)

In the following argumentation, we point out that these estimates are sufficient to prove
k′′ ∈ Km+m′

1,δ (Rn−1 × Rn−1). We show that k̃′′ satisfies the family of Estimates (iv) in
Lemma 4.14. We fix indices α, β, l, l′ and choose a decomposition with M large enough
for (4.14) to hold. In particular, k̃′′ satisfies the estimate for the chosen indices.
Proof of the claimed estimate: We observe that k̃′′M(x′, ξ′; ·) = pM,+(x′, ξ′)xMn k̃

′(x′, ξ′; ·).
Thus, the scaled version k̃′′M,[0] is:

k̃′′M,[0] = σ−1
p

(
p+(x′, ξ′)xMn k̃(x′, ξ′; ·)

)
= 〈ξ′〉−Mσ−1

p p+(x′, ξ′)σpx
M
n k̃[0](x

′, ξ′; ·).

We can absorb the derivative Dα
ξ′D

β
x′ into the order of the operators. Therefore, we can

assume α = β = 0. We recall the following equation, derived in the proof of Corollary
4.21:

Dxnσ
−1
p [p+(x′, ξ′)σpu] =〈ξ′〉−1σ−1

p [Dxnp]+(x′, ξ′)σpu+ σ−1
〈ξ′〉p+(x′, ξ′)σpDxnu
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+ 〈ξ′〉−1/pσ−1
p r+p(x′, ξ′)[u(0)⊗ δ].

The last term is zero because u(xn) = xnk̃(x′, ξ′, xn).

xnσ
−1
p [p+(x′, ξ′)σpu] = 〈ξ′〉σ−1

p [Dξnp]+σpu+ σ−1
p p+(x′, ξ′)σp[xnu].

Given l′ < M , by a repeated use of the above relations, we obtain that the scaled symbol
kernel is a linear combination of terms of the form:

〈ξ′〉−M+l1−l′1σ−1
〈ξ′〉[D

l1
ξn
Dl′1
xnp]+(x′, ξ′)σ〈ξ′〉x

M+l2−l′2
n Dl′3

xn k̃
′
[0](x

′, ξ′; ·).

The estimates for the symbol kernels and Corollary 4.21 imply that the scaled symbol
kernel k̃′′M satisfies the following estimate under the assumption that l′ < M :

‖xlnDl′

xn k̃
′′
M,[0](x

′, ξ′;xn)‖L2(R+) ≤ C|p|∗|k|∗〈ξ′〉m+m′−M(1−δ).

The claimed estimates are the unscaled version of the estimates above.

Next, we use the facts that trace operators are formal adjoints of potential operators
and that singular Green operators can be decomposed into products of trace and potential
operators in order to provide the following result:

Corollary 4.28. Let t′′(x′, ξ′) := t(x′, ξ′)p′+(x′, ξ′), g′′1(x′, ξ′) := p+(x′, ξ′)g′(x′, ξ′), and
g′2(x′, ξ′) := g(x′, ξ′)p+

′(x′, ξ′). The following maps are bilinear and bounded:

1. T m,d1,δ (Rn−1 × Rn−1)× Pm′1,δ(Rn−1 × Rn−1) 3 (t, p′) 7→ t′′ ∈ Gm
′+m,d′

1,δ (Rn−1 × Rn−1).

2. Pm1,δ(Rn−1 × Rn−1)× Gm
′,d′

1,δ (Rn−1 × Rn−1) 3 (p, g′) 7→ g′′1 ∈ G
m′,d′

1,δ (Rn−1 × Rn−1).

3. Gm,d1,δ (Rn−1 × Rn−1)× Pm′1,δ(Rn−1 × Rn−1) 3 (g, p′) 7→ g′′2 ∈ G
m+m′,0
1,δ (Rn−1 × Rn−1).

Proof. We consider t′′ and initially assume that d = 0.

t′′(x′, ξ′) = t(x′, ξ′)p′+(x′, ξ′) = ((p′+)∗(x′, ξ′)t∗(x′, ξ′))∗.

Theorem 4.27 implies that p∗+(x′, ξ′)t∗(x′, ξ′) is a potential operator of order m+m′. Thus,
according to Corollary 4.23, t′(x′, ξ′) is a trace operator of the same order. If the class is
not zero, we choose M ≥ d− 1 in the expansion (4.12) of p. We notice that γjx

M
n = 0 for

j ≤ d − 1 = M . Therefore, t(x′, ξ′)xMn p′M(x′, ξ′) has class zero. The other terms in the
composition are independent of xn and can thus be handled by Lemma 4.26.
We mentioned previously that every singular Green operator obeys a decomposition of
the following form:

g(x′, ξ′) =
d∑
j=0

kj(x
′, ξ′)γj +

∞∑
l=0

kl(x
′, ξ′)tl(x

′, ξ′).
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We apply Theorem 4.27 to the decomposition in order to obtain the result for g′′1 . Observe
that the types of g′′1 and g′ coincide. Now, we consider g′′2 . Initially, we assume that the
class of g is zero. Therefore, the result follows from duality. Next, we consider singular
Green symbols without zero class part. According to the decomposition above, we can
assume that g = kjγj. The result follows from:

g′′2(x′, ξ′) = kj(x
′, ξ′)γjp

′
+(x′, ξ′) =

(
(p′+)∗(x′, ξ′)γ∗jk

∗
j(x
′, ξ′)

)∗
.

Note that the class of g′′2 is always zero.

In the remainder of this section, we analyse the composition of two pseudodifferential
operators with the transmission property. This composition has two terms. The first
term is a truncated pseudodifferential operator with the symbol of the composed operator
on the entire space. The second term, commonly referred to as the leftover term, is a
singular Green operator:

g′′(x′, ξ′) := [g′′(p, p′)](x′, ξ′) := (p(x′, ξ′)p′(x′, ξ′))+ − p+(x′, ξ′)p′+(x′, ξ′).

[19] provides the case δ = 0. The argumentation below is similar. Using Taylor expansion,
p(x′, ξ′) =

∑
pi(x

′, ξ′)xin and p′(x′, ξ′) =
∑
xjnp

′
j(x
′, ξ′), where pj, p

′
j ∈ CP

m+jδ
1,δ (Rn−1 ×

Rn−1) for i, j < M and pM , p
′
M ∈ Pm+Mδ

1,δ (Rn−1 × Rn−1). Then, by bilinearity:

g′′(p(x′, ξ′),p′(x′, ξ′)) =
∑

0≤i,j≤M

g′′(pi(x
′, ξ′)xin, x

j
np
′
j(x
′, ξ′)) =:

∑
0≤i,j≤M

g′′ij(p(x′, ξ′),p′(x′, ξ′)).

We first consider g′′ij(x
′, ξ′) for i, j < M . We write pi,i′ := Di−i′

ξn
pi ∈ CPm−(1−δ)(i+i′)

1,δ and

p′j,j′ := Dj−j′
ξn

p′j ∈ CP
m−(1−δ)(j+j′)
1,δ and observe that:

g′′ij(x
′, ξ′) =

∑
Ci,i′,j,j′x

i′

ng(pi,i′(x
′, ξ′),p′j,j′(x

′, ξ′))xj
′

n .

We apply Lemma 4.26 to the right hand side of the equation above. Moreover, we use the
fact that multiplication by xn from the left or right decreases the order of singular Green

operators which implies that g′′ij ∈ G
m+m′−(1−δ)(i+j),0
1,δ (Rn−1 × Rn−1). For the remaining

terms we need the following technical result. We write J for the reflection along the
boundary.

Lemma 4.29. Let N, l, l′, l′′, l′′′ ∈ N0 and α, β ∈ Nn
0 . For p ∈ Sm+δN

1,δ (Rn×Rn), we define

g+
N(x′, ξ′) := r+p(x′, ξ′)xNn e

−J and g−N(x′, ξ′) := Jr−xNn p(x′, ξ′)e+. Then,

‖xlnDl′

xny
l′′

n D
l′′′

ynD
α
ξ′D

β
x′ g̃
±
N,[0](x

′, ξ′; ·, ·)‖L2(R2
++) ≤ C|p|∗〈ξ′〉m−|α|+δ|β|−N ,

if either p ∈ CPm+δN
1,δ (Rn−1×Rn−1) or m−|α|+ δ|β|− (1− δ)N − l+ l′− l′′+ l′′′ < −1/2.
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Proof. We only prove the results for g+
N , the results for g−N can be derived analogously. A

straightforward computation reduces the results to the case where all multi-indices vanish.
We thus assume that l = l′ = l′′ = l′′′ = 0 and α = β = 0. To simplify the computation,
we define the following operator:

g•(x′, ξ′) :=
N∑
j=0

(
N

j

)
xN−jn g+

0 (x′, ξ′)xjn.

For later use, we express g•(x′, ξ′) in terms of p(x′, ξ′):

[g•(x′, ξ′)u](xn) = r+

∫
ei(xn−yn)ξn

N∑
j=0

(
N

j

)
xN−jn p(x′, ξ′;xn, ξn)(−yn)j[e−u](−yn) dynd̄ξn

= r+

∫
ei(xn−yn)ξn(xn − yn)Np(x′, ξ′;xn, ξn)[e−u](−yn) dynd̄ξn

= r+

∫
ei(xn−yn)ξn [DN

ξnp](x
′, ξ′;xn, ξn)[e−u](−yn) dynd̄ξn

= [r+[DN
ξnp](x′, ξ′)e−Ju](xn).

The estimates for the kernel of g+
N(x′, ξ′) follow from the corresponding estimates for

g•(x′, ξ′), since both are supported on the first quadrant and g̃•(x′, ξ;xn, yn) = (xn +
yn)N g̃+

0 (x′, ξ;xn, yn).

g•[0](x
′, ξ′) = σ−1

p g•(x′, ξ′)σp = r+σ−1
p [DN

ξnp](x′, ξ′)σpe
−J = r+q(x′, ξ′)e−J,

where q ∈ Sm−(1−δ)N
1,δ (Rn−1 × Rn−1) and is related to p by the following identity:

q(x′, ξ′;xn, ξn) = [DN
ξnp](x

′, ξ′;xn/〈ξ′〉, 〈ξ′〉ξn).

As a pseudodifferential operator, q(x′, ξ′) has a singular integration kernel
F−1
ξ 7→znq(x

′, ξ′;xn, ξn)|zn=xn−yn . Via a change of variables −yn  yn we obtain g̃•[0].

‖g̃•[0](x
′, ξ′; ·, ·)‖2

L2(R2
++) =

∫ ∞
0

∫ ∞
0

∣∣F−1
ξn 7→znq(x

′, ξ′;xn, ξn)|zn=xn+yn

∣∣2 dyndxn
≤
∫ ∞

0

〈xn〉−2

∫ ∞
xn

〈zn〉2 |Fξn 7→znq(x′, ξ′;xn, ξn)|2 dzndxn

≤ C2 sup
xn

∫ ∣∣h+〈Dξn〉2q(x′, ξ′;xn, ξn)
∣∣2 d̄ξn.

If p ∈ CPm+δN
1,δ (Rn×Rn), the right hand side can be estimated by the square of C|p|∗〈ξ′〉m−(1−δ)j.

If p /∈ CPm+δN
1,δ (Rn × Rn), we use the estimates of q derived in the proof of Lemma 4.19

to obtain:

‖g̃•[0](x
′, ξ′; ·, ·)‖2

L2(R2
++) ≤ C2|p|2∗〈ξ′〉2(m−(1−δ)N)

∫
〈ξn〉2(m−(1−δ)N)d̄ξn

≤ C|p|2∗〈ξ′〉2(m−(1−δ)N).

The last integral converges under the condition m− (1− δ)N < −1/2.

50



For M sufficiently large xMn p′(x′, ξ′)e+u ∈ L2(R) for all u ∈ e+S(Rn
+), since all distri-

butions of a given order on the boundary eventually belong to the kernel of xMn . Therefore:

g′′i,M(x′, ξ′) = r+pix
i
n(1− e+r+)xMn p′Me

+ = r+pix
i
ne
−JJr−xMn p′Me

+ = g+
i (pi)g

−
M(p′M).

Thus, Lemmata 4.26 and 4.29 imply that the symbol-kernel of gjM satisfy the following
estimate, if m− |α|+ δ|β| − (1− δ)M − l + l′ − l′′ + l′′′ < −1/2:

‖xlnDl′

xny
l′′

n D
l′′′

ynD
α
ξ′D

β
x′ g̃
′′
iM,[0](x

′, ξ′; ·, ·)‖L2(R2
++) ≤ 〈ξ′〉m+m′−(1−δ)(i+M).

The estimate also holds for the symbol-kernel of g′′MM , if the restriction on the indices
above also holds for m′ instead of m. We observe that g′′Mj = (g′′jM)∗. Thus, the estimate
above also holds for the symbol-kernel of g′′Mj. Now, we show that the symbol-kernel of
g′′ satisfies the Estimates (vi) in Lemma 4.14. Therefore, g′′ is a singular Green operator
of order m + m′. We fix the indices and choose decompositions for p and p′ with an M
large enough for the constraints above to be satisfied. Therefore, we obtain Estimates
(vi) for the chosen indices.

4.6 Mapping Properties

In Section 4.6, we extend Boutet de Monvel operators to the scale of Banach space
Hs
p(Rn

+) ⊕ Bs
p(Rn−1). The proof given in [18] for δ = 0 essentially extends to 0 ≤ δ < 1.

The main result is:

Theorem 4.30. The map below is linear and bounded for all s > d+ 1/p− 1.

BMm,d
1,δ (Rn−1 × Rn−1) 3 b 7→ B ∈ B

(
Hs
p(Rn

+)⊕Bs
p(Rn−1), Hs−m

p (Rn
+)⊕Bs−m

p (Rn−1)
)
.

We partition the proof into lemmata which provide the result for the components of
the matrix. Initially, we consider potential operators:

Lemma 4.31. The following map is linear and bounded for all s ∈ R.

Km1,δ(Rn−1 × Rn−1) 3 k 7→ K ∈ B(Bs
p(Rn−1), Hs−m

p (Rn
+))

Proof. Proposition 4.20 ensures that a pseudodifferential operator P with symbol p ∈
Pm−1/q

1,δ (Rn−1 × Rn−1) exists such that K = r+Pγ∗0 . Moreover, the map

Km1,δ(Rn−1 × Rn−1) 3 k 7→ p ∈ Pm−1/q
1,δ (Rn−1 × Rn−1)

is linear and bounded. According to the trace theorem, the map below is linear and
bounded:

γ∗0 : Bs
p(Rn−1)→ Hs−1/q

p (Rn) for all s < 0.

Well-known is that P : H
s−1/q
p (Rn) → Hs−m

p (Rn) because P is a pseudodifferential oper-
ator of order m− 1/q. Therefore, the lemma holds for s < 0. We extend the result to all
s ∈ R via order reduction.
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Next, we consider truncated pseudodifferential operators with transmission property:

Lemma 4.32. The following map is linear and bounded for all s > 1/p− 1.

Pm1,δ(Rn−1 × Rn−1) 3 p 7→ P+ ∈ B(Hs
p(Rn

+), Hs−m
p (Rn

+)).

Proof. We provide an inductive proof. The induction hypotheses is that the lemma holds
for 1/p−1 < s < (1−δ)k+1/p. Well-known is Hs

p,0(Rn
+) = Hs

p(Rn
+) for 1/p−1 < s < 1/p.

In particular, e+ : Hs
p;0(Rn

+)→ Hs
p(Rn) is a bounded linear map. Therefore, the base case

k = 0 is implied by the mapping properties of pseudodifferential operators. For the
induction step, we use the equivalence of the norms below:

‖ · ‖Hσ+1
p (Rn

+) '
∑
|α|≤1

‖Dα
x · ‖Hσ

p (Rn+), where either σ = s or σ = s−m.

Here, the most complex term on the right hand side includes the derivative in the direction
normal to the boundary. This term is decomposed via the jump relation:

DxnP+u = P+Dxnu+ [Dxn , P ]+u− ir+Pγ∗0γ0u. (4.15)

The three terms on the right hand side are estimated separately. For the first term, we
use the induction hypotheses:

‖P+Dxnu‖Hs−m
p (Rn+) ≤ C|p|∗‖Dxnu‖Hs

p(Rn+) ≤ C|p|∗‖u‖Hs+1
p (Rn+).

The symbol of the second term is Dxnp ∈ Pm+δ
1,δ (Rn−1 × Rn−1). Therefore, we can apply

the induction hypotheses with s+ δ which implies:

‖[Dxn , P ]+u‖Hs−m
p (Rn+) ≤ ‖[Dxn , P ]+u‖Hs+δ

p (Rn+) ≤ C|p|∗‖u‖Hs+1
p (Rn+).

In the argument above we rely on the fact that the result holds for s+δ. Thus, the length
of the interval increases by 1−δ for each step of the induction. Lemma 4.31 and the trace
Theorem imply:

‖r+Pγ∗0γ0u‖Hs−m
p (Rn+) ≤ C|p|∗‖γ0u‖Bs+1/q

p (Rn−1)
≤ C|p|∗‖u‖Hs+1

p (Rn+).

If Dα
x 6= Dxn , then equation (4.15) holds without the third term.

Now, we consider trace operators:

Lemma 4.33. The following maps are linear and bounded:

(i) T m,01,δ (Rn−1 × Rn−1) 3 t 7→ T ∈ L(Hs
p(R+), Bs−m

p (Rn
+)), for s ∈ R.

(ii) T m,d1,δ (Rn−1 × Rn−1) 3 t 7→ T ∈ L(Hs
p(R+), Bs−m

p (Rn
+)), for s > d+ 1/p.

52



Proof. We decompose T as
∑d−1

j=0 Sjγj + T ′. The maps

T m,d1,δ (Rn−1×Rn−1) 3 t 7→ sj ∈ Sm−j−1/p
1,δ (Rn−1 × Rn−1) and

T m,d1,δ (Rn−1×Rn−1) 3 t 7→ t′ ∈ T m,01,δ (Rn−1 × Rn−1)

are linear and bounded. According to the trace theorem, the lemma holds for
∑d−1

j=0 Sjγj.

Thus, it is sufficient to prove (i). For each t ∈ T m,01,δ (Rn−1 × Rn−1) a p ∈ Pm−1/p
1,δ (Rn−1 ×

Rn−1) exists such that T = γ0P+. We initially assume that s > m. Therefore, the
result holds according to the trace theorem and mapping properties of pseudodifferential
operators. The results extend to all s ∈ R via order reduction.

Finally we consider singular Green operators:

Lemma 4.34. The following maps are linear and bounded:

(i) Gm,01,δ (Rn−1 × Rn−1) 3 g 7→ G ∈ L(Hs
p(Rn

+), Hs−m
p (Rn

+)), for s ∈ R.

(ii) Gm,d1,δ (Rn−1 × Rn−1) 3 g 7→ G ∈ L(Hs
p(Rn

+), Hs−m
p (Rn

+)), for s > d+ 1/p.

Proof. We decompose G as
∑d−1

j=0 Kjγj +G′. The maps

Gm,d1,δ (Rn−1×Rn−1) 3 g 7→ kj ∈ Km−j−1/p
1,δ (Rn−1 × Rn−1) and

Gm,d1,δ (Rn−1×Rn−1) 3 g 7→ g′ ∈ Gm,01,δ (Rn−1 × Rn−1)

are linear and bounded. According to the trace theorem and Lemma 4.31, the lemma
holds for the sum. Therefore, it is sufficient to prove (i). Since the class is zero, a
decomposition G =

∑∞
j=0 KjTj exists which is absolutely convergent with regards to

seminorms. Therefore, the result follows from Lemma 4.31 and 4.33.
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5 Bounded H∞-Calculus for a Degenerate Boundary

Value Problem

For the proof of Theorem 1.2, a suitable description of the resolvent (AT −λ)−1 is manda-
tory. We explain the key idea of how this description is derived in a simple example, where
A = −∆, T = γ0, and ν = 1. Here, the benefit is that we can point out the main ideas.
However, the majority of abstract arguments can be replaced by explicit computations.
In the article [2], Shmuel Agmon proved a priori estimates for solutions of the following
boundary value problem with spectral parameter:{

(1−∆− λ)+u = f on Rn
+

γ0u = φ on Rn−1
. (5.1)

Let λ = µ2eiθ. The author observed that, given a solution u of (5.1), the function
ũ := u⊗ eµ with eµ(z) = eiµz solves the elliptic boundary problem below:{

(1−∆ + ei(π+θ)D2
z)+ũ = f̃ on Rn+1

+

γ0ũ = φ̃ on Rn.
(5.2)

The right hand side consists of f̃ := f ⊗ eµ and φ̃ = φ⊗ eµ. The a priori estimates were
already established for the elliptic boundary value problem (5.2). For our purposes, a
priori estimates are not sufficient. However, the basic idea can be extended to provide
a relation between the inverse of (5.2) and (5.1). The following three operators are of
interest:

Qθ := r+F−1(〈ξ〉2 + ei(π+θ)ζ2)−1Fe+,

Kθ := r+F ′−1e−κθ(ξ′,ζ)xnF ′ , and

Gθ := −Kθγ0Qθ.

Here, κθ(ξ
′, ζ) is the root of the polynomial aθ := 〈ξ〉2 + ei(π+θ)ζ2, with positve real part.

The identities AθQθ = 1, AθKθ = 0, γ0Kθ = 1, and γ0(Qθ + Gθ) = 0 can be verified in a
quick calculation. Therefore:(

Aθ,+
γ0

)−1

=
(
Qθ,+ +Gθ Kθ

)
. (5.3)

The operators belong to Boutet de Monvel’s calculus. We denote the symbols by lower
case letters. Now, we apply (5.3) to the tensor product f̃ = f ⊗ eµ and φ̃ = φ ⊗ eµ,
respectively. For instance:

[Qθ,+f̃ ](x, z) = r+

∫
eixξ+izζqθ(ξ, ζ)[Fe+f ](ξ)δ(ζ − µ) dζd̄ξ

= eizµr+

∫
eixξqθ(ξ, µ)[Fe+f ](ξ) d̄ξ
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=: eizµ[Qθ,µ,+f ](x)

Here, Qθ,µ has the structure of a truncated pseudodifferential operator. The symbols of
the operators Qθ and Qθ,µ are related by restriction: qθ,µ = qθ|ζ=µ. We obtain Gθ,µ, Kθ,µ

and Aθ,µ,+ from Gθ, Kθ, and Aθ,+ with a similar argumentation. We further observe that:

Aθ,+[u⊗ eµ] = [Aθ,µ,+u]⊗ eµ = [(A− λ)+u]⊗ eµ.

Using the previous relations, we verify that the function u := (Qθ,µ,+ + Gθ,µ)f + Kθ,µφ
solves Problem (5.1) for given f and φ:

[(A− λ)+u]⊗ eµ = Aθ,+[u⊗ eµ] = Aθ,+[((Qθ,µ,+ +Gθ,µ)f +Kθ,µφ)⊗ eµ]

= Aθ(Qθ,+ +Gθ)(f ⊗ eµ) + AθKθ(φ⊗ eµ)]
(5.3)
= f ⊗ eµ.

[γ0u]⊗ eµ = γ0(Qθ +Gθ)(f ⊗ eµ) + γ0Kθ(φ⊗ eµ)]
(5.3)
= φ⊗ eµ.

Therefore, the inverse of the parameter-dependent problem can be constructed for the
inverse of the associated extended problem. For λ = eiθµ2:(

(A− λ)+

γ0

)−1

=
(
Qθ,µ,+ +Gθ,µ Kθ,µ

)
.

What we are especially interested in is the left entry on the right hand side. Here, we
observe:

(Qθ,µ,+ +Gθ,µ)Lp(Rn
+) ⊂ D(AT ) := {u ∈ Lp(Rn

+) : A+u ∈ Lp(Rn
+), Tu = 0}.

Therefore, we obtain an explicit formula for the resolvent on the ray λ = eiθµ2:

(AT − λ)−1 = Qθ,µ,+ +Gθ,µ.

Thus, the example encourages us to initially solve the extended problem for A and T :

(A+ ei(π+θ)D2
z)+ũ = f̃

T ũ = φ̃.

In general, no explicit formulas for the inverse of the above problem exist. However, in
Section 5.2, we verify that a parametrix exists. We can replace the inverse by a parametrix.
However, the replacement generates an error term. To estimate the error term, we need
to analyse the dependence on the parameters θ, µ and thus on λ of the operators above.
The dependence on θ for 0 < ϑ ≤ |θ| ≤ π is not essential. In fact, we obtain uniform
estimates on operator norms that only depend on ϑ. However, the dependence on µ is
essential and thus discussed in Section 5.1.
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5.1 The Spectral Parameter as a Co-variable

In this section, we consider pseudodifferential operators P with symbols that depend on
covariables (ξ, ζ) ∈ Rn × R. We assume that the symbols do not depend on the variable
z which corresponds to the covariables ζ. We write Sm1,δ(Rn × Rn+1;E,F ) for the space
of such symbols. By restricting ζ = µ, we obtain a symbol pµ in Sm1,δ(Rn × Rn;E,F ),
since 〈ξ〉 ≤ 〈ξ, µ〉 ≤ Cµ〈ξ〉. With the same argumentation used in the example in the last
section, we observe that P [u⊗ eµ] = [Pµu]⊗ eµ. The formal computation in this example
is very common in the theory of pseudodifferential operators. Typically, the computation
is applied to all co-variables in order to verify that each pseudodifferential operator has a
unique symbol. A rigorous computation is based on the theory of oscillatory integrals, see
[28] for more details. According to the computation below, the restriction ζ = µ behaves
well under composition:

(op(p#p′)µu)⊗ eµ = op(p#p′)(u⊗ eµ) = op(p) ◦ op(p′)(u⊗ eµ) = op(p)(op(p′µ)u)⊗ eµ)

= (op(pµ) ◦ op(p′µ)u)⊗ eµ) = (op(pµ#p′µ)u)⊗ eµ.

Moreover, let p be elliptic with parametrix p−# and remainder r. Then, the above equation
implies:

[p−#]µ#pµ = (p−##p)µ = (1 + r)µ = 1 + rµ.

Therefore, pµ is elliptic with parametrix p−#
µ and remainder rµ. The restriction is of

interest because it connects two types of expansions for pseudodifferential operators. First,
the expansions with respect to decreasing symbol order. This type of expansion is typical
in the calculus of pseudodifferential operators. Second, the expansions with respect to
decay in the spectral parameter. We initially consider the case δ = 0:

Lemma 5.1. Let 0 ≤ σ ≤ m and p ∈ S−m1,0 (Rn ×Rn+1;E,F ) with isometric group action
on E and F . Then pµ ∈ S−σ1,0 (Rn × Rn;E,F ) and |pµ|∗ ≤ |p|∗〈µ〉−m+σ.

Proof. Note that for all A ∈ B(E,F ) and s, t ∈ R, the equality ‖A‖B(E,F ) = ‖σtAσs‖B(E,F )

holds, since the group actions are isometric. We fix the multi indices α, β ∈ Nn
0 . Moreover,

we indicate the order of the seminorm under consideration, by a superscript. Then:

|pµ|−σα,β = sup
x,ξ∈Rn

〈ξ〉σ+|α|‖σ−1
〈ξ′〉D

α
ξD

β
xpµ(x, ξ)σ〈ξ′〉‖B(E,F )

= 〈µ〉−m+σ sup
x,ξ∈Rn

〈µ〉m−σ〈ξ〉σ+|α|‖Dα
ξD

β
xp(x, ξ, µ)‖B(E,F )

≤ 〈µ〉−m+σ sup
x,ξ∈Rn

〈ξ, µ〉m+|α|‖Dα
ξD

β
xp(x, ξ, µ)‖B(E,F )

≤ 〈µ〉−m+σ sup
x,ξ∈Rn, ζ∈R

〈ξ, ζ〉|α|+m‖σ−1
〈ξ′,ζ〉D

α
ξD

β
xp(x, ξ, ζ)σ〈ξ′,ζ〉‖B(E,F )

= 〈µ〉−m+σ|p|−mα,β .

The computation above holds for all multi-indices. Thus, |pµ|−σ∗ ≤ |p|−m∗ 〈µ〉−m+σ.
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For now, let E and F be Hilbert spaces. The lemma above and the mapping properties
of pseudodifferential operators then imply that for p ∈ S−m1,0 (Rn×Rn+1;E,F ) the following
holds:

Pµ ∈ B(Lp(Rn;E), Lp(Rn;F )) and ‖Pµ‖ ≤ C|p|∗〈µ〉−m.

We aim to prove that the same result holds for 0 ≤ δ < 1. Let Λm be the order reduction
operator with symbol 〈ξ, ζ〉m ∈ Sm1,0(Rn × Rn+1). We observe that Pµ = Λ−mµ Λm

µ Pµ =
Λ−mµ (ΛmP )µ. We can thus assume that m = 0. For the following argumentation, we need
the Schur’s test:

Lemma 5.2 (Schur’s Test). Let p̃ : Rn+1 × Rn+1 → B(E,F ) be an integral kernel such
that:

sup
y∈Rn+1

∫
|p̃(x, y)|B(E,F ) dx ≤M1 and

sup
x∈Rn+1

∫
|p̃(x, y)|B(E,F ) dy ≤M2.

Then, the integral operator P belongs to B(Lp(Rn+1;E), Lp(Rn+1;F )) and ‖P‖ ≤M
1/q
1 M

1/p
2 .

The assumption that the symbol is constant in the space direction corresponding to
the co-variable ζ, allows use to interpret P as an operator on Rn × ST . Here, ST denotes
a circle of circumference T . In order to verify that this point of view is valid, we identify
functions on Rn × ST with T periodic functions and verify that P preserves periodicity.

[Pu](x, z + T ) : =

∫
ei(x−y)ξ+i([z+T ]−w)ζp(x, ξ, ζ)u(y, w) dydwd̄ξd̄ζ

=

∫
ei(x−y)ξ+i(z−[w−T ])ζp(x, ξ, ζ)u(y, w) dydwd̄ξd̄ζ

=

∫
ei(x−y)ξ+i(z−w̃)ζp(x, ξ, ζ)u(y, w̃ + T ) dydw̃d̄ξd̄ζ

=

∫
ei(x−y)ξ+i(z−w̃)ζp(x, ξ, ζ)u(y, w̃) dydw̃d̄ξd̄ζ

= [Pu](x, z)

As a next step, we consider the mapping properties of P in this identification.

Lemma 5.3. Let p ∈ S0
1,δ(Rn×Rn+1;E,F ) and E,F be Hilbert spaces. Then, a constant

C > 0 exists such that for all T :

P ∈ B(Lp(Rn × ST ;E), Lp(Rn × ST ;F )) and ‖P‖ ≤ C|p|∗.

Proof. We identify u ∈ Lp(Rn × ST ;E) with a T -periodic function and write

u =
∑
j∈Z

uj with uj(x, z) := u|Rn×[−T/2,T/2](x, z − Tj).
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Note that for every j ∈ Z, uj belongs to Lp(Rn×R;E) and ‖uj‖Lp(Rn×R;E) = ‖u‖Lp(Rn×ST ;E).
The pseudodifferential operator P is represented via the integral kernel p̃(x, z, y, w):

p̃(x, z, y, w) =

∫
ei(x−y)ξ+i(z−w)ζp(x, ξ, ζ) d̄ξd̄ζ.

Since p is of order zero, we obtain the estimate

‖p̃(x, z, y, w)‖B(E,F ) ≤ C|p|∗(|x− y|2 + |z − w|2)−l/2

for all even l ∈ N with l > n + 1 with a suitable seminorm |p|∗ for p. If |j| ≥ 2,
z ∈ [−T/2, T/2] and w ∈ suppuj, then |z − w| ≥ (|j| − 1)T . Therefore:

‖p̃(x, z, y, w)‖B(E,F ) ≤ C|p|∗(|x− y|2 + (|j| − 1)2T 2)−(n+2)/2

≤ C|p|∗((|j| − 1)T )−(n+2)〈|x− y|/(|j| − 1)T 〉−(n+2).

We write χj for the indicator function of [−T/2 + jT, T/2 + jT ]. A quick computation
shows that for |j| ≥ 2 the following estimates hold:∫

χ0(z)‖p̃(x, z, y, w)‖B(E,F )χj(w) dwdy ≤ C|p|∗T−1(|j| − 1)−2 and∫
χ0(z)‖p̃(x, z, y, w)‖B(E,F )χj(w) dzdx ≤ C|p|∗T−1(|j| − 1)−2.

For |j| ≥ 2, an application of Schur’s Test yields:

‖Puj‖Lp(Rn×ST ;F ) = ‖χ0Pχjuj‖Lp(Rn×R;F ) ≤ C|p|∗T−1(|j| − 1)−2‖u‖
Lp(Rn×ST ;E)

.

In particular the right hand side is summable. Therefore:

‖Pu‖Lp(Rn×ST ;F ) =
∑

j∈{−1,0,1}

‖Puj‖Lp(Rn×ST ;F ) +
∑
|j|≥2

‖Puj‖Lp(Rn×ST ;F )

≤C
(

3|p|∗‖u‖Lp(Rn×ST ;E) + 2T−1
∑
j∈N

j−2|p|∗‖u‖Lp(Rn×ST ;E)

)
≤C max{1, T−1}|p|∗‖u‖Lp(Rn×ST ;E).

Note, we need the assumption that E and F are Hilbert spaces in order to estimate the
first three terms. The estimate is independent of T which is obvious for T ≥ 0. However,
we can prove that the bound also holds for T < 1. To this end, we choose N ∈ N such
that NT ≥ 1 and consider a T -periodic function as an NT -periodic function. Note that
‖u‖Lp(Rn×SNT ;E) = N−1/p‖u‖Lp(Rn×ST ;E). Therefore, the arguments above can be applied:

‖Pu‖Lp(Rn×ST ;F ) = N−1/p‖Pu‖Lp(Rn×SNT ;F ) ≤ C|p|∗N−1/p‖u‖Lp(Rn×SNT ;E)

= C|p|∗‖u‖Lp(Rn×ST ;E).

Here, the constant C is the same as in the estimate for T > 1.
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We apply Lemma 5.3 with T = 2π/µ to the left hand side of P (u⊗ eµ) = (Pµu)⊗ eµ:

‖(Pµu)⊗ eµ‖Lp(Rn×ST ;F ) = ‖P (u⊗ eµ)‖Lp(Rn×ST ;F ) ≤ C|p|∗‖u⊗ eµ‖Lp(Rn×ST ;E).

The estimate holds for all µ because the constant in Lemma 5.3 is independent of T .
According to Fubini’s Theorem, the norm of the tensor product is the product of the
norms. Thus, ‖Pµu‖Lp(Rn) ≤ C|p|∗‖u‖Lp(Rn). In sum, we have proven:

Theorem 5.4. Let E and F be Hilbert spaces with isometric group action and p ∈
S−m1,δ (Rn × Rn+1;E,F ). Then:

Pµ ∈ B(Lp(Rn;E), Lp(Rn;F )) and ‖Pµ‖ ≤ C|p|∗〈µ〉−m.

The assumption that E and F are Hilbert spaces is too restrictive. We can al-
low E and F to be UMD spaces by the following arguments. We fix an ε > 0 and
assume that p ∈ S−2ε

1,δ (Rn × Rn+1;E,F ). Then, the mapping properties imply that
P ∈ B(B−εp (Rn+1;E), Bε

p(Rn+1;F )). Applying the embedding results for the Besov spaces
implies P ∈ B(Lp(Rn+1;E), Lp(Rn+1;F )). With the arguments above we therefore obtain:

Theorem 5.5. Let E and F be UMD spaces with isometric group action and p ∈
S−m−ε(Rn × Rn+1;E,F ). Then:

Pµ ∈ B(Lp(Rn;E), Lp(Rn;F )) and ‖Pµ‖ ≤ C|p|∗〈µ〉−m.

We apply the result to Boutet de Monvel operators:

Corollary 5.6. Let m ≥ 0 and ε > 0.

(i) Let p ∈ P−m1,δ (Rn−1 × Rn). Then,

Pµ,+ ∈ B(Lp(Rn
+)) and ‖Pµ‖ ≤ C|p|∗〈µ〉−m.

(ii) Let k ∈ K−m−ε1,δ (Rn−1 × Rn). Then,

Kµ ∈ B(Lp(Rn−1);Lp(Rn
+)) and ‖Kµ‖ ≤ C|p|∗〈µ〉−m.

(iii) Let t ∈ T −m−ε,01,δ (Rn−1 × Rn). Then,

Tµ ∈ B(Lp(Rn
+);Lp(Rn−1)) and ‖Tµ‖ ≤ C|p|∗〈µ〉−m.

(iv) Let g ∈ G−m−ε,01,δ (Rn−1 × Rn). Then,

Gµ ∈ B(Lp(Rn
+)) and ‖Gµ‖ ≤ C|p|∗〈µ〉−m.

Proof. For Result (i), we make use of the fact that the extension by zero is a bounded
operator for Lp-functions and apply Theorem 5.4 with E = F = C. For the other results,
the spaces E and F are either Lp(R+) or C which are UMD spaces. The group actions are
σp in the case of Lp(R+) and the trivial one in the case of C. Both are clearly isometric.
Therefore, the result for potential operators, trace operators, and singular Green operators
follows from Theorem 5.5.
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5.2 The Parametrix Construction

Recall that A be an M -elliptic second order differential operator with smooth coefficients.
By A we denote the operator A acting on Lp(Rn) which has symbol:

a(x, ξ) =
∑

1≤i,j≤n

aij(x)ξiξj +
√
−1

∑
1≤i≤n

bi(x)ξi + c(x). (5.4)

Moreover, the principal part is a symmetric, uniformly strictly positive, and bounded
bilinear form:

M−1|ξ|2 ≤
∑

1≤i,j≤n

aij(x)ξiξj ≤M |ξ|2 for all x, ξ ∈ Rn.

In this section, we construct a parametrix to the extended problem:(
Aθ,+
T

)−#

=
(
(A−#

θ )+ +GT
θ KT

θ

)
.

Here, Aθ := A + ei(π+θ)D2
z . In particular, we are interested in the operator GT

θ . The
construction of the parametrix splits into the construction of two parametrices. The first
is the parametrix of the associated Dirichlet problem, see Section 5.2.1. The result is:

Lemma 5.7. Let 0 < ϑ ≤ |θ| ≤ π and let A be an M-elliptic operator. Then,

• a−#
θ ∈ P−2

1,0 (Rn−1 × Rn),

• gDθ ∈ G
−2,0
1,0 (Rn−1 × Rn),

• kDθ ∈ K
−1/p
1,0 (Rn−1 × Rn), and

• rDθ ∈ BM
−∞,0
1,0 (Rn−1 × Rn),

exist with |a−#
θ |∗, |gDθ |∗, |kDθ |∗, |rDθ |∗ ≤ C(|a|∗,M, ϑ) such that the associated operators sat-

isfy (
Aθ,+
γ0

)(
A−#
θ +GD

θ KD
θ

)
= 1 +RD

θ .

Moreover, the principal symbols are:

a−#
θ (x, ξ′;xn, ξn) ≈ 1

ann(x)

1

κ+
θ (x, ξ′, ζ) + iξn

1

κ−θ (x, ξ′, ζ)− iξn

gDθ (x′, ξ′, ζ; ξn, ηn) ≈ −1

ann(x′)(κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ))

1

κ+
θ (x′, ξ′, ζ) + iξn

1

κ−θ (x′, ξ′, ζ)− iηn
.

kDθ (x′, ξ′, ζ; ξn) ≈ 1

κ+(x′, ξ′, ζ) + iξn
.
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The definition of ann, κ+
θ and κ−θ is provided in the next section. The parametrix

is used to reduce the problem to the boundary. By assumption, the trace operator is
T = ϕ1γ1 + ϕ0γ0, with ϕ1, ϕ0 ≥ 0 and ϕ1 + ϕ0 > 0. We define the Dirichlet-to-Neumann
operator as Πθ := γ1K

D
θ . Furthermore, we observe:(

Aθ,+
T

)(
(A−#

θ )+ +GD
θ KD

θ

)
=

(
1 0

ϕ1γ1((A−#
θ )+ +GD

θ ) ϕ1Πθ + ϕ0

)
+

(
1 0
0 ϕ0

)
RD
θ .

The first operator on the right hand side is a lower triangular matrix which has a
parametrix if the diagonal entries have. The reduced problem is the construction of a
parametrix to the operator Sθ := ϕ1Πθ + ϕ0, a pseudodifferential operator on the bound-
ary. This operator is, in general, not elliptic. However, the assumption on the operator
T ensures the existence of a parametrix. The lemma below is proven in Section 5.2.2:

Lemma 5.8. Let 0 < ϑ ≤ |θ| ≤ π, A be a M-elliptic operator and ϕ1, ϕ2 ≥ 0 be smooth
functions such that ϕ1 + ϕ0 > 0. Then, symbols

s−#
θ ∈ S0

1,1/2(Rn−1 × Rn−1) and rSθ ∈ S−∞(Rn−1 × Rn−1)

exist with |s−#
θ |∗, |rSθ |∗ ≤ C(|a|∗, |t|∗,M, ϑ), satisfying the following equation:

SθS
−#
θ = 1 +RS

θ .

Moreover, s−##ϕ1 ∈ S−1
1,1/2(Rn−1 × Rn) and the principal symbol is:

s−#
θ (x′, ξ′, ζ) ≈ 1

ϕ1(x′)κ+
θ (x′, ξ′, ζ) + ϕ0(x′)

.

Given Lemma 5.8, we obtain the parametrix of the triangular matrix above:(
1 0

ϕ1γ1((A−#
θ )+ +GD

θ ) Sθ

)(
1 0

−S−#
θ ϕ1γ1((A−#

θ )+ +GD
θ ) S−#

θ

)
=

1 +

(
0 0

−RS
θϕ1γ1((A−#

θ )+ +GD
θ ) RS

θ

)
.

In particular, the parametrix of the extended problem can be defined as follows:(
Aθ,+
T

)−#

:=
(
A−#
θ,+ +GT

θ KT
θ

)
:=
(
A−#
θ,+ +GD

θ KD
θ

)( 1 0

−S−#
θ ϕ1γ1((A−#

θ )+ +GD
θ ) S−#

θ

)
.

The singular Green operator is GT
θ = GD

θ −KD
θ S
−#
θ ϕ1γ1((A−#

θ )+ +GD
θ ) and the potential

operator is KT
θ = KD

θ S
−#
θ . The remainder term is:

RT
θ =

(
1 0

−RS
θϕ1γ1((A−#

θ )+ +GD
θ ) RS

θ

)
+

(
1 0
0 ϕ0

)
RD
θ

(
1 0

−S−#
θ ϕ1γ1((A−#

θ )+ +GD
θ ) S−#

θ

)
.
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The order of the singular Green term in the parametrix of the extended problem is the
same as in the Dirichlet case. This follows from the partial result of Lemma 5.8: The
operator S−#

θ ϕ1 has order −1. Both, the symbol seminorms of the parametrix and the
remainder term to the extended problem can be estimated by a constant. This constant
depends on the seminorms of the symbol in Lemma 5.7 and 5.8. In summary:

Lemma 5.9. Let 0 < ϑ ≤ |θ| ≤ π, A be an M-elliptic operator and T be as in (1.2).
Then, symbols

• a−#
θ ∈ P−2

1,0 (Rn−1 × Rn),

• gTθ ∈ G
−2,0
1,δ (Rn−1 × Rn),

• kTθ ∈ K
−1/p
1,δ (Rn−1 × Rn) and

• rTθ ∈ BM−∞
1,δ (Rn−1 × Rn),

exist with |a−#
θ |∗, |gTθ |∗, |kTθ |∗, |rTθ | ≤ C(|a|∗, |t|∗,M, ϑ) such that the following equation

holds: (
Aθ,+
T

)(
A−#
θ ⊕GT

θ KT
θ

)
= 1 +RT

θ .

The principal symbols of these operators are:

a−#
θ (x′, ξ′;xn, ξn) ≈ 1

ann(x)

1

κ+
θ (x, ξ′, ζ) + iξn

1

κ−θ (x, ξ′, ζ)− iξn

gTθ (x′, ξ′, ζ; ξn, ηn) ≈ sTθ (x′, ξ′, ζ)
1

κ+(x′, ξ′, ζ) + iξn

1

κ−θ (x′, ξ′, ζ)− iηn
.

sTθ (x′, ξ′, ζ) =
1

ann(x′)

[
ϕ1(x′)

ϕ1(x′)κ+
θ (x′, ξ′, ζ) + ϕ0(x′)

+
1

κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ)

]
.

kTθ (x′, ξ′, ζ; ξn) ≈ ϕ1(x′)

ϕ1(x′)κ+
θ (x′, ξ′, ζ) + ϕ0(x′)

1

κ+
θ (x′, ξ′, ζ) + iξn

.

5.2.1 The Parametrix to the Dirichlet Problem

The construction of the parametrix to the Dirichlet problem is well-known. For the sake of
completeness and to fix the notation, we include the construction. The extended operator
Aθ := A+ei(π+θ)D2

z has symbol aθ(x, ξ, ζ) = a(x, ξ)+ei(π+θ)ζ2. The symbol is a polynomial
of degree two and thus belongs to P2

1,0(Rn−1 × Rn). The symbol’s seminorms can be
estimated: |aθ|∗ ≤ max{1, |a|∗}. Now, we verify that aθ(x, ξ, ζ) is an elliptic symbol.
Therefore, we consider the principal part which is equivalent to setting bi(x) = c(x) = 0.

|aθ(x, ξ, ζ)|2 = (a(x, ξ) + cos(π + θ)ζ2)2 + sin2(π + θ)ζ4

= a2(x, ξ) + 2 cos(π + θ)a(x, ξ)ζ2 + ζ4
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≥ min{1, 1 + cos(π + θ)}(a2(x, ξ) + ζ4)

≥ min{1, 1 + cos(π + θ)}min{1,M−1}2−1(|ξ, ζ|4).

For ϑ < |θ| ≤ π, we obtain a constant c = c(ϑ,M) > 0 such that |aθ(x, ξ, ζ)| ≥ c|ξ, ζ|2.
Therefore, the following result is a special case of Theorem 4.4:

Lemma 5.10. Let 0 < ϑ ≤ |θ| ≤ π. A parametrix a−#
θ ∈ P−2

1,0 (Rn−1 × Rn) and a
remainder term rθ ∈ P−∞1,0 (Rn−1 × Rn) exist such that:

aθ#a
−#
θ = 1− rθ.

Moreover, |a−#
θ |∗, |rθ|∗ ≤ C with a constant C = C(|a|∗, ϑ,M) > 0.

Notation 5.11. The principal symbol of the parametrix is the point-wise inverse of the
operator’s principal symbol. To be precise, the principal symbol has to be multiplied by a
zero excision function which depends on |ξ, ζ|. We decided to drop the excision function
from the notation to keep the layout readable. Two reasons justify this form of notation.
First, treating the excision term is a well-known process. Second, we are interested in the
case where ζ is large. If ζ is indeed large, the excision function equals one.

For later computations, a decomposition of the principal symbol of the parametrix is
useful. The decomposition contains two parts, one in H+ and one in H−−1. For a fixed
(x, ξ′, ζ), the principal symbol aθ(x, ξ

′, ξn, ζ) is a polynomial of degree two in ξn.

aθ(x, ξ
′, ξn, ζ) =

( ∑
1≤i,j<n

aij(x)ξiξj + ei(π+θ)ζ2

)
+ 2

( ∑
1≤i<n

ain(x)ξi

)
ξn + ann(x)ξ2

n

=: ann(x)(qθ(x, ξ
′, ζ) + 2p(x, ξ′)ξn + ξ2

n). (5.5)

We label the two complex roots as ±iκ±θ (x, ξ′, ζ). They are:

κ±θ (x, ξ′, ζ) = ±ip(x, ξ′, ζ) +
√
qθ(x, ξ′, ζ)− p2(x, ξ′, ζ).

We choose the negative real axis as the branch cut of the root. We observe:

|ann(x)
(
qθ(x, ξ

′, ζ)− p2(x, ξ′)
)
| = |aθ(x, ξ′,−p(x, ξ′), ζ)| ≥ c|ξ′,−p(x, ξ′), ζ|2 ≥ c|ξ′, ζ|2.

Here, c = c(M,ϑ) > 0 is the constant from the elliptic estimate. Therefore, the absolute
value of the root is bounded from below by

√
c/M |ξ′, ζ|. Next, we consider the argument

of the root. To this end, we observe:

ann(x)
(
qθ(x, ξ

′, 0)− p2(x, ξ′)
)

= aθ(x, ξ
′,−p(x, ξ′), 0) ≥M−1|ξ′,−p(x, ξ′)|2 ≥M−1|ξ′|2.

The argument of ei(π+θ)ζ2 belongs to the interval [−π + ϑ, π − ϑ]. According to the
observation above, the argument of qθ(x, ξ

′, ζ)−p2(x, ξ′) = qθ(x, ξ
′, 0)−p2(x, ξ′)+ei(π+θ)ζ2

belongs to the same interval. Therefore, the argument of the root belongs to interval
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[−π
2

+ ϑ
2
, π

2
− ϑ

2
]. The real part of the root coincides with the real part of κ±θ . Thus, a

constant c = c(M,ϑ) > 0 exists such that the following estimate holds:

<κ±θ (x, ξ′, ζ) ≥ c|ξ′, ζ|. (5.6)

A quick computation shows that κ±θ is homogeneous of degree one, i.e., κ±θ (x, tξ′, tζ) =
tκ±θ (x, ξ′, ζ). We are primarily interested in the situation where xn = 0 and write
κ±θ (x′, ξ′, ζ) := κ±θ ((x′, 0), ξ′, ζ). The homogeneity of κ±θ implies it is a symbol in S1

1,0(Rn−1×
Rn) which is elliptic according to (5.6). By decomposition into partial fractions, we obtain:

a−#
θ (x, ξ, ζ) ≈ 1

ann(x)(κ+
θ (x, ξ′, ζ) + κ−θ (x, ξ′, ζ))

[
1

κ+
θ (x, ξ′, ζ) + iξn

+
1

κ−θ (x, ξ′, ζ)− iξn

]
.

The first summand belongs to H+ and the second to H−−1 as a function of ξn. Similarly,

we obtain a decomposition for the principal symbol of A−#
θ ∂xn :

iξna
−#
θ (x, ξ, ζ) ≈ 1

ann(x′)(κ+
θ (x, ξ′, ζ) + κ−θ (x, ξ′, ζ))

[
− κ+

θ (x, ξ′, ζ)

κ+
θ (x, ξ′, ζ) + iξn

+
κ−θ (x, ξ′, ζ)

κ−θ (x, ξ′, ζ)− iξn

]
Now, we derive the potential operator in the parametrix to the extended Dirichlet problem.
Form the jump relation, we obtain the following identity, see also [23, Chapter XX].

Aθe
+ = e+Aθ + P cγ with P c(φ, ψ) := ann(x′)(−2iγ∗0p(x

′, D′)− γ∗1)φ+ γ∗0ann(x′)ψ.

We define two operators K0
θ and K1

θ such that K0
θφ+K1

θψ := r+A−#
θ Pc(φ, ψ)t, show that

they are potential operators, and compute their principal symbol. To this end, we define
the two auxiliary operators Kj

θ,a := r+A−#
θ γ∗j for j = 0, 1 which are potential operators

of order −1 + j − 1/p according to Proposition 4.20. Note that γ∗1 = (−γ0∂xn)∗ = ∂xnγ
∗
0 .

In particular, we compute the principal symbols of the axillary operators by means of the
decomposition derived above:

k0
θ,a(x

′, ξ, ζ) = h+
ξn
a−#
θ (x′, ξ, ζ) ≈ 1

ann(x′)(κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ))

1

κ+
θ (x′, ξ′, ζ) + iξn

.

k1
θ,a(x

′, ξ, ζ) = h+
ξn
iξna

−#
θ (x′, ξ, ζ) ≈ −κ+

θ (x′, ξ′, ζ)

ann(x′)(κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ))

1

κ+
θ (x′, ξ′, ζ) + iξn

.

Thus, the operators K0
θ := (K0

θ,aann(x′)(−2ip(x′, D′)) −K1
θ,a) and K1

θ = K0
θ,aann(x′) are

potential operators according to Theorem 4.25. The principal symbols are:

k0
θ(x
′, ξ, ζ) ≈ κ−θ (x′, ξ′, ζ)

κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ)

1

κ+
θ (x′, ξ′, ζ) + iξn

.

k1
θ(x
′, ξ, ζ) ≈ 1

κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ)

1

κ+
θ (x′, ξ′, ζ) + iξn

.

We used the fact that −2ip(x′, ξ′) = κ−θ (x′, ξ′, ζ)−κ+
θ (x′, ξ′, ζ) in the derivation of k0

θ . The
composed operators Cij

θ := γiK
j
θ for i, j ∈ {0, 1} are pseudodifferential operators on the
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boundary. Their principal symbol can be derived from the symbol-kernel of the potential
operators and the identity F−1

ξn 7→xn(κ+
θ + iξn)−1 = θ(xn) exp(−κ+

θ xn):

c00
θ (x′, ξ′, ζ) = γ0k̃

0
θ(x
′, ξ′, ζ) ≈ κ−θ (x′, ξ′, ζ)

κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ)

.

c01
θ (x′, ξ′, ζ) = γ0k̃

1
θ(x
′, ξ′, ζ) ≈ 1

κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ)

.

c10
θ (x′, ξ′, ζ) = γ1k̃

0
θ(x
′, ξ′, ζ) ≈ κ−θ (x′, ξ′, ζ)κ+

θ (x′, ξ′, ζ)

κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ)

.

c11
θ (x′, ξ′, ζ) = γ1k̃

1
θ(x
′, ξ′, ζ) ≈ κ+

θ (x′, ξ′, ζ)

κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ)

.

In particular, C01 is an elliptic operator which allows us to define a pseudodifferential
operator on the boundary Sθ := (C01

θ )−#(1− C00
θ ), with principal symbol:

sθ(x
′, ξ′, ζ) ≈ κ+(x′, ξ′, ζ).

Moreover, we define a potential operatorKD
θ := K0

θ+K1
θSθ. According to the computation

below, this operator is the entry in the parametrix to the extended Dirichlet problem:

γ0K
D
θ = γ0K

0
θ + γ0K

1
θSθ = C00

θ + C01
θ (C01

θ )−#(1− C00
θ ) ∼ 1

Aθ,+K
D
θ = Aθ,+K

0
θ + Aθ,+K

1
θSθ ∼ 0

In the second line, we used Aθ,+r
+A−#

θ ∼ r+ and the fact that the image of P c
θ consists

of distributions with support on the boundary. These distributions belong to the kernel
of the restriction. In sum, the result is:

Lemma 5.12. Given 0 < ϑ ≤ |θ| ≤ π. A potential operator KD
θ with symbol kDθ ∈

K−1/p
1,0 (Rn−1 × Rn) exists such that

Aθ,+K
D
θ ∼ 0 and γ0K

D
θ ∼ 1.

Moreover, |kDθ |∗ ≤ C = C(M,ϑ, |a|∗) and the principal symbol is:

kDθ (x′, ξ′, ζ) ≈ 1

κ+(x′, ξ′, ζ) + iξn
.

The seminorms of the remainder terms can be bounded by a constant, depending on
the same parameters as in Lemma 5.10. The operators Cij

θ are entries of the Calderón
projector, for more details see [23, Chaper XX]. The Dirichlet-to-Neumann operator is
defined as Πθ := γ1K

D
θ . It is a pseudodifferential operator on the boundary of order 1

and |πθ|∗ ≤ C(|a∗|,M, ϑ) according to Lemma 5.12. The principal symbol πθ ≈ κ+
θ can

be computed with the second row of the Calderón projector. In particular, the Dirichlet-
to-Neumann operator is elliptic. The singular Green operator in the parametrix of the
extended problem is GD

θ = −KD
θ γ0A

−#
θ,+ , has order −2, and satisfies

Aθ,+G
D
θ ∼ 0 and γ0G

D
θ = −γ0K

D
θ γ0A

−#
θ,+ ∼ −γ0A

−#
θ,+ .
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The principal symbol of the singular Green operator is the product of the two princi-
pal symbols of the potential operator KD

θ and the trace operator γ0A
−#
θ,+ . According to

Proposition 4.22, the principal symbol of the trace operator can be computed with the
decomposition above. Therefore:

gDθ (x′, ξ′, ζ; ξn, ηn) ≈ −1

ann(x′)(κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ))

1

κ+
θ (x′, ξ′, ζ) + iξn

1

κ−θ (x′, ξ′, ζ)− iηn
.

Now, the construction of the parametrix to the extended problem is complete. At the
beginning of this section, we indicated that we need the principal symbol of the trace
operator TDθ := γ1(A−#

θ,+ + GD
θ ). The principal symbol of −∂xnA

−#
θ is −iξna−1

θ (x′, ξ′, ζ).

We can thus compute the principal symbol of T ′θ := γ1A
−#
θ,+ with Proposition 4.22 and the

decomposition above:

t′θ(x
′, ξ′, ζ; ηn) ≈ −1

ann(x′)(κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ))

κ−θ (x′, ξ′, ζ)

κ−θ (x′, ξ′, ζ)− iηn
.

Furthermore, the principal symbol of the trace operator T ′′θ = γ1G
D
θ = −γ1K

D
θ γ0A

−#
θ,+ can

be computed with Theorem 4.25:

t′′θ(x
′, ξ′, ζ; ηn) ≈ −1

ann(x′)(κ+
θ (x′, ξ′, ζ) + κ−θ (x′, ξ′, ζ))

κ+
θ (x′, ξ′, ζ)

κ−θ (x′, ξ′, ζ)− iηn

Since TDθ is the sum of T ′θ and T ′′θ , it has principal symbol:

tDθ (x′, ξ′, ζ; ηn) ≈ −1

ann(x′)

1

κ−θ (x′, ξ′, ζ)− iηn
.

5.2.2 The parametrix on the boundary

This section proves Lemma 5.8 and compares the degenerate to the non-degenerate case.
Furthermore, we point out the necessity for the Boutet de Monvel calculus with 0 6= δ.

Theorem 5.13 (parametrix). Let 0 ≤ m′ ≤ m, 0 ≤ δ ≤ 1 and p ∈ Sm1,0(Rn−1 × Rn).
Suppose constants c > 0 and ρ ≥ 0 exist such that for all |ξ, ζ| ≥ ρ the following estimates
hold:

|p(x′, ξ′, ζ)| ≥ c〈ξ, ζ〉−m′ and (5.7)

|∂βx∂αξ p(x′, ξ′, ζ)||p(x′, ξ′, ζ)−1| ≤ C〈ξ, ζ〉−ρ|α|+δ|β|. (5.8)

Then, symbols p−# ∈ S−m
′

1,δ (Rn × Rn) and r ∈ S−∞(Rn × Rn) exist with |p−#|∗, |r|∗ ≤
C(c, |p|∗) such that the associated operators satisfy PP−# = 1−R. The operator P−# is
also a left parametrix.
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For the proof of the theorem, we refer to [28]. Given 0 < ϑ ≤ |θ| ≤ π, the operator

Sθ = ϕ1Πθ + ϕ0

is a pseudodifferential operator on the boundary of order 1 and Hörmander type (1, 0) with
symbol sθ(x

′, ξ′, ζ) := ϕ1(x′)πθ(x
′, ξ′, ζ) + ϕ0(x′). In the last subsection, we pointed out

that the principal symbol of Πθ is κ+
θ . Moreover, <κ+

θ (x′, ξ′, ζ) ≥ c|ξ, ζ|, with a constant
c = c(M,ϑ). Thus, for sufficiently large |ξ, ζ|, the estimate from below <πθ(x′, ξ′, ζ) ≥ 1
holds. According to Assumption (1.2), the function ϕ1, ϕ0 ≥ 0 satisfies ϕ1 + ϕ0 ≥ c > 0.
Therefore, for sufficiently large |ξ, ζ|, the following estimate holds:

|sθ(x′, ξ′, ζ)| ≥ ϕ1(x′)<πθ(x′, ξ′, ζ) + ϕ0(x′) ≥ ϕ1(x′) + ϕ0(x′) ≥ c > 0. (5.9)

The estimate is Assumption (5.7) with m′ = 0. Furthermore, we observe:

Dl
ζD

α
ξ′D

β
x′sθ(x

′, ξ′, ζ) =
∑

Dβ1
x′ ϕ1(x′)πθ(x

′, ξ′, ζ)
Dl
ζD

α
ξ′D

β2
x′ πθ(x

′, ξ′, ζ)

πθ(x′, ξ′, ζ)
+ δ0,|α|+lD

β3
x′ ϕ0(x′).

In the equation, we sum over all β1, β2, β3 ∈ Nn−1
0 with β1 + β2 + β3 = β. Since πθ ∈

S1
1,0(Rn−1 × Rn) is an elliptic symbol, the following estimate holds:∣∣∣∣∣D

β
x′D

α
ξ′D

l
ζπθ(x

′, ξ′, ζ)

πθ(x′, ξ′, ζ)

∣∣∣∣∣ ≤ C〈ξ′, ζ〉−|α|−l.

Thus, sθ satisfies Assumption (5.8), if for all β ∈ Nn−1
0 , the estimate below holds:∣∣∣∣∣Dβ

x′ϕ1(x′)πθ(x
′, ξ′, ζ)

sθ(x′, ξ′, ζ)

∣∣∣∣∣ ≤ C〈ξ′, ζ〉|β|/2. (5.10)

In the case of |β| ≥ 2, the estimate holds, implied by |Dβ
x′ϕ1(x′)| ≤ |t|∗, |πθ(x′, ξ′, ζ)| ≤

|πθ|∗〈ξ′, ζ〉, and Estimate 5.9. In the case of |β| = 0, Equation (5.9) implies Equation
(5.10): ∣∣∣∣ϕ1(x′)πθ(x

′, ξ′, ζ)

sθ(x′, ξ′, ζ)

∣∣∣∣ =

∣∣∣∣sθ(x′, ξ′, ζ)− ϕ0(x′)

sθ(x′, ξ′, ζ)

∣∣∣∣ ≤ C.

Now, we consider the case of |β| = 1. To this end, we need two estimates. By assumption,
ϕ1 is a non-negative real function. Therefore, the following estimate holds. For the proof
we refer to [43, Lemma 5.3].

|Dx′j
ϕ1(x′)| ≤ 1/2|ϕ1(x′)|1/2‖D2

x′j
ϕ‖1/2
∞ ≤ Cϕ1(x′)1/2 for j ∈ {1, . . . , n− 1}.

The previous estimate implies the first of the two estimates:

|Dx′j
ϕ1(x′)πθ(x

′, ξ, ζ)| ≤ C|ϕ1(x′)|1/2|πθ(x′, ξ′, ζ)| ≤ C|ϕ1(x′)πθ(x
′, ξ′, ζ)|1/2〈ξ′, ζ〉1/2.
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The second estimate is obtained from the fact that <πθ(x′, ξ′, ζ), ϕ1(x′), ϕ0(x′) ≥ 0 and
Equation (5.9):

|sθ(x′, ξ′, ζ)|2 = (ϕ1(x′)<πθ(x′, ξ′, ζ) + ϕ0(x′))
2

+ (ϕ1(x′)=πθ(x′, ξ′, ζ))
2

≥ (ϕ1(x′)<πθ(x′, ξ′, ζ))2 + (ϕ0(x′))2 + (ϕ1(x′)=πθ(x′, ξ′, ζ))
2

= |ϕ1(x′)πθ(x
′, ξ′, ζ)|2 + |ϕ0(x′)|2 ≥ 1/2(|ϕ1(x′)πθ(x

′, ξ′, ζ)|+ |ϕ0(x′)|)2

≥ 1/8(|ϕ1(x′)πθ(x
′, ξ′, ζ)|+ c)2.

The function g(y) = y(y2 + c)−1 is bounded. Thus, we obtain Equation (5.10) for |β| = 1
from the two estimates derived above:∣∣∣∣∣Dx′j

ϕ1(x′)πθ(x
′, ξ, ζ)

sθ(x′, ξ, ζ)

∣∣∣∣∣ ≤ C
|ϕ1(x′)πθ(x

′, ξ′, ζ)|1/2

|ϕ1(x′)πθ(x′, ξ′, ζ)|+ c
〈ξ′, ζ〉1/2 ≤ C〈ξ′, ζ〉1/2.

Therfore, sθ satisfies Assumption (5.8). According to Theorem 5.13, symbols s−#
θ ∈

S0
1,1/2(Rn−1 × Rn) and rθ ∈ S−∞1,0 (Rn−1 × Rn) exist such that the associated operator

satisfies SθS
−#
θ = 1 + Rθ. Moreover, the seminorms can be estimated by |s−#

θ |, |rθ| ≤ C,
with a constant C = C(|a|∗, |t|∗,M, ϑ).

Now, we compare the degenerate to the non-degenerate case. In the non-degenerate
case, the parametrix s−#

θ belongs to S−1
1,0(Rn−1 × Rn). In this case, a Boutet de Monvel

calculus with δ = 0 is sufficient for further argumentation. By contrast, δ = 1/2 in
the degenerate case. According to the results of Section 4, δ = 1/2 is not a significant
drawback. However, the difference in the order of the parametrix is a serious issue. The
parametrix has order 0 in the degenerate case and order −1 in the non-degenerate case.

Loosely speaking, the Parametrix of Sθ behaves poorly on the zeros of ϕ1. An impor-
tant observation is we regain the loss in the order, if we multiply the parametrix by ϕ1.
Using the fact that ϕ1 ∼ sθ#π

−#
θ − ϕ0π

−#
θ , we obtain:

s−#
θ #ϕ1 ∼ s−#

θ (sθ#π
−#
θ − ϕ0π

−#
θ ) ∼ π−#

θ − s−#
θ #ϕ0π

−#
θ .

The right hand side is obviously of order −1. In sum, Lemma 5.8 holds.

5.3 The resolvent of AT

The example at the beginning of Section 5 indicates that the resolvent is related to the
inverse of the extended problem. In general, no explicit formulas for the inverse are
available. However, a parametrix was explicitly constructed in Section 5.2. The relation
of the parametrix to the extended problem to the resolvent, is similar to the relation of the
inverse to the resolvent. An error term occurs, whenever the parametrix is used instead
of the inverse. We can, however, control the error term with the result of Section 5.1. We
thus obtain an identity for the resolvent, see Proposition 5.15. The identity is adequate
for deriving the estimates in Remark 3.6, if the Banach space is Lp(Rn

+). For the proof of
Proposition 5.15, we need:
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Lemma 5.14. Let 0 < ϑ ≤ π, A be M-elliptic, and T be as in (1.2). Then, for all
N ∈ N, a constant c = c(|a|∗, |t|∗,M, ϑ) exists such that on each ray λ = eiθµ2, with
ϑ/2 < |θ| ≤ π, for |λ| ≥ c, the resolvent of AT exists and the following estimate holds:

‖(AT − λ)−1 − (A−#
θ,µ +GT

θ,µ)‖ ≤ C〈λ〉−N .

Here, the constant is C = C(|a|∗, |t|∗,M, ϑ).

Proof. Let
(
A−#
θ +GT

θ KT
θ

)
be the parametrix and RT

θ the remainder to the extended
problem, see Lemma 5.9. With the same argument used in the example at the beginning
of Section 5, we obtain:(

(A− λ)+

T

)(
A−#
θ,µ +GT

θ,µ KT
θ,µ

)
= 1 +RT

θ,µ.

The application of Corollary 5.6 to the remainder rTθ ∈ BM
−∞,0
1,δ (Rn−1×Rn) implies that

RT
θ,µ ∈ B(Lp(Rn

+)⊕ Lp(Rn−1)) and ‖RT
θ,µ‖ ≤ C|rθ|∗〈µ〉−2N = C|rθ|∗〈λ〉−N , for all N ∈ N0.

We define c := c(|a|∗, |t|∗,M, ϑ) := C|rθ|∗, choosing the same seminorm as before. In
particular, ‖RT

θ,µ‖ < 1 for |λ| > c. Thus, the inverse of 1 +RT
θ,µ exists and is provided by

the Neumann series. Therefore:(
(A− λ)+

T

)−1

=
(
A−#
θ,µ +GT

θ,µ KT
θ,µ

)
(1 +RT

θ,µ)−1 =
(
A−#
θ,µ +GT

θ,µ KT
θ,µ

)
+O(〈λ〉−N).

The statement follows from the above equation.

For later use, the representation of the resolvent in Lemma 5.14 is not sufficient. The
main issue is that the construction of a parametrix is, in general, not a finite process.
However, given any order −m, two symbols q′θ and g′θ can be computed in a finite number
of steps such that a−#

θ −q′θ =: q′′θ ∈ P−m1,δ (Rn−1×Rn) and gTθ −g′θ =: g′′θ ∈ G
−m,0
1,δ (Rn−1×Rn).

We choose m = 2 + 3ε for some ε > 0. Thus, q′θ and g′θ are the principal symbols of A−#
θ

and GT
θ , respectively. An application of Corollary 5.6 yields:

‖Q′′θ,µ,+‖B(Lp(Rn+)) ≤ C|q′′θ |∗〈µ〉−2−3ε and ‖G′′θ,µ‖B(Lp(Rn+)) ≤ C|g′′θ |∗〈µ〉−2−2ε.

Both norms decay like 〈µ〉−2−2ε = 〈λ〉−1−ε. Therefore:

(AT − λ)−1 = Q′θ,µ,+ +G′θ,µ +O(〈λ〉−1−ε). (5.11)

In particular, the remainder term is integrable on the ray λ = eiθµ2. The Identity (5.11)
only holds for sufficiently large λ. In fact, for small λ, the resolvent may not exist.
Therefore, we shift the operator AT to guarantee the existence of the resolvent.

Proposition 5.15 (Structure of the Resolvent). Let A be M-elliptic and T be as in
(1.2). For a given 0 < ϑ ≤ π, a constant 0 ≤ ν = ν(|a|∗, |t|∗,M, ϑ) exists such that
σ(AT + ν) ⊂ Σϑ/2. Moreover, a constant 0 ≤ c = c(|a|∗, |t|∗,M, ϑ) exists such that on
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each ray λ = e±iθµ2, with ϑ < |θ| ≤ π, for all |µ| ≥ c, the following equation for the
resolvent holds:

(AT + ν − λ)−1 = Q′θ,µ,+ +G′θ,µ +O(〈λ〉−1−ε), for some 0 < ε. (5.12)

Here, Q′θ,+ and G′θ are the operators associated to the principal symbols of A−#
θ and GT

θ ,
respectively.

Proof. We choose c = c(|a|∗, |t|∗,M, ϑ) as in Lemma 5.14 with N = 2. In particular,
the complement of the key-hole region Σϑ/2 ∪ Bc belongs to ρ(AT ). We choose ν =
ν(|a|∗, |t|∗,M, ϑ) such that Σϑ/2 ∪ Bc ⊂ Σϑ/2 − ν. Therefore, Σc

ϑ/2 belongs to ρ(AT + ν).

Corollary 5.6 and Lemma 5.14 imply ‖(AT − λ)−1‖ ≤ C〈λ〉−1+ε for all ε > 0 with a
constant C = C(|a|∗, |t|∗,M, ϑ). After possibly enlarging c = c(|a|∗, |t|∗,M, ϑ), we can
assume that ‖ν(AT − λ)−1‖ < 1 for |λ| ≥ c. Therefore:

(AT + ν − λ)−1 =(AT − λ)−1(1 + ν(AT − λ)−1)−1 = (AT − λ)−1

∞∑
k=0

νk(AT − λ)−k

=(AT − λ)−1 +O(〈λ〉−2) = Q′θ,µ,+ +G′θ,µ +O(〈λ〉−1−ε),

which is Equation (5.12). Thus, the proof is complete.

Note that 0 ∈ ρ(AT + ν) and the inverse is the sum of a truncated pseudodifferential
operator and a singular Green operator of order −2. In particular, the mapping properties
derived in Section 4.6 imply that (AT + ν)−1 ∈ B(Hs

p(Rn
+);Hs+2

p (Rn
+))) for s > 1/p − 1.

Therefore, the following estimate holds for all u ∈ D(AT ):

‖u‖H2+s(Rn+) = ‖(AT + ν)−1(AT + ν)u‖H2+s(Rn+) ≤ C‖(ν + A)u‖Hs
p(Rn+). (5.13)

5.4 Proof of the Auxiliary Result

This section proves Theorem 1.2. Let AT satisfy the assumptions of the Theorem. For
a given 0 < ϑ < π, we choose ν = ν(|a|∗, |t|∗,M, ϑ/2) according to Proposition 5.15. In
particular, the resolvent set of AT + ν contains the complement of the sector of angle
ϑ/2. Moreover, the resolvent belongs to O(λ−1+ε) for any ε > 0. We fix a ϑ/2 < θ < ϑ.
Therefore, for all f ∈ H∞0 (Σθ), the integral below is defined:

f(AT ) :=
i

2π

∫
∂Σθ

f(λ)(AT + ν − λ)−1 dλ.

According to Remark 3.6, the operator AT + ν allows a bounded H∞(Σϑ)-calculus if and
only if the following estimate holds for all f ∈ H∞0 (Σϑ):∥∥∥∥ i

2π

∫
∂Σθ

f(λ)(AT + ν − λ)−1 dλ

∥∥∥∥
B(Lp(Rn+))

≤ C‖f‖L∞(Σϑ) for all f ∈ H∞0 (Σϑ).
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The boundary of the sector Σθ is the union of the two rays λ = e±iθµ2. On each of these
rays, Proposition 5.15 provides a description of the resolvent. We write Q′λ := Q′±θ,µ,

where the sign depends on the ray λ = e±iθµ2. Similarly, we define G′λ. For a given
f ∈ H∞0 (Σϑ), the operator −2πif(AT ) is the sum of the following three operators:

I1 =

∫
∂Σθ

f(λ)Q′λ,+ dλ,

I2 =

∫
∂Σθ

f(λ)
[
(AT + ν − λ)−1 − (Q′λ,+ +G′λ)

]
dλ, and

I3 =

∫
∂Σθ

f(λ)G′λ dλ.

Thus, Theorem 1.2 holds, if constants Ci = Ci(|a|∗, |t|∗,M, ϑ) for i = 1, 2, 3 exist such
that the estimates below hold:

‖Ii‖B(Lp(Rn+)) ≤ Ci‖f‖L∞(Σϑ) for all f ∈ H∞0 (Σϑ).

The first estimate is well-known, see [38]. For completeness, we include the proof.

Lemma 5.16. A constant C = C(|a|∗,M, ϑ) > 0 exists such that∥∥∥∥∫
∂Σθ

f(λ)Q′λ,+ dλ

∥∥∥∥
B(Lp(Rn+))

≤ C‖f‖L∞(Σϑ).

Proof. The symbol seminorms of qλ, with respect to order zero, belong to O(〈λ〉−1).
Therefore, the following integral defines a symbol of order zero:

qf (x, ξ) :=

∫
∂Σθ

f(λ)q′λ(x, ξ) dλ. (5.14)

Here, q′λ is the parameter-dependent symbol of Q′λ:

q′λ(x, ξ) =

( ∑
1≤i,j≤n

aij(x)ξiξj − λ

)−1

.

The symbol satisfies the following estimates for all α, β ∈ Nn
0 :

|Dα
ξD

β
xq
′
λ(x, ξ)| ≤ C〈ξ〉−2−|α| and |Dα

ξD
β
xq
′
λ(x, ξ)| ≤ C〈ξ〉−|α|〈λ〉−1.

For given (x, ξ) ∈ Rn × Rn and α, β ∈ Nn
0 , the function λ 7→ Dα

ξD
β
xqλ(x, ξ) is holo-

morphic on the complement of Σϑ ∩ Bρ with ρ := 2M |ξ|2. Therefore, the function
λ 7→ f(λ)Dα

ξD
β
xqλ(x, ξ) is holomorphic. According to the estimate above and the as-

sumption f ∈ H∞0 (Σϑ), the function is O(〈λ〉−1−ε) at infinity. Thus, we can differentiate
under the integral and change the path of integration in Equation 5.14:

Dβ
xD

α
ξ qf (x, ξ) =

∫
∂(Σϑ∩Bρ)

f(λ)Dβ
xD

α
ξ q
′
λ(x, ξ) dλ.

71



The length of the path of integration ∂(Σϑ ∩ Bρ) is proportional to ρ = 2M |ξ|2. The
standard estimates for the integral on the right hand side is:

|Dβ
xD

α
ξ qf (x, ξ)| ≤ |∂Σϑ ∩Bρ|‖f‖L∞(Σϑ) sup

λ
|Dβ

xD
α
ξ qλ(x, ξ)|

≤ CM |qλ|∗‖f‖L∞(Σϑ)|ξ|2〈ξ〉−2−|α|

≤ CM |qλ|∗‖f‖L∞(Σϑ)〈ξ〉−|α|.

Since (x, ξ) ∈ Rn × Rn and α, β ∈ Nn
0 were chosen arbitrarily, the inequality implies that

qf ∈ S0
1,0(Rn × Rn) and |qf |∗ ≤ C‖f‖L∞(Σϑ). According to the mapping properties of

pseudodifferential operators, we obtain:

‖Qf‖B(Lp(Rn)) ≤ C‖f‖L∞(Σϑ).

Here, the constant C equals C(|a|∗,M, ϑ). Therefore, ‖Qf,+‖B(Lp(Rn+)) ≤ C‖f‖L∞(Σϑ). A
change of the order of integration shows that Qf,+ is the operator of interest.

For the second estimate, we use the decay of (AT + ν − λ)−1 − (Q′λ,+ + G′λ) which is
at least |λ|−1−ε for some ε > 0:

Lemma 5.17. A constant C = C(|a|∗, |t|∗,M, ϑ) > 0 exists such that∥∥∥∥∫
∂Σθ

f(λ)
(
(AT − λ)−1 −Q′λ,+ +G′λ

)
dλ

∥∥∥∥
B(Lp(Rn+))

≤ C‖f‖L∞(Σϑ).

Proof. According to Proposition 5.15, constants c = c(|a|∗, |t|∗,M, ϑ) ≥ 0 and C =
C(|a|∗, |t|∗,M, ϑ) > 0 exist such that for some ε > 0 and all |λ| ≥ c the estimate be-
low holds: ∥∥(AT + ν − λ)−1 − (Q′λ,+ ⊕G′λ)

∥∥
B(Lp(Rn+))

≤ C〈λ〉−1−ε.

Proposition 5.15 also implies ∂Σθ ⊂ ρ(AT + ν). Since the resolvent is continuous,

sup{‖(AT − λ)−1‖B(Lp(Rn+)) : λ ∈ Σθ and |λ| ≤ c} <∞.

The operator Q′λ,+ +G′λ also continuously depends on λ. Therefore:

sup{‖Q′λ,+ +G′λ‖B(Lp(Rn+)) : λ ∈ Σθ and |λ| ≤ c} <∞.

In sum, the function λ 7→ ‖(AT + ν − λ)−1 − (Q′λ,+ +G′λ)‖ is integrable on Σθ. Thus, we
obtain the result with the standard estimate for the integral.

Next, we provide the third estimate. To this end, we parametrise the boundary:∫
∂Σθ

f(λ)G′λ dλ =

∫ ∞
0

2µeiθf(eiθµ2)G′θ,µ dµ+

∫ ∞
0

2µe−iϑf(e−iθµ2)G′−θ,µ dµ. (5.15)
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Both integrals can be estimated with the same arguments. Therefore, we can focus on the
first Integral. To estimate the integral, we use the symbol-kernel representation of G′θ,µ.

According to Lemma 5.9, an sTθ ∈ S−1
1,1/2(Rn−1×Rn) exists such that the symbol-kernel of

G′θ,µ is:

g̃′θ(x
′, ξ′, ζ;xn, yn) = sTθ (x′, ξ′, ζ) exp(−κ+

θ (x′, ξ′, ζ)xn − κ−θ (x′, ξ′, ζ)yn). (5.16)

Moreover, we use the following result:

Lemma 5.18. Let σ ∈ S1
1,0(Rn−1 × Rn) and <σ(x′, ξ′, ζ) ≥ c|ξ′, ζ|. Then, the map

R+ 3 t 7→ exp(−σ(x′, ξ′, ζ)t) ∈ S0
1,0(Rn−1 × Rn)

is uniformly bounded. In fact, sup{| exp(−σ(x′, ξ′, ζ)t)|∗ : t ∈ R+} ≤ C = C(|σ|∗, c).

Proof. A simple induction over |α|+ |β|+ l = N shows that Dα
ξ′D

β
x′D

l
ζ exp(−σ(x′, ξ′, ζ)t)

is a linear combination over all α1 + · · · + αk = α, β1 + · · · + βk = β, l1 + · · · + lk, and
k ≤ N . The terms in the linear combination have the following structure:(

Dα1

ξ′ D
β1
x′D

l1
ζ σ(x′, ξ′, ζ) · · ·Dαk

ξ′ D
βk
x′ D

lk
ζ σ(x′, ξ′, ζ)

)
(−t)k exp(−σ(x′, ξ′, ζ)t).

Furthermore, the assumption σ ∈ S1
1,0(Rn−1 × Rn) implies:

∣∣∣Dα1

ξ′ D
β1
x′D

l1
ζ σ(x′, ξ′, ζ) · · ·Dαn

ξ′ D
βk
x′ D

lk
ζ σ(x′, ξ′, ζ)

∣∣∣ ≤ k∏
i=1

|σ|∗|ξ′, ζ|1−|αi|+li = |σ|k∗|ξ′, ζ|k−|α|+l.

Moreover, we use the fact that sk exp(−s) is bounded on the positive real axis in order to
obtain:∣∣(−t)k exp(−σ(x′, ξ′, ζ)t)

∣∣ = tk exp(−<σ(x′, ξ′, ζ)t) ≤ tk exp(−c|ξ′, ζ|t) ≤ c−k|ξ′, ζ|−kC.

According to the last two estimates, all terms in the linear combination can be estimated
by C|ξ′, ζ|−|α|+l.

Lemma 5.19. A constant C = C(|a|∗, |t|∗,M, ϑ) exists such that∥∥∥∥∫
∂Σθ

f(λ)G′λ dλ

∥∥∥∥
B(Lp(Rn+))

≤ C‖f‖L∞(Σϑ) for all f ∈ H∞0 (Σϑ).

Proof. According to Equation (5.15), providing the estimate for the following operator is
sufficient:

I+ := 2−1e−iθ
∫
λ=eiθµ2

f(λ)G′λ dλ =

∫ ∞
0

µf(µ2eiθ)G′θ,µ dµ :

For the estimate, we use the explicit description of the symbol-kernel of G′θ in Equation
(5.16). In the equation sTθ ∈ S−1

1,1/2(Rn−1×Rn) and thus ζsTθ (x′, ξ′, ζ) ∈ S0
1,1/2(Rn−1×Rn).

73



In Section 5.2, we observed that the roots κ±θ are strongly elliptic. Moreover, a constant
c = c(|a|∗,M, ϑ) > 0 exists such that:

<κ±θ (x′, ξ′, ζ) ≥ 2c|ξ, ζ|.

Therefore, σ±θ (x′, ξ′, ζ) := κ±θ (x′, ξ′, ζ)− cζ satisfies the assumption of Lemma 5.18. Thus,
the map below is uniformly bounded:

R2
++ 3 (xn, yn) 7→ hθ(x

′, ξ′, ζ;xn, yn) := ζecζ(xn+yn)g̃′θ(x
′, ξ′, ζ;xn, yn) ∈ S0

1,1/2(Rn−1 × Rn).

Now, we analyze the action of Gθ,µ in the direction transversal to the boundary. To this
end, we define a family of operators that act on S(Rn−1):

[G′θ,µ(xn, yn)v](x′) :=

∫
eix
′ξ′ g̃′θ,µ(x′, ξ′;xn, yn)v̂(ξ′) d̄ξ′.

Similarly, we define Hθ,µ(xn, yn). According to the definition of hθ,

µecµ(xn+yn)G′θ,µ(xn, yn) = Hθ,µ(xn, yn).

For a given (xn, yn) ∈ R2
++, we apply Theorem 5.4 to the right hand side. Since the

seminorms of hθ are uniformly bounded with respect to (xn, yn) ∈ R2
++, we obtain:

‖µG′θ,µ(xn, yn)v‖Lp(Rn−1) ≤ e−cµ(xn+yn)‖Hθ,µv‖Lp(Rn−1) ≤ e−cµ(xn+yn)C‖v‖Lp(Rn−1).

Furthermore, if u ∈ S(Rn−1)⊗ S(R+) is a simple tensor, such as u = v ⊗ w, then:

[I+u](x′, xn) =

∫ ∞
0

∫ ∞
0

f(µ2eiθ)[µG′θ,µ(xn, yn)v](x′)w(yn) dyndµ.

In order to provide the estimate for I+, it is sufficient to consider simple tensors because
they span a dense subset of Lp(Rn

+). Therefore:

‖I+u‖Lp(Rn+) ≤ ‖f‖L∞(Σϑ)

∥∥∥∥∫ ∞
0

∫ ∞
0

‖µGθ,µ(xn, yn)v‖Lp(Rn−1)|w(yn)| dyndµ
∥∥∥∥
Lp(R+)

≤ C‖f‖L∞(Σϑ)‖v‖Lp(Rn−1)

∥∥∥∥∫ ∞
0

∫ ∞
0

exp(−cµ(xn + yn))|w(yn)| dyndµ
∥∥∥∥
Lp(R+)

≤ C‖f‖L∞(Σϑ)‖v‖Lp(Rn−1)

∥∥∥∥∫ ∞
0

|w(yn)|
xn + yn

dyn

∥∥∥∥
Lp(R+)

≤ C‖v‖Lp(Rn−1)‖w‖Lp(R+)

≤ C‖f‖L∞(Σϑ)‖u‖Lp(Rn+).

Note that we used Lp-boundedness of the Hilbert transform in the derivation above.
The estimate implies that I+ ∈ B(Lp(Rn

+)) and ‖I+‖ ≤ C‖f‖L∞(Σϑ). Here, C =
C(|a|∗,M, |t|∗, ϑ) is the constant in the estimate above.
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According to the argumentation at the beginning of this subsection, Lemma 5.16, 5.17,
and 5.19 imply Theorem 1.2. Now, we prove Corollary 1.3:

Proof. By assumption, a(x, ξ) =
∑
aijξiξj. Thus, |a|α,β = 0 if |β| 6= 0 or |α| > 2.

Obviously for |α| ∈ {0, 1, 2}, the estimate |Dαξjξi| ≤ 2〈ξ〉2−|α| holds. Therefore, |a|∗ ≤
C
∑
|aij|. Since all matrix norms are equivalent, we can replace the sum by the largest

eigenvalue of (aij)1≤i,j≤n. The largest eigenvalue is bounded by M , according to the
definition of M -ellipticity. Therefore, the constants in Theorem 1.2 only depend on M ,
|t|∗, and ϑ.

5.5 Proof of the Main Result

In this subsection, we extend the results of the last subsection in two directions. First, we
reduce the regularity assumption for the differential operator. The sufficient regularity
assumption is the same as in the non-degenerate case, i.e., Cτ for the highest order
coefficients and L∞ for the remaining coefficients. Second, we replace the underlying
euclidean half-space by manifolds with boundary and bounded geometry.

5.5.1 The Main Result for Euclidean Half Space

We reduce the regularity assumptions of the auxiliary result, i.e., we prove Theorem 1.1
for the case of X+ = Rn

+. In this case, the differential operator has the following form:

A :=
∑

1≤i,j≤n

aij(x)DiDj +
√
−1

∑
1≤j≤n

bj(x)Dj + c(x),

with coefficients aij ∈ Cτ (Rn) for some τ > 0 and bj, c ∈ L∞(Rn). We use the classical
approach of freezing the coefficients. We only freeze the coefficients of the differential
operator, not those of the boundary operator. The localisation scheme we use is inspired
by [27]. The localization provides a family of operators. Each of these operators is a
small perturbation of an operator with frozen coefficients. We prove that they allow a
bounded H∞(Σθ)-calculus in a uniform manner. By assembling the local operators, we
can conclude that AT + ν itself allows a bounded H∞(Σθ)-calculus.
Now, we describe the localisation scheme. We choose a small r > 0. Later on, we clarify
how r is choose. We define the cubes Q = (−r, r)n andQl := Q+l, with l ∈ Γ := r(Z×N0).
Note that Rn

+ ⊂ ∪l∈ΓQl. We choose a positive function ψ ∈ C∞0 (Q) such that γ1ψ = 0
and ∑

l∈Γ

ψl(x) = 1 for all x ∈ Rn
+, where ψl(x) = ψ(x− l).

Moreover, we choose two positive functions χ, χ′ ∈ C∞0 (Q) such that χ′ = 1 on suppψ and
χ = 1 on suppχ′. We define χl and χ′l similar to ψl. For all l ∈ Γ, we define an unbounded
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operator Al with domain D(Al) = D(AT ). The operator maps u ∈ D(Al) ⊂ Lp(Rn
+) to

r+Ale+ ∈ Lp(Rn
+), where Al is the differential operator below:

Al =
∑
|α|=2

(aα(l) + χ′l(x)[aα(x)− aα(l)])Dα.

We define A′T similar to AT , with respect to the principal part of A. Observe that
Alψl = A′Tψl. The main technical difficulty is to prove that each operator in the family
(Al)l∈Γ allows a bounded H∞(Σϑ)-calculus with uniform estimates. We provide the precise
statement here and postpone the proof to the next subsection.

Lemma 5.20. For a given 0 < ϑ < π, two constants ν = ν(M, |t|∗, ϑ) ≥ 0 and r =
r(M, |t|∗, ϑ) > 0 exist such that for all l ∈ Γ, the operator Al + ν allows a bounded
H∞(Σϑ)-calculus. Moreover, a constant C := C(M, |t|∗, ϑ) > 0 exists such that

‖f(Al)‖B(Lp(Rn+)) ≤ C‖f‖L∞(Σϑ) for all f ∈ H∞(Σϑ) and l ∈ Γ.

We define the localization operator L and the patching operator P as follows:

L : Lp(Rn
+)→ Lp(Rn

+), u 7→ (ψlu)l∈Γ.

P : Lp(Rn
+)→ Lp(Rn

+), (ul)l∈Γ 7→
∑
l∈Γ

χlul.

Moreover, we define the operator T : H2
p(Rn

+) → B1−1/p
p (Rn−1), (ul)l∈Γ → (Tul)l∈Γ. For

further argumentation, we collect some properties of the previously defined operators:

Lemma 5.21. Let L, P , and T be as above and s ≥ 0. Then, the following results hold:

(i) L ∈ B(Hs
p(Rn

+);Hs
p(Rn

+)).

(ii) P ∈ B(Hs
p(Rn

+);Hs
p(Rn

+)).

(iii) PL = 1.

(iv) L : H2
p (Rn

+) ∩ kerT → H2
p ∩ kerT.

(v) P : H2
p ∩ kerT→ H2

p (Rn
+) ∩ kerT.

Proof. The operators L and P are special cases of localisation and patching operators in
Section 2.3. Therefore, (i), (ii), and (iii) hold. By assumption, γ1ψ = 0. Thus, γ1ψl = 0
for all l ∈ Γ. Therefore, L : kerT → kerT. Similarly, we obtain P : kerT→ T .

We define operators Alk := δlkAl with domain D(Alk) = H2
p (Rn

+) ∩ kerT . Moreover,
we define:

A : D(A) := H2
p(Rn

+) ∩ kerT ⊂ Lp(Rn
+)→ Lp(Rn

+), (uk)k∈Γ 7→

(∑
k∈Γ

Alkuk

)
l∈Γ

.
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Similarly, we define B and D for the following families of operators with index set Γ× Γ:

Blk := δlkAlow + [ψl, A]ψk and Dlk = δlkAlow + ψl[Ak + Alow, ψk].

Here, Alow denotes AT − A′T . On Γ × Γ, l ./ k :⇔ Ql ∩ Qk 6= ∅ defines a symmetric
relation. For a given l ∈ Γ, the set Γl := {k ∈ Γ : k ./ l} is finite. In particular, Blk = 0
and Dlk = 0 if k /∈ Γl. Therefore, all sums in the definition of B and D are finite. A quick
computation shows that the operators A, B, and D are related:

LAT = (A + B)L on H2
p (Rn

+) ∩ kerT and

ATP = P (A + D) on H2
p(Rn

+) ∩ kerT.

For more details on the computation, see Section 5.5.3. We use the previously described
localisation scheme to prove Theorem 1.1. According to Lemma 3.7, the following claim
implies Theorem 1.1.

We claim. For given 0 < ϑ ≤ π, two constants ν = ν(M, |t|∗, ϑ) ≥ 0 and r = r(M, |t|∗, ϑ) >
0 exist such that both A + B + ν and A + D + ν allow a bounded H∞(Σθ)-calculus in
Lp(Rn

+).

The claim can be proven in two steps. First:

Lemma 5.22. For given 0 < ϑ ≤ π, two constants ν = ν(M, |t|∗, ϑ) ≥ 0 and
r = r(M, |t|∗, ϑ) > 0 exist such that A + ν allows a bounded H∞(Σθ)-calculus in Lp(Rn

+).

Proof. For given 0 < ϑ ≤ π, we choose ν, r > 0, according to Lemma 5.20. Therefore, each
operator in the family Al+ν allows a bounded H∞(Σϑ)-calculus in Lp(Rn

+). Furthermore,
the operator F := f(A + ν) is a matrix operator with entries Flk = δlkf(Al + ν). In
particular, F has band structure of width 1 and the entries are uniformly estimated
by C‖f‖H∞(Σθ). Lemma 2.5 implies that f(A + ν) ∈ B(Lp(Rn

+)) and ‖f(A + ν)‖ ≤
C‖f‖H∞(Σϑ). The constant C is the same as in Lemma 5.20.

As the second step, we verify that both B and D are lower order perturbations of A+ν
such as in Theorem 3.8 which implies:

Lemma 5.23. For given 0 < ϑ ≤ π, two constants ν = ν(M, |t|∗, ϑ) ≥ 0 and
r = r(M, |t|∗, ϑ) > 0 exist such that A + B + ν and A + D + ν allow a bounded H∞(Σϑ)-
calculus in Lp(Rn

+).

Proof. We can assume that 0 ∈ ρ(ν+A), otherwise we increase ν. Thus, for 0 < γ < 1, the
operator (ν + A)(1−γ) is invertible. In particular, ‖ · ‖D((ν+A)1−γ) and ‖(ν + A)1−γ · ‖Lp(Rn+)

are equivalent norms. According to Lemma 5.22, the operator ν + A has a bounded
H∞(Σθ)-calculus in Lp(Rn

+). Therefore, ν+A has bounded imaginary powers. According
to Theorem 3.11, the domain of (ν + A)1−γ is:

D((ν + A)1−γ) = [Lp(Rn
+),D(A)]1−γ ↪→ [Lp(Rn

+),H2
p(Rn

+))]1−γ = H2−2γ
p (Rn

+). (5.17)
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The results for B and D are proven in a similar manner. Thus, we can focus on B.
All operators Blk are first order differential operators. Therefore, for each γ < 1/2, the
following estimate holds:

‖Blkuk‖Lp(Rn+) ≤ C‖uk‖H1
p(Rn+) ≤ C‖uk‖H2−2γ

p (Rn+). (5.18)

Here, the constant C > 0 depends on the L∞ norm of the coefficients and is thus inde-
pendent of k and l. The estimate above implies that B is a band structure operator and
therefore bounded for H2−2γ

p (Rn
+) to Lp(Rn

+). In sum:

‖B(ul)l∈Γ‖Lp(Rn+) ≤ ‖(A + ν)1−γ(ul)l∈Γ‖Lp(Rn+).

Therefore, we can apply Theorem 3.8 which, in turn, proves the result.

5.5.2 A Technical Lemma

Now, we consider the operator family (Al)l∈Γ. For each l ∈ Γ, the operator Al is the
Lp-realization of Al = Acl +Asl with domain AT . Here, the right hand side is defined as:

Acl :=
∑

1≤i,j≤n

aij(l)DiDj and Asl :=
∑

1≤i,j≤n

χ′l(x)[aij(x)− aij(l)]DiDj.

Based onAcl andAsl , we define Acl and Asl similar to Al. The coefficients of Acl are constant.
In fact, we obtain Acl from AT by freezing the coefficients of the principal part at x = l.
According to the definition of M -ellipticity, the operator Acl inherits M -ellipticity from
AT . Therefore, Corollary 1.3 applies to Acl . Thus, we obtain:

Lemma 5.24. For a given 0 < ϑ ≤ π, a constant ν = ν(M, |t|∗, ϑ) ≥ 0 exists such
that Acl + ν has a bounded H∞(Σϑ)-calculus in Lp(Rn

+). Moreover, a constant C =
C(|t|∗,M, ϑ) > 0 exists such that the following estimate holds for all f ∈ H∞(Σϑ):

‖f(Acl + ν)‖B(Lp(Rn+)) ≤ C‖f‖L∞(Σϑ).

The constants in the lemma above are independent of l and r. Therefore, we have some
freedom in the choice of r > 0. We can choose r > 0 such that Asl is a small perturbation of
Acl +ν such as in Theorem 3.9. The application of the theorem proves Lemma 5.20. Now,
we discuss in detail how we choose r > 0. The coefficients asl,ij(x) = χ′l(x)[aij(x)− aij(l)]
of Asl are uniformly small such as in the following lemma:

Lemma 5.25. Let 0 < σ ≤ τ < 1. A constant C > 0 exists such that the following
estimates hold:

‖asl,ij‖∞ ≤ C‖aij‖Cτ (Rn+)r
τ and ‖asl,ij‖Cσ(Rn+) ≤ C‖aij‖Cτ (Rn+)r

τ−σ.
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Proof. We recall that r is proportional to the diameter of the cube Q defined in the last
subsection. We obtain the first estimate from the definition of the Hölder norm:

‖asl,ij‖∞ = sup |χ′l(x)(aij(x)− aij(l))| ≤ sup

{
|aij(x)− aij(l)|
|x− l|τ

|x− l|τ : x ∈ supp(χ′l)

}
≤ C‖aij‖Cτ (Rn)r

τ .

By definition, asl,ij ∈ Cτ (Rn) is a product of Hölder continuous functions. Therefore, the
Hölder seminorm of asl,ij can be estimated:

[asl,ij]Cτ (Rn) ≤ [χ′l]Cτ (Rn)‖aij(·)− aij(l)‖∞ + ‖χ′l‖∞[aij]Cτ (Rn) ≤ C‖aij‖Cτ (Rn).

To estimate the Cσ seminorm, we separate the cases |x− y| ≥ r and |x− y| < r:

sup
|x−y|≥r

|asl,ij(x)− asl,ij(y)|
|x− y|σ

≤ 2‖asl,ij‖∞r−σ ≤ C‖aij‖Cτ (Rn)r
τ−σ and

sup
0<|x−y|<r

|asl,ij(x)− asl,ij(y)|
|x− y|σ

≤ sup
0<|x−y|<r

|asl,ij(x)− asl,ij(y)|
|x− y|τ

rτ−σ ≤ C‖aij‖Cτ (Rn)r
τ−σ.

The estimate for the Cσ norm of asl,ij is a direct consequence of the estimates above.

Next, we verify that the lemma above implies the following estimate:

‖Aslu‖Lp(Rn+) ≤ Crτ‖(Acl + ν)u‖Lp(Rn+) for all u ∈ H2
p (Rn

+) ∩ kerT. (5.19)

We know that Cτ (Rn
+) ↪→ B(Hs

p(Rn
+)) as a multiplication operator for s ∈ [0, τ ]. Therefore:

‖Aslu‖Lp(Rn+) ≤ ‖asl,ij‖C(Rn+)‖u‖H2
p(Rn+) ≤ Crτ‖u‖H2

p(Rn+).

Furthermore, on H2
p (Rn

+) ∩ kerT , the norm ‖(Acl + ν) · ‖Lp(Rn+) and the H2
p (Rn

+) norm are
equivalent because (Acl + ν) is invertible. Therefore, Equation (5.19) holds. Now, we
compute the domain of (Acl + ν)γ for 2γ < min{1/p, τ}. According to Theorem 3.11, the
domain is:

D((Acl + ν)γ) = [Lp(Rn
+), H2

p (Rn
+) ∩ kerT ]γ.

By interpolation, the embedding H2
p;0(Rn

+) ↪→ H2
p (Rn

+) ∩ kerT ↪→ H2
p (Rn

+) implies:

H2γ
p;0(Rn

+) ↪→ [Lp(Rn
+), H2

p (Rn
+) ∩ kerT ]γ ↪→ H2γ(Rn

+).

Therefore, D((Acl + ν)γ) = H2γ
p (Rn

+) because H2γ
p (Rn

+) = H2γ
p;0(Rn

+) for 2γ < 1/p. Further-
more, the operator (Acl + ν)γ is invertible. Thus, ‖(Acl + ν)γ · ‖Lp(Rn+) and ‖ · ‖H2γ

p (Rn+) are

equivalent norms on D((Acl +ν)γ). We make us of Lemma 5.25 and Cσ(Rn
+) ↪→ B(Hs

p(Rn
+))

to obtain the following estimate:

‖(Acl + ν)γAslu‖Lp(Rn+) ≤ C‖Aslu‖H2γ
p (Rn+) ≤ Crτ−2γ‖u‖H2+2γ

p (Rn+).
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We can further estimate the right hand side with Estimate (5.13):

‖u‖H2+2γ
p (Rn+) ≤ C‖(ν + Acl )u‖H2γ

p (Rn+) ≤ ‖(ν + Acl )
1+γu‖Lp(Rn+).

In sum, the following estimate holds for all u ∈ D((ν + Acl )
1+γ):

‖(ν + Acl )
γAslu‖Lp(Rn+) ≤ Crτ−2γ‖(ν + Acl )

1+γu‖Lp(Rn+). (5.20)

The constants in Equation (5.19) and (5.20) are independent of l and r. Therefore, we
can choose r such that Theorem 3.9 applies to ν + Acl + Asl and thus Lemma 5.20 holds.

5.5.3 The Main Result for Manifolds

Now, let (X+, g) be a manifold with boundary and bounded geometry. We choose an atlas
of Fermi coordinates κl : Ul ⊂ X+ → Vl ⊂ Rn

+ with index set Γ such that supl∈Γ |{k ∈ Γ :
Uk ∩ Ul 6= ∅}| =: N < ∞. We also choose a subordinated partition of unity (ψl)l∈Γ such
that ∂νψl = 0 for all l ∈ Γ. Here, ν denotes an outward unit normal vector field on ∂X+.
For each ψl, we choose positive functions χ′l, χl ∈ C∞0 (Ul) such that χl = 1 on suppψl
and χ′l = 1 on suppχl. We denote χl,∗ = κl,∗χl ∈ C∞0 (Vl) ⊂ C∞0 (Rn). Similarly, we define
χ′l,∗. Moreover, we write κ̃l(x

′) := κl(x
′, 0) for the induced chart on the boundary. Let

A be a sufficiently regular M -elliptic second order differential operator on X and T be a
boundary operator as in (1.2). For each l ∈ Γ, we define the following operators:

Al := −∆(1− χ′l,∗) + κl,∗Aκ∗l χ′l,∗ and Tl := γ0(1− χ′l,∗) + κ̃l,∗Tκ
∗
l χ
′
l,∗.

For each l ∈ Γ, the operator Al is an M -elliptic second order differential operator on Rn

which satisfies the regularity assumption in Section 5.5.1. Moreover, the norms of the
coefficients of the local representations of A are bounded by M . Therefore, the norms of
the coefficients are uniformly bounded with respect to l ∈ Γ. Moreover, the seminorms
|tl|∗ are uniformly bounded with respect to l ∈ Γ. We define:

Al : D(Al) := {u ∈ H2
p (Rn

+) : Tlu = 0} → Lp(Rn
+), u 7→ r+Ale+u.

Each operator Al satisfies the assumptions in Section 5.5.1. Therefore, we can apply
Theorem 1.1 to Al and obtain:

Lemma 5.26. For a given 0 < ϑ ≤ π, a constant ν = ν(M, |t|∗, ϑ) ≥ 0 exists such that
for all l ∈ Γ, the operator Al+ν allows a bounded H∞(Σϑ)-calculus. Moreover, a constant
C = C(M, |t|∗, ϑ) > 0 exists such that for all l ∈ Γ, the following estimate holds:

‖f(Al + ν)‖L(Lp(Rn+)) ≤ C‖f‖L∞(Σϑ) for all f ∈ H∞(Σϑ).

In Section 2.3, we defined the localization operator and the patching operator below:

L : Lp(X+)→ Lp(Rn
+), u 7→ (κl,∗ψlu)l∈N.

P : Lp(Rn
+)→ Lp(X+), (ul)l∈N →

∑
l∈I

κ∗l χl,∗ul.

When we introduced the two operators, we also proved the following results:
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• L ∈ B(Hs
p(M+);Hs

p(Rn
+)),

• P ∈ B(Hs
p(Rn

+);Hs
p(M+)), and

• PL = 1.

Furthermore, we now define T : H2
p(Rn

+) → B1−1/p
p (Rn−1), (ul)l∈I 7→ (Tlul)l∈I . Next, we

verify that the localization operator maps the kernel of T to the kernel of T. To this end,
we fix a u ∈ kerT . For each component of the sequence TLu, the following calculation
holds:

Tlκl,∗ψlu = κ̃l,∗Tκ
∗
l χ
′
l,∗κl,∗ψlu = κ̃l,∗Tψlu = κ̃l,∗ψlTu+ κ̃l,∗γ0(∂νψl)u = 0.

Here, we use the assumption ∂νψl = 0 for all l ∈ Γ. Now, we consider the patching
operator. The assumption that γ0∂νχl = 0 is locally given by γ0∂nχl,∗ = 0. Therefore:

TP (ul)l∈Γ = T
∑
l∈Γ

κ̃∗l χl,∗ul =
∑
l∈Γ

κ̃∗l Tlχl,∗ul =
∑
l∈Γ

κ̃∗l χl,∗Tlul + ϕ1κ̃
∗
l γ0(∂nχl,∗)ul = PT(ul)l∈Γ.

Thus, the patching operator maps the kernel of T into the kernel of T . We define D(A) :=
H2
p(Rn

+)∩kerT. Note that (ul)l∈Γ ∈ D(A) implies that ul ∈ D(Al) for all l ∈ Γ. Therefore,
the following definition is reasonable:

A : D(A) := H2
p(Rn

+) ∩ kerT ⊂ Lp(Rn
+)→ Lp(Rn

+), (ul)l∈Γ 7→ (Alul)l∈Γ.

The following result is proven similarly to Lemma 5.22: We only have to replace Lemma
5.20 by Lemma 5.26.

Lemma 5.27. For a given 0 < ϑ ≤ π, a constant ν = ν(M,ϑ, |t∗|) ≥ 0 exists such
that A + ν allows a bounded H∞(Σϑ)-calculus in Lp(Rn

+). Moreover, a constant C =
C(M,ϑ, |t∗|) ≥ 0 exists such that:

‖f(A + ν)‖B(Lp(Rn+)) ≤ C‖f‖L∞(Σϑ) for all f ∈ H∞(Σϑ).

Next, we compute BL := LAT − AL. For a given l ∈ Γ, we observe:

(LAT )l = κl,∗ATψl + κl,∗[ψl, AT ] = Alκl,∗ψl + κl,∗[ψl, AT ] = (AL)l + κl,∗[ψl, AT ].

We rewrite the last term with the help of the partition of unity:

κl,∗[ψl, AT ] =
∑
k∈Γ

κl∗ [ψl, AT ]χ′k,∗κ
∗
kκk,∗ψk =

∑
k∈Γ

Blkκk,∗ψk, where Blk := κl∗ [ψl, AT ]χ′k,∗κ
∗
k.

The operators Blk are first order differential operators which have bounded coefficients
that can be estimated independent of l and k. The operator B : H2

p(Rn
+) ⊂ Lp(Rn

+) →
Lp(Rn

+) is represented by the infinite matrix (Blk). Next, we consider the patching oper-
ator. We observe:

ATP =
∑
l∈Γ

ATκ
∗
l χl,∗ =

∑
l∈Γ

κ∗lAlχl,∗ = PA +
∑
l∈Γ

κ∗l [Al, χl,∗].
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Again, through an application of the partition of unity, we can write the last term as:∑
l∈Γ

κ∗l [Al, χl,∗] =
∑
l∈Γ

ψl
∑
k∈Γ

κ∗k[Ak, χk,∗] =
∑
l∈Γ

κ∗l χl,∗
∑
k∈Γ

κl,∗ψlκ
∗
k[Ak, χk,∗] =: PD.

The operator D : H2
p(Rn

+) ⊂ Lp(Rn
+) → Lp(Rn

+) is an infinite matrix with entries Dlk :=
κl,∗ψlκ

∗
k[Ak, χk,∗]. Note that the entries are first order differential operators which have

bounded coefficients that can be estimated independent of l and k. The operators A,B,
and D have the same properties as those in Section 5.5.1. Therefore, the proof of Lemma
5.23 also holds for the operators A,B, and D:

Lemma 5.28. For a given 0 < ϑ ≤ π, a constant ν = ν(M, |t|∗, ϑ) ≥ 0 exists such that
A + B + ν and A + D + ν allow a bounded H∞(Σθ)-calculus in Lp(X+).

Following the same arguments as in Section 5.5.1, we obtain Theorem 1.1 by Lemmata
3.7 and 5.28.
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6 The Porous Medium Equation

In this section, we illustrate the application of the theory developed in this thesis to non-
linear parabolic partial differential equations. A simple example for this type of equations
is the porous medium equation below:

(PME)


v̇ −∆gv

m = 0

Tv = φ

v|t=0 = v0

. (6.1)

This equation, arises for instance, in the description of the gas flow through a porous
medium. We consider the case were the initial data v0 ∈ H2

p (X+) is a strictly positive
real valued function and the boundary data is independent of time and compatible with
the initial data, i.e., φ = Tv0. Under this assumption, we can provide the short time
existence of a solution to Problem (6.1). More precisely:

Theorem 6.1. Let n/p + 2/q < 1. Let v0 and φ satisfy the assumption above. Then, a
constant t∗ > 0 exists such that the Problem (6.1) has a unique solution v in:

v ∈ Lq(0, t∗;H2
p (X+) ∩ {Tv = Tv0}) ∩W 1

q (0, t∗;Lp(X+)).

The proof we present is inspired by [36]. We define u := v − v0 and consider the
following equivalent parabolic problem:

u̇−∆g(u+ v0)m = 0

Tu = 0

u|t=0 = 0

. (6.2)

A quick computation shows that v solves (6.1) if and only if u solves (6.2). Therefore, we
focus on Problem (6.2). Next, we write Problem (6.2) as an abstract parabolic problem.
To this end, we need the following identity which can easily be verified in local coordinates:

∆g(u+ v0)m = m(u+ v0)m−1∆gu+m(m− 1)(u+ v0)m−2|∇(u+ v0)|2g +m((u+ v0))m−1∆gv0.

The first term on the right hand side is the highest order term. Therefore, we define
A(u) := −m(u+ v0)m−1∆g,T and:

f(u) := m(m− 1)(u+ v0)m−2|∇(u+ v0)|2g +m((u+ v0))m−1∆g,Tv0.

According to the definitions above, Problem (6.2) is the abstract parabolic problem:

u̇+ A(u)u = f(u) and u|t=0 = 0. (6.3)

In the following, we verify that (6.3) satisfies the assumptions of Theorem 3.13. To this
end, we define E0 = Lp(X+) and E1 := H2

p (X+) ∩ kerT . The trace space is defined as:

Eq := [E1, E0]1/q,q ↪→ [H2
p (X+), Lp(X+)]

1/q,q
= B2−2/q

p,q (X+) ↪→ Cτ (X+). (6.4)
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Here, the last embedding only holds if 2−2/q−n/p > τ > 0. According to the assumptions
of Theorem 6.1, the inequality holds. The operator A(u0) = −mvm−1

0 ∆g,T satisfies the
assumptions of Theorem 1.1 because, by assumption, v0 is strictly positive. Therefore, a
suitable shift of A(u0) allows a bounded H∞-calculus and thus A(u0) has maximal Lq-
regularity. Maximal regularity is part of the assumptions of Theorem 3.13. Next, we
consider the remaining assumptions of the theorem. To this end, we need the following
result:

Lemma 6.2. Let v0 ∈ Cτ (X+) with <v0 ≥ δ > 0. We define:

W := {z ∈ C : |z| < ‖v0‖Cτ + 3δ/4, <z > δ(1− 3/4)} .

A neighbourhood V of v0 in Cτ (X+) and a constant C := C(δ, ‖v0‖Cτ (X+)) exist such that
for all f ∈ H∞(W ) and u, u′ ∈ V the following estimates hold:

‖f(u)‖Cτ (X+) ≤ C‖f‖L∞(W ) and ‖f(u)− f(u′)‖Cτ (X+) ≤ C‖f‖L∞(W )‖u− u′‖Cτ (X+).

Proof. We choose V := B(v0, δ/4). Since all functions in V are continuous, we obtain:

imV := ∪u∈V imu ⊂ W ′′ := {z ∈ C : |z| < ‖v0‖Cτ + δ/4, <z > δ(1− 1/4)}.

Furthermore, we define W ′ := {z ∈ C : |z| < ‖v0‖Cτ + δ/2, <z > δ(1 − 1/2)}. By
definition, some distance between the boundary of W ′′ and the boundary of W ′ exists,
i.e., d(∂W ′′, ∂W ′) ≥ δ/4. Therefore, |η−u(x)| ≥ δ/4 for all u ∈ V , η ∈ ∂W ′ and x ∈ X+.
It is well-known that such a lower bound implies that (η−u)−1 ∈ Cτ (X+). Moreover, the
following estimate holds:

‖(η − u)−1‖Cτ (X+) ≤ 16/δ2‖η − u‖Cτ (X+) ≤ 16/δ2(2‖v0‖Cτ (X+) + 3δ/4) =: S.

We can estimate the length of the boundary: |∂W ′| ≤ 2π(‖v0‖Cτ (X) + δ/2) := 2πL.
For all u ∈ V and x ∈ X+, we obtain the following identity from the Cauchy integral
representation:

f(u(x)) =
1

2πi

∫
∂W ′

f(η)(η − u(x))−1 dη.

Thus, we obtain the first estimate ‖f(u)‖Cτ (X+) ≤ LS‖f‖H∞(W ). For u, u′ ∈ V , we use
the resolvent identity to obtain:

f(u(x))− f(u′(x)) =
u′(x)− u(x)

2πi

∫
∂W ′

f(η)(η − u(x))−1(η − u′(x))−1 dη

We can estimate the Cτ (X+)-norm of the integral as before. Therefore, the Cτ (X+)-norm
of the left hand side can be estimated as stated in the lemma.
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According to the assumptions of Theorem 6.1 and Embedding (6.4), the function v0

satisfies the assumptions of Lemma 6.2. We choose a neighbourhood V of v0, according
to Lemma 6.2. Additionally, we choose a neighbourhood U of zero in Eq such that the
image of U + v0 under the Embedding (6.4) belongs to V . For i ∈ {1, 2}, Lemma 6.2
applies to f(z) := zm−i. Therefore:

‖(u+ v0)m−i‖Cτ (X+) ≤ C for all u ∈ U and (6.5)

‖(u+ v0)m−i − (u′ + v0)m−i‖Cτ (X+) ≤ C‖u− u′‖Eq for all u, u′ ∈ U. (6.6)

We recall Cτ (X+) ↪→ B(E0) as a multiplication operator. Thus, Estimate 6.6 implies

‖A(u)− A(u′)‖B(E1;E0) ≤ m‖(u+ v0)m−1 − (u′ + v0)m−1‖B(E0)‖∆g,T‖B(E1;E0) ≤ C‖u− u′‖Eq

for all u, u′ ∈ U . Therefore, Assumption (i) in Theorem 3.13 is satisfied. Next, we verify
Assumption (ii). To this end, we define h(u) = (u+ v0)m−2|∇(u+ v0)|2g and observe:

h(u)− h(u′) =(u+ v0)m−2|∇(u+ v0)|2g − (u′ + v0)m−2|∇(u′ + v0)|2g
=
(
(u+ v0)m−2 − (u′ + v0)m−2

)
|∇(u+ v0)|2g

+ (u′ + v0)m−2
(
|∇(u+ v0)|2g − |∇(u′ + v0)|2g

)
=
(
(u+ v0)m−2 − (u′ + v0)m−2

)
|∇(u+ v0)|2g

+ (u′ + v0)m−2〈∇(u− u′),∇(u+ v0)〉g
+ (u′ + v0)m−2〈∇(u′ + v0),∇(u− u′)〉g.

The assumption 1 > n/p + 2/q and the Embedding (6.4) imply that Eq ↪→ C1(X+) and
Eq ↪→ H1

p (X+). Thus, for all u, u′ ∈ Eq, the following estimate holds:

‖〈∇gu,∇gu
′〉g‖E0 = ‖〈∇gu,∇gu

′〉g‖Lp(X+) ≤ ‖u‖C1(X+)‖u′‖H1
p(X+) ≤ ‖u‖Eq‖u′‖Eq .

Therefore, for u, u′ ∈ U , we obtain:

‖|∇(u+ v0)|2‖E0 ≤ C,

‖〈∇(u− u′),∇(u− v0)〉g‖E0 ≤ C‖u− u′‖Eq , and

‖〈∇(u′ − v0),∇(u− u′)〉g‖E0 ≤ C‖u− u′‖Eq .

The Estimates (6.5), (6.6), and those above imply ‖h(u) − h(u′)‖E0 ≤ C‖u − u′‖Eq . We
obtain ‖((u − v0)m−1 − (u − v0)m−1)∆gv0‖E0 ≤ C‖u − u′‖Eq for all u, u′ ∈ U , from the
assumption v0 ∈ H2

p (X+) and Estimate (6.6). Thus, ‖f(u)− f(u′)‖E0 ≤ C‖u− u′‖Eq for
all u, u′ ∈ U . In other words, Assumption (ii) is satisfied. Therefore, Theorem 3.13 can
be applied to Problem (6.3) which completes the proof of Theorem 6.1.
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[44] François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-
London, 1967. MR0225131

[45] Hans Triebel, Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel
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