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Abstract

We consider a strongly elliptic second order differential operator A together with
a degenerate boundary operator 7' of the form T = ¢oy9 + @171, where vy and v
denote the evaluation of a function and its exterior normal derivative, respectively,
at the boundary. We assume that ¢g, 1 > 0 and ¢g + @1 > ¢ > 0. We show that
a suitable shift of the realization A7 of A in L,(X;) has a bounded H*-calculus
whenever X is a manifold with boundary and bounded geometry.

Keywords: H-Calculus, no elliptic, maximal regularity

Zusammenfassung

Wir betrachten einen stark elliptischen Differentialoperator zweiter Ordnung A
zusammen mit einem entarteten Randwertoperator 7', welche als T' = pgv0 + @171
gegeben ist. Hierbei sind ~g und 7; der Einschrankung der Funktion, bzw. der dufe-
ren Normalen Ableitung, auf den Rand. Wir nehmen an, dass ¢g,¢1 > 0 und
o + 1 > ¢ > 0 erfiillt sind. Unter diesen Voraussetzungen hat eine geeignete Ver-
schiebung der L,(X )-Realisierung A7 von A einen beschrinkten H*°-Kalkiil, falls
X, eine Mannigfaltigkeit mit Rand und beschrinkter Geometrie ist.

Schlagworte: H*°-Kalkiil, nicht elliptisch, maximale Regularitét
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1 Introduction and the Main Result

Let (X4, g) be a manifold with boundary and bounded geometry and (k, Uy, V,;) be Fermi-
coordinates, for the definition see Section [2.3] We consider a second order differential
operator A locally given by:

A" = Z af(z)D;D; + V-1 Z b (x)D; + c"(x). (1.1)

1<ij<n 1<i<n

The coefficients are assumed to be real valued. We call A M-elliptic if a constant M > 0
which does not depend on « exists such that for all z € V,; the following estimate holds:

M <) ag(@)ée; < Mg

We say that A is sufficiently regular if a constant C' > 0 exists which is independent of x
such that ||af;(z)|lcr vy, 05[] e vy, and [|e¥|| L v,y are bounded by that constant. After
possibly enlarging M we can assume that C' < M. We denote the trace operator by 7
and the trace of the exterior normal derivative by ~;, for more details see Section [2.3]
Given a pair of non-negative functions g, p; € Cp°(0X ;) that satisfy ¢g 4+ ¢1 > ¢ > 0,
we define a boundary operator T of the form:

T = oo + P11 (1.2)

We obtain the classical Dirichlet problem for ¢y = 1,¢; = 0. The choice ¢y = 0, = 1
yields Neumann boundary conditions and Robin problems correspond to the case where ¢
is nowhere zero. These are the cases in which the Lopatinski-Shapiro ellipticity condition
is satisfied, in general this is not the case. We write A, := r*Ae™, where " denotes the
restriction in the sense of distributions and e* denotes the extension by zero. We define
an unbounded operator Ay that acts like A, on the following domain:

D(Ar) :={u e Hi(XJr) : Tu=0}.

The main result is that a suitable shift of Ar allows a bounded H-calculus. For the
definition of the H-calculus see Section Bl In detail the main result is:

Theorem 1.1. Let (X, g) be a manifold with boundary and bounded geometry. Let T be
as in and At be the realisation given above of an M -elliptic sufficiently reqular second
order differential operator. Then, for every 0 < ¥ < 7 a constant v = v(M,|t|.,J) > 0
exists such that Ar + v allows an H*(Xy)-calculus in L,(X;). Moreover, a constant
C = C(M,|t].,9) > 0 exists such that for all f € H>®(Xy) the following estimate holds:

£ (A7) IBLpx)) < ClflLawsy)-

The problem of providing a bounded H*-calculus has a long history. Let us mention
some of the main results in the development and refer to the sources for further reading.
The first results in this direction are in the series of papers [41], [40] and [38] by Robert
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Seeley. He proves that (systems of) elliptic differential operators have bounded imaginary
powers if the underlying manifold has no boundary or the operator is complemented with a
boundary operator which satisfies the Lopatinski-Shapiro condition. However, the notion
of a bounded H*°-calculus was not yet established. In fact, this notion was introduced by
Alan MecIntosh in [29] and [11], first for Hilbert spaces and later with his co-authors for
Banach spaces. In [15] and [16], Xuan Thinh Duong established the bounded H*-calculus
under Seeley’s assumptions. According to the famous result of Giovanni Dore and Alberto
Venni, see [14], the existence of a bounded H>-calculus implies maximal regularity.

The assumption of smooth coefficients is too restrictive for applications. This led to
further efforts to reduce the smoothness assumptions, see for instance [31], [5], and [12].
In [12], the existence of a bounded H*-calculus was established for elliptic systems on
compact manifolds under the same sufficient regularity assumptions we impose here. As
pointed out earlier, the boundary operator T' does in general not satisfy the Lopatinski-
Shapiro condition. Thus, the boundary value problem is not elliptic. Until now, the
operator Ar has been known to generate an analytic semi-group, see [43]. It is well-known
that this is necessary but not sufficient for the existence of a bounded H*°-calculus.

1.1 Outline

In Section , we define Bessel potential and Besov spaces on euclidean (half) space and
manifolds with (boundary and) bounded geometry and collect the relevant results for
these spaces, including real- and complex interpolation results, existence of a bounded
extension- and trace operator, and boundedness of multiplication operators. In Section
Bl we introduce the notion of bounded H*-calculus and summarise some known pertur-
bation results. We also sketch the connection to bounded imaginary powers and maximal
regularity. The following technical result is essential for the proof of the main result, the
proof is given in Section [5.4]

Theorem 1.2 (Auxiliary Result). Let X, = R" and Ay be given as in Theorem .
Moreover, we assume that the coefficients of Ar are smooth and bounded. Then, for every
0 <9 <7 aconstant v = v(|a|., M, |t|., V) > 0 exists such that Ax+v allows an H>(3y)-
calculus in L,(R}). Moreover, a constant C = C(|al., M, |t|.,) > 0 exists such that for
all f € H>®(Xy) the following estimate holds:

1 f(AD) B, x4 < CllfllLw(ss)-

In particular, we are interested in the case where A is homogeneous of degree two and
has constant coefficients. Under these additional assumptions, we obtain the main result.
Note that for the main result, the constants in the above theorem should only depend
on M and not on additional seminorms |al|, of the differential operator. The details are
given in Section [5.4 and the result reads as follows:

Corollary 1.3. Let X, = R and Ar be given as in Theorem . Moreover, assume
that At is homogeneous of degree two and has constant coefficients. Then, Theorem
holds.



For the proof of Theorem [1.2] we proceed as follows: We give a pseudodifferential in-
terpretation of Agmon’s famous idea to consider the spectral parameter as an additional
co-variable, see Section [5.1} Agmon’s point of view allows us to explicitly compute the
slowest decaying part of the resolvent of Ar, see Section [5.3] This computation involves
the construction of a parametrix to the extended boundary value problem. In Section
(.2) we carry out the construction. This construction is divided into the construction of a
parametrix to the associated Dirichlet problem and the construction of a parametrix to a
pseudodifferential operator on the boundary: the well-known ,,Reduction to the Bound-
ary“. The assumption made on the trace operator ensures that the second parametrix
exists because the resulting operator on the boundary satisfies Hormader’s hypo-ellipticity
condition, see Section [5.2.2l The parametrix to the associated Dirichlet problem can be
constructed in Boutet de Monvel’s calculus. This construction is well-known, see Section
[.2.1] The parametrix to the extended boundary value problem is a combination of the
two previously mentioned parametrices. However we have to take a technical hurdle: The
parametrix on the boundary is of Hormander type with § = 1/2, hence we need a Boutet
de Monvel calculus based on such pseudodifferential operators. We did not find a source
where such a calculus is treated. Therefore, in Section [4, we establish this calculus for
0 < < 1. The proof of Theorem depends on explicit estimates which again rely on
the results of Section [5.2] and [5.1] Once Theorem [I.2]is established, we use the technique
of ,freezing the coefficients® to remove the smoothness assumption, see Section|5.5.1} The-
orem implies the main result via the processes of localization and rectification, see
Section

In Section [6] we provide a possible application of the main result: the short time
existence for the porous medium equation with general boundary condition of the form

2.



2 Function Spaces

In this section, we first revise some general results on function spaces. We then introduce
Bessel potential and Besov spaces on R", R”}, and on manifolds with or without boundary
which have bounded geometry. The well-known results can be found in the textbooks
[47] and [46] by Hans Triebel with one exception: The recent results on manifold with
boundary and bounded geometry are covered in [17].

A Fréchet space is a complete locally convex vector space whose topology is given by an
increasing family of seminorms (| - |,,)nen,. We write | - |, on the right hand side of an
inequality, if the inequality holds with | - |. replaced by | - |, for some n € Ny. We write
|k|. on the left hand side of an inequality, if it holds for | - |, replaced by |- |, for any
choice of n € Ny. In this notation, a linear operator A between Fréchet spaces is bounded
if and only if |Aul. < Clul,.

The inductive limit of Fréchet spaces is defined as follows: Let (E;),en, be a sequence of
Fréchet spaces such that £; — Ej if j < j'. We equip the vector space E := Ujen, £; with
the finest locally convex topology such that the natural embedding F; C E is continuous
for all j € Ny. It is well-known that a linear operator A from FE into a locally convex
space F'is continuous if and only if the restriction to E; is for all j € Ny. Furthermore, we
need the projective limit of Fréchet spaces: Let (F});en, be a sequence of Fréchet spaces
such that E; <= Ej if j < j'. We equip the vector space E := Njen, E; with the coarsest
locally convex topology such that the embedding F' C Fj is continuous for each j € Np.
It is well-known that a linear operator A that maps a Banach space F into a projective
limit of Fréchet spaces F' is bounded if and only if A € B(E, F;) for all j € Ny. For more
details on the projective and inductive limit, see [26], [33], and [44].

We recall the projective topological tensor product: Let E and F' be locally convex
spaces and £'® F’ the algebraic tensor product. We consider this space with the projective
topology, with respect to the map £ X F' 3 (z,y) —» 2 ®y € E® F. Let (p;)ien, and
(¢;)jen, be families of seminorms on E and F' which define the topologies. Then, the
topology of F ® F' is given by the following family of seminorms:

[pi @ qi](u) := inf {Zpi(xk>q]‘(yk> U= Z Ty @ yk} :
k=1 k=1

By E®,F, we denote the completion of the above space. This completion is necessary
because the tensor product of complete space does, in general, not have this property.
The subscript 7 refers to the choice of the topology, but this is not the only reasonable
choice. For more details and the next result, we refer to [33].

Theorem 2.1 (Structure of Tensor Products). Let E and F' be Fréchet spaces. Then,
for any u € E&,F, sequences (c) € 1(Ny), (zx) € co(No; E), and (yi.) € co(No; F) exist
such that u admits the following decomposition.:

o0
u = E ckxk@)yk.
k=1
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The sum converges absolutely and [p; ® ¢;](w) <> p; |ex|pi(zr)q;(yx) for all p; and g;.

We will use the following notation for interpolation theory: Let Fi, Fs; be Banach
spaces which are subspaces of a common (Hausdorff) topological vector space. Then,
we say that (Ej, Ey) is a compatible couple. In this situation, E; N Ey with norm
| - llgyne, = max{|| - ||&,, | - ||g,} is a Banach space, as well as E; + E, with norm
||| = inf{||x1||g, + ||x2||p, : ©1 4+ 2 = x}. These couples form a category. The mor-
phisms are bounded linear maps on the sum which have bounded restriction to the com-
ponents. We use two functors to the category of Banach space. By [Ej, Eslg, we denote
the complex interpolation functor, here 0 < 6 < 1. We write [Ey, Es]g, for the real in-
terpolation functor, with 0 < # < 1 and 1 < ¢. For the construction of these functors,
we refer to [8]. We write * instead of 6 or 6, p, if a statement holds for the real and
complex interpolation functor. The images of those functors are interpolation spaces, i.e.,
E\NEy < [Ey, Es)y — Ey+Eyand T : [Ey, Es)« — [EY, E}]. is a bounded linear operator,
if T is a morphism between the couples (F1, Fy) and (F!, EY). Let E and F' be Banach
spaces. We say that F' is a retract of F, if bounded operators R € B(FE, I') exists and
S € B(F, E) such that RS = 1. The operator R is called a retraction and the operator S
is the coretraction.

Theorem 2.2. Let (Ey, Es) and (Fy, Fy) be interpolation couples of Banach spaces. More-
over, Fy and Fy are retracts of E| respectively Ey, with common retraction R and core-
traction S. Then, [Fi, Fylg = R[Ey, Es)g and [Fy, Fylo, = R[E1, Eso .

2.1 Function Space on Euclidean Space

In the theory of differential equation, the use of multi indices is common. We denote the
partial derivatives acting on distributions by D,, := —i%. These operators commute.
Thus, the following notion is defined:

Dy :=Dg!---Dyr and o =2 aP for o, B € NI

A distribution u € D'(R") is a rapidly decreasing function, if 2/ Dy € C,(R") for any
choice of «, B € Nij. We denote the space of these functions by S(R™), called the Schwartz
space. The topology of this space is defined by one of the following families of seminorms,
with the index set (a, 5) € Nj x Ni:

lulp g = |2 Dull L, @y, Nul? g = |2 D ull @y or [ulds == [l Dull L @

In the literature, the latter family is most commonly used. However, these families are
equivalent. The following family of seminorms is increasing and induces the same topology
as those mentioned above:

o= 5w {luld gl 35} Tor m € Ny
al,|B|<n
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S(R™) is complete and thus a Fréchet space. Additionally, S(R™) is invariant under the
Fourier transform. We use the following convention:

Fu = |:€'—) /e_ifxu(aj)d(l?:| and F_lu: |:£L"—> /615IU(§)J€1 ’ with dg = (27T>_ndf.

The Fourier transform of a tempered distribution u € S'(R") is still a tempered distri-
bution. It is defined by [Fu|(¢) := u(F¢) for all ¢ € S(R"), as is F~'. We will use the

following properties of the Fourier transform:
(i) F and F~! are a linear and bounded on S(R") resp. S’(R"). Moreover, F.F ' =
(it) €D F = FDS2® and 2*DSF~! = F1D¢P for all o, B € Nj.
(i4i) F : Li(R™) — Co(R™) and [Fu)(€) = [ e *u(x)dr (Riemann-Lebesgue Lemma).
(iv) F: Lay(R") = Ly(R™) and || Ful|r,@r) = ||t||L,@n) (Plancherel’s Theorem).
(v) Fo=1.

Note that integration over the covariables always refers to the measure d¢. Thus, no
constants (27)™ appear in the equations above.

Let (¢;)en, be a Littlewood-Paley decomposition of unity. By ®; := ¢;(D) := F~1¢;(-)F
we denote the associated Fourier multiplier on &'(R™). Note that ®; : S'(R") — L,(R")
is a regularizing pseudodifferential operator. For s € R and p € [1, 0], we define the
Besov spaces and Bessel potential spaces:

B (R") = {u € §'(R") :

Bs(R®) < oot with |[|ull; Bs(R") - ZQSJPH(I) u”p (R™)

H(R") = {u € SR : ullmyeey < o0} with [[ully ey = |30 471050 |

Lp(R")

These spaces are special cases of the function spaces treated in [45], denoted as B;(R") =
B, (R") and H;(R") = F;,(R"). The topological spaces are well-defined, i.e., different
choices of Littlewood-Paley decomposition of unity give rise to equivalent norms. Ac-
cording to [45], these spaces have the lifting property, i.e., for all m € R the operator
(D)™ is bounded from the space with parameter s to those with s —m. The definition of
Littlewood-Paley decomposition implies that H)(R™) = L,(R"). Therefore, |[(D)*ul|r,,@n)
is an equivalent norm on H;(R”), often used to define these spaces. It is well-known that
for s € Ny these spaces coincide with the Sobolev space W (R"). The spaces introduced
above have the following properties:

Theorem 2.3. Let 1 < p < oo and s € R. The following results hold:

o (Multiplier): Let ) € B (R™), for some T > 0. Then ) is a pointwise multiplication
operator on H3(R") and By(R") for all |s| < 7. More precisely a constant C > 0
exists such that

[Yullay®n) < CllY| By @ llullmy@e) and |Yullpyrny < CllY| 5z @n)llull By @n)-

12



e (Dual): Let 1/p+1/q=0. The dual of the Besov and Bessel potential spaces are:
(Hy(R")) = H*(R") and (B,(R"))" = B*(R").
e (Embeddings): For all € > 0 the following embeddings hold.
By~ (R") — HJ(R") — B;™(R").

e (Interpolation): Let s = 0so+ (1 — 0)sy for some 6 € [0,1]. Then

(i) [Hy*(R™), H'(R")]gp = By(R™)
(i) [Hy*(R"), Hy' (R™)]p = Hp(R™)
(i) [By(R"), By (R")]pp = By(R™)
(iv) [By(R"), By (R™)]p = Bj(R")

* (Trace): Let you(a') = u(a',0) for allw € D(R"). If s > 1/p, this operator extends
to an element of B(H;(R"), Bs~Vp(Rr1Y).

Proof. All of these results can be found in [45]. O

We recall the definition of weighted Bessel potential spaces for s € R? and p € (1, 00):

Hy(R™) := {u € S'(R") : ||ul

H;(]R) < OO} with ||U| H,S,(]R”) = ||]:<§>81]:_1<$>S2U||Lp(Rn).
These spaces are Banach spaces with norm || - || gs(gn). It is well-known that the Schwartz
space and the space of tempered distributions can be expressed via the inductive limes
and the projective limes, respectively:

S®R") = (| HyR") = (] H5(R") and S'R") = | ] HR") = | | H}R").

sclR? seN2 sclR? seN2

In the following, we need spaces that consist of sequences of functions: Let F and F' be
Banach spaces and I" be a countable index set. We say that a symmetric relation 0 on I"

has finite width N € N, if

sup{k el :kxl}| = N.

ler

Definition 2.4. Let A : [ (E) — [ (F') and > be a symmetric relation of width N € N.
We say that A has band structure, if it is of the form (A(w)ier)r = Doy Awiws, where
A € B(E, F) is a uniformly bounded family of operators.

Such operators naturally occur in the localisation process, where the index set labels
the open covering. The indices are related if the intersection of the corresponding open
sets is not empty. This relation is symmetric and has finite width for a suitable chosen
open covering.

13



Lemma 2.5 (Band structure operator). Let A : [ (E) — lo(F) have band structure.
Let N be the width of the symmetric relation and C = supy ey ||Apllpr. Then, A €

B(l,(E),1,(F)) and ||A]| < CN"7 .

Proof. We estimate the norm using the following computation:

p p
1A wier 17 oy = D A er)elll = ZAkzul <> (Z ||Akz||B(E,F)||Ul||E)

kel kel || k>l kel \ ki

p
<3 (veswpluls) (NC)”Zskur; el < (NCP 325

kel ker ™ kel kil

< (NP S S ully = NNOP S [l = N(NCY | (upier |l

lel’ Ik lel’

Here, we used the symmetry of the relation to interchange the summation. O

For the treatment of differential operators, the natural choice for £ and I’ are Bessel
potential or Besov spaces. In this case, we write H? (R”) = 1,(T, Hy(R")) and B, (R") :=
lp(T', By(R™)). Moreover, we define L, (R") := [,,(T', L,,(R")). We do not refer to the index
I' set in the notation because it should be clear from the context. It is well-known that
the spaces described above behave well under interpolation, see for instance [8, Theorem
5.1.2]. In our notation, the theorem reads as follows:

[ (R™), HyH (R™)]g = H(R™),
[HL? (R™), H! (R™)]g,p = B (R"),

[B,°(R™), B> (R")]s = B, (R"), and
By (R"), By (R")]o, = B(R),

where 6§ € (0,1), s =0s¢+ (1 —0)s1, and 1 < p < 0.

2.2 Function Spaces on Euclidean Half Space

In this section, we summarize the relevant results for spaces of functions on euclidean
half space, i.e., R} := {z € R" : x,, > 0}. The majority of the results follows from the
existence of a bounded extension operator and Section [2.1] We use Hamilton’s definition
of an extension operator, given in [22]. The advantage of his definition, over the one
by Seeley in [39], is that explicit formulas for the dual operator are available. For more
details, we refer to [4]. We define S(R?}) := r"S(R"), where r* is the restriction to the
closed set R”}.

Lemma 2.6. A function h € C*°((0,00),R) exists that has the following properties:
/ £1h(8)] dt < oo, (—1)k/ Fh(t)dt = 1, and h(1/t) = —th(?),
0 0
foralls eR, ke€Z, andt > 0.

14



For the existence of such a function, we refer to [4, Lemma 1.1.1]. Let u belong to
Cy(R?) or Cy(R™). Then, for all z € R™, we define:

[e"u](z) = (—1)* /000 tFh(t)u(z’, —tz,) dt.

We further define an operator £ that acts on Cy(R") as follows:

(Bu(z) — {” T) i, 20,

eu(z',z,) if z, <O.

We are interested in the mapping properties of the latter operator. To this end, we
observe:

(i) 2t DL (2")*D%[ehu] = V[ DL (2/)*Dlw] for all 1,I' € No, k € Z, o, 8 € N,
(ii) |le*ulz, @n) < Cllullr,®n), with a constant C' = C(k) for k € Z and 1 <p < oco.
(iii) [eFu](2’, 2,) — u(2’,0) as z, \, 0 for all k € Z.

In particular, E is bounded from HS (R )NS(R'}) to H3(R™) for all's € Nj and 1 < p < oc.
Therefore, E is bounded from S(R?) to S(R™). Moreover, E is bounded from CF(R™)
to CF(R™) and thus bounded from B (R) to B: (R") for all s > 0. We define Sy(R™)
to be the subspace of functions in S(R’) which vanish with all their derivatives at the
boundary. Thus, the extension by zero, denoted as e, is a bounded operator from Sy(R"})
to S(R™). The operator Ru := r*(u — %) is bounded from S(R™) to Sy(R”). We define

two pairings:

(U, ) s@En)xsE@n) : =/ u(x)p(x)dr and

n

(u, ¢>S(R1)><SO(R1) L= <Eu76+¢>S(R")xS(Rn) = / u(z)p(z)dz.

n

+

Lemma 2.7. The following identities hold:

(Eu, ¢)smmyxsmny = (U, R¢>5(R )xSo(R%)

(rtu, P)s®)xSe(®Y) = (U, € T ) s®mx SR

Proof. The following computation is the essential step for the proof:
0 0 00
/ (%) (2, 2,)0(2, 2 deyy = / / h(t)u(z', —tx,)p(2', x,) dtdz,
= [ [ nosat ot~ dean,
/ / h(1/s)/su(x’,y,) (', —sy,) dsdyy,



= [ [ hte ot s s,

o0

- /OOO w(a', 2,)[e%) (2!, ) day,

We obtain the first identity from the computation below:

(Eu, ¢)s@nyxs@n) // x) dr,dz’ —|—// eu)(2, )02, x,) dvyda’

-/ / — 9] (2) dads’

_/n ()[R¢](x) dz = (u, Re)s(rn)soir)-

The second identity is obvious. O]

We define S'(R%}) := r*S'(R™). Here, r is the restriction of distributions to the inte-
rior of R”. The test functions, with support in the interior of R”}, form a dense subspace
of So(RY}). Thus, a unique pairing (-, )s/r7)xSo(ry) €xists which extends (-, -)s@n)xso(®?)-
We define an extension operator R* on &'(R”}) which, according to Lemma , coincides
with £ on the dense set S(R"). For consistency, we call this operator £. We observe that
r*Eu = u for all u € S'(R%}). Hence, p* := Er" and p~ := 1 — Er" are complementary
projections on &’(R™) which give rise to the following direct sum decomposition:

S'R") =p*S' (R @p S'(R") = ES'R}) @ {uec S(R") : suppu C R"}.

What we are primarily interested in are the subspaces H>(R’) and By (RY}) of S'(R?})
which are also defined via restriction. We observe that the restriction of £ to H3(R'}) or
B5(R") is a bounded extension operator. We define Hy,(R";) and B; (R ) as the closure
of Sy(R?" ), with respect to the induced norm.

Theorem 2.8. Let 1 < p < oo and s € R. The following results hold:

o (Multiplier): Let ¢» € BL(R?), for some 7 > 0. Then, 1 is a pointwise multipli-
cation operator on Hy(R'}) and By(R") for all |s| < 7. More precisely, a constant
C' > 0 ewxists such that

[ulls@ny < Cll9llp,

o (Dual): Let 1/p+1/q=0. The dual of the Besov and Bessel potential spaces are:

BS

yn) < CllYl g @n)llul

(H(RL)Y = Hyg(RY) and (By(R") = Bj(R").
e (Embeddings): For all € > 0 the following embeddings hold.

By *(R7) — H(RY) — Bi(RY).
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o (Interpolation): Let s = 0sy + (1 — 0)sy for some 0 € [0,1]. Then

(1) [Hp»(RY), Hyt (R ) = By(RY).
(i) [Hy*(RY), Hyt (R)]p = Hp(RY).
(i) [Hpo(RY), Hplo(RY)lop = Bpo(RY).
(iv) [H;?O(Ri)> H;SO(Ri)]O = H;;O(Ri)'
(v) [B(RY), By (RY ), = By(RY).
(vi) [By*(RY), By (RY )]s = By(RY).

o (Trace): Let vy :=~oE. This operator is well-defined and bounded from H3(R') to
BsV/P(R"Y), for s > 1/p.

Proof. For the multiplier result, we observe that yu = r*EyFEu. We thus obtain:

[ullms@n) < |EYEullps@ny < ClEY| b @)l Eullmg®ey < CllYlpg @n)llullms@n)-

The result on duality follows from the direct sum decomposition which these spaces inherit
from the tempered distributions. We now prove the embedding result. To this end, we
fix w € By~(R7%) and @ € B;*(R") such that v = r*a. Then:

ull gy < lallag@ny < llallpgregn)-

We obtain the first embedding by forming the infimum. The second embedding can be ob-
tained by similar arguments. In the case of H;(R") and By (R} ), the interpolation results
follow from the fact that r* is a common retraction. The result for H}, is obtained by
duality. The trace is well-defined: For all u € S(R) we have [yq u](2) = lim._,o u(a’, €).
The trace is bounded as a composition of bounded operators. O

We write v, instead of v;. From the context, it should be clear which operator we
refer to.

We define H (R ) = 1,(I', Hy(R?)), H> o (R ) = 1,(T', Hy,(R%)) and BS(R%) = 1,(T, B, (RY)).
Following the same arguments used in the last section, the interpolation results hold:
[H (R ), G (R )]g = H, (RY),
[H (R%), HR (R o, = By (RY),
[H;?o (Ri% H;;lo(Ri)]@ = HZ;O(RLL),
[HZ?O(ML H;?O(Ri)]&p = B;;O(R1)7
B, (R} ), By (R} )]p = By(RY), and
B, (R ), By (R )], = By (RY).

Here, 0 € (0,1), s =0sp+ (1 —0)s1, and 1 < p < co. Furthermore, we need a well-known
fact from the theory of distribution:
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Lemma 2.9 (Jump relation). Let u € S(R?). Then:

Dpetu = —ivgyou+ et Dyu and

D2etu = —yfyou + ygyu + et D2u.
Proof. Observe that etu = © Fu, where © denotes the Heaviside function, hence:
Dyetu=—idEu+ ©D,Fu= —id @ you + " Dyu = —iviyou +e* D,.

The computation above relies on the fact that § Eu only depends on the values of Fu
with z,, = 0, as well as D, = ED,, on R"!. We recall that v, = —,0, = —iyD,, which
implies 77 = iD,,7;. Iterative use of the identity above completes the proof. O]

2.3 Function Spaces on Manifolds
For the results of this section, we follow [6] and [17].

Definition 2.10. A Riemannian manifold (X, g) without boundary has bounded geom-
etry, if the injectivity radius is positive and all covariant derivatives of the curvature R
are bounded, i.e.,:

VPRl x) < oo for all k€ Ny.
Here, V is the Levi-Civita connection.

We are primarily interested in Bessel potential spaces which generalize Sobolev spaces.
The latter are defined as all functions which have L,-bounded covariant derivatives up to a
given order. For more details on these spaces, we refer to [7]. Robert Strichartz introduced
the Bessel potential spaces as H3(X) := (1—A,)~*/?L,(X), see [42]. Additionally, we need
Besov spaces because they naturally arise if we restrict functions to hypersurfaces. Both
types of spaces can be described locally, using normal coordinates. The preferred point of
view is the local description. For more details, we refer to [46, Chapter 7]. By definition:
Let I" be an index set for a uniform locally finite cover of X by normal coordinate charts
Ui, with associate coordinates x; : Uy — V; C R™. Let (¢1)er be a partition of unity
subordinate to the cover. Given T := {I', (U))ier, V))ier, (K1)ier, (¥1)ier}, we define the
following space:

1/p
HyT(X) =S u e D(X) : |ullmyx) = (an,*munggm) <00y, (2.1)

ler

where all functions xj¢,u are extended by zero outside of V;. We define Besov spaces in
a similar fashion:

s, T I .
B:T(X) = ueD(X): |ul

1/p
%;(Rn)) <00 ). (2.2)

By(X) ‘= (Z [t

lel’
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Different choices of T give rise to equivalent norms. In[2.1] each of these norms is equiv-
alent to that of H>(X). In the following, we assume that 7 has been chosen. Thus,
we drop it from the notation. We define a localization operator L by u — (K .u)er.
The operator is obviously linear and bounded from H;(X) to H3(R") and from B, (.X) to
B> (R™). In fact, a function on X belongs to H(X) or B;(X) if and only if Lu € H?(R") or
Lu € B, (R"), respectively. Moreover, |[ullgsx) = [|Lullms® and [lul[zsx) = [|Lul|ps @n)-
For each [ € T', we fix a bump function x; € C§°(U;) such that x; = 1 on supp,. We
write ;. = k. and define a patching operator P : (u)er — Zlg ki Xi«w. We
define the relation k < [ :< suppx; N supp xx # (0 which is symmetric and has finite
width because the cover of the manifold is uniform locally finite. The operator D = LP
has band structure and is given by the family Dy = K kK] X1« = Kk«K] Yk« X1, Where
Yk« := KUk |v,- The coordinate changes k. .#] belong to B(H;(R™))NB(B;(R™)) and are
uniformly bounded with respect to the indices [, &k € I' because the geometry is bounded.
The multiplication operator 14 .X; .« is similarly bounded. Thus, Lemma implies that
LP € B(H,(R"))NB(B;(R")). Therefore, P : Hy(R") — Hj(X) and P : B;(R") — By (X)
are bounded operators. Note that PL = 1. Thus, P is a retraction from H> (R™) to H, (M)
with common coretraction L. In particular, the following interpolation results hold. Let
0 €(0,1), s=10sy+ (1 —0)s; and 1 < p < oo, then:

[H,M(X), Hp*(X)]p = Hp(X),
[H, (X)), Hy? (X)]op = B, (X),
[BH(X), By*(X)]p = B, (X) and
(B (X), By*(X)]op = Bp(X).

From now on, we consider manifolds with boundaries. We assume that the boundary is a
bounded hypersurface:

Definition 2.11. Let (X, g) be a Riemannian manifold without boundary and bounded
geometry and Y be a hypersurface with (outward) unit normal field v. We say that Y is
a bounded hypersurface if the following conditions are satisfied:

(1) Y is a closed subset of X.

(7i) The second fundamental form IT of Y in X and all its covariant derivatives along
Y are bounded, i.e.,

[(V)!I|| vy < oo for all k € Ny.

(iii) There is a 6 > 0 such that expt : N x (=§,0) — M is injective.
Here, exp™ (p, ,) 1= exp)! (—vay).

If Y is a bounded hypersurface, then (Y, gly) is a manifold without boundary and
bounded geometry, see [6] for the proof. It was observed in [17] that a choice of coordinates
adapted to such a hypersurface exists which is compatible to the normal coordinates. The
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Fermi coordinates are given by exp® close to the boundary and by exp away from the
boundary. With respect to Fermi coordinates, we define the spaces in . These spaces
are equivalent to those defined by normal coordinates. The Fermi coordinates are used in
the proof of the following result, see |17]:

Proposition 2.12. Let (X, g) be a manifold without boundary and bounded geometry and
Y a bounded hypersurface. For all s > 1/p there is a surjective, bounded and linear map

Yo : Hy(X) — By YP(Y) that coincides, with restriction to Y for smooth functions.

The notation of a bounded hypersurfaces allows us to define manifolds with boundary
and bounded geometry:

Definition 2.13. A Riemannian manifold (X, ¢g,) with smooth boundary 0X, has
bounded geometry if there is a Riemannian manifold (X, g) without boundary and bounded
geometry. These manifolds are related as follows:

(1) X, and X have the same dimension. (If nothing else is mentioned dim X = n.)
(73) There is an isometric embedding (X, g, ) — (X, g).
(#4i) The boundary 90X is a bounded hypersurface in X.

Theorem [6, Theorem 2.10], given below, proves that Definition is equivalent to
the definition provided by Thomas Schick in [34]. Schick’s definition does not require a
surrounding manifold of bounded geometry and is thus intrinsic.

Theorem 2.14. Let (X,,g) be a manifold with boundary such that the following assump-
tions hold.

(N) There is a rg > 0 such that the following map is a diffeomorphism onto its image.
0X, x [0,79) = X, (z/,2,) > expt (', ).
(I) Thereis ary,; > 0 such that for allr < r;,; and all x € X \U,(0X) the exponential
map exp, : B.(0) C T, X — X defines a diffeomorphism onto its image.

(B) For every k > 0, we have

HVkRX”Loo(XJr) < o0 and ‘|(V8X+)kII‘|LOO(aX+) < 0.

Then, (M4, g) is a manifold with boundary and bounded geometry.

As a next step, we define Bessel potential spaces on manifolds with boundary and
bounded geometry as HS(X,) := riH3(X). We endow these spaces with the image
norm of r, where r3 denotes the restriction in the sense of distribution to the open set
X,. We define L, by u — r*La with rfa = u. Here, r* denotes the restriction of
functions over the half space, applied to each component of the sequence. The operator
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is well-defined. It is linear and bounded as a map from H(X,) to H5(R%). We define
Py :=r{PE : Hi(R?) — H3(X,), where E is the extension operator on functions over
the half space, applied to each component of the sequence. We see that P, L, =1 on
Hj(X,) in the calculation below:

P, Lyu=rYPErtLa=riPLi=r%i=u.

We make use of the fact that the image of 1 — Er™ consists of sequences of functions which
have support in R”. In particular, the image of P(1—Er™) consists of functions in X which
have support in X\ X,. Thus, Ey := PEL, : H)(X,) — H;(X) is a bounded extension
operator. Note that this is a common method to construct the extension operator. We can
use the operator to define the trace 75 = o Ex : Hi(X;) — By MP(9X ). Proposition
implies that the defined operator is bounded, for s > 1/p. In order to obtain a
more readable notation, we write r* = r%, F = FEx, L = L,, and P = P,. We
define H, (X, ) as the closure of Cg°(X ) with respect to the H;(X ) norm. We observe
that Hj(Xy) — Hj(X,) for s > 0. We also obtain interpolation results since r* is a

retraction with coretraction E. Let 6 € (0,1), s = sy + (1 — 6)s; and 1 < p < oo, then:

[Hy (X), Hp* (X )]o = Hp(X4), (2:3)
H3 (X3, H(X)ls = Hig(X), (2.4)
[Hp (X)), Hy? (X )lop = By(X5), (2:5)

[ByH(X4), B (X))o = By(X4) and (2.6)
[ByH(X4): B (X )]op = Bp(X4). (2.7)
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3 Bounded H*-Calculus and Maximal Regularity

Alan McIntosh introduced the concept of a bounded H*°-calculus in |29, first for operators
on Hilbert space and later in [11] for operators on Banach space. For a more recent
reference, we follow the lecture notes [27] provided by Peer Kunstmann and Lutz Weis.
In particular, the perturbation results for this class of operators are important for the
proof of the main result which, at least locally, is a perturbation of the case with smooth
coefficients. We provide the relevant perturbation results in Section after introducing
the basic definitions in Section Furthermore, in Section [3.3] we include some well-
known results about how these operators relate to those with maximal regularity and
those with bounded imaginary powers.

3.1 Definition of Bounded H-calculus

Let E be a complex Banach space. Let D(A) be a subspace of E. A linear operator
A:D(A) — F is closed if its graph {(z, Az) : x € D(A)} is a closed subspace of E x F.
It is called densely defined if D(A) is a dense subspace of E. The resolvent set, denoted
as p(A), is defined as all A € C such that A — A has a bounded inverse. The complement
of the resolvent set is called the spectrum of A and is denoted by o(A). We define the
sector of angle ¥ € (0, 7) as the following subset of the complex plane:

Yy :={z € C\{0} : |arg z| < U}.
Definition 3.1. A closed densely defined operator A is sectorial of angle ¢ € (0, ), if
o(A) C Xy and {A(A — A)"': 0 <arg(\) <7} is bounded for all ¥ < 6 < 7.

The infimum over all ¥/, for which A is sectorial, is called the spectral angle of A and is
denoted by ¥(A). We write S(E) for the set of all sectorial operators which are injective
and have dense range. We denote by H>(3y) all bounded holomorphic functions on the
sector Yy. It is well-known that the following subspace is dense with respect to the normal
topology, i.e., uniform convergence on compact sets:

H(3y) == {f € H®(Xy):3C,e>0: |f(N)] < CIANQ+ )\)_2|5} )
According to the decay properties of functions in the subspace above and of sectorial
operators, the following integral is defined for all 9(A) < § < ¥:
1
Oa(f) = = [ FO)—A)Tan (3.

27 Jox,

It is well-known that ®, is an algebra morphism, formulated in the following theorem.
For the proof, we refer to [27, Theorem 9.2].

Theorem 3.2. Let E be a Banach space and A € S(E) be a sectorial operator of angle
Vv € (0,m). Let ¥(A) < 0 <. Then, D4 : H*(Xy) — B(E), defined by Equation (3.1)),
s a linear and multiplicative map with the following properties:
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(i) Let f, f € H®(Xy) be uniformly bounded and f,(A\) — f(\) for X € £y. Then, for
all g c Hgo(Ey)

lim ®a(fog) = a(fg) in B(E)

(ii) If f(X) = Ay = N) " (p = A) ™" with piy, pia ¢ So, then,
Da(f) = A(A = ) (A = p2) ™"

(iii) A C >0 exists such that |2a(f)|| < C [y, \f()\)|%

We observe that ® 4 is an unbounded operator and consider its closure. To this end,
we provide the following definition:

Definition 3.3. Let A € S(E) and ¥ > ¥(A). For f € H°(Xy), we define

1flla = e + 1@ 52)-

We further define HY(Xy) to be the class of functions f € H> (%), for which a sequence
fn € H®(2y) exists with f,(A) — f(A) for all A € ¥y and sup{||f||a : n € N} < 0.

For functions in this class, the calculus defined in Theorem has a unique extension.
The exact result is provided in Theorem . For the proof, see |27, Theorem 9.6] for the
existence and [27, Remark 9.7] for the uniqueness.

Theorem 3.4. Let A € S(E) and ¥ > 9(A). Then, an extension ®, : HY(Xy) — B(E)
of 4 exists with the following properties:

(i) ®4 is linear and multiplicative.
(ii) Ty i= (1 — )" € HE(S0) and Ba(r,) = (u— A if o & T,

(ii) If fn € HY(39) and f € H>(3y) with f(A) — f(A) forallA € £y and || fulls, < C,
then f € HY(Xy) and im @4 (f,)x = Pa(f)z for allx € E and ||Pa(f)]] < C.
The extension is unique, i.e., if ¥ : HX(Xy) — B(E) satisfies (i)-(iii) then ¥ = 4.

We follow the common notation and write f(A) := ®,4f. In general, HY(Xy) is a
proper subspace of H*(¥y). What we are interested in is the situation in which these
spaces coincide. Therefore, we define:

Definition 3.5 (Bounded H*-calculus). Let A € S(F) and 9 > 9J(A). We say that A
has a bounded H>(Xy)-calculus if HY(Xy) = H®(2y). The infimum over all d for which
A has a bounded H*(Xy)-calculus is denoted as ¥ (A).

According to closed graph theorem, A has a bounded H*°-calculus if uniform estimates

(3.1]) exist. More formally:
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Remark 3.6. Let A € S(E) and ¥ > ¥(A). Then, A has a bounded H*>(Xy)-calculus if
and only if a C > 0 exists such that || f(A)|sE) < C|lfllLoy) for all f e HF(3y).

For later argumentation, we need the following lemma:

Lemma 3.7. Let E be a Banach space, D(A) a dense subspace, and A : D(A) — E a
linear operator. Assume that there a another Banach space F and operators L, P, B, and
B’ satisfying the following criteria exist:

(i) L € B(E,F) and P € B(F,E) such that PL =1 on E.
(i1) B, B" € S(F') have a bounded H>(Xy)-calculus.
(iii) L :D(A) — D(B) and P : D(B') — D(A).
(iv) LA = BL on D(A) and AP = PB' on D(B).
Then, A has a bounded H*(Xy)-calculus.

Proof. We first verify that A is a sectorial operator. Let 9 > w := max{J(B),J(B’)} and
A € X§. By assumption, A € p(B) N p(B’). We observe that A — A has a left inverse
P(\ — B')7'L and a right inverse P(\ — B)~!'L. Moreover, the following estimate holds:

IMA = A) s = [PAN = B) ' Ll < I1PlsEs M = B) sl Lse.r

In particular, p(A) # 0. Thus, A is closed operator. Moreover, we have shown that A €
S(E) and ¥(A) > w. Now, let ¥ > 0 > wy 1= max{¥(B),0(B")} and f € HZ(3y).
Then:

1F ()l = H / W0

B(E)

< || Pllsr,E) | L] 5z,r)

B(F)

] [, so-pa

< C|Plsre) | LsEm | f | e s,)-

Here, the constant C' > 0 is the smallest which satisfies || f(B)||sr) < C||f||lie(zy)- We
apply Remark to finish the proof. ]

3.2 Perturbation

This section addresses the question under which condition A+ B has a bounded H>(3y)-
calculus in F, given that A has. First of all, we need the sum to define a sectorial operator.

It is well-known that the sum is sectorial if B is A-bounded, i.e., B is a closed operator
with D(B) D D(A) and

|Bz||g < C||Az||g for all x € D(A).

According to the counterexample by Alan McIntosh and Atsushi Yagi in [30], the above
condition cannot be sufficient for a bounded H®-calculus. We thus need additional as-
sumptions. For example, the result below holds:
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Theorem 3.8. Let A € S(E) have a bounded H*®(Xy)-calculus in E and 0 € p(A). Let
v € (0,1) and suppose that B is a linear operator in E, satisfying D(B) D D(A) and

|Bullg < C|| A ul|p for all u € D(A).
Then, v+ A+ B has a bounded H®(Xy)-calculus in E for v > 0 sufficiently large.

For the proof, we refer to |27, Proposition 13.1]. From now on, we assume that E is
a uniformly convex Banach space which is true for all subspaces and quotient spaces of
L,-spaces with 1 < p < co. Furthermore, we need a result for small perturbations:

Theorem 3.9. Let E be a Banach space with the UMD property and A € S(E) have
a bounded H>(Xy)-calculus and 0 € p(A). Let B be a linear operator in E such that
D(A) C D(B) and an € > 0 exist such that

|Bullg < e||Aul|g for all u € D(A).
Suppose further that v € (0,1) and a constant C' > 0 exists such that
B(D(AY)) c D(AY) and ||A'Bzx|p < C||A"x||p for € D(A™).

Then, A+ B has a bounded H*(Xy)-calculus in E, provided € is sufficiently small. More-
over, a constant Cyyp := Carp(Ca,e,C) exists such that

| f(A+ B)|lae) < Cassll fllae,)-

Here, C'4 is the best constant that satisfies the above estimate with B = 0. For the

proof, we refer to |12]. The size of € depends on the constant C' and the R-bound of the
resolvent of A over the sector Yy, see also [27]. There, A is assumed to be R-sectional
which is true for operators with an H>(3y)-calculus in UM D spaces.
The term UMD is an abbreviation for ,unconditional martingale differences“. For a
precise definition of the U M D property, we refer to [25]. For this thesis, the most primitive
examples of UMD spaces are sufficient: Any Hilbert space has the UMD property.
Moreover, if (€2, B, 1) is a sigma finite measure space, 1 < p < oo and F has the UM D
property, then, L,(£, u; E) also has. In particular, L,(R%) and L,(R"}) = ,(I'; L,(R?))
have the UM D property.

3.3 Bounded Imaginary Powers and Maximal Regularity

The functional calculus has a unique extension to slowly growing holomorphic functions.
We write o(A) = A(A)~2. For v > 0, we define H2°(Xy) as the space of all holomorphic
function on the sector that satisfy the following estimate:

111 ge (29 = sup{|e(M["[f(N)] : X € Xy} < 0.
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For each f € H°(Xy) and A € S(E) which allows a bounded H*(Xy)-calculus, we define
an unbounded operator f(A). We fix an even integer k > v and define:

D(f(A)) = {u€ B [o"fl(Au € DAY N R(A")} = B, ur p~"(A)[d" f](A)u.

Here, D(AF) N R(AF) is the domain of o~ *(A). It is well-known that the operator defined
above is closable. We make no notational distinction for the closure. For more details, see
the appendix in [27]. The extension of the calculus is sufficient to treat complex powers,
ie., \* € Hy (Xy) for all ¥ € (0, 7). In particular, imaginary powers are defined:

Definition 3.10. Let A € S(E). We say A has bounded imaginary powers if, for all
t € R, the operator A € B(FE) and constants C,1 > 0 exists such that the following
estimate holds:

14" 55y < CeM.
The infimum over all ¥ is called the power angle, we denote it by 9,(A).

Every operator A € S(E) which has a bounded H*(3y)-calculus has bounded imag-
inary powers because exp(—d|t])z" € H>(Xy). Moreover, ¥, < . For an operator
which has bounded imaginary powers, the domain of fractional power can be described
via complex interpolation. For the proof, see [47, Theorem 1.15.2]:

Theorem 3.11. If A € S(FE) has bounded imaginary powers and 0 € p(A), then
D(A") = [E,D(A)], for all v € (0,1).

Under suitable conditions, operators which have bounded imaginary powers, also have
maximal L,-regularity, see Theorem . We only consider maximal L,-regularity. Thus,
dropping the specifier L, is reasonable. We recall the definition: Let —A be the generator
of an analytic semigroup on a Banach space E. The solution to the Cauchy problem
y+ Ay = f with data f € L,([0,7); E) and yo = 0 is provided by the ,variation of
constants formula“:

oo = | TS (s) ds.

We say that A has maximal regularity on [0, T), if y is differentiable almost everywhere,
takes values in D(A), and the following estimate holds:

91|z, 0r)m) + 1 AU Loor)im) < CNfllzyo1):m)-

Theorem 3.12 (Dore & Venni). Let E be a Banach space with the UMD property and
let A € S(E) have bounded imaginary powers with 9,(A) < /2. Then, A has maximal
reqularity.
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For the proof, we refer to |[14]. Maximal regularity has several applications, for an
overview and more details, see [27]. A first result, Theorem [3.13] by Philippe Clément
and Shuanhu Li in [10] proves the short time existence of solutions to quasi-linear parabolic
equations such as:

u(t) + A(u(t))u(t) = f(t,u(t)) and u(ty) = uo, (3.2)
in L,(0,T; Ep) for some 1 < g < oo, for some finite 7', and D(A(u(t))) = Ej.

Theorem 3.13 (Clément & Li). We assume that A(ug) has mazimal reqularity and a
neighbourhood U of ug exists in Eq = [Ex, Eoli/q,4 such that for all u,u' € U:

(1) [[A(w) = AW Besm) < Cllu—u|g,-
(i) [f(t,u) = fF{,u)m < Cllu =g, + [t =)
Then, a T, > 0 exists such that the Equation has a unique solution in:
L,(0,T,; Ey) N qu(O,T*; Ey).

According to [3, Theorem I111.4.10.2], u € Ly(0,Ty; Ey) N H,(0,T; Ey) implies that
u € C([0,1y]; E,). One of the applications of the theory developed in this thesis is the
short time existence of a solution to the porous medium equation. For the proof, we rely
on the theorem above.

27



4 Boutet de Monvel’s Calculus

In [9], Louis Boutet de Monvel introduced an algebra of operators which contains classical
boundary value problems and parametrises, if they exists. Several monographs and re-
search papers exist on this topic, most notably [20], [32], and [35]. The mentioned works
all assume that the underlying pseudodifferential operators have symbols in ST (R™ x R™).
For our purpose, we need operators based on symbols in the class S{%(R” x R™). Some
results in the previous literature dealt with these operators, for instance [21]. The purpose
of this section is to extend the basic results on Boutet de Monvel’s calculus to the class
of operators based on symbols in ST%(R"™ x R") with 0 < § < 1. The proofs given in [20],
[32], or [35] only need minor modifications. Adjusting the definitions and proofs in Boutet
de Monvel’s calculus allows us to fix the notation and conventions. For two reasons, we
focus on operators that act on the half space with uniformly estimated symbols: First, it
is sufficient for later use and second, localisation of symbol classes and transporting the
results to manifolds is a well-known process.

4.1 Pseudodifferential Operators

Section {4.1|summarises the relevant definitions and results on pseudodifferential operators.
We refer to |23] and |28] for more details. Operator-valued symbols, defined below, are
important for later use. We follow [35] for the notation in this context. By o), we denote
a strongly continuous group action on a Banach space E. If not specified differently this
action is the trivial one, if £ = C, and is scaling action, if F is a function space on the

(half-)line. The latter is defined as [0, f](z) = AYPf(N).

Definition 4.1. Let E, F' be Banach spaces with strongly continuous group actions o on
E and 6 and F. A function p € C*°(R" x R" x R™; B(FE, F")) is an operator-valued symbol
of order m € R and Hérmander type (1,0), with 0 < ¢ < 1, if for any indices «, 5,y € Nj
a constant C' = C, 3, exists such that

H&é,l>D§‘Dszp(:c, Y, o ||z < C(€)mlalrolBIFRD) (4.1)

We write p € ST5(R" x R x R™; (E,0), (F,5)).

The expression (¢') := (1 + |¢/|*)'/? is a standard notation in the context of pseu-
dodifferential operators and is used throughout this thesis. For a shorter notation, the
group actions mentioned above are dropped. To further simplify the notation, we write
op = Op,ey. It is well-known that these symbol spaces are Fréchet spaces, endowed with
the topology of best constant in (4.1]). The definition of operator-valued symbols extends
to projective and inductive limits. Let F} < Ey — ... and F} <= Fy <= ... be sequences
of Banach spaces with the same group action, then:

1s(R™ x R" x R"; E, proj-lim,, F};) := proj-lim S5(R" x R™ x R"; &/, F},),
1s(R™ X R" x R™;ind-limy, Ey, F) := proj-lim,, ST%(R" x R™ x R"; E}, F'), and
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Is(R™ x R™ x R™; ind-limy X, proj-lim, ;) := proj-lim S7%(R™ x R" x R"; By, F7).

In particular, S7%s(R™ x R" x R™; S'(R,), C), ST%5(R" x R* x R™; C,S(R)), and ST%(R™ x
R” xR™ S'(Ry), S(R,)) are defined and play a major role in Boutet de Monvel’s calculus.
For each symbol, we define an operator on Schwartz functions:

op(p) : SR™ E) - S(R™; F), u+> //ei(z_y)gp(x,y,{)u(y)dyd‘f,

with the notation d¢ = (2m) "d¢. It is well-known that the mapping p — op(p) is linear
and bounded. In general, this mapping is not injective. However, it can be made injective,
if we restrict the set of variables that p depends on. The most common restrictions only
allow z-dependence or y-dependence. Then, p is the left or right symbol, respectively.
Furthermore, we need symbols with (2',y,)-dependency. Restricting the dependency of
symbols is a continuous operation. We assume that symbols only depend on z, if not
mentioned otherwise. Therefore, each pseudodifferential operator has a unique symbol.
We denote operators by capital letters and symbols by small letters, i.e., P = op(p).
It is well-known that pseudodifferential operators form an algebra. In particular, the
composition of two pseudodifferential operators is again a pseudodifferential operator.
More formally:

Theorem 4.2. There is a bounded bilinear map:
#: S15(R™ x R"™; E,E") x ST (R” X R E' F) — S"”m (R" xR™ E,F), (p,q)— p#q

given by the property that op(p)op(q) = op(p#q). Moreover,
phq ~ Z (2,6)[D2q) (. ). (42)

An explicit formula for p#q as an oscillatory integral that depends on the symbols p
and ¢ is available, see for instance [28]. Equation (4.2)) gives the asymptotic expansion of
the composed symbol, in the sense of the following definition:

Definition 4.3. Let (m;),en, be a monotonously decreasing sequence converging to —oo.
Let p e S™(R" x R™; E, F) and p; € S™(R" x R"; £, F'). We write

00 N—-1
p~Y p e VNEN: p—Y p;e SR xR E,F). (4.3)

Jj=0 J=0

The symbol p is the asymptotic sum of (p;);jen, Which is unique modulo smoothing
symbols, i.e., if p and ¢ satisfy then p — ¢ € S™°(R" x R™; E, F). A key property
of the symbol spaces defined above is that they are closed under asymptotic summation.
This means: Given a sequence (p;)jen, as in Definition , we can always find a p €

15 (R x R™ B, F) such that holds. For a proof, we refer to |23]. Therefore, the
symbol spaces are closed under parametrix construction. The exact statement is:
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Theorem 4.4. Let p € ST5(R" x R™) and p(x,&) be invertible and |p~'(x,&)] < C{§)™™
for |€) > R > 0. Then, a p7# € Sis'(R™ x R™) ezists such that p#p? = 1+ 71 and
p H#Hp = 1+1 withr,l € S™(R" x R"). Moreover, |p~#|. < C(w, |p|+), |r|« < C(w,|p|+)

and ], < C(w, pls)-

Above, we pointed out that every operator whose symbol only depends on x can also
be expressed in terms of a symbol which depends on (2/,y,). These symbols are related
by an asymptotic formula:

Lemma 4.5. Let p € ST%(R™ x R"), then a p € ST5(R"' x R x R") ezists such that

mz//ﬁ%m%@me%w

Here, 0(&',yp) = [Furseu] (€, yn). Moreover,
- 1

B s €) ~ D 1108, DE Pl 4, ©):
keNg

For the proof, we refer to [28]. To close this section, we recall the well-known mapping
properties of pseudodifferential operators. For the proof, we refer to |1, Theorem 3.3 and
3.4]:

Theorem 4.6. Let p € ST5(R™ x R E, F'), with 0 < 6 < 1. The group actions are
assumed to be isometric. Then the following results hold.

(a) If E and F' are Hilbert spaces, then

P € B(H:(R", E), H;"(R", F)) and |[P| < C|p|..

(b) If E and F are UMD spaces, then

P € B(B:(R", E), BS"™(R", F)) and |P|| < C|pl..

4.2 Wiener-Hopf Calculus

The simplest instance of Boutet de Monvel’s calculus is the one dimensional case with
constant coefficients. Here, the operators are Fourier multipliers of a certain type which
are known as Wiener-Hopf operators. We recall some well-known facts about these oper-
ators, for more details, see [9], [20], and [32]. In order to describe Wiener-Hopf operators,
we need additional notation.

Definition 4.7. We write #/, for all polynomials of degree less than d and H := UH,.
1. Ht :={F(etu) :u € S(R,)},
2. HDy ={F(eu) :ue SR},
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3. H :=H-, ®H and
4. H=H " ®&H" .

Well-known is that H, H', H~, and H_, are algebras with respect to pointwise
multiplication. Projections h* : H — H* exist. On H™ @ H~, C Ly, these projections
are orthogonal and given by h* = FeTr*F~1. Moreover, we define the plus integral:

+ +
/ :H — C, u>—>/ u(€) d€ = yor™ F .

The plus integral only depends on htu, i.e., it is zero on H~. According to the dominate
convergence theorem, if u is integrable, then the plus integral coincides with the usual
integral, justifying the notation. The Cauchy Integral Theorem implies that for u €
H*™ N Ly the plus integral vanishes. In particular, the plus integral of pu for u € H* and
p € H only depends on A~ p. For more details, we refer to [32]. For Boutet de Monvel’s
calculus, the following definition is crucial:

Definition 4.8. We define a Wiener-Hopf operator:

ek HTQF HTQF
a:(ptg s>' D — D
F F’

The components are defined as follows:
a) To p € H,, ® hom(E, E’), we associate the operator pu := h'*(pu).

b) To g € Ht®H; @ hom(E, E'), we associate an operator gu = [ g(-,n)u(n)dn.

+

d) Tot € H; ® hom(E, E’), we associate the operator tu := [

(
(
(c) To k € H" @ hom(F, E'), we associate the operator k¢ := k¢.
( t(n)u(n)dn.
(

e) To s € hom(F, F"), we associate the operator s¢ := s¢.

We call m € Z the order and d € Ny the class of the operator and write WH™(E, F; E', F")
for the space of all the Wiener-Hopf operators.

The class of Wiener-Hopf operators is closed under summation, given that the vector
spaces match. What is less obvious is the fact that they are also closed under composition:

Theorem 4.9 (Composition). Leta € WH™(E, F, E', F') anda’ € WH™ ¢ (E', F', E", F").
Then, a" := aa’ € WH™ ¢ (E,F,E",F"). The order is m" = m +m’' and the class is
d" = max(m’' 4+ d,d'). The components are given in the following list:

1. p" — g = pp’, with p" = pp’ and

([h=pl(€) = [h—pl()) ([W*P1(€) — [WP](n))
i(&—mn) '

g1(&,m) = hihy,
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hep(€)g'(€m).

3. gy = gp', with g5(&,n) == hy (& n)p'(n).

g) = gg’, with g{(&,n) == [ g(£,¢)g'(¢,n) dC.
g5 = kt', with g5(&,n) == k(' (n).

k! = pk/, with k] := h*(pk').

ki = gk', with k3(€) == [ g(&, )k (n) d&.

ki = ks', with k% = ks'.

2. g5 =pg', with g3(&,n) :

© RS> v

t] = tp’, with t := h=(tp').
10. t5 = tg', with t = ert(n)g’(n,f) dn.
11. t§ = st’, with t} = st’.
12. 8! = tK/, with s = [T t(n)K (1) dn.
13. s =ss/, with s} := ss'.
For the proof, we refer to Boutet de Monvel’s original work [9, Theorem 1.12]. More-
over, the calculus is closed under inversion:

Theorem 4.10. If a € WH™ is invertible, then a~! € W ~mmaxid=m0}

A proof can be found in [9, Proposition 1.15]. Additionally, the following result is
true, see for instance [32].

Theorem 4.11. The following map is injective, linear, and bounded:

) Sa—acBH QEOF,H " QE®F)

H™ x HTQHT H*T
H? C

4.3 Potential, Trace, and Singular Green Operators

In this section, we introduce three types of symbols which are part of the definition of
Boutet de Monvel’s calculus, see Definition [£.12] The action normal to the boundary
of the associated operators can be interpreted as an operator-valued pseudodifferential
operator. This interpretation is particularly useful to provide the composition rule for
Boutet de Monvel operators.

Definition 4.12. Let m € R, 1 < p,qg < o0, 1 = 1/p+1/q, and d € Ny. All functions
below may be matrix valued.
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e A function k € C®(R"™" x R"! x R) belongs to the space Kf’;(R"~" x R"") of
potential symbols of order m and Hérmander type (1,0), if:

ko (2',€'160) 1= [ogh](2, €5 &) = (€)1 Th(a', € {€)6n) € STHR™™ x R &M .

e A function t € C*°(R"! x R*"! x R) belongs to the space m’d(Rn_l x R"1) of
trace symbols of order m, class d, and Hormander type (1, 9), if:

to(2', € 6n) = [opt) (@', €3 60) = (€)/PH(a’, €1 (€))€n) € STH(R™ x R @M.

e A function g € C*°(R"! x R"! x R x R) belongs to the space Qﬁ;d(R”_l x R*1)
of singular Green symbols of order m, class d, and Hérmander type (1, 6), if:

0(%', €36y n) 1= (€)9(2, €5 (€)n, (€)m) € STHR™ x RPHOHT @My, -
Note that gjo) = 040,9, if the group actions are applied to &, and 7,, respectively.

The spaces K%, 71§, and G are denoted as S} Va(Rr-1 xR 1), St Yp(Rn=1x
R Hy ), and ST 1(R” Lx R HY®@H, ) by Gerd Grubb in [20] . Stephan Rempel
and Bert-Wolfgang Schulze denote them in [32] as &7~ V/4(R"~1 xR"), T~ 1/Pd(R"—1 xR"),
and B™ L4(R"1 x R™F1). The previously defined spaces are Fréchet spaces with the
obvious topologies. For fixed (2/,¢’), the symbols above define Wiener-Hopf operators.
Via Fourier transform, we obtain an action in the direction normal to the boundary:

k(a, &) =r"F L, k(@' €,&): C— S(Ry),

En—Tn
t(a,¢) : = t(a', &1 &) Fyunene” : S(Ry) — C and :
g(x/ 5) _T+‘F§n1—>xn ( 6 €n777n) yn—mn € + SGR-F)_)S(R-F) (46)

First of all, we focus on operators of class zero. We define the class of symbol-kernels as:
I%(Ilagl;'rn) = +~F§ 1—>J»‘n (x/,gl;fn),
t(a', & xy) = 7“+.7:§n_mn («',&5&,), and
§<xlafl; xmyn) = +‘F§n1—>xn‘T;n%yn ( E fnann)

The action in the direction normal to the boundary on u € S(R, ), respectively ¢ € C,
can thus be written as:

k(2',&)¢)(z,) = k(2 €5 2,)9,
62!, €y = / i/, €y )uly) dyn, and
0

o0

8(, €)ul(za) = / 30 €3 2, g )ulyn) g
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We denote the space of all potential, trace, and singular Green symbol-kernels as:
N?’%(Rnfl x Rnil), ~{3(Rn—1 « Rn—l)’ resp. GVT&(Rnfl > Rnfl).

The previous mentioned spaces inherit a tensor product structure from scaled symbol-
kernels, i.e.:

ko) =0, 'k € ST5(R™! x R H®,S(Ry),
2?[0] = 0;11? S Sﬁ;(Rnil X Rn71)®ﬂS(R+), and
gy =0, '0,'g € STHR" x R"R,S(RY,).

This furnishes a natural topology on the symbol kernel spaces. With these topologies,
the map taking a symbol to its symbol-kernel is bounded. This is a direct consequence
of the interaction of scaling and Fourier transform. We observe that t(z',¢’) and g(a2’, ')
extend to S'(R, ), because they are integral operators with a kernel in S(R ). It is useful
to have a more explicit description of the topology of symbol spaces and symbol-kernel
spaces available. To this end, we need some properties of the scaling operator.

Lemma 4.13. Let [0, f](z,) := (VP f((€)xy), then the following results hold:
(i) [ f(za)lopg)(wa) dan = [log " fl(wa)g(zn) dan.

(it) opFn = Fno, ' and o, F, ' = F o)t

(iti) lopflley =€) llos Nlopfllz, = 1£1z, and lopfllr. = (€)7I £l 1w
(v) oyl = VUl Nopflle, = 1flL, and oy fllo. = EVV2)f ] ne-
(v) & DL oy = (&) 0, DL and &,D; o, = (&) a1l DL

(vi) DEDRo, =0, 3 510 (€)EEDEDE DY with sp. (') € Sy (R,

The sum is taken over all o/ < o and k € {0,...,|a — /|}. Moreover, sq | = 1.
Proof. The results , , , and can be obtained by change of variables. The
chain rule implies (). In combination with induction over |a|, we obtain (vi). ]

Now, we provide estimates for the symbols and symbol-kernels. The arguments are
similar for potential, trace, and singular Green symbols. We thus focus on potential
symbols. By definition, a smooth function & belongs to K%(R*~! x R"'), if and only

if ’k[o}‘z,@l,l’ < oo for all multi indices o, § € Ny~ and 1 < j < co. Here, |- ’Z,Bll,l’ =
| a,s®x] - [y Moreover, | - |43 denotes the seminorms in S{%(R" x R") and | - [/, the
seminorms in H*. More explicitly:

|10+ Dg, D Dok ('€, ey < C(€Y™ 111,
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Lemma implies that the above and the following estimate are equivalent.
I[h* €, De, Dg Dokl (2", ) |y < C(g)mHmamlettolizies,

The factor my; follows from Estimate in Lemma m The factor is 1/p, 0, or —1/q
for p =1, p = q, or p = o0, respectively. By definition of the topology, the following
estimate holds for the symbol-kernels:

|t DL D?/fo/;’{o] L,y < C(E)ymletlsl,

Concerning Lemma and l;:[o} =0, 1}, the next inequality is equivalent to the one
above.

”x;DZnD?’ijfHLﬁ(RJr) < C(gymmmplalFolfI=t+l,

Here, m; is now —1/¢, 0, or 1/p if p is 1, p, or oo, respectively. In the following lemma,
we provide the results for the remaining symbols and symbol-kernels:

Lemma 4.14. Let [,I', 1" 1" € Ny and o, 3 € Nj~'. By C > 0, we denote a constant
which may depend on the multi-indices used in the estimate.

(i) A smooth function k belongs to € K7%5(R" x R"1), if and only if it satisfies one
(and hence all) of the following family of estimates:
|[h* € DL, DS DK (2 € )14y < C{E Y™/l 031
|11 &. D, DEDLKI(@ €', )layqmy < CLEN™ I,
|[h*€X DL DEDEK] (2, €, )| poy < Oy Halalaldi=t+"

i) A smooth function t belongs to T,2°(R™ x R™1), if and only if it satisfies one
1,6
(and hence all) of the following family of estimates:

/

H [h_ﬁ,l;Déan‘,Df,t] (:L‘ 7517 ')HLl(R) S O<§/>m+1/q—|a|+5‘6|_l+l/
|[h~€! DL, Dg DI, €, ) |y < CLg)m a0
[l €L DL, DE DI (€, )|y < C{Ey™ o lalolBl-tet

(i1i) A smooth function g belongs to QTSO(R”_I x R™™ Y, if and only if it satisfies one
(and hence all) of the following family of estimates:

‘ [hglh;ngzDénnzuDg;D?,Df/g] I',, é—/’ 5 ')HLl(RQ) S C<€/>m+1_Ial+5|m_l+l/_l“+l”/
‘ [hz_nh;nff;DénnZ”Dz;D?/Df/g] iL‘l, 5/7 . .)HLQ(RQ) S C(g/)m—\a|+6|,8\—l+l/_l//+lm

|
|
||[hg_nh;né'i;DénnlmDﬁ;;D?/Df/g] (ZL',, é-/’ . ')HLOO(RQ) < O<€/>m—1—|a|+5|,8\—l+l’_l//+

—~ —~

l/l/

n
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(i) A smooth function k belongs to /6{’}5(]1%”_1 x R"™™1) if and only if it is supported in
R, and satisfies one (and hence all) of the following family of estimates:
5,0, D& DRI, €|y < O™ Harlebrolizit
(21,52, DE DL )5, 08,) < CE NIt
Il D, DE DRI, )| ey < CG) /P lololPIEEE

(v) A smooth function t belongs to Tm (R x R™1), if and only if it is supported in
R, and satisfies one (and hence all) of the following family of estimates:

(2,05, D DL+ €)1, < C{€)m ettt
H[iUZan;nD?/Df, (2, &) Lo,y < C{E)ym I amladHlBI=I+E

(5, D5, DEDLA (- €)lLry) < O™ M IoIolBIt

(vi) A smooth function § belongs to gfféo(R”_l x R™™1) if and only if it is supported in
R? ., and satisfies one (and hence all) of the following family of estimates:
[ Dzn Lyh Dl Dg/Dx/g](x’,g’,-, Mraez,) < C(g/ym1-lal 01— =1+
||$ Dl/ l//DlmDé/DB/g](xl, 5/7 . ) ||L2(R3_+) < C<£/>m*|a\+5|5|*l+l’71//+l/u
||£L‘ Dl/ l//Dl///Dngx/g] ([L’l, 5/, . ) ||L00(Ri+) < O<€/>m+1—|Oc|+5|/3|—l+l’_l”+lm

For all N € Ny, we define |k|y as the infimum over all constants such that the estimates
(i) in Lemma hold for all multi-indices with |a|, |5],{,{" < N. From the discussion
above, it is clear that the previously defined seminorms are equivalent. Similarly, we
define sets of seminorms on 7/5”(R"~! x R*~1) | G752 (R™~1 x R"~1), Ky (R~ x R,
TR x R*1), and G (R x R™1).

It is well-known for symbols with Homander type (1,0) that k(a’,¢), t(2/,£') and
g(z', &) are operator-valued symbols. This result extends to general Homander type.
In fact, the proof given in |35, Theorems 3.7 and 3.9] can be generalised with obvious
replacements. For completeness, we include the proof.

Theorem 4.15. The following maps are linear, bounded, and bijective:
1 KPR x R 5 ke k € SP5(R™! x R C, S(Ry))
2. I"E(R" L x R 1)9t|—>t€S SR x RLS(Ry),C)

3. GIS(R™ x R*1) 3 g s g € SR x R S'(Ry), S(R4))
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Proof. Note that o, Dg D2k = o' [Dg DL k]é = D& D’ kigjé. Which implies:
1Dz, 220, [DE DLk |y ey < [KI(€7)™

The Bessel potential norm is equivalent to the Sobolev norm for integers. Thus, the above
estimate implies the following.

o, DE DY s,z ey )y < Clkl (€)™ for all s € NZ.

This proves k € S7%(R*' x R*;C,S(R,)) and the boundedness of the map. The
linearity and injectivity are obvious. What remains to be proven is surjectivity. For a
given k € ST5(R"' x R" 5 C,S(R,)), we define k(z,&'; 2,) := [k(a/,&)1)(,). For all
multi-indices o, 8 € Ny and (I1,15) < s € N2, we obtain the following estimate:
1% 22 DE DLk (', €5 0) |0y = (€))7 DY, a2 [0, DE DLk (a!, €)1] (@)1, 5.
< C(€)" |0, ' Dg DI k(2 &) || sce. s e )
S C<€/>mf|a|+6|,3‘+hflg.

According to Lemma [4.14], the function & belongs to IE’I”':‘(;(]R"_1 x R"~1). By linearity, the

operator associated to k coincides with k.
Now, we look at trace symbol-kernels. By (-, -), we denote the pairing on Sy(Ry) xS’ (R,.).

|Dg DL t(a!, & )opul = (DE DL & 0), lopu) ()| = {0y ' DgDLE(a! €5 ), ulx0))|
< llog ' DgDpi(a' s ) ez lull s -
We obtain Ha;ng,Df,f(x’,ﬁ’;xn)\|H5(R+) < |t (€)ym1el+9I8l based on similar arguments
as for potential-kernels. The combination of previous results yields:

1DE DLt (2, €l s

w0 < o7 De Dot € wn)llmye,) < Jtl(€)™ 1A,

This implies that t € ST5(R"' x R*;8'(R;),C) and the boundedness ¢ — t. Again,
linearity and injectivity are clear. In the following, we consider surjectivity. For a given
t € ST5(R*! x R 5 8'(R,),C), we fixed (2/,&'). Then, t(2',£') belongs to (S'(R4.))".
We identify (§'(R;))" with S(R,) and define t(2',&'; z,,) := [t(2/, €)](2n).

||D§31HZL‘£12D?/D§£(1’,, gl; wn)||Lq(R+) = <§/>l1_l2 ||Dilnl’£12 [O-q_lD?’Df’t(x,7 5,)](‘%'1) ||Lq(R+)

< (€'>ll_l2||D?Dfrt(l",f’)%“swz;g(mm
< <£/>m—\a|+5|5\—l1+l2 )

According to Lemma [4.14] the function ¢ belongs to T%(R”_l x R™71). The associated
operator coincides with t. For a singular Green operator, we observed that the L.
estimates in of Lemma do not depend on the 1 < p < oo used for scaling. Thus,
we can assume that p = 2. In this case, the result is |35, Lemma 3.8.]. [
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Now, we drop the zero class assumption. We consider trace symbols of class d which
have no zero class part. Their form is tj € S7%5(R" x R")®H],_, and this implies that
symbols s; 0 € S75(R*! x R*™) exist for j € {0,...,d — 1} such that:

toy (2, &5 6n) = Z sj 0 (%

We define s;(2/,&') := i/s; o) (2, &)(€) VP € Sﬁ;—l/p_j(R" x R™1). Then,

d—1 d—1

t(xlv 5,; gn) = [Up_lt[o}] (zlv fl; gn) = <€/>—1/p Z S4,10] (ZL‘/, §/)<€/>_j££ = Z Sj (IL’I, 5,)(_Z€n)]

j=0 7=0

We include the factor i/ to obtain t(2’,£') = > s;(2, )7, from the following computation:

/ (i [Fac ul (60) dEw = o Fir (i} Fue™u = 7o —0a, P = 7.

Next, we consider singular Green operators. Let gjg € S{%(R”_l xR NQHTQH, |, ie.,
it is a polynomial in 7, of degree d — 1, with coefficients ¢; € S{”(;(R"*1 x R HQH*T. We
define k;(2',&';€n) = (&) " e (2, €56, /(€")). Note that k; € K’y - 1/p(]R" Ix R
because ko (2, & &) = ¥ ()T VPe; (2, €5 €,) € Sty 9= l/p(R” Lx RDQHT.

9, €560m) = YA€) s € Gl EN /(€)= Yk €5 60)(—ima .

With the result above we obtain the following equality:

R
8!, €Y () = T FL, / 92 €' 6 1) [Fue el () i

=Y EL k8 [ iy e ) di,
[Zk] ]<xn>.

A generic symbol of class d is a direct sum of a symbol of class zero and class d with no
zero class part, according to the definition H, | := H/,_, & H_,. The previous discussion
and Theorem {4.15| imply the result below.

Corollary 4.16 (operator valued symbols). Let s € R? with s; > d —1/p. The following
maps are linear and bounded.

(i) KPR x R™) 3 ks k € Sp5(R™ x R C, S(RY))
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(ii) T/ (R x R 5 ¢~ t € SP(R"! x R S'(R,),C)
(1ii) ng(Rn xR 5 g g € SR X RL S (RY), S(RY))
(iv) TR X R 5t t € SPy(RL x xR H3(R,),C)

(v) G5 (R x R"™) 3 g > g € ST5(R™ x R H3(R), S(Ry))

Moreover, the maps , , and are bijections. The maps (jivl) and are injective
and their images are operators of the following form:

t(m’,f’) = ZSJ< )y + (2, ) and (4.7)
= k(@ &)+ g9, (4.8)

where j € {0,...,d — 1}, s; € Szl(s_j_l/P(Rn—l x R1), k; € ,Crlrj(s—j—l/p(Rn_l « R1Y,
t e m,O(Rn—l X Rn_l), and g/ c gTéO(Rn—l X Rn_l).

Proof. The results in , , and directly follow from Theorem and the fact
that the Fourier transform is a bounded linear bijection from symbol spaces to the symbol-
kernel spaces. If the class is not zero, then the symbol is a direct sum of a symbols for
class zero and of class d with no class zero part. Thus, the discussion above finishes the
proof. O]

We restrict the operator-valued symbols to the form of or . Thus, we obtain
a bijection between symbols and operator-valued symbols. Theorem and Corollary
4.16| provide two (three in the case of class zero) interchangeable concepts: The operator-
valued symbols denoted by bold letters, the symbols denoted by plain letters, and the
symbol-kernel denoted by letters with a tilde. From now on, we use these concepts
interchangeably. For example, let k(z’,£’) be an operator-valued potential symbol, we
write k(z',&';€,) for the symbol, instead of let k(2’,£’;&,) denote the symbol of k(2/,¢).
We denote the associated pseudodifferential operator by capital letters, i.e., K = opk.

4.4 Transmission Property

This section introduces a class of symbols with the so-called transmission property. The
associated operators map the space of Schwartz functions into itself. The restricted class
of pseudodifferential operators is still large enough to contain the symbols of differential
operators and their parametrices, if they exists. We show that some well-known relations
between potential-, trace-, and pseudodifferential symbol’s continue to be true for a gen-
eral Hormander type. Moreover, the action in the direction normal to the boundary can
be interpreted as an operator-valued symbol.

Definition 4.17. A symbol p € ST%(R" x R") has the transmission property (at z, = 0),
provided that for all [ € Ny the following relation holds:

[0, pl(2',€,0,(€)&,) € ST5(R™ x R"H&@H.
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We write p € P{%5(R"! x R*™") and p € CPT5(R"~' x R"1), if p does not depend on .

The definition is equivalent to the uniform transmission property with respect to R
and R”, in [21].

Notation 4.18 (Principal symbol). Let A{%5(R"~! x R"*™") stand for P{%(R™" x R"1),
G (R x R, K (R x R, TR x R, or S7%(R"™! x R™~!). Then,
TRy ST —yYE Xﬁ;(l_(s)(R” x R™)
is an equivalence relation on fﬁ;(R”fl x R"1). The equivalence class is the principal

symbol of x. We make no notational distinction between classes and representatives, i.e.,
if x =~ xy we say that x( is a principal symbol of x.

Naturally, = is also a principal symbol of x3. Thus, the notation is only useful if an

explicit description of xq is available. It is common to speak of the (instead of a) prin-
cipal symbol for classical operators because a conical choice of the representative, as the
homogeneous part of highest order, exists. If an operator is constructed from a classical
operator, we also speak of the principal symbol.
Now, we consider the action in the direction normal the boundary. First, we consider
operators on the whole euclidean space. For a given (2/,¢) € R*"™! x R"™! the func-
tion p(a2’,¢’; -, -) is a symbol in ST%s(R x R). We denote the associated pseudodifferential
operator as p(2/,£’). Then:

Lemma 4.19 (Operator-valued symbol). The following map is linear and bounded:
P{%(R”fl xR"™ ) 3pspc S%(R”fl x R"1; S(R), S(R)).

Proof. We prove that, for any «, 3 € Ny and s € NZ, the operator below is linear, bounded,
and satisfies symbol estimates, which is sufficient to prove the lemma.

0, DEDLp(a’, &), + Hi(R) — HEMO(R),

We can absorb o, € Ny into the order of p. Thus, we assume that « = = 0. A
straightforward calculation shows that q(2',¢') := o, 'p(2’,&')0, is a pseudodifferential
operator with symbol q(2/,&’; 2,,&,) = p(a’, &5 (€Y 1z, (€)€,). The symbol seminorms
of q(z’,¢&';-,-) are related to those of p, as follows:

DL, DY g(a', €300, &0)] = (€)'~ 1Dk, DY p (o, €52/ 4€1), (€60
< Il (€)1 (€)™ < [pl. (€100 (g, )t

< [plu{)y™ ). (1.9)
The well-known mapping properties for pseudodifferential operators imply that the oper-
ator o, 1D‘§Df,p(m’ ,&')o, is indeed bounded and satisfies the symbol estimate. O
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Next, we consider operators on the euclidean half space. We are interested in the
truncated operator, i.e., py(z/,&) = rip(a/,)et. We need the following result to
investigate this operator. The result is interesting in its own right.

Proposition 4.20. Let k(2/,&') := rtp(a’,&);. This is a potential operator and the
map:

PSR x R™1) 5 p s ke KTy VIR x R™Y)

is linear, bounded, and surjective. Moreover, k(z',&',&,) ~ htp'(2/,&';0,&,), where p' is
a principal symbol of p.

Proof. Note that yj¢ = ¢ ® 0. We first assume that p € CP{;(R"~! x R*™'). Thus, the
action in the direction normal to the boundary is a Fourier multiplier. Then:

rtp(a,&)6 =t F p(a! &5 6)Fud = r T F T p(al, €5 €)1

The formula shows the symbol of the potential operator: k(z',&';¢,) = htp(2’,£50,&,).

Now, we verify that k € K5 Y I(R™! x R*1). The transmission property implies the

following;:
ko (2, €560) = ogh* (2’ €50,&) = (€)' h*p (o', €:6,) € S5 IR x R D@, H*.

In general, for p € P{5(R*™' x R*™), we can assume that p is given in (z/,y,)-form
because k only depends on p. Using Taylor expansion, as in 4.13[ with M = 1, implies:

p(z', &) = py (e, &) + pri(a’, &),
Clearly, ©,6 = 0. Thus, k(2/,&') only depends on p{(z',¢) € CPT5(R"! x R*™1).
Obviously, k(z',£';€,) = h;’npOR(x', €& ~ hznp’(x’, ¢'50,¢). We have to show surjectivity
of the map to finish the proof. For a given symbol-kernel ke }N(%H/q(R”*l x R*™ 1), we
define:

o2, €5 &) = Fe e [ER) (2, € ).

Here, F is the extension operator introduced in Section 2] The boundedness of E and
Riemann-Lebesgue’s lemma imply the following estimate:

€2 Dg, D& Dya(w, € &)l < 1D, 2, Dg DLk (!, €5 gy < [kl (€)oo=t

The last estimate is of Lemma m In particular, for every Ny, Ny € Ny with
N1 + Ny = N, the following estimate holds:

(€)M &2 D, DE Dpa (', € €)| < [kI(€)mIoPI=t(er)2N,
(€)Y is a linear combination of (¢/)2V1]¢, |22, We thus obtain the following estimate:

1D D DL pa’ €, 6,)] < Okl (€)™ 18" (6) 712N for all N € N,
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The estimate above implies that p € S{%(]R"‘l x R™): For positive exponents, we can
replace (£') by (£) because the second term dominates the first. If the exponent is negative,
we choose N € Nj such that 2NV exeedes the absolute value of the exponent. Therefore,
we can use the estimate above to make the same replacement. The rapid decay in &,
for fixed & implies the transmission property for ¢q. We need to verify that the potential
operator provided by the lemma coincides with the potential operator at the beginning
of the construction:

rra(e’, ) @ 1(x,) =" F b, a(@l, € 6) = v BR(2 &) = k(2! &5 ).
Thus, linearity implies k(2/,£') = rtq(2’, &) O

Proposition is well-known for § = 0. In fact, the proof above is a minor modifi-
cation of the proof in [18].

Corollary 4.21. The following map is linear and bounded:
PSR xR 5 ps py € ST5(RY x R SR, ), S(Ry)).

Proof. We use the notation from the proof of Lemma [4.19] Note that the group action
commutes with extension and restriction. Thus, it is sufficient to show that for all N € N:

Ho';lp+(x/’él)o'p‘|£(H§(R+)7H;7(m,0)(R+)) < Olpl (&Y™ for 1/p—1<s, <1/p+(1—0)N.

We proceed with induction. The induction hypotheses is that the estimate above holds
for all p € P/%5(R*' x R"') and s € Ng, if s, belongs to the interval given above. The
induction start is a direct consequence of Lemma [£.19] based on the well-known fact that
et € LIH5(R,), H*(R)) for 1/p — 1 < s; < 1/p. For the induction step, we use the
equivalence of the following norms:

|| ' |’HS+(1’O>(R+) = H : HHZS,(]R_»,_) + ||Dxn : HH;(R.Q-

We recall the jump relation D, etu = e™ D, u — iu(0) ® § which implies the following
identity:
Doy [P (&, € )ryu] =(€) 0 [D, Pl (o, )y + 0 Py (', €, Do
+ (&) o, (!, €)[u(0) @ 4.
We use the fact that D, o' = (¢)*'0F'D,, and [o,u](0) = (£)/Pu(0). Now, we sepa-

rately estimate the operators on the right hand side of the equation above. The induction
hypotheses imply the following estimate:

om0y < Ol 1Dty < Clple (€)™l

||O-p_1p+(‘r/7§/)O-PDiﬂnu| HZS;-‘F(LO)(RJ'_)‘

The symbol of D, p belongs to 731"7;6(]1%"_1 x R™1). Thus, the induction hypotheses
imply:

ey < ClpL (€)™

||O-I7_1[Da7np]+o-pu| Hs+(§,0)(Ri).
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We use the induction hypotheses for s + (J,0) which explains that in each step of the
induction the interval for s; increases only by (1 — §). Proposition implies that a

potentlal operator k € Sm+1/q(R" Ix R™1:C; S(Ry)) exists such that rp(a’, &) [u(0) @
0] = k(2', & )you. Thus, the following estimate holds:

lo, k(@' €)voull ro-mor e,y < Clohel€)™ 4 oul < Clpld€)™ 9 ull o ey
These three estimates for the operators provide the induction step. O]

Every potential operator can be constructed from a pseudodifferential operator with
transmission property. The situation is similar for trace operators of class zero.

Proposition 4.22. Let t(2/, ') := vop+(2',&'). This defines a trace operator. The map
PryR X R 5 p st € TRTPORT X RTY)

is linear, bounded, and surjective. Moreover, t(z',£';&,) = h_yp(2',£';0,&,) = h_,p/ (', &50,&,),
where p’ is a the principal of p.

Proof. First, we assume p € CP%(R”*1 x R""!). The integral [ * pu only depends on the
h—, projection of p. We obtain the following identity:

+ +
t(z', &) = yor T F Ip(a’, €50, ) Fetu :/ p(a’, €50, ) Fetu :/ h=yp(2', €50, ) Fetu.

The formula shows the symbol of the trace operator: t(z’,&';€,) = [h_;p](2',£&;0,&,).
The transmission property implies that t(2/,£';&,) = (€)YPhZ py (2, €5 &,) belongs to
S%—H/p(R” "XR™@HT,. Now, if p € P5(R" 1 x R"1), we use expansion (4.12)) with
M =1, i.e.,

p(a',¢) = po(2', &) + zup1 (2, §). (4.10)

Since vyx, = 0, only po(z’ 5’) € CP;(R"! x R™™") contributes to the trace operator.

For a given t € 7—47;+1/p0( Lx R 1), we define q(a/, ¢';€,) :== FEt(a', £, €,). Note that
q € CP5(R"1 x R* 1), following the same argumentation as in the proof of Proposition
E200 The derivation

'YOqu(x/vé/) = /Jr[fEﬂ(xlyglagn)[feJru](fn) d&, = /[?Eﬂ(xlvflvfn)[feJru](gn) d&n
= /[Ef](x’,f’;xn)[eJru](xn) dz,, :/ t(a', & xp)u(zy,) do, = t(2, € )u

Ry
proves surjectivity. O

Proposition and imply the well-known duality of potential and trace opera-
tors:
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Corollary 4.23. The pointwise dual of a trace operator based on o, of order m and type
0 s a potential operator based on o, of order m and vice versa.

Proof. Lett € Tm (R XR”fl). Then, Proposition 4.22|ensures that ap € Prs Up(R” !
R™ 1) exists such that t(2,&) = yop4(2,&). Thus, t*F = rpi (2, &)y Well known is

that p* € P’y YP(Rr=1 x R™L). Proposition |4.20implies that r+p* (2/, &)y is a potential
operator of order m, if p and ¢ are interchanged. n

Proposition [4.20| and [4.22 provide a possibility to derive results for potential and
trace operators, following from the corresponding result for pseudodifferential operators.
For instance, the mapping properties are derived in this manner, see Section [£.6l Once
these results are established, the corresponding result for a singular Green operator G =
KT follows. Then, the result is also true for generic singular Green operators of type
zero, according to the following observation on the structure of these operators: Let

gio) € ST5(R™ x RN @HTQH™, be given. According to Theorem [2.1} two sequences
(k[O]j)jeNo € 1(No; ST5(R™ x R* 1 )@H ') and (¢g),5)jen, € co(No; HZ ) ex1st such that

9[0](3:",5’;57177771 Zkioid f é‘n t[O],J< /’5/;77”).

We identify H™, with SY5(R"™ x R" &M, by v = 1 ®v. We define k; := o, 'kjg);
and t; := 0, g ; which belong to K'5(R™ x R"") and 71?(’50(]1%"_1 x R"™1). Thus, each
singular Green operator of type zero is a convergent sum of the following form:

g(2' &5 &) =Y ki &1t (2, €5my) and g, &) =) k(2! &)t €).
j=0 7=0

The symbol-classes defined in this and previous sections are closed under asymptotic
summation:

Theorem 4.24. Let (my)en, be a monotonously decreasing sequence that converges to
—oo. Then:

(a) Given p € P{j(R*" x R*™), ape Py(R*" x R") ewists such that

PNZPl-

(b) Given ky € K{'5(R"' x R™™), a k € KI'§(R"' x R"™) exists such that

kNZkl.

(¢) Given t, € ml’d(R”_l xR, ate Tf?go’d(]R”_l X R"™1) exists such that
te >t

44



(d) Given g, € gm“ (R xR 1) age Qmo’ (R™1 x R™™1) exzists such that

g~ Zgl-

Proof. The discussion about the structure of singular Green operators, Proposition
and Proposition imply that the proof of (a) is sufficient. By definition: P}s(R™~ 1

R"1) C ST5(R™ x R™), thus p € ST (R™ x R") exists. We have to verify that P satlsﬁes
the transmission property. The proof is similar to the proof in |32, 2.2.2.2. Proposition
1]. O

The idea of Boutet de Monvel’s calculus is to group symbols in a matrix in order to
form an algebra under composition. The matrix consists of a pseudodifferential symbol
which has the transmission property, a singular Green symbol, a potential symbol, a
trace symbol, and a pseudodifferential symbol (on the boundary). The Boutet de Monvel
algebra is:

BM™AR™ x R1) = (R x R + GTELd(R"*l x R*) KPR x R
1,6 . m,d(Rn—l X Rnfl) {%(Rnil « Rnfl)

According to Corollaries and the following map is linear and bounded:

BMU (R x R*™™) 5 b b= (p+t+g k) € SR x RLS(RY) @ S(R™)).

The class of symbols BMmd(R” I'x R™1) is closed under addition, pointwise multipli-
cation, and under asymptotic summation.

4.5 Composition

In this section, we verify that the Boutet de Monvel operators form an algebra:

Theorem 4.25. A bilinear and bounded map
BMT&d X BMT(;’ (b b/) — b// € BMm+m max{m +d d/}

exists such that B" = BB'. Moreover, p" ~ pp’ and by (z',£') = byj(2', &) o bl (2', ).
Here, by (2 5)06[0]( ,&') denotes the symbol of the Wiener-Hopf operator byg (2, /)bfo]( &,
see Theorem [{.9 for explicit formulas.

The asymptotic expansion of b” is consistent with the asymptotic expansion for § = 0,
see for instance [20]. In order to keep the notation simple, we only provide the principal
symbol which is sufficient for our purpose. We follow the standard argument, i.e., prove
the theorem for symbols, with no x,, dependence, and then use Taylor expansion and
remainder estimates to generalise. We pointed out in the last section that the action of
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a Boutet de Monvel operator in the direction normal to the boundary can be interpreted
as an operator-valued pseudodifferential operator. In particular, Theorem implies:

b (2!, &) = b(a/,&)#b/ (', &) ~ Y Dgb(a’, )b/ (',¢). (4.11)

Thus, an investigation of the composition in the normal direction is sufficient.

Now, we assume that the symbols do not depend on x,. Then, the operators on the
right hand side of are Wiener-Hopf operators, suitably composed with Fourier
transforms. Therefore, Theorem provides the composed symbols. We have proven the
following result:

Lemma 4.26. A bilinear and bounded map
CBMT x CBMT > (0,1) = b € CBMT
exists such that bb’ = b”. Moreover, b{g] =2 bjg) © bfo]

In this section, we assume that the symbols of the pseudodifferential operators with
transmission property are supported close to the boundary. This is no significant re-
striction because each symbol can be decomposed into two parts. One part has the
support property and the other part vanishes to infinite order on the boundary. The
latter part gives rise to negligible operators when composed with boundary symbols.
Now, we drop the assumption that the symbol does not depend on x,,. This only affects

compositions containing pseudodifferential operators with the transmission property. Let
p € PSR x R ') and p® be its (2, yy)-form. We define:

pi(a € &) = (1) 7102, pl(2/, €50,&,) € CPITP (R x R™1),
1
M(xlvfl;xnagn) = (]\/[;_1)‘/0 (1—S)M_18£i ( f sajmfn) dsEPm+5M(R" 1 R"‘1)7
P, €5&) = (37D pR)(a’,€50,&,) € CPTHP (R x R™Y), and

/ ! 1 ! — m n— n—
) = ey [ (1= 90" O s ) ds € PR X R,
+JO

We observe that dependence of pj,pM,pf, and pf, on p is linear and bounded. The
previously defined terms are the coefficients in the Taylor expansion of p (resp. p%) at
zero with respect to the x,, (resp. y,) variable. Therefore:

p(a', &5 an, &) = anp] (,€50,6) + z) pu (2, s 20, &) and (4.12)

7=0

M-1
P € yn, ) = Z i (@', €50,60) + yn P (2! €5 Yns En).- (4.13)

J=

46



In particular, we obtain two expansions for the operator valued symbol p(2’,£’):

= alp;(@, &) + 2l pula’ &) =D pi, &)l + pi(a, & )a).
j<M J<M

At first glance, the expansions do not look very promising. The order of the operators
increase with j and 7 is not a uniformly bounded pseudodifferential operator. The key
observation is that zJ has a regularising effect on boundary operators. More precisely,
k; :=zlk, t; = ta) , and g;; := g:L' are potential, trace, and singular Green operators

with symbols ki = D€ k, t; = D t, and g;; = D Dl g, respectively. Symbol-kernel
representations and basic results on "the Fourier transform are used in the proof. Now, we
focus on the composition p (2, k(2. £):

Theorem 4.27. Let K'(2/, &) := py (2, &K (2, £'). Then, K" is a potential operator of
order m +m’' and the following map is bilinear and bounded:

PSR x R x KPGR™ x RN 3 (p, k) = K € K7™ (R x R™H).

Moreover, X"(a',¢') ~ 32 pfty (2, €)Kj(a, &) and k"(2', €', &) = hp(a’, €50, 8K (2", €5 ).

Proof. Given the expansion (4.13)) for p, we obtain a corresponding expansion for £”:

K'(2, &) = py (2, = pl (@ )aiK (&) + py (2, &)l k(2', €).

j<M

According to Lemma , k= pf, (o', )2 K (2/,¢') is a potential operator of order
m—+m'—(1—-19)j. Therefore We only need to consider kK7, := pj; , (¢, &)z k(2/, £'). We

claim the following estimates hold for all [, I’ M € Ny that satisfy M > [m—|a|+0|8]|]++1":
|2, Dy, D& DK (2 €5 )|,y < Clplalkel gy = (-0l old= (4.14)

In the following argumentation, we point out that these estimates are sufficient to prove
k' e lC’lngrm/(R”_l x R"1). We show that k" satisfies the family of Estimates in
Lemma We fix indices «, §,1,1" and choose a decomposition with M large enough
for to hold. In particular, k” satisfies the estimate for the chosen indices.

Proof of the claimed estimate: We observe that k%, (x',¢';-) = par (@', €)aME (2!, € ).
Thus, the scaled version kM o] st

Fio = 0" (P (@ )2k, €5)) = (€)M o (00, €yt o (€' ).

We can absorb the derivative D?/Df, into the order of the operators. Therefore, we can
assume o = = 0. We recall the following equation, derived in the proof of Corollary

2Tk
Dy,0, [P (2, §)apu] =(€) "o, D, pl1 (2, € )opu + 0y py (2, )0 Dy u
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+ (&) VPa (!, €)[u(0) @ 4],
The last term is zero because u(z,) = k(2 &, zp).

200, P4 (2, & )opu] = (€')o, ' [De,plroyu+ 0, ' pi(a’, € )op znul.

Given I’ < M, by a repeated use of the above relations, we obtain that the scaled symbol
kernel is a linear combination of terms of the form:

(&) Mo D, D Pl (af, €)o ey ™R D g (2!, €'5-).

The estimates for the symbol kernels and Corollary imply that the scaled symbol
kernel k), satisfies the following estimate under the assumption that I" < M:

(e D M[o( L )| L@y < C|p|*|k|*<§’>m+m'—M(1—5)‘
The claimed estimates are the unscaled version of the estimates above. []

Next, we use the facts that trace operators are formal adjoints of potential operators
and that singular Green operators can be decomposed into products of trace and potential
operators in order to provide the following result:

Corollary 4.28. Let t"(2/,¢') = t(«',&)p/ (2, &), g1 (a',¢) == p4(a/,&)g (', &), and
gh(2', &) =g, & )py/(2',&). The following maps are bilinear and bounded:

LT R xR x PSR X R 5 (L) = t7 € G (R x R,
2. PSR x R x G (R x R 3 (p, g') = gf € G5 (R x R™),
5. Gl (R X R X PSR x R™Y) 3 (g,p) = g5 € G ™ ORYE x RMY),
Proof. We consider t” and initially assume that d = 0.
t"(a, &) = t(2", )P (2, &) = (Pl )" (", &)t (', §1))".

Theoremlmphes that p* (2 5 )t*( ,&') is a potential operator of order m+m’. Thus,
according to Corollary 4.23 . t'(2',¢') is a trace operator of the same order. If the class is
not zero, we choose M > d — 1 in the expansion of p. We notice that ;22 = 0 for
j <d—1= M. Therefore, t(z',&)zMp),(2', &) has class zero. The other terms in the
composition are independent of x,, and can thus be handled by Lemma |4.26|

We mentioned previously that every singular Green operator obeys a decomposition of
the following form:

d 00
)= k(@ Oy Y k(@ (e €).
=0

Jj=0
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We apply Theorem to the decomposition in order to obtain the result for gf. Observe
that the types of g{ and ¢’ coincide. Now, we consider gJ. Initially, we assume that the
class of g is zero. Therefore, the result follows from duality. Next, we consider singular
Green symbols without zero class part. According to the decomposition above, we can
assume that g = k;7;. The result follows from:

gy (', &) = k;(2/, & )yp, (2. &) = ()" (. &)k (2, €)"

Note that the class of ¢} is always zero. ]

In the remainder of this section, we analyse the composition of two pseudodifferential
operators with the transmission property. This composition has two terms. The first
term is a truncated pseudodifferential operator with the symbol of the composed operator
on the entire space. The second term, commonly referred to as the leftover term, is a
singular Green operator:

g//(:L‘/7 €/> - [g//(})j]jl)]<;v/7 é—/) pp— (p(x/7 é—/)p/<x/7 é—/))+ _ p+(./1;/, 5/)1);(%/7 é-/)

[19] provides the case § = 0. The argumentation below is similar. Using Taylor expansmn
( ! /) _ sz( /7 /)ZL‘i and p/( ! /) Zx /( / £1)7 where pj)p] c C,Pm—i-]é(Rn 1
R 1) for i,j < M and par, phy, € Pm+M5(R” L'x R*1). Then, by bilinearity:

g'(p(+,¢), p/ = Y g ml, O, wlpi(a, €)= D ghp, &), P ().
0<i,j<M 0<i,j<M

We first consider gj;(2',&’) for 4,5 < M. We write p;y = Dé = CPM “90+) and

pg-ﬂj, = Dgn_j/p;- € CPT;(l_(S)(jH,) and observe that:

-/

g” Z Cz K ,],]’x p'L,i’ (‘rla 5/)7 p;’,j’ (xlv 5/));631 .

We apply Lemma to the right hand side of the equation above. Moreover, we use the
fact that multiplication by x,, from the left or right decreases the order of singular Green
operators which implies that g; € Qm+m (=000 (Rn=1 5 R7=1). For the remaining
terms we need the following technical result. We write J for the reflection along the
boundary.

Lemma 4.29. Let N, [,I",1", " € Ny and o, f € Nj. Forp € ST(;FJN(R” x R™), we define
gi(2, &) =rtpa,)ale J and gy(2', &) == Jrzlp(a’, & )et. Then,

Dz Dy DDz (&5 Mz ) < Clplo (€)™ 1HPA,

if either p 6C77m+5N(]R” xR Y orm—|a|+618|— (1 —=8)N =1+ =1"+1" < —1)2.
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Proof. We only prove the results for gy, the results for gy can be derived analogously. A
straightforward computation reduces the results to the case where all multi-indices vanish.
We thus assume that [ =1’ =1" =1" =0 and « = f = 0. To simplify the computation,
we define the following operator:

N /N
g &) =3 () w0,
— \ J
]_
For later use, we express g*(z’,¢’) in terms of p(2/,£'):

[g'(:v’, §/>u] (zn) = rt / llenmimlén Z <N> xfl\f—jp(a:/’ &', gn)(_yn)j[e_u](_yn) dynd&,

=0 7

=t / elen=v)en (g — y VN p(a!, €5 20, £0) e U (—yn) dyndE,

=" /ei(x"_y")g" (D pl(a', €5 a0, &) e u)(—yn) dyndéy
= [F“[Dév pl(z', e Ju|(z,).

The estimates for the kernel of gy (2/,¢') follow from the corresponding estimates for
g* (2, &), since both are supported on the first quadrant and §*(2',&; @, yn) = (T, +

Y) VG0 (2, &5 s Yn)-
gl (a',&) = 0,18 (2", &), = 170, [DE pl(a', € )ope™ T =17 q(a’, §)e™ I,
where g € S}’ 5 ~(1-oN (R™! x R™ 1) and is related to p by the following identity:
q(a', € 20,&) = [Dgpl(x, €520/ (€), (€)E0)-

As a pseudodifferential operator, q(z’,¢’) has a singular integration kernel
.Fg:}an(x’, & w0, &)l znman—y,- Via a change of variables —y,, ~» v, we obtain -

N A A 5 NRTCR SN TN 7
< / (222 / o) oo (s €5 m €0)|7 dzndin
0 Tn

< Czsup/ W (De,)2q(a!, €5 20, &) dEn.

Tn

Ifp € CPT{°Y (R"xR"), the right hand side can be estimated by the square of C|pl, (¢/y™~ (=9,
Ifp ¢ CPT;F ON(R"™ x R™), we use the estimates of ¢ derived in the proof of Lemma
to obtain:

||90]( 7 ; 7.)”%2(R2 < 02|p| < > m—(1-6)N) /<£ >2(m dfn
< Clpf2(¢)*m-0=0m.
The last integral converges under the condition m — (1 — §)N < —1/2. 0
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For M sufficiently large 23'p’(2/,&")e™u € Lo(R) for all u € e"S(R?), since all distri-

butions of a given order on the boundary eventually belong to the kernel of 2. Therefore:
gl (@', &) = rpiy, (1 — e rP)ay phye’ = ripa,e” JIrmayphe™ = g (pi)gy (Phy)-

Thus, Lemmata and imply that the symbol-kernel of g, satisfy the following
estimate, if m — |a| + 6|8 — (L —=)M =1+ 1 =1"+1" < —1/2:

et DY o DY D DL G0y (2, €5, ) gz ) < (€)= O7DEAD,

The estimate also holds for the symbol-kernel of gi,,,, if the restriction on the indices
above also holds for m’ instead of m. We observe that g,; = (g7,,)*. Thus, the estimate
above also holds for the symbol-kernel of g,.. Now, we show that the symbol-kernel of
g” satisfies the Estimates in Lemma Therefore, g” is a singular Green operator
of order m + m’. We fix the indices and choose decompositions for p and p’ with an M
large enough for the constraints above to be satisfied. Therefore, we obtain Estimates
for the chosen indices.

4.6 Mapping Properties

In Section [4.6], we extend Boutet de Monvel operators to the scale of Banach space
H3(R%) @ By(R™!). The proof given in [18] for § = 0 essentially extends to 0 < ¢ < 1.
The main result is:

Theorem 4.30. The map below is linear and bounded for all s > d+ 1/p — 1.
BMUF(R"™ xR*™) 5 b B € B(H(RY) & By(R"™), H:™(R%) & B ™(R™™)) .

We partition the proof into lemmata which provide the result for the components of
the matrix. Initially, we consider potential operators:

Lemma 4.31. The following map is linear and bounded for all s € R.
TR R™Y 5 ke K € B(BS(R™1), H"™(RY))

Proof. Proposition ensures that a pseudodifferential operator P with symbol p €
Pflgl/q(R"_l x R™"™1) exists such that K = r™P~;. Moreover, the map

T&(Rn 1 % R l) 5 kaGPm 1/Q(Rn 1 Rn_l)

is linear and bounded. According to the trace theorem, the map below is linear and
bounded:

Yo Bi(R™) — H7VUR™) for all s < 0.

Well-known is that P : Hy "/9(R") — H>~™(R") because P is a pseudodifferential oper-
ator of order m — 1/q. Therefore, the lemma holds for s < 0. We extend the result to all
s € R via order reduction. O
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Next, we consider truncated pseudodifferential operators with transmission property:

Lemma 4.32. The following map is linear and bounded for all s > 1/p — 1.
Prs(R™ xR 3 p s Py € B(H;(RY), Hy 7" (RY)).

Proof. We provide an inductive proof. The induction hypotheses is that the lemma holds
for 1/p—1<s < (1—-0)k+1/p. Well-known is Hy ((R"?) = H3(R") for 1/p—1 < s < 1/p.
In particular, e* : H}((R}) — H3(R") is a bounded linear map. Therefore, the base case
k = 0 is implied by the mapping properties of pseudodifferential operators. For the
induction step, we use the equivalence of the norms below:

|| - IIH;,’“(RZ) ~ Z D5 - g mn), where either o =s or 0 =s—m.
al<1

Here, the most complex term on the right hand side includes the derivative in the direction
normal to the boundary. This term is decomposed via the jump relation:

D,, Pyu= P,D, u—+[D,,, Plyu—ir" Pyiyou. (4.15)

The three terms on the right hand side are estimated separately. For the first term, we
use the induction hypotheses:

1P Day ]l jyg=m gy < Clpla]| Da,ul

H3(R™) < COlpls|ul Hy H(RY)

The symbol of the second term is D, p € 731"’?5(]1%”_1 x R™"™1). Therefore, we can apply

the induction hypotheses with s + ¢ which implies:

[[Da,, P]yul

ayr@y) < N[Dans Plavll s @ny < Clplullull gy -

In the argument above we rely on the fact that the result holds for s+ 4. Thus, the length
of the interval increases by 1 —§ for each step of the induction. Lemma[£.3T]and the trace
Theorem imply:

HTJFP'YS’YOU’ Hy~™(R7) < Clpl«voul BtV (Re-1) < Clpls||ul Hy T (R
If D # D,, , then equation holds without the third term. ]
Now, we consider trace operators:
Lemma 4.33. The following maps are linear and bounded:
(i) T3 (R x RN 5 ¢ = T € L(H(RL), By ™(RY)), for s € R.

(i) TR xR 5 ¢ T € L(H(RL), Bs™(RY)), for s > d+ 1/p.
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Proof. We decompose T' as 2?;3 Sjv; +1". The maps

T RIXR™) 5t 55 € ST 7Y (R x R™Y) and
TR TIXR) 5t ' € T (R x R

are linear and bounded. According to the trace theorem, the lemma holds for Z;l;é Siv;-

Thus, it is sufficient to prove (). For each t € m’O(R”_l xR ) ape 73{75_1/7’(1&”_1 X
R™!) exists such that T = o P.. We initially assume that s > m. Therefore, the
result holds according to the trace theorem and mapping properties of pseudodifferential
operators. The results extend to all s € R via order reduction. O

Finally we consider singular Green operators:
Lemma 4.34. The following maps are linear and bounded:
(i) GIP (R X R 5 g G € LIHI(RY), H™(RY)), for s € R.
(ii) GIF' (R x R 5 g G € L(HI(RY), HS™(R)), for s > d+1/p.
Proof. We decompose G as Z?;é K;v; + G'. The maps
G (R IXR™) 3 g &y € K757 P(R x R"™) and
g;ﬁgd(Rn—lan—l) 5 g g/ c gTéO(Rn_l % Rn_l)

are linear and bounded. According to the trace theorem and Lemma [£.31] the lemma
holds for the sum. Therefore, it is sufficient to prove (fil). Since the class is zero, a

decomposition G = Z?io K;T}; exists which is absolutely convergent with regards to
seminorms. Therefore, the result follows from Lemma and 4.33| O
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5 Bounded H*-Calculus for a Degenerate Boundary
Value Problem

For the proof of Theorem [1.2] a suitable description of the resolvent (A —\)~! is manda-
tory. We explain the key idea of how this description is derived in a simple example, where
A= —-A,T =, and v = 1. Here, the benefit is that we can point out the main ideas.
However, the majority of abstract arguments can be replaced by explicit computations.
In the article |2], Shmuel Agmon proved a priori estimates for solutions of the following
boundary value problem with spectral parameter:

(1-A—-XNsu =f on R} (5.1)
YoU =¢ on R* 1’ ‘

Let A = p2e®. The author observed that, given a solution u of (5.1, the function
U= u® e, with e,(z) = € solves the elliptic boundary problem below:

/ (5.2)

(1-A+e0D2) 4 = f on R
Yol =¢ on R"

The right hand side consists of f := f ® e, and b=0® eu- The a priori estimates were
already established for the elliptic boundary value problem . For our purposes, a
priori estimates are not sufficient. However, the basic idea can be extended to provide
a relation between the inverse of and (5.I). The following three operators are of
interest:

Qo = rTFH((€)? + T R,
Ky = r*fl’lef"@(gl’@:”"?, and
Go := —Kp0Qp-

Here, rg(¢, () is the Toot of the polynomial ag := (€)% + €' (2, with positve real part.
The identities AgQy = 1, AgKy = 0, 70Ky = 1, and 7(Qy + Gg) = 0 can be verified in a
quick calculation. Therefore:

A\
( 7(’)) = (Qos + Gy Kp). (5.3)

The operators belong to Boutet de Monvel’s calculus. We denote the symbols by lower
case letters. Now, we apply . ) to the tensor product f = f®e, and b =0¢® €11
respectively. For instance:

Qo fl(,2) = 1+ / ¢ gy (¢, O)[F et FI(E)6(C — ) dCae
= iyt / e gy &, ) Fet £)(6) de
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=: € [Qo .+ f(x)

Here, @y, has the structure of a truncated pseudodifferential operator. The symbols of
the operators @y and @y, are related by restriction: g, = go|c=,. We obtain Gy ,, Ky,
and Ag, + from Gy, Ky, and Ay with a similar argumentation. We further observe that:

Aplu®eu] =[Agpuru] @ ey =[(A—A)u] ey

Using the previous relations, we verify that the function v := (Qpu+ + Go ) f + Ko @
solves Problem (j5.1)) for given f and ¢:

[(A—=A)ul® en = Ao+ [u® eu] = A9,+[((Q97u7+ + GG,u)f + KG,M¢) ® eu]
= A(Qo + Go)(f ® ) + ApFo(d @) 2 e,
[You] @ e, = 70(Qo + Go)(f ® ) + 10 Ko(d®e,)] = ¢ @ ey

Therefore, the inverse of the parameter-dependent problem can be constructed for the

inverse of the associated extended problem. For \ = e y?:

-1
((A ;OA)Jr) _ (Qe,u,+ + Gy, Ke,u) '

What we are especially interested in is the left entry on the right hand side. Here, we
observe:

(Qou+ +Gopu)Lp(RY) C D(Ap) :={u € L,(R}) : Ayu € L,(R"), Tu = 0}.
Therefore, we obtain an explicit formula for the resolvent on the ray A = %%

(Ar =N 7" = Qops + Go e

Thus, the example encourages us to initially solve the extended problem for A and T

(A+e™ D) = f
Ti = ¢.

In general, no explicit formulas for the inverse of the above problem exist. However, in
Section we verify that a parametrix exists. We can replace the inverse by a parametrix.
However, the replacement generates an error term. To estimate the error term, we need
to analyse the dependence on the parameters @, u and thus on A of the operators above.
The dependence on 6 for 0 < ¥ < |f| < 7 is not essential. In fact, we obtain uniform
estimates on operator norms that only depend on ©. However, the dependence on p is
essential and thus discussed in Section [5.1}
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5.1 The Spectral Parameter as a Co-variable

In this section, we consider pseudodifferential operators P with symbols that depend on
covariables (£,() € R™ x R. We assume that the symbols do not depend on the variable
z which corresponds to the covariables (. We write S%(R" x R B F) for the space
of such symbols. By restricting ( = u, we obtain a symbol p, in ST%5(R" x R"; E, F'),
since (&) < (&, uy < C,(§). With the same argumentation used in the example in the last
section, we observe that Plu®e,] = [P,u] ® e,. The formal computation in this example
is very common in the theory of pseudodifferential operators. Typically, the computation
is applied to all co-variables in order to verify that each pseudodifferential operator has a
unique symbol. A rigorous computation is based on the theory of oscillatory integrals, see
[28] for more details. According to the computation below, the restriction ¢ = p behaves
well under composition:

(op(p#p)u) @ e, = op(p#p’)(u ® e,,) = op(p) o op(p')(u @ e,) = op(p)(op(p),)u) @ ¢,)
= (op(pu) © Op(pL)u) ®eu) = (Op(pu#pL)u) @ ey

Moreover, let p be elliptic with parametrix p~# and remainder r. Then, the above equation
implies:

[pi#]u#pu = (pi##p)u =(1+7r)y=1+r,.

Therefore, p,, is elliptic with parametrix p;# and remainder r,. The restriction is of
interest because it connects two types of expansions for pseudodifferential operators. First,
the expansions with respect to decreasing symbol order. This type of expansion is typical
in the calculus of pseudodifferential operators. Second, the expansions with respect to
decay in the spectral parameter. We initially consider the case § = 0:

Lemma 5.1. Let0 <o <m andp € Sl”g)”(R” x R"™L B F) with isometric group action
on E and F. Then p, € S;g(R" x R, E, F) and |p,|. < |pl«{u)™"".

Proof. Note that for all A € B(E, F) and s,t € R, the equality ||A|| gz, r) = ||0:A0s||E,F)
holds, since the group actions are isometric. We fix the multi indices o, 8 € Nfj. Moreover,
we indicate the order of the seminorm under consideration, by a superscript. Then:

Pula = sup ()7 |on DEDIpu(, €)aen|lsee )

z,EER™

= (u)~"te sup ()™= ()N DEDEp(x, €, 1) || 5.y
z,€R™

< 7 sup (6 )™ IDEDL P (& 1) e
z,EER™

< ()™ sup (6,0 o DEDIp(x,€,)oer o s
z,£ER" CER

= ()" Iplols-

The computation above holds for all multi-indices. Thus, |p,|;7 < |p|;™(u)~"*7. O
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For now, let E and F' be Hilbert spaces. The lemma above and the mapping properties
of pseudodifferential operators then imply that for p € Sy ¢"(R" xR"*; E, F') the following
holds:

By € B(Ly(R™; E), Ly(R"; ) and ||B,|| < Clpls(u)™™

We aim to prove that the same result holds for 0 < § < 1. Let A™ be the order reduction
operator with symbol (£,()™ € ST (R™ x R™™). We observe that P, = A ™AP, =
A (A™P),. We can thus assume that m = 0. For the following argumentation, we need
the Schur’s test:

Lemma 5.2 (Schur’s Test). Let p : R"™ x R"™ — B(E, F) be an integral kernel such
that:

sup /’ﬁ(xay)|B(E,F) de < M, and

yeRn+1

sup /’ﬁ(xayﬂB(E,F) dy < M.

zeRn+1
Then, the integral operator P belongs to B(L,(R™; E), L,(R™'; F)) and || P|| < M;/"M}/™.

The assumption that the symbol is constant in the space direction corresponding to
the co-variable (, allows use to interpret P as an operator on R" x Sy. Here, Sy denotes
a circle of circumference T'. In order to verify that this point of view is valid, we identify
functions on R™ x Sy with 7" periodic functions and verify that P preserves periodicity.

[Pul(z, 2+ T) : = / e NEHTI 0 1 € Culy, w) dyduwd€dC
_ / e =TI € uly, w) dydwdEdC
_ / =G0 ¢ uly, @ + T) dydwdedC

_ / e 0 € Oy, @) dydddedC
[Pul(x, z)

As a next step, we consider the mapping properties of P in this identification.

Lemma 5.3. Let p € Sfy(;(]R” x R B F) and E, F be Hilbert spaces. Then, a constant
C > 0 exists such that for all T':

P e B(L,(R" x Sr; E), L,(R" X Sp; F')) and ||P|| < C|p|.

Proof. We identify u € L,(R™ x S¢; E') with a T-periodic function and write

U= Zuj with w;(z, 2) = ulgex[—1/2,7/2) (%, 2 = T'j).
JET
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Note that for every j € Z, u; belongs to L,(R"xR; E) and ||u;|,@»xr;5) = ||[t|| L, & xs7:E)-
The pseudodifferential operator P is represented via the integral kernel p(z, z, y, w):

Bl 2,y,w) = / e EmEHEep 2, €, ¢) dgdg.
Since p is of order zero, we obtain the estimate

"ﬁ(xaz7va)|’B(E,F) < C‘p’*(|$ - y|2 + ’Z - w’2)_l/2

for all even [ € N with [ > n + 1 with a suitable seminorm |p|. for p. If |j| > 2,
z € [-T/2,T/2] and w € suppu;, then |z — w| > (|j| — 1)T. Therefore:

1B(z, 2, y,0) |5z < Clple(lz —y> + (|j] — 1)>T2) (/2
< Clph((I3] = D)~z =yl /(lj] = DT) =2

We write y; for the indicator function of [-7/2 + jT,7/2 + jT|. A quick computation
shows that for |j| > 2 the following estimates hold:

/ oI, 29, ) 550X, (w) dwdy < Clpl. T~ (1j] — 1) and
/ Yol 15, 2, 0) (s () dede < Clol T (1] — 1),

For |j| > 2, an application of Schur’s Test yields:

1P o, rnxsrsry = X0 PX 5]y nxriry < CIOLT (1G] = 1) 72 ull ) g sy -

In particular the right hand side is summable. Therefore:

1Pull,@rxsriry = Y IPullL,@exsesry + > 1Pl Ly @exspr)

je{flvovl} ‘3‘22
1 ._9
§C<3|P|*||U||LP(RWST;E)+2T p¥ |p|*||u||Lp(RnxsT;E)>
JEN

<Cmax{1, T }plu|lullr, ®rxsr:5)-

Note, we need the assumption that E and F' are Hilbert spaces in order to estimate the
first three terms. The estimate is independent of 1" which is obvious for T' > 0. However,
we can prove that the bound also holds for T" < 1. To this end, we choose N € N such
that NT' > 1 and consider a T-periodic function as an NT-periodic function. Note that
|2, RexsnriE) = N’l/p||u||Lp(RnXgT;E). Therefore, the arguments above can be applied:

|1 Pull @ xspsm) = N 7VP|Pul|,@e xsyrsr) < Clpl N7 |ulln,@nxsyrsE)

= Clpl-llullz,@nxsrim)-

Here, the constant C' is the same as in the estimate for T" > 1. O
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We apply Lemma [5.3| with 7' = 27/ to the left hand side of P(u®e,) = (P,u) ® e,
[(Put) @ eplly@nxspsry = [P(u® )|, @rxsrimy < Clplllu @ eyl @nxsrim).-

The estimate holds for all u because the constant in Lemma is independent of T
According to Fubini’s Theorem, the norm of the tensor product is the product of the
norms. Thus, ||P,ul|r,® < Clpli|ulr,@®n. In sum, we have proven:

Theorem 5.4. Let E and F be Hilbert spaces with isometric group action and p €
St (R" x R"™ Y B F). Then:

By € B(Lp(R"; E), Ly(R™ F)) and [P, < Clpl ()™

The assumption that E and [ are Hilbert spaces is too restrictive. We can al-
low E and F to be UMD spaces by the following arguments. We fix an ¢ > 0 and
assume that p € S;ga(R" x R" E F). Then, the mapping properties imply that
P € B(B,*(R"*!; E), B;(R**'; F)). Applying the embedding results for the Besov spaces
implies P € B(L,(R"™Y; E), L,(R™™; F)). With the arguments above we therefore obtain:

Theorem 5.5. Let E and F be UMD spaces with isometric group action and p €
S—m=¢(R™ x R"™: E, F). Then:

P, € B(L,(R" E), L,(R"; F)) and || P, < Clpl. (1) ™.
We apply the result to Boutet de Monvel operators:
Corollary 5.6. Let m > 0 and € > 0.
(i) Let p € P §"(R*' x R"). Then,
Py € B(Lp(RY)) and ||Pul| < Clpli{p)™™.
(i) Let k€ Ki5' *(R*~" x R™). Then,
K, € B(Ly(R"™"); Ly(RY)) and || K| < Clpl ()™

(iii) Lett € T, ;" =Y (R"! x R"). Then,
T, € B(Ly(R}): Ly(R™™Y)) and ||T,]| < Clpl ()™

(iv) Let g € G i *"(R"™" x R"). Then,
Gu € B(Ly(RY)) and |Gyl < Clpli{p)™™.

Proof. For Result (i), we make use of the fact that the extension by zero is a bounded
operator for L,-functions and apply Theorem with ¥ = F' = C. For the other results,
the spaces E and [ are either L,(R; ) or C which are UM D spaces. The group actions are
0, in the case of L,(R;) and the trivial one in the case of C. Both are clearly isometric.
Therefore, the result for potential operators, trace operators, and singular Green operators
follows from Theorem [5.5 O
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5.2 The Parametrix Construction

Recall that A be an M-elliptic second order differential operator with smooth coefficients.
By A we denote the operator A acting on L,(R™) which has symbol:

a(z,&) = Y (@) + V=1 ) bi(z)& + c(x). (5.4)

1<i,j<n 1<i<n

Moreover, the principal part is a symmetric, uniformly strictly positive, and bounded
bilinear form:

M7UEP < Y a(2)&€ < MIEP for all a,& € R™

1<ij<n

In this section, we construct a parametrix to the extended problem:

(A%+) - (A7) +G7 KY).

Here, Ay := A + ™9 D2 In particular, we are interested in the operator G}. The
construction of the parametrix splits into the construction of two parametrices. The first
is the parametrix of the associated Dirichlet problem, see Section |5.2.1} The result is:

Lemma 5.7. Let 0 < 9 < |0] <7 and let A be an M-elliptic operator. Then,

. a;# € Pig(R”_l x R"),

9P € G (R x R™),

kP € K" (R x R"), and

P € BMZ (R x R,

exist with |ay ™., |98 |, [EP|e, 8]« < C(lal., M, 9) such that the associated operators sat-
isfy

(o) ot 5 =1 078
0

Moreover, the principal symbols are:

P o 1 1
CLG <x7£ wrn?é-n) ~ ann(‘r) Hé‘_(f,f/aC) +Z§n K/9—<x’§/7<') _/Lé’n
D/t et A N -1 1 1
908 G ) B g 0 8,0) + g (2 ,C)) g (01,8, C) e g (0,8, C) —

1
(@, €, C) +i&n

B €6 ~ —
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The definition of a,,, x5 and r, is provided in the next section. The parametrix
is used to reduce the problem to the boundary. By assumption, the trace operator is
T = o171 + Yoo, With ¢1, 09 > 0 and @1 + @9 > 0. We define the Dirichlet-to-Neumann
operator as Ily := v, KP. Furthermore, we observe:

Ay +) —# D oD ( 1 0 ) (1 O) 5
) (A P Kp)= _ + By
( T (( o )+ 1 Gp 0 ) 0171 ((4, #)+ + Gé)) w11l + o 0 o ’

The first operator on the right hand side is a lower triangular matrix which has a
parametrix if the diagonal entries have. The reduced problem is the construction of a
parametrix to the operator Sy := @111y + g, a pseudodifferential operator on the bound-
ary. This operator is, in general, not elliptic. However, the assumption on the operator
T ensures the existence of a parametrix. The lemma below is proven in Section |5.2.2}

Lemma 5.8. Let 0 < ¢ < |0| < m, A be a M-elliptic operator and p1,ps > 0 be smooth
functions such that o1 + po > 0. Then, symbols

g7 € S0 R X R and rf € ST(RMT x R™T)
exist with |s, ., 75|, < C(|als, |t]., M,0), satisfying the following equation:
SpSy " =1+ Rj.
Moreover, s ##p; € S;%/Z(R”_l x R™) and the principal symbol is:

1
o1 (2 kg (2, €, C) + pola’)

Given Lemma [5.8 we obtain the parametrix of the triangular matrix above:

s (@,€,¢) ~

1 0 1 0
(@171((Ae_#)+ +G7) 50) (_59_#901%((149_#% +Gy) So_#> B
1+ ( 0 0 )
—Riom((457) +GP) R)"
In particular, the parametrix of the extended problem can be defined as follows:
A0,+ 7 - —# T T\ . — D D 1 0
(%) = (e )= (08068 1) (Lgmpmiyorn an s%)

The singular Green operator is G = GP — KPS, #0171 ((A; 7). +GP) and the potential
operator is K] = Ké)Sa_#. The remainder term is:

RT—( 1 0>+<1 0>RD( 1 0)
’ —R390171((A9_#)++G9D) RZ)q 0 %o b —59_#90171((A9_#)++G5) Se_# '
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The order of the singular Green term in the parametrix of the extended problem is the
same as in the Dirichlet case. This follows from the partial result of Lemma |5.8; The
operator S, #gpl has order —1. Both, the symbol seminorms of the parametrix and the
remainder term to the extended problem can be estimated by a constant. This constant
depends on the seminorms of the symbol in Lemma and 5.8 In summary:

Lemma 5.9. Let 0 < ¥ < |0] < m, A be an M-elliptic operator and T be as in ((1.2).
Then, symbols

° a;# € Pi@(R”fl x R™),

g € G (R xR,

k§ € Kiy/P(R™! x R™) and
o 1y € BM{F(R" x R"),

exist with |ay® ., |92 |, [KL |+, [rE| < C(|als, |t]., M, V) such that the following equation
holds:

Ay, _
( T*) (4, " ®GF KI)=1+Rj.

The principal symbols of these operators are:

—H () ~ 1 1 !
ag " (2,5, ) A ann () K (2,8,C) +1i&, Ky (2,8,C) — i,
T / / . ~ T / ! 1 1
9o (*I 75 ) Cvfnann) ~ Sy (:L’ ’g 7C) /{+(ZL'/, 5/7 C) + an "{'9_('77,76/7 C) - “771
T/ 0 & _ 1 901(55/) =
S ($ & O - ann(x/) 901(1./)%;‘(1;/’5/’ C) + 900(37/) + ,ng(;pl’gl’ C) + /‘fg_(:E”f/, Q) .
p1(z) 1

ko (2, €, G5 €n) =

gol(l‘/)li;_(l’/, 5/’ C) + 900(1‘/) l{g_(x/? 5/7 C) + an

5.2.1 The Parametrix to the Dirichlet Problem

The construction of the parametrix to the Dirichlet problem is well-known. For the sake of
completeness and to fix the notation, we include the construction. The extended operator
Ag = A+’ D2 has symbol ag(z, £, ) = a(x, &)+ (2. The symbol is a polynomial
of degree two and thus belongs to Pf (R""" x R"). The symbol’s seminorms can be
estimated: |agl. < max{l,|a|.}. Now, we verify that as(z,,() is an elliptic symbol.
Therefore, we consider the principal part which is equivalent to setting b;(x) = ¢(z) = 0.

lag(z,€,¢)? = (a(x, &) + cos(m + 6)¢?)? + sin?(7 + 0)¢*

a*(x, &) + 2cos(m + )a(x, £)¢* + ¢*
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> min{1, 1 + cos(m + 0)}(a*(z, &) + ¢*)
> min{1, 1+ cos(m + 0)} min{1, M~ '}271 (¢, ¢|Y).

For ¥ < |f] < 7, we obtain a constant ¢ = c(, M) > 0 such that |ag(x, &, )| > c|&, [
Therefore, the following result is a special case of Theorem [£.4;

Lemma 5.10. Let 0 < 9 < |0] < 7. A parametriz a;” € Pig(R™ x R") and a
remainder term 1o € Py o° (R x R") exist such that:

ag#ae_# =1—r1.

Moreover, |ay™|.,|rel. < C with a constant C = C(|al., v, M) > 0.

Notation 5.11. The principal symbol of the parametrix is the point-wise inverse of the
operator’s principal symbol. To be precise, the principal symbol has to be multiplied by a
zero excision function which depends on |, (|. We decided to drop the excision function
from the notation to keep the layout readable. Two reasons justify this form of notation.
First, treating the excision term is a well-known process. Second, we are interested in the
case where ( is large. If ( is indeed large, the excision function equals one.

For later computations, a decomposition of the principal symbol of the parametrix is
useful. The decomposition contains two parts, one in H* and one in H~,. For a fixed
(x,¢&, (), the principal symbol ag(z, &', &,, () is a polynomial of degree two in &,.

ag(l', 6/,&-”, C) = < Z aij(x)fié-j + ei(ﬂ-+9)<2> + 2 < Z azn(a;)gz) fn + Gnn(@fi

1<i,j<n 1<i<n

=t () (g0 (2, €', C) + 2p(, §)&n + 7). (5.5)

We label the two complex roots as +ikj (z,&',¢). They are:

kg (2,€',¢) = £ip(z,€,0) + Vao(w, €', ¢) — p*(2.€,C).

We choose the negative real axis as the branch cut of the root. We observe:

]ann(x) (qe(x7§I>C) _p2(x’€/)) ’ = |a9(x,£’, _p<x7£/>7c>| > C|£/7 _p(x7£/)7g|2 > C|£I7C|2'

Here, ¢ = ¢(M, ) > 0 is the constant from the elliptic estimate. Therefore, the absolute
value of the root is bounded from below by \/c¢/M &', (|. Next, we consider the argument
of the root. To this end, we observe:

ann(:c) (qe(x7§170) _pQ('r7£/)) = G@(.’L’,gl, _p<x7€/)70) Z Mﬁllé#a _p(xafl)P Z M71|€/‘2'
The argument of e"*9¢? belongs to the interval [—m + 9,7 — ¥J]. According to the

observation above, the argument of gg(z, £, ¢) —p?(x, €') = qo(x, &, 0) —p?(z, &)+ 7+0) (2
belongs to the same interval. Therefore, the argument of the root belongs to interval
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[—5 + g,g - g] The real part of the root coincides with the real part of /<;9 Thus, a
o

constant ¢ = ¢(M,?) > 0 exists such that the following estimate holds:

Ry (2,€,¢) > €, ] (5.6)
A quick computation shows that /@;t is homogeneous of degree one, i.e., /{;t(a:,tg' 1) =
try (v,&,¢). We are primarily interested in the situation where x, = 0 and write

Ky (2, €,¢) == kg ((2/,0),&,¢). The homogeneity of ry implies it is a symbol in 57 o (R" ™ x
R™) which is elliptic according to ([5.6]). By decomposition into partial fractions, we obtain:

1 1 1
ann(f)("f;(%f’a C) + /{B_(xvgla C)) |:I€;—(ZL‘,€/, C) + Zgn " "{9_(1‘76/7 C) - 'Lgn:| .

The first summand belongs to H* and the second to H~; as a function of &,. Similarly,

RACR NGRS

we obtain a decomposition for the principal symbol of A;#amn:

! [_ DACR N GRS ]
(&) (o (2,6,0) g (2.€,Q) | g (0, €0 i g (2,€1.0) = i

Now, we derive the potential operator in the parametrix to the extended Dirichlet problem.
Form the jump relation, we obtain the following identity, see also [23, Chapter XX].

Aget = et Ag + Py with P(¢, 1) 1= apn(2')(=2ivip(2’, D) — )b + Vg ann (/).

We define two operators K9 and K} such that K9é+ Kl := r+ A, #P<(¢p, )", show that
they are potential operators, and compute their principal symbol. To this end, we define
the two auxiliary operators K(; = 7“+A 7 for j = 0,1 which are potential operators
of order —1 + j — 1/p according to Proposmon m Note that v = (=700%,)" = 0,70
In particular, we compute the principal symbols of the axillary operators by means of the
decomposition derived above:

i€ty (2,€,0) ~

0 / g+ —H —~ 1 1
k?@,a(x 7€a g) - hgnag ("L‘ 7£7<) ~ ann<$/)(/§g_($l 5/ C) i /'3?9_( /’5/’ C)) /ﬂ}g_(.ilj/,f/,C) n an
—#ky (2',€,C) 1

1 / ot —# 0 ~
#0086 €)= he, nto T8 & ) L T ,€.0) g (0081, ) g (0,6, 0) T i

Thus, the operators Ky := (Kj ,ann(2")(=2ip(2’, D')) — K;,) and K5 = KJ ,ann(2') are
potential operators according to Theorem [4.25, The principal symbols are:

0/ 1 - H;(xlaélvg) 1
k‘e(m &, C) ~ /i;_(l'/,f/, C) + K@—(f)f/’ C) ,Li;_(l'/’flj C) + an
1 1

ky(2', €, ) =

kg (2,8, Q) + kg (27,6,Q) kg (2',8,¢) + ik

We used the fact that —2ip(2/, &) = kg (¢/,&,¢) — kg (2, €, ¢) in the derivation of kj. The
composed operators Cy = %KJ for i,j € {0,1} are pseudodifferential operators on the
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boundary. Their principal symbol can be derived from the symbol-kernel of the potential
operators and the identity F, 1, (k) +1i&,)"! = 0(z,) exp(—r] 1,,):

Enran
X €)= yokd(@, €,¢) & kg (@ f’fe_c(;f_i’_i;()x/ €.¢)
1

¢j' (2/,€',C) = ks (2, €, Q) =

kg (1,€,C) + kg (2,8,C)
kg (2., Qg (2, €, C)
kg (¢, €,C) + kg (2/,€,C)
kg (2., ¢)

kg (1,€,C) + kg (2,€,C)

In particular, C% is an elliptic operator which allows us to define a pseudodifferential
operator on the boundary Sy := (C9*)~#(1 — C3°), with principal symbol:

so(2',¢,¢) m T (2, Q).

Moreover, we define a potential operator K’ := KJ+K}Sp. According to the computation
below, this operator is the entry in the parametrix to the extended Dirichlet problem:

WKy =YKy +70K;5 = Cy° + CgH(Cyh) 7 (1 - C3°) ~ 1
Ag Ky = Ag 1 K + Ag 1 KjySp ~ 0

i’ (7, €,¢) = mky(a', €, () =

et (@', €,0) = mki (', €, () =

In the second line, we used Ay rtA, # ~ r* and the fact that the image of P§ consists
of distributions with support on the boundary. These distributions belong to the kernel
of the restriction. In sum, the result is:

Lemma 5.12. Given 0 < 9 < |0 < 7. A potential operator KF with symbol k' €
lCl_’(l)/p(IR{”*1 x R™) exists such that
Ag K ~0 and yKy ~ 1.
Moreover, |kP|. < C = C(M, 9, |al.) and the principal symbol is:
1
(2',€,¢) +1i&

The seminorms of the remainder terms can be bounded by a constant, depending on
the same parameters as in Lemma [5.10, The operators C}/ are entries of the Calderén
projector, for more details see [23, Chaper XX]. The Dirichlet-to-Neumann operator is
defined as Ily := v, KP. It is a pseudodifferential operator on the boundary of order 1
and |mgl. < C(Jas|, M, ) according to Lemma m The principal symbol 7y ~ K, can
be computed with the second row of the Calderén projector. In particular, the Dirichlet-

to-Neumann operator is elliptic. The singular Green operator in the parametrix of the

extended problem is G} = —K} YA, f, has order —2, and satisfies

k@, €.0) ~ —

Ag+GY ~0 and %Gf = =K 104y ~ —0As
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The principal symbol of the singular Green operator is the product of the two princi-
pal symbols of the potential operator K} and the trace operator 70149_71&. According to
Proposition [4.22] the principal symbol of the trace operator can be computed with the
decomposition above. Therefore:

—1 1 1
(') (159 (27, €/, ) + kg (2, €,C)) kg (/,8,C) +i&n g (2/,,C) — i

Now, the construction of the parametrix to the extended problem is complete. At the
beginning of this section, we indicated that we need the principal symbol of the trace
operator T := yl(A;f + GP). The principal symbol of —d,, A, " is —i,ay (2, €, C).
We can thus compute the principal symbol of T} := %A; f with Proposition |4.22| and the
decomposition above:

95 (@, €, 6y mn) =

-1 K;(Qf/,fl,C)
A (2") (K (27,6, Q) + kg (2,€,Q)) Ky (2/,€,C) — iy

to(z', &, Cinp) &
Furthermore, the principal symbol of the trace operator T = 11G) = -1 KP4, f can

be computed with Theorem

~1 kg (2, €,C)
ann(x,)(’%;—("ﬂ7 517 C) + K’B_ (9;'/, 6/7 C)) "{9_ (l‘l, 5/7 C) - Znn

Since T} is the sum of T} and T}, it has principal symbol:

ty(2', €, Cmn) =

—1 1
ann (') Ky (2',€,C) —in,

tg (@', &, ¢ny) ~

5.2.2 The parametrix on the boundary

This section proves Lemma 5.8 and compares the degenerate to the non-degenerate case.
Furthermore, we point out the necessity for the Boutet de Monvel calculus with 0 # §.

Theorem 5.13 (parametrix). Let 0 < m’' < m, 0 < § < 1 and p € S{H(R"" x R™).
Suppose constants ¢ > 0 and p > 0 exist such that for all |£, (| > p the following estimates
hold:

(2, €, 0) > c€,¢)™™ and
]afagp(x’,g/,C)Hp(m’,{’,g)_1| < C<£7<>—p|a\+6\ﬂl‘
Then, symbols p# € ST7' (B x B) and r € §~(B x B) cait with [y#|. . <

C(c,|pl+) such that the associated operators satisfy PP~# =1 — R. The operator P~% s
also a left parametrix.

66



For the proof of the theorem, we refer to [2§]. Given 0 < ¥ < |6| < 7, the operator
Sp = e1lly + o

is a pseudodifferential operator on the boundary of order 1 and Hérmander type (1, 0) with
symbol sg(z', &, C) = pi(a")me(a', &, () + wo(2’). In the last subsection, we pointed out
that the principal symbol of 11y is k, . Moreover, Rr, (2/,¢', ) > |, (], with a constant
¢ = c¢(M, ). Thus, for sufficiently large |£, (|, the estimate from below Rmy(2', &', () > 1
holds. According to Assumption (L.2)), the function ¢1, pg > 0 satisfies p; 4+ ¢o > ¢ > 0.
Therefore, for sufficiently large |£, (|, the following estimate holds:

[so(2", &, Q)] = pr(a)Rmg(2', &, () + po(2') = @1(2") + @o(a’) Z ¢ > 0. (5.9)
The estimate is Assumption (5.7)) with m’ = 0. Furthermore, we observe:
DLDg Dimo(a', €, ¢)
We(x/7 5/7 C)

In the equation, we sum over all 51, 5o, 03 € Ng_l with 8y 4+ B2 + B3 = (. Since my €
S%VO(R”A x R™) is an elliptic symbol, the following estimate holds:

DLD DY so(a',€,0) = Y Doy (a)mg(a' €, C) + 80 a1 D2 po ().

DS, Dg Dlmy(a’,€,¢)
mo(2', €, C)

Thus, sy satisfies Assumption (5.8), if for all 3 € NJ ™!, the estimate below holds:

< C(E, ¢

D21 (o )mala,€1,C)
So (l’/, 5,7 C)

< C(g, 0. (5.10)

In the case of |3 > 2, the estimate holds, implied by |D% gy (2')| < [t]., |me(2’, €, C)] <
|mo/+(¢',¢), and Estimate [5.9] In the case of |3| = 0, Equation (5.9) implies Equation
(.10):

<C.

’901(96’)%0(93’,5’, 5 ‘ |50, ) — ()
so(2', ¢, () so(2', ¢, )
Now, we consider the case of |3| = 1. To this end, we need two estimates. By assumption,

1 is a non-negative real function. Therefore, the following estimate holds. For the proof
we refer to |43, Lemma 5.3].

Daypr ()] < 1/201 ()2 D26l < Cr (@) for j € {L,....n—1}.
J
The previous estimate implies the first of the two estimates:

| Daspr (a)me(2', €, Q)| < Clipa ()M |m (2, €, Q)] < Clion(a’)mo(a', €', Q)€ ()2,
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The second estimate is obtained from the fact that Rmy(a’, &, (), p1(2), po(2’) > 0 and

Equation (5.9):

[so(2",€", Q)1 = (1 (2')Rmo(, €
> (901($/)8:EW9($/,€/,

Y

|
<
iy
—~
R\
Bl
>

S
oy
O
_|_
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o
v
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~
}9\
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El
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&\
+
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o
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The function g(y) = y(y* + ¢)~! is bounded. Thus, we obtain Equation (5.10) for |3 =1
from the two estimates derived above:

Dysipr (2 )2/, &, o| < o ler@)m(a’, € O

' / , /
59(1’/7£,C) |Q01($C/)7T@(I/,€,,C)‘ n 6(5 ,C>1 2 S C(é‘ 7C>1 2.

Therfore, sy satisfies Assumption (5.8)). According to Theorem m, symbols 39# €
SY 1R x R") and rg € S;g°(R"! x R") exist such that the associated operator

satisfies SpS, * = 1+ Ry. Moreover, the seminorms can be estimated by |s, 7|, |rs] < C,
with a constant C' = C(|als, |t]., M, 9).

Now, we compare the degenerate to the non-degenerate case. In the non-degenerate
case, the parametrix s;# belongs to S;é(R”_l x R™). In this case, a Boutet de Monvel
calculus with § = 0 is sufficient for further argumentation. By contrast, § = 1/2 in
the degenerate case. According to the results of Section , 0 = 1/2 is not a significant
drawback. However, the difference in the order of the parametrix is a serious issue. The
parametrix has order 0 in the degenerate case and order —1 in the non-degenerate case.

Loosely speaking, the Parametrix of Sy behaves poorly on the zeros of ¢;. An impor-
tant observation is we regain the loss in the order, if we multiply the parametrix by ;.

Using the fact that ¢ ~ 39#7?9_# — cpoﬂ;#, we obtain:

sy o1 ~ 557 (setmy T — pomy ) ~ g F — sy o,

The right hand side is obviously of order —1. In sum, Lemma holds.

5.3 The resolvent of Ar

The example at the beginning of Section [5| indicates that the resolvent is related to the
inverse of the extended problem. In general, no explicit formulas for the inverse are
available. However, a parametrix was explicitly constructed in Section 5.2 The relation
of the parametrix to the extended problem to the resolvent, is similar to the relation of the
inverse to the resolvent. An error term occurs, whenever the parametrix is used instead
of the inverse. We can, however, control the error term with the result of Section 5.1 We
thus obtain an identity for the resolvent, see Proposition [5.15] The identity is adequate
for deriving the estimates in Remark if the Banach space is L,(R"} ). For the proof of
Proposition [5.15] we need:
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Lemma 5.14. Let 0 < 9 < 7w, A be M-elliptic, and T be as in (1.2). Then, for all
N € N, a constant ¢ = c(|a|s, |t|«, M,9) exists such that on each ray X = e®u?, with
/2 < 0] <7, for |\ > ¢, the resolvent of Ar exists and the following estimate holds:

1Az =X = (A5 + GE Il < CN™.
Here, the constant is C = C(|als, [t|«, M, 1).

Proof. Let (Ae_# +GY K} ) be the parametrix and R} the remainder to the extended
problem, see Lemma [5.9) With the same argument used in the example at the beginning
of Section [f] we obtain:

(A=) — T
( T (AGVM + Ggw KHT,M) =1+ RG,#'

The application of Corollary to the remainder r} € BM;;O’O (R™~! x R™) implies that

Ry, € B(L,(R}) @ Ly(R"™)) and || Ry, || < Clrel.(u)~* = Clrel.(N\)~, for all N € No.

We define ¢ := c(|al., |t|., M,0) := C|ry|s, choosing the same seminorm as before. In

particular, [|[Rj || <1 for [A\] > ¢. Thus, the inverse of 1 + Ry , exists and is provided by

the Neumann series. Therefore:

A=N\" - . _ .
<< . )+) = (4:f + 61, KL)(+RE) " = (47 +61, KL)+0(0)™).

The statement follows from the above equation. O

For later use, the representation of the resolvent in Lemma is not sufficient. The
main issue is that the construction of a parametrix is, in general, not a finite process.
However, given any order —m, two symbols ¢ and g, can be computed in a finite number
of steps such that a,* —gj =: qj € Py (R"xR") and g} —gj =: g € G, ;" (R""IxR").
We choose m = 2 + 3¢ for some € > 0. Thus, ¢, and g; are the principal symbols of Ae_#
and G, respectively. An application of Corollary yields:

104 1+ 15, ny) < Clagl ()27 and |GG |5, @) < Clggls ().

Both norms decay like (u) 272 = (\)~17¢. Therefore:
(Ar =N =@y + G+ O(N)7). (5.11)

In particular, the remainder term is integrable on the ray A = €2, The Identity ((5.11])
only holds for sufficiently large A. In fact, for small A\, the resolvent may not exist.
Therefore, we shift the operator Ar to guarantee the existence of the resolvent.

Proposition 5.15 (Structure of the Resolvent). Let A be M-elliptic and T be as in
(1.2). For a given 0 < 9 < 7, a constant 0 < v = v(|al., |t|., M,0) exists such that
o(Ap +v) C Xyj2. Moreover, a constant 0 < ¢ = c(lal., |t|., M) exists such that on
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each ray N = eFu?, with ¥ < |0] < 7, for all |u| > ¢, the following equation for the
resolvent holds:

(Ar+v—=N"=Q +Gh,,+O(N9), for some( <e. (5.12)

Here, Qy . and Gy are the operators associated to the principal symbols of Ae_# and GT,
respectively.

Proof. We choose ¢ = ¢(|als, |t]s, M,?) as in Lemma with N = 2. In particular,
the complement of the key-hole region 3y, U B, belongs to p(Ar). We choose v =
v(lals, [t]«, M, ) such that Xy, U B. C Xyjs — v. Therefore, 3§ , belongs to p(Ar + v).
Corollary and Lemma imply [[(Ar — N7 < C(A)~'* for all € > 0 with a
constant C' = C(lal., |t|«, M, V). After possibly enlarging ¢ = c(|al., |t|., M, V), we can
assume that ||v(Ar — A7t < 1 for |A\| > c. Therefore:

(Ap+v =N =Ar = N1 +v(Ar =)™ = (A — A Z” (Ap — A
=(Ar =N+ O((N) %) = Qs + Ghy +0(<A> ),

which is Equation (5.12)). Thus, the proof is complete. O

Note that 0 € p(Ar + v) and the inverse is the sum of a truncated pseudodifferential
operator and a singular Green operator of order —2. In particular, the mapping properties
derived in Section imply that (Ap +v)~" € B(H;(R%); HyP?(Rh))) for s > 1/p — 1.
Therefore, the following estimate holds for all u € D(Ar):

||u||H2+S(Ri) = ||(AT —|— l/)_l(AT + V)u||H2+S(Ri) S C”(V —|— A)UHHﬁ(Ri) (513)

5.4 Proof of the Auxiliary Result

This section proves Theorem [I.2] Let Ar satisfy the assumptions of the Theorem. For
a given 0 < ¢ < m, we choose v = v(|al., [t|, M,Y/2) according to Proposition [5.15 In
particular, the resolvent set of Ar + v contains the complement of the sector of angle
¥/2. Moreover, the resolvent belongs to O(A~'¢) for any € > 0. We fix a 9/2 < 0 < 9.
Therefore, for all f € H$(3y), the integral below is defined:
f(Ar) = = [ FO)(Ar+v =X d
T Jox,

According to Remark the operator Ar + v allows a bounded H*(¥y)-calculus if and
only if the following estimate holds for all f € H{°(Xy):

?

FOV(Ar + v — A) 1 dA < O fllpwisy) forall fe HE(Sy).

21 oz, B(Ly(R™))
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The boundary of the sector ¥y is the union of the two rays A = e*? ;2. On each of these
rays, Proposition m provides a description of the resolvent. We write Q) 1= Q' ,,
where the sign depends on the ray A = e*?p?.  Similarly, we define G. For a given

f € H§(Xy), the operator —2mif(Ar) is the sum of the following three operators:

-[1 = f()\>Ql)\,+ dAv
0%
b= [ FO)[(Ar v =0T = (@ + GO A, and
P
L= (NG A
0%

Thus, Theorem holds, if constants C; = C;(|als, |t|., M, ) for i = 1,2,3 exist such
that the estimates below hold:

I Lills, @) < Cill fllzws,) forall fe H*(Ey).
The first estimate is well-known, see |38|. For completeness, we include the proof.

Lemma 5.16. A constant C = C(|a|., M, V) > 0 exists such that

Q) 4 dA

0%g

< Ol zoe(mo)-
B(Ly(RY)

Proof. The symbol seminorms of gy, with respect to order zero, belong to O({\)™1).
Therefore, the following integral defines a symbol of order zero:

q(x,8) = o N (@, ) d. (5.14)

Here, ¢} is the parameter-dependent symbol of Q):

q;(x,f) = ( Z a;j ()& — )\) .

1<i,j<n
The symbol satisfies the following estimates for all o, 8 € Ni:
D Dlg\(2,§)] < C{§)77"* and | DgDId)(x, &) < O 7N

For given (z,€) € R"™ x R" and o, € Nf, the function A\ — D?qux(a:,g) is holo-
morphic on the complement of ¥y N B, with p := 2M|{|®. Therefore, the function
A= f ()\)D?ng,\(a:,f) is holomorphic. According to the estimate above and the as-
sumption f € HS°(Zy), the function is O((\)~17¢) at infinity. Thus, we can differentiate
under the integral and change the path of integration in Equation [5.14}

DIDgqp(x,§) = / FNDEDE G (x,€) dA.
B(E,gme)
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The length of the path of integration d(Xy N B,) is proportional to p = 2M|¢[*>. The
standard estimates for the integral on the right hand side is:

ID2Dgas(,6)] < 10Z0 1 Byl fll sy sup | DS DEor . )

< M|l f oz €174€) >
< M@l fll o (€)1,

Since (z,&) € R" x R™ and «a, f € NJ were chosen arbitrarily, the inequality implies that
qr € S7o(R" x R") and |g¢|« < Cf|lzw(sy)- According to the mapping properties of
pseudodifferential operators, we obtain:

1Q¢lBL, @) < Cllfll Lo (my)-

Here, the constant C' equals C(|al., M,?). Therefore, |Qy 4|5z, ®n) < Clflliwmy- A
change of the order of integration shows that @) is the operator of interest. m

For the second estimate, we use the decay of (Ap + v — X)~' — (@), + GY) which is
at least |A|717¢ for some & > 0:

Lemma 5.17. A constant C' = C(lals, |t|«, M,¥) > 0 exists such that

Proof. According to Proposition [5.15, constants ¢ = c(|al., [t|s, M,9) > 0 and C =
C(lal«, |t|«, M,9) > 0 exist such that for some € > 0 and all |A\| > ¢ the estimate be-
low holds:

FO) (Ar =N = Qi+ G) dA

[2)37)

< COllfllLae(mo)-
B(Ly(®))

(A + v = 27" = (@54 & GVl gy, unyy SCNT
Proposition [5.15 also implies 95y C p(Az + v). Since the resolvent is continuous,
sup{|[(Ar — )\)_1||B(LP(R1)) t A€ ¥ and |A| < ¢} < 0.
The operator @) | + G\ also continuously depends on A. Therefore:
sup{[| @) 4 + GAlls(L, &) : A € Xg and || < ¢} < 0.

In sum, the function A — [|(Ap + v — X\)~' — (@), + G4)]| is integrable on ¥y. Thus, we
obtain the result with the standard estimate for the integral. O

Next, we provide the third estimate. To this end, we parametrise the boundary:

[ ovain= [T ot Gl [ e G 55)
039 0 0
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Both integrals can be estimated with the same arguments. Therefore, we can focus on the
first Integral. To estimate the integral, we use the symbol-kernel representation of Gf u
According to Lemma , an s} € ST i /Q(R”_l x R™) exists such that the symbol-kernel of

/
0,1

is:
Go(' €, G n, yn) = 55 (2", €, Q) exp(—ry (', €, Q)wn — kg (', C)yn).- (5.16)

Moreover, we use the following result:

Lemma 5.18. Let o € S} j(R"' x R") and Ro(2',¢',¢) > c[¢',{|. Then, the map
R, 51 exp(—o(a!, €, O)t) € SY (R x BY)
is uniformly bounded. In fact, sup{|exp(—c(2',&, Q)t)].: t e Ry} < C = C(|o]«, ).

Proof. A simple induction over |a|+ |8| + 1 = N shows that D?,Df,Dé exp(—o(2', ¢, ()t)
is a linear combination over all ay + -4+ ap =, S1+ -+ B =B, l1 + - + lx, and
k < N. The terms in the linear combination have the following structure:

(Dg DY DRo(',€,C) - DEFDEDEG(,€,Q)) (=) exp(—o(a', €, O1).

Furthermore, the assumption o € Sj,(R*™" x R") implies:
k

‘DmDﬂlDll ( /75/7 C) o D?,”DfﬁDékJ(x/, 5/» C)‘ < H |0|*|€/’ C|1—\ai|+li _ |U|f|§/, C|k—|a\+l‘
=1

Moreover, we use the fact that s* exp(—s) is bounded on the positive real axis in order to
obtain:

(=)  exp(—o (2, €, )t)| = t" exp(—Ro (2, €, )t) < t*exp(—cl¢, (Jt) < c7M¢, (|7"C.

According to the last two estimates, all terms in the linear combination can be estimated
by Cl¢', ¢[7lH, O

Lemma 5.19. A constant C = C(|al, |t|«, M, ) exists such that

FNGy dA

0%

S Olflzwe(zy) for all f e H5(Xg).

B(Lp(R7))

Proof. According to Equation (5.15)), providing the estimate for the following operator is
sufficient:

remrte [ G = [ e G du
A=e®f 2 0

For the estimate, we use the explicit description of the symbol-kernel of G}, in Equation

(5.16). In the equation s € Sill/z(R"_l x R") and thus s} (¢/,¢,¢) € S¢ 1/2(]1%” Lx R").
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In Section , we observed that the roots /i;t are strongly elliptic. Moreover, a constant
¢ = c(lals, M,09) > 0 exists such that:

Rey (2',¢,¢) > 2¢/¢, ¢].
Therefore, o (2/, &, () := ki (2', &, () — c( satisfies the assumption of Lemmal5.18] Thus,

the map below is uniformly bounded:

RZ, 3 (T, yn) = ho(a!, €, ¢ @n, yn) 1= CeCm M Go(a! € (i, yn) € SY 1 p(R™H x R™).

Now, we analyze the action of Gy, in the direction transversal to the boundary. To this
end, we define a family of operators that act on S(R"™1):

(Gl (s yn)0) () 1= / e G (2 €5, yn)0(E) dE
Similarly, we define Hy (2, yn). According to the definition of hy,

Gy 1) = Hol ).

For a given (x,,y,) € R, we apply Theorem [5.4] to the right hand side. Since the
seminorms of hy are uniformly bounded with respect to (z,,y,) € R%,, we obtain:

11G (T, Yn) 0l Ly nry < €™ HE T Hy o, @ney < eI o]| g, nry.
Furthermore, if u € S(R"!') ® S(R, ) is a simple tensor, such as © = v ® w, then:

Pl = [ [ R0 Gl )0l o) du

In order to provide the estimate for I, it is sufficient to consider simple tensors because
they span a dense subset of L,(R" ). Therefore:

@y < S lliwiss)

[ osten vl sl s
0 0

Lp(R4)

| explecnton + mlutu)| dunds
0 0
0 Tnt¥Yn

Note that we used L,-boundedness of the Hilbert transform in the derivation above.
The estimate implies that [T € B(L,(R%)) and |[I*]| < C|fllwrs,). Here, C =
C(lal«, M, |t], 1) is the constant in the estimate above. O

< Ol fll ooy 10| £y @n—1y
Lp(Ry)

< Cllf e lvllzy@n1y < Clloll, @ lwllL, @)

Ly (R+)

< Ol fllwealull L, @n)-
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According to the argumentation at the beginning of this subsection, Lemma [5.16} [5.17],
and imply Theorem Now, we prove Corollary [1.3

Proof. By assumption, a(z,€) = > a;;6€,. Thus, |alasg = 01if |B] # 0 or |a| > 2.
Obviously for |a| € {0,1,2}, the estimate |D¢;&;| < 2(£)271¢ holds. Therefore, |al, <
C > |a;;|. Since all matrix norms are equivalent, we can replace the sum by the largest
eigenvalue of (a;j)1<ij<n. The largest eigenvalue is bounded by M, according to the
definition of M-ellipticity. Therefore, the constants in Theorem only depend on M,
|t]., and 9. O

5.5 Proof of the Main Result

In this subsection, we extend the results of the last subsection in two directions. First, we
reduce the regularity assumption for the differential operator. The sufficient regularity
assumption is the same as in the non-degenerate case, i.e., C” for the highest order
coefficients and L., for the remaining coefficients. Second, we replace the underlying
euclidean half-space by manifolds with boundary and bounded geometry.

5.5.1 The Main Result for Euclidean Half Space

We reduce the regularity assumptions of the auxiliary result, i.e., we prove Theorem
for the case of X, = R’. In this case, the differential operator has the following form:

A= > ay(x)D;D; + V=1 Y bi(x)D; + c(x),

1<i,j<n 1<j<n

with coefficients a;; € C7(R") for some 7 > 0 and b;,c € Lo(R"). We use the classical
approach of freezing the coefficients. We only freeze the coefficients of the differential
operator, not those of the boundary operator. The localisation scheme we use is inspired
by [27]. The localization provides a family of operators. Each of these operators is a
small perturbation of an operator with frozen coefficients. We prove that they allow a
bounded H*(¥y)-calculus in a uniform manner. By assembling the local operators, we
can conclude that Ar + v itself allows a bounded H>°(3y)-calculus.

Now, we describe the localisation scheme. We choose a small r» > 0. Later on, we clarify
how 7 is choose. We define the cubes @ = (—r,7)" and @Q; := Q+1, with [ € I := r(ZxNy).
Note that R} C Ujer@;. We choose a positive function ¢ € C§°(Q) such that 19 = 0
and

Zl/}l(a:) =1 for all z € R}, where ¢(z) =¥ (x —1).

lel’

Moreover, we choose two positive functions x, x’ € C§°(Q) such that x’ = 1 on supp ¢ and
X = 1 on supp x’. We define y; and x; similar to ;. For all [ € I, we define an unbounded
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operator A; with domain D(A;) = D(Ar). The operator maps v € D(A;) C L,(R7) to
r* Aiet € L,(R"), where A, is the differential operator below:

A= (aa(l) + xj(@)[aa(x) = aa(1)]) D*.
|oe|=2

We define A/, similar to Ar, with respect to the principal part of A. Observe that
Ay = Alap. The main technical difficulty is to prove that each operator in the family
(Ap)ier allows a bounded H>(Xy)-calculus with uniform estimates. We provide the precise
statement here and postpone the proof to the next subsection.

Lemma 5.20. For a given 0 < ¥ < m, two constants v = v(M, |t|.,9) > 0 and r =
r(M,|t|.,9) > 0 exist such that for all | € T', the operator A; + v allows a bounded
H*>(Xy)-calculus. Moreover, a constant C := C(M, |t|., ) > 0 exists such that

If (A B,y < Cllflwisy) for all f € H®(Sy) and 1 €T.
We define the localization operator L and the patching operator P as follows:
L:Ly(RY) = Ly(RY), uwe (Yu)er.
PrLy(RY) = Ly(RY), (w)ier — ZXZUI-

lel’

Moreover, we define the operator T : HZ(R) — B, PR, (w)er — (Tw)er. For
further argumentation, we collect some properties of the previously defined operators:

Lemma 5.21. Let L, P, and T be as above and s > 0. Then, the following results hold:
(i) L € B(HS(RY); H3(RL)).

(i) P € B(H}(RY); Hs(R%)).

(1i1) PL=1.

(i) L:H}RY)NkerT — H2 NkerT.
(v) P:H2NkerT — H2(R?) NkerT.

Proof. The operators L and P are special cases of localisation and patching operators in
Section [2.3] Therefore, (i), (ii), and (éi) hold. By assumption, 3¢ = 0. Thus, y¢ =0
for all [ € I'. Therefore, L : kerT" — ker T. Similarly, we obtain P : ker T — T n

We define operators Ay, := djA; with domain D(Ay) = Hg(R’}r) N kerT. Moreover,
we define:

kel

A D(A) = HZ(RTL) NkerT C LP(R:L_) — Lp(R:b-)a (uk)kef‘ — (Z Alkuk> .
lel
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Similarly, we define B and D for the following families of operators with index set I' x I:
B, == 0 Arow + [0, Al and D = 01 Ajow + Vi[ Ak + Asow, Vi)

Here, Ay, denotes Ap — A%, On T' X T, I < k & QN Qr # 0 defines a symmetric
relation. For a given [ € T', the set I'; := {k € I : k < [} is finite. In particular, By, = 0
and Dy, = 0 if k ¢ T';. Therefore, all sums in the definition of B and D are finite. A quick
computation shows that the operators A, B, and ID are related:

LAr = (A+B)L on H(R})NkerT and
ArP = P(A+D) on HZ(R%}) NkerT.

For more details on the computation, see Section We use the previously described
localisation scheme to prove Theorem [I.1} According to Lemma [3.7] the following claim
implies Theorem

We claim. For given 0 < ¥ < , two constants v = v(M, |t|,, V) > 0 and r = r(M, |t],, V) >
0 exist such that both A+ B+ v and A +D+ v allow a bounded H>(Xy)-calculus in
Lp(RZ).

The claim can be proven in two steps. First:

Lemma 5.22. For given 0 < 9 < m, two constants v = v(M,|t|.,9) > 0 and
r=r(M,|t|,,0) >0 exist such that A + v allows a bounded H>(3g)-calculus in L, (R ).

Proof. For given 0 < 9 < 7, we choose v,r > 0, according to Lemmal5.20, Therefore, each
operator in the family A; +v allows a bounded H*°(Xy)-calculus in L, (R’ ). Furthermore,
the operator F := f(A + v) is a matrix operator with entries Fy, = 6 f(A4; + v). In
particular, F has band structure of width 1 and the entries are uniformly estimated
by C|fllmee(sy)- Lemma implies that f(A 4+ v) € B(L,(R})) and [[f(A + v)|| <
C||fllzr=(z4)- The constant C'is the same as in Lemma [5.20] O

As the second step, we verify that both B and D are lower order perturbations of A+ v
such as in Theorem |3.8 which implies:

Lemma 5.23. For given 0 < 9 < m, two constants v = v(M,|t|.,9) > 0 and
r=r(M,|t|., ) >0 exist such that A+ B+ v and A+ D + v allow a bounded H>(y)-
calculus in L, (R ).

Proof. We can assume that 0 € p(r+A), otherwise we increase v. Thus, for 0 < v < 1, the
operator (v + A)~7) is invertible. In particular, || - | p(wap--) and ||(v +A)' =7 I, ®2)
are equivalent norms. According to Lemma [5.22] the operator v + A has a bounded
H®>(Xg)-calculus in L, (R% ). Therefore, v 4 A has bounded imaginary powers. According
to Theorem [3.11] the domain of (v + A)'~7 is:

D((v +A)'"7) = [Ly(R}), DA 1, = [Ly(RY), HARY)], = HZ7(RY).  (5.17)
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The results for B and D are proven in a similar manner. Thus, we can focus on B.
All operators By, are first order differential operators. Therefore, for each v < 1/2, the
following estimate holds:

[ Bistkl| ) < Cllugllmymy) < Cllukll gz gn)- (5.18)

Here, the constant C' > 0 depends on the L., norm of the coefficients and is thus inde-
pendent of £ and [. The estimate above implies that B is a band structure operator and
therefore bounded for HZ=*7(R" ) to L, (R%). In sum:

IB(u)ier lL,@) < (A + )7 (w)ier ||, @n)-

Therefore, we can apply Theorem which, in turn, proves the result. ]

5.5.2 A Technical Lemma

Now, we consider the operator family (A;)er. For each [ € T, the operator A, is the
L,-realization of A; = Af + A} with domain A;. Here, the right hand side is defined as:

Af = Z a;j(1)D;D; and Aj := Z X;(@)[aij(x) — ai; (1)) D;D;.

1<i,j<n 1<i,j<n

Based on Af and A7, we define Af and A; similar to A;. The coeflicients of Af are constant.
In fact, we obtain A7 from Ay by freezing the coefficients of the principal part at x = [.
According to the definition of M-ellipticity, the operator A{ inherits M-ellipticity from
Ar. Therefore, Corollary applies to Af. Thus, we obtain:

Lemma 5.24. For a given 0 < 9 < m, a constant v = v(M, |t|.,9) > 0 exists such
that A7 + v has a bounded H*(Xy)-calculus in L,(R"). Moreover, a constant C' =
C(|t]«, M,9) > 0 exists such that the following estimate holds for all f € H>(Xy):

1F(A] + )ls,@r)) < Clfllzwss)-

The constants in the lemma above are independent of [ and r. Therefore, we have some
freedom in the choice of r > 0. We can choose r > 0 such that A; is a small perturbation of
Af +v such as in Theorem [3.9] The application of the theorem proves Lemma Now,
we discuss in detail how we choose r > 0. The coefficients af;;(z) = x;(¥)[ai(7) — ai;(1)]
of A} are uniformly small such as in the following lemma:

Lemma 5.25. Let 0 < 0 < 7 < 1. A constant C' > 0 ewists such that the following
estimates hold:

a]ijlloe < Cllaijller@nyr™ and |aj;;llce®n) < Cllagllor@nyr™ .
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Proof. We recall that r is proportional to the diameter of the cube () defined in the last
subsection. We obtain the first estimate from the definition of the Holder norm:

|aij(x) — ay;(l)

jz =17

0t loe = sup [ (@) (ag (@) — ay ()] < sup{ e -1 :we Supp(xé)}
S CHainCT(Rn)TT-

By definition, aj,; € CT(R") is a product of Hélder continuous functions. Therefore, the
Holder seminorm of aj,;; can be estimated:

(a7 ;lcm@ny < Ddlor@m llai(-) = a(Dllco + X1 llool@ijlor@ny < Cllaijllor @n).-
To estimate the C? seminorm, we separate the cases |z —y| > r and |z — y| <

‘af,ij (z) — aj;; ()|

sup 5 < 9l llr ™ < Cllas oo™ and
P R /|
a’. (x) —a?d.. ad. (x) —as..
sup ‘ l,zg( ) 1,35 (y)‘ S Sup ’ l,z]( ) l,ij (y)|r7_g < CH@UHCT(R'/L)TT_U
0<|z—y|<r |.Z' - y|U 0<|z—yl<r |£L' - y|T

The estimate for the C norm of a;;; is a direct consequence of the estimates above. [
Next, we verify that the lemma above implies the following estimate:
A7 ullz,®n) < Cr7|[(A] + v)ullp,@®y) forall ue HZ(RY) NkerT. (5.19)
We know that C™(R"} ) < B(H,(R"})) as a multiplication operator for s € [0, 7]. Therefore:
[A7ull L, @) < llai;lcenllullmzen) < Crllullpzen).-

Furthermore, on H7(R") Nker T, the norm |[(Af + v) - ||, @) and the H(R’) norm are
equivalent because (A{ + v) is invertible. Therefore, Equation (5.19) holds. Now, we
compute the domain of (Af + v)7 for 2y < min{1/p, 7}. According to Theorem [3.11} the
domain is:

D(A; + 1)) = [L,(RY), HA(RY) Aker T,
By interpolation, the embedding H2,(R") < HZ(R") Nker T — HZ(R?) implies:
HEVRY) < [L(RL), HA(RY) Aker T, < HP(RL).

Therefore, D((Af +v)7) = H}'(R}) because H2'(R") = H;%(R?r) for 2y < 1/p. Further-
more, the operator (Af + )7 is invertible. Thus, |[(A7 +v)” - ||1,&n) and | - ”H?(Ri) are

equivalent norms on D((Af+v)7). We make us of Lemma and C7(R%) — B(H;(R?}))
to obtain the following estimate:

(A7 +v) Afull ) < CllATu g2 @y < CTT_QVH“H@“V(M)'
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We can further estimate the right hand side with Estimate :
el 2127 gy < O+ Al gy < 102+ 4l o).
In sum, the following estimate holds for all u € D((v + A§)'*7):
| + ALY Al ) < CF 2 (0 + Al ). (5.20)

The constants in Equation (5.19) and ((5.20]) are independent of [ and r. Therefore, we
can choose r such that Theorem applies to v + A + A; and thus Lemma holds.

5.5.3 The Main Result for Manifolds

Now, let (X, g) be a manifold with boundary and bounded geometry. We choose an atlas
of Fermi coordinates ; : Uy C X1 — V; C R with index set I' such that sup,cp [{k € T":
UsNU # 0} =: N < co. We also choose a subordinated partition of unity (¢;)er such
that 0,1, = 0 for all [ € I'. Here, v denotes an outward unit normal vector field on 0.X, .
For each 1;, we choose positive functions xj, x; € C5°(U;) such that x; = 1 on supp vy
and x; = 1 on supp x;. We denote x;. = ki.x; € C3°(V;) C C5°(R™). Similarly, we define
X~ Moreover, we write &;(2') := k;(2',0) for the induced chart on the boundary. Let
A be a sufficiently regular M-elliptic second order differential operator on X and T be a
boundary operator as in . For each [ € T', we define the following operators:

A= —A(1 = x1.) + KW ARDX and Ti = v(1 = X1.4) + R T X

For each [ € T', the operator A; is an M-elliptic second order differential operator on R"
which satisfies the regularity assumption in Section [5.5.1] Moreover, the norms of the
coefficients of the local representations of A are bounded by M. Therefore, the norms of
the coefficients are uniformly bounded with respect to [ € I'. Moreover, the seminorms
|ti|. are uniformly bounded with respect to [ € I'. We define:

A D(A) =={ue HXRY) : Tu =0} = L,(RY), urs r™ Aetu.

Each operator A; satisfies the assumptions in Section [5.5.1] Therefore, we can apply
Theorem [I.T to A; and obtain:

Lemma 5.26. For a given 0 < 9 < m, a constant v = v(M,|t|.,0) > 0 exists such that
for alll € ', the operator A;+v allows a bounded H™(Xy)-calculus. Moreover, a constant
C = C(M,|t|., V) > 0 ezists such that for all l € T, the following estimate holds:

(A + V)l e,@n) < Cllifliaws,) for all f e H*(Xy).
In Section 2.3 we defined the localization operator and the patching operator below:

P Lp(Rﬁ) — Ly(X4), (w)ien — Z Ky X151 -
leT

When we introduced the two operators, we also proved the following results:
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o L € B(H;(M.);H3(RY)),
o PcB(H

(R2); H3(M,)), and
o PL =1.

Furthermore, we now define T : HZ(R" ) — By (R, (w)ier — (Tyw)ier. Next, we
verify that the localization operator maps the kernel of T" to the kernel of T. To this end,

we fix a u € kerT'. For each component of the sequence T Lu, the following calculation
holds:

Tikithiu = R TR X kb = KT = R Tu + Ry (9w = 0.

Here, we use the assumption d,¢; = 0 for all [ € I'. Now, we consider the patching
operator. The assumption that v,0,x; = 0 is locally given by 70, x;« = 0. Therefore:

TP(w)er = TZ R Xi«w = Z Ry DX = Z R XsTiwr + 01570 (On X1 )ur = PT(w;)ier.
leT ler ler

Thus, the patching operator maps the kernel of T into the kernel of 7. We define D(A) :=
H2(R" ) Nker T. Note that (u;)ier € D(A) implies that u; € D(A;) for all | € T'. Therefore,
the following definition is reasonable:

A:D(A) :=H,(R}) Nker T C Ly(R}) — Ly(RY), (w)ier — (Aw)ier-
The following result is proven similarly to Lemma [5.22f We only have to replace Lemma
by Lemma [5.26]

Lemma 5.27. For a given 0 < 9 < m, a constant v = v(M,9,|t.|) > 0 exists such
that A + v allows a bounded H>(Xy)-calculus in L,(R7). Moreover, a constant C' =
C(M,9,|t.]) > 0 exists such that:

[f(A+ V) Be,@n) < Cllfllra, foral fe H*(Xy).

Next, we compute BL := LA — AL. For a given [ € I, we observe:
(LAT); = KA + ki, Ar) = Atk + ke, Ar) = (AL) + ki, Arl.
We rewrite the last term with the help of the partition of unity:
K[t Ar] =) ki [ Azl ki stbr = Y Bk bk, where By, := ki, [, Ar]X} k-
kel kel

The operators By are first order differential operators which have bounded coefficients
that can be estimated independent of [ and k. The operator B : HZ(R?) C L,(R%}) —
LL,(R%) is represented by the infinite matrix (By). Next, we consider the patching oper-
ator. We observe:

ArP = " Arkixie = Y 5 A = PA+ Y ki[AnL ..

lel’ ler lel
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Again, through an application of the partition of unity, we can write the last term as:

Z H; [Alv Xl,*] = Z wl Z FGZ [Ak7 Xk,*] = Z H?Xl,* Z “l,*wl/ﬁ: [Ak, Xk,*] =: PD.

ler ler’ kel ler kel

The operator D : H2(R%) C L,(R%) — Ly,(R%) is an infinite matrix with entries Dy, :=
ki ViKg[Ag, Xk+). Note that the entries are first order differential operators which have
bounded coefficients that can be estimated independent of [ and k. The operators A, B,
and D have the same properties as those in Section [5.5.1} Therefore, the proof of Lemma
[5.23] also holds for the operators A, B, and D:

Lemma 5.28. For a given 0 < ¥ < m, a constant v = v(M, |t|.,0) > 0 ezists such that
A+B+v and A+ D+ v allow a bounded H>(Xy)-calculus in L,(X ;).

Following the same arguments as in Section [5.5.1] we obtain Theorem [I.T] by Lemmata
B0 and (.28
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6 The Porous Medium Equation

In this section, we illustrate the application of the theory developed in this thesis to non-
linear parabolic partial differential equations. A simple example for this type of equations
is the porous medium equation below:

=A™ =0
(PME){ Tv = ¢ : (6.1)
v]i=0 = Vo
This equation, arises for instance, in the description of the gas flow through a porous
medium. We consider the case were the initial data vy € H2(X}) is a strictly positive
real valued function and the boundary data is independent of time and compatible with

the initial data, i.e., ¢ = Tvy. Under this assumption, we can provide the short time
existence of a solution to Problem (/6.1]). More precisely:

Theorem 6.1. Let n/p+2/q < 1. Let vy and ¢ satisfy the assumption above. Then, a
constant t, > 0 exists such that the Problem (6.1) has a unique solution v in:

v € Ly(0, £ HX(X,) N {Tv = Tug}) N W0, ta; Lp(X,))-

The proof we present is inspired by [36]. We define u := v — vy and consider the
following equivalent parabolic problem:

U — Ag(u—l—vg)m =0
Tu=0 . (6.2)

U|t:0 =0

A quick computation shows that v solves (6.1)) if and only if u solves (6.2]). Therefore, we
focus on Problem (6.2). Next, we write Problem (6.2 as an abstract parabolic problem.
To this end, we need the following identity which can easily be verified in local coordinates:

Ag(u+ o)™ = m(u+vo)" " Agu +m(m — 1)(u+v0)" |V (u + vo)[g +m((u+ v0))" " Aguo.

The first term on the right hand side is the highest order term. Therefore, we define
A(u) == —m(u + v9)™ *A, 1 and:

Fw) = m(m = 1)(u+v0)"™*|V (u+ vo)lg + m((u+ o)™ " Ag rv0.
According to the definitions above, Problem ([6.2)) is the abstract parabolic problem:
o+ A(u)u = f(u) and ul—g = 0. (6.3)

In the following, we verify that (6.3)) satisfies the assumptions of Theorem m To this
end, we define Ey = L,(X;) and E := Hg(XJF) NkerT. The trace space is defined as:

E, = By, Eljgq < [Hy(X2), Ly(X4)], ,, = By (Xy) = C7(X4). (64)

1/q,q
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Here, the last embedding only holds if 2—2/q—n/p > 7 > 0. According to the assumptions
of Theorem (6.1 the inequality holds. The operator A(ug) = —muvj" 'A, 7 satisfies the
assumptions of Theorem because, by assumption, vy is strictly positive. Therefore, a
suitable shift of A(ug) allows a bounded H>-calculus and thus A(uy) has maximal L,
regularity. Maximal regularity is part of the assumptions of Theorem [3.13] Next, we
consider the remaining assumptions of the theorem. To this end, we need the following
result:

Lemma 6.2. Let vy € C™(X ) with Rvg > 6 > 0. We define:
W:={2eC:|z] <|wlecr+35/4, Rz>d(1—-3/4)} .

A neighbourhood V' of vy in C7(X}) and a constant C' := C(0, ||vo|lc(x,)) ewist such that
for all f € H*(W) and u,u’ €V the following estimates hold:

1f (Wllerx) < Cllf iy and [[f(u) = fW)llemxp) < Clf e llu = v'llemix)-
Proof. We choose V' := B(vy,d/4). Since all functions in V' are continuous, we obtain:
imV :=Ueyimu CW":={z€C:|z| < ||vllcr +/4, Rz > (1 —1/4)}.

Furthermore, we define W’ := {z € C : |z| < ||wolle- + /2, Rz > §(1 —1/2)}. By
definition, some distance between the boundary of W” and the boundary of W’ exists,
ie., d(OW" OW') > 6/4. Therefore, |n —u(z)| > /4 forallu € V, n € OW' and z € X.
It is well-known that such a lower bound implies that (n—u)~' € C™(X,). Moreover, the
following estimate holds:

11 =) Hleroryy < 16/0%0 = ullerceyy < 16/6@llvollo-cx.y +36/4) =: S.

We can estimate the length of the boundary: |OW’| < 2n(||vollc-(xy + 0/2) = 2nL.
For all u € V and x € X, we obtain the following identity from the Cauchy integral
representation:

fu@) = == [ f) o — u(x)) " dn.

271 oW

Thus, we obtain the first estimate || f(u)|lcr(x,) < LS| f|lgew). For u,u' € V, we use
the resolvent identity to obtain:

flu(z)) = f(W/(2) = ——F——— F)(n — (@)™ (n —v'(z)) " dn

271 oW’

We can estimate the C7 (X )-norm of the integral as before. Therefore, the C7 (X )-norm
of the left hand side can be estimated as stated in the lemma. O
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According to the assumptions of Theorem and Embedding , the function vy
satisfies the assumptions of Lemma We choose a neighbourhood V' of vy, according
to Lemma Additionally, we choose a neighbourhood U of zero in E, such that the
image of U + vy under the Embedding belongs to V. For i € {1,2}, Lemma

applies to f(z) := z™". Therefore:
[(u+vo)™ |ler(x,) < C forall ue U and :
(w4 vo)™ " = (u' +v9)™ *|lcr(xy) < Cllu— ||, for all u,u’ € U. (6.6)

We recall C™(X ) < B(Ep) as a multiplication operator. Thus, Estimate implies
[A(u) — A(u) |50 < mll(u+ o)™ = (0 +v0)"™ s [ Ag 7l 50818 < Cllu — ||,

for all u,u’ € U. Therefore, Assumption (fi)) in Theorem is satisfied. Next, we verify
Assumption (ii). To this end, we define h(u) = (u + v9)™ *|V(u + vo)[3 and observe:

h(u) = h(u') =(u+v0)™ %V (u 4 vo)|2 — (u' +v0)" 2|V (u + )2
= ((u + v )m_2 — (' 4 v9)" ) [V (u+ vp)]?
+ (U + o)™ (|V(u +v0)[; — V(W +0)l;)
= ((u+v0)™ = (v +v0)" %) [V (u+ )
+ (u" 4 vo)™ 2(V(u —u'), V(u+wg)),
+ (U + o) "V (U + v), V(u —u'))g.

The assumption 1 > n/p + 2/q and the Embedding (6.4) imply that £, — C*(X}) and
E, — H; (X4+). Thus, for all u,u’ € E,, the following estimate holds:

[(Vgu, Vou')gllmy = [{Vou, Vou')gll,xy) < lullerxeoy vl meeyy < llulle, 4] g,

Therefore, for u,u’ € U, we obtain:

11V ( + o) [y < C,
IV (u = '), V(u = vo))gllm, < Cllu—u||g,, and
IV (U = o), V(u = ))gllm, < Cllu— o,

The Estimates (6.5), (6.6)), and those above imply ||h(u) — k()| g, < Cllu —u/||g,. We
obtain ||((u — vo)™ ' — (u — vo)" ") Agvollg, < Cllu — ||k, for all u,u’ € U, from the
assumption vy € H2(X,) and Estimate (6.6). Thus, ||f(u) — f(u/)||g, < Cllu —/||g, for
all u,u’ € U. In other words, Assumption is satisfied. Therefore, Theorem can
be applied to Problem ([6.3) which completes the proof of Theorem
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