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Kurzfassung

Nichtklassische Zustande des Lichts spielen eine wichtige Rolle in der modernen Quan-
tenoptik. Thre Anwendungen reichen von der Hochpréazisionsmesstechnik, wo Empfind-
lichkeitsgrenzen aufgrund von Quantenrauschen mithilfe sogenannter gequetschter Zu-
stande tiberschritten werden konnen, bis hin zu langreichweitiger sicherer Kommuni-
kation durch die Ausnutzung von Verschrankung zwischen Knoten eines Quantennetz-
werkes, was heutzutage ein immer dringlicher werdender Wunsch von Firmen, Regierun-
gen und Privatleuten ist. FEinzelne Photonen, die als kleinste Anregungen eines elek-
tromagnetischen Feldes bereits von grundlegendem Interesse sind, finden ebenfalls An-
wendung im wachsenden Feld der Quanteninformation.

In dieser Arbeit demonstriere ich, dass stark gequetschte Zustidnde auch bei sicht-
baren Lichtwellenldngen erzeugt werden konnen. Bisher war es lediglich moglich, dies
bei infraroten Wellenldngen zu realisieren, da nach aktuellem Stand nur dort nichtline-
are Kristalle verfiighar sind, die die benotigten optischen Eigenschaften aufweisen. Ich
zeige, dass dieser Umstand umgangen werden kann, indem urspriinglich bei 1550 nm
gequetschte Zustande mithilfe einer Summenfrequenzerzeugung in den sichtbaren Wel-
lenlangenbereich zu 532nm iibertragen werden. In einer Erweiterung dieses Experi-
ments wird ein Teil eines zwei-Moden-gequetschten Zustandes konvertiert, sodass Ver-
schrankung zwischen zwei unterschiedlichen Wellenlangenbereichen erzeugt wird. Da
diese Konversion an jedem Punkt eines moglichen Quantennetzwerkes stattfinden kann,
erlaubt diese Methode die sehr effiziente Ubertragung der Zustande im infraroten Bereich
durch existierende Glasfasern sowie eine anschlieBende Weiterverarbeitung in Quanten-
speichern, welche bei deutlich kiirzeren Wellenlangen bevorzugt wird.

In dieser Arbeit werden auflerdem experimentelle Untersuchungen zu Einzelphoto-
nen unternommen. Unter Ausnutzung von zeitlichen Korrelationen in erzeugten Pho-
tonenpaaren konnen einzelne Photonen vorhergesagt werden. Ich zeige die Realisierung
eines solchen Experimentes und die Rekonstruktion einer Quasi-Wahrscheinlichkeits-
verteilung: Die Wignerfunktion des Zustandes weist negative Bereiche auf, was mit
klassischen Zustanden nicht erklarbar ist und daher rein quantenmechanische Eigen-
schaften offenlegt. In einem weiteren Experiment werden einzelne Photonen zu kiirzeren
Wellenlangen konvertiert. Es wird erstmals gezeigt, dass im Konversionsprozess eine so-
genannte Quanten-Nichtgauf$izitat erhalten bleibt, was ebenfalls ein starkes Kriterium
fiir nichtklassische Eigenschaften ist.

Diese Arbeit zeigt, dass Frequenz-Hochkonversion die Erzeugung nichtklassischer Zu-
stande bei sichtbaren Wellenlangen ermoglicht, wodurch Impulse fiir die Weiterentwick-
lung von Quantenmetrologie und Quanteninformation gegeben werden.

Schliisselbegriffe: Frequenz-Hochkonversion, gequetschtes Licht, Verschrankung,
Einzelphotonen, Quanten-Nichtgaufizitat, negative Wignerfunktion
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Abstract

Nonclassical states of light play a prominent role in quantum optics. Their applications
range from high-precision metrology, where limits on measurement sensitivity due to
quantum noise can be surpassed using so-called squeezed states of light, to long-distance
secure communication, which can be facilitated by distributing nonclassical correlations
between nodes of a quantum network using entangled states of light. Single photons
are elementary excitations of an electromagnetic field, and are fundamentally interest-
ing while also having various applications in the growing field of quantum information
science. Nonclassical states of light thus hold interest for fundamental as well as prac-
tical reasons — they allow us to test the limits of quantum theory, but also allow the
distribution of information with mathematically-proven security, which is of increasing
interest to governments, companies and individuals.

In this thesis I demonstrate the generation of strongly squeezed states at visible wave-
lengths. Up to now, such states could only be generated at infrared wavelengths, since
nonlinear crystals with appropriate properties for directly generating squeezed states at
shorter wavelengths have not been found yet. A way of circumventing this is demon-
strated via the frequency up-conversion of a squeezed state initially at 1550 nm. By
means of sum-frequency generation the state’s noise properties are transferred to a field
at 532nm. In an extension to this experiment, one part of a two-mode 1550 nm squeezed
state is converted to 532nm, to demonstrate entanglement between two distinct wave-
length regimes. This demonstration is interesting for quantum networks: optical states
can efficiently distribute entanglement over telecommunication fibers, and then be in-
terfaced with matter-based nodes that generally operate at shorter wavelengths.

This thesis also presents experimental work on heralded single photon states. Tem-
poral correlations of photon pairs are exploited to herald a single photon in one mode,
and a quasi-probability distribution known as the Wigner function is experimentally
reconstructed. The Wigner function includes negative values that cannot be explained
classically, and thus signify the purely quantum mechanical properties of the state. These
heralded photons are also up-converted to shorter wavelengths, and are for the first time
shown to be quantum non-Gaussian, which is a strong criterion for nonclassicality.

The experiments in this thesis focus on the frequency up-conversion of nonclassical
states of light. Both squeezed states and single photons are converted from infrared
(telecommunication) to visible wavelengths, demonstrating a key technique for potential
quantum technologies. The quantum properties of the up-converted states are rigorously
characterized, and a number of benchmarks are demonstrated for the first time in this
frequency regime.

Key words: Frequency up-conversion, squeezed light, entanglement, single photons,
quantum non-Gaussianity, negative Wigner function
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Glossary

APD avalanche photo diode.

BBS balanced beam splitter.
BHD balanced homodyne detector.

BS beam splitter.
CV continuous variable.

DBS dichroic beam splitter.

DV discrete variable.

FC filter cavity.
FWHM f{ull width at half maximum.

HWHM half width at half maximum.
NTC negative temperature coefficient.

OPA optical parametric amplifier.

OPO optical parametric oscillator.

PPKTP periodically poled potassium titanyl phosphate.

QM quantum memory.

QNG quantum non-Gaussianity.
RR retro-reflector.

SFG sum-frequency generation.
SHG second harmonic generation.

SPDC spontaneous parametric down-conversion.

VBS variable beam splitter.
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1. Introduction

Nonclassical states of light are states that cannot be described by means of classical
statistics. Among them, squeezed and single photon states are the most prominent.
Their unique intrinsic correlations and sometimes even counter-intuitive properties allow
for a variety of applications in quantum metrology and quantum information. However,
nonclassical states are very sensitive to optical loss and thus efficient techniques to
generate, process and detect them are required.

Quantum metrology exploits nonclassical states to enhance the precision of measure-
ment devices and in this context, squeezed vacuum states of light have proven to be
a useful resource. The gravitational wave detector GEOG600 located close to Hanover,
Germany, routinely uses squeezed vacuum states of light to improve the devices measure-
ment sensitivity [Grol3]. The Advanced LIGO detectors will also implement squeezed
light sources to further increase their sensitivity, which is a major advance in the recently
opened era of gravitational wave astronomy [LIG16].

Squeezed states of light are routinely generated at infrared wavelengths via spon-
taneous parametric down-conversion utilizing a second harmonic pump field [Ebel0,
Meh11]. However, many measurement protocols require squeezed states at a variety
of optical wavelengths to achieve increased sensitivity. For example, a proposal for
DECIGO, a gravitational wave detector operating at 532nm, has been made [Kaw06],
and it would benefit from squeezed vacuum states at this wavelength. Beyond that,
in saturation spectroscopy squeezed states are required at wavelengths close to optical
transitions which are spread over the entire spectrum [Pol92]. In this thesis, I present
an experiment where strongly squeezed states at 532nm are generated by means of
frequency up-conversion.

Nonclassical states are also necessary in quantum information. Today, messages to be
transmitted over communication channels are commonly encrypted with protocols whose
security is based on the difficulty of factorizing large numbers with classical computers
in a reasonable amount of time. A quantum computer, once realized, is able to perform
this task much faster and would thus create the need for a revolution in communication
systems - at least when absolute security is required. Fortunately, quantum mechanics
also provides features to restore the security and quantum communication is an exten-
sively studied field: see [Gis02] and [Bra05, Weel2] for reviews on quantum information
with discrete and continuous variables, respectively.

The distribution of quantum information encoded in light modes over long distances
is challenging as the involved nonclassical states are sensitive to optical loss, which is
small but unavoidable in telecommunication fibers. Unlike in classical communication,
quantum information for cryptographic purposes cannot be noiselessly amplified due to
the no-cloning theorem [Die82, Woo082|]. However, so-called quantum repeaters [Briog]



allow to split a quantum communication channel at one or more nodes. By means of
entanglement distillation and swapping [Bra05], it is then possible to entangle space-like
separated nodes and the communication distance can be significantly increased.

Quantum repeaters are based on quantum memories where photons are reversibly
mapped to atomic ensembles, molecular gases, solids, et cetera [Sim10, Hes16]. Thus, ef-
ficient light-matter interfaces between infrared wavelengths, where transmission through
optical fibers is preferred, and optical modes of quantum memories play key roles in
quantum communication research.

In this thesis, I present a proof-of-principle implementation of an interface for quantum
communication tasks. Based on frequency up-conversion, nonclassical correlations are
transferred from the telecommunication wavelength 1550 nm to 532 nm, which represents
a possible operational regime where a quantum memory might be realized. A conceptual
schematic of an elementary quantum link between two nodes of a quantum network using
this interface is illustrated in Figure 1.1.

Correlated
modes
oM SFG SFG oM
a-lo] Il Sartk

Figure 1.1.: Conceptual schematic of an elementary segment of a quantum network.
Quantum correlations are established between two nodes of the network.
Efficient transmission of light is achieved by operating at telecommunication
wavelength, and the coupling to local quantum memories (QM) is enabled
by frequency up-conversion based on sum-frequency generation (SFG) of the
transmitted light beams.

A source emits two optical beams prepared at telecommunication wavelength in a
quantum-correlated state, and each beam is sent to one node of the quantum network.
To enable efficient interfacing with quantum memories, the transmitted light beams are
frequency up-converted, and their quantum state is stored in quantum memories for
further processing. This schematic can represent an elementary segment of a quantum
repeater, where efficient transmission of light over short distances would be combined
with local processing of stored quantum states. Quantum correlations can be established
over much longer distances than possible without quantum repeaters.

In this thesis, squeezed and entangled states of light as well as single photons are
frequency up-converted from 1550 nm to 532nm. Furthermore, a state showing a neg-
ative Wigner function is realized at telecommunication wavelength. The results give
new insights and impulses for nonclassical state generation for quantum metrology and
quantum information research.



Outline of this thesis

The structure of this thesis is as follows:

e Chapter 2 reviews quantum optical concepts to make the thesis relatively self-
contained for a reader familiar with basic quantum mechanics and to introduce my
notations and normalizations. Furthermore, a brief introduction of the nonlinear
optical effects that are most important in the experimental realization of this thesis
is provided.

e Chapter 3 presents the experimental frequency up-conversion of squeezed vacuum
states from 1550 to 532 nm.

e Chapter 4 demonstrates nonclassical correlations between widely separated wave-
length regimes by means of frequency up-conversion of half of a two-mode squeezed
state.

e Chapter 5 presents the frequency up-conversion of single photons. The up-conver-
ted photons are certified to be nonclassical utilizing a quantum non-Gaussianity
criterion.

e Chapter 6 presents the realization of a negative Wigner function at the telecom-
munication wavelength of 1550 nm. The experimental preparation is assisted with
frequency up-conversion of single photons heralding the state.

e Chapter 7 summarizes the results and gives an outlook.






2. Theoretical background

2.1. Quantum optics basics

The work presented in this thesis reveals phenomena that cannot be fully understood
with a classical theory of light and a quantum mechanical treatment is necessary. This
section covers theoretical basics of the quantized single mode electromagnetic field to
provide tools that allow theoretical analyses, simulations and modeling of quantum me-
chanical effects. In every chapter these fundamentals are extended to the respective
topic.

This section restricts to aspects that reappear in calculations throughout this thesis
and I refer the reader to introductory textbooks of quantum optics for further reading,
for example the textbook by Gerry and Knight [Ger05] and references therein. Unfor-
tunately, different normalizations used by the various authors of many theses, journal
articles and textbooks lead to slightly different formulae. Thus, another intention of
this chapter is to get the reader used to the notation of physical entities that are used
throughout this thesis.

Starting with the quantized harmonic oscillator, some prominent quantum states will
be introduced, namely Fock or number states, coherent states and quadrature squeezed
states. A phase space representation, the Wigner function, serves to visualize statistical
properties of these states. The section will conclude with a discussion of nonclassicality.

2.1.1. The quantized electromagnetic field

Several experiments of the last century showed that light has both wave and parti-
cle properties. Interference, dispersion and polarization effects visualize the wave fea-
tures while single photon detectors measure a light mode to be excited at very distinct
times and reveal particle-like characteristics. The quantum optical basics presented here
mainly follow the first chapters in Leonhardt’s book [Leo05]. However, fundamental
quantum mechanics can be found in many other textbooks. In the following a light field
is described by the quantized electric field propagating in z-direction

E(z,t) = u*(z,t)a+ u(z,t)al, (2.1)

where u(z,t) = ugexpli(zk — wt)] with the polarization vector ug, wave vector k and
angular frequency w describes a plane wave. This plane wave is excited by the quantized
amplitude a. The hat above a physical entity depicts that it is a quantum mechani-
cal operator while the superscripts * and T denote complex and hermitian conjugates,
respectively.



The amplitude operators obey the bosonic commutation relation
[a,a'] =1 (2.2)

and with these, one can introduce the dimensionless quadrature operators

i=—
\/f (2.3)
1\/§
which are hermitian operators with real eigenvalues.
They are motivated by the fact that they are proportional to the real and imaginary

part of the quantized field amplitude

1
a=—=(q+1p). 2.4
ﬁ(q p) (2.4)
The commutation relation between the quadrature operators is
[g,p] =1 (2.5)

from which their Heisenberg uncertainty relation follows to be

1
AG-Ap > 3" (2.6)
Here, the standard deviation of an operator A is defined as
AA =/ (A2) — (A)? (2.7)

where (-) is the quantum mechanical expectation value. The Hamiltonian of the system
in terms of the quadrature operators is

Lo, .
H= §hw(q2 +p%). (2.8)

Furthermore it is useful to introduce the generalized, phase rotated quadrature operator

1 . .
j9 = —=(ae ™ +a'e) = Gcosd + psin. (2.9)

quﬁ

The eigenstates of the quadrature operators are the so-called quadrature states and
are defined as

dlg) = dla), plp) = plp)- (2.10)

One can change from one representation to the other via the Fourier transform

1 [ .
- dp e~
q) Nors / _dp )

o (2.11)
1 +igp
Ip) = m/wdqe )



and they are often used when one uses the quadrature wave functions

U(g) = (glv), P(p) = (plv), (2.12)

which are experimentally accessible using balanced homodyne detection. The absolute
square of quadrature operators gives the probability distribution

P(q,p) = gl )|* (2.13)

and describes the statistics of a measurement on |1)).

2.1.2. Phase-space representation — Wigner function

In classical physics there is the phase-space distribution P(q,p), which gives the prob-
ability of finding a pair of ¢ and p values in their simultaneous measurement. The
situation is different in quantum mechanics: It is due to Heisenberg’s uncertainty prin-
ciple Eq. (2.6) that one cannot measure position and momentum of the quantized har-
monic oscillator simultaneously with arbitrary precision, for example. In this sense, a
probability distribution in quantum physics seems not to make sense. However, we can
measure probability distributions like Eq. (2.13) which allows us to develop the idea of
a quasiprobability distribution W (g, p) that accounts for quantum features. The most
popular one is called Wigner function which can most easily be defined using quantum
states described in terms of the density matrix.

Given that a state is formed by an ensemble of quantum states |1);), the state’s density
operator p is defined as

p= szlz/a)wal ) (2.14)

where p; is the probability of finding the state in [¢;). If only one p; is non-vanishing,
the state is called a pure state, otherwise it is a mixed state. The density operator can
be expressed in any other basis {|¢x)} using the relation

p=_pulde) (il pu = (Delplon) - (2.15)
k,l

The matrix py; is called density matrix.
Using the density operator, the Wigner function is then defined as [Leo05]

1 - ipx L

W(g,p) = —/ da e <q — 5P

2 J_

q+§> . (2.16)

The probability distribution of one quadrature, called marginal distribution, can be
obtained by integration over the other, for example

Plq) = / T dpW(a,p) = (alfla) (2.17)

In the following sections I will present some of the most popular quantum states and
plot their Wigner function.



2.1.3. Fock states

Fock states |n) are also called number states as they are eigenstates of the photon number
operator, which is defined as
n=a'a (2.18)

analogously to a classical modulus-squared amplitude. Its action on an eigenstate is
n|n) =n|n), n e N. (2.19)

Fock states have a defined (integer) photon number. Even though their theoretical de-
scription is rather easy, their experimental generation requires relatively complex tech-
niques.

We can rewrite the Hamiltonian of the quantum mechanical harmonic oscillator by
inserting Eq. (2.3) into Eq. (2.8) and using the commutation relation Eq. (2.2)

1 1
H= §hw(q2 + p?) = hw(n + 5) : (2.20)

Thus the energy of the quantum mechanical harmonic oscillator can both be expressed
in terms of continuous variables (the quadratures) and discrete numbers. So to speak,
this is the wave-particle duality in a single equation.

The action of the operators @ and a' is

a'ln) = vn+1|n + 1) '
so that it becomes rather obvious why @ and &' are commonly called annihilation and
creation operator, respectively. They lower or increase the number of excitations in the
state. A Fock state |n) - keeping a proper renormalization - can be expressed via n-times
action of the creation operator to the Fock state |0)

ATn
“10).
N

According to Eq. (2.20), the so-called vacuum state |0) contains the energy fuww/2. This

results in some interesting phenomena like the Casimir effect but is also reason for a

limitation of measurement devices where vacuum fluctuations spoil their sensitivity.
Finally I note that the Fock states are complete and orthonormal

In) = (2.22)

> rjinl =1 -
(n|n') = 0o

and form the most common Hilbert space basis in quantum optics, the Fock basis.



Even though the photon number of a Fock state is precisely determined, the standard
deviation of the generalized quadrature is non-vanishing and phase independent

Adp — q/%(2n +1). (2.24)

Only the Fock state with no excitation |n = 0) is a minimum uncertainty state with
AGAp = 3.

If a state is given in the Fock basis p =) pma|m)(n|, its Wigner function is given
by

R [Z pualm) (| g+ /2)

o0

m,n

(2.25)
= Z pmnWmn(Qa p) .

The Wigner function element W,,, (¢, p) is given by [MN10]

Wona:p) = 5= | doe(q = o/2lm)(nlg + /2

I 2,2 2m7 (=)™ (=g +1ip)" "y %L%m_n) 2(¢* + p?)] form >n
= —e . ’
m 2n=m (1) (—q + ip)" LG 2(? + %)) form <n

(2.26)

where Lg) (x) are generalized Laguerre polynomials [Bro08|. The overlap between a Fock

state and a quadrature eigenstate is [Leo05]
e/’ H,(q)

(nlg) = W,

where H,(z) is the nth Hermite polynomial [Bro08|. For a Fock state with p = |n)(n|
one finally obtains

(2.27)

1
Wa(g.p) = —e 07 (=1)"LYAg" +°)] (2.28)
s
which gives for the vacuum state |0)
1
Wo(q.p) = —e @7 (2.29)
s

and for the single photon state |1)
1
Wilg,p) = —e™" 7 (24" = 2p° — 1). (2:30)

These two Wigner functions are plotted in Figure 2.1. The Wigner function of the
vacuum is a simple Gaussian with variance %, while the single photon has negative

values around the origin. This feature is a strong evidence of the state’s nonclassical
properties as I will discuss in Section 2.1.6.
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(a) Vacuum state |0). (b) Single photon state |1).

Figure 2.1.: Wigner functions of the vacuum and single photon state. While the vacuum
state is a simple Gaussian distribution, the single photon state has nega-
tive values around the origin. These are strong evidences for nonclassical
properties.

2.1.4. Coherent states

Coherent states |«) represent quantum states as they are produced by a high-quality
laser and they are defined as eigenstates of the annihilation operator

ala) = ala)y, ae€C. (2.31)
Any given state can be expressed in the coherent state basis
) = [ Ealaal) (2.32)
as they are a complete set of non-orthogonal basis vectors:
% / Pala)a] =1, (alo/) = e lol/2rare’—laP/2. (2.33)

The coherent states can be expressed in the Fock state basis as

— 1o/ Z —]n (2.34)

The photon number distribution of a coherent state is therefore given as

palr) = linfa) 2 = 12 b (2.35)

The quadrature variance of a coherent state is (Agy)? = (@|gZ|a) — (@|gs|a)? = L.
Like the vacuum state, a coherent state is a minimum uncertainty state as

AG-Ap=1

5 (2.36)
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The Wigner function of a coherent state is given by

1 2 2 1
Walg,p) = —e @ 0 =p=p0)" = o — —(gy 41 2.37
(a,p) = — ﬂ(qO Po) (2.37)
and is plotted in Figure 2.2. A coherent state has the same noise properties as a vacuum
state except that it is shifted (displaced) from the origin.
The expectation values for the quadratures are the respective displacement from the

origin given a complex amplitude o = %(QO +ipo):

(@)a =00, (Pla="po- (2.38)

0.4
0.2

-0.2
-0.4

(a) Vacuum state |0). (b) Coherent state |a).

Figure 2.2.: Wigner functions of the vacuum and coherent state with a = \%2(2i —2).

Both states are minimum uncertainty states with the same noise properties.
The coherent state is a displaced vacuum state.

2.1.5. Squeezed states

In the two previous sections the vacuum and coherent states were found to be minimum

uncertainty states with AgAp = % However, this equation does not mean that both

standard deviations must be equal A¢ = Ap = \% Heisenberg’s uncertainty relation is
still fulfilled when the noise in one quadrature is smaller than LQ while the orthogonal
quadrature shows a correspondingly higher noise, of course. A state with these properties
is called a (quadrature) squeezed state.

A squeezed state is formally described by the unitary squeezing operator [Dru81,
Wal94]

S(¢) = eslca~¢ra®) (2.39)

where ¢ = re™? (r € RT) is a complex number. One can show that the annihilation and
creation operator of the light field are transformed like

ST(0)aS(¢) = acosh(r) 4+ afe ™ sinh(r)

A A . 2.40
ST(0)atS(¢) = af cosh(r) + ae' sinh(r). (2:40)
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A generalized quadrature operator is then transformed like
ST(€)48S(C) = Go cosh(r) + §_4_gsinh(r) . (2.41)

The effect of squeezing becomes obvious when one looks at the orthogonal quadratures
dor and Gg» with the phases 6’ = —%5 and 0" = 0"+ 7:

SH(Q)derS(C) = doe™,

S G 2.492
ST(¢)dorS(C) = Gone™ . (2.42)

This implies that the variance is increased (anti-squeezed) at the phase 6" and decreased
(squeezed) at phase 0":

A2§TQQI§ = e+2TA2cj9/ > A2ST(jgﬂg = e_QTAQQAQN (243)

The variance of a vacuum state is A%g = (0/¢*0) — (0]¢|0)® = 1. A vacuum that is
squeezed in g-direction (choose ¢ such that §” = 0, i.e. ¢ = 7) has reduced variance
along the ¢g-axis and increased noise along the p-axis

1 1
A%G = 5e—2’“, A?p = 5e+27“. (2.44)

Even though the variance along one axis drops below the vacuum noise, Heisenberg’s
uncertainty relation is still valid and a pure squeezed vacuum state stays a minimum
uncertainty state

1
AG-Ap= . (2.45)

The Wigner function of a squeezed vacuum state is shown in Figure 2.3. The noise along
one axis is reduced while it is increased along the orthogonal one. The formula for a

Wigner function of a vacuum state squeezed in the ¢g-quadrature ({ = —r) is
1 2r 2 —2r
Wilg,p) = —exp(—e”q" —e™p"). (2.46)

The squeezing operator has quadratic terms of the creation operator which means that
two photons are generated at the same time. This is reflected in the photon number
distribution of a squeezed vacuum state [Scu97]

0, n odd
p(n)=9 . 1 . Y : (2.47)
(n/2)!? cosh(r) (5 tan (T’)) n-even

The probability of finding an odd number of photons in a pure squeezed vacuum state
is zero. The mean photon number of a squeezed vacuum is not zero, but (i) = sinh?(r).
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0.4 0.4
0.2 0.2
0 0
0.2 -0.2
-0.4 -04
(a) Vacuum state |0). (b) Squeezed vacuum state S(¢ = —0.75)|0).
Figure 2.3.: Wigner functions of the vacuum and squeezed vacuum state with ( = —0.75,

i.e. » =0.75, ¢ = m. The noise of the squeezed state drops below the vacuum
noise in one quadrature at the cost of higher noise in the orthogonal one.

2.1.6. Nonclassical states

All states of light can be expressed in the Fock basis, which is a consequence of the
quantization of the electromagnetic field. It therefore seems an oxymoron to speak of
classical states of light. However, due to the correspondence principle, there must be
some formalism that represents the analogue of a classical harmonic oscillator. It was
Erwin Schrodinger in 1926 who showed that states we know as coherent states today do
the job [Sch26]. However, in the first place it seemed “bizarre” to him that superpositions
of quantum mechanical eigenfunctions lead to the description of a classical system.

In 1963, Roy Glauber’s famous paper on coherent states of light was published [Gla63].
Glauber found that the coherent states best describe classical light fields on a quantum
mechanical basis. He also introduced the so-called P-function, which is a weight function
for a state in the basis of coherent states

p= /an P(a) |a){al. (2.48)

For a (pure) coherent state, P(«) is a d-function, for a thermal state it is a Gaussian
distribution. However, for many other states the P-function can be very ill-behaved:
it can have negative values or strong singularities like derivatives of d-functions. The
P-function is then no longer a probability distribution. For example, a Fock state |n)
contains a 2n-order derivative of a d-function [Ger(05], for a squeezed vacuum state the
order of derivatives is co [Kiell]. These states and all states that cannot be described
by a well-behaved P-function are nonclassical.

Nonclassical states are a resource in today’s quantum technology research. When
experimenters generate these state they obviously need tools to verify the nonclassical-
ity. Due to the already mathematically challenging properties of the P-function, direct
reconstruction of this distribution is impossible [Kiell]. Throughout this thesis I will
make use of different criteria certifying nonclassicality:
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1. Negative Wigner function: It is always possible to reconstruct the Wigner function
of a state and negative values of this quasi-probability distribution clearly illustrate
nonclassicality.

2. Quantum non-Gaussianity: The nonclassical properties of optical states are very
sensitive to losses. If, for instance, a single photon state |1) is mixed with more
than 50% of a vacuum state, its Wigner function does not show negative values
anymore. However, it is still possible to certify strongly nonclassical properties
with a criterion called quantum non-Gaussianity (QNG) [Filll]. A state showing
QNG cannot be expressed as a convex mixture of Gaussian states for which higher
order nonlinearities are required. A more detailed presentation of this criterion is
given in Chapter 5.

3. Nonclassical noise suppression: Squeezed states possess a positive (Gaussian)
Wigner function. Nonetheless, their P-function is mathematically ill-behaved and
nonclassical features become evident when analyzing the states’ noise properties.
Squeezed states have noise below the vacuum level in one quadrature at the cost
of higher noise in the orthogonal quadrature.

These criteria are not the only measures of nonclassicality, of course. Especially when
analyzing single photon sources there exists a variety of tools to analyze the states like
anti-correlation parameters [Gra86] or the second order correlation function ¢?. T will
restrict the analysis to measures that are easy to understand, quite straightforward to
apply and strong evidence for nonclassicality of quantum states.

2.2. Balanced homodyne detection

In Section 2.1.1 I have introduced the dimensionless quadrature operators ¢ and p and
the generalized quadrature operator

Gy = %(&eie +a'el’) = gcosf + psinf . (2.49)
This can be made accessible experimentally by the method of balanced homodyne de-
tection which I will introduce here.

In balanced homodyne detection the signal field of interest is overlapped with a local
oscillator at a 50:50 (balanced) beam splitter. In the continuous wave case the local
oscillator is a strong coherent light field with the same optical frequency as the signal
field. In its optical path there is a phase shifter to set the relative phase 1) between the
signal and the local oscillator.

A schematic of a balanced homodyne detector (BHD) is shown in Figure 2.4. The
signal field enters the beam splitter in port a, the local oscillator in port b. The out-
put ports ¢ and d are recorded with photo detectors whose signals are subtracted and
analyzed at a spectrum analyzer or oscilloscope.
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local 1/ ‘
oscillator V b d

Figure 2.4.: Schematic of a balanced homodyne detector (BHD). A signal field is over-
lapped with a local oscillator field at a 50:50 beam splitter. The two output
ports of the BHD are recorded with two photo detectors and electronically
subtracted.

The output ports of the beam splitter read

1 N
—(a+1b),
A \? A (2.50)
d = —(b+ia).

¢ =

The photo currents I, o< (¢1¢) and I o (dtd) are subtracted. The difference signal reads

I, —I; o (¢Te —d
(2.51)

Mode b is a strong field reaching the classical limit so that b= Be ! with 8 = |Ble Y.
We then get . _ o
I, — I; o< |Bl{ae™te™ + ale ") | (2.52)

where 0 = 1 + 7. The signal field has the same frequency as the local oscillator and we
can write a = age “!. Using the generalized quadrature operator

1 . .
Go = E (doe_le + dgeﬁ) (2.53)

we can write the photo detector difference as
Lo — Iy o< V2|B[(do) - (2.54)

The output of a BHD is the quadrature amplitude of the signal field, amplified by the
local oscillator amplitude. When the signal port is blocked, the BHD measures vacuum
fluctuations which are usually used as a reference for subsequent measurements. If the
signal input is a squeezed vacuum state for instance, the noise drops significantly below
the vacuum reference and reveals the nonclassical properties of the field. By scanning
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the relative phase between the signal and local oscillator field, one can continuously
access the different quadratures of the signal. A balanced homodyne detector is also
often used to perform a full tomography of a quantum state to reconstruct its Wigner
function.

2.3. Nonlinear optics

Nonlinear optics is present in basically every quantum optics laboratory and fundamen-
tally important for the generation of nonclassical states. In this section I will briefly
introduce the basic processes that are relevant in the experimental realization of this
thesis. The classical treatment basically follows the book by Boyd [Boy03| and plane
waves are assumed (for deviations from this assumption and consequences see [Las07],

e.g.).

2.3.1. Nonlinear polarization

The description of nonlinear processes is done via the dipole moment per unit volume,
called the polarization P. The power series of P in terms of the electric field E reads

P(t)=e (xXVE®) + xPE*(t) + XPE () +...) . (2.55)

The first term describes the linear response of the system like the refractive properties
of a material. Nonlinear optics starts with the second term. The nonlinear polarizations
are proportional to the nonlinear susceptibilities of second (x?) and third (y®) order.
In practice, these higher order susceptibilities are much smaller than the first order
susceptibility ). This means that nonlinear optical phenomena require strong electric
fields to become measurable.

2.3.2. Three wave mixing
Let a light field consist of two fields with (angular) frequency w; and ws so that
E(t) = Eje " 4 Fye w2t (2.56)

When this is inserted into the power series of the polarization Eq. (2.55), the nonlinear
polarization of second order is given by

PO (t) = egxP[E2e 2wt | E2e~2w2t 4 9 Fye iWitwd)t 4 op pyeilr—wa)t) (2 57)

Terms with 2w; (j = 1;2) describe the generation of the second harmonic fields of £},
while (wy £ wy) are the result of sum- and difference-frequency generation. By choosing
appropriate phase matching conditions, one individual term can dominate the others that
are suppressed. This way it is possible to run a system in sum- or difference-frequency
generation mode only.
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Sum-frequency generation

In sum-frequency generation the energy of two input fields adds up, generating a new
field with a higher optical frequency. Let’s assume that a nonlinear crystal is pumped
with a field with frequency w, and its amplitude is approximately constant along the
crystal axis, i.e. 422 = ( where z is the direction of the interaction. The sum-frequency
generation happens, when a photon with frequency w; combines with a pump photon.
A new, high-energy photon is generated, w; + wy = ws3. Following Boyd [Boy03], the
coupled equations of motion for the process are

dE,

—— = K Fze 4% 2.58
Az 1£3€ ) ( )
dE; :

——= = K3E et 2.59
Az 3Lne ) ( )

where E; (7 € {1,2,3}) are the amplitudes of the fields with frequency w;. The wave
vectors for the fields are k; and Ak = ky + kg — k3 is the wave vector mismatch which
will be discussed a little later. The complex constants K are defined as
w2y @ w2y @
K =—"—FE; K;3=—1
! ]{?102 2 3 k’302

The solutions of the coupled differential equations is formally given by

B. (2.60)

1 = 'g B B ) .

Ei(2) = (Fe'9* + Ge™9%)e 18k=/2 (2.61)
3 = 9 B . ) :

E3(2) = (Ce'9* + De197)etiAk=/2 (2.62)

and shows oscillatory behavior. The coefficients C', D, F' and G are to be determined
from boundary conditions. Inserting the solution into Eq. (2.58) gives

i ; : 1 ) ) )
(igFeng o igGe—lgz)e—lAk’Z/Z _ EiAk’(Felgz + Ge—lgz)e—lAkz/Q
— (cheigz 4 KlDefigz)efiAkz/Z

(2.63)

and
: igz - —igz\ ,+iAkz/2 - igz —igz\ ,+iAkz/2
(igCe igDe™"9%)e + 21Ak(C’e + De7'%)e (2.64)
= (K3Fe'9% + K3Ge 197)etiake/2

These relations have to be fulfilled by the terms varying with e*9* and e™19* separately
so that one obtains a set of linear equations

(i(g :l%(fk) i(g :L?Ak;)> (5) = 0. (2.65)

A solution exists if the determinant of the matrix vanishes, i.e.

1
9" = —KiKs + LAk (2.66)
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and with the definition x?> = —K; K3 we can write

1
g=1/r*+ ZA/{? : (2.67)

Assuming that there is no field with frequency ws at the input (E5(0) = 0) and knowing
the strength of E;(0), we can determine the coefficients

i K3
1 1Ak
F = 3E(0)+ 7 Ei(0), (2.68)
1 1Ak
G =5E(0) - 1715’1(0)

With this the amplitudes of the fields evolve as

Ei(z) = (EI(O) cos(gz) + iQA—ngl(O) sin(gz)> o iAk/2 (2.69)
Ey(z) = %El(m sin(gz)eldk+/2 (2.70)

and the intensity of the generated field is proportional to
B = 150 52 gin(g) (271)
3(2)|” = | e sin“(gz) . ,

If the wave vector mismatch Ak is zero, ¢ is minimal and the intensity of the generated
field is maximized. For an increasing wave vector mismatch, the maximum achievable
intensity of the generated field decreases but is obtained at an earlier point. This be-
havior is illustrated in Figure 2.5. A special case of sum-frequency generation is when
w; = wy and therefore wz = 2w;. This is called second harmonic generation (SHG).

Difference-frequency generation

In difference frequency generation two photons at frequencies w3 and w; combine to a
new photon at their difference frequency ws = w3z — w;. We assume that the field at
frequency ws is constant throughout the process so that % = 0. The coupled equations
for the other two amplitudes read

dE; B iw%X@)

— E-EF iAkz

dz k2 P 20
@ (2.72)

dE, _ X o itk

dz koc2 21 '
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Figure 2.5.: The sum-frequency intensity |E3|* as a function of the interaction length
and two different phase mismatches Ak assuming plane waves. Maximum
intensity can be obtained for zero phase mismatch and a certain interaction
length. After this point the generated field gets converted back to the field
at frequency w; [Baull, Sam12].

and have the solution

Ei(z) = [El(O) (Cosh(gz) - iQA—gk sinh(gz)) + %E;‘(O) sinh(gz)} eBk/2

(2.73)
A |
Es(z) = |:E2(0) (Cosh(gz) — % sinh(gz)) + %E;‘(O) Sinh(gz)} oiBk=/2
where

With constant pump power (frequency wsz) and optimal® phase matching Ak = 0 the
low frequency fields are amplified. The generated field at wy stimulates the generation
of the field at w; and vice versa. The process is also called parametric amplification.

IPlane waves are assumed here. In a full treatment with Gaussian beams, slight modifications have
to be taken into account [Las07]
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Optical parametric oscillator (OPO)

An optical parametric oscillator is a device where parametric amplification is enhanced
by embedding the nonlinear medium in an optical resonator and driving the system above
the so-called oscillation threshold. This is the point where the pump field is so strong
that the internal amplification is higher than the round trip losses of the resonator. The
OPO then starts acting as a laser and when operated far above the oscillation threshold
it emits coherent beams at the frequencies w; and wy. Vacuum fluctuations initialize
the process and no seed field besides the pump field is required as input to the system.
Only resonance conditions of the cavity and phase matching determines what the output
frequencies are. One could imagine that these are many parameters and an OPO is a
rather complex system. It has to be stabilized very carefully to handle longitudinal mode
hops and cluster jumps, both changing the output frequencies significantly. I will not
treat the OPO with all its properties here and refer the reader to the detailed analysis of
Eckhardt [Eck91]. An experimental study of the OPO as the fundamental light source
used throughout this thesis can be found in my master thesis [Baull] and in the doctoral
theses of Aiko Samblowski [Sam12] and Christina Vollmer [Voll4a].

Despite the complexity of an OPO, I will briefly describe the basic mechanisms using
a classical treatment. As mentioned before, the oscillation starts when a threshold
condition is fulfilled, that is when the amplification of the fields at w; and wy exceeds the
round trip loss. Round trip losses are absorption, scattering or simply the transmission
through the resonator’s outcoupling mirror that has a reflectivity of Ry for the fields at
wij2. The incoupling mirror is assumed to have perfect reflectivity for both frequencies
and the system is not a cavity for the pump field. Using the solutions for the difference
frequency generation Eq. (2.73) and Ak = 0 for simplicity we get

E1(0) = lEl(O) cosh(gL) + ﬂE’;‘(O) sinh(gL)] (1-14),
/f* (2.75)
E3(0) = [E;(O) cosh(gL) + ?QEl(O) sinh(gL)} (1-1y),

where [; = 1 — Rje %L (j = in,out) is the fraction of power that gets lost internally
(P12 are the loss coefficients) or due to transmission through the outcoupling mirror.
The two equations can be solved to provide the threshold condition

Il
cosh(gL) > 14 ———2—— (2.76)
2—1 — 1y
which simplifies for [; < 1 as one can approximate cosh(z) =1+ %SL’Q:
g2L2 > [y . (277)

The factor ¢g* is dependent on the pump power which is proportional to |Fs|? so that
the threshold condition is usually given in terms of the pump power.

By replacing g with gsinc(AkL/2), the analysis can be easily generalized to non-
perfect phase matching. As a result one obtains a gain profile depending on the phase
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mismatch Ak in which oscillations can appear. Another condition is that both fields
have to be simultaneously resonant which is non-trivial for w; # ws. Oscillations do not
necessarily appear for Ak = 0. Far above the threshold for one pair of frequencies w;
and wy, other pairs might fulfill the threshold condition as well, making the system run
in a multi-frequency mode. Beyond that, tiny changes in the resonance conditions or
phase mismatch may lead the system to “jump” to another frequency pair. This effect
may be wanted as the output frequencies can be tuned in a quite wide range. However,
stable control of phase matching and resonance conditions is required to maintain the
oscillation at a specific frequency pair once it is set to a preferred operational point.
Especially in the experiments presented in this thesis the performance of subsequent
systems strongly depend on the output frequencies of the OPO.

An optical parametric oscillator below threshold is called optical parametric amplifier
(OPA). Below threshold, the pump power is not high enough to lead to parametric
oscillation. However, optical fields are generated which are not coherent fields but photon
pairs with sub-Poissonian statistics; always two photons at w; and wy at a time. In this
thesis an OPA is used to generate photon pairs at well separated optical frequencies. The
degenerate case w; = wsy is also very interesting: it is the resource of squeezed vacuum
states. Both, the degenerate and non-degenerate OPA are working horses of uncountable
quantum optics experiments and developed to standard tools in quantum information
science and quantum metrology. I will present a quantum mechanical treatment of these
systems in following chapters.

2.4. Frequency up-conversion of quantum states

In the previous sections I introduced the concept of sum-frequency generation with
classical optics. Here, I will present a quantum mechanical treatment of the process and
show that quantum states can be frequency up-converted. I closely follow the description
by Prem Kumar [Kum90], who also demonstrated quantum up-conversion for the first
time in the early 1990s [Hua92].

We have seen that in sum-frequency generation two photons with frequency w; and
wy can combine to a new photon at frequency ws = wy + ws. The effective Hamiltonian

for this process is
Lo = i (aragal — alalas) (2.78)

where the coupling constant ¢’ describes the nonlinear optical interaction and is pro-
portional to the nonlinear susceptibility x(?). In the following we assume that the field
at frequency wy is a strong pump field so that it is assumed not to be affected by the
process and remains undepleted. The Hamiltonian then reduces to

H.g = ih(ayal — alas) (2.79)

where ¢ = (’(a2). In the interaction picture one obtains the Heisenberg equations of
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motion for the operators a; and as

day i
E1 = L [Hag.d
di h[ i (11]
1, ~ A At A A
= ﬁlhg[alag — alag, aq]
(2.80)
= —C | @ [al, &) + [ar, ad] @ — af as, @] — [a], a1 as
0 0 0 -1
= —(as,
das i
- = =z He ) (
dt 7;[ m, ]
1, A At A A
= ﬁlhdala; — alag, as)
(2.81)
= —C | a1 [al, as] + [as, as) al — af [as, as] — [a], a3 és
= (ay .
These coupled differential equations have the solution
ai(t) = a1(0) cos(Ct) — as(0) sin((t) (2.82)
as(t) = as(0) cos(Ct) + a1(0) sin(Ct) . '
At times t = 214 we have full conversion as
in(t=o>) = —a3(0) and as(t = -) = @ (0) (2.83)
n(t=—) = —a and as(t=—) = a ) )
1 % 3 3 % 1

The time of full conversion depends on the pump power which is proportional to the
squared pump amplitude Py o< {as)?.

During the process all quantum properties are maintained. Given that a state is
prepared as |U) = |1)]@)3, the expectation values are (fi) := (U] f,(a,)|¥) and (f3) :=
(W] f3(as)|¥). The functions f; and f; depend on @, and dz. For ¢ = 0 the quantum
properties are described by the individual states |¢); and |¢)3 as

(fi)ieo = 1(¥]fi(ar(0))[¥)

. . (2.84)
(fs)i=o = 3(0[f3(a3(0))|®)s -
At t = 21( these properties are in the other mode as
(fli=z = 3(8lf1(=a5(0))|¢)s,
. . (2.85)
(fadi=z = 1(|f3(a2(0))]¢))1 -

¢

The process of quantum up-conversion is illustrated in Figure 2.6. In this thesis the
signal is converted from the infrared wavelength 1550 nm into the visible spectrum at
532 nm while using a strong pump field at 810 nm.
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Figure 2.6.: Illustration of quantum up-conversion. A signal field at 1550 nm is converted
to 532 nm using a strong pump field which is assumed not to be affected by
the process. The illustration was first published in [Voll4b].

Phase noise

The assumption that the field at wy (810nm) is just driving the conversion process and
its properties are not affecting the up-converted state is valid only if the classical noise
is negligible. If the pump field’s phase ¢, (defined as the difference phase between the
pump field and the input signal) is included in the treatment, the coupling constant ¢
can be written as ¢ = |(|e!??. The evolutions of the operators are then given by

1(8) = n (0) cos[€11) — f0) = sin([c1)

in(t) = (0 cos([CI) + 1 (0) 7 sin(€10)

After the time t = 7/2( the state is transferred from a; to a3 and the pump field’s phase
is imprinted on the up-converted state:

(2.86)

s (;—C) = 4, (0)er | (2.87)

If the pump phase fluctuates also the up-converted state’s phase fluctuates. This is

critical if the states are phase sensitive as squeezed states are for example. A stable
pump phase is therefore required.
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3. Frequency up-conversion of
squeezed vacuum states

C. Baune, J. Gniesmer, A. Schénbeck, C. E. Vollmer, J. Fiurasek, and R. Schnabel
Strongly squeezed states at 532nm based on frequency up-conversion
Optics Express 23, 16035 (2015)

Squeezed vacuum states of light are an important resource in modern quantum me-
trology. For example, the recent detection of gravitational waves opened a new era
of astronomy [LIG16], and it is foreseeable that besides the detector GEO600 close to
Hanover, Germany [Grol3] also the aLIGO detectors in the USA will apply squeezed
states for further sensitivity improvements. The generation of squeezed vacuum states
is very well established in the infrared wavelength regime and a shot noise suppression
of more than 12.3 dB was demonstrated at 1064 and 1550 nm [Ebel0, Meh11]. However,
squeezed states of light are required at a variety of optical wavelengths.

The standard method for the generation of squeezed vacuum states of light — para-
metric down-conversion utilizing a second harmonic pump field — cannot be applied at
short wavelengths. Up to today, no nonlinear materials are available showing low opti-
cal absorption and sufficiently high nonlinear susceptibilities for ultraviolet fields that
would be required as pump fields. These fields lead to disturbing effects like blue light
induced infrared absorption (BLIIRA) [Mab94] or photo-refractive damage. Alternative
approaches to produce squeezed states at visible wavelengths are based on four-wave-
mixing [Slu85], self-phase modulation [Ber91] or second-harmonic generation [T'su95].
None of these processes has shown to enable the generation of squeezed vacuum states
with a reasonably high nonclassical noise suppression.

The most promising approach to obtain squeezed states at short wavelengths is their
generation at infrared wavelengths and subsequent frequency up-conversion. By mixing
a squeezed vacuum field at infrared wavelengths with an intense pump field, the nonclas-
sical noise properties can be transferred to a field with a much higher optical frequency;,
i.e. shorter wavelength. This chapter presents an experiment following this approach,
which was initiated during the doctoral theses of Aiko Samblowski [Sam12] and Christina
Vollmer [Voll4a], who both supervised me during my master thesis [Baull]. First results
were published in Physical Review Letters 112 where we showed a nonclassical noise sup-
pression of 1.5dB below the vacuum reference [Voll4b]. In my work presented in the
following the squeezing strength could be significantly increased, and a nonclassical noise
suppression of 5.5 dB below the shot noise is demonstrated.

In Section 3.1 theoretical formulae for squeezed vacuum states that are subject to
frequency up-conversion are given. The experimental setup is explained in detail in
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Section 3.2. After that the measurement results are presented as well as a demonstration
of the applicability of the up-converted states in a proof-of-principle quantum metrology
setup (Section 3.3). The chapter concludes with a discussion and an outlook.

3.1. Degenerate parametric down-conversion and
squeezing

The degenerate optical parametric amplifier (OPA) is the common resource of squeezed
vacuum states of light. It generally consists of an optical cavity and a non-linear optical
medium inside which is driven with a second harmonic pump field. In the degenerate
down-conversion process one pump photon decays into two photons. By applying a
balanced homodyne detection (BHD) scheme, cf. Section 2.2, different quadratures of
the light field can be analyzed. If the phase of the BHD is set appropriately, squeezed
noise statistics are revealed while anti-squeezed statistics are measured in the orthogonal
quadrature.
The output spectra of an OPA for the two extremal quadratures are given by
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where w is the sideband (angular) frequency, v is the leakage rate of the cavity, and the
pump parameter € is proportional to the pump field amplitude. The state is detected
with an efficiency 7, that includes propagation losses and a finite detection efficiency of
the BHD. Furthermore, I used the abbreviations A = v — || and p = v+ |g|]. A detailed
derivation of the power spectrum is given in the appendix, Section A.3.

The spectrum mentioned above directly describes the output of an OPA. However,
during the process of frequency up-conversion the state passes another cavity that in-
troduces additional frequency filtering. The output spectrum is then given by
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where k is the decay rate of the additional sum-frequency generation cavity.

In Figure 3.1 the power spectrum is shown for a squeezed and anti-squeezed quadra-
ture, both with and without an additional frequency filter. The degree of squeezing
degrades for increasing sideband frequencies. A larger cavity decay rate ~y (v/7 is
FWHM) would increase the bandwidth of the squeezed states at the cost of the need
for a higher pump parameter €. Thus, if the pump power is limited as it is in the ex-
periment presented below, a compromise has to be found. The same argument holds for
the bandwidth of the frequency up-conversion cavity; if its bandwidth x was increased,

26



20 T T T
| Anti-squeezed --------

Anti-squeezed, filtered ——
Squeezed, filtered ——
Squeezed --------

Relative noise power [dB]

Frequency w'y

Figure 3.1.: Logarithmic power spectrum of an OPA with and without additional fre-
quency filtering relative to the vacuum reference. The power spectrum of
the (anti-)squeezed quadrature is shown in red (blue). The dashed lines
represent states without additional filtering, while the solid lines are states
that passed an additional frequency filter with £ = 0.5y. Other parameters
are n = 0.9, |e| = 0.75.

the squeezing would be stronger at higher frequencies, but a higher pump power would
be needed to achieve the same conversion efficiency since the intra-cavity buildup is
necessary to achieve a sufficiently strong nonlinearity [Sam14].

3.2. Experimental setup

The experimental setup is illustrated in Figure 3.2. I will briefly introduce the main
components in the following.

3.2.1. Laser source and second harmonic generation

The laser driving the whole experiment is a neodymium-doped Yttrium Aluminum Gar-
net (Nd:YAG) solid state laser (Mephisto by INNOLIGHT) providing up to 2.1 W of light
at a wavelength of 1064 nm (crystal temperature 25.74°C, injection current 2.3 A). The
laser is optically decoupled from subsequent optics with an optical isolator (not shown
in the figure).

The 1064 nm light is frequency doubled in a second harmonic generation (SHG) cavity
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Figure 3.2.: Schematic of the experimental setup involving five nonlinear optical pro-
cesses. A 1064nm laser beam is frequency doubled in a second harmonic
generation (SHG) cavity. The resulting 532 nm beam with a power of about
1'W was split at a beam splitter (BS). Bright 810 and 1550 nm fields were
produced via cavity-assisted non-degenerate optical parametric oscillation
(OPO). The 1550 nm field is converted to 775 nm in another SHG. Squeezed
vacuum states (illustrated by dashed lines) at 1550 nm were produced in a
degenerate optical parametric amplification cavity (OPA) and up-converted
in the sum-frequency generation cavity (SFG) to 532nm. All cavities are
decoupled from each other with optical isolators (not shown). The local
oscillator for homodyne detection was provided by the second output port
of the BS to ensure frequency stability with the up-converted state. DBS:
dichroic beam splitter, BBS: balanced beam splitter, RR: retro-reflector.

consisting of a 7% doped MgO:LiNbO; crystal embedded in an oven for temperature
stabilization. The back surface of the crystal is curved (radius of curvature: 8 mm) and
highly reflective for both the fundamental field (1064 nm) and the second harmonic field
(532nm). The outcoupling mirror has a radius of curvature of 20 mm and a reflectivity of
R =90% for 1064nm and R < 4% for 532nm. The mirror is placed symmetrically with
respect to the crystal’s optical axis, leading to a stable cavity with a waist of about 25 pum.
Length control is performed utilizing the Pound-Drever-Hall (PDH) technique [Bla01]
with a (de-)modulation frequency of 15 MHz, and the crystal is actively temperature
stabilized to a temperature of about 67°C. At this point the maximum output power
was achieved.

The second harmonic light is subsequently filtered in a three mirror resonator (not
shown in the Figure) to suppress technical noise and provide a clean TEMgq spatial
mode. This resonator is also actively stabilized using the PDH technique (29.5 MHz).
The cavity’s length is actuated with a piezo and a Peltier element, that are glued to
one of the mirrors and the spacer, respectively. Up to 1 W of laser power at 532 nm is
measured directly after the filter resonator.
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The green light is split up at a variable beam splitter consisting of a half-wave plate
and a polarizing beam splitter cube. The transmitted part is used as local oscillator
for homodyne detection while the reflected part serves as the pump field for the non-
degenerate OPO.

3.2.2. Non-degenerate optical parametric oscillator

A non-degenerate optical parametric oscillator (OPO) provides both the pump for the
sum-frequency generation cavity (810 nm) and the SHG (1550 nm, required for squeezed
state generation). It is a 8.9mm long periodically poled potassium titanyl phosphate
(PPKTP) crystal with two mirrors directly coated onto two curved surfaces (8 mm radii
of curvature). The reflectivities for 810 and 1550 nm are R = 99.9% at the incoupling
mirror and R = 94% at the outcoupling mirror. Thereby a monolithic cavity is built
for the two generated infrared fields. The device is driven with 1 W of light at 532 nm
for which only the outcoupling mirror is highly reflective and the incoupling mirror is
anti-reflective.

Figure 3.3.: The optical parametric oscillator (OPQO). The nonlinear crystal is embedded
in temperature stabilized housing (black plastic) and pumped with about
1 W of light at 532 nm.

Active temperature control of the crystal ensures stable resonance conditions for the
two generated fields as well as phase matching. This is of great importance as tiny
variations of the temperature change the output wavelengths quite significantly. Despite
its simple architecture, the OPO’s behavior is complex, and so-called (small) mode hops
and (larger) cluster jumps occur when the temperature is changed. These features have
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been extensively studied theoretically [Eck91] and the OPO used throughout this thesis
shows a behavior as shown in Figure 3.4.
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Figure 3.4.: Dependence of the OPQO’s output wavelength on a variation of the crystal’s
temperature. An increasing temperature at first leads to a slight increase in
the wavelength around 810 nm (small mode hops) while the general trend
has negative slope (large cluster jumps). For details also see [Baull, Voll4a,
Sam12]. Plot created by Aiko Samblowski.

An increasing temperature at first leads to a slight increase in the wavelength around
810nm (small mode hops) while the general trend has negative slope (large cluster
jumps). Due to energy conservation, the opposite behavior is true for the twin beam of
about 1550 nm, of course. More details on the occurence and origin of the mode hops
and cluster jumps can be found in [Baull, Voll4a].

The operation point was chosen such that the NTC element directly attached to the
crystal showed a value of about 16 k{2 corresponding to a temperature of 67°C. The
efficiencies of three subsequent nonlinear optical cavities strongly depend on the output
wavelengths of the OPO and this operation point was found to be optimal. As mentioned
before, the temperature stabilization has to be very reliable and tiny variations can lead
to significant changes of the output wavelengths such that the subsequent experiment
does not work efficiently enough. However, once a stable operation point is achieved,
the cover of the optical table and an air conditioning system in the laboratory help to
suppress air and temperature fluctuations around the OPO. Continuous operation for
hours is then possible and powers of about 210 and 110 mW are measured at 810 and
1550 nm, respectively.
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3.2.3. Second harmonic generation from 1550 to 775 nm

The 1550 nm output of the OPO was used to pump a second harmonic generation (SHG)
cavity to provide a 775 nm field. This SHG consists of a PPKTP crystal with one planar
and anti-reflectively coated surface. The second surface is curved (radius of curvature
12mm) and highly reflective for 1550 nm and 775 nm. The coupling mirror has an inner
radius of curvature of 25 mm and reflectivities of 85% for 1550 nm and 97.5% for 775 nm.
This way the cavity is doubly resonant for both the fundamental and second harmonic
field and the conversion efficiency is much higher for low pump powers, which was lim-
iting the available pump power in the previous experiment [Voll4b]. Furthermore a
doubly resonant SHG allows to use the 775 nm field for length stabilization via the PDH
technique. Therefore, a phase modulation (21.6 MHz) is imprinted on the fundamental
field, which is then also converted to the second harmonic field. It is advantageous to
use the second harmonic field for length stabilization of doubly resonant SHGs. When
demodulating the fundamental field, the error signal shows unwanted deformations di-
rectly on resonance, since there the conversion efficiency is highest and most of the light
is converted to 775 nm - and so is the phase modulation. The doubly resonant SHG was
built during the Master thesis of Petrissa Zell [Zel14].
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Figure 3.5.: Performance of the SHG converting 1550 nm to 775nm at an operation
point of the OPO, where the SHG performs best. The red points represent
the measured output power at 775nm with respect to the pump power
at 1550nm. The green points are the inferred conversion effciency. The
maximum conversion efficiency of 75% was achieved at a pump power around

60 mW.
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An exemplary plot of the performance of the SHG is shown in Figure 3.5. The
conversion efficiency of about 75% is achieved at a pump power of 60 mW. For higher
pump powers the second harmonic light is partially back converted to 1550nm and
the conversion efficiency decreases. Note that this measurement is taken at an OPO
operation point for which the SHG performed best (NTC element at the OPO showed
16.52k€2), which is not the operation point for which all components together show best
performance.

3.2.4. Degenerate optical parametric amplifier

The light at 775 nm generated in the SHG is used to pump a degenerate optical para-
metric amplifier (OPA) that produces squeezed vacuum states of light at 1550 nm. The
OPA is set up exactly as the SHG with the same mirrors and was also built during the
Master thesis of Petrissa Zell [Zell4].

A doubly resonant OPA has the advantage that length stabilization can be performed
using the phase modulation on the pump field. Therefore, no control field is required.
The pump field reflected off the coupling mirror is demodulated with the same frequency
as the SHG is locked with. In single photon experiments one usually must not have
a control field, as single photon detectors do not resolve sideband frequencies and any
coherent field copropagating with the squeezed field would spoil the whole measurement.

The performance of the OPA was analyzed by setting up an auxiliary balanced homo-
dyne detector (BHD) directly after the squeezed light source (not shown in Figure 3.2).
The local oscillator for this BHD was provided by a small tap-off of 1550 nm light in
front of the SHG. In Figure 3.6 a dark noise corrected power spectrum of the squeezed
field at 1550 nm relative to a vacuum reference is shown on the left hand side. A theo-
retical model according to Eq. (3.1) is fitted to the data and yields a cavity parameter
of v =27 - 60 MHz.

On the right hand side of Figure 3.6 a zero span measurement at a sideband frequency
of 5 MHz is shown. The homodyne phase was either held to measure the squeezed and
anti-squeezed quadrature or scanned continuously. Up to -8.8dB of nonclassical noise
suppression with corresponding anti-squeezing of +17.9 dB are demonstrated (correction
for electronic dark noise would lead to a squeezing value of -9.5dB). Note that these
measurements were performed with different homodyne detector electronics that were
either optimized to measure a broadband power spectrum or at a single sideband fre-
quency. Furthermore, when the zero span measurement was performed, the operation
point of the OPO was different to when the spectrum was measured and the homodyne
visibility was slightly better. This explains why the squeezing and anti-squeezing values
differ in these two measurements.

3.2.5. Sum-frequency generation

The sum-frequency generation (SFG) cavity is the core component of the experiment. In
this nonlinear optical cavity quantum states are up-converted from 1550 to 532 nm. It
consists of a PPKTP crystal with two anti-reflectivity coated surfaces and two coupling
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Figure 3.6.: Measurement of the squeezed vacuum states at 1550 nm. left: Power spec-
trum of the squeezed (orange) and anti-squeezed (cyan) quadrature noise
normalized to the vacuum noise reference is shown. It was recorded with
a resolution bandwidth of 1 MHz. The dark noise was subtracted from the
data to allow for a comparison with a theoretical model (red and blue)
leading to a cavity parameter of v = 27 - 60 MHz and || = 0.757. right:
Zero-span measurement at a Fourier frequency of 5 MHz without correc-
tions for dark noise, recorded with a resolution bandwidth of 300kHz. A
continuous phase scan of the signal quadrature is shown in green.

mirrors. The incoupling mirror has a high reflectivity coating for 532nm (R > 99.9%),
a reflectivity of 97% for 810 nm and a reflectivity of 91% for 1550 nm. The outcoupling
mirror has an anti-reflectivity coating for 532 nm (R < 0.1%) and a high reflective coating
for 810 and 1550 nm (R > 99.9%). An overview of all reflectivities and a photograph of
the SFG is shown in Figure 3.7.

The SFG was characterized by using a weak coherent field at 1550 nm and converting
it to 532nm while varying the pump power at 810nm. The input and output powers
were compared and the conversion efficiency can be calculated with [Sam14]

1 50 P 3
* 1550

A maximum conversion efficiency of 90.2% was achieved at a pump power of about
140 mW. Figure 3.8 shows the conversion efficiency depending on the pump power. For
the maximum conversion efficiency, a certain pump power is required as it drives the
process. However, if the pump power is too high, the up-converted field gets back-
converted to 1550 nm and the conversion efficiency decreases. Note that the conversion
efficiency strongly depends on the phase matching of the three wavelengths involved
[Baull, Sam12]. It is crucial to find the optimal operation point of the OPO, that
produces the light fields required for the up-conversion.

The SFG is stabilized via the Pound-Drever-Hall technique using a 24 MHz phase
modulation on the 810 nm pump field.
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Figure 3.7.: The sum-frequency generator. left: The mirror reflectivities of the in- and
outcoupling mirrors for all wavelengths involved. right: Photograph of the
device. The PPKTP crystal is placed inside an oven which is actively tem-
perature stabilized. The connector on the top is the power cord for the cor-
responding Peltier element. The in- and outcoupling mirrors are placed in
the aluminum spacers. The outcoupling mirror is placed on a piezo-electric
transducer to scan the cavity’s length.
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Figure 3.8.: Conversion efficiency of the sum-frequency generator depending on the pump
power at 810nm. The maximum conversion efficiency of about 90% was

achieved at a pump power of 140 mW.

34



3.2.6. Balanced homodyne detector at 532 nm

An efficient balanced homodyne detector at 532 nm requires special approaches as there
are no photo diodes commercially available that have a quantum efficiency comparable
to those available for infrared wavelengths, for example. In his Bachelor thesis, Hendrik
Weifibrich analyzed several commercially available photo diodes [Weil4]. The photo
diodes S5973-02 from HAMAMATSU, from which we removed the protective glass win-
dow to reduce reflections, performed best. Furthermore, the light was prepared to be
p-polarized and the photo diodes were tilted horizontally to get closer to the Brewster
angle. The angle of about 45 degree was found to be optimal. Small highly reflective
concave mirrors with a radius of curvature of 25 mm were used as retro-reflectors, and
re-focused the light that was not absorbed by the photo diode material, back onto the
chip. An overall detection efficiency of about 90% was achieved with this technique. The
retro-reflectors (RR) are also illustrated in Figure 3.2 and a photograph of the homodyne
detector electronics built into the experiment is shown in Figure 3.9.

Figure 3.9.: Photograph of the homodyne detector at 532nm. The photo diodes
(S5973-02 from HAMAMATSU) are tilted and, as illustrated by the green
lines, the reflected light is re-focused onto the chip to increase the overall
detection efficiency to about 90%.

3.3. Results

In this thesis squeezed vacuum states are efficiently up-converted from 1550 to 532 nm.
The up-converted states are injected into a table-top Mach-Zehnder interferometer to
perform a complementarily proof-of-principle demonstration of their use in quantum
metrology.

3.3.1. Strongly squeezed vacuum states at 532 nm

The measurement results of a frequency up-converted squeezed vacuum state are shown
in Figure 3.10. A power spectrum of the squeezed states at 532 nm relative to a vacu-
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um state reference is shown on the left hand side. It was recorded with a resolution
bandwidth (RBW) of 100kHz and the data are corrected for dark noise of the detector
to allow for a comparison with a theoretical model. The spikes at 21.6 and 26 MHz
are electronic pick-up in the dark noise of the detector, caused by modulation frequen-
cies used for cavity length stabilization of SHG, OPA and SFG. The theoretical fit is
obtained using Eq. (3.2) with the previously determined cavity decay rate of the OPA
v = 271 -60 MHz, a pump parameter |e| = 0.85y and the decay rate of the sum-frequency
generation cavity kspg = 27 - 34 MHz, causing additional frequency filtering.
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Figure 3.10.: Measurement of the up-converted squeezed vacuum states at 532 nm. left:
Dark noise corrected power spectrum of the squeezed (orange) and anti-
squeezed (cyan) quadrature noise normalized to the vacuum noise reference,
as well as a theoretical model (red and blue). right: Zero-span measure-
ment at a Fourier frequency of 5 MHz without corrections for dark noise,
together with a continuous phase scan of the signal quadrature (green).

A zero-span measurement at a sideband frequency of 5 MHz is shown on the right hand
side. Here, the RBW is 300 kHz and the dark noise is not subtracted from the data. A
nonclassical noise suppression of 5.5 dB below shot noise is demonstrated, being — to the
best of my knowledge — the highest value of squeezing at visible wavelengths achieved
to date. The corresponding anti-squeezing was 18dB above the vacuum reference. A
total optical loss of 27% was deduced from this measurement originating from limited
up-conversion and detection efficiencies (10% loss each), non-perfect mode-matchings
(2.5% optical loss), limited visibility on the balanced homodyne detector (2% loss) and
propagation losses (5% loss, mainly induced by an optical isolator in the path between

OPA and SFG).

3.3.2. Sensitivity improvement of a Mach-Zehnder interferometer

The results presented in the previous section strongly verify that coherence properties are
maintained during the up-conversion process. However, to demonstrate the applicability
of frequency up-conversion in quantum metrology, the up-converted squeezed vacuum is
used to enhance the sensitivity of a phase measurement device at 532 nm.
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Figure 3.11.: Squeezed light enhanced Mach-Zehnder interferometer.left: Schematic of
the setup. The carrier at 532nm and the up-converted squeezed vacuum
were the inputs of the interferometer, that consisted of two highly reflective
mirrors and two balanced beam splitters (BBS). The two output ports were
subtracted and analyzed with a balanced detector (interferometer locked
to mid-fringe). An electro-optic modulator (EOM) in one of the interfer-
ometer arms generated a phase modulation at 5 MHz. right: Spectrum
of the balanced detector. The modulation peak is clearly visible. When
the up-converted squeezing was applied, the noise floor dropped and the
signal-to-noise ratio improved. The resolution and video bandwidth were
300kHz and 300 Hz, respectively, and no dark noise subtraction was per-
formed. PZT: piezo-electric transducer to lock the interferometer, RR:
retro-reflector.

The local oscillator at 532 nm of the balanced homodyne detector from the previous
experiment is used as carrier field in a Mach-Zehnder interferometer and coupled through
one input port. The second input is the squeezed vacuum field. An electro-optical
modulator in one arm of the interferometer generated an artificial phase signal, whose
signal-to-noise ratio is analyzed at the output of the interferometer. The output ports are
balanced by locking the overall phase of the interferometer to mid-fringe and the photo
current of the two detectors is subtracted. As before, reflected light is re-focused onto
the detector’s chips using retro-reflectors. A schematic of the setup is shown on the left
hand side in Figure 3.11. On the right hand side of this figure, two measurements with
the second interferometer port blocked (black trace) and open (red) are shown. When
the up-converted squeezed vacuum enters the interferometer, the noise floor drops by
about 3.3dB, as indicated by the red arrow and the signal is emphasized. The noise
reduction is equivalent to a 2.1-fold power increase which means a v/2.1 = 1.46 fold
increase of phase sensitivity or signal-to-noise ratio.

A lower conversion efficiency (80%) and additional optics (including the EOM) in-
creased the optical loss, which degraded the observable squeezing from 5.5dB to 3.3 dB.
The lower conversion efficiency was mainly caused by a degraded mode shape of the
810 nm pump beam, possibly caused by a dust particle on the NOPO crystal’s surface
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to which the access is difficult. However, this result reaches the regime of practical use-
fulness in shot noise limited experiments. The measured quantum enhancement is com-

parable to large state-of-the-art squeezed light interferometers at infrared wavelengths
like GEO600 [Grol3].

3.4. Discussion and outlook

In this experiment, squeezed vacuum states of light were successfully up-converted from
1550 to 532nm and showed a nonclassical noise reduction of 5.5dB below shot noise.
To the best of my knowledge, the results represent the strongest ever achieved squeezing
at visible wavelengths. Their usefulness in quantum metrology was demonstrated in
a proof-of-principle experiment by exploiting the states in a table-top Mach-Zehnder
interferometer.

In the experiment presented here, the optical setup was almost completely rebuilt
aiming for a higher squeezing factor in the up-converted field compared to the experiment
presented in [Vol14a, Vol14b]. The challenge of low pump powers in previous experiments
was overcome here by using doubly resonant SHG and OPA. The homodyne detector at
532nm was also re-designed. By removing the protective windows of the photo diodes,
tilting them horizontally closer to the Brewster angle and re-focusing reflected light back
onto the chip, the detection efficiency was increased to about 90%.

The up-conversion of squeezed vacuum states requires phase matching of four non-
linear optical cavities. Finding (and maintaining) an operation point where all these
devices work satisfyingly is difficult and very time consuming. Furthermore, this oper-
ation point is not necessarily the point where all nonlinear optical cavities are at their
peak performance and thus compromises have to be found. This problem could possibly
be circumvented by amplifying the 1550 nm pump field for the SHG with a fiber am-
plifier to ensure that enough pump power for the OPA is always available to produce
strongly squeezed states. In this case, only the OPO and SFG would have to be adjusted
to provide a high up-conversion efficiency.

The main loss sources are still the limited up-conversion efficiency and the detection
efficiency. The up-conversion efficiency could possibly be increased by optimizing the
cavity design. A SFG consisting of a nonlinear cavity where one mirror is directly coated
onto one side of the crystal would reduce the number of anti-reflective coatings inside the
cavity, and therefore the losses. The detection efficiency can only be increased by using
customized photo diodes with a quantum efficiency closer to unity for 532 nm. Currently
no such photo diodes are available commercially. However, with these improvements,
even higher squeezing values would be possible.

In conclusion, the frequency up-conversion of squeezed states enables quantum en-
hanced metrology at short wavelengths. It may develop into a standard tool in quantum
optics laboratories whenever these states are required at wavelengths where their direct
generation is daunting or impossible.
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Physical Review A 93, 010302 (2016)

Broadband two-mode squeezed vacuum states of light represent fundamental resources
for continuous variable (CV) quantum information processing [Bra05]. Established
fiber-optic technology offers relatively high transmission efficiency for wavelengths in
the telecommunication band around 1550 nm, where scattering and absorption rates
leading to photon loss are minimal. However, a true quantum information network
would incorporate a number of nodes, where quantum states could be stored and even
processed [Bri98]. These nodes could generally take the form of single atoms [Rit12],
atomic ensembles [Jenll, Reill], or solid-state systems [Berl3, Zhol5]. This implies
that the reversible mapping of quantum states between optical and material modes will
necessarily be ubiquitous in quantum networks.

Almost all current quantum memories operate at visible wavelengths so that an effi-
cient interface between entangled optical modes at telecommunication and visible wave-
lengths is a key capability to demonstrate. Previous work has demonstrated the inter-
face between telecommunication and visible wavelengths with entangled photon pairs
[Tan05], and storage in a quantum memory of single photons up-converted from telecom
to visible wavelength has been reported [Marl4]. There have been several demonstra-
tions of quantum memories for CV states [Jul04, App08, Hon08, Jenll, Hos11, Hed10]
and the classical benchmark for memory fidelity has been experimentally surpassed using
displaced two-mode squeezed states [Jenll].

It has been previously demonstrated that CV entanglement can span optical frequen-
cies one octave apart [Gro08]. However, no “on the fly” wavelength conversion has yet
been achieved. First attempts to verify entanglement between 1550 and 532nm were
performed in the doctoral thesis of Christina Vollmer [Voll4a| and the Master thesis of
Petrissa Zell [Zell4]. Their experiment suffered from a limited squeezing strength and
optical losses so that only about 3dB of correlations could be measured.

In this chapter, the generation of a broadband two-mode squeezed vacuum state is
demonstrated and one-half of this state is frequency up-converted from 1550 to 532 nm.
I characterize the correlations between the two modes and verify that the up-conversion
preserves the modes’ broadband entanglement with 5.5dB below the classical limit.
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In Section 4.1 a theoretical analysis of the generation of two-mode squeezed states is
given. After that the experimental setup and the measurement protocol will be explained
in Section 4.2. In Section 4.3 the results are presented and an entanglement criterion
developed by Duan et al. [Dua00] is applied to the data.

4.1. Generation of entanglement

Entanglement can be generated by mixing two squeezed vacua at a balanced beam
splitter. The squeezing operators of two modes @ and b are given by (cf. Section 2.1.5)

N

S(¢) = ez(Ca?=¢a%) g S(X) — o3 (ChT?=¢7b%) ’ (4.1)
with ( =re™® and y = se . The squeezing operation results in transformed modes

a, = S7(¢) @ S(¢) = acosh(r) — a'e ¥ sinh(r) ,

. R R _ (4.2)
by = ST(x)bS(x) = beosh(s) — ble ™ sinh(s) .

These two squeezed modes are mixed at a balanced beam splitter.

Figure 4.1.: Input and output modes of a balanced beam splitter with two input modes
a, and b, to generate two-mode squeezing. The indices denote the respective
squeezing parameter r and s. The output modes ¢ and d are entangled which
is indicated by the loop.

A schematic of this beam splitter with the modes involved is shown in Figure 4.1 and
the input-output relations are given by [Wal94]

(o) =0 )G s

Inserting the equations for the squeezed modes and using the relations cosh(z) =

e™) and sinh(z) = 1(e” — ¢™®) results in
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Now [ assume that the two input fields are orthogonally squeezed. Mode a, is squeezed
along the p-quadrature (¢ = 0) and mode by along the ¢-quadrature (0 = m), cf. Sec-
tion 2.1.5. The output modes then reduce to

¢\ _ 1 fa(e +e) —al(er =) = b(e +¢*) — bi(e* — )
() - 2V2 (&<e’“+er> —af(e" — ") + b(e* +e7) + bf (e _es>> S

d
The quadrature operators of the output modes are then given as
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Both modes ¢ and d are measured via balanced homodyne detection and both signals
are combined electronically. It is then possible to analyze their sum and difference,
and thus reveal nonclassical correlations. Therefore the detector measuring mode ¢ is
first locked to an angle where its ¢-quadrature is detected and it is added to a scanned
quadrature of the detector measuring the d-mode. After inserting the output quadrature
operators, the variance of the sum signal reads

A?[Ge + Gpa] =A% [Ge + 08 g + sin @ P

1
:§A2 [Gae™" (1 + cos @) — Gue® (1 — cos ) + sin p pae” + sin p pre*] .

(4.7)

The input quadratures ¢,, p., ¢» and p, are mutually independent so that the total
variance reduces to a sum of the individual ones and it reads

1
A% [Ge + Gpa) = 1 [e™ (1 + cos ) — e* (1 — cosp)® + sin® pe? +sin® pe ] . (4.8)

Similarly, the variance of the difference of a locked p. and a scanned p, 4 quadrature is

1
A% [pe — Ppa] = 1 [e® (1 — cosp)” — e (1 + cosp)” +sin® pe ™ +sin’ pe*] . (4.9)

In the case where both input fields are squeezed vacua, i.e. r > 0 and s > 0, the
resulting state is called s-class entangled [DiGO7, Ebel3]. However, an entangled state
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is also obtained when r > 0 and s = 0, so one input mode is just vacuum. We will
call these states v-class entangled [DiGO7, Ebell] and produce them in the experiment
presented in the following.

In Figure 4.2 an example plot of the two variances as calculated above are shown, with
s = 0. The other parameters are chosen approximately as they appear in the experiment
(r =2.1) and optical losses are taken into account (efficiency n = 0.73).

5C locked ——
P, locked

20

D[p+Pgl

15 TN\ N

IVAVANV/AVAY
RVER/ARTER

Noise variance [dB]

D3+
-10
-2.01t -1.51 -1.0m -0.51 0.0mt 0.51 1.0m 1.51 2.01
Phase

Figure 4.2.: Correlations and anti-correlations of the two modes after the beam split-
ter. The anti-squeezed statistics cancel out when p. — pg is measured and
reveal the full anti-squeezing of mode a when p. + py is measured. In the
setting where ¢. — §g is measured, the variance drops to the vacuum level
as the squeezed statistics are canceled out. Finally, the full nonclassical
correlations are revealed when §. + ¢y is measured.

The variance of the two combined phase quadratures reaches maximum variance when
they are added and drops to the vacuum level when they are subtracted. This can be
understood as follows: one input state is squeezed in the amplitude quadrature and
correspondingly anti-squeezed in the phase quadrature. The phase relation between the
two output states is such that the full anti-correlation is recovered when adding the
two phase quadratures, while they cancel out — and drop to the vacuum level — when
subtracting.

The variance of the sum of the two amplitude quadratures, on the other hand, reveals
the full correlations and the noise drops below the vacuum. When subtracting the two
amplitude quadratures, the squeezing properties cancel out — and give vacuum. In all
intermediate combinations, the fixed amplitude quadrature of mode ¢ is mixed with
varying portions of the phase quadrature contributions, which is anti-squeezed, and the
noise levels rise.
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4.2. Experimental setup

The experimental setup for the generation of entanglement of two widely separated
wavelengths is shown in Figure 4.3.
vacuum 810 nm 532 nm
@1550 nm :
SFG squeezing

squeezing . O ﬂgﬂ @332

@1550 nm

1550 nm <

balanced homo-
dyne detection

Figure 4.3.: Illustration of the experimental setup. Squeezed vacuum states of conti-
nuous-wave light at 1550 nm are produced in the OPA described in detail
in Section 3, and split up at a variable beam splitter. One part is directly
sent to a balanced homodyne detection (BHD) while the other mode is up-
converted to 532nm and also detected in a BHD. The electronic sum and
difference of the BHD signals is recorded by a spectrum analyzer (SA). VBS:
variable beam splitter.

In the same way as described in the previous chapter, squeezed vacuum states of light
are generated at 1550nm. These states are mixed with vacuum on a variable beam
splitter (VBS) to produce v-class entangled states in the outputs of the beam splitter.
One mode is directly sent to a balanced homodyne detector at 1550 nm, using a small
portion of the bright 1550 nm light produced by the OPO (cf. Section 3.2) as local
oscillator. The other output mode of the beam splitter is sent to the SFG and up-
converted to 532nm. The same balanced homodyne detector at 532 nm is used as in the
experiment for up-conversion of squeezed vacuum states. The VBS was tuned such that
the two modes at 1550 and 532nm are symmetric, i.e. they suffer the same amount of
optical loss, and therefore the same nonclassical noise suppression is measured by the
two homodyne detectors. Both homodyne signals are subsequently added or subtracted
in a passive electronic addition/subtraction box, and the resulting signal is recorded by
a spectrum analyzer.

4.3. Measurement protocol and results

The measurement was performed by keeping the measured quadrature of the 1550 nm
mode constant and continuously scanning the readout quadrature of the 532 nm mode.
Assuming that the field entering the VBS is squeezed in the ¢ quadrature, I observe a be-
havior of the resulting signal as theoretically predicted in Section 4.1. The experimental
data are shown in Figure 4.4.
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Figure 4.4.: Characterization of the unconditional quantum interface. Shown is the sum
of the two BHD signals at 5 MHz sideband frequency. While the phase ¢
of the BHD at 532 nm was continuously scanned, the phase of the BHD at
1550 nm was set to measure the squeezed amplitude quadrature ¢s50 (i,
red trace) or anti-squeezed pis50 quadrature (i, blue). The four extremal
points represent the following measurement settings: A: A%[qis50 + Gs32),
B: A%[Gis50 — Gs32], C: A%[Prsso + Pssa), D A*[prsso — Pss2]. The orange
trace (iv) was recorded when the 532nm phase was also fixed, revealing
stable nonclassical correlations about 5.5dB below the vacuum level (iii,
black). Note that the traces were recorded successively, and there is no
actual meaning in the relative positions along the x-axis of the minima and
maxima. None of the traces is corrected for our detection scheme’s dark
noise (v, gray).

When the phase of the BHD at 1550 nm is set to measure the pi550 quadrature — while
the phase of the detector at 532 nm is continuously scanned — one obtains the blue trace.
The full anti-correlations are revealed when the phase of the BHD at 532 nm is such that
it measures the ps3o quadrature and the two BHD signals are summed up (point C in
Figure 4.4). However, when one subtracts the two signals, the noise drops to the vacuum
level (point D). This behavior is predicted by the simple theoretical model presented in
Section 4.1. Note that the electronic signals are always summed. Hence, the difference
signal is obtained when the phase of one homodyne detector is shifted by 180° with
respect to the setting when measuring the sum.

The red trace is obtained when the phase of the BHD at 1550 nm is set to measure
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the ¢1550 quadrature. If a phase relation between the two modes is reached such that the
second BHD measures the ¢532 quadrature, and the two homodyne signals are subtracted
from each other, the noise drops to the vacuum level (point B). The most interesting
condition is when both detectors measure ¢ and the signals are summed up (point A): The
noise drops significantly below the shot noise level and reveals nonclassical correlations
between the widely separated wavelengths 532 and 1550 nm.

To analyze the spectral properties of the correlations, the frequency dependence of
the sum signal was measured and is shown in Figure 4.5. The phase of the 1550 nm field
was set to measure the squeezed (red trace) or anti-squeezed (blue trace) quadrature
while the 532nm phase was set to measure the minimum noise in the sum signal. A
correlation strength of more than 3dB below the vacuum noise is measured up to a
sideband frequency of about 20 MHz, limited by the SFG linewidth and the bandwidth
of the detector electronics.
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Figure 4.5.: Spectral characterization of the entanglement interface. Trace (i) shows the
spectrum when A%[p1550 — Ps32] is detected, corresponding to point D from
Figure 4.4. Trace (ii) shows the spectrum for A%[Gi550 + Gs32], corresponding
to point A from Figure 4.4. Normalized variance values below zero, the
vacuum reference, signify nonclassical correlations. The bottom trace (iii)
shows the dark noise of our balanced homodyne detectors.
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Criterion by Duan et al.

The entanglement of two light beams at 532nm and 1550 nm can be conveniently char-
acterized by the quantity Z, introduced by Duan et al. [Dua00],

T = N*[Gusso + ds32] + A%[Prsso — Paa)s (4.10)

where ¢y, and p, denote the amplitude and phase quadratures, respectively, of an optical
beam at wavelength A\. The quadrature variances are normalized such that A?[j] =
A?[p] = % for vacuum, and Z < 2 certifies sufficiently the presence of entanglement of
the two beams [Dua00]. The variances of linear combinations of quadratures appearing
in Eq. (4.10) characterize correlations between individual modes of a two-mode quantum

state. A simple theoretical model yields

1

A? [G1550 + G532) = 1 — (5 - V—) (t7s32 + TT1550)
(4.11)

N . 1
A? [P1550 - P532] =1+ (V+ - 5) (”532 - 7”71550)2 .

Here V_ and V. denote the variances of squeezed and anti-squeezed quadratures of the
input state to the VBS. The amplitude transmittance and reflectance of the VBS are
denoted by t and r, respectively. The effective overall amplitude transmittances of the
two output modes of the VBS, including final detection efficiencies in each of the BHDs,
are denoted as 7532 and 7y550.

In the experiment, the variable beam splitter is tuned such that the anti-squeezed
noise is fully canceled in the difference of the phase quadrature amplitudes pi550 — Psso-
This is achieved when t7530 = r7y550, and in this case the variance of the difference in
phase quadratures reaches the vacuum noise level, A?[pis50 — Psz2] = 1, see point D
in Figure 4.4. Within the error bars of the experiment, this setting also provides the
strongest Gaussian entanglement as quantified by Z. Indeed, it follows from Eq. (4.11)
that, for this setting, entanglement is certified and Z < 2 whenever the input state is
squeezed and V_ < % A more detailed theoretical analysis, however, reveals that the
minimum value of Z is attained at a marginally different beam splitter tuning [Wag14].
In our experiment, the variable beam splitter sent a larger fraction of the squeezed input
state to the entanglement interface to compensate for the non-perfect SFG conversion
efficiency, as well as the non-perfect quantum efficiency of the photo diodes at 532 nm,
both of which were approximately 90%. In contrast, the mode at 1550 nm has less
downstream loss, on the order of 12%, dominated by the visibility of the balanced
homodyne detector.

The measured correlations of -5.5dB in the first measurement and 0 dB in the second
yield a value of Z = 1.28, which significantly beats the classical limit of 2.

4.4. Discussion and outlook

In this chapter, I presented an entanglement-preserving interface for multi-color quan-
tum optical networks. The results demonstrate frequency up-conversion of half of an
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entangled two-mode state. As a proof-of-principle, I up-converted one part of a two-mode
squeezed state from the near-infrared to the green spectrum, producing CV entanglement
between continuous-wave light fields at 1550 and 532nm. Up to 5.5dB of nonclassical
correlations with a bandwidth of about 20 MHz were maintained during the conversion
process.

The demonstrated entanglement interface in combination with quantum memories
operating at visible wavelengths represents a promising and flexible alternative to direct
quantum storage of photons at telecommunication wavelengths [Jinl5, Saglh]. With
minimal modifications, the setup could be easily matched to any frequency single-mode
CV quantum memory having a bandwidth in the MHz regime [Sim10]. The optical
bandwidth can be varied by changing the mirror reflectivities of the squeezed light
source and up-conversion cavities. The optical frequency of the up-converted states can
easily be changed by varying the frequency of the pump field. These capabilities are
necessary to achieve high efficiency when interfacing an optical entanglement source
with a quantum memory.

Entanglement was generated in the experiment by sending a squeezed vacuum state
to a beam splitter, and mixing it with a vacuum state. The maximum strength of
correlations between the output modes is limited in this method, but it was still suf-
ficient for a proof-of-principle demonstration. Generating two-mode entanglement that
is not limited in this way, in the original sense meant by Einstein, Podolsky and Rosen
[Ein35], only requires mixing of two squeezed vacuum fields on a beam splitter. Such a
fully controlled source of EPR entanglement [Rei89] has previously been demonstrated
[Ebel3]. Integrating it with the up-conversion set-up is technically more involved but
straightforward in principle.

The storage of optical states in quantum memories is a key technology in setting up
long-distance quantum networks [San11]. Multi-mode quantum memories are also being
investigated, particularly to achieve reasonable long-distance data transfer rates when
they are used as quantum repeaters [Afz09, Sinl4]. Frequency multi-mode operation has
recently been demonstrated with quantum memories based on atomic frequency combs
(AFC) in rare-earth ion doped materials, and in principle these quantum memories could
have a total accessible bandwidth in the range of hundreds of GHz [Sin14, Sagl5|. The
total bandwidth of the states used in the presented approach can be multiplexed [Hag10]
to take advantage of a large section of a multi-mode storage capacity. In this sense a
larger bandwidth implies a larger frequency space in which to encode distinct modes,
and a nonclassical noise suppression of more than 3dB over a bandwidth exceeding a
GHz has been achieved at 1550 nm [Ast13].

Another promising application that could take advantage of the interface is for conti-
nuous-variable quantum computing in atomic memories using time-frequency entangled
quantum modes [Hum14]. The proposal is based on the cluster-state quantum comput-
ing approach, which requires a large resource state with multi-mode entanglement. A
squeezed vacuum field such as the one I characterized has a broad sideband spectrum
that could be used for encoding these time-frequency quantum modes. I consider this
work to be an important building block for future multi-color quantum networks, which
may further include continuous as well as discrete variable concepts.
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5. Frequency up-conversion of single
photon states

C. Baune, A. Schonbeck, A. Samblowski, J. Fiurasek, and R. Schnabel
Quantum non-Gaussianity of frequency up-converted single photons
Optics Express 22, 22808 (2014)

J. Fiurasek, C. Baune, A. Schonbeck, and R. Schnabel
Analysis of counting measurements on narrowband frequency up-converted single
photons and the influence of heralding detector dead time
Physical Review A 91, 013829 (2015)

Single photon states are optical states with the minimal non-zero excitation of a mode
and are not only of fundamental interest. Quantum information processing with single
photons or discrete variables (DV) in general has the advantage that the fidelity of
operations can reach almost unity [Gis02, O’B09]. In 1991, A.K. Ekert proposed to
use correlated photon pairs for quantum cryptography [Eke91] and nowadays many
quantum information protocols employ DV states, although they require post-selection
which decreases the success rate, e.g. see [Pan12| for a review. Single photons can be
used in quantum key distribution to allow for longer transmission channels than faint
coherent states [Lou05], especially when they are used together with quantum repeaters
[Bri98, Sanll].

Distant nodes of a network can be connected by transmission through existing telecom-
munication fibers and intermediate processing in quantum repeaters. However, the pre-
ferred optical wavelengths for these two tasks usually differ significantly. While optical
fibers have lowest absorption in the near infrared regime, quantum memories are usually
operated at much shorter wavelengths [Hes16].

The frequency up-conversion of single photons can play an important role in a quan-
tum communication network, as it allows to connect different subsystems of a quantum
communication network. In this chapter the frequency up-conversion of single pho-
tons is demonstrated. Therefore, photon pairs at 810 and 1550 nm are generated via
spontaneous parametric down-conversion. The detections of 810 nm photons herald the
existence of 1550 nm photons which are subsequently up-converted to 532nm. The up-
converted photons are shown to be not expressible by mixtures of Gaussian states. This
so-called quantum non-Gaussianity has recently been identified as a sufficient criterion
for secure quantum communication [Las16].

This chapter starts with presenting the experimental setup in Section 5.1, where I also
describe the basic tools for the data acquisition and analysis. A theoretical description
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of the single photon source based on spontaneous parametric down-conversion is given
in Section 5.2. In Section 5.3 the experimental data is analyzed with respect to temporal
correlations between trigger and signal photons and different criteria for nonclassicality
are applied. The quantum non-Gaussianity criterion is applied to the data in Section 5.4.
A short overview on a deeper analysis of the experimental data, performed mainly by
Jaromir Fiurasek, is added in Section 5.5.

5.1. Experimental setup

The experimental setup for the up-conversion of single photons is shown in Figure 5.1.

SPDC FC

532 nm ?H % 810 nm E[. AP5'|'\Oscilloscope
\?/1550 nm |
APD-B
532 nm % """ ﬁ! N DJ
SFG

OPO APD-A

Figure 5.1.: Experimental setup for the up-conversion of single photons. A 532nm field
pumps two optical parametric oscillators. One is operated above threshold
(OPO), the other one below threshold (SPDC). In the latter, photon pairs at
810 and 1550 nm are produced via spontaneous parametric down-conversion.
The 810 nm photons are filtered and used to herald 1550 nm photons, which
are subsequently up-converted to 532 nm using a strong 810 nm pump field
generated in the OPO. The up-converted photons are analyzed in a Hanbury
Brown and Twiss setup. See the main text for more details.

An optical parametric oscillator is operated above threshold and generates strong
fields at 1550 and 810 nm, where the latter is used as pump field for the sum-frequency
generation cavity (SFG). The SFG and the generation of the 532 nm pump field for the
OPO is described in detail earlier (cf. Chapter 3).

Photon pairs are generated in another OPO, which is operated below threshold by
using just a few Milliwatts of 532nm pump power. The intra-cavity gain is not high
enough to compensate for the cavity mirrors’ decay rate and losses so that the oscillation
does not start (cf. Section 2.3.2). Instead, in spontaneous parametric down-conversion
(SPDC) photon pairs are generated and split at a dichroic beam splitter. The 810 nm
photons pass a filter cavity (FC, see below) and are detected with the avalanche photo
detector APD-T. As the photons at 810 and 1550 nm are correlated in their arrival time
(cf. Section 5.2), the event of a photo detection at APD-T heralds the existence of
a correlated photon at 1550 nm, which is subsequently up-converted to 532nm in the
SFG. Consequently, the 810 nm photons are used to trigger the data acquisition of the
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up-converted states that are analyzed in a Hanbury Brown and Twiss setup [Han56]
using two APDs (APD-A and -B).

5.1.1. SPDC

The single photon source based on spontaneous parametric down-conversion (SPDC)
consists of a periodically poled potassium titanyl phosphate (PPKTP) crystal which is
anti-reflective coated on its two end surfaces. The crystal is embedded in an optical
cavity with mirror reflectivities similar to those of the OPO (cf. Section 3.2.2). A piezo
electric transducer is mounted to one of the cavity mirrors. Thereby the cavity can be
scanned by applying a voltage to the piezo and it is easier to mode match the optical
fields to the cavity.

The cavity decay rates can be determined using Pound-Drever-Hall error signals
[Bla01]. In the Pound-Drever-Hall technique a phase modulation is applied to a light
field which is mode matched to the optical cavity. The reflected light is detected by a
photo diode and the photo current is demodulated, and information on the behavior of
the sidebands inside the cavity can be extracted. This technique is used for the stabiliza-
tion of cavities as it generates a zero crossing exactly on resonance when demodulated
with the correct phase, and can be used as error signal for a control loop. When the de-
modulation phase is exactly 90° off this point, the error signal has maxima and minima
exactly the modulation frequency away from the center of the carrier field’s Airy peak.
They can therefore be used as frequency markers [Briil0] to determine the width of the
Airy pattern. Thereby the cavity decay rates of the SPDC cavity can be determined,
which are crucial parameters for further analyses. In Figure 5.2 this is shown for the
810 and 1550 nm field using a 90 MHz modulation frequency. A full width at half max-
imum (FWHM) of 34 MHz and 17 MHz is inferred for 810 and 1550 nm, respectively.
(As already mentioned earlier, the cavity decay rate «y is connected to the half width at
half maximum via ;= =HWHM, so that 2 =FWHM.) The linewidth at 810 nm is larger
than at 1550 nm because of higher optical absorption at 810 nm in the crystal itself and
deviations in the reflectivities of the mirrors, which are specified to 96 & 0.5%.

5.1.2. Filter cavity

The SPDC cavity emits photon pairs at 810 and 1550 nm in many free spectral ranges
(FSRs). However, only very distinct modes at 1550 nm are up-converted to 532 nm as
they have to match the resonance condition of the sum-frequency generation cavity. On
the other hand, the avalanche photo detector (APD) measuring the 810nm does not
discriminate between photons from several FSRs, so that an APD event will herald the
existence of a 1550 nm but not necessarily of an up-converted 532 nm photon. To avoid
this, the 810 nm path has to be spectrally filtered to avoid this effect.

A filter cavity is designed which has a large FSR to suppress as many modes as
possible and a linewidth that is not too small to cause the correlations to smooth out
(cf. Section 5.2.2). A Finesse [Freld] file is written, using the cavity parameters of the
SPDC as determined before. It can be found in the appendix (B.1). The FSR of the
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Figure 5.2.: Determining the cavity decay rates of the SPDC using a 90 MHz modula-
tion/demodulation technique at 810 (left) and 1550 nm (right). The markers
set by the modulation frequency (blue) are compared to the Airy patterns
of the scanned cavity. Cavity decay rates of v/m=34 MHz and ~/m=17 MHz
are inferred for the fields at 810 and 1550 nm, respectively.

designed filter cavity is 60 GHz while its FWHM is 190 MHz. A CAD drawing of the filter
cavity (provided by Axel Schonbeck) and the simulated filtering is shown in Figure 5.3.
It consists of an aluminum spacer where two mirrors with 99% reflectivity are mounted
to form a cavity with a 2.5 mm air gap in between. One of the mirrors is attached to a
piezo electric transducer to enable scanning of the cavity. In the experiment, the cavity
is held on resonance by hand, which was easily possible due to the compact and thus
intrinsically stable setup of the cavity and using the count rate of APD-A as a monitor.

5.1.3. Avalanche photo detectors (APDs)

In the experiment three APDs are used. APD-T at 810 nm is used to herald the existence
of a photon in the correlated 1550 nm mode. This mode is up-converted to 532 nm where
it is analyzed in a Hanbury Brown and Twiss setup using APD-A and APD-B. The APD-
T is made by PERKINELMER (model SPCM-AQRH-13-FC') with a fiber connector in
front of the active surface. It has a nominal quantum efficiency of 60% at 810 nm and a
dark count rate of about 250 ct/s. The dead time is measured to be 29+0.5ns. APD-A
and -B are from LASER COMPONENTS (model Count-250B), also equipped with a fiber
connector. The quantum efficiency is about 70% at 532nm and the dark count rate is
measured to be below 50 ct/s. The dead time is about 50 ns.

To analyze optical modes, they are mode-matched to standard optical fibers, which
have a custom made opaque flexible aluminum shield so that no ambient light could
enter the fibers and cause false events on the APDs. All coupling efficiencies are above
80%.

The power supplies for the APDs are equipped with a special protection circuit. When-
ever the APD count rate increases, the electrical power consumption increases as well.
The current ran through a high power shunt resistor and the voltage at the input of
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Figure 5.3.: The cavity to filter the signal mode. left: CAD drawing of the filter cav-
ity done by Axel Schénbeck. The aluminum spacer held two mirrors at
a distance of about 2.5mm. right: The simulated mode spectrum of the
SPDC cavity and the subsequent filter cavity are shown in black and red,
respectively. The first significant disturbing mode appeared only at around
70 GHz.

the resistor is compared to the voltage at the output. If this difference voltage exceeds
a particular value, a relay is triggered and shuts down the power supply. Additionally,
an optical shutter is driven with this circuit and it blocks the optical path in case of
a too high count rate. Thereby the APDs are protected from too strong optical fields.
These may occur, if the SPDC is accidentally set to an operation point where too many
photons are produced or if it is driven above oscillation threshold. A schematic of the
APD power supply is presented in the appendix (Section B.2).

All APDs are on-off-detectors and not number resolving. This means that they indi-
cate an event whenever they measure something. Even if there are two (or more) photons
impinging on the detector, they generate just one electronic pulse of the same height as
if only one photon is measured. In the following I will denote every APD event a click.

5.1.4. Data acquisition

The data acquisition is performed with an oscilloscope (AGILENT DSO 7014B). All
three time series of the APDs with a duration of 2ms are recorded simultaneously with
a sample rate of 2 GSa/s. This is done 2000 times so that in each measurement run 4s
of data are available containing about 105 to 10° trigger events (depending on the gain
parameter ¢). Each time series is directly transferred as binary data to a PC via the
local LAN network utilizing the VISA protocol in a python environment (PyVISA). The
programm codes for interfacing the oscilloscope with the PC, all settings and the loops
for data acquisition are given in Section B.4.1.

The binary data are converted to hdf5-files, which can be processed efficiently by
python. In a final pre-processing step the data are “shrinked”, i.e. the hdf5-files are
scanned and only actual events are kept and given an integer time-tag. Thereby the size
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of the data files is considerably reduced and further data analysis can be performed in
reasonable time. The programs for data conversion and shrinking are also presented in
the appendix (Sections B.4.2 and B.4.3).

5.2. Cavity enhanced spontaneous parametric
down-conversion

The treatment of the spontaneous parametric down-conversion cavity (SPDC) is similar
to the degenerate OPA of Chapter 3 with one difference: the two correlated photons
generated in the down-conversion process do not have the same frequency. This leads
to the fact, that generally these two fields have different decay rates v, and v_. The
two indices denote the upper and lower sideband which have the frequencies w, and
w_. Of course, energy conservation must hold so that wy +w_ = wy. In the experiment
performed in this thesis, w, corresponds to the field that has the wavelength of approx-
imately 810 nm, w_ is the frequency of the field with the telecommunication wavelength
1550 nm and the pump field is the 532 nm field (w,).

5.2.1. Temporal correlations of the SPDC output

In the experiment, non-degenerate output modes of the SPDC are spatially separated
by a dichroic beam splitter. A photon in one of these modes (at 810nm) heralds the
existence of a photon in the other mode (1550 nm). The setup is sketched in Figure (5.4).

Q APD
a+,out
SPDC
. T DBS
'ZD] ............. T ST
a-,out

Figure 5.4.: Schematic of the heralded single photon source. The detection of a photon
in the a4 oyt mode (810nm) heralds the existence of a photon in the a_ o
mode (1550 nm). The detection is performed by an avalanche photo diode
(APD) and the spatial separation of the two output modes of the SPDC
takes place on a dichroic beam splitter (DBS).

The temporal correlation function of the two modes is given by
D(7) = (@} ot (£)a] ue(t + T)a ou(t + T)r ou(t)) (5.1)

where a4 oy are the mode operators for the trigger (+) and signal (-) field.
The mode operators can be calculated following a cavity input-output formalism. A
detailed calculation is given in the appendix, Section A.4 with the resulting temporal
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Here, 7 is the time delay between two subsequent detections of a trigger and a signal
photon, ¢ is the gain parameter, 7 is the cavity decay rate of the SPDC, and A\ = v — |¢|,
p =+ |e]. The oscillation threshold is given for |e| = 7.

To the best of my knowledge, this full temporal correlation function hasn’t been
mentioned elsewhere before as usually a low-gain-approximation is used. However, this
approximation very well covers the interesting features: the second term of Eq. (5.2) is
a time independent offset while the third term is much smaller than the first one. Espe-
cially in the low-gain-limit with |e¢| < 7 (i.e. A &= p) it becomes negligible. The shape
of the correlation function is thus approximated very well by the first term of Eq. (5.2)
since the experiment is operated with low gain |¢| < 7, see also the appendix A.4.3. 1
will continue all calculations with the first term only.

(5.2)

5.2.2. Temporal correlations with filtered signal mode

In the experiment, the two fields generated via non-degenerate down-conversion expe-
rience different transfer functions. An asymmetry is caused by frequency filtering of
the signal mode by up-conversion in a sum-frequency generation cavity with a rela-
tively small linewidth. Unequal decay rates in the generation process of the two down-
converted fields have a similar effect. Here, I will pool these two effects (that actually
are present in the experiment) by letting one of the modes (the 1550 nm field, a_) be
transmitted through one cavity with the decay rate k. A schematic of the propagation
of the two modes and the cavities involved is shown in Figure 5.5.

a+,out pump
SPDC

SFG
Lo e e |1 R

Figure 5.5.: Schematic of the heralded single photon source and subsequent frequency
up-conversion of the signal mode in a sum-frequency generation cavity
(SFG). The SFG is a cavity with decay rate x so that the signal mode expe-
riences additional frequency filtering. The correlations between the trigger
and the up-converted signal mode are analyzed by measuring the time delay
7 between clicks of the illustrated APDs.
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The a_ oy mode is frequency up-converted in the sum-frequency generation cavity
(SFG) and detected with an APD. The time correlations between a click at this detector
and the trigger detector is given by

2
[M < Ty N )] T<0
2 \uletp) T A(stA ’
Diltered (T) = ~er Mef;ml—i e*AT) 26T 2e T ? >0 (53)
[T <M(H—u) T XN T e (H+/\)(”v—)‘)>} =

In Figure 5.6 the effect of filtering is shown.
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Figure 5.6.: Effect of extra-filtering of the signal mode a_(t). The smaller the decay rate
r of the extra filter, the more the correlations between trigger and signal
smooth out. Parameters are v = 7-:35 MHz, ¢ = ~/10.

In case of no additional frequency filtering (k = o00), the correlations between the
trigger and signal photon are approximated by a double exponential decay. However,
the smaller the decay rate x of the SFG, the more the signal photons are delayed and
the correlations smooth out. This effect will be clearly visible in the experimental data.

5.3. Results

In the first step of the data analysis, the correlations between the trigger events and
the signal photons at 532nm are analyzed. In further steps, the probabilities of vac-
uum, single photons and higher photon contributions are determined, which enable the
application of criteria of nonclassicality.
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5.3.1. Two- and threefold coincidences

The SPDC cavity is characterized by analyzing two- and threefold coincidences of the
three detectors. A two-fold coincidence is an event, where APD-T and APD-A or APD-
T and APD-B click within a certain time window. These coincidences are described by
the correlation function developed in Section 5.2. An event where all three detectors
click is called three-fold coincidence and is generally unwanted as it means that there
are more than one photon in the 532 nm mode.

The counting statistics of APD-A and -B triggered on APD-T are shown in Figure 5.7
for a pump parameter ¢ = 0.07v, i.e. the pump amplitude is at 7% of the oscillation
threshold. The temporal profile of the up-converted photons clearly shows the smoothed
out exponential decay predicted by Eq. (5.3). The theoretical curve was obtained by
using a decay rate of v = 7-31 MHz and an extra filtering effect of the signal mode with
k = 1.47. As already briefly discussed in Section 5.2, this filtering of the signal mode is
caused by asymmetric decay rates of the SPDC cavity and the transmission of the signal
through the up-conversion cavity. The FC introduces negligible frequency filtering to the
trigger mode due to its relatively large linewidth (190 MHz). In this graph, three-fold
coincidence events do not show any significant contribution to the statistics.
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Figure 5.7.: Histogram of the two-fold coincidence detections at APD-T and APD-
A (red), and APD-T and APD-B (yellow) with theoretical curves
(y=m-31MHz, k = 1.4y, ¢ = 0.07). The delay for the three-fold co-
incidences of APD-T, APD-A and APD-B (green points, right y-axis) is
defined as the time between counts at APD-A and -B given that the trigger
APD-T detected a photon (within a 100 ns time window).
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When the pump power for SPDC is higher, the probability of generating more than
one photon pair within the same coherence time increases. In Figure 5.8 the counting
statistics are shown for measurements with ¢ = 0.11y and € = 0.19y. The three-fold
coincidences indicated by the green circles now significantly contribute to the counting
statistics.
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Figure 5.8.: Histogram of the two- and threefold coincidences, as in Figure 5.7 with the
only difference being that ¢ = 0.11vy (left) and € = 0.19v (right). The
three-fold coincidences significantly contribute to the statistics.

5.3.2. Second order correlation function

Nonclassicality of a state can be certified by a g(® parameter which is defined as [Ger05]
g(0) = =3t (5.4)

Whenever ¢®(0) < 1, the state has sub-Poissonian photon number statistics, which is
evidence for nonclassicality. (For a coherent state g (0) = 1.) In a photon counting ex-
periment like the one presented here, the generated state can be very well approximated
by p = po|0)(0| + p1|1) (1| + (1 — po — p1)|2)(2|, where py is the probability of measuring
vacuum and p; the single photon probability. With these probabilities the ¢(®(0) value
can be calculated as [Jez11]

2(1 —po —p1) 2(1 —po —p1)

2) _ B
g0 = 2(1 —po —p1) + p1)? N [2(1 — po) — p1)2° (5.5)

The numerator is twice the probability that both detectors click simultaneously. The
factor of two results in the fact that the signal is split up at a 50:50 beam splitter, and
when there are two photons in the mode they can split with 50% probability or both
go to just one APD that cannot distinguish if there is only one or more photons. The
two-(or more) photon probability is thus twice the value determined directly from the
measured rate. The denominator is the probability of one detector clicking. It clicks
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with twice the probability of measuring two photons (same argumentation as before)
plus the probability of detecting a single photon. This holds for both APDs and the
square arises from the definition of ¢(®(0), i.e. Eq. (5.4).

All events at APD-A and -B should coincide with a click at APD-T as only then one
can be sure that an actual signal is measured. Ambient light, stray light or some other
uncorrelated photons would result in a classical counting statistic. Therefore, with a
click of APD-T a time window — symmetric about this event — is opened and whenever
APD-A or APD-B clicks within this window (or both), a counter is increased. The
counters for two-fold coincidences of APD-T with APD-A or -B are denoted R4 and
R, and the counter for three-fold coincidences is Ry. The total number of trigger events
is Ry. The probability for a vacuum state is then

B Riga+ Rip+ Ry

=1 5.6
Do Rq (5.6)
The number of single events is bounded from below by
R R T>+(1-T)R
Py > T4 + g T +( )? Ry (5.7)

Ry 2T(1—T) Ry’

where T' is the beam splitter ratio in the Hanbury Brown and Twiss setup, T' =
Ria/(R1ia + Rip), see [Jezl1] for details.

The rates R, strongly depend on the size of the coincidence window. An illustration
on how the coincidence window is set is shown in Figure 5.9. Obviously, if it is chosen

no coinci- coinci- no coinci-
APD-A dence dence dence
or
APD-B
At At
| €| ||
APD-T
Time -

Figure 5.9.: The coincidence window is a time frame symmetric about a click at APD-T.
If a click happens within this time window at APD-A or APD-B, this click is
accepted as a coincidence. When the window is chosen too small, less coinci-
dences are measured and the vacuum probability is overestimated. However,
if the window is too large, uncorrelated photons or background noise is con-
sidered a coincidence, which reduces the single photon probability.

too small, not all photons at 532 nm are taken into account as they are spread over some
finite time as it can be seen from Figure 5.7 or Eq. (5.3). The total number of events
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decreases and so does the statistical significance. However, when the chosen window is
too large, uncorrelated photons are measured and three-fold coincidences become more
and more likely, reducing the single photon content of the state. The optimum value can
be found by varying the coincidence window in post-processing, as the data acquisition
allows access to the full time series of all events.

In Figure 5.10 the ¢®(0) value is plotted against the size of the coincidence window.
The error bars are obtained by assuming Poissonian counting statistics and correspond-
ing error propagation. In Poissonian counting statistics the standard deviation of a
measured rate is given by AR = V'R .
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Figure 5.10.: Experimentally determined ¢ (0) value according to Eq. (5.5). The lower
the gain parameter ¢, the lower the g(Q)(O) value, which is below 0.05 for
€ = 0.07v and coincidence windows smaller than 34 ns.

For small parametric gain (¢ = 0.077), the ¢?(0) value reaches values smaller than
0.05 for coincidence windows smaller than 34ns. Larger windows lead to three-fold
coincidences caused by noise and the single photon probability decreases. If the pump
power of the SPDC and thus the parametric gain ¢ is increased, the contribution of
higher numbers of photons in the state increases. This leads to a higher rate of three-
fold coincidences and a reduction of the single photon contribution.

5.4. Quantum non-Gaussianity

The sub-Poissonian statistics indicated by a ¢ (0) smaller than unity are a strong
signature for the nonclassicality of the states. An even stronger feature of nonclassicality
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is a negative Wigner function, the hallmark of single-photon states [Lvo01]. However, due
to mixture with vacuum, the negativity of such states decreases, or even vanishes, when
losses exceed 50 %. Nevertheless, it is still possible to certify a quantum non-Gaussianity
(QNG) of the state. Recently it has been shown, that QNG is a sufficient condition for
the security of a discrete-variable quantum key distribution scheme [Las16]. QNG is
thus a useful feature for quantum information tasks. The measured probabilities py and
p1 can be used to analyze whether the up-converted states p are quantum non-Gaussian
or not. The QNG criterion has been used in a variety of experiments to characterize
single photon sources [Jezl1, Jez12, Prel4].

The property of QNG was originally proposed by R. Filip and L. Mista [Fil11] and T will
briefly sketch their idea here. Let G be the set of all Gaussian states and mixtures thereof.
Any state p which is not in G is defined to be quantum non-Gaussian. This criterion
identifies QNG states using a simple and experimentally feasible criterion based on
photon number probabilities. For a given (measured) vacuum probability py a maximum
single-photon probability p; achievable by a Gaussian state can be calculated. If the
measured p; is higher, then p ¢ G.

The boundary values for py and p; for still forming a state in G is given by [Jez11]

exp [d (tanhr — 1)]

Po = )
coshr (5.8)
_ dexpld(tanhr — 1)] '
b= cosh?® r 7
where d = (¢*” —1)/4 and r = —3 In(1 — %) < 2e /v is the squeezing parameter.

In Figure 5.11 the area of states that can be described by mixtures of Gaussian states
is shown in red. The border of this area is specified by Eq. (5.8). All states that lie
beyond this border are quantum non-Gaussian (green area).

The witness of QNG is defined as W = p; + apy — Wg(a), where a < 1 is a parameter
specifying the witness and Wg(a) represents the maximum of p; + apy achievable by
Gaussian states for a given a. Assuming Poissonian statistics of the measured coinci-
dences, the statistical error of the witness can be determined and one can express the
witness in numbers of standard deviations AW. A positive witness certifies QNG of the
state, even though in general it can be a mixed state with a positive Wigner function.
It has been shown that the QNG criterion is very robust against optical losses [Str14],
possibly qualifying it to become a standard tool in single photon state characterization.

The experimental result is shown in Figure 5.12. In the plot the witness of QNG,
W, is shown for measurements with three different gain parameters e, dependent on
the coincidence window size At. Also shown is W in numbers of standard deviations,
AW . For each € and At, the parameter a of the QNG witness W was optimized such
as to maximize W/AW. If the witness is positive, then p ¢ G. The program for the
calculation of the witness is given in the appendix, Section B.4.4.

For low gain € = 0.07, the witness of QNG was positive for all coincidence windows
smaller than 300 ns, reaching a maximum of 16 standard deviations around At=34ns.
For higher gain, the multiphoton contribution increases, which lowers the witness. For
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Figure 5.11.: Quantum non-Gaussianity. For every vacuum probability py a maximum
single photon probability p; can be calculated so that the pair still forms a
Gaussian state. All these pairs lie on the red-dashed line. Every pair below
this curve can be described as a mixture of Gaussian states lying in the
area called G (red area). However, every pair above this line describes a
state p ¢ G and is quantum non-Gaussian (green area). The green diagonal
is the border of physically allowed states.

e = 0.11vy and At >120 ns the witness is negative, indicating that the state could possibly
be expressed as a convex mixture of Gaussian states. For even higher gain (¢ = 0.19v)
the witness of QNG is never positive. Since the mode approaches thermal statistics
[Yur87], higher photon number contributions show up and background noise increases.

The maximum achievable witness can be calculated by applying the following model.
I assume an initial two-mode squeezed vacuum state, produced by the SPDC and char-
acterized by the pump parameter €. Both modes propagate through lossy channels with
transmittances ng (signal) and nr (trigger) that account for all imperfections of the setup,
i.e. quantum efficiency of the APDs, limited up-conversion efficiencies or other optical
losses. The highest value of Wi,y is achieved in the weak squeezing limit (¢ — 0), where
higher photon numbers become negligible and the single photon probability is simply
given by the signal detection efficiency ng, p1 = 15, and pg = 1 — ng. In the present
experiment, this efficiency is bounded from below by ns = 0.2, which yields a maximum
witness Winax = 0.00486. Evaluating the experimental data, the maximum witness that
is achieved is Wey, = 0.00315, when € = 0.07v. As this reduction was most likely caused
by dark counts and background noise, that were not included in the model, the exper-
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Figure 5.12.: Witness of quantum non-Gaussianity (QNG) of the frequency up-converted
single photons. left: The witness depending on the coincidence window size
for three different gain parameters €. The witness is the highest for the
smallest € = 0.07v and at a particular coincidence window size. For higher
gain and for a too long coincidence window, the witness becomes negative
at some point as too many uncorrelated events are considered a coinci-
dence. If ¢ = 0.19v, no quantum non-Gaussianity can be witnessed for any
coincidence window size. right: The witness in numbers of standard devi-
ations with a maximum significance of more than 16 standard deviations
at At = 34 ns and for € = 0.077.

imental data are in good agreement with the theoretical predictions. Furthermore, the
experiment is not performed exactly in the weak squeezing limit. At least the gain had
to be € = 0.07v to achieve sufficiently high probability of conditional generation of the
single photon state and to accumulate enough data during the experiment.
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5.5. Extended analysis

Initiated by Jaromir Fiurasek, the experimental data were analyzed to reveal more subtle
features. These studies base on a full multi-mode description of the SPDC output and
discretized time slots. The results are presented in a second publication related to this
experiment [Fiulb.

The theoretical framework and analyses were provided by Jaromir Fiurasek. The
manuscript is self consistent and I refrain from reciting everything at this point. However,
our experimental data and results from some additional measurements are used and I
will briefly present the main results in the following.

5.5.1. Dead time of APD-T

The dead time tp denotes a time interval after a click of an APD during which this
detector is blind and cannot detect any photons. This means that if APD-T clicks at
time to, the detector did not detect any photons in the time interval [—tp, to], because
otherwise it would be blind and could not have detected a photon at time ¢5. A click
of the trigger detector thus excludes the possibility of a trigger event at the particular
preceding time interval. The fact that the trigger detector did not register any photons
in the time interval [—tp,to] implies that the idler beam was projected onto vacuum in
this time interval. The intrinsic quantum correlations between signal and idler photons
consequently also reduce the multi-photon contributions in the signal beam and the
value of the quantum non-Gaussianity witness increases.

5.5.2. Afterpulses

Avalanche photo diodes also show the effect of afterpulsing, i.e. a spurious event occurs
some time after an actual click. The effect originates in the electronics of the device
when the electron avalanche is not completely quenched after a click. It occurs with
some probability (typically 1%) and decays exponentially with a time constant of a few
ns. The measured distribution of the detector APD-T is shown in Figure 5.13, where
also the dead time of 291ns is clearly visible. It was measured by simply detecting an
attenuated coherent field, where photons are not time-correlated to each other (¢?(7) =
1 for all 7). For a period of tp = 29ns no subsequent clicks are detected as expected,
as this is the dead time of the APD. Directly after the dead time, one measures an
increased probability for a subsequent photon, which is due to the afterpulsing effect.
This probability decreases exponentially with a time constant of 28ns. After about
100 ns, no afterpulses occur anymore and only real photons are measured.

The afterpulses are not of optical origin. One expects that their exclusion from the
data analysis would further increase the single photon contribution, as they pretend a
trigger event that has no correlated signal photon. In Figure 5.14, the QNG witness is
shown dependent on a certain minimum “waiting time” t,,;,. This is the time before a
click at APD-T that had to be passed without any other click. By introducing ¢,,;, one
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Figure 5.13.: Statistics on the occurrence of about 10° clicks at APD-T. A coherent state
is measured so that in an ideal detector no preferred or neglected delays
should be visible. However, in the first 29 ns the detector is blind due to the
dead time tp. After this time afterpulses originating from the electronics
of the APD cause the count rate to increase. The afterpulse probability
follows an exponential decay with a time constant of 28 ns.

can exclude that the current click is not caused by afterpulsing. The plot shows that
the QNG witness actually increases if afterpulses are excluded from the analysis.

5.6. Discussion and outlook

The experiment presented here was the first discrete variable experiment realized in the
working group of Professor Roman Schnabel. Many optics, electronics and programs to
control the experiment and to acquire and analyze the data were designed and built from
scratch. I expect and hope that many of the presented calculations, ideas, simulations,
circuit boards and programs will be used in future experiments. The most relevant ones
can be found in the appendix.

I presented the generation of heralded single photons generated by spontaneous para-
metric down-conversion. The single photons at the telecom wavelength of 1550 nm were
subsequently up-converted to 532 nm and analyzed in a Hanbury Brown and Twiss setup.
A ¢ (0) value smaller than 0.05 was demonstrated.

To the best of my knowledge, for the first time frequency up-converted states are
demonstrated to show quantum non-Gaussianity. An up-converted heralded single pho-
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left: Witness of QNG dependent on a minimum waiting time t,,;,. A trigger
click is only accepted, when t,,;, has passed after a preceding click. Thereby
false (i.e. uncorrelated) clicks caused by afterpulses can be excluded that
reduce the single photon probability of the up-converted state. right: The
witness in numbers of standard deviations. For increasing t.;, the total
number of accepted clicks reduces so that the standard deviation increases
causing the points on the right side to drop. The pump parameter is
e = 0.07v and the coincidence window was fixed at At = 34 ns.

ton state was witnessed to be quantum non-Gaussian with more than 16 standard devi-
ations. This strong measure of nonclassicality is a sufficient condition for the security in
discrete variable quantum key distribution. Thus, the frequency up-conversion of single
photons may evolve into a useful tool in quantum information science.
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6. Single photon state tomography

Quantum computers solve certain problems much faster than ordinary computers. The
Gottesman-Knill theorem states that a wide class of systems can be efficiently simu-
lated with classical methods [Got99, Bar02]. Only when states with a negative Wigner
function are used, a quantum computer outperforms its classical counterpart [Marl2].
One of the examples of states with a negative Wigner function is the single photon state
and the generation of these kind of states is realized in the experiment presented in
this chapter. Another goal of this experiment is to establish a hybrid quantum state
generation scheme, i.e. the combination of discrete (e.g. single photons) and continuous
(e.g. squeezed states) variable techniques, in the telecommunication wavelength regime
around 1550 nm.

Squeezed vacuum states consist of photon pairs in a very good approximation when
the pump power is low (and so is the squeezing strength) and no higher order pairs occur.
If this state is sent to a high reflection beam splitter and a photon is detected in trans-
mission, the state in reflection is projected into a single photon state [Dak97, Mgl06].
This way, single photons can be conditionally prepared (heralded) and subsequently an-
alyzed via quantum state tomography. In the experiment presented here, the detection
of the heralding photon is assisted by on-the-fly frequency up-conversion to 532nm to
take advantage of low noise silicon avalanche photo detectors.

Previous works at other wavelengths have demonstrated negative Wigner functions
both with pulsed and continuous wave setups [Lvo0l, NNO7]. Very helpful to realize the
experiment were thus the PhD theses of Jonas Schou Neergaard-Nielsen [NNO§] and Bo
Melholt Nielsen [MN10] and the main ideas can also be found there.

In Section 6.1 the experimental setup and the main components for data acquisition are
introduced. Many components could be adapted from the experiment on up-conversion
of single photons, cf. Section 5, so that only components that are specific for this exper-
iment are presented. The data processing and the results are presented in Section 6.2,
followed by an outlook.

6.1. Experimental setup

The experimental setup for the single photon tomography is shown in Figure 6.1. Squee-
zed states of light at 1550 nm are generated in an optical parametric amplifier (OPA). The
OPA is described in detail in Section 3.2.4. A small fraction of this state (about 0.5%) is
subtracted from this state and the remaining state is analyzed via balanced homodyne
detection (BHD). The subtracted mode is up-converted to 532 nm in the sum-frequency
generation cavity (SFG), cf. Section 3.2.5. After passing a filter cavity (FC) the up-
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Figure 6.1.: Experimental setup for the Fock state tomography. Squeezed states of
light at 1550 nm are generated in an optical parametric amplification cavity
(OPA) using a pump field at 775nm. A small fraction (0.5%) is subtracted
from this state and up-converted to 532 nm in a sum-frequency generation
cavity (SFG) using a pump field at 810 nm. The up-converted state passes a
filter cavity (FC) and is detected with an avalanche photo detector (APD).
The remaining state at 1550 nm is analyzed with a balanced homodyne de-
tector (BHD). The electronic signal is acquired with an oscilloscope that is
triggered by APD events. The data is directly transferred to a PC. DBS:
dichroic beam splitter; BS: beam splitter.

converted mode is detected with an avalanche photo detector (APD). Every click of this
detector triggers an oscilloscope, which records the BHD signal. The recorded raw data
are directly transferred to a PC.

The frequency up-conversion of the trigger photons from 1550 to 532nm is done to
enable the use of commercially available, low noise and easy-to-use silicon APDs that are
not responsive for infrared wavelengths. APDs for 1550 nm based on InGaAs chips or
superconducting sensors would require cooling up to cryogenic temperatures to achieve
comparable detection efficiencies and noise performance [Had09].

6.1.1. Homodyne detector

The analysis of the signal state is performed via optical homodyne tomography [Lvo09]
which requires a balanced homodyne detection scheme. The electronics of the detector
have to be fast enough to be capable of resolving as much as possible of the spectral
properties of the state. As the OPA has a linewidth of 120 MHz (FWHM), the detector
needs to have at least the same bandwidth as otherwise the effective efficiency of detect-
ing the state would decrease [Kum12]. Moritz Mehmet and Stefan Ast designed, built
and used a homodyne detector for gigahertz applications and kindly provided a device
for my purposes. A short description of the design can be found in the doctoral thesis
of Stefan Ast [Ast15]. The electronic circuit was modified for the use with photo diodes
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with a larger active area which makes them easier to align. Their internal capacitance
is higher which reduces the bandwidth of the detector that remains sufficient though.
A spectrum of the detector’s dark noise and a vacuum reference is shown in Figure 6.2.
The detector has a flat response and a dark noise clearance of more than 15dB up to
200 MHz, disturbed just by electronic pick-up peaks in the dark noise of unknown origin
at 100 and 120 MHz.

-45 T T !
‘ ‘ vacuum ——
sF dark noise .

Noise power [dBm]

10M 100M 1G
Frequency [Hz]

Figure 6.2.: Power spectrum of the fast homodyne detector. The vacuum reference is
more than 15dB above the dark noise of the detector up to a frequency
of 200 MHz except two peaks caused by electronic pick-up. The vacuum
reference was recorded with a local oscillator power of about 10mW and
the signal port blocked.

6.1.2. Trigger filtering

The generation of single photons is performed by splitting a squeezed vacuum state at
an unbalanced beam splitter. Since squeezed vacuum consists of photon pairs, detecting
a single photon in one mode, the other mode is conditionally projected into a photon
subtracted state. The photon pairs are not only generated in the fundamental mode
of the OPA but in many free spectral ranges symmetric about the central wavelength
(1550nm). The state tomography of the heralded state is performed by the balanced
homodyne detector (BHD) that has a bandwidth sufficiently large to resolve the spectral
properties of the fundamental mode but much narrower than the free spectral range of
the OPA. Thus, only the fundamental mode can be analyzed by the BHD. However,
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the single photon detection module used for heralding the state of interest does not
discriminate photons from different free spectral ranges and just clicks whenever there
is a photon — whatever its precise frequency is. Hence, most of the time it would be
triggered by photons which cannot be detected by the BHD. This effect would show
up as optical loss. Therefore, proper frequency filtering of the trigger mode has to be
provided so that the single photon detector only clicks when there is a photon that would
also be seen by the BHD.

The filtering of the trigger mode is performed in two steps. In the first stage the
mode is frequency up-converted to 532nm with the sum-frequency generator (SFG)
as used in the experiments presented earlier. The SFG cavity is doubly resonant for
two wavelengths (810 and 1550 nm) that are not multiples of each other. Therefore, if
fields of about these wavelengths are simultaneously resonant, neighboring free spectral
ranges are not. Furthermore, the phase matching condition is optimal for only few
pairs of signal and pump wavelength and the up-conversion efficiency is much lower for
others. The second filter stage was implemented with a short linear optical filter cavity
(FC). This cavity consists of two half-inch mirrors with a nominal reflectivity of 99%
and a spacing of 3.2mm yielding a linewidth (FWHM) of 150 MHz and a free spectral
range of 47 GHz. The mechanical design was adapted and slightly modified from the one
presented in Section 5.1.2. Note that in the experiment presented here, the up-converted
mode at 532nm is filtered while in that of Chapter 5 the 810 nm mode was subject to
filtering. In Figure 6.3 the mode spectrum of the OPA as well as the mode spectra after
passing the SFG and the filter cavity are shown. Note that the up-conversion efficiency
is assumed to be unity for the whole spectrum, which is not realistic, but otherwise too
complicated to include into the simulation. Realistically, the SFG suppresses the higher
free spectral ranges of the OPA even more so the plot is an upper bound for the resulting
mode spectrum.

6.1.3. Measurement protocol

The data acquisition is performed with an oscilloscope (AGILENT DSO 701/B) that is
controlled with a python program via the VISA protocol. The program is a slightly
modified version of the one presented in detail in Section 5.1.4. The oscilloscope is
triggered with clicks from the APD and samples data with 2GSa/s. In a first step
10* traces (called segments in the following) are recorded with the signal port of the
balanced homodyne detector blocked to obtain a vacuum reference. Each recorded
segment consists of 10? data points representing 250ns of data before and after each
trigger event and is directly transferred to the PC. After recording the vacuum, the
signal port is opened and 5 - 10* segments are recorded while the filter cavity is hold
on resonance by hand using a frequency counter as monitor. The drifts of the quasi-
monolithic filter cavity are slow so that this is easily possible for hours. The stored
binary data is converted into hdf5 files and subject to the data processing and analysis.
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Figure 6.3.: Simulation of the filter effect of the SFG and the additional filter cavity. The
red trace shows the mode spectrum of the OPA with a free spectral range
of 3.6 GHz. The green and blue trace show the mode spectrum after the
transmission of the SFG and the filter cavity, respectively. Up to a sideband
frequency of about 250 GHz the resulting suppression of higher free spectral
ranges is better that —30dB.

6.2. Results

6.2.1. Signal mode-function

The acquisition of data is always triggered by a detection of a photon in the frequency
up-converted mode. These photons at 532 nm are correlated with the photons at 1550 nm
that are reflected at the beam splitter and which are analyzed in the BHD. The temporal
correlation function is

2
VER el e)\‘r - 2eRT _ 2eRT
. _1F (@S S - we - wee)] <0
ﬁltered(T) - ~er Cr ar
|: 2 (u(n—i—u) + )\(H+A))i| , T 2 07
where 7 is the delay between the trigger and the signal photon, v = 7 - 120 MHz is the

OPA’s decay rate, ¢ < v is the gain parameter, k = 7 - 68 MHz is the combined decay
rate of the frequency filter in the trigger path! and A=~ — ¢, p = v + <.

(6.1)

!The SFG decay rate kspg = 7 - 68 MHz (cf. Section 3.3.1) is dominant over the FC decay rate
krc = w150 MHz so that k =~ kspg. The narrower the linewidth of a cavity, the stronger the filter
effect.
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For details please refer to Chapter A.4, where the calculation is explicitly performed.
The only difference is that there the signal mode is subject to additional frequency
filtering compared to filtering of the trigger mode here. Note that the trigger filtered
correlation function is related to the signal filtered function shown in Eq. (5.3) via the
transformation 7 — —7.

6.2.2. Segment noise

It is initially unknown at which points in time the signal is contained in the segments
because of finite response times of the photo detectors and electronic delays. However,
one can make use of the fact, that the variance of a Fock state is higher than that
of a vacuum state, Agy = \/(2n+ 1)/2. To “find” the photon I calculate the so-called
segment noise which is the variance of individual points in a segment across all segments.
In each segment the data at the same position in the segment is taken and the variance
across the selected points is calculated. For points that are “far” away from the trigger
event, the variance is just at the vacuum level, while for points close to the trigger, the
variance rises and peaks at a particular point. This point is not exactly at the trigger
time (i.e. 7 = 0) but slightly earlier, because the APDs have a finite response time and
other delays (optically or electronically) shift the signal. The segment noise is shown in
Figure 6.4 with the trigger filtered correlation function Eq. (6.1) fitted to the data. The
fitting gives the parameters v = 7 - 120 MHz, k = 7 - 68§ MHz, ¢ = 0.17, which are in
a very good agreement with previously determined values (except the uncritical ), cf.
Chapter 3. The curve is shifted from 7 = 0 by 10ns. This shift is caused by various
electronic delays in the detection scheme.

6.2.3. Extracting quadrature values

In the next step of the data analysis quadrature values are obtained. Each segment is
post-processed by multiplying the signal mode-function fs(7) to the raw data, which is
given by the square root of the temporal correlation function

fs(7) = V/Thitterea(7) - (6.2)

This way the parts of the segment containing the signal are emphasized and the others
are neglected.

In Figure 6.5 a segment and the signal mode-function as well as a data stream after
multiplying the mode-function to the segment is shown.

A quadrature value is obtained by integrating the segment data after multiplication of
the signal mode-function. Each segment therefore results in one single quadrature value.
The result as well as a vacuum reference, is shown in Figure 6.6 where the quadrature
values are normalized to give A%q.. = %

The quadrature values are shown in a histogram in Figure 6.7, where a Gaussian
distribution with variance A%q = 1 is fitted to the data of the vacuum reference. The

2
plot is scaled to obtain a (normalized) probability distribution. The red dots represent
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Figure 6.4.: Pointwise variance of all recorded segments. With the signal beam blocked,
the variance is constant for all times (black). If the signal port of the BHD
is open, the variance of the segments peaks around a particular time (red).
The trigger filtered correlation function Eq. (6.1) is fitted to the data (blue).

the histogram of the quadrature data of the signal. The model that is fitted to this data
is obtained by a mixture of Fock states. Fock states |n) with n € [0, 5] are assumed to
be present in the signal. The probability distribution is then given by a weighted sum
of marginal distributions

P(q) :an/ dpW(q,p), (6.3)

where p,, is the probability of state |n) and W, (q, p) is given by Eq. (2.28). The fit yields
the probabilities pg = 0.39, p1 = 0.57, p, =0, p3 = 0.03, py, = 0, p5 = 0.01.

6.2.4. Reconstruction of the Wigner function

The reconstruction of the Wigner function is the final step of the data analysis. There-
fore, the maximum likelihood estimation algorithm is applied to the quadrature values.
An introduction to the maximum likelihood estimation algorithm can be found in Sec-
tion A.5. The result of the (phase randomized) algorithm is a density matrix in Fock
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Figure 6.5.: Segment noise of the recorded data and mode function. left: The segment
data as recorded by the oscilloscope and the signal mode-function. The
mode-function is obtained from the fit of the segment noise as shown in
Fig. 6.4. right: The segment after multiplying the mode-function to the

data.
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Figure 6.6.: Quadrature values obtained from multiplication of the signal mode-function
to the segment data and integrating the result. left: Vacuum reference
scaled to a variance of % right: Quadrature values for the signal scaled
with the same factor.
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Figure 6.7.: Normalized histogram and probability distribution of the quadrature values
of Figure 6.6. The data of the vacuum reference is compared to a Gaussian
distribution with variance 1/2. The red dots are the distribution of quadra-
ture values for the signal state and the dip of the probability around the
origin is clearly visible which is characteristic for a single photon state. The
solid red curve is a model for a state with py = 0.39, p; = 0.57, p, = 0,
ps = 0.03, py = 0, ps = 0.01 where p, is the probability of Fock state |n) in

the signal.
basis:
0.392 0 0 0 0 0
0 0572 0 0 0 0
i 0 0 0003 0 0 0
P=1 o 0 0 002 0 0 (6.4)
0 0 0 0 0004 0
0 0 0 0 0 0.001

The density matrix has the probabilities p, on its diagonal, n € [0,5]. These very well
agree with the values already obtained from a fit of the marginal distribution. The
relatively high vacuum contribution py = 0.392 is caused by false trigger events, who
originate in dark counts of APD and improper trigger filtering, and optical losses in
the signal path. The signal could be detected with an efficiency of about 80%, which
includes propagation losses, limited detection efficiency of the homodyne detector and
the beam splitter to tap off a small part for the trigger path. This efficiency was inferred
with an auxiliary squeezing/anti-squeezing measurement when the OPA was operated
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with much more parametric gain. The vacuum contribution can be further reduced by
setting up another filter cavity in the trigger path. This is, however, connected to much
more experimental effort as then two filter cavities have to be held on resonance for
hours and elaborate locking techniques are required.

With the density matrix p the Wigner function can be reconstructed using the math-
ematical tools as given in Section 2.1.3. The reconstructed Wigner function is shown
in Figure 6.8 as well as a slice through its center in Figure 6.9. The Wigner function
clearly shows negative values around the origin, with a maximum negativity of -0.063.
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0.12 0.1
0.08 0.05
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' -0.15
-0.08

Figure 6.8.: Reconstructed Wigner function by maximum likelihood estimation. Around
the origin, the Wigner function has negative values down to -0.063£0.004.

6.2.5. Significance of negativity

A Wigner function having negative values is a strong statement for having a nonclassical
state. To get a statistical predicate on the negativity of the Wigner function of the
states, a bootstrap algorithm was applied to the data and the reconstruction algorithm
is repeated with the new data set. By randomly combining quadrature values (with
repetition) of the data set, a new data set is formed. For every iteration of this procedure,
the origin of the Wigner function has a different value and a mean value as well as a
standard deviation can be calculated. A plot of this mean value with its standard
deviation dependent on the number of bootstrap iterations is shown in Figure 6.10. It
can be seen that both the mean value and standard deviation converge to W (0,0) =
—0.063 £ 0.004. The Wigner function is witnessed to be negative with more than 15
standard deviations.
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Figure 6.9.: A slice through the center of the Wigner function presented in Figure 6.8 to
emphasize the negativity.

6.3. Discussion and outlook

Single photons are generated by weakly pumping a optical parametric amplifier and
subtracting a small portion of the resulting weakly squeezed state at a low transmission
beam splitter. The subtracted mode is frequency up-converted to 532 nm and detected
on an APD. Any click of this detector projects the remaining state at 1550 nm into
a single photon state which is analyzed via (phase randomized) optical quantum state
tomography. The reconstructed Wigner function shows negative values around its origin
with W (0,0) = —0.063 4 0.004, which is a very strong criterion for nonclassicality.

To the best of my knowledge, a state showing a negative Wigner function is prepared
at the telecommunication wavelength 1550 nm for the first time. This result may find
applications in quantum computing or quantum communication. Beyond that, this
experiment is the first realization of discrete-continuous variable (hybrid) experiment
in the working group of Roman Schnabel. The experimental requirements, simulations,
data acquisition protocols and the data analysis were developed from scratch. I assume
that many of the programs and techniques may be re-used in future experiments.
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Figure 6.10.: Origin of the reconstructed Wigner function W (0, 0) versus the number of
bootstrap iterations with inferred error bars. The negativity converges to
W(0,0) = —0.063 £ 0.004.
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7. Summary and outlook

Frequency up-conversion of nonclassical states opens up new possibilities in quantum
metrology and quantum information processing. The direct generation of squeezed states
at 532nm via parametric down-conversion is daunting as an intense ultra-violet pump
field would be required and no nonlinear crystals are available with satisfying optical
properties in this wavelength regime. In this thesis, I demonstrate the up-conversion
of nonclassical states of light from 1550nm to 532nm. Squeezed vacuum states are
initially generated at 1550 nm and subsequently up-converted to 532nm by means of
sum-frequency generation with a 810 nm pump field. A nonclassical noise suppression of
5.5 dB below the shot noise level was shown. In a subsequent proof-of-principle exper-
iment, the up-converted squeezed states were used to enhance the signal-to-noise ratio
of a table-top Mach Zehnder interferometer.

Frequency up-conversion furthermore has the potential to develop into a standard
tool in quantum communication, as it allows bridging the gap between widely sepa-
rated wavelength regimes. The generation and analysis of squeezed and entangled states
has previously been established at 1550 nm, where optical fibers show low absorption
enabling long distance transmission. However, quantum memories are part of many
quantum information protocols and usually operate at much shorter wavelengths. An
on-the-fly frequency up-conversion allows for both long distance transmission of optical
states and their storage in quantum memories. I show the realization of a scheme to
interface two widely separated wavelength regimes. By frequency up-conversion of one
part of a two-mode squeezed state, strong nonclassical correlations of 5.5dB below a
vacuum reference are certified between two modes at 1550 nm and 532 nm.

Single photons have been used in many previous experiments, both to probe funda-
mental issues in quantum theory, and to investigate and develop future quantum tech-
nologies. The frequency up-conversion of single photons is also presented in this thesis.
Spontaneous parametric down-conversion is used to produce photon pairs at 1550 and
810 nm where the latter herald single photons at 1550 nm that are then frequency up-
converted to 532nm and analyzed in a Hanbury Brown and Twiss setup. For the first
time, frequency up-converted single photons are shown to be quantum non-Gaussian
with more than 16 standard deviations. Quantum non-Gaussianity certifies that a state
is not expressible as mixtures of coherent states, and is a sufficient condition for secure
quantum communication.

Probably the most characteristic feature of single photons is negativity of the Wigner
function, which is a quasi-probability distribution. This feature is discriminatory for
nonclassical states and enables particular quantum information protocols. To the best
of my knowledge, the first experimental realization of a heralded single photon source
at 1550 nm with subsequent quantum state tomography is presented in this thesis. The
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prepared state is certified to have a Wigner function with a value of -0.063 at its origin
with a significance of the negativity of more than 15 standard deviations. During the
preparation, frequency up-conversion is employed to enable the use of easy-to-handle
silicon avalanche photo detectors.

Future research on the frequency up-conversion of nonclassical states may focus on
interfacing optical quantum networks with quantum memories. The storage of optical
states in quantum memories is a key technology in setting up long-distance quantum
networks. The transmission of states through optical fibers is well established at 1550 nm
and the next step would be to map these states to atomic transition frequencies. Ex-
ploiting the flexibility of the approach, different nodes in a quantum network could have
different operational frequencies, and all be interfaced with 1550 nm, simply by designing
specific SFG cavities at each site.

The sum-frequency generation technique presented in this thesis is a versatile tool.
With minimal modifications, the current setup could be easily matched to a quantum
memory having a bandwidth in the MHz regime. The optical bandwidth can be varied
by changing the mirror reflectivities of the squeezed light source and up-conversion
cavities. The optical frequency of the up-converted states can easily be changed by
varying the frequency of the pump field using acousto- or electro-optical modulators.
These capabilities are necessary to achieve high efficiency when integrating an optical
source of nonclassical states with a quantum memory.

Frequency up-conversion of nonclassical states of light is a powerful technique for
quantum state engineering and thus the results of this thesis give new impulses for
quantum metrology and quantum information research.
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A. Calculations

A.1. Cavity input-output formalism

In this section I will review the basic formalism for the description of input and output
modes of optical cavities. Based on this, the properties of degenerate and non-degenerate
optical parametric oscillators below threshold will be developed in the corresponding
chapters. The treatment basically follows the textbooks of Walls and Milburn [Wal94],
Gardiner and Zoller [Gar91] with some issues from Scully and Zubairy [Scu97].

An internal mode a of an optical cavity is considered to interact with external modes
I;, whereby the interaction strength x is small compared to the frequency of the exter-
nal modes. This allows for the rotating wave approximation, where counter rotating
terms disappear from the equations of motion (for a brief overview of its validity see
[Fuj13]). The intracavity modes obey the bosonic commutation relation [a,af] = 1 and
the external modes — closely separated in frequency — satisfy [B(w), ZA)T(w’ )] =0(w—uw).

The interaction energy is given by the Hamiltonian

H,, = ihk / dw[b(w)a’ — abf(w)], (A1)

where k is the coupling rate, assumed to be independent of frequency about the central
frequency (i.e. cavity resonance frequency). This assumption is called the first Markov
approximation and incorporates that the external modes are memoryless [Scu97]. This
is well justified in quantum optical systems as the interaction time of the system with
the bath (in the order of 1/MHz) is much longer than the correlation times inside
the bath (1/THz). After the interaction, the bath gets back to its initial state quasi-
instantaneously. The equation of motion for the external modes then is a first order
differential equation

db(w)

e [b(w), H] = m/dw'é(w — Wi — iwb(w) = ki — iwb(w), (A.2)

ST

where the total Hamiltonian H is the sum of the system Hamiltonian Hgyy describing
the dynamics of the cavity modes a, the interaction of the system with the environment
H;,; and the free Hamiltonian for the external modes H.,, = fiwb™. This differential
equation can be solved with standard methods'. This is done for two time intervals:

!This first order differential equation is of the type 9 + c(t)y = r(t) with initial condition y(to) = yo.
The solution reads y(t) = e=¢® ftto dt’ r(t') ) 4y e where C(t) = ftfo dt’ c(t").

81



to < t which is the input and t; > ¢, the output.

t
b(w) = eiw(tto)/ dt’ R&(t/)eiw(t/,to) + efiw(tfto)bo(w)
t
t 0 . , R '
= /{/ dt’ &(t/)e—lw(t—t) + bo(w)e_lw(t_to),
to

t
b(w) = e—iw(t—m)/ dt/ Hfl(t,)eiw(t/_tl) +e —iw(t—t1) b ( )

t1
t1 R )
_ —H/ dt’ &<t/)ef1w(t7t’) + bl(w)e—w(tftl),
t

where b;(w) is b(w) at ¢ = ¢;. The cavity mode operator obeys the equation

di : : o

W H] = o - m/_oo Qo b(e)
Inserting the solution with initial conditions leads to

dé . 9] t . ,
=l = [ do [ a@)e 0 1 Vb
dt h —o0o to

. t

— _%[a, H,,.] — 27K° / dt' a(t)o(t — t') + V2K G (t)
to

where the input field operator is defined as

1 [>

V2r

It obeys the commutation relation

[din(t)aam 2 /dw/dw )]efiw(tfto)eﬁw/(t’,to)
n

dw / dw'd(w — w )e_lw(t_tO)eJ“iw,(t,_tO)
27T

1
o7
=0(t—1t).

ain(t) = dw by (w)e w10

dwe_“"(t_t )

After defining x? = /7 and using? fti dt' a(t')6(t — ') = a(t) we obtain

da(t 1. . .
% = _i_i[a(t)’ Hgys] — va(t) + /270G -

2If a function f(t) smoothly tends to zero for ¢ — +oo the following is true:

/jodt’f( "ot —1t') m/ dt' f(t)o(t —t') ~ f(t)

/dt’f(t’)&(t—t’)m/ dt'f(t’)é(t—t’)z%f(t)

to t
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In terms of an experimentalist, 5= is the half width at half maximum (HWHM) of the

cavity, measured in Hertz. If the solution for the final conditions (¢; > t) is inserted in
Eq. (A.6), the equation reads

4a() _ _ 160, el + 10(t) — /o (A.10)

where the output field operator is defined as

aout t

= 7= / dw by (w)e W t=1) (A.11)

Subtraction of one solution from the other leads to a relation between the input and
output fields,

din( + CLout \/ CL <A12>

A schematic of the system is depicted in Figure A.1.

Note that the extension to a system where also the second mirror has some transmit-
tivity (two-sided cavity) is straightforward [Wal94]. However, most systems that were
investigated throughout this thesis could all be well explained in the one-sided formalism.

|

Rxl1

Figure A.1.: Schematic of the investigated system. The (one-sided) cavity consists of
one perfectly reflecting mirror and one coupling mirror, through which the
system interacts with the environment. See the text for the definition of
the input and output operators a;, and Ggy.

A.2. Mode filtering

A mode experiencing an additional filter with decay rate k is transformed as

t
ag (t) —/ dy ke~ "V a(y) (A.13)

in the time domain which is a through pass Lorentzian filter in the frequency domain:

gy (w) = a(w). (A.14)

This relation is derived here.
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The Fourier and inverse Fourier transforms of a mode are given by

a(w) / dt e“”t

v2m (A.15)
a(t) dw e “a(w

\/27r/ ( )

I now replace the time domain operators in Eq. (A.13) by their Fourier transforms,
change the order of integration on the right side and solve analytically:

t

— dwe ™ag (w) = dy ke "=y dwe "Ya(w)
\ 27 /_oo fil /_oo V2T J s
1 /oo ~ t )
= — dw a(w)re™"™ / dy ¥~ )
v oo (A.16)

1
dw a(w)ke "

we ™ G(w)

= — d
\/27r/_oO K — 1w

By comparison of the left and right side we see that the Fourier transform of the filtered

mode is the same as the Fourier transform of the unfiltered mode with the prefactor

t(k—iw)

K

ag(w) =

a(w). (A.17)

K — W

A.3. Degenerate parametric down-conversion and
squeezing

The degenerate optical parametric amplifier (OPA) is the common resource of squeezed
vacuum states of light. It generally consists of two partially reflecting mirrors (with
leakage rates 7; and 7,) and a non-linear optical medium between them. The device is
driven with a pump field with frequency w, = 2wp. In the degenerate down-conversion
process one pump photon decays into two photons which are correlated and make up
the squeezed noise statistics.

The Hamiltonian is given by

H= Hfree + Hint +Hbath ) (A18)
——

Hsys

where the system’s free Hamiltonian is given by

Hy.oo = fiwpa'a, (A.19)
and the interaction is described by
R i:b —lwpt A12 o Jiwpt A2
H;: = 5 (se a gfe“rlq ) , (A.20)
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where ¢ = |e|e™' is proportional to the pump amplitude. This entity is treated classically
because the pump usually is very strong compared to the fundamental field and therefore
assumed not to be depleted by the down-conversion process. Hy,, is the Hamiltonian
for the external modes, coupling into the cavity through the mirrors. See Section A.1
for details.

For simplicity and to demonstrate the general dynamics of an OPA, we assume the
cavity to be one-sided: one mirror is perfect (72 = 0), the other one partially reflecting
(v1 = 7). Following the cavity input-output formalism introduced in Section A.1 the
equation of motion is

) = = 0. B =500+ V) a2

After expanding the commutator® and going into the rotating frame (@ — ae™“°!) we

end up with
dc;it) = ca'(t) + /274 (1) . (A.22)

A.3.1. OPA: Frequency-space solution

The equation of motion for the OPA, Eq. (A.22), can conveniently be solved using the
Fourier transforms

alt \/%/ dwe “a(w),
al(t) = \/—2_7T/ dw et (w) (A.23)

dwe gl (—w).

The resulting equation reads

1 o . 1 o .
dwe g =c / dw e gt (—w) — —/ dwe g (w
dt \% 2 / ) vV 27 —00 ( ) ’y\/ 2m —0o0 ( )

1 o ~
+ \/27\/—7/ dwe ™'a, (w).

After performing the differentiation the integrals can be “crossed out” and the equation
can be simplified to

(A.24)

(v — iw) a(w) = eal (—w) 4+ /27a;, (W) . (A.25)
The corresponding hermitian conjugate is
(7 +iw) dl () = £*a(-w) + v/27d}, (),
(v = iw) al (—w) = e7a(w) + v/27a},(~

=hla g (eaf? — e7a?)] = 5 (af[a,af) + [a, aflat) = caf

(A.26)
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where in the second line we transformed w — —w. Now we insert Eq. (A.26) into
Eq. (A.25) and obtain

(v —iw)a(w) =€ <s*d(w) —: \_/Z&;rn(—w)> + v/ 29é
(7 — i) — |eP) ) = ey/T7a1 () + (7 — o)/ T (@), (A27)
) = SVT() + (= )Py )

(= )P = [P

Recalling the result of Section A.1, that also holds for the Fourier transformed operators,
Ay + Qo = V277G, the outgoing field is

. €2y t v —iw -
= I (— 2 —1 .
aout(w) (P)/ o iw)g _ ‘8’20’111( OJ) + ( 7(’}/ _ iw)2 . |€‘2 ) aln(w)
92 2 2 2
) S P S o e L PR (A.28)

TR

aT (_w) = Qa’in(w) +

(v —iw)? = e2™
72+w2+|5|2 ~t

e*2y ( )
a, (—w).
(v —iw)? —[e2 ™

(v —iw)? — e|

out

A.3.2. The squeezing spectrum

The spectral density or power spectrum of the outgoing field is defined as

: Sp(w) = /_OO dw'(: Go.out (W), Go.out (') :) (A.29)

[e.9]

where : : denotes normal ordering and gy out(w) are generalized quadrature operators:

() = = (A @007+ A (@)e") (A.30)

Thus, we get

[t (@) e ()6 4 (G (W), e (&)

Out(w,» + <dlut(w)’ &Zut(w/»emg} :

<@9,0ut (w)7 q@,out (w/» ==

N |

(A.31)

-
—~
)
o —
=

-+

~~
&
S~—
Q

We need to calculate the second order moments?® of the outgoing field given in Eq. (A.28).

The input field a,, (w) is assumed to be in the vacuum state so that the only non-vanishing

term is the one containing the anti-normally ordered moment (G, (w), @l (w')) = d(w — o).

» Yin

4Throughout this thesis we will only deal with states of zero mean field amplitude. Therefore, the
second order moments (A, B) = (AB) — (A)(B) reduce to (A, B) = (AB).
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We obtain

2 2
_ _ v+ le| + w 2ve _ _
<aout<w)7 a’out(w/» :(7 _ iw)Q _ |€‘2 (’Y _ iw/)Q _ |€|2 <ain(w>7 ain(_w/)>
2 2
v+ lel +w 2ve ,
= . : O(w +
W — P G e )
. 1 1
= —i¢ 5 /
e (s * ) (A2
2ye* 2ve '
~1 ~ NG g Y ~ T
<aout<w)> aout(w )) _(7 4 iw)2 . |5’2 ('7 o iw’)2 o |€|2 <a’1n( w)? CLm( w )>
2ye* 2ve

TP P (P e T

1 1 ,
‘”d<w—kW+wf‘W+kW+wJ5w‘w”

One can see that (@l (w),dg, (W) = (@ (W), Gy (w)) (while remembering that
6(—x) = 0(z)). The missing second order moments can be obtained by

(A.33)

The quadrature moments are

(G9.0ut (W), @o.0ut (w/)> :1

= [t (), ()] (71009 4 2049))
28] (), g (W) + O — )]
i (), B (1)) €08(28 + 6) + {1 (), oy (&) + 50000 — )
=(: G (), Goow(e) )+ 30w — ).
(A.34)

The normal ordered quadrature correlations can be obtained by simply inserting the
quantities of Eq. (A.32) while introducing the abbreviations A = v — |¢| and p = v + |¢|

~ - 1
(o) o) ) =1l (g + oz ) Con(20+ 9 + )

(A.35)

1 1 ,

vl (s — s ) 90— ).
Integration over w’ gives the power spectrum [Wal94]

. ' cos(20 +¢) +1  cos(20+ ¢) — 1

: Sp(w) = e ( L P . (A.36)
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Figure A.2.: Logarithmic power spectrum for the squeezed (S~ (w), red) and anti-
squeezed (ST (w), blue) quadrature with a fixed pump strength of |¢| =
0.75~ and different detection efficiencies (solid: n = 1, dashed: n = 0.8,
dot-dashed: n = 0.5).

If we take a finite detection efficiency 7 into account and remember that the vacuum
level is %, the spectrum is
1
Sp(w) =n: Se(w) : —1—5. (A.37)

The two extremal power spectra reflecting the anti-squeezed and squeezed quadrature
read

1 2
S*(w) :Szfg(w):——b—n 2’7|€|2
2 A2 4w (A.38)
_ 1 27le] '
57w) = Syoegelw) = 5 — w2l

and this is the result given in Eq. (3.1). In Figure A.2 the variances normalized to the
vacuum level are shown, with different detection efficiencies.

A.3.3. Additional frequency filter

The spectrum derived in the previous section describes the output of an OPA directly.
However, during the process of frequency up-conversion the state passes through another
cavity that introduces additional frequency filtering. This effect will be treated in the
following.
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A mode experiencing an additional filter with decay rate « is transformed as
t
an (t) = / dz ke "1 =9a(2) (A.39)

in the time domain which is a through-pass Lorentzian filter in the frequency domain
(see Section A.2):

ag(w) =

Using this relation one can rewrite Eq. (A.34) to obtain the filtered quadrature moments

— iwd(w) . (A.40)
(@0,00t.1(w), Go.0nt, 61(w)) =|(@ous,1(w); Tout,ma(W))] c08(260 + @)

N . , 1 /
+ <aiut,ﬁl(w)? aout,ﬁl<w )> + 55(&) —Ww )

K K

(Gou (@), one (W) cOS(20 +6) 4y

K—Ilwk — 1w

{0 0), ) + 50— )

K+ilwk — 1w
2

- K o~ ~ n . 1 /
—m( Go.0ut (W) Go,out (W) :) + 55(0) —u').

Using Eq. (A.35) and integrating over w’ gives the filtered power spectrum and the
spectra for the anti-squeezed and squeezed quadrature read

1 kK* 29[
Sit(w) = =
wlw) 2+n/<c2+w2 A2+ w?’ (A.42)
) :
_ 1 K 27|e]
Sﬁl(w)zi_ li2+w2u2+w27

and this is the result given in Eq. (3.2).

A.4. Non-degenerate spontaneous parametric
down-conversion

Here, the temporal correlations for the SPDC source of Chapter 5 will be calculated
based on the cavity input-output formalism, Section A.1.
The Hamiltonian of the system under investigation is

M, = hw.dlay + hw_ala_ + ik <ee*iwpfa1af_ _ g*eintam,) (A.43)

with the pump parameter ¢ that is proportional to the pump field amplitude. Following
the cavity input-output formalism, the corresponding Heisenberg equations of motion
read

das(t)

1. R R
dt ﬁ [&i(t), Hsys] — Y+a+ (t) + 2’)/ia,:|:7in (t) . (A44)
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After transforming into the rotating frame (a4 — are ) we get

da(t . i R ey a R R
cjltt( ) —iwiay(t) = — hwras(t) + 1ﬁ€a;(t)] — Y0y () + /27105 () (A.45)
and
day(t R . .
=) _ il (1) — i () + /D). (A.16)

A.4.1. SPDC: Frequency-space solution

Following the same procedure as in the treatment of the OPA, we replace the operators
of Eq. (A.46) by their fourier transforms (marked with a tilde a)

A 't~
1wa

1 oo _
a+(t) = \/—2_7r/_oodwe
Al (t) = \/LQ_W /_ d et () (A.4T)

+(w)

dw e “tal (—w) .

1 oo
Vor /_oo

The equation of motion is then given by
(72 — iw)ay (w) = 5(3;(_“’) + V275l 1, (W) (A.48)

and the corresponding hermitian conjugate is (where we additionally transform w — —w
and swap the indices)

(75 — w)ak (~w) = ety (w) + /272l 5, (~w). (A.49)

As we want to express the intra-cavity field operators in terms of input field operators,
we insert Eq. (A.49) into Eq. (A.48) and obtain

~ ev2vF ~t

) = B ) — ) P

V27: (75 — 1w)

(7x — W) (7 —iw) — [ef?

(—w) +

di,in (w).
(A.50)

As developed in Section A.1, the relation between intra-cavity, input and output fields
is

Ay jn + 0y o = /27404 (A.51)
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so that the output fields read

28\/%7— ot

W) i) e )

272 (yF —iw) Da(w
+ ((’Yi—iw)(f)ij—iw) — ]2 1) +in(W)
AL () + B (@) )
N

(74 —iw) (v —iw) — ’6‘2a$,in(w)

294 (75 — iw) B t y
i ((%:—iw)(%F iw) — [e]? 1) Lin(—w)
=A(W)ay i (W) + By (w )aim( w),

d:l:,out (w) - (

(A.52)

aJ:rI: out( W) =

with the notations

2 _ ; _ 2 2
Alw) = 26V Bi(w)27+7—ilw(7+ v-) tw el (A.53)

(s — @) (7 —w) — e’ (s —w)(7- — @) — P

A.4.2. Temporal correlations of the SPDC output

In the experiment, non-degenerate output modes of the SPDC are spatially separated
by a dichroic beam splitter. A photon in one of these modes (at 810 nm) heralds the
existence of a photon in the other mode (1550 nm).

The temporal correlation function of the two modes is given by [Lu00]

I(r) = (B, (t+7) Efigger () (A.54)

trigger

(1) ES

signal (t + T) E

signal

where

- A 1 > —iw
Etrigger(t) = ai,out(t) - \/_2_71' /_OO dwe tal out( w) )

Boo(f) = al u(t) = —— / doe Gt (~w)
signal out ,out )
v 12” o (A.55)
Ei(®) = e anlt) = 7= [ o™ 0).
E:r_igger(t) = d+,0ut t \/ﬂ/ dwe™ ima+,out<w)
and, as calculated in the previous section,
d-hout (w) :A<w)&T—,in(_w) + B+ ((JJ)CL+ m(w) )
il ot (—w) =AW)a_ i, (W) + By (W), (—w), (A.56)
d— out (w) :A(w)ai,in(_w) + B_ (w)a—,in(w) )
di out( w) :A<w)d+,in(w> + B— (W)di 1n(_w)
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The temporal correlation function can then be written as

1 ~ " 1" o "
F(T) :ﬂ/ dw dw' dw" dw' e —i(wtw' w0t e —i(w'+w”)T
7
(ot (~0)L g () g ()i ()
1 oo

_ 1 " H ! 11
4 . dwdw dw"dw"' i(wtw 4w’ +w )e i(w'4w”)T
a —00

([A@)a_ (W) + Ba(w)al iy (~w)[AW)ay i (W) + Bo(w)al i, (—o)]

x [A(w )ai,m(—d’) + B_(w")a_ (WAl (—w") + Bp(w")iy (W) -
(A.57)

—00

There are only two moments that do not vanish - those that have two creation and
two annihilation operators and where no creation operator is on the very left and no
annihilation operator on the very right. An annihilation operator acting on a vacuum ket
or a creation operator acting on a vacuum bra gives a zero. The two surviving moments
can be simplified by repeatedly applying the commutation relation [a(w),al(—w')] =
d(w + w’). The non-vanishing moments are

(w+w/)5(w//+w///)

(w+w///)5(w/+w/1) +5(w+w//)6(w/+w///)
(A.58)

(i 1)1 g0 ()i g0 () ()
T

5
(")) =0

The correlation function can be further simplified:

1 ~ " " 1"
I'(7) :4_7r2/ dw dew’ dw du" 1wt +w"+w")t (—i(w'+w')T

[A(w)B_(w") B_(w") A(w")d(w + w')d(w" + ")
+ A(w) AW AW AW o (w + " )d (W + W)
+ A(w) AW ) AW A(W")d(w + w")o(w + w™)]

1 (0.9}

T An2

—00

dw' dw" e 1@+ A~ ) B_ (W) B (w") A(—w")
+i / o du’ A() A A A(—) (4.59)

+— dw dw” e T A~ A(w) A(W") A(—w')
47T2

—0o0

_ {% /_ Z diwe T A(—w)B_ (w)} 2
n [Qi G A(—w>A<w>r " [i | et awae) N

T o 27 oo
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A.4.3. Temporal correlation with equal decay rates

Let us now assume equal decay rates for the two generated modes v, = v = ~. Then
the two coefficients A(—w) and B(w) reduce to

2ey
Al—w) =
N o
V2 + w? + |gf? (A.60)
Blw) =

O =P — e
To evaluate the temporal correlation function, I first need the following two factors:

29e(v? + w? + [e]?)
(v +iw)? = [ePT [(y = iw)? — |ef?]
2(y* + o + [e*)

A(—w)B(w) =

= A.61
AT AT o et e O
1 i 1
=€
AT w2+ w?
with the abbreviations
A=7v—l¢g|,
7=l (A.62)
p="+lel.
In the same way I obtain
2ey 2ey
Alw)A(-w) =
+iw)? — g2 (v — iw)? — |e]?
O+ — [P (7 — 1) — e )

1 1
=~e — )
" A2+ w? 24 w?

The integrals in the temporal correlation function are analytically solvable and I obtain

1 [ - 1 1
e dwe ™" A(—w)B(w) = ? (Xe_’\lT| + ;e"”') , (A.64)
L/ dw A(—w)A(w) = Py (A.65)
2m J 2= el '
1 [ - 1 1
% . dw e_WA(—w)A(w) = 5?’7 (Xe_MTl — pe_#ﬂ) . (A66>
The temporal correlation function finally reads
1 1 ?
)= [ (B« Lown)]
a (A.67)

‘5’27 ? ey 1 =7 1 —p| 7] ?
*{w—w2*2 TS ’
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Figure A.3.: Temporal correlations of the output of a non-degenerate OPA far below
threshold (red dashed). The temporal correlations are very well approxi-
mated by the first term of Eq. A.67 only (black curve, the constant offset
is subtracted). Parameters are v = 27 - I8 MHz, ¢ = 0.27. Note that
€ = 0.2v is the highest value used in the experiment. For lower values of ¢,
the approximation is even better.

and this is the result given in Eq. (5.2). A graph of the full correlations is shown in
Figure A.3, where only the constant offset is subtracted.

The correlations are very well approximated by the first term of Eq. (A.67) only and
all following calculations are continued with the approximation.

A.4.4. Temporal correlations with filtered signal mode

In the experiment, the two down-converted optical fields experience different trans-
fer functions. This asymmetry is caused by frequency filtering of the signal mode by
up-conversion in a sum-frequency generation cavity with a relatively small linewidth.
Unequal decay rates in the generation process of the two down-converted fields have a
similar effect. Here, I will pool these two effects (that actually are present in the exper-
iment) by letting one of the modes (the 1550 nm field, a_) be transmitted through one
cavity with the decay rate k.
The modes experiencing an additional frequency filter are transformed via

t/

a_(t) —a_(t) = / dz ke " Ha_(2). (A.68)

—0o0
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The temporal correlations (Eq. (A.54)) transform like

t+7
Tfttered(T) & <f<a2 / dz d e—”““—Z)e—““*T—Z’)al,out<t>a*,out<z>a,out<z’>a+,out<t>>

—0o0

:’i2 / dZ dZ, e_H(T_Z)e_H(T_Z/) <d1,out (t)a]:,out(t + Z)df,out (t + Z/)d+,out (t)>

:H2/ dz dz' e—H(T—Z)e—H(T—Z/)
]. > "1

dw’dw” e—iw’ze—iw z [A(—u/)B_ (w')B_ (w”)A(—w”)]

Ar? |
- 2
_ ek =) ((Looael o L e
[ 5 /_Oo dze (Ae +Ne ,

where I omitted the negligible constant offset and the minor contributions, i.e. the
second and third term of Eq. (A.67). The integration is analytically solvable and the
signal-filtered correlation function reads

(A.69)

AT

2
Jem (et .
|: 2 <,u(n+u) + >\(’4+)\)>:| T 0 (A?O)

2
YER S ef/\T N 2~ KT N 2e— KT
[ 2 <#(H—u) TN T ) (m)(n—mﬂ 720,

1-‘ﬁltered (T) =

and this is the result given in Eq. (5.3).

A.5. Maximum likelihood estimation of quantum states

The scope of quantum state reconstruction is to find the state p. A quantum state is
a closed system that does not interact with the environment — until it is measured. In
the positive operator-valued measure (POVM) framework, a measurement of a quantum
state is fully described by a POVM {ﬂl}, which is a set of POVM elements II;. This
framework is sufficient and well suited, when the quantum state after the measurement
is not of particular interest but only the measurement outcomes, or, as we deal with
quantum mechanics, the outcome statistics. The probability that an apparatus responds
with outcome II, when measuring a quantum state p,, is

Pim = Tr[ﬂl,ém] . (A71)

The POVM elements are positive-semidefinite and decompose the unit operator

k
>0, > I=1. (A.72)
=1
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These properties ensure that p;,, > 0 and that something must be the outcome for a
(large enough) k, which is the number of possible measurement outcomes®. The trace
operation in Eq. (A.71) is a summation so that it can also be written as

Dim = Z (ﬂz) Pmij (A.73)

- sJ
i\j
which is just a set of linear equations like
Mp=7p. (A.74)

For an invertible matrix M this set can be easily solved. This is called direct quantum
state reconstruction (for example via the inverse Radon transform) and involves no a
priori restrictions. Thus, during the reconstruction algorithms, unphysical features like
negative diagonal elements of the state p may occur, causing ripples in the reconstructed
Wigner function. A different approach is traced by mazimum likelihood estimation. This
technique always maintains a physically plausible density matrix and results in a p that
is most likely to be the cause of the measured outcome.

The maximum likelihood estimation algorithm (maxlik) is presented in the following.
Let us assume a measurement {f[]} was measured N times and each outcome j is
obtained n; times, such that 3 _;n; = N. The probability of outcome j is p; = Tr[ﬁf[j],
of course. The whole task is to maximize the likelihood function, which is simply defined

" = TTw =TT (o)™ (A.T5)

However, computer programs like sums and product more than exponentials, the task
of maximizing Eq. (A.75) is shifted to a maximization of the log-likelihood function

log L(p Z n;log(p;) . (A.76)

which is just equivalent as the logarithm is a monotonically increasing function.
During the algorithm the positivity of diagonal elements of the state is ensured by
decomposing p = ATA and a Lagrange multiplier A keeps a unit trace

log £(p Z log (Tr [ATATL ]) ~ATY[ATA] = F. (A.77)

Any small variation of A — A + §A leads to a small (i.e. first order) change of F:

Z n;——————Tr[[[; AT § A] — ATx[IT; AT A]
, Tr| ATAH 5] (AT8)
— Z " ol [, Af §A] — ANTY[IL, AT 6 A] '

5For example, k could represent the number of y-bins of an oscilloscope. Each bin of the oscilloscope
is assigned to a POVM element.
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As p is an extremal point, 0F must vanish for all §A and one obtains

Ozzn—fﬂjﬁ—)\fﬂ
G P
NATA = ﬂﬂA*A,
ij ’
R

(A.79)

where in the last line A was multiplied from the right. We know from construction that
p = ATA and the extremal equation reads

1
p=Rp. (A.80)

Note that R itself depends on the state p, which makes the problem non-trivial. Now
one could naively try to iterate while maintaining proper normalization

i R(p™) o™
(n+1) — . A.81
g Te[R(5™) 5] (A.81)

This approach does not necessarily give a hermitian or positive semidefinity p. This can
be circumvented by the fact that if p = R/ holds, also does (p = tRp). It follows
with p' = p that p = {pR! and inserting this to Eq. (A.80) one finally obtains the
positive-semidefinite form of the extremal equation

R/R . (A.82)

In iterative form this reads

sy R(P™) pMR(HM) (A.83)
Tr[R(p™) pR(p™)] '
with
~(n ng -~ n ~(n) T
R(p™) = Z VJ)HJ' and p§ ) = Tr[p™1I;). (A.84)

The denominator of Eq. (A.83) accounts for the Lagrange multiplier and re-normalizes
the state after each iteration step (the numbers can get really large otherwise). In
principle, this is the whole maximum likelihood reconstruction algorithm which is not
more than five lines of program code. The result is the most likely p that is cause of the
measured outcomes {j}. The step from a given p to the corresponding Wigner function
is already described in Section 2.1.3 and its numerical implementation is given in the
appendix, Section B.4.6.
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Application to quadrature values

In the experiment, the reconstruction algorithm is performed on quadrature values ob-
tained via balanced homodyne detection. As a reminder, the generalized quadrature is
given by Eq. (2.9)

Go = Gcosf + psinf . (A.85)

However, a convenient basis of the Hilbert space is the Fock basis — especially if one
wants to analyze Fock states — so every state is decomposed as

N
p="_ pmalm)(nl, (A.86)

where N truncates the (infinitely large) Hilbert space at some maximum photon number
and has to be chosen carefully. If N is chosen too small, information gets lost while a
too large Hilbert space may cause artifacts, especially if NV approaches the total number
of data. However, the main reason to truncate the Hilbert space at some relatively small
N (£ 20) is to keep the computational costs reasonable.

The probability distribution of the quadrature values given a state p is

P(qolp) = {av,0|plas, 0) = Tr[p|ge, 0) (gs, 0] (A.87)

or, for discretized (binned) data,

4j,max 4j,max
Py= [ dwPalp) = [ dulan bt (a89)

4j,min 4j,min
(. 2
~~

POVM element 12[9’]-

The POVM elements are decomposed as

My, = zNj (ML) [m)nl (A.89)

m,n=0

and what is left due is the projection of the POVM elements to the Fock basis:

“ “ 4j,max
(110,) = Gmlilaglo) = [~ dao mlao.6) g, 1), (A.90)

qj,min

where the overlap between a Fock state and a quadrature eigenstate using Hermite
polynomials® is given by [Leo05]

1
wl/44/2nn)

SHo(z) =1, Hi(z) = 2z, H,(2) = 22H,_1(x) —2(n — 1)H,,_2(z)

(go, 0|n) = & H,(q)e™%/%. (A.91)
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It follows for the POVM elements

N . 4j,max
(M) = el / dao Hy(q0) Ho(go)e ™ . (A.92)

Note that this formulation is valid for the variance of the vacuum to be (Agy)Z,. = 3
and care has to be taken for other normalizations.

In some situations, and also in the experiment presented in the following, a phase
sensitive analysis of the state is not required or even possible. In these cases phase
randomized state tomography is applied which simplifies the POVM elements

R 1 27 N 1 qj,max 5
(1), =5 [ a0 tmlilotn) = b s [ g e (a09)

With these formulae a numerical implementation is straightforward and a python pro-
gram is given in Section B.4.5.
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B. Programs

B.1. Filter cavities

This is the Finesse-file for the simulation of the filter cavity in the single photon up-
conversion experiment. Note that a second filter cavity is included, which would promise
even better filtering. It was not used in the experiment as the complexity for keeping
three cavities (SFG, first filter cavity, second filter cavity) on resonance without any
bright field was considered to be too complex.

1 laser 1 0 nO
#maxtem 3

#tem laser 0 1 0.
#tem laser 0 2 0.
#tem laser 0 3 0.

NN N
O O O

#Cavity Photonenkanone
#Substrate and incoupling mirror
m ArMeniscl O 1 0 nO nil
s Meniscl 0.0059 1.453 nl1 n2
m2 RMeniscl .969 O O n2 n3
attr ArMeniscl Rc -0.02
attr RMeniscl Rc -0.025
#spacing, crystal, spacing
s AirGapl 0.021 n3 n4
m dummyl O 1 O n4 nb
s Crystal 0.0093 1.8433 nb n6
m2 Losses 0 0.029 0 n6 n7 #here, internal losses are included!
s AirGap2 0.021 n7 n8
#outcoupling mirror and substrate
m2 RMenisc2 .9985 0 O n8 n9
s Menisc2 0.0059 1.453 n9 nl0
m ArMenisc2 0 1 0 n10 nil1l
attr RMenisc2 Rc 0.025
attr ArMenisc2 Rc 0.02

cav Photonenkanone RMeniscl n3 RMenisc2 n8
pd0 afterPhotoncanon nll
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#isolation, required to delete reflection
s s20 0 nl11 nl2
isol isoll 100 nl12 nil3a
s s21 0 nil3a nl3

#filter cavity 1
m2 FciM1l 0.99 0 0 n13 ni4
s GapFcl .0025 nl14 ni1b #11
m2 FciM2 0.99 0 0 nl15 nl6
attr FclMl Rc -1
attr FclM2 Rc 1

cav Filtercavityl FciMl n14 FclM2 nl1b
pd0 afterFC1 nl6

#isolation, required to delete reflection
s 813 0 nl6 nl7
isol isol3 100 nl7 nil8a
s 814 0 n18a ni18

#filter cavity 2
m2 Fc2M1 0.99 0 0 nl18 ni9
s GapFc2 0.0032 n19 n20 #11
m2 Fc2M2 0.99 0 0 n20 n21
attr Fc2M1 Rc -1
attr Fc2M2 Rc 1

cav FilterCavity2 Fc2M1 nl19 Fc2M2 n20
pd0 afterFC2 n21

xaxis laser f 1lin O 500e9 500000
yaxis log abs

trace 2

pause#

B.2. APD power supply

This is the power supply for the APDs used in the experiment. APD-T required a
5V power supply, APD-A and -B required 12V. The electronics are based on an idea
and first layout by Aiko Samblowski, which was further optimized by Axel Schonbeck,
Andreas Weidner and me.
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B.3. Mathematica
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Time correlations:
NOPO below threshold

Initialization

In[81]:=

Out[84]=

Out[85]=

out[86]=

In[87]:=

out[87]=

In[88]:=

out[88]=

In[89]:=

Out[89]=

Clear["Global " "]

Alo_, y_,e_ ]=2xexy) / ((¥-1rxw)"2-e"2);

Blw ,¥ ,€ 1= ¥ "2+w"2+e"2)/ ((y-1xw)"2-e"2);
(*ABl[w_,¥_,e_1=FullSimplify[A[-w,¥,e]*B[w,¥,€]]*)

ABlw_, v ,e J=exy*x(1/((y-e)"2+w"2)+1/ ((y+€)"2+w"2))
(*AA[w_,y_,e_]1=FullSimplify[A[w,y,e]*A[-w,¥,€]]*)

AMIlw_, v ,e_l=exy*x(1/ ((y-€e)"2+w™2) -1/ ((y+e)"2+w"2))

Tlw_, x_] =x/ (x-1xw)

1 1
ey +
(—e+¥)2+w?  (e+y)2+0u?
1 1
ey -
(—e+¥)2+w?  (e+y)2+0u?
X
K-1w

FourierAB[t_, ¥ _, €_] = Integrate[l/ (2xx) * AB[w, ¥, €] *EXp[-1 x T xw],
{w, -, ©}, Assumptions -» {y, e, t} € Reals&&y > e&&e > 0]

1
—evy
2

e(€-v) Abs[t] g (e+y) Abs [t] )
- +

e-v e+Yy

FourierAA[t_, ¥ _, e_] = Integrate[l/ (2*xn) * AA[w, ¥, €] *Exp[-1 * T xw],
{w, -, ©}, Assumptions -» {y, e, t} € Reals& &y > e&&e > 0]

—evy
2

AA2[t_, v _, e ] =Integrate[l/ (2*x) xAA[w, ¥, €],
{w, —o, o}, Assumptions -» {y, e} € Reals&&y > e&&e > 0]

ey

e? vy
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2 | Zeitkorrelationen_Full.nb

Validation of the approximation

noo= (#This is the (unfiltered) full correlation function,
without any approximation, compared to the approximations)
Plot[{FourierAB[t, 1, .2]"2 +FourierAA[t, 1, .2]"2, FourierAB[t, 1, .2]1"2},
{t, -5, 5}, PlotRange - Full]

out[90]=

-4
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Zeitkorrelationen_Full.nb

Filtering the trigger mode

ne1= (*This is the trigger filtered correlation function without low-
gain approximations)

Fill[t_, v ,e ,x ] =Integrate[l/ (2*x) *»T[w, x] * AB[w, ¥, €] *xExXp[-1 * T xw],
{w, —o, o}, Assumptions » {y, e, x, t} € Reals&&y >e&&e >08&&x > 0]"2;

noez= (*First correction term, constant offsetx)
Fil2[t_,v ,e_,x ] =
Integrate[l/ (2% m) "2 % T[wW, x] * T[-w, x] * AA[W, ¥, €] *AA[w, ¥, €], {w, —-o, o},
{wW, -, ©}, Assumptions -» {y, €, x, t} e Reals& &y >e&&e >08&&x > 0];

ne3l= (*Second correction term, very small for low gainx)

Fil3[t_, v ,e ,x_]=Integrate[l/ (2x7x) *T[w, x] * AAlw, ¥, €] *EXp[-1 *x T xw],
{w, -, ©}, Assumptions -» {y, €, x, t} € Reals&&y >e&&e > 08&8&x > 0]"2;

near= (xPlot of Filtering effect with different filter decay rates,
low-gain approximations)

Plot[{Fill[t, 1, .2, .5], Fill[t, 1, .2, 1], Fill[t, 1, .2, 2], FourierAB[t, 1, .2]1"2},
{t, -5, 5}, PlotRange - Full]

out[94]=

-4
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4 | Zeitkorrelationen_Full.nb

Filtering the trigger mode, w/ and w/o approximation

nosi= (xFull Filtered correlation functionx)
Fil[t_,v _,e_ ,x ]=Fill[t, v, e, x] +Fil2[t, ¥, e, x] +Fil3[t, v, e, x];

noesl= (xPlot of Filtered correlation function compared to filtered approximations)
Plot[{Fil[t, 1, .2, 1.4] -Fil2[t, 1, .2, 1.4], Fill[t, 1, .2, 1.4]},
{t, -5, 5}, PlotRange - Full]

0.020

out[96]=

0.005
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B.4. python programs

B.4.1. Data acquisition with an oscilloscope-PC interface

This program interfaces an oscilloscope to the LAN network via the VISA protocol as it
is used in the single photon up-conversion experiment. The commands are taken from
a programmer’s guide (InfiniiVision 7000B Series Oscilloscopes Programmer’s Guide,
freely accessible on the manufacturer’s homepage).

# —x- coding: utf-8 —*-

nnn

Created on Thu May 30 21:13:12 2013

Q@author: Christoph Baune

nnn

import visa

import time

# Get instrument VISAname

visalnstrList = visa.get_instruments_list()
print(visalnstrList)

#Scope’s VISA address

myScope="TCPIP0::10.117.12.2: :INSTR"

print (myScope)

scope = visa.instrument (myScope)

# Configuration & Imitialisation---——-—--—-"---""""""""""""""""—-
#Format specifier: "byte"(binary, 8bit) |"word"(binary, 16bit)|ascii
scope.write(":waveform:format byte")

#Points mode: "normal"|"maximum"|"raw"
scope.write(":waveform:points:mode maximum")
#waveform:type={norm|peak|aver:hres}
scope.write(":waveform:type norm")

#:ACQuire:MODE <mode> ::= {RTIMe | ETIMe | SEGMented}
scope.write(":acquire:mode rtime")

#trigger mode: "norm" (normal)|"auto"
scope.write(":trigger:sweep norm")

#HFReject: b0kHz low-pass filter in trigger path
scope.write(":trigger:hfreject off")

#noise reject: trigger circuit less sensitive to noise
#but may require greater amplitude to trigger
scope.write(":trigger:nreject off")

#holdoff: 60ns to 10 s pause between trigger events
scope.write(":trigger:holdoff 60e-9")
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#trigger source

scope.write(":trigger:source 1")

#trigger level

scope.write(":trigger:level 1")

#:TIMebase:MODE <value> = {MAIN | WINDow | XY | ROLL}

scope.write(":timebase:mode main")

#10Mhz reference clock on rear panel connected? {on|off}

scope.write(":timebase:refclock off")

#:TIMebase:REFerence <reference> ::= {LEFT | CENTer | RIGHt}

scope.write(":timebase:reference center")

#:TIMebase:VERNier <vernier value>:= {{1 | ON} | {0 | OFF}

scope.write(":timebase:vernier off")

#time/division (in seconds)

scope.write(":timebase:main:scale 200e-6")

#delay of trigger event to center of screen (in seconds)

scope.write(":timebase:main:delay 0")

#for position and scale for Z0OM mode

scope.write(":timebase:main:position 0")

#scope.write(":timebase:scale 1")

scope.write(":channel2:probe:skew 50e-9")

scope.write(":channel3:probe:skew 50e-9")

#timeout = time the program waits for a trigger signal for example

scope.timeout=2

channels=3

for i in range(channels):
print "channel "+format(i+1)+" enabled"
scope.write(":channel’i:display on"%(i+1))
scope.write(":channel)i:coupling DC"%(i+1))
scope.write(":channel%i:units volt"%(i+1))
scope.write(":channeli:scale 1"%(i+1))
#scope.write(":channel%i:offset 1.5"%(i+1))
scope.write(":channell:offset .0")
scope.write(":channel2:offset .0")
scope.write(":channel3:offset .0")

#number of points{100 | 250 | 500 | 1000 | 2000 | 5000 |
#10000 | 20000| 50000 | 100000 | 200000 | 500000 |
#1000000 | 2000000| 4000000 | 8000000 | <points mode>}

points=2000000

scope.write(":WAVeform:POINts %i"J%points)

scope.write(":SINGle")

time.sleep(1)

points=int(scope.ask(":waveform:points?"))

print points

lastmeasurement=0

111



number0fShots=2000
binfile="info"
scope.write(":trigger:sweep auto")
scope.write(":SINGle")
scope.write(":trigger:sweep norm")
nPoints=scope.ask(":WAVeform:POINts?")
dt=scope.ask(":WAVeform:XINCrement?")
fullTime=scope.ask("timebase:range?")
#
infofile=open("%s.info"%binfile, ’w’)
infofile.write("Number of saved channels: %i"Y,channels+
"\nNumber of datapoints: "+nPoints+"\ntime increment: "+
dt+"\nFull time range: "+fullTime)
infofile.close()
#
print "\nMeasurement started:"
for j in range(lastmeasurement,numberOfShots+lastmeasurement) :
print "measurement %i"%(j+1)+"/%i"% (numberOfShots+lastmeasurement)
scope.write(":single")
for i in range(channels):
nPoints=scope.ask(":WAVeform:POINts?")
while nPoints<points:
#scope necesssarily has to stop to be able to
#transfer ALL points (<1000 otherwise!):
time.sleep(.05)
nPoints=scope.ask(":WAVeform:POINts?")
time.sleep(.05)
scope.write(":waveform:source channel’i"’%(i+1))
scope.write(":WAVeform:DATA?")
raw=scope.read ()
fil=open("ch%i_%i.bin" %(i+1,j+1),’w’)
fil.write(raw)
fil.close()

B.4.2. Data conversion to hdf5

This python program converts stored binary data to hdf5 files, which can be efficiently
processed.

# —x- coding: utf-8 —*-
nnn

Created on Sat Nov 09 09:47:29 2013

Qauthor: Axel Schoenbeck
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import numpy as np

import hbpy

def saveToFile3(binfilel,binfile2,binfile3,outfile,
NumberFiles,PackageSize) :

Datafile=hb6py.File("%s.h5"%outfile,"w")
chl=np.zeros([1,1],dtype=np.int8)
ch2=np.zeros([1,1],dtype=np.int8)
ch3=np.zeros([1,1] ,dtype=np.int8)
TimeLength=0

for m in range (1,NumberFiles+1):
print "File " + format(m) + " of " + format(NumberFiles)
file = open("%s_%s.bin"%(binfilel,format(m)), ’rb’)
Headerl = file.read(10)
Countsi=int (Header1[2:10])
file = open("%s_%s.bin"%(binfile2,format(m)), ’rb’)
Header2 = file.read(10)
Counts2=int (Header2[2:10])
file = open("%s_%s.bin"%(binfile3,format(m)), ’rb’)
Header3 = file.read(10)
Counts3=int (Header3[2:10])
TimeLength+=Countsl
Impl = np.fromfile("%s_%s.bin"%(binfilel,format(m)),

dtype=np.uint8, count=-1)

Imp2 = np.fromfile("%s_%s.bin"%(binfile2,format(m)),
dtype=np.uint8, count=-1)
Imp3 = np.fromfile("%s_%s.bin"%(binfile3,format(m)),

dtype=np.uint8, count=-1)

chl=np.append(chl,Impl[10:1len(Imp1)])
ch2=np.append(ch2,Imp2[10:1len(Imp2)])
ch3=np.append(ch3,Imp3[10:1len(Imp3)])
if Countsl!=Counts2 or Countsl!=Counts3 or Counts2!=Counts3:

print "Length of files is not equal!"
if len(chl)!=len(ch2) or len(chl)'!=len(ch2) \

or len(ch2)!=len(ch3):
print "Length of files is not equal!"

if m¥PackageSize==0:
chl=np.delete(ch1,0)
ch2=np.delete(ch2,0)
ch3=np.delete(ch3,0)
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Time=np.arange(1,TimeLength+1,dtype=np.int)

Data=np.zeros([TimeLength,4] ,dtype=np.int)

Datal:,0]=Time

Datal:,1]=chil

Datal:,2]=ch2

Datal:,3]=ch3

writeData=Datafile.create_dataset("Package_%s"%\
format (m/PackageSize) , (TimeLength,4) ,dtype=np.int)

writeDatal...]=Data

TimeLength=0

chl=np.zeros([1,1])

ch2=np.zeros([1,1])

ch3=np.zeros([1,1])

NumberPackages=NumberFiles/PackageSize
writeData=Datafile.create_dataset ("NumberPackages", (1,1),dtype =int)
writeDatal...]=NumberPackages

Datafile.close()

file.close()

NumberFiles=2000 #Total number of datafiles
PackageSize=5 #
saveToFile3("chl","ch2","ch3","Raw_Data",NumberFiles,PackageSize)

B.4.3. Data size reduction

This program reduces the amount of data significantly by scanning all data stream,
finding events and time-taging them.

# —x- coding: utf-8 —*-

nnn

Created on Thu Jan 23 16:32:25 2014

Q@author: Christoph Baune, Axel Schoenbeck

nnn

import numpy as np

import hbpy

def shrink_three(RawData,tracel,trace2,trace3d):
DataFile=hb6py.File("%s.h5"%RawData,"r")
SaveFile=h5py.File("Shrinked_Data.h5","w"
#set the threshold of accepting an event as event
UpperThreshold=150
LowerThreshold=140
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LoadNumberPackages=DataFile["/NumberPackages"]
NumberPackages=LoadNumberPackages|[. . .]

CounterPeaks=0
for m in range(1,NumberPackages+1):
ShrinkedData=[]
Dataset=DataFile["/Package_%s"%format (m)]
Data=Dataset[...]
Lastpoint=len(Datal:,0])
Peakend1=0
Peakend2=0
Peakend3=0
for k in range(Lastpoint):
Peakfoundl=False
Peakfound2=False
Peakfound3=False

if (Datalk,tracel]>UpperThreshold and k>Peakendl):

Peakfound1=True
Peakend1=k+1
if Peakendl==Lastpoint:
Peakend1=k
while Data[Peakendl,tracel]>LowerThreshold:
Data[Peakendl,tracel]=0
Peakendl+=1
if Peakendl==Lastpoint:
break

if (Datalk,trace2]>UpperThreshold and k>Peakend?2):

Peakfound2=True
Peakend2=k+1
if Peakend2==Lastpoint:
Peakend2=k
while Data[Peakend2,trace2]>LowerThreshold:
Data[Peakend2,trace2]=0
Peakend2+=1
if Peakend2==Lastpoint:
break

if (Datalk,trace3]>UpperThreshold and k>Peakend3):

Peakfound3=True

Peakend3=k+1

if Peakend3==Lastpoint:
Peakend3=k

while Data[Peakend3,trace3]>LowerThreshold:
Data[Peakend3,trace3]=0
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Peakend3+=1
if Peakend3==Lastpoint:
break
if (Peakfoundl==True or Peakfound2==True\
or Peakfound3==True):
ShrinkedData.append(Datalk,:])
CounterPeaks=CounterPeaks+1

c=Lastpoint/100.
if (k/c)%5==0:
print "Progress: "+format(k/c)+"J, of package "\
+format (m)+" done."
elif k==Lastpoint-1:
print"Progress: 100% of package " + format(m) + " done."
writeData=SaveFile.create_dataset("Shrinked_Y%s"%format (m),
(len(ShrinkedData) ,4) ,dtype = int)
writeDatal...]=ShrinkedData
writeData=SaveFile.create_dataset ("NumberPackages", (1,1) ,dtype =int)
writeDatal...]=NumberPackages
print "Total number of peaks: "+format(CounterPeaks)
DataFile.close()
SaveFile.close()
RawData="Raw_Data"
shrink_three(RawData,1,2,3)

B.4.4. Quantum non-Gaussianity verification

This program calculates the quantum non-Gaussianity witness. The standard deviation
of the witness is also calculated as follows: The witness of QNG is W = apy + p; and a
function of the rates Ry, Ria, Rip and Ry, cf. Section 5.4. (In the following R14 = Ra,
Ryp = Rp for simplicity.) The covariance of W is

(AW = (8W>2 (A*Ry) + (aW )2 (A’R4) + (aw )2 (A*Rp) + (aw)2 (A’R,)

9Ry OR4 ORp OR,
+ 22—2;%(AROARA) + QZ_Z)STWB<AROARB> + 2%2—2;<AR0AR2>
+ 2%%(ARAARB) + 2%2—2;(ARAAR2> + QSTWB%(ARBAR2> .
(B.1)
For all covariances the Cauchy-Schwarz inequality holds:
(ARAR;)| < \/(AR,)(A%R;) (B.2)
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I assume Poissonian statistics of all count rates, meaning A?R; = R;. The error of the
witness is then bounded by

W\’ oW \> oW \? oW\’
AW =( = | (AR —— ) (A’R — | (A%R — | (A%R
wwy = (5p) @+ (G ) @ro+ () @ra+ (G ) 0%

oW oW oW oW oW oW
— | /RoRa +2|=—=—|/RoR ——1|v/RoR
ORo 0k | VAT 2GRy R, | V0B T '8R08R2 oft2
oW oW oW oW oW oW
2| =——=——|/RaRp +2|=——=—|\/RaRo + 2| =——=——| \/RgR>.
T R ok, |V AP 2GR AR, | VAR T ‘aRBaR2 Bl
(B.3)
What is left are the several derivations, here given explicitly:
mv_aRA+RB+R2_RA+RB T°+(1-T)?Ry
ORy R? R? 2T(1—-T) R
oW 1—a T*+(1-T)*R, Rp
OR, Ry 2T(1—T) RoRa+ Rp
; ) (B.4)
oW 1—a T*+(1-T)*R, Ry
ORg Ry 2T(1—T) RyRs+ Rp

ow 1 TH(1-T)1

OR, Ry, 2T(1—-T) R
Finally, the standard deviation is of course given by AW = /(A2W).

# —*- coding: utf-8 —x*-

nmn

Created on Tue Mar 01 18:12:37 2016

@author: chbaun

import numpy as np

x=["low","medium","high"]

for s in x:
data=np.loadtxt("Rates_¥s_long.dat"%s)
dt=datal:,0] #coincidence window
RO=datal[:,1] #number of triggers
RA=datal:,2] #number of clicks at APD-A
RB=datal:,3] #number of clicks at APD-B
R2=datal:,4] #number or three-fold coincidences
pO=datal[:,5] #vacuum probability
pl=datal:,6] #single photon probability
T=datal:,8] #beam splitter ratio

#theoretically possible
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#p1=[0.2] #detection efficiency
#p0=[0.8]

from scipy.optimize import fsolve
arr=np.arange(0,1,.01)
w=[]
for i in range(len(p0)):
wmax=-10000
for a in arr:
#find optimal r for given a, [Jezek2011]
func=lambda r: (1+np.exp(2*r))*a-np.exp(2*r)*(3-np.exp(2+*r))
guess=0.3
r=fsolve(func,guess) [0]

#calculate pO and pl from r to give a Gaussian state,
#[Jezek2011]

d=np.sqrt((np.exp(4*r)-1)/4.)
PO=np.exp(-d**2*(1-np.tanh(r)))/np.cosh(r)
P1=d**2*np.exp (-d**2* (1-np.tanh(r))) /np.cosh(r) **3

#maximum W achievable with Gaussian states
WG=a*P0+P1

#Witness of QNG
w=(a*xp0[i]+p1[i]-WG)

#error of Witness

dp0dRO=(RA[i]+RB[i]+R2[i]) /RO[i]**2

dpOdRA=-1/R0O[i]

dpOdRB=-1/R0O[i]

dp0dR2=-1/R0[i]

dp1dRO=-(RA[i]+RB[i]) /RO [1]**2+\
(TLil**2+(1-T[1]1)*%2) / (2*T[1]1*(1-T[i]))*\
R2[1] /RO [i]#*x*2

dp1dRA=1/RO[1]-\
(TLil**2+(1-T[1]1)*%2) / (2*T[1]1*(1-T[i]1))*\
R2[i]/RO[i]*RB[i]/(RA[i]+RB[i])**2

dp1dRB=1/RO[1]-\
(TLil**2+(1-T[1])**2) /(2T [11*(1-T[1]))*\
R2[i]/RO[i]*RA[1i]/(RA[i]+RB[i])**2

dp1dR2=- (T [i]**2+(1-T[1])**2)/(2*T[1]*(1-T[i]))/RO[i]

dWdRO=a*dp0dRO+dp1dRO

dWdRA=a*dpOdRA+dp1dRA

dWdRB=a*dpOdRB+dp1dRB
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dWdR2=a*dp0dR2+dp1dR2

dW=np.sqrt (dWdRO**2*R0 [i] +dWdRA**2*RA [i]+\
dWdRB**2*RB [1] +dWdR2**2+R2 [1] +\
2*abs (AWdRO*dWdRA) *np.sqrt (RO[i]*RA[i])+\
2*abs (dWdRO*dWdRB) *np.sqrt (RO[i]*RB[i])+\
2*abs (AWdRO*dWdR2) *np.sqrt (RO[i]*R2[1])+\
2*abs (AWARA*dWARB) *np . sqrt (RA[i]*RB[1])+\
2*xabs (AWdRA*dWdR2) *np.sqrt (RA[i]*R2[i])+\
2*abs (AWdRB*dWdR2) *np.sqrt (RB[i]*R2[i]))

if w/dW>wmax:
wmax=w/dW
dw=dW
W.append ([dt[i] ,wmax*dw,dw,wmax])
np.savetxt ("W_%s.dat"%s,W)

B.4.5. Quantum state estimation

This program is used to reconstruct to most likely density operator p from a set of
quadrature data. It also requires a dataset with quadrature values of a vacuum state a
a reference.

# —*%— coding: utf-8 -*-

Created on Mon Apr 28 09:51:06 2014

Q@author: Christoph
nmn
import numpy as np
from numpy import trace as tr
I=np.complex(0,1)
np.set_printoptions(precision=5, suppress=True)
def factorial(n):
sum = 1.0
for m in range(1l, int(n)+1):
sum = float(m)*sum
return sum

#Hermite polynomials

def H(n,x):
if n==0: return 1
if n==1: return 2%*x
else:

return 2*x*H(n-1,x)-2*(n-1)*H(n-2,x)
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def

120

reconstruct (vacuumfile,datafile,iterations):
data=np.loadtxt(datafile)

dataVac=np.loadtxt (vacuumfile)
number0fBins=2000 #set to scope’s y-resolution

#carefully determine vacuum-variance and offset by
#tevaluation of vacuum noise, v=standard deviation
v=np.std(dataVac)

offset=np.mean(dataVac)

print "Standard deviation of vacuum: "+format(v)
print np.std(data)

print "Mean value of vacuum: "+format(offset)
print np.mean(data)

#truncation of Hilbert space: maximum number of photons
maxN=7

#initialisation of density matrix
rho=np.eye (maxN+1)

rho=rho*0.0001

rho[0,0]=1

print rho

#create POVM
POVM=[]
for i in range(0,numberOfBins):
x=(i-number0fBins/2.) /number0fBins*20
#the last factor is the full histogram range!
#range=(-10,10) => factor=20
subPOVM=[]
for n in range(maxN+1):
SubPOVM. append (1. /np.sqrt(np.pi)/(2**n) /factorial (n)*\
H(n,x/v/np.sqrt(2))**2*np.exp (- (x/v/np.sqrt (2))**2))
tmp=np.diag(subPOVM)
POVM. append (tmp)

#build the histograms
N=np.histogram(data,bins=number0fBins,range=(-10,10)) [0]
np.savetxt ("NFock.dat", (N))
M=np.histogram(dataVac,bins=number0fBins,range=(-10,10)) [0]
np.savetxt ("NVac.dat", (M))

for i in range(iterations):



p=L[]
R=np.zeros((maxN+1,maxN+1))
for m in range(numberOfBins):
#calc probability of outcome m
pm=tr (np.dot (rho,POVM[m]))
if (pm<le-12):#numerical stability abort
pm=le-12
p.append (pm)
R=R+POVM [m] *N [m] /pm

#iteration step
tmp=np.dot (R,np.dot (rho,R))

#re-normalization
rho=tmp/tr (tmp)

#likelihood
if i1%9==1:
L=0
for m in range(numberOfBins):
L+=np.1log10(p[m])*N [m]
print L
return rho

B.4.6. Wigner function reconstruction

This program builds a Wigner function from a given density operator in Fock basis

# —*- coding: utf-8 —x*-

Created on Mon Apr 28 15:47:14 2014
Q@author: Christoph

This program translates a density matrix in Fock basis
to Wingerfunction values W(q,p)

nmn

import numpy as np

I=np.complex(0,1)

def H(n,x):#Hermite polynomials

if n==0: return 1
if n==1: return 2*x
else:
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return 2*x*H(n-1,x)-2*(n-1)*H(n-2,x)
def factorial(n):
sum = 1.0
for m in range(1, int(n)+1):
sum = float(m)*sum
return sum
def createWignerfile(rho,datfile,xySteps=100):
def Wigner(q,p,rho):

def L(n,x):
if n==0: return 1.
if n==1: return 1.-x
else:

return 1./nx((2*n-1.-x)*L(n-1.,x)-(n-1.)*L(n-2.,x))
maxN=np.size(rho[0])-1
def Wmn(q,p,m,n):
pre=(-1.)**m/np.pi
alpha=(q+I*p)/np.sqrt(2)
if m>n:
val=pre*np.sqrt(1l.*factorial(n)/factorial (m))*\
np.exp(-2*(np.abs(alpha))**2)*\
(=2xnp.conj(alpha))**(m-n)*\
(L(n,4*(np.abs(alpha))**2))**(m-n)
if m<n:
val=pre*np.sqrt(1l.*factorial(m)/factorial(n))*\
np.exp(-2*(np.abs(alpha))**2)*\
(2% (alpha) ) ** (n-m)*\
(L(m,4*(np.abs(alpha))**2))** (n-m)
else:
val=pre*np.exp(-2*np.abs((alpha))**2) %\
L(n,4*np.abs(alpha)**2)
return val
W=0
for m in range(maxN+1):
for n in range(maxN+1):
W+=rho [m,n] *Wmn(q,p,m,n)
return W
Q=xySteps
outfile=open(datfile,’w’)
for q in range(Q):
x=(-Q/2.+q)/(Q/10.)
for p in range(Q):
y=(-Q/2.+p)/(Q/10.)
outfile.write(format(x)+" "+format(y)+" "+\
format (np.real (Wigner(x,y,rho)))+"\n")
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outfile.write("\n")
outfile.close()

B.5. gnuplot programs

B.5.1. Determine optical loss in squeezing measurements

This simple but useful gnuplot program calculates the overall detection loss for a pair
of squeezed and anti-squeezed values and also returns the initial squeezing, i.e. the
squeezing beore experiencing optical loss.

reset
dbtolin(x)=10%*(x/10.)

Sq9z=-5.5 #amount of squeezing in dB
ASqz=17.9 #amount of anti-squeezing in dB

eta=(-1+dbtolin(Sqz)+dbtolin(ASqz)-\
dbtolin(Sqz)*dbtolin(ASqz))/(-2+dbtolin(Sqz)+dbtolin(ASqz))
1Sqz=10*10g10((dbtolin(ASqz)+eta-1)/eta)

print sprintf("Detection loss = %.2f %", (l-eta)*100)
print sprintf("Initial squeezing = %.2f dB",ISqz)

B.5.2. Correlations in two-mode squeezing

This is the program to produce Figure 4.2.

reset
set term postscript eps enh color "Helvetica" 18 1lw 2

set format x "%.1f{/Symbol p}"
set out "Duan.eps"

#set key out below

set grid

set samples 1000

set xlabel "Phase"

set ylabel "Noise variance [dB]"
lintodb(x)=10.*1ogl0(x)
dbtolin(x)=10%*(x/10.)

Vq(r,s,phi)=0.25%((1+cos(phi))**2xexp (-2*r)\
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+(1-cos(phi) ) **2*exp(2*s)+sin(phi) **2x (exp (2*r) +exp (-2%s)))

Vp(r,s,phi)=0.25%(exp(2*r)*(1-cos(phi) ) **2\
+exp (-2%s)* (1+cos (phi) ) **2+sin(phi) **2% (exp (-2*r) +exp (2%s)))

r=2.1
s=0
eta=.73 #detection efficiency

set style arrow 1 head filled size screen 0.015,30,45 1w 1

set arrow from 0,9 to 0,0.5 as 1 1w .5 lc rgb "blue"

set label "{/Symbol D} 2["{/Helvetica-Italic q}{.05\303}_c\
+7{/Helvetica-Italic q}{.05\303}_d]" at -0.35,-7 tc rgb "red"
set label "{/Symbol D}~2["{/Helvetica-Italic p}{.05\303}_c\
{/Symbol \055}~{/Helvetica-Italic p}{.05\303}_d]" \

at -0.35,+12 tc rgb "blue"

set label "{/Symbol D} 2["{/Helvetica-Italic q}{.05\303}_c\
{/Symbol \055}~{/Helvetica-Italic q}{.05\303}_d]" \

at -1.35,-2 tc rgb "red"

set label "{/Symbol D} 2[~{/Helvetica-Italic p}{.05\303}_c\
+7{/Helvetica-Italic p}{.05\303}_d]" at -1.35,+19 tc rgb "blue"

set yrange[-10:24]

p [-2:2] 1lintodb(etax(Vq(r,s,x*pi))+(l-eta)) \

t "“{/Helvetica-Italic g}{.05\303}_c locked" 1t 1 1lw 2 lc rgb "red",\
lintodb((eta*x(Vp(r,s,x*pi)))+(1-eta)) \

t ""{/Helvetica-Italic p}{.05\303}_c locked" 1t 1 1lw 2 1lc rgb "blue",\
0 1t 1 1w 2 1c rgb "black" t""#\
lintodb(((Vq(r,s,x*pi))*eta+(Vp(r,s,x*pi))*eta\

+2*%(1-eta))/2.) t "Duan" 1t 1 1lc rgb "green"

124



C. Contributions

For all experiments presented in this thesis I acknowledge support from my supervisor
Roman Schnabel in terms of continuous discussions about progresses and problems.
Jaromir Fiurasek from Palacky University Olomouc, Czech Republic, provided valuable
theoretical support at all times.
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D. Material

All plots in this thesis were generated using gnuplot 4.6. Data analysis was performed
using python 2.7 and gnuplot 4.6. All schematics of experimental setups were built with
Inkscape 0.91 using the Component Library by Alexander Franzen, which was recently
updated by Jan Gniesmer. Wolfram Mathematica 9 was used for various calculations.
Simulations of optical cavities were performed using Finesse2 [Frel4]. Mechanical layouts
were built with Autodesk Inventor 2014-2016. Electronic circuits were designed with
Eagle 5-6. This document was generated using the MiKTeX2.9 distribution and the
TeXnicCenter environment.
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G. Gallery

Figure G.1.: Impressions from the laboratory. From top left to bottom right: Photo-
graph of the optical table as seem from the position of the first SHG. Pho-
tograph from the other side of the table. Me in the lab working hard. The
optical table in his last minutes being fully assembled. The optical table
one week later: the working group of Roman Schnabel moved to Hamburg.
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