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 SYNOPSIS 

Currently, dengue represents highly spread arboviral disease for which there is no available 

vaccine. The infection can be caused by any of the four dengue virus serotypes DENV-1, -2, -

3 and -4 [1]. Though live attenuated vaccines have reached the advanced phase of clinical 

trials, problems associated with live attenuated vaccines over safety issues have spurred 

interest toward subunit vaccine candidates [2]. Dengue virus envelope domain III (EDIII) is 

endowed with serotype specificity, host receptor recognition and capacity to elicit neutralizing 

antibodies [1, 3]. One way to exploit the vaccine potential of EDIII is to array-in multiple 

copies on the surface of a carrier moiety. Virus-like particles (VLPs) offer a versatile platform 

for display of epitopes on surface with potential therapeutic applications. Hepatitis B surface 

antigen (HBsAg) VLPs have been used as a successful carrier in case of malarial vaccine 

candidate which reached phase III clinical trials [4, 5].  

The most affected dengue populations reside in economically poor and developing nations: 

therefore a vaccine needs to be economically feasible [6]. Pichia pastoris offers great 

advantages in vaccine production owing to its cost effectiveness, high expression, and 

importantly proteins produced are free of toxins and safe for human use [7]. Often, expression 

of viral surface proteins is not as efficient as in mammalian cells resulting in the formation of 

insoluble aggregates [8].  

Based on the above information the current doctoral thesis was aimed to explore the 

feasibility and potential of EDIII presented on the surface of the virus-like particles as a 

vaccine candidate using eukaryotic expression system, P. pastoris. The first part of the work 

was to generate P. pastoris based DENV-2 EDIII based chimeric VLPs using HBsAg as 

modular display system and immunogenic evaluation. The second part of the work was 

focused on possible bottlenecks during expression of fusion protein in P. pastoris with 

insights into the unfolded protein response (UPR) and endoplasmic reticulum associated 

degradation (ERAD) using proteomic tools. 

In the present work DENV-2 EDIII (E) was fused to the amino terminus of HBsAg (S), and 

expressed either individually (resulting protein termed as ES1:S0) or co-expressed along with 

1 and 4 copies of HBsAg denoted as ES1:S1 and ES1:S4 in P. pastoris strain GS115. Also, 

only unfused 8 copies of HBsAg (ES0:S8) were expressed. The chimeric proteins were 
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purified to near homogeneity using conventional chromatographic techniques. All the purified 

proteins were characterized by electron microscopy to evaluate their ability to assemble into 

VLPs. ES1:S4 was best among other chimeric constructs based on solubility and yield and 

thus was evaluated for its stability and immunogenicity. Proteome analysis of GS115 cells 

expressing ES1:S0, ES1:S4, ES0:S8 and wild-type GS115 strain before and after induction was 

carried out by two dimensional gel electrophoresis combined with MALDI-TOF to gain 

deeper insights into host cell physiological response during expression of these proteins 

ES and unfused S antigen in all chimeric constructs were expressed successfully to high 

yields. In the presence of non ionic detergent Tween-20 S antigen fraction was soluble 

whereas ES antigen fraction was hardly extractable. A significant fraction of the ES antigen in 

all the chimeric constructs was degraded whereas S antigen was very stable during expression. 

The chimeric proteins ES1:S0, ES1:S1 and ES1:S4 were purified to near homogeneity. Both 

ES1:S1 and ES1:S4 were able to assemble into VLPs whereas ES1:S0, represented only 

aggregates as revealed by electron microscopy. Purified ES1:S4 was evaluated for stability and 

it was found that both ES and S antigen fractions were stable on storage at 4°C for a period of 

two weeks without any additives. However, a small fraction of ES antigen in purified ES1:S4 

resulted in the formation of insoluble aggregates. Antisera from mice immunized with ES1:S4 

resulted in a modest neutralization titer against DENV-2. In order to assess the effect of 

expression of the fusion protein in host cell physiology, proteome analysis of cells expressing 

the fusion protein was carried out. Results revealed significant upregulation of chaperones 

involved in unfolded protein response (UPR) and endoplasmic reticulum associated 

degradation (ERAD). 

Stable and optimal presentation of EDIII on surface of carrier needs to be optimized to make 

it a viable option for vaccine candidate, trials of which are underway. The present study 

highlights the possible bottlenecks during heterologous expression of viral proteins with 

deeper insights into the host cell response and perturbances caused by expression of these 

proteins. 

Keywords: Dengue, Envelope domain III, Virus-like particles, Hepatitis B surface antigen, 

Pichia pastoris, Transmission electron microscopy, Two-dimensional gel electrophoresis, 

Unfolded protein response and Endoplasmic reticulum associated degradation. 
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ZUSAMMENFASSUNG 

Denguefieber ist derzeit eine der am weitesten verbreiteten arboviralen Krankheiten für die 

noch kein Impfstoff verfügbar ist. Die Infektion kann von einem der vier Denguefieber-

Serotypen DENV-1, DENV-2, DENV-3 oder DENV-4 ausgelöst werden. Obwohl einige 

Lebendimpfstoffe gegen das Denguefieber schon fortgeschrittene Stufen von klinischen 

Studien erreicht haben, treten immer wieder Sicherheitsbedenken gegenüber dieser Art 

Impfstoffe auf. Deshalb fokussiert sich die derzeitige Forschung vermehrt auf die 

ungefährlicheren Impfstoffe aus Proteinuntereinheiten. Als vielversprechenden Kandidaten 

für einen Proteinuntereinheiten-Impfstoff kann das Denguefieber Hüllprotein (EDIII) genannt 

werden, da es sowohl serotypenspezifisch ist, als auch eine Wirt-Rezeptor-Erkennung besitzt 

und die Fähigkeit hat neutralisierende Antikörper zu induzieren. Eine Möglichkeit das 

Potenzial von EDIII als Impfstoff zu nutzen, ist mehrere Kopien des EDIII-Proteins an die 

Oberfläche eines Trägerproteinkonstruktes zu koppeln. Als vielseitig einsetzbares 

Trägerproteinkonstrukt, um Epitope von Impfstoffen zu präsentieren, können Virus ähnliche 

Partikel (VLPs) dienen. So konnte ein Impfstoff mit VLPs bestehend aus dem Hepatits-B-

Oberflächen-Antigen (HBsAg) als Trägerproteinkonstrukt kürzlich erfolgreich die klinische 

Phase III erreichen.  

Die am stärksten vom Denguefieber betroffenen Gebiete befinden sich in wirtschaftlich 

schwachen Regionen und in Entwicklungsländern, sodass ein Impfstoff gegen Denguefieber 

kostengünstig produziert werden muss. Pichia pastoris bietet hier große Vorteile, da mit 

diesem Expressionsystem kostengünstig, mit hohen Expressionsraten und vor allem toxinfrei 

und somit sicher produziert werden kann. Jedoch ist die Expression von viralen Proteinen in 

Hefen häufig nicht so effizient wie in Säugerzelllinien, da hier unlösliche Proteinaggregate 

entstehen können.  

Basierend auf diesen Informationen war das Ziel dieser Doktorarbeit die Expression von 

EDIII in dem eukaryotischen Organismus P. pastoris und dessen Kopplung und Präsentation 

auf VLPs im Hinblick auf einen Impfstoff gegen das Dengue Virus zu evaluieren. Der erste 

Teil der Arbeit beschäftigt sich mit der Entwicklung eines chimären VLPs bestehend aus 

HBsAg und DENV-2 EDIII, dessen Expression in P. pastoris und einer 

Immunogenitätsuntersuchung des entstehenden Konstrukts. Der zweite Teil der Arbeit 
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fokussiert sich auf mögliche Engpässe bei der Expression in P. pastoris unter besonderer 

Berücksichtigung der ungefalteten Proteinantwort (UPR) und der endoplasmatischen 

Retikulum assoziierten Degradation (ERAD) mithilfe von proteomischen Methoden.  

In der vorliegenden Arbeit wurden DENV-2 EDIII (E) an den Amino-Terminus von HBsAg 

(S) fusioniert und entweder eigenständig (ES1:S0) oder mit 1 bzw. 4 Kopien von HBsAg 

(ES1:S1 bzw. ES1:S4) in P. pastoris GS115 co-exprimiert. Außerdem wurde auch 

unfusioniertes HBsAg (ES0:S8) produziert. Die chimären Proteine wurden bis zu einer hohen 

Reinheitsstufe mit konventionellen chromatographischen Methoden aufgereinigt. Alle 

aufgereinigten Proteine wurden mittels Elektronenmikroskopie charakterisiert, um den 

Aufbau von VLPs zu überprüfen. ES1:S4 konnte aufgrund der Löslichkeit und Ausbeute als 

bestes chimäres Konstrukt identifiziert werden und wurde daher hinsichtlich seiner Stabilität 

und Immunogenität untersucht. Ein Vergleich der Proteomanalyse von P. pastoris GS115 

Zellen, die ES1:S0, ES1:S4 und ES0:S8 exprimieren mit dem Wildtyp GS115 vor und nach der 

Induktion wurde mittels 2D- Gelelektrophorese kombiniert mit MALDI-TOF durchgeführt.  

ES- und unfusioniertes S-Antigen wurden in allen chimären Konstrukten mit hohen 

Ausbeuten exprimiert. In Gegenwart des nicht ionischen Detergenz Tween-20 S war die 

Antigenfraktion löslich, wogegen die ES-Antigenfraktion kaum zu extrahieren war. Ein 

signifikanter Anteil des ES-Antigens war in allen chimären Konstrukten degradiert, wobei das 

S-Antigen sehr stabil exprimiert werden konnte. Die chimären Proteine ES1:S0, ES1:S1 und 

ES1:S4 konnten stabile VLPs bilden. Von ES1:S0 dagegen konnten nur Aggregate auf den 

elektronenmikroskopischen Aufnahmen beobachtet werden. Aufgereinigtes ES1:S4 wurde 

hinsichtlich seiner Stabilität evaluiert. Es zeigte sich, dass sowohl die ES- als auch die S-

Antigenfraktion über 2 Wochen bei 4°C ohne Additive stabil waren. Jedoch resultierte ein 

kleiner Teil des ES-Antigens im aufgereinigtem ES1:S4 in unlöslichen Proteinaggregaten. Ein 

Antiserum einer Maus, die mit ES1:S4 immunisiert wurde zeigte eine moderate 

Neutralisierung gegen DENV-2. Um den Effekt der Expression von unlöslichen 

Proteinaggregaten des Fusionsproteins auf die Wirtszellphysiologie zu untersuchen, wurde 

eine Proteomanalyse der Zellen durchgeführt. Die Ergebnisse zeigen eine signifikante 

Hochregulierung der Chaperone, die in der ungefalteten Proteinantwort (UPR) und der 

endoplasmatischen Retikulum assoziierten Degradation (ERAD) eine Rolle spielen.  

Die stabile Expression und optimale Präsentation von EDIII auf der Oberfläche des 

Trägerkonstrukts werden derzeit weiter verbessert, um einen praktikablen 
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Impfstoffkandidaten zu erhalten. Die vorliegende Arbeit zeigt mögliche Engpässe in der 

heterologen Expression von viralen Proteinen in P. pastoris, die zu einer gestörten 

Wirtszellantwort führen und durch die Expression dieser Proteine hervorgerufen werden.  

Schlagwörter: Dengue, Hüllprotein Domäne III, Virusartike Partikel, Hepatitis B 

Oberflächenantigen, Pichia pastoris, Transmissionselektronenmikroskopie, 

Zweidimensionale Gelelektrophorese, Ungefaltete Proteinantwort, Endoplasmatisches 

Retikulum assoziierte Degradierung.  
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1. THEORETICAL BACKGROUND 

1.1 Dengue 

Dengue, a mosquito borne viral disease caused by any of the four closely related antigenically 

distinct serotypes DENV-1, -2,-3,-4 has become a major concern during the recent decades [1, 

9]. Dengue fever is caused by virus belonging to genus Flaviviridae transmitted by mosquito 

bite Aedes aegypti and Aedes albopictus. Infection with DENV results in varying degree of 

pathological conditions ranging from a mild febrile illness dengue fever to severe and fatal 

dengue hemorrhagic fever and dengue shock syndrome [9]. The world health organization 

(WHO) estimates about 3.6 billion people are at the risk of infection over 100 countries with 

about 100 million infections in its mild form and 500,000 cases of a severe form, dengue 

hemorrhagic fever (DHF) or dengue shock syndrome (DSS) getting infected every year [6]. 

There is no licensed vaccine yet. The steady expansion of disease has led to urgent needs in 

the development of vaccines. Low understanding of pathogenesis of disease, contribution of 

immune response in protection or progression of disease and lack of animal models are major 

barriers in development of vaccine [10].  

1.1.1 History 

Dengue like symptoms caused by flying insects in human dates back in Chin, Tang and 

Northern sung dynasties in common era 265-420, 610 and 990 AD respectively. The dengue 

endemics were later seen in 17 century onwards and rapid spread in disease was due to trade, 

shipping and transportation [11]. The troops movement during the second world war along 

with the human settlements and deforestation resulted in viral and mosquito vector spread all 

over the Western Pacific and South East Asia which remained endemic from then on [12]. 

Dengue virus serotype 1 (DENV-1) Hawaii strain and Dengue virus serotype 2 (DENV-2) 

New Guinea C were identified in 1944 by Sabin and Dengue virus serotype 3 and Dengue 

virus serotype 4 by Halstead in 1956 [13]. 
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1.1.2 Epidemiology 

During the recent decades dengue incidence has been increased to 30 fold with rise in 

geographic expansion to new countries (Figure 1-1) [14]. The world health organization 

(WHO) estimates about 3.6 billion people are in dengue endemics areas. Annually, 50-270 

million cases of dengue fever, 500,000 cases of DHF/DSS and 21,000 cases of death are 

reported. The countries majorly endemic to dengue are shown in Figure 1-2. The major 

reasons for the rapid spread of dengue are demographic changes like population explosion, 

uncontrolled urbanization, deforestation, lack of proper sewage management and vector 

control measures. The dengue outbreaks in Hawaii caused by DENV1 serotype was first 

observed during the Second World War in 1944. Similar outbreaks as a result of infection by 

same virus strain in Cuba were observed in 1977 and1981 followed by 1997 outbreaks where 

severe form of disease DHF/DSS observed was associated with DENV2 strain leading to the 

deaths of thousands. Similar endemics were observed in 2006 in Singapore. The spread of 

epidemics in both Cuba and Singapore was reduced by effective mosquito control. But there 

was a resurgence of disease as a result of travelers from endemic countries [12].  

Figure 1-1: Rise in number of dengue cases in reported countries (1955-2007). Plot of annual average 

number of dengue cases, including dengue fever and dengue hemorrhagic fever reported against time 

in years.(WHO dengue guidelines, available in http://whqlibdoc.who.int/publications/ 

2009/9789241547871_eng.pdf) 
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Figure 1-2: Global evidence, consensus, risk and burden of dengue in different parts of world. 

Adapted with permission from authors of reference [6].  

1.1.3 Entomology 

Dengue fever is an arthropod born disease transmitted by female Aedes species. These include 

Aedes aegypti, which is an African origin principal dengue virus vector and Aedes albopictus, 

a secondary vector for dengue transmission in Southeast Asia. The female Aedes is 

haematophagus and anthropophillic [11, 15]. 

1.1.4 Dengue transmission 

The dengue serotypes transmission occurs in two ecologically and evolutionary distinct 

sylvatic and human cycles. The sylvatic transmissions involving arboreal Aedes and non 

human primates found in sylvatic environments of Southeast Asia, Western Africa and 

Peninsular Malaysia [11]. The principal Aedes vectors in Africa include Aedes luteocephalus, 

A. furcifer and A.taylori. The hosts include Erythrocebus patas, Chlorocebus sabaeus and 

Papio cynocephalus. The principal Aedes vectors in Asia includes Aedes niveus s.l complex 

and reservoir host Macaca fasicularis, Macaca nemestrina and Presbytis cristata. The human 
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cycle includes humans as amplifying hosts and pre-domestic and domestic Aedes species. [11, 

15]  

1.1.4.1 Dengue virus transmission cycle in humans 

The human cycle of dengue virus transmission is shown in Figure 1-3. The transmission of 

dengue virus occurs by the bite of Aedes mosquito to an infected individual during the viremic 

phase which last between 2-7 days. The mosquito feeds on the blood of an infected individual 

and once the virus is ingested in the vector it migrates to posterior midgut, the first site of 

viral replication in mosquito from there it moves to haemocoel then to fat body and finally to 

salivary glands. The virus replicates in tissue tropism dependent manner in mosquito i.e. it 

can replicate in foregut, midgut, haemocel, haemolymph, fat body nervous system and 

salivary glands but not in hindgut, malphigian tubules and diverticula [16]. A glycoprotein 45 

kDa receptor in Aedes species is said to be essential for viral entry and is found in all 

developmental stages and in tissues infected with virus [17]. The virus ingested in mosquito 

can persist for long time in mosquito and is transmitted to its progeny by transovarial 

transmission. [16]. The transmission to other humans occurs by the bite of an infected 

mosquito, which remains infective throughout its life. 
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Figure 1-3: Dengue virus transmission cycle in humans. Adapted from (http://en.citizendium.org/ 

wiki/Dengue_Virus). 

1.1.5 Syndrome 

1.1.5.1 Dengue disease classification 

The clinical spectrum of the infection ranges from mild benign fever with febrile illness 

termed as dengue fever to fatal dengue hemorrhagic fever or dengue shock syndrome. Most of 

the dengue infected cases (about 50-90 %) are asymptomatic so remain unreported. There 

exists a very minor percentage (about 2-3 %) attaining fatal DHF/DSS apparently positioned 

at the apex of pyramid in Figure 1-4 A. The major clinical manifestations associated with the 

dengue fever and dengue haemorrhagic fever (DHF)/ dengue shock syndrome (DSS) are 

shown in Figure 1-4 B [18].  
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Figure 1-4: (A) Pyramid of dengue disease [12]. (B) Time course of clinical manifestations of dengue 

diseases. Adapted with permission from authors of reference [18]. 

1.1.5.2 Dengue fever 

Primary infection with any of the four serotypes would result in mild febrile illness termed as 

dengue fever which lasts for 4- 7 days. Most of the cases being asymptomatic remain un-

noticed. The symptoms include fever, headache rashes (maculopapular, petechial and 

scarlainform), muscle pain, joint pain and nausea. Sometimes dengue fever can be associated 

with abnormalities like hemorrhage, leucopenia and elevated levels of serum transaminases 

[19]. 

1.1.5.3 Dengue hemorrhagic fever/Dengue shock syndrome (DHF/DSS) 

The major fatal form of dengue disease is caused by infection with a serotype heterologous to 

that of primary infection. The disease is serotype specific. It has been reported that secondary 

infection by serotype 2 to an individual previously infected with serotype 1 or serotype 3 

would result in this DHF/DSS [12]. The symptoms of DHF are identical to dengue fever but 

with hemorrhagic manifestations, thrombocytopenia, increased vascular permeability and 

organ impairment. The increased vascular permeability is of major concern which results in 

ascites, pleural effusion, hepatomegaly and hypovolemia. DSS is a severe form of DHF where 

patient condition deteriorates due to narrowing down of pulse pressure and decrease in blood 

volume. This shock is life threatening and patient either recovers within 24 hours and if fails 

to resist, dies [18].  
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1.1.5.4 Primary dengue infection  

Initial infection with any of the four serotypes would result in symptomatic/asymptomatic 

disease. Severe disease during primary infection is associated with serotype 1 and 3 [12]. The 

first formed antibodies within 3-5 days (50 %) or 6-10 days (90-93 %) are transient IgM, 

which reaches a maximum by the end of two weeks then slowly diminishes to an undetectable 

level. The IgG antibodies can be seen in very low amount at the end of first week, then slowly 

expand and persist throughout the life. These antibodies provide lifelong immunity for 

infection with homologous serotype, but not for heterologous serotypes. People living in 

dengue endemic areas can be infected with all the four serotypes. It is said that secondary 

infection with a serotype heterologous to previous one increases the manifestation of getting 

DHF/DSS [10]. 

1.1.5.5 Secondary dengue infection 

A secondary infection with heterologous serotype results in classical dengue fever with 2-3 % 

gaining life threatening DHF/DSS [10]. Secondary infection with serotype 2 to higher extent 

is associated with severe form of disease DHF/DSS [20]. Severity of disease associated with 

tertiary or quaternary infections is rare. DHF/DSS is found to be associated with high viremia 

and cytokines load. In literature there are many hypothesis explaining the pathogenesis of 

DHF/DSS in which both cellular immune response and humoral immune response are 

responsible for severity of disease. According to original antigenic sin theory by Halstead, 

primary infection with a serotype generates antibodies which can provide immunity for a long 

time, but the pre-existing cross reactive neutralizing or non neutralizing antibodies are of 

major concern. During heterologous infection with a serotype different from previous 

infecting one, the cross reactive antibodies binds to virion with low affinity and assist in 

gaining access to monocytes via Fcγ receptors and enhance viral load causing antibody 

dependent enhancement (ADE) [2]. ADE is a biological mechanism which results in 

increased uptake of virus by infected cell thereby increasing viral replication rather than 

decreasing as a result of humoral immune response of previous serotype. Experimental 

evidences for ADE have been shown by passive transfer of sub neutralizing antibodies for 

DENV envelope into non human primates and AG129 which led to enhancement of 

replication and viremic load from 10 -100 fold causing fatal disease [21]. The mechanism of 

ADE is shown in Figure 1-5. The other hypothesis suggest that secondary heterologous 

infection causes activation of memory T cells which binds virus with low avidity but are not 
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able to kill resulting in increased production of pro-inflammatory cytokines, TNFα/β and 

interferon γ leading to immunopathologic progression of disease [2]. ADE although 

associated with disease severity due to high viremia and increased production of pro-

inflammatory cytokines but are not only sufficient to explain DHF/DSS in terms of ADE [18] 

Figure 1-5: Illustration of antibody dependent enhancement (ADE). Binding of dengue virus with 

heterotypic semi-neutralizing antibodies results in formation of virus antibody complex and gets 

internalized enhancing viral replication and viremia. (Used with permission from authors of reference) 

[18]. 
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1.1.6 Dengue virus structure 

The structure of dengue virus type 2 strain PR159 –S1 was determined by fitting the known 

structure of tick born encephalitis virus (TBEV) envelope into the cryo-electron density map 

of DENV2. The dengue virus was revealed to be an enveloped virus of approximately 50 nm 

diameter. The surface of the virion is a condensed structure with 180 copies of envelope 

glycoprotein followed by membrane protein beneath it (Figure 1-6 B) [18]. The nucleocapsid 

and viral genome are surrounded by bilayer lipid envelope underneath the membrane protein. 

The dengue viral genome is composed of single stranded RNA of positive polarity about 11 

kb size with 5’and 3’ untranslated regions (UTRs) of 100 and 450 bp size. 5’ UTR’s has a 

methylated cap with S-adenosyl methionine activity and stem loop (SL) structure. 3’ UTR 

lacks poly-A tail but contains conserved stem loop structure. The presence of upstream AUG 

regions (UAR) and cyclizable sequences in both 5’ and 3’ UTRs has an important role in viral 

RNA translation and replication. RNA is synthesized as a single open reading frame encoding 

a polyprotein which is cleaved by host proteases and viral NS3 protease into three structural 

proteins (envelope, capsid and pre-membrane) and non-structural proteins (NS1, NS2a NS2b, 

NS3, NS4a, NS4b andNS5) (Figure 1-6 A, Table 1-1).   
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Figure 1-6: (A) Dengue virus genome organization encoding structural and non-structural proteins. 

(B) Dengue virus structure, with an enlarged view of envelope protein where domain I, II, III and 

fusion peptide are represented by red, yellow, blue and green color, respectively. (Used with 

permission from authors of reference) [18]. Abbreivations of structural and non-structural proteins are 

shown in Table 1-1. 

The envelope protein is a major immunogenic glycoprotein playing an essential role in viral 

biology assisting in receptor recognition, viral attachment and virion morphogenesis. The 

envelope protein is said to be highly conserved among all the flaviviruses. There exists 60-67 

% sequence similarity among all the four serotypes and 90-96 % homology among genotypes 

of same serotype [18]. The E protein has three distinct domains. Domain I is a flexible hinge 

with 8 ß barrels strands contains type specific epitopes and antibodies formed against this 

domain are non-neutralizing. Domain I also contributes in the conformational change during 

low pH. Domain II contains a highly conserved fusion loop playing a pivotal role in fusion 

with the endosomal membrane at acidic pH and dimerization. The domain contains type and 

subtype specific epitopes resulting in cross-reactivity. The antibodies to this domain act as 

neutralizing at a threshold concentration and below this concentration as enhancing. Domain 

III is an immunoglobulin like domain, easily accessible on virion surface playing an essential 

role in receptor recognition and antibodies formed against this domain are neutralizing, highly 
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immunogenic and non cross-reactive. It has been shown the antibodies against this domain 

could block the infectivity of the virus. These attributes together manifest the prominent role 

of domain III as subunit vaccine candidate [10, 22]. 

Table 1-1: Dengue virus proteins and their predicted functions [19, 23, 24]. 

 Protein  Function  

Structural  Capsid (C)  Binds and stabilizes viral RNA  

Pre-membrane/ 

Membrane 

(prM/M)  

pr peptide of prM prevents premature fusion  

and membrane protein forms ion channels  

Envelope (E)  Receptor recognition, viral attachment and  

viral morphogenesis  

Nonstructural  NS1  Viral replication and provides a defense to virus by inhibiting 

complement activation  

NS2a  Part of viral replication complex  

NS2b  Cofactor for NS3  

NS3  Helicase and protease  

NS4a  Membrane alteration for viral replication  

NS4b  Also plays a role in viral replication by interacting with NS3 

and also plays a role in blocking IFNα/β signaling. 

NS5  Methyl transferase and polymerase  

1.1.7 Cellular targets and receptors for DENV 

The dengue virus replicates in cell and tissue tropism specific manner [25]. The dengue virus 

when transmitted to humans by infected mosquito bite first reaches to Langerhans cells and 

dendritic cells where it replicates and disseminates into blood stream through lymph nodes 

reaching to monocytes and tissue macrophages. The viral replication is observed majorly in 

liver, endothelial cells, splenic macrophages and bone marrow. The entry of virus into these 

specific cells is facilitated by expression of specific receptors on cell surface recognized by 

virus. The receptors in human include majorly carbohydrates (sulfated glycans, 

glycosphingolipid) and carbohydrates binding proteins (lectin, mannose binding receptor). 

Carbohydrate acts as a co-receptor which associates with other molecules forming a complex 

which enhances viral entry. In case of mosquito majorly proteins act as receptors for viral 

entry. Some receptors are serotype specific, and virus uses combination of receptors to gain 

entry into different cell types using different receptors [25]. Table 1-2 lists the receptors found 

to be involved in viral entry in humans. 
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Table 1-2: Cell receptors of dengue virus. Adapted from reference [25]. 

1.1.8 DENV life cycle 

The virus enters the host cells by receptor mediated endocytosis in clathrin dependent manner. 

The low pH in the endosomal compartment causes conformational changes within the E 

protein which exist as spiky projections in heteromeric trimeric forms. This leads to the 

exposure of fusion peptide of E protein which causes the fusion of viral membrane with 

endosomal membrane, allowing uncoating and release of viral RNA [26]. The viral RNA has 

positive polarity and is translated as single ORF encoding a polyprotein precursor at rough 

endoplasmic reticulum (RER) which is cleaved into structural and nonstructural proteins by 

host and viral proteases. The viral RNA replicates in cytosol.  

Receptor Properties Cell/Expression system Dengue 

serotypes 

Heparin sulfate Sulfated 

glycosaminoglycan 

Vero cells, BHK-21 cells, 

SW-13 cells 

DENV 1-4 

Neolactotetraosylceramide 

(nLc4 Cer) 

Glycosphingolipid Vero cells, BHK-21 cells, 

K562 cells 

DENV 1-4 

DC SIGN Dendritic cell 

specific receptor with 

lectin activity 

Dendritic cells, 

Macrophages 

DENV 1-4 

Mannose receptor Lectin like activity Macrophages DENV 1-4 

HSP70/HSP90 Heat shock proteins 

expressed on plasma 

membrane 

Macrophages  

HepG2 cells, SK-SY-5Y 

cells 

DENV-2 

GRP78 Chaperone expressed 

on plasma membrane 

HepG2 cells DENV-2 

Laminin receptor High affinity laminin 

receptor 

PS clone D cells, 

HepG2 cells 

DENV 1-3 

CD 14 associated protein Lipopolysaccharide 

receptor 

Monocyte, Macrophages DENV-2 
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The viral RNA replicase components NS3 and NS5 bind to 3’ UTR to initiate the replication 

of (+) strand forming a (-) strand which further acts as template forming (+) strand. In the 

later stages the RNA fuses with capsid to form RNA-capsid complex. The nucleocapsid with 

encapsulated genome buds into the ER and acquires envelope decorated with prM-E 

heterodimers from ER membrane and forms immature particles. The maturation of virions 

occurs with a conformational change induced by pH transition. At acidic pH during migration 

of immature virions the pr peptide gets dissociated from M protein by the furin protease 

causing maturation of viruses. Nevertheless, the pr peptide still exists associated with E 

protein, which gets separated when everyone is released into the extracellular milieu by 

exocytosis (Figure 1-7).[23, 26]. 

 

Figure 1-7: Dengue virus life cycle. (A) Viral attachment by receptor mediated endocytosis, (B) virus 

membrane fusion and uncoating causing release of viral RNA (+ strand) into cytosol, (C) translation 

of viral RNA into polyprotein and processing into individual units (D) viral RNA replication (E) 

association of viral RNA with structural proteins to form immature virion, (F) transport of immature 

virions through trans golgi network and cleavage of pr peptide from prM causing maturation of virions 

(G) final release of virion. Used with permission from authors of reference [26]. 
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1.1.9 Pathogenesis 

The mechanism underlying the pathogenesis of dengue virus is not completely known. Much 

of literature was focused on descriptive mechanisms and challenge is related to identification 

of immunopathological mechanisms [27]. The dengue pathogenesis is multifactorial and is 

affected by age, gender and genetic determinants in host, and also by virulence of virus 

genotype variants within serotype and comorbidities. Infants to age 4-12 months are more 

susceptible to infection than newborn babies and children of more than 1 year of age. 

Similarly children are more susceptible to DSS/DHF than adults. Gender based susceptibility 

is also seen in severe form of disease. Female children are more susceptible than males [27, 

28].  

Dengue pathogenesis is thought to be immune mediated due to its severity and higher 

incidence during secondary heterologous infection. Pathological features in case of severe 

DENV infection, i.e. DHF or DSS include majorly hemorrhagic manifestation in the skin, 

gastrointestinal tract and heart combined with fluid accumulation in body cavities. However, 

the mechanism for vascular leakage and hemorrhage are not well understood. Elevated 

concentration of cytokines including IL-2, IL-6, IL-8, IL-10, IL-13 and TNFα are found 

associated with immunopathogenesis of severe disease [19]. These elevated cytokines are 

associated with increased capillary permeability, thrombocytopenia and hematocrit. 

Understanding of dengue pathogenesis is hampered due to unavailability of infallible 

immunological markers for protection and pathological response and lack of suitable animal 

models [10]. 

1.1.10 Dengue vaccine candidates in clinical trails 

With several goals which includes universal availability at affordable price, lifelong 

protection against all four serotypes, safe and well tolerable in immune compromised 

individuals different vaccine candidates have been developed [29] some of which reached 

clinical trials (Table 1-3). Due to unavailability of dengue therapeutics and vector control 

measures being the sole measure of disease control, development of vaccine would be a major 

breakthrough in disease control [30].  
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Table 1-3: Vaccine candidates under clinical trials. Adapted from [30]. 

Vaccine 

candidate 

Vaccine approach Developer Clinical Phase 

ChimericVax Based on YF17D backbone  

and replacement of prM E gene with 

DENV genes 

Sanofi Pasteur Phase III 

Live attenuated Attenuation by serial passaging in 

PDK cell line 

 

WRAIR and GSK Phase II 

(Development 

on hold) 

Tetravalent 

vaccine 

formulation 

Defined deletion mutations 

and intertypic chimerisation 

NIAID,Butantan 

and Biological E 

Phase I 

DenVax Replacement of DEN1, DEN3 DEN4 

prM E genes with DEN2 PDK 53 

virus gene 

Inviragen Phase II 

DEN1 80E Truncated envelope  

protein expressed in insect cells 

Hawaii 

Biotech/Merck 

Phase I 

D1ME-VR-P DNA vaccine comprising prM and E 

genes 

NMRC Phase I 

Abbreviations: YF17D: Live Attenuated Yellow Fever Vaccine; PDK: Primary Dog Kidney; 

WRAIR: Walter Reed Army Institute of Research, USA; GSK: GalaxoSmithKline Biologicals; UK 

NIAID: National Institute of Allergy and Infectious Diseases, USA; NMRC: Naval Medical Research 

Center, USA. 

1.1.11 Envelope domain III based subunit vaccine candidate 

Although, live attenuated vaccine (LAV) Chimeric Vax has reached to advanced clinical 

phase concerns, about safety still exist [10]. To overcome problems associated with live 

attenuated vaccines like viral interference, attenuation and reversion to virulent form, efforts 

were made to establish protein based subunit vaccine candidates. The envelope domain EDIII 

is considered to be a promising candidate. Domain III is highly immunogenic, possesses 

multiple type and subtype specific neutralizing epitopes, lacks cross-reactive and enhancing 

epitopes [22]. This would avoid the risk of antibody dependent enhancement associated with 

other domains. EDIII domains individually and in association with fusion partners were 

evaluated as monovalent and tetravalent vaccine candidates. Table 1-4 lists 

homologous/heterologous EDIII based chimeras as potential subunit vaccine candidates. 
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Table 1-4: List of EDIII based subunit vaccine candidates 

Serotype Fusion partner Expression host Developmental stage Reference 

DENV-2 MBP E. coli Monovalent  

evaluated in mice 

[31] 

DENV1-4 P64K  

of  

Niesserria 

meningitides 

E. coli Monovalent  

evaluated in NHPs 

[32] 

DENV-2 DENV4 E. coli Bivalent  

evaluated in mice 

[33] 

DENV 1-4 Glycine linker P. pastoris Tetravalent  

evaluated in mice 

[34] 

DENV-2 HBsAg P. pastoris Monovalent  

evaluated in mice 

[3] 

DENV-2 HBcAg P. pastoris Monovalent  

evaluated in mice 

[35] 

Abbreviations: MBP: Maltose binding protein; NHPs: Non human primates; HBcAg: Hepatitis B 

core antigen. 

1.2 Virus-like particles (VLPs) 

Virus-like particles (VLPs) are supramolecular clusters with repetitive surface, particulate 

structures and pathogenic recognition patterns formed by self assembly of structural proteins 

including capsid and envelope [4]. VLPs usually exist as icosahedral or rod shaped structures 

in range of 20-150 nm. VLPs have structural and antigenic features identical to that of virus 

and induce early, rapid and sustained B and T cell responses. Identical with the viruses, VLPs 

also exist as non enveloped and enveloped classes. Non enveloped VLPs include single or 

multiple antigen of the pathogen with self assembly characteristic without any host cell 

components. HBsAg is exceptional since it is a non-enveloped VLP but still possesses host 

cell lipids, which are needed for its structural integrity and antigenicity [4]. Some of the other 

examples for non-enveloped VLPs include human papillomavirus L1 capsid, rotavirus (VP2, 

VP4, VP6 and VP7). Envelope VLPs include single or multiple antigens arranged on surface 

of host cell membrane. Envelope VLPs are more complex and also provide more flexibility in 

insertion of antigens. Some of the envelope VLPs include influenza virus (HA-hemagglutinin, 

NA: neuraminidase, M1: matrix protein, M2: ion channel), human immunodeficiency virus 

(HIV envelope), simian immunodeficiency virus (SIV) gag protein, hepatitis C virus (HCV) 
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(C: core protein, E1,E2 and P7: envelope proteins [4]. VLPs have three major functions: 

VLPs act as subunit vaccines (SUVs), serve as carrier for display of epitopes of foreign origin 

or epitopes of other proteins of the same strain or same epitopes of different strains, and as 

therapeutics by targeting self molecules [5, 36].  

1.2.1 Subunit vaccine candidates (SUVs) 

SUVs exploit the self assembly properties of an antigen component of the parental virus for 

immunization against cognate viral infection. VLPs offer a safe and effective vaccine 

platform owing to its immunological attributes like size, particulate nature, surface area, 

hydrophobic/hydrophilic interface and absence of genetic material [36]. A number of VLP 

vaccines have been subject of extensive research during the last two decades, some of which 

reached preclinical and clinical trials. Two VLP based vaccine candidates reached the market 

which include Hepatitis B surface antigen (HBsAg) VLP and human papilloma virus capsid 

(HPV L1) VLP. VLPs can function as homologous as well as heterologous vaccine candidates 

[37]. 

1.2.2 Platform for foreign antigen delivery 

VLPs serve as a platform for immune presentation of foreign antigens with low immunogenic 

potential or which are not able to assemble into VLPs [38]. Incorporation of heterologous 

epitopes of the same virus or epitopes of a completely unrelated pathogen by genetic fusion or 

chemical linkage results in formation of chimeric VLPs and so fused antigens are exposed on 

surface of VLPs. HBsAg, HBcAg, HPV L1 capsid and parvovirus VP2 were used as efficient 

carriers of foreign antigens by compromising some features without disrupting VLP assembly 

[36]. Of many chimeric VLPs only two had shown promising results in clinical phase. These 

include homologous chimeric VLPs Sci-B-Vac and BioHepB against hepatitis B virus which 

includes L and M protein of HBV along with HBsAg [38]. RTS,S formed by fusion of 

circumsporozite protein from Plasmodium falciparum at amino terminus of HBsAg co-

expressed along with 4 copies of HBsAg also successfully reached Phase III trials [37]. 
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1.2.3 Targeting self molecules 

The application of VLPs in presentation of self antigens which mediates disease on surface 

exposure, results in generation of autoantibodies. These induced autoantibodies can be used to 

overcome immunetolerance and can thus be used for treatment of chronic diseases like 

cancer, allergy, arthritis and cardiovascular diseases [36]. The self molecules include β-

amyloid, angiotensin II, TNFα and ghrelin. The therapeutic efficacy by presentation of self 

molecules have been demonstrated in rheumatoid arthritis, atherosclerosis, osteoporosis, 

hypertension and Alzheimer disease and has shown positive results in preclinical trials [36]. 

1.2.4 Immunogenicity of VLPs 

Physical attributes of VLPs are associated with eliciting potent B and T cell responses. This 

response can be further enhanced by removing the immunosuppressive epitopes in VLPs. The 

optimal number (20-25) and spacing (5-10 nm) between epitopes in VLPs has been associated 

with B cell activation [36]. Repetitive epitopes exposed on the surface of the VLPs cross link 

with B cell receptors of B lymphocytes and causes activation and proliferation of B- 

lymphocytes to produce IgM antibodies. Repetitive structures are also known to bind with 

complement proteins and causing further B cell activation. Additionally, VLPs can also 

induce T cell dependent IgG response, germinal center formation, hyper-mutation, class 

switching and memory cell formation. The small size of VLPs allows it to drain from the site 

of injection to lymph node and then spread to secondary lymphoid organs where they interact 

directly with B cells thereby stimulating activation [36]. 

The particulate nature and size of the VLPs help in efficient uptake and delivery by antigen 

presenting cells (dendritic cells). Dendritic cells can uptake antigen with dimensions of (10 

nm-3 µm) [36]. Once internalized by the dendritic cells the antigens are processed into 

fragments and presented to class II MHC. Dendritic cells can also cause cross presentation to 

class I MHC, triggering maturation of dendritic cells resulting in production of cytotoxic T 

cell lymphocytes and cytokines for clearance of pathogen [39] (Figure 1-8). HBsAg VLPs are 

known to induce significant humoral immune response [40]. HPV VLPs are known to 

stimulate directly the maturation and activation of dendritic cells leading to expression of 

costimulatory cytokines and T-cell responses [36]. 
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Figure 1-8: VLPs uptake, presentation, processing and maturation of dendritic cells. Adapted from 

[39]. 

1.3 Hepatitis B surface antigen 

The hepatitis B surface antigen (HBsAg) was first discovered 50 years ago in Australian 

aborigines named as AuAg by Baruch Blumberg. HBsAg is a major marker of Hepatitis B 

virus (HBV) infection [41]. Hepatitis B surface antigen (HBsAg) is the major envelope 

protein found abundantly in individuals infected with HBV infection, belonging to 

Hepadnaviridae family. It exists in the form of 22 nm spherical or filamentous lipoprotein 

particles. HBsAg is synthesized in excess amount and act as bait to the immune system and 

helps in evasion of HBV [41]. HBsAg particles are composed of surface viral proteins (60 %) 

and host derived lipids (40 %) [42]. The particles have a molecular weight of 2.4 MDa and 

density of 1.2-1.21g/ml. Each particle is composed of about 100 monomers [43]. The other 

envelope protein includes L and M proteins. The envelope proteins L, M and S are encoded 

by same ORF with difference in phase translation initiation codons and same termination 

codon. The three proteins differ at amino terminus but are same at carboxy terminus. The S 

protein is found in higher proportions when compared to L and M proteins. L and S protein 

have role in virus maturation whereas M protein has no role in maturation [44]. 
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1.3.1 Structural features 

HBsAg monomer is a typical transmembrane protein composed of 226 amino acids with a 

molecular weight of 24 kDa. HBsAg is composed of four transmembrane domains. The first 

transmembrane domain (TM1) is in an amino acid position 4-24 which assists in co-

translational translocation of the amino terminus of the protein into the ER lumen. 

Downstream to TM I is cytosolic loop followed by TM II at amino acid position 80-100 

which acts as a signal/anchor domain followed by antigenic loop. The third and fourth TM 

domains are located within third hydrophobic domain at carboxy terminus of HBsAg which 

helps in translocation of C-terminal end of protein into lumen [44]. The central hydrophilic 

region (110-156) contains (a) antigenic determinants [45]. The lipid components of HBsAg 

are arranged in an ordered interface and are essential for antigenicity [4]. The lipid 

composition of HBsAg particles includes phosphatidyl choline (60 %), cholesteryl ester (14 

%), cholesterol (15 %) and triglycerides (3 %) [43]. 

1.3.2 Significance of HBsAg 

HBsAg is a major marker of viral hepatitis. Antibodies against HBsAg can neutralize the 

virus infectivity [46]. Presence of HBsAg antibodies in acute hepatitis indicates the 

suppression of viral replication, clearance of infected hepatocytes and prevention of viral 

dissemination in new cells. The acute hepatitis is marked by presence of HBsAg which starts 

developing after few weeks of infection, reaches to the peak and decreases after onset of 

infection [41]. Protection is achieved by decrease in HBsAg, presence of anti HBcAg 

antibodies and development of anti HBsAg antibodies. The chronic infection is characterized 

by the presence of HBsAg even after 6 months of infection with HBV. Occult infections are 

characterized by the presence of anti HBcAg antibodies in HBsAg and HBV DNA negative 

patients in serum. The chronic and occult infection can lead to fatal hepatitis or hepatocellular 

carcinoma only in case of immunodeficiency. Hotspots of variability are also present in 

HBsAg in antigenic loop which would result in generation of HBV mutants which when 

attain ability to transmit lead to fatal hepatitis. The recombinant HBsAg vaccine is the first 

recombinant virus-like particle vaccine in the market [41]. 
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1.3.3 HBsAg as carrier 

The potential use of HBsAg as carrier by expression in systems like yeast, baculovirus and 

mammalian systems has resulted in success to a significant extent. Insertions in amino 

terminus to that of S protein in preS region and antigenic determinant loop in regions (110-

156) resulted in exposure of epitopes on surface of the particle without disruption in particle 

assembly [47, 48]. The feasibility of HBsAg as carrier was first tested by fusion of herpes 

simplex virus (HSV) glycoprotein fragment (300 aa) to amino terminus of HBsAg in preS 

region which resulted in exposure on surface of particle [49]. The second malaria vaccine 

candidate formed by the fusion of repetitive T cell epitope circumsporozite protein (189 aa) to 

amino terminus of HBsAg and co-expression of HBsAg in yeast resulted in the formation of 

RTS, S vaccine candidate which successfully reached phase III trials [47]. HBsAg based 

chimeras are listed in Table 1-5  
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Table 1-.5: List of HBsAg based chimeras. 

Epitope (AAs) Site VLPs Host Developmental 

stage 

Reference 

Glycoprotein (gD) fragment of 

HSV (300) 

N + Yeast ND [49] 

Capsid protein VP1  

of poliovirus type 1 (10) 

AGL + Mammalian 

cells 

Evaluated  

in mice 

[48] 

Receptive epitope  

of circumsporozite protein in 

P. facliparum (64) 

N + Yeast Evaluated  

in mice  

and rabbit 

[50] 

gp 120 V3 domain  

of HIV/BRU isolate (24) 

N + Mammalian 

cells 

Evaluated  

in monkeys 

[51] 

C-terminal CSP in  

P. facliparum (189) 

N + Yeast Evaluated  

in humans 

[47] 

HVR E2 immunodominant 

eptiope of  

HCV1a/1b strains 

AGL + Mammalian 

cells 

Evaluated  

in mice 

[52] 

E protein of dengue virus 

serotype 2 (395) 

N + Yeast Evalauted  

in mice 

[53] 

C-terminal sequence  

of Kat A protein  

in Helicobacter.pylori (130) 

AGL + Mammalian 

cells 

Evalauted  

in mice 

[54] 

EDIII of dengue  

virus serotype 2 (104) 

N + Yeast Evaluated  

in mice 

[3] 

Abbreviations: N: Amino terminus; AGL: Antigenic loop; HSV: Herpes simplex virus; 

HCV:Hepatitis C virus; HIV: Human immunodeficiency virus. 
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1.4 Pichia pastoris as an expression host 

Industries keep on looking for improved efficiency of bioprocess or alternative host system 

for recombinant expression of heterologous proteins in a cost effective manner [7]. 

Methylotropic, Pichia pastoris is one such host which offers a magnitude of advantages over 

both prokaryotic (Escherichia coli) and eukaryotic (yeast (Saccharomyces cerevisiae), 

baculovirus and mammalian cells) expression system [55]. Some of which includes: 

 Growth to high cell densities in simple defined medium.  

  Proper polypeptide folding by presence of chaperones. 

  Post translational modifications, including glycosylation, disulphide bond formation  

 and phosphorylation. 

  Easy genetic manipulation and stably expressing cell lines.  

The advantages of P. pastoris over S. cerevisiae includes a preference for respiratory rather 

than fermentative growth and presence of strongly regulated promoter (alcohol oxidase) [56]. 

There are ample Pichia strains and vectors used for heterologous protein expression. The 

choice of strain and vector depends on protein to be expressed. The strains vary genotypically 

and phenotypically. Genotypical variation includes protease deficient strains (pep4) and 

auxotrophic mutants (his4, arg4) [55]. Phenotypical difference depends on the ability of 

strains to use methanol efficiently, which depends on the presence of alcohol oxidase gene 

(AOX). There are two AOX1 and AOX2 genes which have homology of about 96 %. AOX1 

accounts for about 85 % of methanol utilization with high expression level of about 30 % of 

total cell protein [57]. AOX2 has low expression levels and are not able to metabolize 

methanol efficiently. The presence of AOX1 and AOX2 genes results in efficient methanol 

utilizing phenotype (MUT
+
) whereas the presence of defective aox1 and AOX2 results in 

methanol slowly utilizing phenotypes (MUT
S
). AOX catalyses the first step in the methanol 

metabolism causing oxidation of methanol to formaldehyde and generating hydrogen 

peroxide in peroxisomes. The hydrogen peroxide is detoxified by catalase. Formaldehyde is 

involved in an assimilation pathway for generation of biomass and dissimilation pathway for 

generation of energy. Numerous cytosolic and secretory proteins were expressed under AOX 

promoter. Alternatively, GAP YPT1, FLD1 and DHAS were also employed for protein 

expression [58].  
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The ability of P. pastoris to produce proteins with authentic conformations resulted in its 

extensive use as a heterologous expression system. P. pastoris allows expression of high 

disulphide bonded proteins, oligomeric forms and proteins with its cognate partners in very 

high quantities by multicopy integration [59]. 

P. pastoris can be used for the production of intracellular or secretory proteins with structural, 

diagnostic and therapeutic potential [60]. Intracellular or extracellular targeted expression 

depends on the protein. If the protein is secreted in its native system, then protein can be fused 

to its native signal or with an alpha mating factor from S. cerevisiae. The alpha mating factor 

is in upstream of the multiple cloning site (MCS) and at the amino terminus to that of 

recombinant protein. The α-mating factor is composed of a pre sequence (19 amino acids) and 

pro sequence (60 amino acids) with cleavage site for Kex2 endopeptidase and dipeptide 

repeats (EA) to enhance the proteolytic cleavage necessary for protein maturation. 

Nevertheless, if protein is integral membrane protein or has problem with secretion in such 

cases, they can be expressed intracellulary which can result in high expression levels. Some of 

high expressed cytosolic proteins include hydroxynitrile lyase (22 g/l), tetanus toxin C (12 g/l) 

and HBsAg (6 g/l) [58, 61]. 

Despite extensive use of P. pastoris as a platform for heterologous protein expression, there 

are several bottlenecks in protein production [62]. During recent times with the Pichia's 

available genome sequence in literature and studies on the physiological response to secretory 

proteins or intracellular protein expressed revealed obstacles during protein production. Along 

with the protein intrinsic properties (hydrophobicity, number of disulphide bonds and PEST 

sequences), the environmental factors such as temperature, oxygenation, medium, 

composition and pH also affect the recombinant protein expression [58, 60]. The protein 

function depends on three dimensional conformations which it acquires during and after 

synthesis from ribosomes. After synthesis at ribosome proteins are translocated to the ER 

where they undergo folding and posttranslational modifications. The properly folded proteins 

are translocated to specific functional site and terminally misfolded proteins or unfolded 

proteins are retained in the ER and targeted to degradation in the ubiquitin mediated pathway 

termed as endoplasmic reticulum associated degradation (ERAD). Accumulation of these 

misfolded proteins results in activation of ER-Nucleus signaling pathway called as unfolded 

protein response (UPR). The cascade of folding, translocation and degradation are aided by 

both cytosolic and ER resident chaperones [63].  
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1.4.1 Molecular chaperones and their role in protein biogenesis 

The major classes of chaperones, helper proteins HSP70, HSP40 (co-chaperones) nucleotide 

exchange factors (NEF), HSP110 and HSP90 belong to class of heat shock protein (HSP) 

family. HSPs are found in endoplasmic reticulum (ER), cytosol and mitochondria and play a 

vital role in protein biogenesis, translocation and degradation (Table 1-6) [64]. Chaperones 

work as a part of dynamic and complex network in cooperation with other factors. The same 

chaperones, which aid in protein folding in ER, when not able to attain native conformation, 

target the protein to degradation [65]. The major classes of chaperones and co-chaperones that 

acts on the substrate are described below 

 Members of Heat shock proteins 70 (HSP70s) are composed of three domains 44 kDa 

amino (N)-terminal ATPase domain, 15 kDa substrate binding domain and carboxy 

(C)-terminal lid of unknown function. Chaperone activity of HSP70 is ATP dependent 

and includes cycle of ATP hydrolysis and protein binding. HSP70s also called as 

stress induced proteins, play a vital role in protein folding, translocation, disassembly 

of aggregates and targeting to ERAD [64]. 

 HSP40s act as cochaperones and enhance the ATPase activity of HSP70. Three 

classes of HSP40s exist. All three are composed of 70 amino acids conserved J 

domain which contains a HPD motif necessary for binding to HSP70 and 

enhancement of ATPase activity. Type III is composed of only J domain whereas 

Type I is composed of J domain, a glycine/phenyl alanine (G/F) and cysteine rich 

region (CR). The G/F rich region acts as spacer needed for stimulation and CR rich 

regions are needed for peptide binding. HSP40s aid in folding and translocation along 

with HSP70s [64].  

 NEFs help in release of ADP from ATPase binding domain, a rate limiting step in 

HSP70 cycle. Three classes of NEFs were identified as GrpE, BAG1( Bcl2 associated 

athanogene which binds to anti apoptotic Bcl2 and other proteins including HSP70) 

and HSP BP (HSP binding protein). NEFs along with HSP70s assist in folding [64]. 

 HSP110s are distantly related to HSP70s and are composed of similar N-terminal 

ATPase domain and distinct C-terminal domain and have extended regions between 

N-terminal and C-terminal domains. HSP110s can act as NEF stimulating ATPase 

activity and also act as holdase preventing protein aggregation [64]. 
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 HSP90s contain an N-terminal ATP binding domain, a middle region substrate 

binding domain and a C-terminal dimerization domain. HSP90s have weak ATPase 

activity and requires HSP70s and HSP40s. HSP90 promotes folding and degradation 

[66]  

 PDI like proteins are characterized by presence of catalytic C-xx-C active site motif. 

PDI has a twisted U shape with two inactive catalytic sites between two thioredoxin 

domains that face each other. Members of PDI play a role in disulphide bond 

formation, folding and ERAD [66]. 

 Lectin like chaperones majorly recognize glycoproteins and facilitates protein folding 

and ERAD [66]. 

Table 1-6: Chaperones, co-chaperones and NEFs found in yeast cytosol and ER. Adapted from [64]. 

Factors ER Cytosol 

HSP70 KAR2 SSA1,SSAB, SSZ1 

HSP40 JEM1, SCJ1, SEC63 HLJ1, YDJ1, SIS1 

NEFs LHS1,SSE FES1, SNL1 

HSP90  HSP90, CLPB 

HSP110 LHS1 SSE1, SSE2 

Thioloxidoreductases PDI, EPS1, MPD1, MPD2  

Lectin like MNS1/HTM1,YOS9  

1.4.2 Unfolded protein response (UPR) 

The unfolded protein response (UPR) is an intracellular signaling pathway to counteract and 

relieve from accumulated misfolded proteins and maintain homeostasis in ER by increasing 

the transcription of genes expressing ER resident chaperones [63]. Three genes HAC1, IRE1 

and RLG1 were identified in S. cerevisiae which act as major UPR transcription factors. A 

single 22 bp element unfolded protein response (UPRE) element which is conserved among 

UPR targets is necessary for activation of ER resident proteins upon accumulation of 

misfolded proteins. HAC1 mRNA is constitutively expressed, but HAC1 protein is expressed 

in abundance only under the accumulation of misfolded proteins. A prerequisite for 

translation of HAC1p involves mRNA splicing. The IRE1 gene is required for inositol 

prototrophy and encodes for IRE1 protein with amino-terminal signal sequence and single 

transmembrane domain and serine/threonine kinase and ribonuclease activity at carboxy 

terminus. Kinase activity is needed for activation by trans-autophosphorylation and on 
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activation IRE1p cleaves the HAC1 mRNA at both splice junctions and released exons are 

joined by tRNA ligase encoded by RLG1. Once HAC1p is produced in abundance, it causes 

transcriptional upregulation of UPR targets genes (KAR2, PDI) to cope up with accumulated 

misfolded intermediates [63]. 

1.4.3 Endoplasmic reticulum associated degradation (ERAD) 

The mechanism of ERAD involves majorly aberrant proteins recognition (by chaperones), 

translocation to cytosol (SEC61), ubiquitinlyation (ubiquitin activation (E1), conjugation (E2) 

and ligation (E3 andE4) and degradation via proteasome (CDC48 and 19s subunit) [67] 

(Figure 1-9). This has been well defined in S. cerevisiae and homologues of proteins involved 

in ERAD were found in P. pastoris so we expect an identical role of degradation of misfolded 

proteins [68, 69].Two major pathways of ERAD are identified based on the defects in 

domains of misfolded proteins ERAD-C (cytosolic domain) and ERAD-L (lumen domain). 

Both pathways include different subsets of chaperones and different ubiquitin ligase 

complexes. The ERAD-L pathway includes chaperones KAR2, PDI, SEC63p, LHS1, 

calnexin, HTM1 and ubiquitin ligase HRD1 complex composed of Yos9 and Hrd3p. The 

ERAD-C pathway includes chaperones SSA, YDJ1, SSE, HSP104 and HSP90 and ubiquitin 

ligase complex DOA10. In both pathways the ligases are conjugated with ubiquitin conjugate 

enzymes and recruited to membrane by CUE1p and converge at CDC48 ATPase [67].  

After translation polypeptide gets associated with KAR2 along with its HSP40 cofactors 

JEM1 and SCJ1 are translocated to the ER where it is glycosylated at amino-terminus 

Asp/X/Ser/Thr with sequon Glucose3-Mannose9-N acetylglcuosamine2 (Glc3-Man9-GlcNAc2) 

and disulphide bonds are formed. The two outermost glucose moieties are removed by α-

glucosidases present in ER. Calnexin and calrecticulin interact with sequon Glc1-Man9-

GlcNAc2 and cause protein maturation. On release from the glycan, α-glucosidase removes 

the terminal glucose moiety. The mature forms are translocated to Golgi for further delivery 

to their final destination. Nevertheless, immature proteins are recognized by folding sensor 

UDP-glucose/glucosyl transferase (UGGT) which reglucosylates the glycan and initiates 

folding cycle by association with calnexin and calreticulin. The calnexin/calreticulin cycle 

serves as first quality control mechanism in ER. If the protein doesn’t get folded by repeated 

calnexin/calreticulin cycles then the protein is targeted by α-mannosidase (MNS1) and HTM1 

which removes two mannose residues from Man9-GlcNAc2. HTM1 is known to interact with 
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PDI reduced protein substrate. In case of lumenal misfolded domains the formed Man7-

GlcNAc2 is recruited by KAR2 to HRD ligases HRD1 composed of Yos9 and Hrd3. Yos9 

scans for α1,6 terminal linkages and interacts with Hrd3, which binds at misguided domains 

on the substrate. HRD1 forms a complex with substrate bound Hrd3 and together with 

ubiquitin conjugate enzyme E2 (UBC7) gets attached to the ER membrane and causes 

ubiquitinlyation of substrate. In case of cytosolic defects the misfolded domains are recruited 

to DOA10 together with UBC7 and CUE1 which ubiquitinylate the substrate. Both HRD1 and 

DOA10 ubiquitinlyated substrates are converged at CDC48. UFD2, CDC48, 19s subunit 

proteins RPT5 and RPN10 and proteins associated with 19s RP RAD23, DSK2 associate with 

ubiquitinlyated proteins and target them to the proteasomal core where the proteins are 

degraded into peptides [67, 70]. 

Figure 1-9: Endoplasmic reticulum associated protein degradation mechanism in yeast. Adapted with 

permission from authors of reference [70]. 
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Studies on UPR targets suggest intimate harmony between ERAD and UPR. On accumulation 

of misfolded proteins in ER, cells would exhibit fix/ clear mechanism i.e. enhancement of 

misfolded proteins in ER causes activation of UPR which results in activation and increased 

synthesis of ER resident chaperones and cytosolic chaperones which aid in folding and 

retrotranslocation of authentic conformation attained molecules to target sites and in case the 

chaperones fail to fold, proteins are retrotranslocated to cytosol and eliminated via ERAD 

[63]. 
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2. AIM AND OBJECTIVES 

Dengue is a globally spread arthropod borne infection caused by any of the four serotypes 

DENV-1,-2,-3 and -4 [3]. Currently there are no licensed vaccine or therapeutics available. 

Although, live attenuated vaccines have reached advanced clinical trials concerns over safety 

issues has drifted interest towards subunit vaccines. As a result envelope domain III (EDIII) 

has come into focus as potential subunit vaccine candidate. EDIII is endowed with host cell 

receptor recognition, serotype specificity and capacity to elicit neutralizing antibodies [1]. The 

present work is focused on the development of the dengue EDIII based vaccine candidate. 

In order to further annex the immunogenic potential of EDIII domain, it can be presented on 

surface of virus-like particle. The success of Hepatitis B surface antigen (HBsAg) VLPs as a 

carrier for presentation of malarial epitopes reaching advanced clinical phase [4] has impelled 

interest on application of HBsAg as carrier for display of foreign epitopes. In this study 

HBsAg is used as a modular display system to present DENV-2EDIII on its surface. Dengue 

being endemics of mostly developing or economically poor countries vaccine needs to be 

produced at affordable prices. Pichia pastoris is one such system which offers great 

advantages in vaccine production owing to its growth in relatively inexpensive media, high 

expression levels and proteins produced are free of toxins and considered to be safe for 

human use [7]. Often, viral protein production in yeast is not as efficient as in mammalian 

cells, resulting in the formation of insoluble aggregates. 

The major objective of the work presented here was aimed to explore the feasibility and 

potential of dengue EDIII on the surface of VLPs as a vaccine candidate using the eukaryotic 

expression system Pichia pastoris. The first part of the work was to generate P. pastoris 

based DENV-2 EDIII based chimeric VLPs using HBsAg as modular display system and 

immunogenic evaluation. The second part of the work was focused on possible bottlenecks 

during expression of the fusion protein in P. pastoris with insights into the unfolded protein 

response (UPR) and endoplasmic reticulum associated degradation (ERAD) using a 

proteomic approach. 

The specific aims of this study were as follows 
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 Heterologous co-expression of 0,1 and 4 copies of unfused HBsAg (S) and EDIII-

HBsAg (ES) denoted as ES1:S0, ES1:S1 and ES1:S4 in P. pastoris by methanol based-

induction. 

 Heterologous expression of 8 copies only unfused HBsAg denoted as ES0:S8 in P. 

pastoris as control. 

 Purification of ES1:S0, ES1:S1 and ES1:S4 from P. pastoris 

 Electron microscopic evaluation of purified ES1:S0, ES1:S1 and ES1:S4 

 Stability evaluation of ES1:S4 

 Immunological evaluation of ES1:S4 in mice. 

 Proteome analysis of cell samples from before and after induction with methanol of 

non producing strain and cells expressing ES1:S0, ES1:S4 and ES0:S8 using 2D gel 

electrophoresis combined with MALDI TOF 
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3. MATERIALS 

3.1 Chemicals, media components, kits and other consumables 

Chemicals used in the present work and their sources are listed in Table 3-1. Particle specific 

quantitative Hepanostika micro ELISA kit was obtained from Biomerieux, France. Pierce 

BCA (bicinchoninic acid) protein assay kit was obtained from Thermo Fisher Scientific, 

Germany. Unstained and pre-stained protein ladders were obtained from Thermo Fisher 

scientific, Germany. A butyl sepharose column for hydrophobic interaction chromatography 

was procured from Sigma-Aldrich GmbH, Germany. DEAE Sepharose (anion exchange 

columns) and Hi-prep
TM

 Sephacryl S-300 (26/60) and Sephacryl S-300 (16/60) (size 

exclusion columns) were obtained from GE Healthcare, Sweden. 3µM SUPELCOSIl
TM

 LC-

DB-18 column (3.3 cm x 4.6 mm) for reverse phase high performance liquid chromatography 

(RP-HPLC) was purchased from Sigma-Aldrich GmbH, Germany. Glass beads (0.45-0.6 mm) 

were obtained from Sigma-Aldrich, Germany. Immobiline dry strip gels (IPG) pH 3-10 NL, 

18 cm length and Immobilized pH gradient (IPG) buffer were procured from GE Healthcare, 

United Kingdom. Dialysis membrane with molecular weight cut off 6-8 kDa was purchased 

from Sigma-Aldrich, Germany. 

3.2 Strains 

Wild-type (wt) GS115 cells (Invitrogen, USA) and engineered GS115 cells harboring 

chimeric constructs EDIII-HBsAg1: HBsAg0 (ES1:S0), EDIII-HBsAg1: HBsAg1 (ES1:S1), 

EDIII-HBsAg1: HBsAg4 (ES1:S4) and EDIII-HBsAg0: HBsAg8 (ES0:S8) used in the present 

work were a kind gift from Dr. Navin Khanna, ICGEB, India The subscript denotes copy 

number of genes in the chimeric construct. The cloning details have been described in [3]. 

  



Materials 

33 

 

3.3 Antibodies and immunochemicals 

Anti-dengue envelope domain III (24A12) specific [3] and anti hepatitis B surface antigen (5S 

mAb) specific mouse monoclonals [71] were a kind gift from Dr. Navin Khanna, ICGEB 

India. Anti HDEL (2E7) and anti ubiquitin antibody (P4D1) mouse monoclonal antibodies 

were purchased from Santa Cruz Biotechnology, USA. Goat anti-mouse IgG specific 

peroxidase conjugate was obtained from Calbiochem, Germany. Immune module polystyrene 

strips for development of in house ELISA were procured from Thermo Fisher Scientific, 

Germany. Soluble TMB substrate for ELISA and insoluble TMB substrate for Western blot 

detection was obtained from Sigma-Aldrich GmbH, Germany. PVDF membrane for Western 

blotting was obtained from Bio-Rad GmbH, Germany. 

Table 3-1: List of reagents used in the present work 

Chemical Manufacturer 

Agarose (DNA grade) Biozym Scientific GmbH, Germany 

Acetic acid Carl Roth GmbH + Co.KG, Germany 

Acetonitrile Carl Roth GmbH + Co.KG, Germany 

Acrylamide and bisacrylamide stock 

solution [Rotiphorese Gel 30 (37:5:1)] 

Carl Roth GmbH + Co.KG, Germany 

Ammonium hydrogen carbonate Merck KgaA, Germany 

Ammonium persulfate Sigma-Aldrich GmbH, Germany 

Ammonium sulfate Carl Roth GmbH + Co.KG, Germany 

Bromophenol blue Sigma-Aldrich GmbH, Germany 

Bacto Agar Becton, Dickinson and Company, USA 

Bacto Peptone Becton, Dickinson and Company, USA 

D-Biotin Sigma-Aldrich GmbH, Germany 

Bovine serum albumin Bio-Rad, Germany 

D-Biotin Sigma-Aldrich GmbH, Germany 

CHAPS  

3-((3-cholamidopropyl)-dimethylammonio)-

1-propanesulphonate 

Biomol GmbH, Germany 

Coomassie brilliant blue G-250 Merck KGaA, Germany 

Calcium chloride dihydrate Merck KGaA, Germany 

Dithiothreitol (DTT) Sigma-Aldrich GmbH, Germany 

Dextrose Merck KGaA, Germany 

Ethanol Merck KGaA, Germany 

Ethylenedimainetetracetate disodium salt Carl Roth GmbH + Co.KG, Germany 

Formic acid J.T.Baker Chemical company, USA 

Formaldehyde Sigma-Aldrich GmbH, Germany 

Glycerol (86 %) Carl Roth GmbH + Co.KG, Germany 
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Glycine Carl Roth GmbH + Co.KG., Germany 

Histidine Sigma-Aldrich GmbH, Germany 

Iodoacetamide GE Healthcare, UK 

Luria Bertani (LB) medium Difco, Becton, Dickinson Company, USA 

2-Mercaptoethanol Sigma-Aldrich GmbH, Germany 

Methanol Carl Roth GmbH + Co.KG, Germany 

2-Propanol Carl Roth GmbH + Co.KG, Germany 

Polvinylpyrrolidone Sigma-Aldrich GmbH, Germany 

Dipotassium hydrogen phosphate Carl Roth GmbH + Co.KG, Germany 

Potassium dihydrogen phosphate Carl Roth GmbH + Co.KG, Germany 

Polyethylene glycol (PEG-6000) Sigma-Aldrich GmbH, Germany 

Potassium chloride Sigma-Aldrich GmbH, Germany 

Potassium thiocyanate Sigma-Aldrich GmbH, Germany 

Sodium bicarbonate Sigma-Aldrich GmbH, Germany 

Sodium carbonate Sigma-Aldrich GmbH, Germany 

Sodium chloride Sigma-Aldrich GmbH, Germany 

Sodium dihydrogen phosphate Sigma-Aldrich GmbH, Germany 

Disodium hydrogen phosphate Sigma-Aldrich GmbH, Germany 

Sodium dodecyl sulfate (SDS) Bio-Rad Laboratories GmbH, Germany 

Silicone M 100 Carl Roth GmbH + Co.KG, Germany 

Sulfuric acid Carl Roth GmbH + Co.KG, Germany 

Sodium hydroxide Sigma-Aldrich GmbH, Germany 

TEMED  

N,N,N’,N’ tetramethylethylenediamine  

Sigma-Aldrich GmbH, Germany 

Trifluoroacetic acid (TFA) Sigma-Aldrich GmbH, Germany 

Thiourea Sigma-Aldrich GmbH, Germany 

Tris base Carl Roth GmbH + Co.KG, Germany 

Tween 20 Sigma-Aldrich GmbH, Germany 

Trypsin Promega Corporation, USA 

Yeast extract Bio-Rad Laboratories GmbH, Germany 

Yeast nitrogen base without amino acids and 

ammonium sulfate 

Becton, Dickinson and Company, USA 

Urea Sigma-Aldrich GmbH, Germany 
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4. METHODS 

4.1 Shake flask cultivation 

A starter culture was set up by inoculating YPD (100 ml) with glycerol stock cultures (100 μl) 

and grown at 28°C, under constant shaking in an orbital shaker at 250 rpm for 18 h to an 

OD600 10. About 1 % of starter culture was used to inoculate 500 ml of buffered glycerol 

complex medium (BMGY) in a 2 L baffled shake flask. The culture was incubated at 28°C, 

under constant shaking in an orbital shaker at 250 rpm until an OD600 ~20 is reached. 

Subsequently, cells were pelleted by centrifugation (3347 × g), washed with sterile PBS, re-

centrifuged and re-suspended in buffered methanol complex medium (BMMY) to an OD600 

~100 and incubated at 28°C under shaking at 250 rpm. Recombinant protein production was 

induced through the addition of 1 % (v/v) methanol twice a day at 12 h intervals for a total 

period of 72 h. Finally, cells were harvested by centrifugation, washed with PBS, and the cells 

were stored at -80°C until use. 

4.2 Preparation of total cell extracts 

Samples analogous to OD600 ~100 (1 ml) were transferred to fresh 1.5 ml microcentrifuge 

tubes (Eppendorf, Germany) and pelleted by centrifugation at 16,000 x g for 10 min and 

washed with PBS pH 7.2. The washed pellet was mixed with 0.5 ml of lysis buffer (25 mM
 

phosphate buffer pH 8.0, 5 mM
 
EDTA, 8 % (v/v) glycerol and 500 mM

 
NaCl) and 0.6 g glass 

beads. The cells were disrupted using glass beads in thermomixer (Eppendorf, Germany) at 

1400 rpm and 4°C for 12 h. After lysis, lysate was transferred to fresh tubes and beads were 

washed with 0.5 ml of lysis buffer and pooled with early lysates. 
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4.3 Preparation of soluble and insoluble fractions 

100 µL of lysates were solubilized by adding 1 % (v/v) Tween 20 at final concentration and 

kept for 12 h at 4°C in a thermomixer at 1400 rpm. The solubilized lysates were centrifuged at 

16,000 x g and resultant supernatant and pellet fractions were separated. The pellet fraction 

was further solubilized with 100 µL buffer containing urea (25 mm
 
PB pH 8.0, 135 mm

 
NaCl 

and 8 M
 
urea) for 4 h in thermomixer at room temperature. 

4.4 Purification of ES1:S4 

ES1:S4 was purified by the approach employed for purification of HBsAg in [72] with some 

modifications. 100 g wet cell weight (WCW) from 1L culture broth OD600 ~100 was used for 

purification. The cells were suspended in 500 ml of lysis buffer (25 mM
 
phosphate buffer pH 

8.0, 5 mM
 
EDTA and1 % (v/v) Tween 20) and made into a uniform suspension and disrupted 

with microfluidizer (Microfludics/ USA) connected to the chiller unit at 12,000 PSI and 4°C 

by passing for 15 cycles. NaCl was added slowly to a final concentration of 0.5 M
 
to the 

lysate, followed by addition of PEG 6000 at a final concentration of 5 % (v/v) under constant 

stirring at 4°C. Both NaCl and PEG 6000 were added in three intervals within a period of 

thirty minutes. After addition of PEG 6000, lysate was stirred for 2 h and left overnight for 

precipitation. Next morning, PEG lysate was centrifuged at 3347 × g for 1 h and the 

supernatant was collected and equilibrated for 4 h at 4°C with Aerosil-380 (Evonik 

Corporation, Germany), pre-washed and pre-equilibrated with 25 mM
 
PB pH 7.2, 500 mM

 

NaCl, (0.13 g of dry Aerosil 380 per 1 g of wet biomass) for binding. The protein adsorbed 

Aerosil was washed thrice with 300 ml of 25 mM
 
PB pH 7.2 to remove unbound or weakly 

bound proteins. The desorption of the fusion protein was done by suspending the Aerosil 

pellet in 100 ml of desorption buffer (50 mM
 
Na2CO3/NaHCO3 pH 10.6, 1.2 M

 
urea) and 

incubated at 37°C under shaking at 100 rpm for 12 h followed by centrifugation at 16,000 × g 

for 1 h. The eluant was collected and filtered with 0.2 µM filter and dialyzed against 1L of 50 

mM Tris-HCl pH 8.5. The binding of dialyzed retentate to 30 ml of DEAE Sepharose Fast 

flow (GE healthcare, Sweden) pre equilibrated with 50 mm Tris HCl, pH 8.5 was carried out 

as a batch process for 3h at 4°C. The bound resin was then packed into a 50 ml Bio-Rad 

column, connected to a FPLC instrument and program based washing and elution were 

carried out. The resin was then washed with 250 ml of 50 mM
 
Tris-HCl, pH 8.5 and eluted 
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with 100 ml of 50 mM
 
Tris-HCl pH 8.5, 500 mM

 
NaCl. The peak fractions were collected 

using a fraction collector. The DEAE elutes were concentrated to 6 ml with 100 kDa cut off 

membrane and subjected to gel filtration with Sephacryl S-300 (26/60 Hi- prep
TM

 GE Health 

care, Sweden) pre-packed column with a column volume of 320 ml and void volume ~110 ml. 

About 6 ml of sample was loaded onto the column and the elution was carried out using PBS 

(10 mM KH2PO4, 2 mM Na2HPO4 pH 7.2, 2.7 mM KCl and 135mM NaCl) at a flow rate of 

1ml min
-1

. The peak fraction within the void volume were collected and analyzed by SDS 

PAGE and Western blotting. Positive peak fractions were pooled and treated with 1.5 M
 

KSCN at 4°C for 16-18 h. KSCN was removed by dialysis against PBS. Only unfused HBsAg 

(ES0:S8) was purified as described in [72] (Appendix II Figure 10-1). The purification of 

ES1:S1 was carried out by the same way as described above (Appendix II Figure 10-2). 

However, ES1:S0 was purified from membrane fraction using chaotropic agents. 

4.5 Purification of ES1:S0 

Owing to the lower solubility of ES1:S0 as confirmed from ELISA and Western blotting, 

purification was carried out following a membrane extraction protocol using chaotropic 

agents, as described by [71] with modifications. 50 g wet cell weight from 500 ml culture 

broth OD600 ~100 was dissolved in 300 ml of lysis buffer containing (25 mM PB pH 8.0, 5 

mM
 
EDTA, 5 % (v/v) glycerol and 500 mM

 
NaCl), made into a uniform suspension and lysed 

by passing through the microfluidizer (Microfludics/ USA) connected to the chiller unit at 

12,000 psi and 4°C for 15 cycles. Next, the lysate was centrifuged at 16,000 × g for 30 min 

and the supernatant was discarded. The pellet was washed twice with lysis buffer and 

dissolved in 100 ml of 25 mM PB pH 7.5, 5 mM EDTA, 150 mM NaCl, 4 M urea and 2 % 

(v/v) Tween 20 and solubilized at RT for 4 h. Later, the urea solubilzed pellet was centrifuged 

at 16,000 × g for 30 min and the supernatant was mixed with equal volume of 25 mM PB pH 

8.0, 5 mM
 
EDTA, 150 mM

 
NaCl, followed by the slow addition of PEG 6000 at a 

concentration of 5 % (v/v) under constant stirring at 4°C within 30 min. The suspension was 

stirred for 2 h and then left overnight for PEG precipitation. The precipitate was removed by 

centrifugation and the supernatant was collected and diafiltered using a 30 kDa MWCO 

membrane (Sartorius, Germany) against 25 mM PB pH 7.5, 5 mM
 
EDTA and 150 mM NaCl. 

5L of this buffer was used to diafilter 200 ml of PEG precipitated supernatant. The 

concentration of NaCl in the diafiltered retentate was increased to 2.5 M. The retentate was 
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bound to 25 ml pre-packed butyl sepharose column pre-equilibrated with 25 mM PB pH 7.5, 

2.5 M
 
NaCl interfaced to FPLC. The binding was performed by passing the retentate twice 

through the column connected to FPLC. After binding, the column was washed with 250 ml 

of 25 mM PB, pH 7.5 followed by washing with 150 ml of 25 mM sodium 

carbonate/bicarbonate buffer, pH 9.6 and elution with 75 ml of 25 mM sodium 

carbonate/bicarbonate buffer pH 9.6, 8 M urea. All binding, washing, and elution steps were 

essentially carried out using FPLC. Butyl Sepharose elute fractions were pooled and dialyzed 

against 250 ml of 25 mM sodium carbonate/bicarbonate buffer, pH 9.6 to remove urea and 

then dialyzed against 25 mM PB, pH 8.0. Dialysis was carried out at 4°C with three changes. 

The dialyzed protein was concentrated with 30 kDa membrane and subjected to gel filtration 

with Sephacryl S-300 (16/60 Hi- prep
TM

 GE Healthcare, Sweden) pre-packed column with a 

column volume of 120 ml and void volume of ~40 ml. About 2.5 ml of sample was loaded 

into the column and the elution was carried out using PBS, pH 8.0 at a flow rate of 1ml min
-1

. 

The peak fraction within the void volume were collected and analyzed by SDS-PAGE and 

Western blotting. Purified peak fractions containing protein were pooled and treated with1.5 

M KSCN at 4°C for 16 h. The KSCN was removed by dialysis against PBS, pH 8.0. 
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4.6 Analytical methods 

4.6.1 Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Polyacrylamide gels were casted and run in the presence of the SDS (SDS-PAGE). The 

formulation of stacking and separation gels mixture for 12 % SDS-PAGE is given in Table 4-

1. The 2X stringent loading dye was used for solubilzing the fractions to be analyzed. The 

composition of the stringent loading dye (Laemmli buffer) includes 125 mM Tris HCl pH 6.8, 

30 % (v/v) glycerol, 500 mM DTT, 7.24 M
 
β-mercaptoethanol, 8 % (w/v) SDS and 0.005 % 

bromophenol blue. Equal volumes of loading dye were added to the protein samples, kept at 

95°C for 15 min, centrifuged and the supernatant was loaded onto the gels. Gels were run at 

constant voltage of 100V and were stained with Coomasssie brilliant blue/Silver staining or 

subjected to Western blotting. 

Table 4-1: Composition of resolving (12 % acrylamide) and stacking (6 % acrylamide) gels. 

Components Resolving gel (ml) Stacking gel (ml) 

30 % Acrylamide 4 0.75 

Resolving buffer 1.5M Tris HCl pH 8.8 2.8 - 

Stacking buffer 1.5M Tris HCl pH 6.8 - 0.63 

1 % SDS 1 1 

Water 2.2 3.77 

25 % APS 0.02 0.01 

TEMED 0.02 0.01 

Total 10 5.5 
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4.6.2 Silver staining 

Gels were washed with Milli-Q water thrice for 5 min each and immersed in a fixative 

solution (30 % (v/v) ethanol, 10 % (v/v) acetic acid) for 30 min, followed by addition of 

sensitizer solution, (Farmer’s reducer: 15 mM potassium ferricyanide and 50 mM
 
sodium 

thiosulfate) and incubated for 3 min with gentle shaking. Later gels were washed thrice (5 min 

each) with water and stained with silver nitrate solution at a concentration of 1 mg ml
-1

 for 30 

min. Gels were then rinsed with 235 mM sodium carbonate solution for a short time and 

developed by adding 50 ml developer solution (235 mM sodium carbonate and 0.4 % (v/v) 

formaldehyde) to the gels. As soon as bands were visualized, developer solution was drained 

out and 5 % (v/v) acetic acid was added to arrest development and the gels gently shaken for 

10 min. Finally, gels were washed with water and scanned. All steps were essentially carried 

out in an orbital shaker at a speed of 50 rpm. 

4.6.3 Western blotting 

The EDIII-HBsAg was detected by Western blotting using anti-Hepatitis B surface antigen 

specific (5S mAb) and anti-dengue envelope domain III (24A12) specific mouse monoclonal 

antibodies while HBsAg was detected only with 5S mAb. Proteins separated on SDS-PAGE 

were electrotransferred using Bio-Rad Semi-dry Western blot apparatus onto polyvinylidene 

difluoride (PVDF) membrane. Prior to transfer PVDF membrane was soaked in methanol for 

a short time and then soaked in transfer buffer (25 mM Tris base, 200 mM glycine and 20 % 

(v/v) methanol along with thick filter pads for 5 min. The transfer was carried out at constant 

voltage of 15 V for 50 min at room temperature. After transfer, the membrane was removed 

and incubated in blocking solution (5 % (w/v) skimmed milk, 2 % (w/v) 

polyvinylpyrrolidone, 1 % (v/v) Tween 20 in PBS pH 7.2) for 2 h on a shaker at room 

temperature. Subsequently, the membrane was washed thrice with PBS-T (PBS containing 1 

% (v/v) Tween 20) and incubated with mouse monoclonal primary antibody (1 µg ml
-1

) for 1h 

on a shaker at room temperature. After incubation blots were washed thrice with PBS-T and 

incubated with secondary antibody (0.1µg ml
-1

 goat anti-mouse IgG H and L chain specific 

peroxidase conjugate) for 1 h in a shaker at room temperature. Thereafter blots were again 

washed thrice with PBS-T and developed with TMB substrate until the bands were clearly 
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visualized. All steps in immunoblotting were carried out on an orbital shaker. Each wash step 

was carried out for 5 minutes. 

4.6.4 Protein quantification 

Lysate and soluble fraction were prepared as described previously. The total protein in lysate 

and soluble fraction in all the chimeric constructs was measured by Pierce
TM

 BCA 

(bicinchoninic acid) protein assay kit with bovine serum albumin (BSA) as standard (BCA 

Standard curve, Appendix III Figure 11-3). The total protein was quantified identically as 

described in protocol provided with kit. 

(https://www.piercenet.com/instructions/2161296.pdf). 

4.6.5 Quantification by RP-HPLC 

The quantification by RP-HPLC was performed as mentioned in [61]. The ES and S antigen 

in the total lysate were quantified by RP-HPLC using 3 µM SUPELCOSIL TM LC-DB-18 

column (3.3 cm x 4.6 mm). For RP-HPLC, a 100 µL aliquot of lysate was suspended in an 

equal volume of solubilization reagent (8 % (w/v) SDS; 50 % (v/v) β- mercaptoethanol and 1 

M
 
DTT) boiled for 15 min and clarified by centrifugation and filtration. A 50 µL of clarified 

sample was injected into the column maintained at 70°C in HPLC column oven, at a flow rate 

of 1ml min
-1

 using degassed buffer A [0.15 % (v/v) trifluoroacetic acid (TFA) in Milli-Q 

water] and buffer B [0.12 % (v/v) TFA, 80 % (v/v) 2-propanol: 20 % (v/v) acetonitrile] to 

impel a gradient in which buffer B percentage changes with time as follows: 0-5 min, 45 %; 

5-20 min, 45-95 %; 20-25 min, 95 %; 25-30 min, 95-45 %; 30-35 min 45 %. The entire 

process was carried out with VWR Hitachi Chromaster equipped with autosampler, column 

oven, diode array detector and four isocratic pumps. All samples were analyzed at 214 nm. In-

house purified HBsAg ranging in a concentration range of 1-4 mg ml
-1

 was processed in 

parallel (HPLC calibration curve, Appendix III Figure 11-1). The concentration of standard 

HBsAg was measured using a BCA protein assay kit. 
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4.6.6 Hepanostika HBsAg ELISA 

Immunoassay was performed in accordance with manufacturer instructions 

(http://www.biomerieux.fr/upload/Hepanostika_HBsAg_Ultra_Poster_2005_ISBT_BKK.pdf)

.The Tween 20 solubilzed fractions were diluted appropriately in an assay diluent containing 

0.1 % (w/v) BSA in PBS (10 mM KH2PO4, 2 mM Na2HPO4 pH 7.2, 2.7 mM KCl and 

135mM NaCl). 25 µL of sera diluent provided in kit were added to the wells pre-coated with 

anti-HBsAg antibody, followed by the addition of 100 µL of diluted sample and incubated at 

37°C for 1h. 50 µL of anti-HBsAg conjugate were then added and further incubated at 37°C 

for 1h. Subsequent steps include five washes with wash buffer provided with the kit and the 

addition of 100 µL of substrate composed of urea peroxide (UP) and tetramethylbenzidine 

(TMB) in a ratio of 1:1 to the wells and incubated at RT in the dark for 30 min. The reaction 

was stopped by addition of 0.5 M H2SO4 and absorbance measured at 450 nm. In-house 

purified HBsAg quantified by BCA protein assay kit in the range of 1-100 ng ml
-1

 was used 

as standard (ELISA calibration curve, Appendix III Figure 11-2). Induction interval samples 

from GS115 wild-type strain and uninduced sample from chimeric strains were used as 

negative controls. 

4.7 Electron microscopy 

The purified recombinant proteins were visualized by electron microscopy. Electron 

microscopy examination was performed as described previously [61]. Purified proteins were 

diluted in PBS, pH 7.2 at a concentration of 50 µg ml
-1

, adsorbed for 2 min onto a glow-

discharged C-Formvar foil and negatively stained with 2 % (w/v) uranyl acetate. An energy 

filtered transmission electron microscope Libra 120 (Zeiss, Oberkochen, Germany) was used 

and zero-loss images were acquired with a 2048 x 2048 CCD camera (Troendle, Moorenweis, 

Germany) using an energy-width of 15eV and an objective aperture of 90 µm. 

4.8 Stability evaluation 

The stability of purified ES1S4 was evaluated by incubating the protein under various 

conditions of pH, temperature, with and without excipients for 2 weeks. The concentration of 

the protein was maintained at 0.2 mg mL
-1

 in all the conditions as evaluated by the BCA 
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protein assay kit. Two weeks later at 37°C and 25°C precipitation was visualized in the 

samples. The samples were centrifuged and the pellet was solubilized in 1/10
th

 volume of the 

supernatant in PBS, pH 7.2. Day zero and day fourteen supernatant and pellet samples were 

analyzed by Western blotting with anti hepatitis B surface antigen (5S mAb) and anti dengue 

envelope domain III (24A12 mAb) specific mouse monoclonals. 

4.9 Identification of KAR2 and PDI (UPR markers) 

5 µL of whole cell lysate from before and after 72 h of methanol induction from chimeric 

constructs and wild-type GS115 were applied to reducing SDS PAGE and electroblotted onto 

PVDF membrane at 15 V for 50 min. The UPR response in all the chimeric constructs and 

wild-type strains at different induction intervals was assessed by presence of UPR markers 

which contains HDEL ER resident sequence at carboxy terminus with anti-HDEL (2E7) 

mouse monoclonal antibody at a concentration of 0.2 µg ml
-1

 in conjunction with 0.1µg ml
-

1
goat anti-mouse IgG HRP conjugate using TMB substrate for detection. 

4.10 Detection of global change in endogenous ubiquitylation 

5 µL of whole cell lysate from before and after 72 h of methanol induction from chimeric 

constructs and wild-type GS115 were applied to reducing SDS PAGE and electroblotted onto 

PVDF membrane at 15 V for 50 min. Endogenous ubiquitylation in all the chimeric 

constructs and wild-type strains at different induction intervals were identified with anti 

ubiquitin (P4D1) mouse monoclonal antibody at a concentration of 0.2 µg ml
-1

in conjunction 

with 0.1 µg ml
-1

 goat anti-mouse IgG HRP conjugate using TMB substrate for detection. 

4.11 Two-dimensional gel electrophoresis 

A 2D gel electrophoresis of GS115 strain expressing ES1:S0, ES1:S4 and ES0:S8 and non 

producing strain GS115 were carried out with the aim to identify a regulation pattern of 

chaperones involved in stress response, folding and degradation during expression of these 

proteins. Samples from supernatant fraction of centrifuged lysate before and after 72 h of 

methanol induction from wild-type GS115, recombinant GS115 producing ES1: S0, ES1: S4 

and ES0:S8 were analyzed by two-dimensional gel electrophoresis. All samples were run in 
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triplicates. All steps involved in two-dimensional gel electrophoresis were carried out as 

described previously [69]. 

4.11.1 Sample preparation 

Cell pellets corresponding to OD600 ~100 (1 ml) stored in -80°C from shake flask cultivation 

of all chimeric constructs (ES1:S0, ES1:ES4, ES0:S8 and wild-type GS115) were thawed and 

washed by suspending the pellet in 1ml of PBS pH, 7.2 and centrifuged at 16,000 x g for 10 

min. The supernatant was discarded and the pellet was dissolved in 500 µL of lysis buffer (25 

mM PB pH 8.0, 5 mM EDTA, 8 % (v/v) glycerol and 500 mM NaCl). To the above 

suspension 0.6 g of glass beads were added and cells were disrupted in thermomixer 

overnight at 4°C. The lysate was transferred to a fresh vial and glass beads were washed with 

0.5 ml of lysis buffer, pooled with initial lysate. The lysate was centrifuged at 16,000 x g for 

15 min and supernatant and pellet fraction were separated. The supernatant from all the 

constructs was analyzed by two-dimensional gel electrophoresis. 

4.11.2 Precipitations with chloroform/methanol 

The protein concentration in the supernatant from the lysate was quantified by BCA assay. 

Approximately 300 µg of protein was precipitated with chloroform/methanol to get rid of 

salts and nucleic acids. All samples were analyzed in triplicates and for each sample one 

water control was used. An appropriate volume of sample corresponding to 300 µg (or 100 

µL waters as a control) was taken in 2 ml microcentrifuge tube and made up to 100 µL with 

Milli-Q water. 800 µL methanol was added and vortexed for 10 s. Then 200 µL of chloroform 

was added to the above mix and vortexed for 10 s. Followed by the addition of 600 µL of 

Milli-Q water, vortexed for 10 s and centrifuging at 16,000 x g for 7 min at 4°C. After 

centrifugation supernatant from the lysate containing tubes was discarded. The pellet was 

washed with supernatant from water control tubes by gentle shaking at 300 rpm for 1 min. 

without disturbing the pellet, supernatant was completely drained out and dried under 

vacufuge (Eppendorf, Germany) for 10 min to remove methanol and chloroform. 
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4.11.3 Solubilization of pellet 

The dried pellet from 300 µg of protein was made into solution by dissolving in 500 µL 

solubilzation buffer containing (9 M
 
urea; 2 M

 
thiourea, 4 % (w/v) CHAPS; 0.2 % (w/v) SDS; 

0.002 % bromophenol blue and 17 mM Tris pH 8.5). To the above solution, 7.5 µL of IPG 

buffer and 7.5 µL of 1 M
 
dithiothreitol were added and incubated for 4 h at 25°C and 100 rpm 

in thermomixer to facilitate solubilzation. Amidst 1h intervals, samples were sonicated in a 

sonicator bath (Sigma-Aldrich, Germany) for 15 min for better solubilzation. The solubilized 

fractions were stored at -80°C for later use. 

4.11.4 First dimension isoelectric focusing (IEF) 

Prior to isoelectric focusing, the Ettan IPGphor strip holder (GE Healthcare, UK) was cleaned 

with 10 % SDS using a toothbrush, rinsed well with Milli-Q water and air dried. Samples 

were removed from -80°C and thawed in thermomixer at 25°C with constant stirring for 2h at 

1000 rpm. DTT was further added to the vials at a final concentration of 30 mM during last 

10 min of stirring. Later, samples were centrifuged at 16,000 x g and the supernatant was 

transferred to a fresh tube. Two IEF sample application pieces (GE Healthcare UK) were 

placed in lateral wells at both ends of immobilized pH gradient (IPG) strip holder and 20 µL 

of rehydration buffer (9 M
 
urea; 2 M

 
thiourea, 4 % (w/v) CHAPS, 17 mM

 
Tris pH 8.5), (GE 

Healthcare, UK) were added. 360 µL of sample were added slowly, avoiding bubbles in the 

center of the strip holder two electrodes. Immobilized pH gradient (IPG) strips pH 3-10 NL 

(GE Healthcare, UK) were taken out from -20°C ten minutes prior to use and strip number 

and corresponding sample to be loaded was noted. The protective cover of the IPG strips was 

removed using forceps by holding at positive end (+) and IPG strip was slided slowly over the 

sample holder with gel side facing down in bubble free manner and making sure that IPG gels 

were in contact with the strip holder electrodes. About 3 ml of silicone oil was added on top 

of the strip, ceramic holder was closed with lid and placed in IPGphor in an orientation where 

+ end of strip faces + end of machine. The IEF program (Table 4-2) was then started. 
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 Table 4-2: Steps entailed in isoelectric focusing 

Procedure Program 

steps 

Voltage 

(V) 

Step 

duration 

(h) 

Gradient type Theoretical 

voltage hours  

 (Vhr) 

Rehydration  0 35 Step-n-hold 0 

 

 

 

Isoelectric 

focussing 

1 50 4 Step-n-hold 200 

2 100 4 Gradient 400 

3 300 3 Gradient 900 

4 1000 4 Gradient 2600 

5 3500 3 Gradient 6750 

6 5000 3 Gradient 12750 

7 5000 3 Step-n-hold 15000 

8 8000 3 Gradient 19500 

End 9 8000 10 Step-n-hold 80000 

Temperature: 20°C 

Current limit for each strip: 30 µA (3-10 NL strip) 

4.11.5 Second dimension SDS –PAGE 

Subsequent to IEF, silicone oil in strip holder was drained completely using a pipette and IPG 

strips were placed with gel side facing upwards individually in channels of Plexiglas tray. The 

IPG strips were equilibrated by gentle agitation with 4 ml of SDS equilibration buffer (50 mM
 

Tris-HCl pH 8.8; 6 M
 
urea; 30 % (v/v) glycerol and 2 % (w/v) SDS) containing 1 % (w/v) 

DTT and then with 4 ml of equilibration buffer comprising 5 % (w/v) iodoacetamide for 15 

min. Thereafter, the strips were incubated in SDS running buffer before transfer to 

polyacrylamide gels. 

20 L of SDS running buffer (24 mM
 
Tris base, 200 mM

 
glycine, pH 8.3 and 0.1 % (w/v) SDS) 

was prepared and transferred to electrophoresis tank about 2 h prior to strip transfer to 

polyacrylamide gels. The pre-casted SDS-PAGE slab gel cassettes stored at 4°C were taken 

out and washed with Milli-Q water and placed in multi channel SDS-PAGE gel holder. The 

SDS-PAGE cassettes were filled with SDS running buffer to facilitate easy strip transfer. IPG 

strips were transferred to the gel cassettes with plastic side of strip against the glass plate with 

the help of a clean forceps and 5 ml of agarose sealing solution (SDS equilibration buffer; 1 

% (w/v) agarose and 0.002 % ( v/v) bromophenol blue) was overlaid over the strip in bubble 

free manner and left for 10 min for solidification. After solidificaiton cassettes were 

assembled in electrophoresis tank and gels were run at 40 V for 2 h and then increased to 100 

V for an overnight run. 
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4.11.6 Colloidal Coomassie staining 

After the run, gels were removed from the plates and rinsed well with Milli-Q water. Soon 

after gels were fixed for 2 h with fixative solution and stained with Colloidal Coomassie stain 

overnight. The gels were destained with water till spots were clearly visualized and 

background was clear. The composition of fixative solution is 10 % (v/v) acetic acid; 30 % 

(v/v) ethanol) and of Colloidal Coomassie stain includes 10 % (w/v) ammonium sulfate; 8.5 

% (v/v) orthophosphoric acid; 0.12 % (w/v) Coomassie brilliant blue G-250 and 20 % (v/v) 

methanol. 

4.11.7 Scanning, image analysis and data surveillance 

Destained gels were scanned with (Epson perfection V 750 pro, EPSON, Germany) at 300 dpi 

resolution in 16 bit grayscale format. The images were analyzed, matched and quantified by 

Proteomeweaver 3.0 software and data was exported to Microsoft excel. The data analysis 

was performed as described previously in [73]. The spots were normalized by dividing each 

spot intensity with total spots intensity and converted to percent. The spot intensity 

corresponding to each protein from wild type strain and producing strain after 72 h of 

methanol induction was divided with intensity before methanol induction. Then log2 ratio of 

induced and uninduced samples of wild type and producing strain were carried out. To, see 

the difference in regulation pattern of proteins in producing strain in comparison with non-

producing strain, log2 ratios from producing strain was substraced with value from wild-type 

strain. Log2 fold change above 0.6 was considered significant [73]. 
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4.11.8 Identification of spots by MALDI TOF 

The spot corresponds to proteins with difference in regulation when compared with wild-type 

were excised from the gels, washed thrice with Milli-Q water and additional two wash steps 

alternatively with Milli-Q water and acetonitrile by keeping in thermomixer for 5 mins at 300 

rpm. Followed by an additional wash step with water and drying the samples at 30°C. The 

spots were processed as follows. Firstly proteins were reduced by adding 50 µL of 100 mM
 

ammonium bicarbonate containing 20 mM
 

DTT
 

at 56°C for 30 min and then 

carbamidomethylated with 50 µL of 100 mM
 
ammonium bicarbonate containing 55 mM

 

iodoacetamide in the dark. Proteins were dehydrated with 200 µL acetonitrile. Later, 200 µL 

of 100 mM
 
ammonium bicarbonate was added to the spots and incubated for 15 min at RT. 

The incubation solution was removed, proteins were dehydrated with 200 µL acetonitrile and 

dried under vacufuge at 30°C for 10 min. Spots containing protein were then digested by 

adding 30 µL trypsin at the concentration of 20 µg ml
-1 

in 50 mM ammonium bicarbonate for 

each spot and incubating at 37°C for 14h. The trypsin digested peptides were then eluted with 

desalting buffer (10 mM ammonium phosphate, monobasic in 0.1 % TFA) and loaded onto 

the PAC (Prespotted Anchor Chip, Bruker Daltonics GmbH, Germany) target and analyzed 

using Bruker ultra flex time of flight mass spectrometer MALDI TOF. 

Protein identification was performed identically as described in [69]. Briefly, peptide mass 

fingerprints obtained by the MALDI-TOF MS were processed using FlexAnalysis 2.0 (Bruker 

Daltonics GmbH, Germany) and used to search the NCBInr database by using Mascot 2-.10 

software (http://www.matrixscience.com). The parameters used for searching were as follows: 

taxonomy: other Fungi, tryptic digestion, modifications were allowed for 

carbamidomethylation of cysteine (fixed modification) and methionine oxidation. All proteins 

with MASCOT score greater than 76 are considered as significant with P value < 0.05. 

 

http://www.matrixscience.com/
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5. RESULTS  

5.1 HBsAg as carrier 

The ability of HBsAg to self assemble into virus-like particles (VLPs) and to retain this 

property even on fusion with heterologous domain and exposing them on surface is well 

documented hence has been used as a tool for the display of epitopes on its surface [4, 36]. 

Bacteria, although prominently used expression system for recombinant proteins, have not 

been preferred for the production of HBsAg due to the absence of the post translational 

modifications as found in eukaryotes [4]. Expression systems such as mammalian cells and 

insect cell lines can ensure proper folding of proteins, however are very expensive and thus 

not economically feasible. Methylotropic yeast P. pastoris which enables cost effective and 

large scale production of heterologous proteins has been well documented in production of 

HBsAg [61]. 

The major objective of the work presented here has been to evaluate feasibility and potential 

of DENV-2EDIII exposed on the surface of the HBsAg carrier as a vaccine candidate. In this 

work EDIII was fused with the amino terminus of HBsAg and co-expressed along with 1 and 

4 copies of unfused HBsAg in GS115 P. pastoris. Recombinant proteins were purified by 

conventional chromatographic techniques and evaluated for VLP formation by transmission 

electron microscopy (TEM). 
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5.2 Co-expression of DENV-2 EDIII-HBsAg (ES) with 0, 1, 4 copies of 

HBsAg (S) antigens and only 8 copies of HBsAg (S) 

Positive co-transformants for ES (DENV-2 EDIII-HBsAg) and S (HBsAg) genes were 

analyzed for co-expression upon methanol induction. The induced cells were lysed with glass 

beads and total lysate was treated with 1 % (v/v) Tween 20 and fractionated into supernatant 

and pellet fractions by centrifuging at 16,000 x g for 10 mins. The presence of the 37 kDa ES 

and 24 kDa S antigen in soluble and pellet fractions were detected and confirmed by Western 

blotting with an in house anti HBsAg (5S) specific mouse monoclonal [71] in ES1:S1, ES1:S4. 

Only 24 kDa band was seen in ES0:S8 and only 37 kDa band was visualized in ES1:S0 (Figure 

5-1 A, B). The presence of the 37 kDa ES was further assured by an in house anti dengue 

EDIII (24A12 ) specific mouse monoclonal [3] in ES1:S0, ES1:S1 ES1:S4 (Figure 5-1 C, D). 

RP-HPLC was performed to quantify the ES and S antigens in lysate of positive 

transformants. The RP-HPLC data show a linear fold increase in HBsAg protein as in 

accordance with multimerization of the HBsAg gene (Table 5-1). RP-HPLC profile shows 

peaks with retention time of 14.8 for HBsAg and 14.4 for ES antigen (Figure 5-1 E). In house 

purified HBsAg standard was processed in parallel at the concentration ranging from 0-4 mg 

ml
-1

. HBsAg peak was seen in ES1:S1, ES1:S4 and ES0:S8 and not in ES1:S0, whereas ES 

antigen peak was seen in ES1:S0, ES1:S1 and ES1:S4 and not in ES0:S8. Hepanostika HBsAg 

ELISA of the soluble fraction in positive transformants also confirmed HBsAg and ES 

antigen (Table 4-1). RP-HPLC and ELISA results suggest ES1:S4 to be the best clone among 

all the chimeric constructs based on their yield and solubility. 
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Figure 5-1: Co-expression of fusion protein DENV-2 EDIII-HBsAg with 0, 1 and 4 copies of unfused 

HBsAg (ES1:S0, ES1:S1,ES1:S4) and only 8 copies of unfused HBsAg (ES0:S8). The chimeric proteins 

are denoted in the figure as ES0:S8 (8C), ES1:S4 (4C), ES1:S1 (1C) and ES1:S0 (0C). Subscript denotes 

the copy number. Induced cells equivalent to 100 OD (1 ml) from all the chimeric constructs were 

lysed with glass beads and treated with 1 % (v/v) Tween 20 and fractionated into supernatant and 

pellet The pellet was solubilized in equal volume of urea buffer. Equal volume of the supernatant and 

pellet fractions from all the chimeric constructs were loaded. 10 µL of samples corresponding to 

supernatant or pellet fractions from different chimeric constructs were mixed with 10 µL of 2X 

Laemmli buffer and boiled for 15 mins and 10 µL were applied in the gel and electroblotted on PVDF 

membrane (A) Western blot of pellet fraction revealed by anti hepatitis B surface antigen specific 

mouse monoclonal antibody. (B) Western blot of supernatant revealed by anti hepatitis B surface 

antigen specific mouse monoclonal antibody. (C) Western blot of pellet fraction revealed by anti 

dengue EDIII specific mouse monoclonal antibody. (D) Western blot of supernatant revealed by anti 

dengue EDIII specific mouse monoclonal antibody. Single and double asterisks represent HBsAg 

monomer and dimer respectively. Single filled circle represents fusion protein (ES). (E) RP HPLC 

Pellet                           Supernatant                           Pellet                      Supernatant  

E 
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profile of ES0:S8 (8C), ES1:S4 (4C), ES1:S1 (1C) and ES1:S0 (0C) induced lysate. Retention time of ES 

antigen is 14.4 min for and S antigen is 14.8 min. 

Table 5-1: Co-expression of fusion protein EDIII-HBsAg (ES) with 0, 1 and 4 copies of unfused 

HBsAg (S) and expression of only 8 copies of unfused HBsAg (S). The chimeric constructs harboring 

the S and ES antigens were grown in BMGY media for 18 h and then induced in BMMY media with 1 

% (v/v) methanol for every 12h  

+ denotes detection of virus-like particles by electron microscopy (EM); ND indicates not determined;  

a indicates quantification of total lysate by RP-HPLC; b
 refers to the quantification of the soluble 

fraction by Hepanostika HBsAg micro ELISA. 

5.3 Purification of DENV-2 EDIII-HBsAg1:HBsAg4 (ES1:S4) 

The protein being hydrophobic mostly gets associated as insoluble fraction. To solubilize the 

protein, Tween 20 was used at a concentration of 1 % (v/v). The protein was purified from the 

soluble fraction under native conditions. The conventional chromatography techniques 

applied for purification includes adsorption and desorption using Aerosil 380, followed by 

anion exchange chromatography with DEAE sepharose in conjunction with size exclusion 

chromatography (Sephacryl S-300 26/60). The size exclusion peak fractions within the void 

volume were analyzed by silver stained SDS PAGE. Silver stained gels revealed presence of 

ES and S antigens within the void volume of size exclusion peak fractions, which were further 

confirmed by Western blotting with mouse monoclonal anti hepatitis B surface antigen 

specific (5S) mouse monoclonal antibody (Figure 5-2). The ES1:S4 positive fractions after 

size exclusion chromatography were pooled and treated with KSCN. The mixture was 

dialyzed with PBS, pH 7.2 to remove KSCN. The protein recovery during subsequent steps of 

purification quantified by Hepanostika HBsAg ELISA is shown in (Table 5-2). From about 

100 g of biomass (wet cell weight) 4 mg of purified protein was recovered. As can be seen in 

ES:S 

 

VLP 

method 

 

Total S antigen 

(mg L
-1

)
a
 

Total ES antigen 

(mg L
-1

)
a
 

S antigen in 

soluble fraction 

(mg L
-1

)
b
 

1:0 +(EM) - 750 1 

1:1 +(EM) 330 1000 15 

1:4 +(EM) 1522 810 165 

0:8 ND [72] 3063 - 815 
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gel picture there are some other bands at higher molecular weight along with desired one, 

these are the higher order structures of the proteins as confirmed by Western blotting with 5S 

mAb. 

Table 5-2: ES1:S4 recovery during subsequent purification steps quantified by Hepanostika HBsAg 

microELISA from the 100 g biomass wet cell weight. 

a refers to quantification by Hepanostika HBsAg microELISA 

  

Step Total S antigen 

Fraction 

(mg)
a
 

Purification 

recovery ( %)
a
 

PEG precipitated supernatant 40 100 

Aerosil flowthrough 5.6 14.1 

Aerosil wash 0.1 0.3 

Aerosil eluate 8 20. 

DEAE eluate 5.3 13.3 

Size exclusion eluate 4.6 11.6 

After KSCN treatment 4.0 10.00 
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Figure 5-2: Size exclusion chromatography (Sephacryl S-300 26/60) of ES1:S4. (A) Size exclusion 

chromatogram resulted from passing pooled and concentrated ion exchange fractions of ES1:S4 onto 

sephacryl S-300 column. Protein elution was measured at 280 nm. (B) Size exclusion peak fractions 

within void volume (58-105 ml) analyzed by silver staining. (C) Size exclusion peak fractions within 

void volume (58-105 ml) analyzed by Western blotting with 5S mAb. 10 µL of peak fractions 

containing protein within void volume were mixed with 10 µL of 2X Laemmli buffer and boiled for 

15 mins and 10 µL were applied corresponding to gels for Silver staining and Western blotting. Single 

and double asterisks represent HBsAg monomer and dimer respectively. Single and double filled 

circles denotes fusion protein (ES) monomer and dimer respectively. Bar denotes void volume 
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5.3.1 Stability evaluation of ES1:S4  

The purified ES1:S4 at a concentration of 0.2 mg ml
-1

 was tested for stability for a period of 

two weeks under different conditions (Table 5-3). After two weeks precipitation was observed 

with protein aliquots in 25mM PB pH 7.2, 135 mM NaCl (PBS) without any additive kept at 

37°C and 25°C, protein aliquots in 25 mM PB pH 7.2, 135 mM NaCl with DTT, 20 % (w/v) 

glycerol and protein aliquot in 25 mM MES pH 5.5, 135 mM NaCl at 37°C. The protein 

aliquots in all conditions were centrifuged at 16,000 x g for 30 mins fractionated into 

supernatant and pellet. The pellet was dissolved in 1/10
th

 volume of 25 mM PB pH 7.2, 135 

mM NaCl, 8 M urea corresponding to the supernatant. The stability of ES and S antigen in 

day 0 and day 14 supernatant and pellet fractions was evaluated by Western blotting with a 

mixture of anti hepatitis B surface antigen (5S) specific and anti dengue EDIII specific 

(24A12) mouse monoclonals at a concentration of 1 µg ml
-1

 (Figure 5-3). Western blotting 

results revealed ES and S antigen were highly stable in PBS pH 7.2 at 4°C, PBS pH 7.2 with 5 

mM EDTA, 2 mM PMSF and in 25mM HEPES pH 7.2 at 37°C. Nevertheless, a small 

fraction of the ES antigen under the above conditions formed insoluble particulates. Purified 

recombinant protein containing ES and S antigen in PBS pH 7.2 at 25°C, PBS pH 7.2 with 20 

% (w/v) sucrose, 0.1 mM pepstatin and in 25mM Tris HCl pH -8.5, 135 mM NaCl at 37°C 

were moderately stable with a significant fraction of ES antigen forming insoluble particulates 

and S antigen was a stable The S antigen fraction of the ES1:S4 in PBS pH 7.2 with 20 % 

(w/v) glycerol and 25 mM MES pH 5.5, 135 mM NaCl at 37°C was stable whereas ES 

antigen fraction formed insoluble aggregates. S antigen fraction of the chimeric protein in 

PBS, pH 7.2 with DTT at 37°C seems to be degraded completely and ES fraction was 

unstable with respect to the formation of degraded products and adducts of these degraded 

products as confirmed by Western blotting. 
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Figure 5-3: Stability evaluation of purified ES1:S4 by Western blotting (A) Western blot of day zero 

purified protein with and without excipients revealed by a mixture of 5S mAb and 24A12. After two 

weeks 250 µL of protein samples in different conditions described in table 4-3 were centrifuged and 

fractionated into supernatant and pellet fraction. Pellet fraction was dissolved in 25 µL of PBS with 

8M urea. (B) Western blot of day 14 supernatant fractions revealed by 5S mAb and 24A12 mAb. (C) 

Western blot of day 14 pellet fractions revealed by 5S mAb and 24A12 mAb. 10 µL of purified 

protein incubated under different conditions were mixed with 10 µL of 2X Laemmli buffer and boiled 

for 15 mins and 10 µL were applied in the gel and electroblotted on PVDF membrane Single asterisk 

represents HBsAg (S) monomer and filled circle represents fusion protein (ES) respectively. 
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Table 5-3: Stability evaluation of ES1:S4 at a concentration of 0.2 mg ml-1 for 2 weeks. The Western 

blotting in Figure 5-3 was used to estimate the percentage of stability of purified ES1:S4 in respective 

lanes under various conditions of pH and temperature with and without excipents. The calculations 

were made by the use of ImageJ software densitometric scan of the blot (http://www.lukemiller.org/ 

ImageJ_gel_analysis.pdf).  

-Indicates unstable (<20 %); + mildly stable (20-35 %); ++ moderately stable (35-70 %); +++ highly 

stable (70-90 %) in terms of solubility determined by Western blotting. Concentration of phosphate, 

HEPES, MES and Tris buffers used in this study was 25mM. 

5.3.2 Immunological evaluation of ES1:S4 

Purified protein was sent to our collaborator Dr. Navin Khanna, ICGEB, New Delhi and India 

for immunological characterization in 4-6 weeks old Balb/c mouse.The immunological 

evaluation was performed by Rajendra Raut, ICGEB, New Delhi, India The immunological 

acitivity was essentially carried out as described in [35]. Briefly, the purified recombinant 

proteins (ES1:S4) was incubated with allohydrogel (500 µg of alum was used for 20 µg of ES 

antigen fraction in ES1:S4 as quantified densitometrically by ImageJ) for 36 h at 4°C under 

filp-flop condition. The suspension was centrifuged at 5000 rpm for 5 mins and protein bound 

alum was resuspended in sterile PBS in such a way that 100 µL of suspension contained 20 

µg of protein captured on 500 µg of alum. In-house EDIII-2 protein was also similarly coated 

on alum. Four to six weeks odl Balb/c mice were immunized with intra-peritoneal injections 

on days 0, 30 and 90 with 100 µL of protein-alum suspension. An additional group of Balb/c 

Temperature Buffer pH Excipients Concentration Stability 
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was inoculated with 100 µL PBS-alum mix as negative control. Immunized mice were bled 1 

week after the booster dose by retro-orbital puncture. The ability of antisera against ES1:S4 to 

reduce virus infectivity was evaluated by using plaque reduction neutralization test as 

reported [35]. Antibodies specific to ES1:S4 were found to recognize DENV-2 virus and 

reduce its infectivity, however neutralizing titers were low. 

5.4 Purification of DENV-2 EDIII-HBsAg (ES1:S0) 

Prelude experiment on the solubility of ES antigen by Hepanostika HBsAg ELISA has 

revealed antigen to be highly insoluble and gets associated with membrane (Table 5-1). Thus 

the pellet fraction from the lysate was solubilized with detergent and urea, followed by 

polyethylene glycol (PEG 6000) precipitation, diafiltration with 30 kDa cut off membrane and 

hydrophobic interaction chromatography with butyl sepharose. The peak fractions of butyl 

sepharose elutes were pooled, dialyzed and passed finally onto size exclusion sephacryl S-300 

(16/60) column. The size exclusion peak fractions within the void volume were analyzed by 

silver stained SDS PAGE. Silver stained gels reveals the presence of ES antigen within size 

exclusion peak fractions, which was further confirmed by Western blotting with 5S mAb 

(Figure 5-4). The ES1:S0 positive fractions after size exclusion chromatography were pooled 

and treated with KSCN.The mixture was dialyzed with PBS to remove KSCN. From 50 g 

induced biomass wet cell weight only 1 mg of purified protein was recovered. 
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Figure 5-4: Size exclusion chromatography (Sephacryl S-300 16/60) of ES1:S0. (A) Size exclusion 

chromatogram resulted from passing pooled and concentrated ion exchange fractions of ES1:S0 onto 

sephacryl S-300 column. Protein elution was measured at 280 nm. (B) Size exclusion peak fractions 

within void volume (37-40 ml) analyzed by silver staining. (C) Size exclusion peak fractions within 

the void volume (37-40 ml) analyzed by Western blotting developed with 5SmAb. 10 µL of peak 

fractions containing protein within void volume were mixed with 10 µL of 2X Laemmli buffer and 

boiled for 15 mins and 10 µL were applied corresponding to gels for Silver staining and Western 

blotting. Filled circle represents fusion protein (ES). Bar represents void volume. 

5.5 Electron-microscopic evaluation of purified proteins for formation of 

VLPs 

Purified proteins, ES1:S4, ES1:S1 and ES1:S0, were evaluated for the formation of VLPs by 

electron microscopy. Purified proteins were coated on grids and negatively stained, using 

uranyl acetate. ES1:S1 and ES1:S4 containing increasing proportions of HBsAg were able to 

assemble into VLPs whereas only ES1:S0 containing only ES antigen was not able to assemble 

into VLPs and represented only aggregates (Figure 5-5). The presence of aggregates in ES1:S0 

were characterized by size exclusion chromatography (Figure 5-4). 
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Figure 5-5: Electron microscopy visualization of purified proteins after size exclusion 

chromatography, KSCN treatment and dialysis. (A) Purified ES1:S4. (B) Purified ES1:S1. (C) Purified 

ES1:S0. The bar corresponds to 200 nm. 

5.6 Conclusions 

 Expression of ES1:S0, ES1:S1:ES1:S4 and ES0:S8 under alcohol oxidase promoter was 

achieved. 

 Both ES and S antigen were highly insoluble with a significant fraction retained in 

insoluble fraction 

 Co-expression of unfused S antigen in higher copy number assisted in enhancing 

solubility of ES antigen. 

 A significant fraction of ES antigen was degraded during expression. This was 

inferred from the presence of low molecular weight products. The chances of low 

molecular weight products being non specific interactions as a result of anti dengue 

EDIII specific mouse monoclonal antibody are eliminated by using constructs 

expressing only 8 copies S antigen as a negative control where no such bands are 

visualized. Time course analysis of ES1:S4 induction intervals by Western blotting 

revealed a significant fraction of ES antigen is degraded. (Appendix I Figure 9-2) 

 ES1:S4 was best among chimeric constructs in terms of solubility and yield so was 

purified under native conditions to an apparent homogeneity. 

 ES1:S4 was able to form VLPs .  
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 ES1:S4 was able to elicit virus neutralizing antibodies against DENV-2 however, titer 

was not very high. ES1:S4 was sent to ICGEB, India for immunological evaluation. 

To, obviate the loss of protein activity during transport, ES1:S4 purified under identical 

conditions in ICGEB was processed in parallel which revealed an identical result.  

 ES1:S1 purified under the same conditions employed for ES1:S4 was also able to form 

VLPs.  

 ES1:S0 being relatively insoluble was purified to an apparent homogeneity from the 

insoluble fraction under denaturing conditions followed by removal of chaotropic 

agents by dialysis. 

 ES1:S0 was not able to assemble into VLPs and represented only aggregate forms. This 

would indicate that fusion of EDIII domain to the S antigen hindered the formation of 

VLPs. However, the ability to form VLPs was augmented by co expression of S 

antigen at higher copy numbers [3] (Figure 5-5).  

  



Results 

62 

 

5.7 Induction of unfolded protein response (UPR) in wild-type (wt) GS115 

and GS115 recombinant strains expressing ES1:S0, ES1:ES4, ES0:ES8 

The solubility of ES antigen was quite lower compared to the S antigen as evidenced by 

Western blotting So, we presumed that ES antigen might not be able to attain native 

conformation rendering them insoluble. The accumulation of improperly folded proteins 

provokes unfolded protein response (UPR) [74]. ER resident chaperones KAR2 and PDI 

which are considered to be most prominent mediators of UPR contains an ER resident signal 

sequence HDEL at carboxy-terminus [75]. The UPR induction in the wild-type and 

recombinant strains expressing ES1:S0, ES1:S4, ES0:ES8 were evaluated by mouse monoclonal 

anti HDEL antibody. Immunoblotting data revealed significant down regulation of KAR2 and 

PDI in wild-type GS115, upregulation in strains producing ES1:S0, ES1:ES4 and 

downregulation in strains producing ES0:S8 on comparing before and after induction with 

methanol (Figure 5-6). The low molecular weight products could be degraded products of 

KAR2. 

Figure 5-6: UPR induction in wild-type GS115 (GS) and GS115 recombinant strains expressing 

ES1:S0 (0C), ES1:ES4 (4C) and ES0:ES8 (8C).Cells were grown in BMGY complex medium containing 

1 % (v/v) glycerol and resuspended in complex medium (BMMY) containing methanol. Samples were 

taken before (0) and after 72 h of induction with 1 % (v/v) methanol. 10 µL of samples corresponding 

to total cell lysate before and after 72h of induction with methanol corresponding to GS, 0C, 4C and 

8C were mixed with 10 µL of 2X Laemmli buffer and boiled for 15 mins and 10 µL were applied in 

the gel and electroblotted on PVDF.  
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5.8 Global change in endogenous ubiquitylation in wild-type GS115 and 

GS115 recombinant strains expressing ES1:S0, ES1:ES4, ES0:ES8 

Cells to get relieved from misfolded proteins which cause UPR are retrotranslocated to 

cytosol and degraded by the ubiquitin proteasomal system, a major component of ERAD [66, 

67]. Immunoblot data revealed increased levels of endogenous ubiquitylation in ES1:S0, 

ES1:ES4, decreased levels in wild-type (GS115) and no change in strains producing ES0:S8 

(Figure 5-7). 

Figure 5-7: Change in endogenous ubiquitinylation before induction (0h) and after induction (72h) in 

wild-type GS115 (GS) and GS115 recombinant strains expressing ES1:S0 (0C), ES1:ES4 (4C) and 

ES0:ES8 (8C). Cells were grown in BMGY complex medium containing 1 % (v/v) glycerol and 

resuspended in complex medium (BMMY) containing methanol. Samples were taken before (0) and 

after 72 h of induction with 1 % (v/v) methanol. 10 µL of samples corresponding to total cell lysate 

before and after 72h of induction with methanol corresponding to GS, 0C, 4C and 8C were mixed with 

10 µL of 2X Laemmli buffer and boiled for 15 mins and 10 µL were applied in the gel and 

electroblotted on PVDF.  
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5.9 Evaluation of intracellular proteome  

Two dimensional gel electrophoresis of before and after induction with methanol in wt 

GS115, ES1:S0, ES1:S4 and ES0:S8 resulted in a very reproducible pattern (Figure 5-8). The 

expression of ES1:S0 antigen and ES1:S4 on comparison with ES0:S8 antigen is relatively low 

(Table 5-1) but still generated higher UPR over ES0:S8 (Figure 5-6). From the above 

observations, we assumed that ES antigen is majorly causing UPR and could be targeted to 

ERAD. Proteome profiling revealed most of the identified proteins involved in UPR and 

ERAD was significantly upregulated in ES1:S0 and ES1:S4 on comparison with wt GS115 

(Figure 5-9). An increase of UPR markers PDI and KAR2 identified in ES1:S0 and ES1:S4 was 

seen in comparison with wt GS115.There was a slight increase in expression of KAR2 and 

PDI in protein on comparison with ES0:S8, A significant increase in hypothetical protein 

which has thioredoxin like fold and homology with glutathione S transferase (GST) of 

Rhizoctonia solani in ES1:S0 and ES1:S4 on comparison with wild-type GS115 and ES0:S8 was 

observed. GST is known to be an antioxidant protein belonging to UPR [76]. An increase of 

cytosolic chaperones HSP70 (SSA1), HSP90 was observed in ES1:S0 and ES1:S4 in 

comparison with wild-type GS115 and ES0:S8. SSA1 and HSP90 are known to facilitate the 

degradation of apoprotein B [77]. The proteins related to pyruvate metabolism, glycolysis and 

amino acid synthesis were downregulated in ES1:S0, ES1:S4 and ES1:S8 on comparison with 

wt GS115 (Figure 5-10). Aconitase (ACO1) involved in TCA cycle was decreased, whereas 

citrate synthase (CIT1) did not show any significant change. A list of identified proteins 

classified by functional category is given in Appendix V Table 13-2. 
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Figure 5-8: Intracellular changes in proteome of GS115 wild-type strain and GS115 strain producing 

ES1:S0, ES1:S4 and ES0:S8 before and after induction. (A) Wild-type strain 0h of induction. (B) 72h 

after induction with methanol in wild-type strain. (C) GS115 ES1:S0 0h of induction. (D) 72h after 

methanol induction of ES1:S0. (E) GS115 ES1:S4 0h of induction. (F) 72h after methanol induction of 

ES1:S4. (G) GS115 ES0:S8 0h of induction. (H) 72h after methanol induction of ES0:S8. Only section 

of gels which includes identified proteins from pI 4-8 are considered. 
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Figure 5-9: Changes of UPR and ERAD related proteins in GS115 strain producing chimeric proteins 

on comparison with non producing GS115 strain. (A) Log2 ratio of cultures producing ES1:S0 

compared to wild-type (wt) GS115. (B) Log2 ratio of cultures producing ES1:S0 compared to ES0:S8. 

(C) Log2 ratio of cultures producing ES1:S4 compared to wild-type (wt) GS115. (D) Log2 ratio of 

cultures producing ES1:S4 compared to ES0:S8. 
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Figure 5-10: Changes of proteins related to central metabolism in GS115 strain producing chimeric 

proteins on comparison with non producing GS115 strain. (A) Log2 ratio of cultures producing ES1:S0 

compared to wild-type (wt) GS115. (B) Log2 ratio of cultures producing ES1:S4 compared to wild-type 

(wt) GS115. (C) Log2 ratio of cultures producing ES0:S8 compared to wild-type (wt) GS115. 
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5.10 Conclusions 

 Expression of ES1:S0, ES1:S4 resulted in upregulation of UPR markers KAR2 and PDI 

after induction with methanol, indicating activation of unfolded protein response. UPR 

activation can be as a result of ES antigen expression as insoluble aggregates. 

 Increased expression of endogenous ubiquitylation during expression of ES antigen in 

ES1:S0 and ES1:S4 after induction with methanol indicates activation of ERAD 

pathway and targeting of ES antigen to ERAD. 

 During expression of 8 copies of only S antigen (ES0:S8) there is no significant change 

in expression of KAR2 and PDI after induction of methanol representing slightly 

detectable non prominent UPR response. There was no upregulation of endogenous 

ubiqutiylated proteins during expression of ES0:S8 . 

 Expression of ES antigen caused increased expression of cytosolic chaperones SSA1 

(HSP70), HSP90 on comparison with wt GS115 and also ES0:S8 .SSA1 and HSP90 

are known to target improperly folded proteins to ERAD. 

 An increased upregulation of hypothetical protein with homology to that of 

glutathione S transferase with antioxidant activity and probable role in UPR during 

ES1:S0 and ES1:S4 production. 

 During expression of ES1:S0, ES1:S4 and ES0:S8 there was downregulation of proteins 

involved in central carbon metabolism. 
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6. DISCUSSION 

Dengue, an arthropod borne febrile illness is rapidly spreading across the world with 2.5 

billion people at risk of infection. Infection can be caused by any of the four dengue virus 

serotypes DENV-1, -2, -3 and -4 [9]. There are no licensed vaccine or specific therapeutics 

for this rapidly growing disease and vector control measures did not make a significant 

contribution to the prevention of the emergence and rapid spread [6]. A diverse number of 

vaccine candidates are in development using different strategies where the live attenuated 

vaccine (LAV) candidates are the front-runners. Live attenuated vaccine candidates, although, 

in advanced clinical phase concern over safety still remains due to reversion and interference. 

Therefore, subunit vaccine candidates are gaining importance because of being safer. One 

such subunit vaccine candidate, based on dengue envelope protein has reached clinical phase I 

[18]. A large number of diverse dengue vaccine candidates are in preclinical phase to ensure 

the continuous influx of innovation which is critical for maximizing chances of success in 

dengue vaccine development [29]. 

The first part of the study focuses on HBsAg as a carrier for surface presentation of domain 

III of DENV-2 envelope (EDIII-2). The study involves P. pastoris based co-expression of 

HBsAg based EDIII-2 chimera (ES) and 0, 1, 4 copies of HBsAg (S) denoted as ES1:S0, 

ES1:S1 and ES1:S4 purification and characterization by electron microscopy. Stability 

evaluation of ES1:S4 was performed.  

The rationale for this work is based on four important factors. Firstly, in a field of dengue 

vaccine development research there has been an increasing awareness to explore non-

replicating candidates as potential dengue vaccine candidates due to problems associated with 

live attenuated virus vaccine candidates. Domain III of DENV envelope (EDIII) has emerged 

as a promising vaccine candidate due to its potential attributes. These include receptor binding 

domain, exposure of domain on the surface of virus, dengue type and subtype specific 

neutralizing epitopes and anti EDIII antibodies are efficient virus blockers [10, 22]. 

Secondly, virus-like particles (VLPs) are supramolecular, non-infectious, non-replicative 

assemblies with repetitive surfaces, particulate structures and dimensions rendering them safe 

and immunogenic [4]. These attributes associated with VLPs contribute significantly in 
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generation of B and T-cell responses. Two VLP based vaccine candidates HBsAg and HPVL1 

have successfully reached the market [5]. 

Thirdly, hepatitis B surface antigen (HBsAg) possesses an intrinsic quality of self assembly 

into VLPs and its ability to retain this potential on incorporation of foreign antigens. Thus, it 

has been widely used as carrier for display of vaccine antigens. With the success of HBsAg 

based malarial vaccine candidate RTS,S vaccine candidate has reached clinical phase III trials 

there is a tremendous interest in application of HBsAg as carrier [37]. 

Fourthly, dengue vaccine needs to be produced at affordable price since dengue is mainly 

found in developing and poor countries The yeast P. pastoris combines advantages of 

prokaryotic and eukaryotic hosts [78] and can be used as an effective platform for production 

of vaccine candidates in cost effective manner and hence is recognized as an ideal system. It 

has been used as an expression system for HBsAg which assembles into VLPs [72] and 

disulphide (S-S) linked viral antigens [9]. Thus we sought to integrate all this information to 

co-express EDIII-2-HBsAg (ES) with 0, 1 and 4 copies of HBsAg (S) to generate stable 

hybrid particles and evaluate immunogenicity of vaccine candidate. 

A fusion of epitopes at amino terminus (circumsporozite protein from P. falciparum)or 

insertion at antigen determinant loop (VP1 capsid protein from polio virus) of HBsAg 

resulted in generation of hybrid VLPs which were protective [47, 48]. The chimeric EDIII-2-

HBsAg (ES) antigen was designed by fusing of envelope domain III at the amino terminus of 

HBsAg and expressed individually as well as with unfused HBsAg (S) at different copy 

numbers (1 and 4) in P. pastoris under control of methanol inducible alcohol oxidase 

promoter (AOX1). An analysis of the relative proportion of chimeric and unfused S antigen 

revealed both proteins are insoluble in the absence of any detergents or chaotropic agents 

(Localization of ES and S antigen, Appendix I Figure 9-1). A high copy number of S antigen 

resulted in higher solubility in the presence of Tween 20 (1 % v/v). Co-expression of unfused 

S antigen of higher copy number also assisted in increasing the solubility of ES antigen 

(Figure 5-1 B, D). The expression of only unfused S antigen at high copy number (8 copies) 

has the highest solubility whereas ES antigen when expressed in the absence of the unfused S 

antigen was relatively insoluble with only a very minor fraction found in the soluble fraction 

in the presence of 1 % (v/v) Tween 20 (Table 5-1). Although expression of an only ES gene 

resulted in high yield (Table 5-1), most of ES antigen was associated with the insoluble 

fraction with significant fraction getting degraded into fragments. Degraded proudcts were 
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seen in Tween 20 soluble and insoluble fractions when revealed with anti dengue EDIII 

specific mouse monoclonal. (Figure 5-1 C,D). The Co-expression of S antigen at higher copy 

number (1, 4) aided in solubilzing ES protein, but had no effect on inhibiting degradation of 

ES antigen. Even cell lysis in the presence of PMSF and pepstatin had no effect on inhibiting 

degradation of ES antigen whereas unfused S antigen when expressed individually at high 

copy number (8 copies) or co-expressed as 1 and 4 copies along with ES antigen was not 

degraded. Expression of S antigen was proportional to the copy number (Table 5-1).  

A recent report describes the purification of HBsAg VLPs from the soluble fraction of P. 

pastoris lysate [72]. ES1:S4 which was best soluble among other chimeric clones ES1:S1 and 

ES1:S0 was purified using the same strategy employed for HBsAg purification [71] with slight 

modifications as described in materials methods section.The purification of ES1:S4 which 

involved PEG precipitation of host cell contaminants, Aerosil-380 adsorption and desorption 

followed by ion-exchage with DEAE sepharose and size exclusion with sephacryl S-300. 

During the Aerosil adsorption and desorption step about 15 % of protein remained unbound to 

Aerosil and 20 % of protein was recovered by desorption with 25 mM sodium 

carbonate/bicarbonate buffer pH 10.6 , 1.2 M urea. Near to 60 % of protein prevailed 

adsorbed to Aerosil-380 even after desorption. The protein yield and recovery during 

subsequent steps of purification was carried out by Hepanostika HBsAg microELISA (Table 

5-2) A similar tendency was also seen in case of purification of HBsAg where a prominent 

fraction of protein remained tightly bound to Aerosil-380 and could not be desorbed using 

buffer containing 25 mM Sodium carbonate/bicarbonate buffer pH 10.6, 1.2 M urea Increase 

in concentration of urea has helped in improving the recovery of HBsAg from Aerosil, 

however denatures the protein. A better desorption condtions for elution of protein from 

Aerosil needs to be optimized. Purified protein was able to assemble into VLPs confirmed by 

electron microscopy. However, the VLPs population were heterogenous indicating the 

presence of VLPs possibly corresponding to both S and ES antigens. ES1:S1was also purified 

from the soluble fraction in the same way as ES1:S4 and was also able to form VLPs seen by 

EM.  

Purified ES1:S4 was evaluated for stability in the presence of different buffers, temperature 

and additives. Stability evaluation revealed that S antigen fraction in ES1:S4 was quite stable 

and soluble as determined by incubation at 37°C for 14 days in the presence of additives. 

Most of S antigen fraction remained soluble in the presence of polyols (sucrose, glycerol), 
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protease inhibitors (EDTA, PMSF and pepstatin) with a small fraction forming insoluble 

aggregates. Whereas a significant fraction of ES antigen formed insoluble aggregates on 

incubation at 25°C without additives and at 37°C in the presence of additives for 14 days. 

Addition of sucrose, protease inhibitors EDTA and PMSF to purified ES1:S4 assisted in 

keeping ES antigen in soluble form. At 4°C both ES and S antigen in ES1:S4 were stable. 

Nevertheless, a small fraction of ES antigen formed insoluble aggregates.  

ES1:S0 being highly insoluble cannot be purified by same method employed for purification 

of ES1:S4, hence was purified from the insoluble fraction [71] under denaturing conditions, 

followed by removal of chaotropic agent by dialysis. Preliminary analysis by size exclusion 

chromatography with sephacryl S-300 revealed purified protein was able to form highly 

ordered structures, but was not able to assemble into VLPs as confirmed by EM. The yield of 

purified protein was quite low and conditions are to be optimized to increase the recovery.  

In conclusion, this work demonstrates the fusion of DENV-2-EDIII to the amino terminus of 

HBsAg and co-expression with 1 and 4 copies of unfused HBsAg. HBsAg co-expression in 

higher copy number assisted in solubility of ES antigen. (Figure 5-1 B, D) Co-expression of 

HBsAg also aided in co-purification of ES antigen and formation of VLPs [3]. However, only 

ES antigen was not able to assemble into VLPs. Immunological evaluation in mice revealed 

ES1:S4 was able to generate modest neutralizing titers. However, in a recent work in our 

collaborating group at ICGEB, India fusion of EDIII domains from all the four stereotypes at 

the amino terminus of HBsAg and co-expression along with four copies of unfused HBsAg 

resulted in a very prominent neutralizing activity to all the four DENV serotypes (data not 

published). These interesting results lead us to hypothesize perhaps some of the antigenic 

determinants of DENV-2EDIII are hidden resulting in low neutralization. However on fusion 

with EDIII from other serotype resulted in better exposure of these epitopes and hence higher 

neutralization. This is in agreement with literature where generation of tetravalent soluble 

EDIII antigen resulted in improved presentation of hidden antigenic determinants in EDIII 

and enhanced immunogenicity than in monovalents [1]. Stable and optimal presentation of 

EDIII on surface of carrier needs to be optimized to make it a viable option for vaccine 

candidate, trials of which are ongoing. 

Overexpression of only ES antigen or ES antigen along with unfused S antigen in different 

copy numbers (1, 4) using AOX1 promoter was achieved however, most of ES antigen 

remained insoluble. Expression of a virus surface glycoprotein or membrane proteins in yeast 



Discussion 

74 

 

often resulting in misfolding and aggregate formation are well documented, the exception is 

with HBsAg which on expression in yeast attains native conformation [8]. Yeast cell response 

to accumulation of intracellulary expressed aggregated proteins have not been well studied. 

The second part of the study was to gain insights into the yeast cell respone with special focus 

on UPR and ERAD during expression of P. pastoris GS115 ES1:S0, ES1:S4, ES0:S8 and wild-

type (wt) GS115 as control with proteomic approach. 

Expression studies on ES1:S0, ES1:S1, ES1:S4 and ES0:S8 revealed solubility of ES antigen is 

lower than S antigen; although the hydropathic index of ES antigen is lower than S antigen 

(i.e. ES antigen is less hydrophobic than S antigen). A grand average of hydropathicity 

(GRAVY) for ES antigen is 0.362 and for S antigen is 0.688 measured based on the number 

of hydrophobic residues in protein with protparam software (web.expasy.org/protparam). 

Also a significant fraction of ES antigen is getting degraded during expression. We speculated 

fusion of EDIII domain to HBsAg and P. pastoris based expression resulted in insoluble 

aggregate formation which would be the rationale for lower solubility of ES antigen 

To further confirm the effect of the DEN-2-EDIII domain, transformants harboring only 

secretory EDIII was expressed and analyzed by Western blotting. Although, EDIII was fused 

with alpha mating factor only a minor fraction was secreted and most of the protein was 

retained intracelluarly, confirmed by immunoblotting with 24A12 mAb. Western blot results 

revealed the presence of aggregates in both secretory and intracellular fractions (Appendix IV 

Figure 12-1). Also the expression of only EDIII resulted in significant upregulation of the 

UPR (Appendix IV Figure 12-2). 

The accumulation of improperly folded proteins causes considerable stress [8]. Cells respond 

to these proteins by inducing unfolded protein response (UPR) which results in increased 

synthesis of chaperones, which assist in folding and targeting proteins to their destined sites 

and when failed to fold retrotranslocate to cytosol and are cleared by endoplasmic reticulum 

associated degradation (ERAD) pathway mediated by ubiquitinlyated proteasomal complex 

[63]. 

UPR induction is indicated by increased expression of UPR markers. The major UPR markers 

are KAR2, PDI and LHS1 which contains HDEL ER resident signal at the carboxy terminus 

[75]. Western blotting of induction intervals (before and after induction) with anti HDEL 

monoclonal antibody revealed increased expression of KAR2 in ES1:S0.ES1:S4, and decreased 
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expression in ES0:S8 and wild-type GS115. These results would infer strong induction of UPR 

as a result of ES antigen expression in comparison with wild-type and ES0:S8 where there is 

downregulation of UPR markers during shake flask cultivation in BMGY media with glycerol 

as carbon source and induction with BMMY medium containing methanol.  

Abberantly folded proteins targeted to ERAD are tagged with polyubiquitin which acts as 

degradation signal. Attachment of polyubiquitin to the protein involves coordinated action of 

E1, E2 and E3 enzymes [70]. Western blotting of induction intervals with anti ubiquitin 

antibody revealed increase in endogenous ubiquitylation in ES1:S0 and ES1:S4, no change in 

ES0:S8 and decreased levels in wt GS115. A significant upregulation of ubiquitylation in 

ES1:S0 in comparison with ES0:S8 would indicate targeting of ES1:S0 to ERAD. A clear 

degradation is evidenced by presence of ,low molecular weight products by Western blotting 

with anti dengue EDIII specific mouse monoclonal during ES antigen expression (Time 

course induction of ES1:S4, Appendix I Figure 9-2 B) However, there is no significant change 

in yield of fusion protein during the time of induction as quantified by RP-HPLC as described 

previously (Appendix I Figure 9-2 B, C). From this it can be inferred that most of ES antigen 

expressed is retained as insoluble deposits and is stable within cells by evading the targeting 

to ERAD.Nevertheless, a fraction of ES was degraded into fragments. We assume this 

degradation is mediated by chaperones KAR2 and PDI by solubilzing the aggregates and 

targeting them to ERAD. Such mechanism of solubilizing aggregates and targeting to 

degradation have been documented in literature [70]. 

Proteomic analysis of GS115 strains producing ES1:S0, ES1:S4 ES0:S8 and wild-type strain 

GS115 revealed a regulation pattern of UPR markers (KAR2 and PDI) identical with Western 

blotting. UPR response is known to be induced during accumulation of unfolded proteins 

[79]. There was an upregulation of KAR2 and PDI in ES1:S0 and ES1:S4 on comparison with 

wild-type GS115 and ES0:S8 indicating heretical conformation as a result ES antigen 

expression. A noteworthy upregulation of hypothetical protein was seen during production of 

ES1:S0, ES1:S4 on comparison with wild-type GS115 and ES0:S8. Hypothetical protein has 

thioredoxin like fold and has homology with glutathione S transferase of Rhizoctonia solani. 

Glutathione S transferase is an antioxidant protein belonging to UPR regulated pathway [76]. 

An increase in cytosolic chaperones SSA1, HSP90 was seen in ES1:S0 and ES1:S4 when 

compared with wild-type GS115 and ES0:S8. HSP90 in cooperation with SSA1 is known to 

target apoprotein B for ERAD [66, 77]. A similar role of SSA1 and HSP90 can be attributed 
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in degradation of ES1:S0 and ES1:S4. Expression of UPR markers, SSA1 and HSP90 was 

higher in ES1:S0 and ES1:S4 in comparison with ES0:S8. Expression of ES0:S8 although 

resulted in very high yield did not induce any prominent UPR and activation of SSA1. This 

further strengthens our hypothesis that on expression in yeast, ES antigen in ES1:S0 and 

ES1:S4 resulted in formation of insoluble deposits. The insoluble deposits induced a 

considerable stress indicated by an increase in expression of ER and cytosolic chaperones 

with a prominent role in UPR and ERAD. 

Expression of ES antigen in yeast resulted in the formation of insoluble deposits. The 

evaluation of protein during ES antigen expression vindicated prominent upregulation of 

chaperones involved in UPR and ERAD to maintain cellular homeostasis. The present study 

illustrates consequences of intracellular protein expression and deeper understanding of stress 

responses and ERAD in P. pastoris. Collectively, these findings underline application of ES 

antigen as a model protein for gaining deeper insights into the stress responses. 
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7. FUTURE PROSPECTS 

The present work demonstrates a fair trial of monovalent dengue subunit vaccine candidate 

using DENV-2EDIII expressed on the surface of HBsAg VLPs using P. pastoris as an 

expression host. We were able to successfully express the EDIII on the surface of HBsAg 

which resulted in modest immunogenicity. EDIII displayed on HBsAg can have potential 

vaccine and diagnostic applications. A stable and optimal presentation of antigenic epitopes 

on surface of carrier needs to be optimized for making this a viable option for vaccine 

candidate trials which are underway. Use of flexible glycine serine linker in antibody 

engineering for fusion with HBsAg probably may provide a stable and better exposure of 

antigenic epitopes. This approach could serve as the basis for platform for other infections as 

well. In a recent work in our collaborating group at ICGEB, India fusion of EDIII domain 

from all the four serotypes with glycine linker at the amino terminus of HBsAg and co-

expression along with four copies of unfused HBsAg resulted in a very prominent 

neutralizing activity to all the four DENV serotypes paving the way for development of 

tetravalent subunit vaccine. 

The fusion protein expression in P. pastoris resulted in formation of insoluble aggregates 

which were stable against proteolysis during induction intervals invivo evading the 

proteasomal degradation and causing a prominent stress in the host cells. Increased levels of 

KAR2 and PDI during expression of ES antigen presumably aids in solubilizing aggregates 

and targeting to ubiquitin mediated degradation. Most of the literature is focused on the 

degradation of glycoproteins and with less insight on degradation of non glycosylated 

proteins. Further work is underway to identify the endogenous ubiquitin proteins involved in 

mediating degradation of non glycosylated fusion protein by co-immunopreciptation with anti 

ubiquitin antibody.  
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9. APPENDIX I 

9.1. Localization of ES and S antigen in ES1:S4 

It was reported earlier S antigen is associated mostly with insoluble pellet fraction [71]. This 

would predict ES antigen may also evidence similar tendency.The distribution of ES and S 

antigen between soluble and insoluble fractions were analyzed by Western blotting with anti 

hepatitis B surface antigen specific mouse monoclonal. Cell pellets corresponding to 100 OD 

(1 ml) were lysed with glass beads as described previously and fractioned by centrifugation 

into supernatant and pellet fraction. The pellet fraction was solubilized for 4 h at RT by 

dissolving in 1 ml of PBS containing 8 M urea. After solubilization the supernatant from 

lysate and urea solubilized pellet fractiosn were analyzed by Western blotting with anti 

hepatitis B surface antigen specific mouse monoclonal (5S mAb). This revealed both ES and 

S antigen were completely insoluble in the absence of detergent or denaturants (Figure 9-1). 
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Figure 9-1: Localization of ES and S antigen in ES1:S4 revealed by anti heptatitis B surface antigen 

specific mouse monoclonal .Cells were grown in BMGY complex medium containing 1 % (v/v) 

glycerol and induced at 100 OD by resuspending in complex medium (BMMY) containing 1 % (v/v) 

methanol at every 12 h intervals for a period of 72 h. Induced P. pastoris (100 OD) cell pellets during 

time course of induction were lysed with glass beads on thermomixer for 12 h by dissolving in 0.5 ml 

of lysis buffer containing 25 mM PB pH 7.2, 5mM EDTA, 500 mM NaCl and 8 % (v/v) glycerol. The 

total cell lysate (around 0.5 ml) was collected and beads were washed with 0.5 ml of lysis buffer and 

pooled with intial lysate collected earlier.The lysate was centrifuged at 16,000 x g and fractionated 

into supernatant and pellet (A) Immunoblot analysis of lysate fractionated supernatant taken before 

and after 24, 48 and 72h of methanol induction using anti hepatitis B surface antigen specific mouse 

monoclonal antibody. (B) Immunoblot analysis of lysate fractionated pellet taken before and after 24, 

48 and 72h of methanol induction using anti hepatitis B surface antigen specific mouse monoclonal 

antibody. 10 µL of samples corresponding to supernatant or pellet fractions from different induction 

intervals were mixed with 10 µL of 2X Laemmli buffer and boiled for 15 mins and 10 µL were 

applied in the gel and electroblotted on PVDF membrane. 
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9.2. Time course analysis of ES1:S4 

Recombinant cells expressing ES1:S4 were grown and induced as described previously in 

materials and methods section. Recombinant ES1:S4 was analyzed during induction phase 

with samples aliquoted at different intervals by Western blotting using anti hepatitis B surface 

antigen specific (5S) and anti dengue EDIII specific (24A12) mouse monoclonals. Sample 

before induction was used as negative control. Immunoblotting results with anti dengue EDIII 

specific mouse monoclonal antibody revealed ES antigen fraction in ES1:S4 was degraded 

(Figure 9-2 B). No prominent degradation can be seen in ES antigen when revealed by anti 

hepatitis B surface antigen specific mouse monoclonal antibody (Figure 9-2 A), we presumed 

this is as a result of degradation at the carboxy terminus which resulted in the loss of epitopes 

for detection by 5S mAb. Although there is a prominent degradation in ES antigen there is no 

significant change in the concentration of ES antigen during induction intervals quantified by 

RP-HPLC as described previously (Figure 9-2 B, C). This would infer that only a fraction of 

the protein is targeted for degradation and the rest gets accumulated as insoluble deposits 

evading degradation. The S antigen fraction expression is slightly increased during induction 

intervals as quantified by RP HPLC 
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Figure 9-2: Time course analysis and quantification of ES1:S4 production. .Cells were grown in 

BMGY complex medium containing 1 % (v/v) glycerol until OD600~ 20 and resuspended in complex 

medium (BMMY) containing 1 % (v/v) methanol to final OD600~100 and induced with 1 % (v/v) 

methanol at every 12 h intervals for a period of 72 h. Samples were taken before (0) and after 24, 48, 

72 h of induction with 1 % (v/v) methanol. Induced P. pastoris 100 OD (1 ml) cell pellets during time 

course of induction were lysed with glass beads on thermomixer for 12 h by dissolving in 0.5 ml of 

lysis buffer containing 25 mM PB pH 7.2, 5mM EDTA, 500 mM NaCl and 8 % (v/v) glycerol. The 

total cell lysate (around 0.5 ml) was collected and beads were washed with 0.5 ml of lysis buffer and 

pooled with intial lysate collected earlier 10 µL of whole cell lysate was mixed with 10 µL of 2X 

Laemmli buffer, boiled for 15 mins and 10 µL was applied on SDS PAGE and then electroblotted on 

PVDF membrane. (A) Immunoblot analysis of ES1:S4 whole cell lysate taken before and after 24, 48 

and 72h of methanol induction using anti hepatitis B surface antigen specific mouse monoclonal 

antibody.(B) Immunoblot analysis of ES1:S4 lysate taken before and after 24, 48 and 72h of methanol 

induction using anti dengue EDIII specific mouse monoclonal antibody. (C) quantification of ES and 

S antigen in ES1:S4 in whole cell lysate before and after 24, 48 and 72h of methanol induction by RP-

HPLC using purified HBsAg as standard. For RP-HPLC 100 µL lysate was solubilized by adding 100 

µL solubilization reagent (8 % (wv) SDS, 50 % (v/v) ß-mercaptoethanol, 1 mol L-1 DTT) and boiled 

for 15 min and clarified by centrifugation and 50 µL aliquot was loaded into C-18 column at flowrate 

of 1 ml min-1 



Appendix II 

88 

 

10. APPENDIX II 

10.1. Purification of only HBsAg (ES0:S8) 

HBsAg (ES0:S8) was purified from soluble fraction under native conditions as described in 

[72]. The chromatogram and purity profile further confirmed by Western blotting with anti 

hepatitis B surface antigen (5S) specific mouse monoclonal antibody is shown in Figure 10-1. 

Figure 10-1: Size exclusion chromatography (Sephacryl S-300 16/60) of ES0:S8. (A) Size exclusion 

chromatogram resulted from passing pooled and concentrated ion exchange fractions of 

ES0:S8 onto sephacryl S-300 (16/60) column. Protein elution was measured at 280 nm. (B) 

Size exclusion peak fractions within void volume (21-40 ml) were pooled and analyzed by 

silver staining (15 µL of sample was loaded in each lane). (C) Size exclusion peak fractions 

within void volume (21-40 ml) were pooled and analyzed by Western blotting with 5SmAb 

(15 µL of pooled peak fractions containing protein was mixed with 15 µL of 2X Laemmli 

buffer and boiled for 15 mins and 15 µL was loaded in each lane for Silver staining and 

Western blotting ). Single and double asterisks represent HBsAg monomer and dimer 

respectively. Bar corresponds to the void volume. 
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10.2 Purification of ES1:S1 

ES1:S1 was purified precisely in the same way as ES1:S4 described previously. The 

chromatogram and purity profile is shown in Figure 10-2 Pure ES1:S1 was characterized by 

TEM and found to be forming particles (Figure 4-5 B). 

 

Figure 10-2: Size exclusion chromatography (Sephacryl S-300 26/60) of ES1:S1. (A) Size exclusion 

chromatogram resulted from passing pooled and concentrated ion exchange fractions of ES1:S1 onto 

sephacryl S-300 (26/60) column. Protein elution was measured at 280 nm. (B) Size exclusion peak 

fractions within the void volume (70-105 ml) were analyzed by Colloidal Coomassie staining. (15 µL 

of pooled peak fractions containing protein was mixed with 15 µL of 2X Laemmli buffer and boiled 

for 15 mins and 15 µL was loaded in each lane) Single asterisk represents HBsAg (S) monomer and 

single filled circle represents fusion protein (ES). Bar corresponds to void volume. 
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11. APPENDIX III 

11.1 RP-HPLC Calibration curve 

Calibration curve was constructed by plotting peak area as a function of protein amount 

injected (Figure 11-1). The obtained graph shows a good linear correlation. The known 

concentration of purified HBsAg (ES0:S8) to make external calibration curves were 0.5, 1, 2, 4 

mg ml
-1

 as quantified by BCA assay. The concentration of HBsAg (S) and fusion protein were 

calculated by using the equation from the calibration curve.  

Figure 11-1: A plot of concentration (mg ml-1) vs peak area of purified HBsAg (ES0:S8) with a linear 

correlation fitted using least square method. 

11.2 ELISA Calibration curve 

Calibration curve was constructed by plotting absorbance as a function of protein 

concentration (Figure 11-2). The obtained graph shows a good linear correlation. The known 

concentration of purified HBsAg (ES0:S8) to make external calibration curves were 0, 6.25, 

12.5 and 25 ng ml
-1

. The concentration of HBsAg fraction in soluble part of ES1:S0, ES1:S1, 

ES1:S4 and ES0:S8 were calculated by using the equation from the calibration curve.  
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Figure 11-2: A plot of concentration (ng ml-1) vs absorbance of purified HBsAg (ES0:S8) with a linear 

correlation fitted using least square method 

11.3 BCA Calibration curve 

Calibration curve was made by plotting absorbance as a function of protein concentration 

(Figure 11-3). The obtained graph shows a good linear correlation. The known concentration 

of pure BSA to make external calibration curves were 0, 15.625, 31.25, 62.5, 125, 250, 500 

and 1000 µg ml
-1

. Total protein concentration in soluble and whole lysate of ES1:S0, ES1:S4 

and ES0:S8 in were calculated by using the equation from the calibration curve.  

Figure 11-3: A plot of concentration (µg ml-1) vs absorbance of pure BSAwith a linear correlation 

fitted using least square method. 
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12. APPENDIX IV 

12.1 Expression of DENV-2-EDIII 

12.1.1 Clone:  

P. pastoris strain KM71H (Mut
s
) harboring secretory EDIII gene used in the present work 

was a kind gift from Dr. Navin Khanna, ICGEB, New Delhi and India. The details of cloning 

of EDIII-2 can be found in [22]. 

12.2 Methods 

12.2.1 Production of sEDIII-2 in shake flask 

A starter culture was set up by inoculating YPD (100 ml) with glycerol stock cultures (100 μl) 

and grown at 28°C, under constant shaking in an orbiatal shaker at 250 rpm for 18 h. About 1 

% of starter culture was used to inoculate 500 ml of buffered glycerol complex medium 

(BMGY, Invitrogen Life Technologies, Carlsbad, USA) in a 2 L baffled shake flask. The 

culture was incubated at 28°C, under constant shaking at 250 rpm until an OD600 ~20 was 

reached. Subsequently, cells were pelleted by centrifugation (3347 × g), washed with PBS, 

recentrifuged and resuspended in buffered methanol complex medium (BMMY, Invitrogen 

life technologies, Carlsbad, USA) to a final OD600 ~100 and incubated at 28°C under shaking 

at 250 rpm. Recombinant protein production was induced through the addition of 0.5 % (v/v) 

methanol twice a day at 12 h intervals for a total period of 72 h. At every 24 h intervals cells 

were fractionated by centrifugation at 16,000 x g and supernatant and pellet fraction were 

separated and stored at 80°C untill use. Both supernatant and cell pellet fractions were 

analyzed for expression by Western blotting. Cell pellets corresponding to 100 OD units (1 

ml) from different induction intervals were lysed using glass beads as described previously in 

materials and methods section. Extracellular supernatant and whole cell lysate were analyzed 

by Western blotting with anti dengue EDIII specific mouse monoclonal 
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12.3 Results 

12.3.1 Expression of sEDIII-2 

Extracellular and lysate induction intervals were analyzed for expression of EDIII domain. 

Western blotting results revealed a small fraction of 12 kDa protein was secreted however 

prevailed in form of aggregates (Figure 12-1A). The molecular weight of EDIII retained 

intracellulary was about 23 kDa this could be due to presence of secretory signal (~10 kDa) 

along with EDIII domain (Figure 12-1B). 

Figure 12-1: P. pastoris KM71H expressing sEDIII-2. Cells were grown in BMGY complex medium 

containing 1 % (v/v) glycerol and .Cells were grown in BMGY complex medium containing 1 % (v/v) 

glycerol until OD600 ~20 and resuspended in complex medium (BMMY) containing 0.5 % (v/v) 

methanol to a final OD600 ~100 and induced with 0.5 % (v/v) methanol at every 12 h intervals for a 

period of 72 h. Later cultures corresponding to 100 OD units (1 ml) from before (0 h) and after 24, 48 

and 72 h of onset of methanol feeding were centrifuged to separate supernatant and cells. Induced P. 

pastoris 100 OD (1 ml) cell pellets during time course of induction were lysed with glass beads on 

thermomixer for 12 h by dissolving in 0.5 ml of lysis buffer containing 25 mM PB pH 7.2, 5mM 

EDTA, 500 mM NaCl and 8 % (v/v) glycerol. The total cell lysate (around 0.5 ml) was collected and 

beads were washed with 0.5 ml of lysis buffer and pooled with intial lysate collected earlier. 10 µL of 

extracellular supernatant and whole cell lysate were mixed with 10 µL of 2X Laemmli buffer, boiled 

for 15 mins and 10 µL was applied on SDS PAGE and then electroblotted on PVDF membrane (A) 

Western blotting of extracellular fraction from before (0 h) and fter 24, 48 and 72 h of methanol 

addition revealed by anti dengue EDIII specific mouse monoclonal. (B) Immunoblotting of 

intracellular whole cell lysate from before (0 h) and after 24, 48 and 72 h of methanol addition 

revealed by anti dengue EDIII specific mouse monoclonal. Arrow towards gel in A represent 12 kDa 

EDIII-2 protein and arrow towards B denotes 23 kDa EDIII with α-mating factor secretory signal. 
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12.3.2 Induction of UPR in P. pastoris KM71H sEDIII-2 

The induction of UPR in cells producing sEDIII-2 was assessed by probing for UPR markers 

with mouse monoclonal anti HDEL antibody. These contain an ER resident signal peptide 

HDEL at carboxy terminus. Western blot results revealed presence of KAR2 both 

extracellularly and intracellularly (Figure 10-2). In case of medium there was no KAR2 found 

during growth in glycerol however there is increased expression of KAR2 correlated with 

time course production of EDIII. Intracellulary there was slight increase in KAR2 expression 

during induction. 

Figure 12-2: Induction of UPR response in P. pastoris KM71H expressing sEDIII-2. .Cells were 

grown in BMGY complex medium containing 1 % (v/v) glycerol until OD600~20 and resuspended in 

complex medium (BMMY) containing 0.5 % (v/v) methanol to a final OD600~100 and induced with 

0.5 % (v/v) methanol at every 12 h intervals for a period of 72 h. Later cultures corresponding to 100 

OD units (1 ml) from before (0 h) and after 24, 48 and 72 h of onset of methanol feeding were 

centrifuged to separate supernatant and cells. Induced P. pastoris (100 OD) cell pellets during time 

course of induction were lysed with glass beads on thermomixer for 12 h by dissolving in 0.5 ml of 

lysis buffer containing 25 mM PB pH 7.2, 5mM EDTA, 500 mM NaCl and 8 % (v/v) glycerol. The 

total cell lysate (around 0.5 ml) was collected and beads were washed with 0.5 ml of lysis buffer and 

pooled with the initial lysate collected earlier. 10 µL of extracellular supernatant and whole cell lysate 

were mixed with 10 µL of 2X Laemmli buffer, boiled for 15 mins and 10 µL was applied on SDS 

PAGE and then electroblotted on PVDF membrane (A) Western blotting of extracellular fraction from 

before (0 h) and after 24, 48 and 72 h of methanol addition revealed by anti HDEL mouse monoclonal. 

(B) Immunoblotting of intracellular whole cell lysate from before (0 h) and after 24, 48 and 72 h of 

methanol addition revealed by anti HDEL mouse monoclonal. Arrow towards gel in A and B 

represents 74 kDa KAR2. 
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12.4 Discussion 

Expression of EDIII-2 fused with α mating factor at the amino terminus resulted in a small 

fraction secreted in supernatant. Along with monomer, aggregates can also be seen in 

supernatant (Figure 12-1 A). Most of EDIII fraction was retained intracellular which was 

prevalent as aggregates. We assume that EDIII domain during expression was not able to 

attain native conformation, but due to the presence of secretory signal a small fraction was 

secreted but the most fraction retained intracellularly forming insoluble aggregates (Figure 

12-1 B). This was further strengthened by leakage of KAR2 a major UPR marker indicating 

heretical conformations [75] in supernatant during EDIII expression. We hypothesize 

expression of EDIII resulted in a conformation which increased synthesis of KAR2 to such an 

extent that exceeded the cell's resuscitation capacity leading to secretion of KAR2 in the 

medium. This is in agreement with another report [80] on overexpression of anti-CD3 

immunotoxin resulting in increasing expression and secretion of KAR2. 
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13. APPENDIX V  

13.1 Growth of non producing P. pastoris GS115 strain and GS115 strain 

producing ES1:S0, ES1:S4 and ES0:S8 

 A growth curve during growth on glycerol as a carbon source for wild-type GS115 cells and 

GS115 cells producing recombinant proteins was plotted. Cells were grown in BMGY 

complex medium containing 1 % (v/v) glycerol until OD600 ~20 and resuspended in complex 

medium (BMMY) containing 1 % (v/v) methanol to a final OD600 ~100 and induced with 1 

(v/v) methanol at every 12 h intervals for a period of 72 h. 

Figure 13-1: Growth curve during shake flask cultivation of non producing GS115 and GS115 strain 

producing recombinant proteins using glycerol as carbon source. 

13.2 Quantification of total protein before and after 72 of induction in P. 

pastoris GS115 strain and GS115 strain producing ES1:S0, ES1:S4 and 

ES0:S8 

Cell pellets corresponding to OD600 ~100 (1 ml) stored in -80°C from shake flask cultivation 

of all chimeric constructs (ES1:S0, ES1:ES4, ES0:S8 and wild-type GS115) were thawed and 

washed by suspending the pellet in 1ml of PBS pH, 7.2 and centrifuged at 16,000 x g for 10 

min. The supernatant was discarded and the pellet was dissolved in 500 µL of lysis buffer (25 

mM PB pH 8.0, 5 mM EDTA, 8 % (v/v) glycerol and 500 mM NaCl). To the above 
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suspension 0.6 g of glass beads were added and cells were disrupted in thermomixer 

overnight at 4°C. The lysate was transferred to a fresh vial and glass beads were washed with 

0.5 ml of lysis buffer, pooled with initial lysate. The lysate was centrifuged at 16,000 x g for 

15 min and supernatant and pellet fraction were separated. The total protein in supernatant  

 before and after 72h of methanol induction in wild-type GS115 cells and GS115 cells 

producing recombinant proteins were quantified by BCA assay using BSA as standard (Table 

13-1) 

Table 13-1: Total protein in whole cell lysate fractionated supernatant before and after induction 

quantified by BCA assay with BSA as standard. 

Clones 0h 

(mg ml
-1

) 

  72h 

(mg ml
-1

) 

wt GS115  9.9 
 

11.9 
 

ES1:S0 11.9   13.3 

ES1:S4 9.8   12.7 

ES0:S8 9.3   11.9 

Table 13-2: List of identified proteins classified by functional category 

NCBI 

Accession-No
1
 

Gene Name
2
 Protein name

2
 MW 

kDa
3
 

pI
3
 Mascot 

score 

Metabolism 

Carbohydrate 

metabolism 

     

Glycolysis 

 

     

XP_002491345  

 

TDH1 Glyceraldehyde-3-phosphate 

dehydrogenase, isozyme 3 

35.6 6.2 172 

XP_002490159  

 

PFK Beta subunit of 

heterooctameric 

phosphofructokinase involved in 

glycolysis  

[Komagataella pastoris GS115] 

102 6.4 79 

Ethanol metabolism 

 

     

XP_002491382 

 

ADH3 Mitochondrial  

alcohol dehydrogenase  

isozyme III 

37.3 5.8 174 

Citric acid cycle      

XP_002489444 

 

ACO1 Aconitase 85 5.6 215 
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XP_002489764 

 

CIT1 Citrate synthase 51.9 7.8 200 

Pyruate metabolism 

 

     

XP_002492397 

 

PDC Major of three  

pyruate decarboxylase 

61.4 5.6 193 

Amino  

acid metabolism 

     

XP_002490747 

 

ARO8 Aromatic aminotransferase 54.1 5.3 184 

XP_002493126  

 

SAHH S-adenosyl-L  

homocysteine hydrolase 

49.2 5.4 149 

XP_002493658 BCAT Mitochondrial  

branched-chain  

amino acid aminotransferase, 

homolog of murine ECA39  

44.9 5.3  

Sorting  

and degradation 

     

XP_002490239 HSP90 Heat shock protein (HSP90) 80.9 4.8 153 

XP_002493991 HSP70-HSF 

(SSA1) 

ATPase involved in protein 

folding and nuclear loca 

lization signal (NLS)- 

directed 

69.7 4.1 89 

XP_002489443 

 

ClpB HSP cooperates with Ydj1p 

(HSP40) and SSa1p (HSP70) 

100.5 5.2 311 

Folding and  

Stress response 

     

XP_002494292 

 

PDI Protein disulfide  

isomerase,  

multifunctional protein resident 

in the endoplasmic reticulum 

lumen [Komagataella pastoris 

GS115] 

53 4.5 122 

XP_002491027  

 

KAR2 ATPase in protein import to ER 

and chaperone to mediate 

folding 

74.2 4.7 322 

1 Accession numbers according to the NCBI reference standard 

(http://www.ncbi.nlm.nih.gov/RefSeq/). Functional classification is mostly according to KEGG 

pathway database (http://www.genome.jp/kegg/metabolism.html). 

2 Gene/protein names are according to the sequence genome of P. pastoris GS115 

(http://www.uniprot.org/). If no name was found for P. pastoris GS115, a Blast search of the 

respective P. pastoris GS115 gene/protein against different P. pastoris strains was carried out in 
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following order: search against ATCC 76273/CBS 7435/CECT 11047/NRRL Y-11430/wegner 21-1 

and P. pastoris (yeast). Gene and protein names were adopted from other P. pastoris strains only in 

case of 100 % sequence identity. 

3 Theoretical molecular mass and isoelectric point (pI) 
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