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Abstract

The monitoring of the integrity of large scale civil structures, also known as structural health

monitoring (SHM), was brought into the focus of research and industry by an ever increasing

amount of aging infrastructure and new designs and materials that display an unknown long-term

behaviour. An increasing proportion of the world’s population lives in hazardous regions, e.g.

with the danger of seismic events, storms, or flooding, requires SHM, too. Wind turbines (WTs)

form systems with a distinct dynamic loading and response. Many identical turbines are erected

within remote wind farms, aiding the application of vibration based SHM.

In recent decades, SHM was applied to a variety of structures around the globe, mainly in

terms of tracking modal properties as frequencies or mode shapes with respect to fixed reference

values. Recently, more complex residual condition parameters (CPs) between system states have

been formulated. These provide higher sensitivity in terms of structural changes but also less

robustness to environmental and operational conditions (EOCs), raising the question of proper

machine learning (ML) and hypothesis testing (HT) as compensation.

This work focuses on the application of a new SHM framework that can also be used for the

evaluation of long term SHM of civil infrastructure. To pioneer the way for the suggested evaluation

of variability in SHM, different SHM components, such as machine learning, condition parameters,

and hypothesis testing (ML-CP-HT), are investigated. On this basis, a holistic approach for damage

detection and performance evaluation is introduced and formulated theoretically. Furthermore,

different technical novelties such as accumulated energies such as CPs or the triangulation-based

extraction of modal parameters (TEMP) are presented.

Modal parameter extraction and extensive SHM performance evaluation is carried out for a

laboratory benchmark structure with different damage scenarios, a small-scale wind turbine with

reversible damage and a 5 MW offshore wind turbine. For all examples, it is shown that the

proposed concept is capable of providing a common basis for the performance evaluation and

comparison for a variety of different SHM realizations. Influences of different ML-instances, a

variety of different CPs and HT settings on SHM performance are analyzed and guidelines for

optimal settings are given. Damage detection and partial localization were achieved for the given

methods. Changes in dynamics of a 5 MW offshore wind turbine due to EOCs forms another

focus, which is discussed in detail.

Keywords: Structural Health Monitoring, Offshore Wind Turbines, Modal Analysis, Statistical

Analysis, Machine Learning Algorithms, Condition Parameter, Hypothesis Testing.





Zusammenfassung

Die Überwachung der strukturellen Integrität von Bauwerken (engl. structural health monitoring,

SHM) wurde in der Vergangenheit durch eine immer größer werdende Zahl von alternden und in

von Naturkatastrophen bedrohten Regionen gelegenen Bauwerken sowie der Einführung von neuen

Entwürfen und Materialien mit unbekanntem Langzeitverhalten in den Fokus von Forschung und

Entwicklung gerückt. Durch ein ausgeprägtes dynamisches Verhalten und eine Vielzahl an sehr

ähnlichen Bauwerken innerhalb abgelegener Windparks, begünstigen Windenergieanlagen (WEAs)

die Herangehensweise zur Überwachung von dynamischen Strukturantworten.

Innerhalb der vergangenen Jahrzehnte wurde SHM an einer Vielzahl von Strukturen angewendet,

meist realisiert durch das Betrachten modaler Größen wie Frequenzen und Eigenformen. In der

jüngeren Vergangenheit wurden vermehrt Zustandsparameter (engl. condition parameter, CP)

formuliert, welche auf Residuen zwischen Zeitreihen unterschiedlicher Systemzustände basieren.

Diese bieten eine größere Sensitivität bezüglich struktureller Änderungen jedoch auch weniger

Robustheit gegenüber Betriebs- und Umgebungsbedingungen. Maschinelles Lernen (ML) und

Hypothesentests (HT) werden genutzt um diese unerwünschten Einflüsse zu kompensieren.

Die vorliegende Arbeit beschäftigt sich mit der Anwendung eines SHM-Konzepts, welches auch

zur Bewertung von Langzeit-SHM für Bauwerke geeignet ist. Als Grundlage für die Bewertung

der Variablen innerhalb des Konzepts werden mit maschinellem Lernen, Zustandsparametern

und Hypothesen Tests unterschiedliche SHM Komponenten definiert. Auf dieser Basis wird ein

allgemeingültiger Ansatz zur Schadensdetektion und Bewertung der Leistungsfähigkeit formuliert

und theoretisch hergeleitet. Zusätzlich werden technische Neuheiten wie akkumulierte Energien

als Zustandsparameter oder eine auf Triangulation basierende automatische Extraktion modaler

Parameter (TEMP) eingeführt.

Die Extraktion modaler Parameter sowie die Bewertung der Leistungsfähigkeit von SHM werden

anhand einer Laborstruktur, einer Klein-WEA sowie einer 5 MW offshore WEA dargestellt. Für

alle Beispiele wird gezeigt, dass das vorgeschlagene Konzept eine einheitliche Basis für den Vergle-

ich unterschiedlichster SHM Ansätze bzw. Implementierungen schafft. Es werden der Einfluss

unterschiedlicher ML Realisierungen, verschiedener CPs sowie HT Einstellungen auf die SHM Per-

formance betrachtet, außerden werden Anhaltswerte für die Bestimmung der unterschiedlichen

Parameter dargelegt. Eine Schadensdetektion, für die Laborstruktur auch eine Lokalisierung, ist

mittels der beschriebenen Methoden erfolgreich umgesetzt. Zusätzlich werden Änderungen des

dynamischen Verhaltens der offshore Windenergieanlage identifiziert und diskutiert.

Schlagwörter: Zustandsüberwachung, Offshore Windenergieanlagen, Modalanalyse, Statistis-

che Analyse, Maschinelles Lernen, Zustandsparameter, Hypothesen Tests.
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1 Introduction

1.1 Motivation

Since potential risks for human lives and major economic impacts can result from failure, health

monitoring of distinct civil and industrial infrastructure has been a significant task over the

course of the last few decades. Conventional approaches based on visual inspection of cracks

and corrosion, or the monitoring of long-term static displacements are frequently applied. Non-

destructive testing procedures such as ultrasonic measurements have also become important tools

for observations. Structural health monitoring (SHM) was brought into the focus of research

and industry by an ever increasing amount of aging structures, a large number of buildings in

seismic active regions, and the introduction of high performance materials with unknown long

term behavior. Originating from aerospace and military, where very expensive structures or large

numbers of units are analyzed, SHM focuses on the continuous monitoring of dynamic structural

responses and linking them to structural changes. This goal can be achieved through various

monitoring approaches that track different physical quantities such as accelerations, displacements,

guided waves or acoustic emission, to name only a few.

This work focuses on the application of a new SHM framework for long term observation of

civil infrastructure. Since, alongside solar- and hydro-power, wind energy plays an important role

in the renewable energy sector, on- and offshore wind turbines (WTs) have drawn major attention

during the last decade. Additionally, an increase of ‘green’ energy is a declared goal of a variety

of countries. Together with skyscrapers or bridges, WTs form systems with a distinct dynamic

behavior due to their slender structures and a large mass concentration at the nacelle. Further,

many identical turbines are erected within wind farms, which is rather atypical for conventional

civil engineering structures and an advantage for SHM where concepts can be copied and result

extrapolated. Since a large part of the overall costs for WTs lies in operation and maintenance,

optimizing service intervals through SHM can help reduce energy prices. With a large number of

onshore plants and a rapidly increasing number of offshore installations with weather dependent

accessibility, the need for (remote) monitoring of these structures is evident.

The following sections will provide an introduction to SHM for civil engineering structures as

well as a state of the art review on literature for the applied procedures and methods originating

from diverse scientific fields. While Section 1.2 gives a general overview of the topic, Section 1.3

investigates different SHM components. This section’s organization goes along the author’s

framework which divides all SHM procedures into main blocks: Data acquisition, machine learning

(ML), condition parameters (CPs), and hypothesis testing (HT). The outline and organization of

this thesis will be given at the end of this chapter in Section 1.7.
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1.2 Monitoring Civil Engineering Structures

In the field of monitoring, the notation condition monitoring (CM) exists alongside SHM. Generally,

CM refers to the monitoring of electrical systems and (rotating) machinery while SHM considers

approaches for load-bearing parts of aerospace and civil structures. Hence, both (CM and

SHM) might be applied to different components of the same overall structure. This applies

especially for WTs as power generation units where electrical components and rotating machinery

form an important part. CM solutions for rotating machinery, gears, bearings, and electrical

components are taken from ‘conventional’ fields of industry, where different systems have already

been introduced to the market. In contrast, SHM for WT blades and the support structure

below the nacelle forms a rather new scientific field. This is also valid for large scale engineering

structures such as bridges or skyscrapers. Even though many of the procedures presented are

applicable to both fields, CM and SHM, this work will focus on SHM and hence use this acronym

subsequently.

Originating from the field of modal analysis, SHM has developed quickly during the last two

decades and many fields of application have been introduced. Most approaches target the main

SHM-levels which can be understood in a successive manner: detection, localization, quantification

and forecast of damage (see Rytter [166]). Within these four general steps, damage detection and

localization can be purely based on measurements while quantification and prediction necessitate

a numerical model. While this is a typical description of SHM-goals, their implementation is

subject to research and can be realized in different ways.

Further, fundamental axioms of SHM were contributed by Worden Worden et al. [211], condens-

ing knowledge gained over many years into general statements. This work tries to underline and

extend axiom II, which states that “the assessment of damage requires a comparison between two

system states” [209]. The suggested extension leads to “‘the assessment (...) requires a comparison

of’ relevant ‘system states”’ and accordingly necessitates machine learning procedures to group

states with the given data instances by environmental and operational conditions (EOCs).

This becomes important for commercial SHM applications on large scale structures and especially

for WTs, since there is not only one certain healthy state but many different ones under varying

EOCs. Hence, for offshore wind turbines (OWTs) a learning phase is necessitated to cover the

differing behavior over typical operation and yearly seasons. Next, type, location, and extent of

damage can vary strongly which leads to the conclusion that a single CP might not be sufficient

for a good SHM performance. A CP can be any metric or value extracted from the measured

time series with the goal of indicating a change in the structures dynamic behaviour. Last but

not least, to be of use for owners and operators, the parameters monitored must be put into a

probabilistic context and a clear layout. All of these steps are targeted within this work.

It is intuitive that EOC-influences may vary strongly depending on the analyzed structure.

Early work focused on the changes in modal parameters of bridges, before more abstract CPs were

introduced. Extensive reviews on SHM techniques have been carried out [45, 48, 49, 54–56, 184] and

dependencies of CPs and dynamic behavior on EOCs were investigated [46, 118, 146]. Especially

temperatures below freezing show strong influence on some bridges [142]. Fassois summarizes
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many approaches in SHM with a strongly statistical orientation, pointing out dependencies and

theoretical distribution characteristics [58]. A good overview on machine learning techniques and

influencing EOCs can be found in [176]. Worden and Manson [209] provide a state of the art

review that is based on Rytters SHM-steps, stating many examples for different objectives. One

focus is put on support vector machines. Another current paper that summarizes SHM techniques

with a focus on control charts and sensor validation was written by Kullaa [99]. Linear and

non-linear models for EOC consideration are distinguished, giving several real world examples.

Figueiredo [60] uses one CP and four machine learning techniques as a comparison. Discussion of

SHM on bridges is collected by Ko and Ni [96]. Recently Farrar and Worden published a book

that states the machine learning aspects of SHM, covering extensive examples and many aspects

of SHM in a detailed manner [57]. The focus on machine learning or data normalization reflects

a large number of conference contributions to the International- and European Workshop on

Structural Health Monitoring in these fields.

Furthermore, a differentiation between local and global monitoring approaches exists. Even

though there is no clear differentiation between these two fields, local monitoring refers mostly to

the observation of substructures. It usually goes along with higher sampling frequencies since

local, high-frequency modes of structures and possibly artificial excitation are used. For WTs,

local attempts address specific parts of the structure such as bolted joints, the wave impact zone,

or grouted connections. In some cases even special sensing devices are applied. Global approaches

consider large parts or the whole structure and use naturally occurring excitation sources or a

forced excitation. These techniques are mostly vibration based, generally focusing on changes in

the dynamic behavior, which might be influenced by local mechanisms.

Another distinction can be made between active and passive approaches. Active-sensing

approaches use actuators to excite a structure and work predominantly on a local scale. Passive

monitoring uses natural excitation under operational conditions. Hence, most global approaches

are passive, as the presented work in this thesis. Nevertheless, most extracted condition parameters,

as well as machine learning techniques and hypothesis testing, are applicable to local and global

SHM.

1.3 State of the Art for SHM-Components

Putting the problem of monitoring large scale structures into a general context, the next sections

will discuss the present literature along the introduced framework, which is introduced in detail

in Chapter 3.4. The sections will follow this framework, displaying existing techniques for the

single proposed steps: starting with machine learning (which might be included passively or

unintentionally) followed by condition parameters (these will always explicitly be present in a

SHM scheme) and closing with hypothesis testing, which is utilized to draw a decision about the

structure’s state. The framework could be understood as a menu, where one can choose between

different option in each step (ML-CP-HT). Automated extraction of modal parameters, as a

specific group of CPs, is handled separately in Chapter 1.5. Accordingly, references might appear

in several sections under different points of view.
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1.3.1 Machine Learning

Machine learning (ML) as a term for retrieving coherence and relations within data is widely used

in computer science, engineering, mathematics, and statistics. Whenever data is collected and

stored and underlying patterns within the data need to be revealed, ML provides tools to address

these tasks. In SHM, it is desired to reveal the dependency of condition parameters on EOCs as

formulated in Equation (3.5) or more generally in Equation (3.6). In general, machine learning is

understood as a technique to train or learn the structure’s behavior.

On the one hand, the problem is addressed through directly modeling the relationship f(•),
using in- and output variables to perform regression or classification analysis (supervised machine

learning, S-ML). On the other hand, only input data is used for clustering (unsupervised machine

learning, U-ML). In this case input variables are attributes of the data instances as EOCs, output

variables are usually CPs. The former results in predictive models, while the latter groups the

data points. In SHM, single data records (data instances) are understood as data points, which

can be clustered by their attributes. Commonly, the attributes are additionally recorded averaged

EOCs such as wind speed, temperature, or rotor speed, but could also be values derived from the

time series. In U-ML clustering can be used to decompose the training sets into several clusters.

Evaluation of the goal variables is then carried out within these clusters. A selection of examples

for different ML techniques can be found in Worden and Manson [209] and Farrar and Worden

[57]. The following section will give an overview of some machine learning techniques present in

the literature.

Distance Measures

A very direct approach to machine learning can be achieved through distance measures as

Euclidean distance or the Mahalanobis square distance (MSD) in a multidimensional (CP or

EOC) space. The reference space is built using CPs from training data instances (Y) in healthy

conditions. In the testing-phase, where the structure’s state is unknown, the distance between the

mean of Y and the new CPs is calculated. These distance measures could also be interpreted

as relative CPs. For later hypothesis testing, distances between mean and all training sets are

usually calculated and a percentile value of this parameter distribution is chosen as a threshold.

Theoretically, the distance to CPs from a damaged state or states under new EOCs is larger than

the observed values. Distance measures can also be used subsequently to clustering.

Figueiredo et al. [60] stack ten AR-coefficients from four acceleration sensors as CPs from

measurements on a three story laboratory structure with base excitation to detect damage through

MSD without EOC measurements. Hu [88, 89] uses the MSD in combination with a residual from

the linear mapping of natural frequencies from footbridges to calculate CPs. Again, no EOCs are

considered. The minimum Euclidean distance between transmissibility-functions with a foregoing

negative selection approach is used in [188] to detect damage on a simulated offshore structure and

a numerical aircraft wing, also without EOC measurements. In [177] MSD is used with AR/ARX

coefficients from strain signals to perform SHM on a patrol boat. Further, the MSD is used with

AR-coefficients from a concrete beam under differing temperature loading in [35].
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Regression

Regression analysis forms a large field including linear-, polynomial- and AR-models, support

vector machines (SVM) and neural networks. In general, the relation between input and output

is iteratively modeled by minimizing an objective function (e.g. through least mean squares

(LMS)). Applications range across many research fields and technical areas, hence only a few

applications, with a focus on SHM, are given here. AR-models for response time series were

already mentioned in the condition parameter section (1.3.2). Regression methods can be used to

model the dependency between different CPs or between EOCs (input) and CP.

A linear filter model is used to predict the first two modal frequencies by Sohn [178]. Using

input and output data, Cross et al. [40] utilize response surface models with six EOCs as input to

model the first and second modal frequency of a suspension bridge. Non-linear polynomial models

are used to approximate the dependencies of up to ten temperature measurements on the modal

frequencies of a footbridge in [129]. Variations in modal frequencies from the long-span New

Carquinez bridge due to traffic load and daily variations are captured by linear and polynomial

models in [221]. In [108] linear regression is used to model the frequency-temperature dependency

of a curved concrete highway bridge.

Support vectors machines or regression (SVM/SVR) form a rather new and powerful field in

SHM. Parameters in a given parameter space can be separated or fitted through the so-called

kernel trick: data points or distances are projected into a high dimensional space where separation

can be done through a plane. It results in non-parametric estimates for output variables in a

continuous parameter space. The projection functional is called the kernel-function and many

different types exist (e.g. Gaussian or radial basis kernel). The choice of the kernel parameters is

subject to regression and neither clear rules for the choice of kernel functions nor their parameters

exist. A brief introduction to the topic, including the application with inspection panels of an

aircraft wing is given in [209]. Least-squares (LS-)SVM is an extension of SVM where a cost

function is introduced to iteratively weight the input data points by means of distances to the

estimate [189]. Byon et al. use LS-SVM to detect abnormalities in WT power production [212].

Another popular and well-developed group of regression techniques are artificial neural networks

(NN) [18, 82]. The basic idea of neural networks is to express an unknown relationship between

input and output variables as in (3.5) through several linear (or nonlinear) relations between

different hidden layers (e.g. mapping-, bottleneck- and de-mapping layer)[113]. In the context of

SHM, neural networks can be used with or without EOC measures as inputs. If the neglection of

EOCs is desired, the goal CP vector is simply used as input and output to train the model. All

CPs can potentially be used to feed this procedure. Condition measures can either be certain

inner parameters of the neural network, if the network is newly trained and in the testing-phase,

or a residue between input and output CPs, if parameters from the testing-phase are used to

simulate new CPs based on a trained network.

In [181–183], AR-coefficients (AR(50),ARX(5,5)) are used as CPs are estimated by NN for

every measurement node of a mass-spring-chain. ARX models are used by Peeters et al. to model

temperature dependent modal frequencies [142, 143]. Auto-associative neural networks (AANN)
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are used to train a model of the AR-coefficients with respect to themselves and evaluate the

bottle-neck layer coefficients to detect changes in spring stiffness [181, 182]; no EOC measure is

taken. An AANN is also used in [60] in combination with AR-coefficients, here the difference

between input and estimate is investigated in the testing-phase. Ko et al. use linear and non-

linear regression techniques as neural networks and SVM [96] to link the temperature and modal

frequencies of a suspension bridge.

Clustering

The automatic partition of a point set into a number of groups by certain attributes is a central

task in many scientific fields. In the case of SHM, the point cloud is defined by meta data (EOCs

and/or CPs) for each data instance in the training phase. In general, clustering procedures can

be divided into hierarchical and non-hierarchical approaches. The former procedure results in

tree-like structures, while the latter forms separated clusters. A manual classification is also

possible in many cases.

Hierarchical clustering (HC) approaches can be considered as one of the most straight forward

approaches to clustering. Depending on the chosen approach, each data point forms its own initial

cluster and these clusters are merged successively (agglomerative) or a single cluster exists at the

initial step and is then divided (divisive). Division or merging of clusters is defined by similarities

between all data points. One linkage is added (or erased) during each step. Depending on the

similarity definition, different procedures for data point assignment exist: single linkage, complete

linkage, average linkage, Ward’s method and centroid method [78]. Two major drawbacks for HC

exist: a high computational cost and a user defined threshold for the resulting trees (dendrograms),

which defines a cutting level and hence the number of resulting, separate clusters.

A standard approach for non-hierarchical methods is k-centers-clustering, where k points are

chosen at random from the data instance to be exemplars (centers) for k sub sets [18, 114]. The

remaining points are assigned to the centers so as to reduce the summed square error, usually

Euclidean distance, between exemplars and points. Another commonly used procedure is k-means-

clustering (KM) [18, 51, 131]. Here, the distance between the cluster centroids and corresponding

points is minimized. Both procedures are quite sensitive to the initial set of exemplars/centroids

and are therefore usually repeated many times with varying sets of exemplars to increase the

chance of finding the global minimum. One of the major drawbacks of these methods is the fixed

number of centers/centroids that has to be chosen initially by the user.

Another group of approaches which assign each data point to all centers with a certain

membership rate rather than to a single cluster, can be seen in fuzzy clustering. The most

common approach is the fuzzy c-means clustering (FCM) [17]. It works as c-means clustering but

every data instance is assigned to every cluster with a weight, defined by the distance to the cluster

center. Two major drawbacks are that FCM can only deal with hyper spherical partitions and

due to its Euclidean distance metric, FCM leads to equally important clusters with similar point

densities [168]. Extensions such as FCM Gustafson-Kessel (FCM GK) [74] and FCM Gath-Geva

(FCM GG) [69] try to overcome these with the usage of MSD and the assumption that data points
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originate from different Gaussian normal distributions, respectively [168].

The generic algorithm [86] is an evolution based approach that simulates evolution using a

survival of the fittest technique. A population is evolved over time and mutations are possible

for a random set of members. It can be used as a classification algorithm or initiation for

FCM as presented in [168]. The procedure has a high level of computational effort and complex

functionality must be defined for an application.

In the presented work, a rather new non-hierarchical method is used. It was created by Frey

and Dueck [63] and Dueck [52], called affinity propagation (AP). It solves the clustering problem

by passing information (or messages) between data points without the need for a predefined

number of centers. The number of resulting clusters is instead influenced by preferences, which

are set for the input data points. It is faster than standard clustering approaches. Examples for a

variety of fields are given in [63] and it was introduced to the field of SHM in [77]. One run of AP

is able to provide better results than several thousand runs of standard classification procedures

as shown in [52, 63, 77]. First, similarities between points are calculated. In the standard case

these are negative Euclidean distances but may be potentially any measure between two points,

even allowing for AB 6= BA. With these similarities, indicating “how well the data point with

index k is suited to be the exemplar for point i” [63], the iterative procedure is run. During the

iterations, two different messages are passed between the data points. One is the responsibility

r(i, k), sent from point i to candidate exemplar k. It “reflects the accumulated evidence for how

well-suited point k is to serve as the exemplar for point i, taking into account other potential

exemplars for point i” [63]. In contrast, the availability, a(i, k) “from candidate exemplar k to

point i, reflects the accumulated evidence for how appropriate it would be for point i to choose

point k as exemplar, taking into account the support from other points that point k should be

an exemplar”. Hence, there is one measure r(i, k) from point to candidate giving support and

one from candidate to point a(i, k) collecting support. The iterative procedure is updated and

stops after a certain number of iterations without changes in clusters. It provides excellent results,

proving to perform faster and leading to better classifications than k-means [52, 63, 77].

Conclusion

Many recent publications utilize ML techniques that omit EOC measurements and hence indirectly

use a single cluster for the entire training-phase. In [60] MSD proves to have the best overall

performance compared to neural networks, factor analysis and SVD for an experimental structure

under unmeasured EOC changes and damage. Simple implementation and cheap calculations

support this statement. It is emphasized that there is no guarantee for CP changes as a result of

actual damage not being masked or mimicked by EOC variations, which is implicitly assumed in

SHM approaches that omit EOCs. It is stated by Farrar and Worden that “if the damage produces

changes in the system’s dynamic response characteristics that are similar to those produced by

the source of variability, it is not at all guaranteed that these algorithms (algorithms omitting

EOC inputs, author’s note) will be able to separate changes in the features caused by damage

from changes caused by EOVs” (environmental and operational variations) ([57], p.428).
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Furthermore, if residues are used as CPs, their quality strongly depends on the reference

data instances. If no information about the system state is used to calculate these residues, the

monitoring performance will decrease. SVR analysis, with its kernel-functions, provides a powerful

tool if input and output data is available. If the input-parameter space has gaps, the performance

suffers. If residues should also be included in the SHM framework, an unsupervised ML technique

is desired, since references for the residual CPs need to be defined. AP typically shows superior

clustering performance compared to KM and its fast implementation serves an optimal algorithm

for the given tasks [52, 63, 77]. Hence, it will be used next to a references classification with a

single cluster in the training phase along with manual classifications. The different ML types are

also briefly summarized in Table 1.1.

1.3.2 Condition Parameters

As sensors “cannot measure damage” [209], damage sensitive features or condition parameters

have to be extracted from the time signals through signal processing. In addition, no extracted

parameter at a certain time will measure damage directly until it is compared to at least a single

similar parameter from an earlier instant of time.

In general, two kinds of condition parameters must be distinguished: Parameters that can be

derived from a single data instance directly (dubbed absolute CPs), such as modal parameters,

statistical values or AR-coefficients, and parameters that need by definition (at least) a second data

instance for their estimation (dubbed relative CPs) – usually referred to as residues. This does

not contradict the above stated axiom since both need a reference to act as condition parameters

later on. The following paragraphs will state some condition parameters, starting from basic

statistical values to more sophisticated residues; theoretical insight of applied parameters will be

given in section 2. Finding and applying a parameter that is sensitive to damage and preferably

insensitive to EOCs is one of the core tasks in SHM. The field of condition parameters is vital

and the utilized parameters originate from a broad field of scientific areas.

Table 1.1: Overview of ML types
ML type Pros Cons References
Distance mea-
sures

No input variables; Fast com-
putation; Can be used to fuse
different CPs

Only applicable to absolute
CPs; Might mask damaged
states

[35, 60, 88, 89,
177, 188]

Regression Possibly fast computation;
Might reveal physical insight

Difficult handling of realtive
CPs; Definition of Kernel
function; Def. of NN archi-
tecture; Def. of model order

[18, 40, 60,
82, 96, 108,
113, 129, 142,
143, 178, 181–
183, 189, 209,
212, 221]

Clustering Fast computation; Handling
of relative and absolute CPs;
Physical traceability

Definition of cluster number
(or preference for AP)

[17, 18, 51, 52,
63, 69, 74, 77,
78, 86, 114,
131, 168, 168]
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Statistical Values

Two well known statistical values for time series are the mean value and standard deviation

(the first and second statistical moment). Both can be used to describe signal characteristics

of dynamic outputs. The former is usually zero for acceleration signals but can be of use for

strain or displacement. The third moment is called skewness and represents the asymmetry of the

probability density function (PDF) for a given variable. The fourth statistical moment, the kurtosis,

reflects the peakness of a given signal. Assuming that structural damage might result in impulse

loading or non-linearity, the kurtosis can be used as damage indicator, “providing a measure of

distance to gaussianity.” [203]. Values larger than three indicate a peaked distribution with more

values far from the mean. Further, a time series can be divided into non-overlapping blocks and

from the different frequency-domain representations, a spectral kurtosis (SK) can be calculated for

each frequency bin. Different fractions of kurtosis can be identified with the following goal values:

random signal (SK = 0), stationary harmonic (SK = −1), and non-stationary (SK > 0) [97] .

Another statistical value, originating from the significant wave height used in oceanography, is

the mean of the highest third of values [87]. Further, condition parameters, which are of more

graphical/visual nature, can be drawn from the PDF functions of recorded time series. Most

processes can be assumed to be normally distributed and hence, PDFs of recorded acceleration

values can be plotted against normal distributions to detect deviations [59]. Another approach is

the fitting of distributions for a later comparison using a kernel density estimator [20, 59, 171].

In general, extreme value statistics play a major role in SHM to detect outliers and, Depending

on the investigated CP, the analysis of a generalized extreme values distribution might become

necessary.

These statistical approaches can be applied to structural responses such as accelerations or

strain measurements, and represent well traceable approaches. Yet often they might not be able

to capture structural changes.

Matrix Decompositions

To make use of matrix decompositions, a matrix is built from measured time series or CPs derived

from those. After the decomposition, resulting values can be chosen to build a probabilistic model

and hence, to feed hypothesis testing. One of the most famous matrix decompositions is the

singular value decomposition (SVD). It can also be used to calculate the matrices needed for

principal component analysis (PCA). In the context of SHM, the state matrix Y in Equation (2.1)

is subject to SVD and its rank is used as an index of structural changes [165]. When a new

column from a possibly damaged state is added to the state matrix, the rank of this new matrix is

supposed to be similar to the rank of the state matrix for a healthy structure. In practice, noise

and unknown influences complicate a clear estimation of the matrix’s ranks.

Ruolto et al. [165] apply the rank analysis from SVD to a simulated and an experimental

cantilever beam, using frequency response functions as CPs. In [60] SVD is also used for SHM

in the example stated above. In [46] PCA is used on CP vectors built from modal parameters

and peak indicators from modal filters to distinguish between temperature gradient changes and
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stiffness reduction on a numerical bridge model. PCA as a clustering technique based on modal

frequencies as CPs derived from a numerical and physical model and the well-known Z24-bridge

is applied in [213, 214]. Worden et al. [210] use PCA for coefficients of auto-regressive models

after manual clustering data instances by temperature as a numerical example. Kullaa [100] uses

estimator ratios from single sensors, each modeled as a Gaussian process, as CPs for simulated

data and a physical wooden bridge model. These are further analyzed by PCA and control charts;

no EOCs are included in the procedure.

Modal Parameters

The estimation of modal parameters, e.g. modal-frequency, -damping and mode shape, originates

from mechanical engineering and has been a well established field for many decades. Small scale

structures or parts of complex (aerospace) structures were initially investigated. In experimental

modal analysis (EMA), modal parameters are calculated through the measurement of dynamic

structural responses occurring due to one or several measured inputs. A broad review of methods

and theory is collected in Ewins [53] and Maia et al. [119]. When considering large scale structures

such as dams, bridges, sky scrapers or wind turbines, a forced excitation necessitates heavy

equipment and a measurement of the exact loading is very difficult or mostly impossible. To

combat this, operational modal analysis (OMA), also called output-only modal analysis, in which

only structural responses are used, has been gaining popularity during the past decade [27]. This

was strongly supported by the introduction of subspace-based methods. Since modal properties

such as the modal-frequency, are directly linked to physical values like mass and stiffness, it is

self-evident to use these values for the identification of structural changes.

The estimation of modal parameters is a large field with many different approaches in the time

and frequency domain. An early, straight forward approach is peak-picking, where peaks in a

frequency spectrum are simply visually identified as modes. Damping can be approximated by

the width of the peaks and mode shapes result from amplitudes of, and phase angles between,

sensors. A sort of extension to this approach is the frequency domain decomposition (FDD), where

the singular value decomposition (SVD) of a tensor with auto and cross spectra from different

sensors is computed for each frequency bin. When the singular values are plotted over frequency,

again peaks can be identified and the left singular matrix holds according mode shapes [25, 26].

Application can be found in [185] and [136]. Automation attempts for this method have also been

published [28].

Hu uses modal frequencies from footbridges as CPs [88], Lui investigates a curved highway

bridge [108] and in Sohn [178] the first two modal frequencies from the Alamosa Canyon Bridge

is used to show a temperature dependency. The dynamic behavior of the Z24 highway bridge is

investigated among others in [142, 143]. In [118] modal frequencies of a suspension bridge are

linked to wind speed and hence vibration amplitudes. Further studies on modal frequency changes

of large scale suspension bridges were carried out in [96, 220, 221]. Kraemer [98] investigates this

aspect for an onshore WT.

Originating from the field of economics, auto-regressive (AR) models and their extensions have
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been applied to a wide field of applications during the last few decades. OMA is one of these

fields where AR-models have proven to be of great value. Time series of structural responses

(e.g. accelerations) are used as the basis for modeling. In general, AR-models describe a certain

datum using weighted predecessors of at least one channel. All different derivations of this model

class have this basic idea in common. A detailed insight into the different approaches can be

found in [112, 132]. If a certain time series is described by an AR-model, it is possible to perform

a prognosis of future time steps and to extract the system’s (modal) properties [8, 19, 23, 133].

When several data channels are used, the models are called Vector-Auto-Regressive (VAR). For

example, Kraemer [97] applied VAR-Models for the identification of modal parameters for a

prototype of an offshore WT (installed onshore) successfully. If desired, the use of Auto-Regressive-

Moving-Average(ARMA)-Models could improve the quality of prediction for a certain model order.

Furthermore Time Variant-ARMA-Models (TARMA) with time-varying coefficients modeled by

sine and cosine can be used to cover time-varying system properties [10, 58, 151, 186]. However,

the involved computations are rather expensive and equally good results can be achieved with

AR-models of a higher order [146].

Alongside an estimation of modal parameters, VAR-coefficients can also be used directly as

condition parameters if compared between different data instances, resulting in residues [8, 59, 60,

177]. For this purpose, AR residues of separate channels can be combined or the VAR-coefficient

matrix is stacked into a vector. In [183] AR-coefficients are used to train a neural-network for an

EOC independent SHM procedure and in [35] AR coefficients are used with Mahalanobis square

distances on a concrete beam. Wang and Ong [205] analyse AR-coefficients, derived for single

sensors, to detect damage in a reinforced concrete beam. In [179], AR-coefficients are extracted

from data relating to concrete columns.

Stochastic subspace identification (SSI) is a data driven time domain system identification

method using output-only data to estimate a stochastic state space model. It was introduced by

van Overschee and de Moor [197, 198] and is based on the Eigensystem Realization Algorithm

(ERA) by Juang [92]1. It is considered to be a very powerful tool in system identification [24].

During the last two decades the method has widely been used in the field of civil and mechanical

engineering and has been able to provide excellent results (see e.g. [40, 77, 97, 123, 124]). In

general, two different schemes of the SSI exist. One is the covariance driven SSI (SSI-COV), the

other a data driven SSI (SSI-Data) formulation [142, 144, 146]. Both methods are derived from a

state space system with random white noise inputs. For high model orders, SSI performs faster

than VAR procedures. Another distinct advantage is the fact that many different model orders

can be derived from a single block matrix without the need for further matrix decompositions,

resulting in very fast computation. Application of SSI can be found also in [46] and [40] where

SSI-Data is used to calculate the modal properties of a long span suspension bridge. SSI-COV [88]

and SSI-Data [129] were also utilized to extract modal frequencies from footbridges. Peeters and

De Roeck [142] apply a reference-based formulation of SSI-COV to identify the modal parameters

1 The original code, performing excellent after correction of a few Matlab expressions, can be found on floppy
disk in [198].
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of a steel mast.

For both, SSI and VAR models, it holds that if the assumption of white noise excitation is

violated, frequency parts of the colored noise will occur in the VAR/SSI solutions. In practice,

this will always be the case since excitation such as wind and waves will have colored spectra.

For WTs, also excitations from blades, resulting from each blade passing the main column, and

from blade-imbalances, have a distinct frequency that depends on the rotor speed. Due to its fast

computation and possible automation, SSI-Data is used for (automated) system identification in

this work (see 2.3).

Due to their direct connection to the structure’s stiffness and mass, the usage of modal

parameters as damage indicators can be counted among the fist approaches in SHM. The variation

of modal frequencies over time is one of the most common schemes. Also mode shapes were used

to identify damage [95] and their derivatives have been used for damage localization [137, 204]. A

distinct drawback of the usage of mode shapes is their more erroneous estimation compared to

frequencies and the large number of sensors needed for a good solution.

Nevertheless, even though many other condition parameters are available today, modal parame-

ters still play a key role in SHM and are also justified by their usage in the updating, validation and

fitting of numerical models [75, 163], which play a key role in modern engineering. These updated

models can also potentially be used in higher SHM-levels such as localization and quantification.

The problem of the automated extraction of modal parameters, which forms a vital field in current

research, is addressed in 3.2.

Residuals

A very instinctive way of calculating a residual is the comparison of two frequency spectra from

the same location and structure. Fassois normalizes time series by mean and standard deviation

to calculate different response spectra [58]. These can be compared and their residual follows a

Gaussian distribution. Hence, hypothesis testing for each frequency bin can be directly applied.

The minimum Euclidean distance between transmissibility-functions with a foregoing negative

selection approach is used in [188] to detect damage to a simulated offshore structure and a

numerical aircraft wing, without EOC measurements. Ruotolo uses frequency response functions

from a cantilevered beam [165] to detect damage.

For more advanced condition parameters from VAR-models, a new time series is modelled

by AR-coefficients gathered at one (or several) past time series1 and the difference between

measurement and estimate is calculated, resulting in a residue. Two condition indicators are

derived from this residue: One is the (fitted) coefficient of determination according to Neter [132],

basically summing the error, taking the number of channels and samples into account. The second

condition parameter is based on the M-Test according to Box [21, 187]. The residue co-variance

matrix is built and an M-Test compares the consistency of distributions of the co-variance matrix

with the distributions of one (or several) reference co-variance matrice(s) [97]. Both parameters

1 Reference data instances can be defined through machine learning.
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are potential candidates for a long term SHM procedure but are also strongly dependent on EOCs.

Hence, they have to be combined with machine learning as presented later (see Chapter 3).

The block-Hankel matrix of SSI-COV can be used for the estimation of residues. Similarly to the

AR based residue, the residue derived from SSI compares system dynamics from an earlier time

instance to the ones from the current data instance. The residue was introduced by Basseville et al.

[13] and Zhang and Basseville [219] and can be directly derived from a co-variance block-Hankel

matrix built from measured output signals. To calculate the desired parameter, the nullspace

of one Hankel matrix of a current measurement is compared to one (or several averaged) from

reference data instance(s). The nullspace indirectly represents the underlying dynamic (state

space) system, a change in the structure’s dynamics will result in a differing nullspace and hence

a residue other than zero. Again, reference data instances are dependent on the machine learning

in use. First a left nullspace is calculated for the reference data instance, if several data instances

are used, the nullspaces are averaged. For the actual data instance, the co-variance block Hankel

matrix is calculated and multiplied with the reference nullspace, the resulting matrix is stacked to

a vector and a multidimensional statistical test is performed on this variable to see if its means

differ from zero [13, 84, 97]. Kraemer applies this parameter in combination with a manual

classification to an onshore wind turbine [97]. The parameter is sensitive to EOCs and hence

data classification is very important in its application. A potentially more robust version of this

attempt was presented recently in [50].

Accumulated Energy

Accumulated energy (AE) describes the normalized integral of power spectral densities over the

measured frequency range. Accordingly energy distributions over the inspected frequency range

can be visualized by AE. The parameter was used for shape analysis [41] and to characterize

earthquakes [192]. Accumulated energy from frequency spectra of accelerometers (not power

spectral densities) was used within the IRIS - Industrial Safety and life cycle engineering project.

Wenzel [208] uses AE over time to identify changes in bridge dynamics visually and to track the

AE centroid’s position over time. Different demolitions were artificially introduced to the “S101

Overpass” close to Reibersdorf in Austria and the spectral distribution between 0 and 250 Hz

was analyzed. Certain energy levels for AE from PSDs are linked to frequencies as CPs in [77].

Obviously, all CPs based on spectra strongly depend on the given measurement set-up, that is,

the sampling frequency, recording time and measuring chain characteristics.

Conclusion

It is the author’s belief that, similar to health checks for human beings, not a single indicator will

resolve all problems in SHM. In other words, no parameter will be sensitive to all damage cases

while being robust against all EOC variations and ultimately fulfill all needs of the owners and

operators of WTs or large scale structures.

In presenting a link to numerical models and being of distinct physical meaning, modal

parameters must be understood as standard parameters. Residues play an important role and
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have the intrinsic advantage of analyzing the whole (measured) frequency spectrum rather than

single maxima (modal parameters) and hence do not imply that abnormalities will manifest

them-selves in a certain frequency range of the response spectrum. Accumulated energies have this

advantage in common. Consequently, statistical values and modal parameters will be used along

with residues and AE for an SHM system in the presented work. The different CPs are also briefly

summarized in Table 1.2. As mentioned above, CPs must be supported by machine learning

techniques and hypothesis testing to complete the SHM-scheme. Some available technique will be

presented in the following section.

1.3.3 Hypothesis Testing

Setting up a hypothesis about a phenomenon is essential to all fields of science. The process of

evaluating these hypotheses is generally dubbed hypothesis testing (HT). A philosophical question

arising from these tests is: can a hypothesis ever be accepted, or in contrast, only be rejected by

a contrary observation? In test set-ups it will never be possible to investigate the complete set

of realizations or exemplars and hence accept the stated hypothesis. This is often illustrated by

the black swan theory: One can watch white swans for a lifetime but never be sure that there

are only white swans, while by seeing one black swan, the hypothesis of there being only white

swans is rejected [193]. Recently, Bayesian theory, where one can gain knowledge about the entity

of events through prior observations, opened a new, contrasting field to the existing points of

view [73].

In SHM, the term hypothesis testing is used to indicate that a decision about the current

Table 1.2: Overview of CP types
CP type Pros Cons References
Time series
statistics

Fast computation; (mostly)
no input variables; useful for
sensor fault detection

Insensitive to (smal) struc-
tural damage

[20, 59, 87, 97,
171, 203]

Matrix decom-
positions

Fast computation; (mostly)
no input variables

Insensitive to (smal) struc-
tural damage

[46, 60, 100,
165, 210, 213,
214]

Modal parame-
ters

Physical meaning; Useful for
model updating

Difficult to automate extrac-
tion; Insensitive to (small)
damage

[27, 53, 88, 96,
98, 108, 118,
119, 142, 143,
178, 220, 221]

SSI residuals Very sensitive to damage Abstract physical interpreta-
tion; very sensitive to EOCs;
difficult to determine input
variables

[13, 13, 84, 97,
219]

VAR residuals Very sensitive to damage Abstract physical interpreta-
tion; very sensitive to EOCs

[21, 58, 97, 132,
165, 187, 188]

Accumulated
energy

Physical interpretation; Sen-
sitive to damage; fast compu-
tation

Sensitive to EOCs; Depen-
dent on sampling frequency
and record time

[41, 77, 192,
208]
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system state is extracted from data. Namely, if the system is in a normal or abnormal state,

H0- and H1-hypothesis respectively, where abnormal might mean damaged or unobserved till

the given point of time. Through the implementation of machine learning, the boundaries for

testing depend on EOCs. If a single cluster is used, all data instances are evaluated by the same

boundaries.

Coming to a decision about the structure’s current state should be the final goal of any SHM-

system or framework. The previously described approaches and methods provide the tools to

divide a database into homogeneous groups and further to extract condition parameters from

each data instance. Accordingly, the final step is a comparison of condition parameters from a

new data instance with the condition parameters of an according group of data instances during

training. As stated in Figure 3.10, hypothesis tests for each combination of ML and CP can be

performed for a new data instance. Major characteristics of the HT step are the used probabilistic

model and the according thresholds. Further, results can be displayed and evaluated through

different control charts.

Probabilistic model and control limits

Within the probabilistic environment in which an SHM framework is applied, each extracted

variable x (CP, nomenclature as in 2.7) will take on different values for different samples taken.

This applies to all possible CPs, even if derived under the same EOCs, where EOCs are represented

by average values of random processes for a certain period of time. Providing a mathematical

formulation for the expected values of x is the core purpose of probabilistic models or PDFs.

These functions link parameter values to probabilities of occurrence for those values. A variety

of different functions exist, such as the Normal, Gamma or Weibull distribution. Each of these

has certain parameters which can be fitted to collected data as an approximation to the true,

underlying PDF. Most commonly a normal distribution is assumed, based on the central limit

theorem [158, 164]. For example in [57] the probabilistic framework for SHM is outlined in detail.

From the assumption of a PDF, or directly from percentiles, one can draw boundaries within

which x will lie with a certain probability. For the Normal-distribution these boundaries are

usually defined using a multiple of the standard deviation σ, e.g. 3σ for a 99.7% confidence

interval. If x exceeds those boundaries H0 is rejected. Many of the examples given in 1.3.2 state a

fixed percentage to make the decision between H0- and H1-hypothesis.

Control Charts and ROCs

If many data instances of a testing period are evaluated, they can be displayed chronologically in so-

called control charts. The confidence intervals become upper and lower control limits (UCL/LCL),

between which the healthy parameter ranges. A detailed description of many different control

charts, including their theoretical background and application can be found in [128]. Univariate

control charts analyze one data instance after the other while multivariate charts group data

instances or multiple variables of a similar kind for evaluation. In the multivariate case, control

limits must be adjusted according to the group size. Kullaa [99] provides an extensive overview
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paper of control charts applied in SHM. A multivariate Shewhart T-control chart with subgroups

of four is applied to principal components in [46]. Extreme value control charts with constant

control limits for CP from PCA are used with experimental data from a wooden bridge model

in [100]. Fugate et al. [66], Sohn et al. [179] investigate Shewhart X̄ and multivariate S-control

charts to identify damage on highway bridge concrete columns in a laboratory setting through

AR-coefficients. Both sources use a fixed confidence interval of 99%. Based on simulated data of a

reinforced concrete frame, Wang and Ong [205] analyze AR-coefficients through the multivariate

Hotelling’s T 2 control chart at a 99.73% confidence interval, combining several sensors. Results

are compared to the univariate Shewhart X̄ control chart, favoring the multivariate version.

When the actual system state during the testing phase is known, which is the case for the

majority of present literature, SHM performance can be evaluated through the count of false

positive (FP) and false negative (FN) alarms or describing an alarm under healthy conditions

and no alarm under damaged conditions, respectively. It is crucial to state that both values and

hence performance, might strongly depend on the chosen confidence interval.

Accordingly, for a test of an observed continuous variable, variation of decision boundaries

(UCL/LCL) and hence confidence intervals, will result in different FP and FN values for the same

test data. The overall performance of a test with varying decision boundaries can be evaluated

using receiver operating characteristic curves (ROCs) displaying (1-FN) (detection rate) over FP

values for differing confidence intervals [44, 80, 121].

Zweig [224] provides a review on ROCs, citing early medical applications in the 1950s as well

as underlining the usefulness of this tool in “the face of the lack of a standardized approach to

performance” [224]. Furthermore, “the ROC plot provides a comprehensive picture of the ability

of a test to make the distinction being examined over all decision thresholds.” ROCs are linked to

other visualization procedures and different examples are given.

Akobeng [2] gives two different metrics for ROC evaluation: The area under the curve (AUC)

and the Youden index for a non-visual comparison of different ROC-curves. Further parameter

ranges for evaluations of the AUC are given. These curves provide a visual insight into how

strongly the parameter distribution (PDF) overlaps under healthy conditions with the one under

damaged conditions.

A first application of ROCs in SHM was presented by Mujica et al. [130]. PCA is used to

calculate CPs during the training phase and a normal distribution is fitted to those CPs. ML

is implemented using basic clustering into four base lines for damage detection in a steel plate

through piezoelectric transducers. An χ2-test determines if CPs from new sets in the testing

phase differ from the healthy structure. ROCs are used to evaluate different CP settings (number

of scores).

Conclusion

Even though multivariate control charts provide a promising tool for SHM, the uni-variate case

is applied within this work to limit the sources of variability (group size). Further, multivariate

charts have an averaging characteristic which might reduce FP alarms but also potentially mask
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phenomena occurring from changing EOCs. Here, the use of uni-variate Shewhart X̄ control

charts is investigated. A crucial tool, which has only been applied to SHM for a single CP without

distinct ML techniques, can be seen in ROCs which form an essential part of the presented

framework. Further, the AUC analyzed in this work serves as a global parameter for performance

evaluation, which is new to the field of SHM.

Table 1.3: Overview of HT
HT component Info References
Probabilistic
models

Normal distribution most common, many others exist; Gen-
eralized extreme value distribution is important tool; Per-
centiles are useful, no distribution type is presumed

[57, 158, 164]

Control charts Overview of HT results over time; Uni-variate control charts
for mean; Multivariate for Standard deviation but might
mask single events

[46, 66, 99, 100,
128, 179, 205]

Receiver
operating
characteristic
curves

Combine FP and 1-FN results for several confidence intervals;
Very important for general performance estimation; Provide
global performance metric; Distribution of points along ROC
gives important insight.

[2, 44, 80, 121,
130, 224]

1.4 State of the Art for SHM at Wind Turbine Support Structures

The following section will detail the existing approaches for SHM of WT support structures.

On- and offshore wind turbines have in common that they cover a large variety of engineering

professions: Beginning with the footing of piles or gravity foundations in soil, over large steel

constructions, turbines, and generators to the aerodynamic design and high performance materials

of blades in a complex environment. As a result, a variety of different monitoring fields exist.

Recently, basic literature has been released covering all fields of wind turbines from historical

evolution to design and operation. An early work considering offshore wind turbines and a

financial viewpoint of different wind turbine designs is presented by Harrison et al. [81]. Tong et

al. [194] cover a wide range of WT engineering including dynamics and acoustics. Component

design, aerodynamics, controller design, evolution of design rules and principal innovations in

technology with a focus on offshore turbines can be found in [30]. Gasch et al. [68] provide a

general overview of design, historical development as well as covering planning, operation, and

economics.

Large variations in EOCs1 and their influence on the dynamic behavior make EOC-monitoring

an essential part of every SHM system. For offshore turbines, each labor-based monitoring task

becomes even more critical since transitions between turbines have to be undertaken by ship and

weather windows with acceptable wind and wave conditions can be a very limiting factor. Hence,

one overall goal in WT monitoring is the performance of condition-based maintenance rather than

1 Typical EOCs are: wind speed and direction, wave direction, height and spectra, temperature, nacelle position,
rotor speed, pitch angle and electrical output.
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preventive or corrective maintenance to omit unforeseen damage and down times. Even though

the current major focus of monitoring of WTs is on CM, SHM approaches play an important role

for ageing towers and remote plants with limited accessibility. Inspection of support structures is

mandatory, but its realization remains unspecified. Instead of a visual inspection of kilometers of

welded seams or local monitoring with hundreds of sensors, permanent monitoring of the global

structure’s behavior during operation provides a promising alternative. In the case of WTs, SHM

can be divided into global (vibration based) monitoring and local monitoring of specific parts

such as scour monitoring or monitoring of grouted joint connections.

During the last decade, a lot of effort has been directed towards CM for electric systems,

rotating machinery and the pitch system within the wind turbine’s nacelle and rotor. Hameed

et al. [79] provide an extensive review on methodology and algorithms. García Márquez et al. [67]

provide a broad range of literature reviews on CM giving a compact overview of available CM

types and signal processing methods. The vast majority of reviewed literature concentrates on the

blades, rotor, gearbox, generator and bearings, not on the support structure. Nevertheless, this

review marks a good starting point for a broad overview of the topic. Growth of wind energy and

discussion of SHM/CM costs are found in [31], major challenges and demands are also pointed

out. Liu et al. [109] analyses SHM for (offshore) wind energy systems from the Chinese point

of view, also providing a status of wind energy in China - the 2nd largest market after Europe

by installed wind power capacity. A survey of available condition monitoring systems on the

market was prepared within the SUPERGEN initiative by Crabtree et al. (see Crabtree et al.

[39] and Crabtree [38]), pointing out “a clear trend towards vibration monitoring”. Discussion

of the companies in question is included as well. The company information and product details

provide an especially good overview. A further review on available CM-methods was carried out

by Yang et al. [215]. In both cases, the support structure is only addressed marginally. Concluding

these reviews it becomes clear that SHM systems for support structures are in pre- commercial

development due to the lack of specific requirements in guidelines or codes. Some approaches will

be reviewed in the following section.

In [1] a Micon 65/13 turbine is investigated. Acceleration power-spectral-densities at different

blade harmonics, modal frequencies and MAC values are used as CPs. To simulate output data,

the numerical model was validated by the first 14 measured modal frequencies up to 16 Hz.

Simulated damage locations are: the blade root, the low speed shaft and the yaw joint. The

procedure is linked to the approach in Sohn et al. [180]. For ML, a single cluster is used and

3-σ boundaries are constructed for HT. Global modal frequencies only shows small changes due

to relatively large damage in the blade root (about 4% for a stiffness reduction of 25%). Modal

contribution shows higher sensitivities with a 100% change at 50% damage.

In Lachmann et al. [103], acceleration data from an onshore WT monitored for 17 years is

used for system identification. Wind loads, inertia forces at the rotor and dynamic loading in

the support structure are identified as fatigue relevant loads. As CPs, modal parameters are

extracted using SSI and EFDD. Based on the modal parameters, model validation is undertaken

using MOPAC [134], a java based software package. Artificial damage is applied within the

numerical model at four spring elements, representing tower section connections. Damage detection



1.4 State of the Art for SHM at Wind Turbine Support Structures 19

is then performed with wavelet transformation [33, 110]. Further investigations on ultrasonic

measurements for fatigue analysis are given in [85]. Numerical simulations for blade and tower

including multi-criteria optimization can be found in [106].

In [172–174] monitoring is carried out in a similar manner: A monitoring system for a 500 kW

ENERCON E-40 onshore WT in Dortmund, Germany, is presented. The sensor system is

composed of a displacement, strain and acceleration sensor and combined with a self managing

software-system that continuously collects data and runs analysis. Faulty signals (such as a

damaged temperature sensor) can be detected and users are automatically notified by mail. In

[175] a system extension, including automated system identification through ARTeMIS (EFDD,

SSI) and automated model updating with MOPAC [134], is presented. Hence, modal parameters

are used as CPs with a base line classification of a single cluster. Based on the bending stiffness

at four points in the FE-model, a damage catalog is created for future monitoring. Wind turbine

power output and efficiency are monitored additionally. In [141] Gaussian mixture models are

used in the ML step to train 20 min mean values of wind speed and its standard deviation to

quartiles of displacements at the 42 m level. As a first step for HT, it is checked if the right load

class was predicted and no HT about the structures state is carried out through control limits.

A SHM procedure dubbed wavelet auto regressive diagnostic energy network (WARDEN) based

on AR-parameters and wavelet decomposition was carried out by Bassett [12]. The approach

focuses on different operational states such as ambient excitation, static yaw, start up, operation

and shut down of an onshore 2.3 MW WT, identified using a manual classification in the ML step.

Accelerometers at three different tower levels plus EOCs (wind speed, rotor speed and generator

speed) serve as input. AR parameters are used as CPs comparing the Euclidean distance of these

parameters from an actual data instance to the mean of a database and the data instance stored

in the database closest to the actual conditions. Healthy data is stored in a database and no

HT step is included. Potential damage localization is carried out through wavelet decomposition.

Further, different stopping events are analyzed in [11].

Benedetti et al. [15] monitor an onshore WT with a 13 m rotor diameter and 18 m hub

height with strain sensors. Measurements are taken with fiber brag gratings (FBGs), a relatively

new optical method for strain measurement, at the tower root right above the foundation to

estimate the strain field perturbation and root moments as CPs. Numerical simulation of the

WT tower provides Eigenfrequencies and tower base strain. ML is realized by investigating strain

abnormalities for reference simulations of different crack lengths, HT is not included in the analysis.

It is pointed out that “the axial strain gradient along the circumferential direction (...) can be

regarded as an indication of the structural integrity.” The number of required sensors and their

placement for damage detection is discussed as well. Influences on the fatigue life and structural

integrity after crack detection are investigated in [16]

Molinari et al. [127] use acceleration measures from an 18 m high wind turbine with 13 m

rotor diameter and an output of 11 kW for monitoring purposes. The signals are captured on

seven different levels in two planar directions each. Monitoring is motivated by fatigue problems

at the WT’s base. Dynamic characteristics as modal frequencies and mode shapes as CPs are

investigated. It is found that the first two modes are close to the vortex shedding frequency.
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These modes also have the largest torsional components on the base and cause fatigue problems.

ML and HT are not carried out.

A complete SHM-approach is applied to the onshore support structure of a 5 MW offshore

turbine in [65, 97]. Even if boundary conditions and loading differ from the actual offshore

structures, all of the important SHM steps have been realized. System identification through

VAR-Models and vibration based damage detection through damage residues (from SSI- and

AR-models) as CPs and numerical model updating are derived from acceleration data. Machine

learning is realized using fuzzy data classification and HT is included by setting a constant

one-sided upper limit at 95% confidence interval, based on the training phase [64, 65, 97]. The

possibility of sensor fault detection is also included in the scheme. The approach was part of the

IMOWIND project which comprised all major parts of a monitoring system, applied to the above

mentioned onshore structure [159]. The study comprises data acquisition and management, load

analysis, examination of dynamic properties, damage identification and model updating.

In [207] an SHM concept based on modal parameters as CPs is presented. Acceleration data

from an offshore monopile foundation is used to track modal frequencies over a period of two years.

Modal parameter extraction is based on the poly-reference least squares complex frequency-domain

estimator (pLSCF). Alongside the dynamic responses, tidal levels, wind speed, rotor speed, wave

height, temperature, and jaw angle are collected as EOCs for each ten minute data instance.

Machine learning is implemented via a two step approach: First, data instances are manually

clustered by major EOCs. Within each cluster a low-order non-linear regression is applied to fit

the dependency between modal frequencies and EOCs. Finally, in the HT step, the residual errors

between measured and predicted frequencies are monitored in a control chart based on a normal

distribution. Control limits are set to µ ± 3σ. Significant dependency of modal parameters to

tidal levels as well as seasonal variations are identified. In addition, the so-called J-tube reveals

a strong influence on the structure’s bending modes. An overall stiffening of the structure is

accounted to soil stiffening under cyclic loading.

In [47], data from the same turbine in parked or idling position is analyzed with PolyMAX,

and SSI-COV, and mode shapes frequencies and damping ratios as CPs are tracked over a period

of two weeks. A single cluster is used in ML for this period. Frequency and damping are shown

to be dependent on EOCs. HT is not applied since only the base line phase is analyzed.

Rolfes et al. present an SHM approach which addresses damage identification, quantification

and localization [160–162]. Damage identification is realized by monitoring the proportionality

between accelerations below the nacelle and strain at the tower root also including wireless

sensing [161]. Data was acquired from a fourteen year old NEG-Micon 250 (250 kW), and a six

year old Vestas V-80 (2 MW) turbine. Numerical model validation is performed as well.

An array of wireless sensors is used on a NEG Micon and Vestas with a 40 and 78 m hub

height respectively [191]. Modal frequencies were identified with ERA. A detailed overview and

introduction for all technical components of wireless-sensing for civil infrastructure, as one of the

key features for an cost efficient SHM approach, can be found in [113]. For damage localization,

the multiparameter eigenvalue problem (MEP) [36, 37], is applied to physical models. This method

uses frequency changes in combination with the decomposed stiffness matrix of a numerical model
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of the structure to locate and quantify structural changes. This method was also applied to two

onshore wind turbines with artificial damage [162]. One is a Südwind S70 (1.5 MW) with a 144 m

lattice tower where bolts were loosened at the highest section, the other a guyed Südwind S1200

where tension was reduced in one suspension cable. In both cases the MEP is able to localize and

quantify structural damage correctly.

Current research shows many traditional applications based on modal parameters and fatigue

monitoring. A first step towards investigating variations under different EOCs has been made

during the past years. A fully automated investigation including advanced ML and HT (self

adapting) and more sophisticated CP, other than modal frequencies, is missing so far.

1.5 State of the Art for Automated Operational Modal Analysis

As an extension of the CP estimation, the automated extraction of modal parameters will be

analyzed in this section in detail. In the field of operational modal analysis, the automation of

modal parameter extraction has been a goal for over four decades, reaching back to the 1960s where

modal analysis was performed with analog equipment. All strategies, independent on whether they

rely on frequency or time domain approaches, have this goal in common. Today, many procedures

and computer programs still necessitate human interaction for this task. If this is the case for each

analyzed data instance, it prohibits the desired analysis of large databases for SHM. Accordingly,

a lot effort has been made in the recent years to automate this procedure. A broad review of

different approaches dealing with the (semi-) automated identification of modal parameters was

recently published by Reynders, Allemang, Lau and Magalhães (see [3, 105, 116, 157]). Many of

these approaches, including the latest one by Reynders, rely on clustering points in a stabilization

diagram. Due to the calculation of distances between, or the comparison of, all points, clustering

might become computationally rather expensive.

The most rudimentary approach in automated system identification is to choose a single

conservative model order, performing a fit, and using the results as system poles e.g. modal

parameters. In general, these solutions might contain spurious or not all of the desired modes.

Today, it is possible to calculate solutions for a large number of different model orders for

parametric system identification procedures1 within a sufficiently short period. This avoids the

iterative estimation of an alleged optimal model order but raises the problem of a growing number

of spurious solutions. The key problem is the separation between non-physical or spurious solutions

and those of physical relevance which correlates with the grouping of poles belonging to one mode.

In most cases, this problem is addressed with stabilization (or consistency) diagrams. Typically

the frequency of each solution from a parametric system identification method (system poles) is

plotted over the model order. Stable paths (straight vertical lines), with a fairly constant frequency

(and damping, plus optional further parameters) over several model orders, are assumed to belong

to physical solutions and thus representing the modal properties of the system. When frequencies

1 System identification procedures are considered to be parametric when they extract a finite number of solutions
(system poles, and, if applicable, zeros) when run for a certain model order.
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of all solutions are plotted versus their according damping ratios (frequency-damping-plane),

dense, elliptic clusters occur for stable modes. It is also possible to plot solutions of different

model orders in the complex s-plane. Further, pole surface consistency and density are considered

a helpful addition to stabilization diagrams [149]. The next section will describe parameters used

in the automated procedures followed by a review of proposed approaches.

1.5.1 Parameters used for Automation

Each solution (or pole) from parametric system identification comprises a complex eigenvalue

(frequency and damping) and a complex eigenvector. To eliminate spurious and group physical

solutions, parameters for evaluation are necessary. Again, it is important to differentiate between

absolute and relative parameters: While the former can be interpreted directly for a single solution

(as damping ratio or mean phase deviation) the latter necessitates (at least) two solutions (as

frequency differences or the modal assurance criterion (MAC)) for an evaluation. Further, soft

and hard criteria can be distinguished. Hard criteria indicate direct, absolute thresholds (as

damping ratios above e.g. 20%) while soft criteria range from potentially spurious to physical

(usually normalized to [0− 1]).

A general, initial criterion originating from basic theory is the appearance of solutions in complex

conjugate pairs [53, 119]. Each solution without a complex conjugate counterpart can be erased.

The two major (and most commonly displayed) pole parameters are frequency and damping.

No pair of solutions far apart from each other in one of the two dimensions in the stabilization

diagram, especially frequency, can be considered to belong to the same mode. While the (modal)

frequency is an relative parameter between poles1, modal damping can serve as absolute and

relative parameter since very large or negative values can be suspended (hard criteria) in many

cases.

In addition, several different parameters can be derived from an eigenvector. The complexity of

the modal vector is measured by the mode phase colliniarity (MPC), values range from 0 to 1

where 1 indicates perfect co-linearity [156, 201] indicating a purely real eigenvector. Alternatively,

the mean phase deviation (MPD) can be calculated for each mode shape. Ranging from 0◦ to

45◦, it indicates how much the mode shape’s DoFs differ from a straight line through origin in

the complex plane, providing a better applicable parameter than MPC since real-valued modes

cannot be postulated in general. Both can serve as hard or soft absolute criteria.

One of the most popular vector criteria is the modal assurance criterion (MAC) [5, 6] which

indicates the linear dependency between two (complex) vectors. It is used as a relative criterion,

indicating if two solutions belong to the same mode (MAC value close to 1). High root-mean-

square values of unscaled mode shape magnitudes indicate the importance of a mode. A similar

parameter is the modal contribution, denoting how much a single mode contributes to the total

response. In addition, pole weighted/scaled modal vectors provide a concept that is supposed to

1 In general, no frequency value can be excluded initially. Hence, frequency differences between solutions are
defined.
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give the modal vector more sensitivity [3].

Besides these general parameters, parameters for specific system identification methods have

been derived. For the frequency domain decomposition (FDD), the modal coherence, a comparison

of mode shape at a spectral peak with neighboring mode shapes is used as a criterion [28]. For

automated system identification, the complex mode indicator function (CMIF) [150] is used as

parameter by Lanslots [104]. Being the primary accuracy indicator in the ERA, the consistent

mode indicator (CMI) is used as identification parameter by Pappa ([139, 140]). Values range

from 0 to 100%, “modes with CMI values greater than approximately 80% are identified with high

confidence.” Modal transfer norms, based on SSI, give a measure of the reduction error when one

mode is removed from the model [155]. Scionti uses modal norms between two different stochastic

subspace balanced realization model instances to compare estimates [169]. Pole-zero cancellations

of a stochastic state space system are investigated in [71]. Another set of parameters is based

on the frequency-domain maximum likelihood estimation (MLE) where uncertainties in pole

estimates, the number of close zeros to a pole and pole-zero correlations are investigated [199, 201].

All of these parameters are used in different combinations to aid the task of automated modal

parameter extraction from measured time series. Some of the existing attempts are outlined in

the next sub chapter.

1.5.2 Existing Procedures

The following section will give an overview of the existing investigations and procedures that

focus on automated extraction of modal parameters making use of the parameters mentioned in

the previous paragraph. In automated OMA basically two groups of approaches exist: One is

based on dividing (PSD) frequency spectra into several modes; the other is to cluster solutions

in stabilization diagrams. These diagrams might be built from various system identification

procedures working in the time or frequency domain. The approaches utilize ML techniques

previously outlined in Chapter 1.3.1, a focus is laid on the usage within the different approaches

here.

Frequency Domain

The above mentioned FDD proved to be one of the most popular modal identification techniques.

An automation of this technique was recently presented and dubbed enhanced frequency domain

decomposition (EFDD) [28, 91]. First, peak identification for the power spectral density is

performed. Subsequently, the peak is identified as physical or noise by collecting surrounding

points by MAC values larger than a threshold (0.8 suggested). The identified domain over several

frequencies, which must contain more points than a user defined threshold, is then deleted from

the frequency spectrum and the search is repeated. An IFFT of the selected frequency domain,

the pole, is used for the determination of damping in the time domain. The procedure was tested

on a highway bridge [9] and was also applied to a long span arch bridge by Magalhaães [117].

A drawback is the dependency on the frequency resolution, where peak identification might fail

due to noise levels or for poorly excited modes. Further, SVD for each frequency bin is needed



24 1 Introduction

and many MAC values are calculated around each peak to define the modal domain. This results

in large numerical efforts. The modal coherence assumes noise mode shapes to be of random

character, which is not necessarily the case. Finally, estimated damping ratios strongly depend on

width of the identified modal domains around the peak.

An extension of the EFDD was presented by Rainieri [152–154]. Based on the power spectral

density, as in (E)FDD, MAC values are calculated at each frequency bin between different

measurements (minimum of 10 suggested). Mean and standard deviation of MAC values are

subsequently investigated over the frequency range and for several measurements. The so called

MAC sequence must have an average above 0.95 and a standard deviation smaller than 0.01.

The derivatives of the sequence are investigated as well. Finally, a band width is defined by

investigation of a sufficient MAC sequence which is used for peak identification within these bands

for modal frequencies and an IFFT of the corresponding power spectral density band to determine

damping ratios. The procedure was applied to a concrete tower, a star vault and bell towers.

This approach can potentially overcome the problem of peak picking within the whole frequency

band but the number of frequency bins can be very large, hence, again computational effort is

rather high. Furthermore, many measurements are necessary, which might be undesirable or may

see EOCs change and influence the modal parameter between measurements.

Stabilization Diagrams

To create a stabilization diagram, many different parametric system identification procedures are

available. Along with SSI and VAR-models, the PolyMAX is a popular approach for achieving a

clear stabilization diagram [145, 147]. It is a “polyreference version of the least squares complex

frequency-domain (LSCF) estimator method” [145]. Attempts for mode extraction through

identification of stable paths include pure path estimation [46, 138, 140, 155], one-dimensional

attempts using analysis of frequency bands/histograms [104, 105, 122, 125, 126, 169, 223] over

hierarchical clustering [47, 115, 116, 156], singular value decomposition [3, 4, 29, 149], neural-

networks Lim et al. [107] over fuzzy c-means or k-means clustering [32, 47, 156, 168, 199–202]

to support vector machines [71]. The next sections will outline some of the more advanced

procedures.

Singular Value Decomposition The common statistical subspace autonomous mode identification

(CSSAMI) is presented in [3, 4, 29, 149]. Pole weighted modal vectors from a stabilization diagram

are used to build a MAC matrix. This matrix is cleared with a fix threshold and decomposed with

SVD to determine the number of clusters of significant singular values. The grouped, pole-weighted

eigenvectors are decomposed again to estimate modal vectors, damping and frequency of each

single cluster. Solutions from the unified matrix polynomial algorithm (UMPA) for a laboratory

test and bridge field data are used to demonstrate the CSSAMI approach in [29]. Statistical

evaluation of pole cluster standard deviations for frequency and damping as well as different

modal vector residues are investigated for these examples in [4].
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Histograms and Frequency Bands Mevel et al. introduce the SSI-COV based COSMAD (covariance

subspace modal analysis and diagnosis) approach that is based on pole counting in frequency

bands [122, 125, 223]. The method is an initial step to later histogram based methods and

comprises several hand set parameters. User interaction is required to select modal frequencies.

The procedure was applied to in flight data from the Eureka file project.

The automatic assessment of stabilization diagrams (AASD), which was “modeled on the

knowledge of a human engineer” is presented in [169]. First, a histogram with user-defined bin-

width1 is derived along the frequency axis of the stability diagram and solutions per frequency-bin

are counted. Bins are shifted by half a bin and the procedure is repeated. The bins are also

investigated according to: Summed Euclidean distance between each frequency in a bin and its

center frequency, resulting in a bin weight. Stable poles (meaning small differences in frequency,

damping and high MAC-values) are counted within the bins. A value of less than three stable

poles is punished. Bins are locally compared to their (shifted) neighbors based on the number of

solutions, Euclidean distance, and stable poles. Bins without stable poles are erased, poles within

bins are clustered. Beyond this, “the best cluster is picked, and from that cluster, the best pole is

determined.” A feature to capture double poles is implemented as well.

Application of AASD, carried out in an automated manner in combination with Cada-X, LMS

Test.LabTM software dubbed “The Modal Analysis Chain”, is applied to in-flight data of an air

plane in [104]. The poly-reference LSCE and LSCF method (PolyMAX) were used to generate

stabilization diagrams which were investigated by eight probands (4 novices, 4 experts) and AASD.

Application of an commercial implementation of the AASD, the automatic modal parameter

selection (AMPS), is presented in [105] by using car vibration data.

Hierarchical Clustering An approach based on hierarchical clustering of poles was presented

by Magalhães [115, 116]. The hierarchical tree is based on numerically expensive similarities

(distances) between all pairs of solutions computed as a combination of frequency difference and

MAC values. A single linkage procedure is used to connect the poles. To predict the number

of tree-branches (resulting number of clusters), the cut off criterion “consists of imposing a

maximum limit for the distance between any point and its closest point of the same cluster.” [116].

Frequency, damping and mode shape result as cluster means, outlier analysis is suggested as a

means to eliminate scattering solutions. The method is applied to field data from a concrete arch

bridge [115, 116], as well as a stadium roof [115].

Fuzzy C-/K-Means Clustering The frequency-domain maximum likelihood estimator (MLE) is

used for the calculation of poles (and zeros) in [200–202]. In [200] an iterative fuzzy c-means

algorithm groups solutions of a single model order into two clusters. Classification criteria are

standard deviation of the poles, the “ratio of the number of zeros within the 99% uncertainty

circle and the total number of transfer functions”, the correlation between pole and nearest zero

and the inverse of MPC and RMS of mode shape magnitude. With a membership rate larger

1 As width 1 to 5% of the maximum frequency is suggested.
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than 50% a solution belongs to one of the two classes. In [201], an agglomerative hierarchical

approach (iterative applied k-means algorithm, where the number of poles within a cluster is pre-

set automatically) divides the solutions into several clusters. Further, small frequency variations

need to hold true and more than 50% of the solutions in a cluster need to be stable, also MAC

and MPC must exceed certain thresholds to indicate a physical solution. Both procedures were

applied to a slat track (part of an air plane wing).

In a combined approach Devriendt et al. [47] apply robust agglomerative hierarchical clustering

and fuzzy C-means clustering to extract modal parameters for a monopile WT support structure.

A relative distance for frequency and damping and minimum or maximum path length must be

set for hierarchical clustering. Again, all solutions of the stability diagram are compared to each

other with possibly large numerical effort. In the spirit of Vanlanduit et al. [199], Verboven et al.

[201, 202] clusters from hierarchical clustering are divided into physical and spurious ones by

frequency, damping, a newly defined success rate, MPC, and MPD.

Scionti also introduced a hybrid FCM procedure in the frequency-damping domain [168]. The

set and number of initial seeds is selected by a generic algorithm and clustered by an extended

FCM algorithm, leading to better results than standard FCM clustering. Finally, resulting clusters

are rejected by a user defined threshold of contribution ratio and compactness. The procedure

is applied to the results of the balanced realization parameter estimation method [144] from air

plane in-flight test data. Both generic algorithms and clustering are time consuming and consist

of many iteration steps.

FCM clustering was also applied in [32]. It is stated that FCM naturally forms spherical clusters.

Hence, attempting to cluster almost aligned point clusters in the real-valued frequency-damping

plane does not fit with the FCM approach. Hence, clustering of poles in the complex z-plane

is performed, where less ellipsoidal clusters result but no further automation is undertaken.

Demonstration is done on bridge and sky scraper data.

Reynders et al. propose a technique where several soft and hard criteria are used in combination

with k-means and hierarchical clustering [156]. The criteria used are frequency and damping

ratio distance, MAC value, MPD, MPC and relative difference of modal transfer norms between

modes. The hard criteria are damping between 0 and 20% and the appearance in complex

conjugate pairs. To clear the stabilization diagram, a k-means clustering algorithm divides all

solutions using soft criteria into two clusters of spurious and possibly physical modes. Hard

criteria are applied to the cluster of possibly physical solutions. Remaining modes form a cleared

stabilization diagram. Subsequently, the remaining solutions are grouped by hierarchical clustering;

the cut off value to determine the number of clusters is calculated from the previous clustering.

Afterwards, k-means clustering again divides the cluster into two groups (physical/spurious) by

the numbers of contained solutions. A representative solution of each cluster yields the final

results. Demonstration is done at a post-tensioned concrete two-cell box-girder bridge. Again,

the number of clustering stages and comparison of all solutions results in expensive computations.
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Conclusions

As presented thus far, many different attempts for the automated extraction of modal parameters

exist using various combinations of parameters and clustering techniques. One group of methods

focuses on the automated interpretation of stabilization diagrams, the other on the automated

interpretation of spectra.

Within the stabilization diagrams, a significant drawback is the comparison of every possible

solution pair. This leads to unnecessarily long calculation times. Some attempts overcome this

through a hand set fragmentation into frequency bands. For analysis using histograms and hence

frequency bands, window-size or band width have to be defined. Implicitly this limits the number

of possible modes resulting from these procedures. In hierarchical clustering this is implied in the

cut-off distance for branches. Also (fuzzy) c-/k-means clustering necessitates an a priori definition

of cluster numbers.

So far, none of the presented approaches provides a general description or intuition of the

solution’s distribution in a stability diagram - which is essentially what is needed to understand

and optimize classification. In a stability diagram, physical damping values will follow a log-normal

distribution along the damping axis, corrupted by mathematical solutions. The distribution in

frequency direction depends on the investigated structure, sampling rate, noise, input forces,

and the included model orders as well as the system identification technique. Therefore, the

frequency distribution cannot be generalize. The newly introduced triangulation-based approach

uses the most common and robust parameters for automation and gives a general solution by

only comparing neighboring solutions (see Chapter 3.2).

1.6 Goals and Objectives

The outline of different SHM applications provides an insight into the diversity of existing

procedures. Yet, a holistic metric for performance comparison is lacking. In most cases, damage

detection is dealt with on a phenomenological level where a certain selection of training data

combined with a specific condition parameter and specific thresholds leads to a (more or less)

clear identification of instances of damage. Some reviews compare different condition parameters

and machine learning techniques but a holistic comparison is missing. Further, only an onshore

installation of an offshore wind turbine structure has been subject to a more complex monitoring

concept outrunning the investigation of modal parameters or strains. Additionally, modal

parameters under changing operational conditions for WTs have only recently been in focus and

only a few case-studies can be cited for mono-pile foundations. From these findings, the following

main goals and objectives are formulated for this thesis:

Goals

• Deeper understanding of main SHM components and parameters which influence results

and performance.

• Investigation of such parameter.
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• A better comprehension of the dynamic behaviour of (offshore) wind turbines under EOC

influences.

• An improvement of automated modal parameter extraction.

Objectives and Questions

• A conceptual derivation and numerical implementation of an SHM framework which will be

able to address different types of variables present in SHM frameworks in an automated

manner.

• Validation of such framework on a comprehensible, public database.

• Consecutive to the implementation and validation, recommendations should be given for

feasible machine learning techniques, well-performing condition parameters and hypothesis

testing set-ups. Along with this, first performance values for the benchmark example shall

be provided for a reference comparison to alternative applications and implementations.

• Different sources claim to omit the need for EOCs , and inherently ML, in their analysis,

e.g. through the usage of Mahalanobis square distances. This poses the question of whether

sophisticated ML with more than a single cluster in training improves SHM performance?

• To aid the goal of modal parameter extraction for large databases, an automated procedure

for OMA is desired.

• The analysis of an offshore wind turbine’s dynamic behavior under changing environmental

and operational conditions (EOCs) over a long time span.

• Codes for offshore WTs imply an analysis of the first bending mode to be separated from rotor

harmonics. Further, certain constant values for system damping are given. The question is

whether, for those highly dynamic systems, these assumptions meet the requirements of

OWT operation in situ?

The author intends to contribute to the community on three levels: To provide a starting point,

a short overview, and a selection of valuable literature and tools. Further, to add to the field of

SHM and CM on a conceptual level by defining four blocks in any SHM concept, that should be

accounted for, and to provide a general metric for performance comparison. Finally, the aim is to

introduce novelties on a technical level through new methods/parameters, providing a benchmark

for future parameters and methods, and the analysis of a unique database for an offshore wind

turbine.

1.7 Organization of Presented Work

Ageing infrastructure, a large number of structures in highly active seismic areas, and new

structures with unknown long-term dynamic behavior provide the basis for the need of long-term

remote monitoring. The core task of the presented work is to provide a holistic framework to
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evaluate SHM performance for industrial scale wind turbines and other large-scale civil engineering

structures under changing environmental and operational conditions. An essential point is the

evaluation of SHM on known benchmark examples addressed through a discussion of four main

variables to gain knowledge about performance and robustness.

From the given literature review, several decisions regarding applied methods are drawn for the

presented analysis. ML is implemented in a supervised manner through classification. Even though

continuous EOCs might call for regression analysis, it raises the problem of reference definition for

relative CPs. Further, affinity propagation is used for clustering due to its superior performance

compared to conventional clustering techniques such as k-means-clustering. A reference clustering

with a single cluster in the training phase is included, since an omission of machine learning is

often claimed through the use of a single cluster. From the variety of CPs present in literature,

statistical values for time-series are chosen due to their simplicity and possible ability for sensor

fault detection. Modal parameters are included since they provide the link to numerical models

and assumptions in fatigue analysis (modal damping). Finally, AE and residues from SSI- and

VAR-model are state of the art parameters which showed excellent performance in recent studies.

For HT, the normal distribution assumption is justified by the central limit theorem and percentile

values allow a confidence interval definition without the need for a probabilistic model. For control

charts a simple x-bar chart is used to avoid the introduction of further variables, such as group

sizes for multivariate charts. This also avoids averaging effects within groups. Finally, ROCs

represent a unique tool to cover a test’s performance in entirety and to provide metrics for a

global comparison.

Based on the introduction to SHM, its constituents, and application examples in this chapter,

the relevant theoretical background will be outlined in Chapter 2. It holds the core equations to

provide the basis for the subsequent analysis. Nevertheless, it represents only a small fraction

of theoretical background in the wide range of scientific fields included in the SHM framework.

Further references are provided at respective locations.

Chapter 3 outlines novelties and example studies. Accumulated energy as a condition parameter

is extended to cross-correlations and the monitoring of certain energy levels. Further, a new

automated procedure for the extraction of modal parameters based on a Delaunay-triangulation

is presented with the TEMP method. An example for a real-life application of TEMP is given by

means of a long span suspension bridge. Subsequently, the modular SHM framework is presented.

Affinity propagation, as a recently developed type of data classification, is adapted to the field

of SHM. Also, the evaluation of receiver operating characteristics through the area under the

curve, as a universal performance measure, is a novelty. All four main points of variability are

discussed and additional theory is provided if necessary. A benchmark example for the framework

is provided through an application to a laboratory test structure originating from a publicly

available database.

Subsequent to the benchmark example, a small scale onshore wind turbine with artificially

introduced damage states is investigated in Chapter 4. In contrast to the laboratory structure

noise, complex dynamic behavior and environmental and operational conditions come into play.

Hence, machine learning plays an important role. Due to the known damage scenarios, the overall
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SHM performance and robustness for different machine learning realizations, condition parameters,

hypothesis testing assumptions, and training data instances can be evaluated.

Finally, the SHM framework is applied to an industrial-scale offshore wind turbine with a rated

power production of 5 MW in Chapter 5. An important part of the analysis is the investigation

of modal parameters of this complex structure. Subsequently, the analysis of influences from

environmental and operational conditions on the structure’s dynamics serve as background for

long-term SHM.

The work closes with summary, conclusions and an outlook over future work in Chapter 6.

Possible starting points are given to deepen the level of knowledge for specific methods but also

on a general level. Further, figures on certain aspects of chapters 3, 4, and 5 can be found in the

appendix sections.



2 Theoretical Background

Within this chapter the theoretical background required for the analysis presented is outlined in a

compact manner. Starting from time series, basic descriptions of dynamic systems are derived.

These are necessary for the subsequent theory of system identification as a basis for the extraction

of modal parameters in 2.4. Subsequently, sub-chapters 2.5, 2.6, and 2.7 go through the main SHM

components as stated in chapter 1.3 and describe the theory of applied methods and parameters.

2.1 Data Instances and Time Series

The SHM-scheme and its sub-components rely strongly on measured data from a physical structure.

Even though this work is based on acceleration signals, in general there is no limitation of the

sensor types and measurement set-ups for this procedure, as long as they serve the desired

goals. A data instance Di is always composed of the measured response data, sampled with the

sampling frequency fs, and additional information about the current set, dubbed environmental

and operational conditions (EOCs), defined as DY
i := Y and DEOC

i = EOC ∈ R
n̄, respectively.

Usually DEOC
i will have a lower sampling rate than DY

i , e.g. only one value per EOC-parameter

and data instance. The data matrix is composed of different channels as follows

Y = [y1,y2,...,ynt
] =




y(1)

y(2)
...

y(m)



∈ R

m×nt . (2.1)

This matrix holds one output or measurement channel per row, where m is the number of measured

channels and nt the number of data samples. A single channel is referenced to as y(i) ∈ R
1×nt , a

single entry is denoted by y(i),j . The measurement period T results from T = nt ∗ 1/fs = nt ∗ δt.
To gain insight into the frequency content of a time domain signal, the Fourier transformation

(FT) provides an important tool. This transformation splits the time signal into an infinite sum

of harmonic functions with infinitely close frequencies. The continuous time signal y(t) is linked

to its FT spectrum Y (jω) through

Y (jω) =
∞∫

−∞

y(t)e−jωtdt. (2.2)

The continuous formulation is only of limited use for discrete time signals and approximated using

31
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the discrete Fourier transformation (DFT) with

F{y} = Y(jωq) =
nt∑

k=1

y(i),ke

−j2πkq
nt , (q = 0,1,...,nt − 1), (2.3)

with the discrete frequencies being ωq = q2π/T . Through the DFT, the time signal is implicitly

assumed to be periodic within the recorded interval. Hence, y(i),1 6= y(i),nt
will introduce a jump

and subsequent distortions in the frequency domain (spectral leakage). This problem can be

addressed through the application of window-functions (see e.g. [216]). Due to the time discrete

sampling rate, aliasing effects can become a problem for signal analysis. To avoid these effects, fs
should be at least twice as high as the highest frequency of interest. In most cases a fast Fourier

transformation (FFT), an efficient implementation of the DFT, is used. It applies a repeated

division into two equally long parts to the time signal and hence postulates a time series with

nt = 2n, n ∈ N. If this assumption is violated, the signal is padded with zeros (until nt equals the

next power of two) which alters the frequency content as well.

In the context of signal analysis, the (power) spectral density PSD provides another helpful

tool. It represents a measure of the power per frequency bin within a given signal. To derive the

PSD, the autocorrelation of a signal from channel i, Φii(τ), is calculated using

Φii(τ) =
nt−τ∑

n=1

y(i),ny(i),n+τ , τ = 1,2,...,nt − 1. (2.4)

The FT of Φii(τ)

Sii(ω) = F{Φii(τ)} (2.5)

is then called the PSD of y(i). Through the auto-correlation, harmonic and periodic signal

contents are amplified and will occur more distinct in the spectrum. Both values also exist for the

cross-correlation between channel i and j. The PSD is often used to underline and/or validate

results from system identification procedures visually.

2.2 Representations of Dynamic Systems

A mathematical description of a certain mechanical system is essential in engineering science.

Good knowledge of the systems helps to improve performance and to predict the material behavior.

The linear physical model can be represented by the following linear equation of motion

Mü (t) + Bu̇ (t) + Ku (t) = f (t) , (2.6)

with M, B and K ∈ R
N×N as mass-, damping- and stiffness matrix. Where N is the number

of discrete degrees of freedom (DoF). f ∈ R
N×1 is the force vector and u,u̇,ü ∈ R

N×1 the

displacement, velocity and acceleration vector, respectively. In many cases the damping matrix is
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simplified to a linear combination of mass and stiffness matrix with

B = αM + βK (2.7)

[53, 148]. In doing so, the system is proportionally damped, the so called Rayleigh-damping, which

ensures a symmetric matrix B and orthogonality with respect to the Eigenvectors. For undamped

and proportional damped systems the Eigenvalue problem is given as

(
K− λ2

iM
)
ψi = 0 (2.8)

and solved for the Eigenvalues λi with the corresponding Eigenvectors ψi. The word Eigenvectors

will be used to refer to the (complex) solution of the Eigenvalue problem (holding amplitude and

phase information), while a mode shape will hold only the amplitudes of these Eigenvectors. In this

case the λi equal the circular natural frequencies ω0i. The solutions for all DoFs are assembled in

the spectral matrix Λ = diag(λ2
i ) ∈ R

N×N and the modal matrix Ψ = [ψ1,...,ψN ] ∈ R
N×N . For a

system with proportional damping, a transformation to modal coordinates with u(t) = Ψq(t) and

multiplication of (2.6) with ΨT from left, leads to n discoupled equations, due to the orthogonality

proportions of the Eigenvectors. Each has modal properties such as generalized mass, damping

and stiffness:

Mgq̈ (t) + Bgq̇ (t) + Kgq (t) = ΨT f, (2.9)

with Mg = diag(mgi),Bg = diag(bgi),Kg = diag(kgi). For damped systems, in general the

Eigenvalues depend on both circular natural frequency (hence mass and stiffness) and damping as

follows

λi = −δi ± jωDi = −ω0iζi ± jω0i

√
1− ζ2

i . (2.10)

Here, j denotes the complex number, ωDi the damped circular natural frequency and ζ the

damping ratio. The Eigenvalue now comprises two parts: an imaginary or oscillating one and a

real part that indicates the decay with a damping rate of ζiω0i. Further one might extract natural

frequency and damping from Equation 2.10 with

ω0i = |λi| = 2πfi =
√
kgi/mgi; ζi = −Re (λi)

|λi|
. (2.11)

One of the goals of the latter analysis will be the (system) identification of natural frequencies and

damping ratios along with the corresponding Eigenvectors. The dependency of natural frequencies

on mass and stiffness in (2.11) is obvious. This fact can be used to localize and quantify damage

within a numerical model through model updating procedures. For this purpose, and for generally

damped systems it is more convenient to rewrite the equation of motion in state space.
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2.2.1 State Space in Continuous Time

The state of a system is given by its displacements and velocities. Holding information about its

complied potential and kinetic energy for a given state, the state vector is defined as

x (t) =

[
u (t)

u̇ (t)

]
∈ R

n×1 (2.12)

where n = 2N . Multiplication of (2.6) with the inverse mass matrix and solving for ü leads to:

ü (t) = −M−1Bu̇ (t)−M−1Ku (t)−M−1f (t) . (2.13)

Equation (2.13) in combination with the equality u̇ = u̇ can be re-written in state space using

Equation (2.12). The continuous ([...]c) time state space equation thus becomes

ẋ (t) =

[
0 I

−M−1K −M−1B

]

︸ ︷︷ ︸
Ac

x (t) +

[
0

−M−1L

]

︸ ︷︷ ︸
Bc

f (t) , (2.14)

where Ac ∈ R
n×n and Bc ∈ R

n×l denote the system matrix and input matrix, respectively.

Further, the corresponding measurement equation is

y (t) =
[
L 0

]

︸ ︷︷ ︸
Cc

x (t) +
[
0
]

︸︷︷︸
Dc

f (t) , (2.15)

with Cc ∈ R
m×n and Dc ∈ R

m×l as output matrix and direct throughput matrix. y (t) ∈ R
m×1 is

the m-variant output or measurement vector. Matrix L is introduced if sensor locations on given

DoFs need to be selected from all DoFs. For non-proportional damping the Eigenvalue problem

from Equation (2.6) becomes

(
λ2
iM + λiB + K

)
φi = 0. (2.16)

For the state space formulation the Eigenvalue problem can be simplified to

(Ac − λiI)φ′
i = 0. (2.17)

It should be noted that this equation leads directly to the Eigenvalues λi which appear in complex

conjugate pairs. The Eigenvectors φ′
i now consist of n = 2N entries for displacement and velocities.

2.2.2 State Space in Discrete Time

Data collection is one of the central topics in monitoring. To store, process or analyze any

continuous physical phenomenon, it is necessary to sample the given quantity digitally. Hence,

the analyzed data is present at discrete times y (tk) = y (k∆t) = yk as in (2.1) with intervals of
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∆t, leading to a time series of nt samples. This has a major influence on the state space matrices.

A detailed discussion of sampling theorems and important assumptions can be found in [14, 62].

The continuous time state space equations are formulated in discrete time ([...]d) through

xk+1 = Adxk + Bdfk

yk = Cdxk + Ddfk
(2.18)

with the discrete time state space matrices linked to their continuous counterparts with:

Ad = eAc∆t; Bd =
∆t∫

0

eAcτdτBc; Cd = Cc; Dd = Dc. (2.19)

Where eAc∆t denotes the matrix exponential. The Eigenvalue problem can be solved in the same

way as Equation (2.17). It should be noted that the resulting discrete, complex Eigenvalues

λdi correspond to the continuous ones with λci = |λdi|/∆t. The system in 2.18 has no noise

terms, either in the input nor output term. If a system is randomly excited, unknown input- and

measuring errors must be covered. The force vector is neglected and both equations are extended

by noise terms:

xk+1 = Adxk + wk

yk = Cdyk + vk.
(2.20)

Here wk and vk are zero mean white gaussian noise terms called process noise (covering discretiza-

tion errors and excitation) and measurement noise, respectively. Hence, E[w] = 0 and E[v] = 0.

Further, for random excitation, the following expectation values can be given:

E[xkwT
k ] = 0, E[xkvTk ] = 0, E[wk+1yTk ] = 0, E[vk+1yTk ] = 0. (2.21)

These system descriptions and matrices will provide the basis for the system identification methods

discussed within the following chapter. For detailed theoretical insights to modal analysis it is

referred to [14, 53, 119] .

2.3 System Identification

The following section will provide a short introduction to a few output-only system identification

techniques and what is done to extract modal parameters from their results1. Two time-domain

based methods will be outlined: Auto-Regressive models and the Stochastic Subspace Identification.

1 In many cases the term System Identification is used synonymously for the identification of modal parameters.
But, for more complex methods such as AR-models or SSI the general system identification will lead to a number
of solutions, while only a subset of these solutions will represent modal parameters describing the analyzed
physical structure. Many solutions will occur due to excitation, noise and mathematical reasons. Hence, the
extraction of modal parameters is herein understood as a further step following the system identification.
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In the studied case output-only means only the system responses, such as measured accelerations

or strain, are used to perform identification. Forces acting on the structure being investigated

remain unknown. This is due to the fact that, in general, it is impossible to accurately measure

the input forces on complex large-scale structures such as wind turbines, bridges or skyscrapers.

This fact reduces the number of available identification methods for the presented application.

In any case, there are many solutions and approaches left to be applied in the studied case. An

overview of output-only system identification methods is given in [27].

2.3.1 (Vector-) Auto-Regressive-Models

Originating from the field of economics, auto-regressive (AR) models have been applied in a wide

field of applications over the last few decades [22]. Operational modal analysis (OMA) is one of the

fields where AR-Models, used for modal parmeter estimation, proved to be of great value. Time

series of structural responses are used as a basis for the modeling. In general, AR-Models describe

a certain datum by weighted predecessors of one or more channels. All different derivations of

this model class have this basic idea in common. A detailed insight into the various types can

be found in [111]. If a certain time series is described by an AR-Model, it is possible to perform

a prognosis of future time steps and to extract the system’s (modal) properties [7, 8, 19, 23] .

When several data channels are used, the models are called vector auto-regressive (VAR)-Models.

In this work, VAR-Models are used to calculate condition parameters. Through the use of

auto-regressive moving average (ARMA)-Models the quality of prediction at a certain model

order was able to be improved. Further, time-variant ARMA-models (TARMA) with varying

coefficients modeled by sine and cosine, can be used to cover varying system properties [151].

However, the involved computations are rather expensive and equally good results can be achieved

with AR-models of higher order [146]. Hence, only non-varying VAR-Coefficients serve as basis for

system identification and condition parameters. The principal construction of a VAR(p)-model of

order p is

yk = w +
p∑

l=1

Alyk−l + εk. (2.22)

Where yk is a m-variant time series at time instant k (see Equation (2.1)). The constant weighting

coefficients in matrices A1,...,Ap are multiplied with previous time steps of y. Each predicted

data point for a certain channel depends on p previous values of its own time series and all other

channels. Since this sum is only an estimate, differences between estimate and original time

series occur. These are covered by the independent, zero-mean, Gaussian distributed noise terms

εk. Constant offsets can be captured by w. A detailed procedure for estimating the coefficient

matrices Al from the given time series y, with the goal of minimizing ε through least squares,

can be found in [133].
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2.3.2 Stochastic Subspace Identification

The stochastic subspace identification (SSI) - method is a data driven time domain identification

method using output-only data to estimate a stochastic state space system as in (2.20). It was

introduced by van Van Overschee and De Moor [197, 198] and is based on the eigensystem

realization algorithm (ERA) by Juang [92]. The original code, performing excellently after

correction of a few Matlab expressions, can be found on floppy disk in [198]. Over the last two

decades, the method has been widely used in the field of civil and mechanical engineering and has

provided very good results (see e.g. [123, 124]).

In general, two different schemes of SSI exist. One is the co-variance driven SSI (SSI-Cov), the

other a data driven SSI (SSI-Data) formulation [142, 144, 146]. Both methods are derived from a

state space system with random white noise inputs as given in (2.20). If the assumption of white

noise excitation is violated, frequency parts of the colored noise will occur in the SSI solutions. In

practice, this will always be the case, since excitation such as wind and waves will have colored

spectra. For OWTs also the blade excitation, resulting from each blade passing the tower dam

and unbalances, have a distinct frequency that depends on the rotor speed Ω and also occurs

in higher harmonics (see Chapter 5). SSI-Data and the first step of SSI-COV will be used for

system identification and the estimation of condition parameters respectively.

Covariance driven SSI

For the covariance driven identification, an output covariance matrix for a certain time shift i is

calculated from the given output signals defined as

Ri = E[yk+iy
T
k ] = lim

nt→∞

1
nt

nt−1∑

k=0

yk+iy
T
k . (2.23)

For application, the number of data samples nt will not tend to infinity. Hence the sum is

calculated for a finite number of samples. It can be shown that Ri ∈ R
m×m can be decomposed

into the (system and output) state space matrices of (2.20) with

Ri = E[yk+iy
T
k ] = CdA

i−1
d G. (2.24)

and G = E[xk+1yT ] being the state-output covariance matrix. To estimate the state space

matrices, a block matrix with a Hankel structure is built from a set of output covariances with

different offsets i as shown in (2.25).

Hp+1,q =




R0 R1 ... Rq−1

R1 R2 ... Rq

... ... ... ...

Rp ... ... Rp+q−1



∈ R

m·p×m·q (2.25)
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Where p=q in most applications. Hence, Hp := Hp+1,q for p = q is defined. This matrix can

be decomposed into the extended observability matrix Γ i ∈ R
m·i×n and the reversed extended

stochastic controllability matrix Oi ∈ R
n×m·i by introducing (2.24) into (2.25) with:

Hp =




Cd

CdAd

...

CdA
p−1
d




[
Gd ... Ai−2

d Gd Ap−1
d Gd

]
= Γ iOi. (2.26)

From theory, each column of Hp is a free decay to as yet unknown initial conditions and Γ i

contains the Kalman states at time lag zero [24]. It is obvious that the desired system matrices

can be calculated directly from the observability matrix. To do so, Hp is decomposed through

singular value decomposition:

Hp = USVT . (2.27)

Here, U and V are full matrices holding the singular vectors and S is of diagonal structure holding

the singular values. Further, the SVD is truncated to the model order n. Looking at the singular

values of S to estimate the accurate model order is often suggested. Theoretically, there is a

maximal “gap” between two singular values, indicating the optimal model order. In practice,

several or any of these gaps will be present in S. To avoid this problem, solutions for several

orders are calculated and stabilization diagrams can lead to a subset of solutions with physical

relevance (see 2.4.2). Estimates of the observability and controllability matrix from measured

outputs, indicated by Γ̂ and Ô, are calculated from the decomposed block Hankel matrix through

Γ̂ i = US1/2; Ôi = S1/2VT . (2.28)

Since S is a diagonal matrix, it is easy to calculate the roots of the diagonal entries. The discrete

output matrix Cd can be found directly from the first block of Γ̂ i, the system matrix Ad from the

lower blocks. Eigenvalues and Eigenvectors can be calculated as indicated in (2.10) and (2.16).

Data driven SSI

The data driven stochastic subspace identification avoids the computation of correlations between

the outputs. Blocks of the output signals are stacked into a matrix and the so-called future row

spaces (Yhf ) are projected into the past row spaces (Yhp) [197, 198]. To do so, an output block

Hankel matrix Yh ∈ R
2·m·i×nt−2i can be built by stacking 2i data blocks with nt − 2i samples
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from the complete set of measured outputs Y given in (2.1):

Y(0,2i−1) =




y0 y1 y2 ... yj−1

y1 y2 y3 ... yj

... ... ... ... ...

yi−1 yi yi+1 ... yi+j−2

yi yi+1 yi+2 ... yi+j−1

... ... ... ... ...

y2i−2 y2i y2i+1 ... y2i+j−3

y2i−1 y2i+1 y2i+2 ... y2i+j−2




=




Y(0,i−1)

Y(i,2i−1)


 =




Yhp

Yhf


 . (2.29)

The first subscript in Y(•,•) denotes the upper left, the second the lower left entry of the block

Hankel matrix, respectively. To underline the direction of time shifts, the upper block of this

matrix (Yhp) is called the past, the lower block (Yhf ) the future. Directly from the 2i block rows

and the number of time samples nt, a maximum block length follows with nt− 2i. The orthogonal

projection of row spaces for the future matrix Yhf onto the past Yhp is defined as

E(Yhf |Yhp) = YhfYT
hp

(
YhpY

T
hp

)†
Yhp, (2.30)

•† denotes the Moore-Penrose pseudo-inverse of • [198]. This projection can be decomposed in

the same way as (2.26) and (2.27) to estimate the state space matrices. Van Overschee and De

Moor use quotient-singular value decomposition (QSVD, [196]) of the data block Hankel matrix to

calculate the state space matrices through observability and controllability matrices. A detailed

derivation of the procedure that results in a similar formulation as in (2.26) to (2.28), can be

found in [197].

Using this method, it is very convenient and fast to calculate a large number of different model

orders, since from a system of maximum model order the lower orders can be calculated directly

without the need for further matrix decompositions. The largest extractable model order can

be estimated from the number of block rows 2i times the number of data channels m. The

calculation of several orders leads to a set of solutions SSSI . Each solution SSSI,i holds model

order p, complex Eigenvalue λ and complex Eigenvector ψ as attributes. Each denoted with

SpSSI,i, SλSSI,i and SψSSI,i, respectively. These attributes will be used in 2.4.2 to distinguish between

mathematical and physical solutions.

2.4 Automated Extraction of Modal Parameters

The boost in computing capacity and the possibility of performing parametric system identification

for a large number of different model orders within a short time avoids the iterative estimation

of an optimal model order but raises the problem of separation between a growing number of

spurious solutions and the desired extraction of modal parameters. This problem is addressed using

stabilization diagrams. Typically the frequency of each solution is plotted over the model order.
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Stable paths, with a fairly constant frequency (and damping, plus optional further parameters)

over several model orders, are assumed to belong to physical solutions and thus represent the

modal properties of the underlying system. Scattering points, in contrast, represent spurious

solutions which need to be sorted out. Based on the above mentioned initial set of solutions

SSSI , different parameters can be defined to separate between physical an erroneous solutions in

a stability diagram. Some are explained in the following sub-chapters.

2.4.1 Modal Validation Parameters

As mentioned previously, each solution or mode Si from any parametric system identification

method has the same attributes, namely, the Eigenvalue λi (from this also frequency fi and

damping ζi), the complex Eigenvector ψi and the model order p. The solution’s components are

addressed with Spi , Sfi , Sζi and Sψi . Using (2.31), (2.32) and (2.33) relative differences between

two modes can be calculated from frequencies, damping ratios and Eigenvectors. The frequency

difference between two modes Si and Sj is defined as

dfi,j
= d(Sfi ,Sfj ) = |Sfi − Sfj | (2.31)

and the difference in damping as

dζi,j
= d(Sζi ,Sζj ) = |Sζi − Sζj |. (2.32)

For both, small values indicate close modes. The similarity between two Eigenvectors is calculated

via the modal assurance criterion (MAC)[5, 6].

MAC(Sψi ,Sψj ) =
|Sψ∗
i Sψj |2

|Sψ∗
i Sψi ||Sψ∗

j Sψj |
∈ [0,1] , (2.33)

two vectors are linear dependent for MAC(ψi,ψj) = 1, usually a threshold of 0.9 to 0.99 is set to

indicate similarity of modes. It should be noted that these three distance measures can only be

applied to pairs of modes.

The fourth applied criterion is the mean phase deviation (MPD) of a single mode shape [157].

This intuitive variable illustrates how severe the entries of a certain complex Eigenvector diverge

from a straight line in the complex plane. For linear, proportionally damped systems, the phase

angle between different DoFs should either be 0 or 180◦ resulting in a MPD of 0◦. For OMA,

this will never be exactly the case but for lightly damped systems, small phase diversions still

indicate physical modes. Large phase divergences indicate modes resulting from noise or external

excitation. First, for an Eigenvector a line through the origin in the complex plane with best fit for

all DoFs, is calculated. To do so, its real and imaginary components are separated and combined

in X = [Re(ψi), Im(ψi)] ∈ R
m×2. Using a singular value decomposition, X is decomposed into

X = USVT . (2.34)



2.4 Automated Extraction of Modal Parameters 41

For the two-dimensional case given, the mean phase (MP) (the rotation angle for the optimally

fitted line), can be calculated directly from V ∈ R
2×2 using (2.35).

MP(Sψj ) = arctan
(−V11

V22

)
∈ [0,180] (2.35)

Further, for each DoF Sψi,j of the Eigenvector Sψi , a line through origin in the complex plane can

be drawn and the angle βi,j between that line and the line with MP(Sψi ) rotation is calculated.

The weighted MPD is then defined as

MPD(Sψi ) =

m∑
j=1
|Sψi,j |βi,j
m∑
j=1
|Sψi,j |

∈ [0,45[ . (2.36)

The weighting is proportional to the inverse of the DoFs amplitude. Accordingly, for DoFs with

large amplitudes larger deviations are allowed. Further, modal transfer norms [72] and uncertainty

bounds [155], for modes from SSI, can be calculated. However, in this study only (2.32) - (2.36)

are used.

2.4.2 Stabilization Diagrams

SSI- and AR-Models, or indeed any other parametric system identification procedures, lead to a

growing number of solutions with increasing model order. In the beginning of OMA and EMA, an

optimal model order was selected and all solutions of the model were taken as modes. Estimating

an optimum model order might be very time consuming and the optimal order might be subject

to changes due to loading scenarios. Further, the estimation of models with a high order became

very affordable in a computational sense. Accordingly, it is a common practice to estimate models

for many different model orders and to track similar solutions. As a drawback, models with a

high order will contain purely mathematical solutions and those resulting from external forces

and noise, dubbed spurious. Accordingly, spurious solutions need to be eliminated. As already

stated by Peeters and De Roeck (for reference based SSI-models), it is better to over-specify

the model order and eliminate mathematical solutions afterwards than to choose a (too) low

order [142]. To perform this separation, stabilization diagrams are a popular visual tool. Today

the idea of stabilization diagrams is the basis for a variety of procedures for the extraction of

modal parameters (see 2.4).

To derive a stabilization diagram, all solutions of S are plotted over their model order (y-axis)

and frequency (x-axis). Damping can be included along the z-axis in a three-dimensional plot. If

the analyzed data contains physical modes, “paths” at certain frequencies, that run over many

different model orders will become clearly visible (see 3.5 on page 65). A second important hint

for a stability is a fairly constant (and reasonable) damping value along the path. This can be

used as a second indicator in combination with constant frequencies. For structures within civil

engineering in general the modal damping will be quite low around 1− 5%, especially for steel
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structures. If artificial damping is added, for example using dampers, this value might rise up to

10%. A third indicator for multi degree of freedom systems is the Eigenvector. Typically vectors

are compared using MAC-values (see Equation 2.33). The MAC value is calculated between two

modes, typically between a single mode and the Eigenvectors of all other modes of an adjacent

model order p or even all other Eigenvectors. For these three indicators (frequency, damping

and Eigenvector) Peeters and De Roeck [142] suggest a maximal variation of 1%, 5% and 1%,

respectively, to indicate stable paths. However, these values postulate optimal conditions and a

sufficiently excited structure.

Generally speaking, the extraction of modal parameters is a clustering problem where a set

of solutions S has to be divided into several clusters in a multi-dimensional space. Spurious

solutions need to be eliminated using thresholds and paths within proper clusters need to be

identified. Utilizing the validation parameters in 2.31, 2.32, 2.33 and 2.36 along with a Delaunay-

Triangulation, a new procedure for modal parameter extraction will be presented in 3.2, other

clustering methods are outlined in the next sub-chapter.

2.5 Machine Learning

Machine learning (ML), often also dubbed data normalization, as a group of methods to learn

patterns in data, is a critical component of SHM, particularly when structures with changing

dynamic characteristics are being investigated. As stated in Chapter 1.3.1, many different

procedures exist to realize the ML-step in SHM-analysis and only two applied unsupervised

ML-approaches will be outlined here.

In general, the relationship between an input and an output parameter is “learned” from

training data dubbed D̃ := Di; i ∈ [1,...,nnt] by their EOC-components DEOC
i

1. Each later ML

setting or type will result in a division of D̃ into several clusters with D̃ = D1,D2,...Dk and hence

an allocation of each data instance into a certain cluster. If actual points from the set are taken

as centers, they are called exemplars. The following sub-chapters give a brief introduction to the

underlying theory of both methods.

2.5.1 K-centers and K-means

A standard approach for clustering is k-centers-clustering 2, where k points ∈ R
n̄ are randomly

chosen from the data instances D̃ to be exemplars for k sub sets [114]. The remaining points are

assigned to the centers as to reduce the summed squared error J , usually Euclidean distance (see

Equation 2.49), between exemplars and points. Another commonly used procedure is k-means-

clustering. Here, the distance between the cluster centroids, not a single exemplar (point), and its

1 It should be noted that for large numbers of available training data instances nnt sets can be selected (randomly).
2 E.g. implementations are available in Matlab.
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corresponding points is minimized. Both procedures are realized through minimizing

J =
k∑

j=1

∑

i∈Pj

||Pi − µcj ||. (2.37)

Pj contains all points assigned to cluster j with exemplar or center µPj during a single iteration.

Both procedures are quite sensitive to the initial set of exemplars/centroids and therefore usually

repeated many times with varying sets of exemplars to increase the chance of finding the global

minimum. One of the major drawbacks of these methods is the fixed number of centers/centroids

that has to be chosen initially by the user. Here, k-means-clustering will serve as a reference

for assessing the performance of Affinity Propagation, which will be introduced in the next

sub-chapter.

2.5.2 Affinity Propagation

In the presented work, a rather new method introduced in Dueck [52], Frey and Dueck [63], dubbed

Affinity Propagation (AP) is used. It solves the problem of clustering by passing information or

messages between data points without the need for a pre-defined number of cluster. It is proven

to be very fast compared to standard clustering approaches, examples for a variety of fields are

given in [63].

Rather than taking the actual positions ∈ R
n̄1 of all points into account, so called similarities

s(i,k) between point i and k are calculated. In the standard case these are negative Euclidean

distances but potentially may be any (distance) measure between two points. The possibility

of setting s(i,k) 6= s(k,i) is a unique feature in clustering. Self-similarities s(k,k) are dubbed

preferences, indication how well suited point k is to be an exemplar (cluster center). The number

of resulting centers partly depends on these preferences2.

With these similarities, indicating “how well the data point with index k is suited to be the

exemplar for point i” [63], the iterative procedure is started. During the iterations, two different

messages are passed between the data points. One is the responsibility r(i,k), sent from point i

to candidate exemplar k. It “reflects the accumulated evidence for how well-suited point k is to

serve as the exemplar for point i, taking into account other potential exemplars for point i” [63].

The updating rule is

r(i,k)← s(i,k)−max{a(i,k′) + s(i,k′)}, k′ 6= k. (2.38)

In contrast, the availability a(k,i) “from candidate exemplar k to point i, reflects the accumulated

evidence for how appropriate it would be for point i to choose point k as exemplar, taking into

1 For SHM the position in the EOC space.
2 Frey and Dueck recommend setting all preferences to the median of s(i,k); i,k ∈ [1,...,nnt] for a moderate number

of centers.
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account the support from other points that point k should be an exemplar”. Updated through

a(i,k)← min{0, r(k,k) +
∑

i′ 6={i,k}

max{0,r(i′,k)}}. (2.39)

Hence, there is one measure r(i,k) from point to candidate giving support and one from candidate

to point a(k,i) collecting support. The self-availability is updated with

a(k,k)←
∑

i′ 6=k

max{0, r(i′,k)}}. (2.40)

At different stages of computation, availabilities and responsibilities can be compared to extract

exemplars from the data points. “For point i, the value of k that maximizes a(i,k) + r(i,k) either

identifies point i as an exemplar if k = i,” Frey and Dueck [63] or another point for k 6= i. The

procedure can be stopped after a fixed number of runs, when the passed messages fall below a

threshold or if no changes in the decisions can be observed for several iterations. Detailed insights

into the algorithm can be found in Dueck [52], Frey and Dueck [63] and a complete Matlab code

is provided on-line as well. For the presented SHM framework, different realizations of AP, by

selected EOCs or different preference values, will be indicated by MLAPi .

2.6 Condition Parameters

In the context of SHM, condition parameters (CPs) are values derived from measured time series

that serve as a basis for decision-making regarding the systems state. Absolute CPs can be directly

calculated from a single time series of dynamic response data, if relative CPs, or residues, are

used then a reference data instance is needed. In this case, the CP-value depends on machine

learning since it defines the reference data instances. This distinction is necessary in the view of

the author, since relative CPs require an extra step within the SHM framework: Those values have

to be re-calculated for every ML realization, since references might change. Based on a sample of

similar CPs, e.g. taken from a cluster, decision boundaries can be drawn and statements about

the current condition can be given in the hypothesis testing step described in 2.7. The following

sections will derive the mathematical formulations for several CPs used within this work. In this

context, the different condition parameters are indicated by CP •
• . The superscript holds the CP

name or symbol, while the subscript holds additional, CP-dependent parameters. An overview of

the different CPs can be found in Table 3.3.

2.6.1 Absolute Condition Parameters

The following CPs can be calculated from single data instances (and channels) and are therefore

dubbed absolute CPs.
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Statistics

Some very basic parameters for SHM can be directly calculated from the time series of a single

sensor. Even though these are not the most sophisticated CPs, their estimation can reveal

important (and fast) insight into the validity of data instances next to abnormality detection for

dynamic behavior. Starting from the collected time series Y in Equation 2.1, the n-th statistical

moment of channel i is defined as

µ(i),n = E[(E[y(i)]− y(i))
n]. (2.41)

For the discrete case it is approximated with

µ(i),n =
1

nt − 1

nt∑

k=1

(ȳ(i) − y(i),k)
n. (2.42)

With ȳ(i) as the mean of channel i. Accordingly, the CPs for standard deviation, skewness, and

kurtosis are defined as

CP σ(i) = σ(i) = √µ(i),2 =

√√√√ 1
n− 1

n∑

j=1

(
ȳ(i) − y(i),j

)2
(2.43)

CP γ1

(i) =
µ(i),3

σ3
(i)

=
1
n

n∑

j=1

(
ȳ(i) − y(i),j

σ(i)

)3

(2.44)

CP γ2

(i) =
µ(i),4

σ4
(i)

=
1
n

n∑

j=1

(
ȳ(i) − y(i),j

σ(i)

)4

, (2.45)

respectively. While CP σ represents the width of the distribution’s density function, CP γ1 indicates

the asymmetry and CP γ2 the peakness. If CP γ1 becomes negative, the data is located more

below the mean, if CP γ1 > 0 the data is more located above. CP γ2 = 0 indicates a mesokurtic

distribution (normally peaked), CP γ2 < 0 a leptokurtic (more strongly peaked) distribution, and

CP γ2 > 0 a platykurtic (flattened) distribution.

Accumulated Energy

Accumulated energy (AE) is defined as the integral of a power spectral density (see Equation 2.5)

and serves as an indicator for energy distribution within a certain frequency range of a given

signal. In the context of the SHM framework, the AE is calculated for each channel and data

instance. It is defined as

Eii(ωk) =
100 ∗ Êii(ωk)
Êii(ω = fs

2 )
∈ [0,100] % (2.46)
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where

Êii(ωk) =
k∑

n=1

|Sii(ωn)|. (2.47)

Following 2.46 and 2.47 Eii(ωk) relates each frequency between 0 and fs

2 Hz (Nyquist frequency)

to an energy level between 0 and 100%. The value for Eii(ωk) denotes the percentage of energy

that is present in the signal up to ωk, summing up all k values at discrete frequencies. Vice versa,

once Eii(ω) is calculated, the frequency ωej at which a given energy level ej is reached, can be

derived. Following these derivations, a new CP is defined in Chapter 3.1.

Modal Parameters

Another well known group of CPs are modal parameters. Commonly, modal frequencies as in

Equation 2.11 are extracted from each data instance and monitored over time. In this work, the

condition parameter is simply defined as the i-th modal frequency with

CP fi = fi, i ∈ [1,...,nf ]. (2.48)

A problem arising from an automated extraction of modal parameters is the varying number of

resulting frequencies per data instance, nf . For an analysis, one has to be careful when comparing

CPs over many data instances since only frequencies belonging to the same mode have to be

included. Here, the newly introduced TEMP-procedure (see 3.2) can be of great value: Results

from the training phase can be processed as in a stabilization diagram and frequencies are grouped

automatically. Sometimes modal damping is investigated as well, but it suffers from larger errors

and estimation quality is generally lower.

2.6.2 Relative Condition Parameters

The following sub-chapters will outline the theory necessary for the estimation of relative CPs.

In general, every absolute CP can also be formulated as residue, directly comparing two data

instances or a new data instance with a reference. Reference definition is achieved through machine

learning. This reference must not be confused with the reference that is taken for the derivation of

control charts in which boundaries are calculated for every CP from a distribution taken from the

training phase for both, absolute and relative CPs. References are initially needed to calculate the

parameter and hence, have to be re-calculated for every ML instance. As a consequence, a single

data instance will have different CP-values for each ML instance, in contrast to absolute CPs, for

which the values stay constant for a single data instance, independent of the ML instance.
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Distance Measures

Distance measures are the simplest example of a relative CP. Two commonly used measures are

Euclidean and Mahalanobis squared distance (ESD, MSD), defined as

DES =
√∑

i

(X̄i − xi)2 (2.49)

DMS = (X̄ − x)TR0(X)−1(X̄ − x), (2.50)

respectively. Here, x is an arbitrary data vector and X̄ indicates the row wise mean of matrix X.

X is composed of one or several reference vectors with the same dimension as x. R0(X) is the

covariance matrix of X with zero shift (see Equation 2.23).

These two measures can be used to compare two frequency spectra or vectorized AR-matrices

from two different data instances to form a single, relative CP. This procedure is a handy way

to reduce a CP’s dimensionality but holds the drawback of transforming a multi-dimensional

absolute CP into a scalar relative CP. MSD is often used in the context of data normalization

and outlier analysis.

Residues from Stochastic Subspace Identification

Two different CPs can be derived from the block Hankel matrix used in SSI-Cov (see Equation 2.25).

Both avoid the extraction of modal parameters and are based on a comparison of the Hankel

matrix of a reference data instance, Hp,ref , with one from a new measurement, Hp,new. First, a

singular value decomposition of the reference Hankel matrix Hp,ref , with

Ĥp,ref = ÛŜV̂
T

(2.51)

is performed. To assure a unique solution, all columns of Û and V̂ are multiplied by −1 if the

corresponding column of Û has a negative first entry. Further, the three resulting matrices can

be divided into blocks, resulting in

Ĥp,ref =
[
Û1 Û0

] [Ŝ1 0

0 Ŝ0

]
V̂

T

1

V̂
T

0


 (2.52)

where Û1, V̂1, Ŝ1 ∈ R
m∗Nshift×nsig and Û0, V̂0, Ŝ0 ∈ R

m∗nshift×nis . Here, Nshift denotes the

number of block rows in 2.29. nsig and nis denote the number of significant and insignificant

columns, respectively. Obviously, nsig +nis = m ∗nshift must hold true. From this decomposition,

two damage parameters can be derived.

The first relative CP from SSI used in this work is based on the interpretation of Û0 as a

Nullspace of Ĥp, as proposed by Basseville et al. [13]. If nis is properly chosen and Equation 2.52
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is truncated to only Û0, Ŝ0, and V̂0, it can be re-written as

Û
T

0 Ĥp = Ŝ0V̂
T

0 ≈ 0. (2.53)

This equation holds true if both Û
T

0 and Ĥp,ref are calculated from the same data instance and

nis = m ∗ nshift. Equation 2.53 will result in a matrix with small values for nis ≦ m ∗ nshift. To

compare two different states, the Hankel matrix of the current data instance Hp,new is multiplied

by the Nullspace from a reference Û0,ref . The residual vector ζ is then defined as

ζ̂ =
√
N ∗ vec(ÛT

0,ref Ĥp,new) (2.54)

and the CP as its mean:

CP ε(nshift,nis) = ζ̄ . (2.55)

The CP depends on the number of shifts in the Hankel matrix (nshift) and the amount of

insignificant columns chosen (nis). If several data instances are used as reference, e.g. all data

instances of a cluster, Û0 is calculated for each data instance in the reference and Û0,ref is an

average of the matrices Û0,refi
. It should be noted that in the stated literature, the Nullspace-based

CP is calculated from a Chi-square test statistic which results from

χ2 = ζ̂TR−1
0 ζ̂ . (2.56)

Recently, Döhler et al. [50] published a new version of the test parameter in Equation 2.56,

which is claimed to display more robust behavior than previous formulations. It is also based on

a Chi-square test statistic and built from the block Hankel matrix Hp. In contrast to CP ε, the

residual vector is defined as

ζ̂ =
√
N ∗ vec(ÛT

0 ∗ Û1) (2.57)

where Ĥp is replaced by Û1. Further, R̂
−1

0 in Equation 2.56 is divided into

R̂
−1

0 = R̂
− 1

2
T

0 R̂
− 1

2
0 = (AK)†T (AK)†. (2.58)

To calculate the CP, Û0 and R̂
− 1

2
0 , or rather A and K, are taken from the reference data

instance(s)1 and Û1 is calculated from the current data instance.

For an estimation of A and K, the recorded data matrix Ŷ is divided into nB blocks with

NB = N/nB ∈ Z samples each. Each block “may be long enough to assume statistical independence

between blocks”[50]. Now, sub Hankel matrices Ĥ(j)
p , j = 1,2,...,nb are calculated for each data

1 In the same manner as for CP ε, these matrices are averaged if several reference data instances exist.
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block. Then, the matrix K is defined as

K :=

√
NB

nB − 1

[
h1 h2 ... hj

]
with hj = vec(Ĥp − Ĥ(j)

p ), j = 1,2,...,nb. (2.59)

Matrix A is built from the sensitivities of the left singular vectors J
Û1

of Ĥp multiplied by the

Nullspace with

A =
(
I⊗ Û0

)
J

Û1
(2.60)

in which

J
Û1

:=




E1F1

...

EnB FnB


 (2.61)

and

Fj :=
1
λi


v

T
j ⊗

(
I− ujuTj

)
(
I− vjvTj

)
⊗ uTj


 Ej :=

[
I + Kj

(
Ĥp
λj
−
[

0

uTj

])
Kj

]
. (2.62)

The vector uj and vj are taken from Û1 and V̂1, respectively. Finally, Kj is defined as

Kj :=
Ĥp
λj

(
I +

[
0

2vTj

]
− Ĥ

T
p Ĥp
λ2
j

)−1

. (2.63)

For any data instance, the robust CP is calculated by

CP γ(nshift,nsig,nb) := ζ̂T Σ̂
− 1

2
T

ref Σ̂
− 1

2
ref ζ̂ (2.64)

with

ζ̂ =
√
N ∗ vec(ÛT

0,ref ∗ Û1,new) (2.65)

and

Σ̂−1/2 = (AK)†. (2.66)

Accordingly, both condition parameters, CP γ and CP ε, depend on the number of blocks in the

Hankel matrix and the division of the SVD matrices into a significant and insignificant part.

Furthermore, the second parameter also depends on the number of blocks the data instance is

divided into. Both can handle a single or several reference data instances to calculate values for

the current set.
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Residues from Vector-Autoregressive-Models

For the derivation of relative CPs from VAR(p)-models, the difference between a measured time

series Y and a time series estimate Ŷ modeled by AR-coefficients, is investigated. Through this

comparison the m× nt-dimensional residual is reduced to a scalar as the MSD does in a different

manner. In Equation (2.67) the time series Ynew of a new data instance is approximated through

coefficients Aref from a reference data instance, resulting in an estimate Ŷnew(Aref ):

(εk) := (yk)new −
p∑

l=1

(Al)ref (yk−l)new

ε := Ynew − Ŷ new(Aref ).

(2.67)

If the coefficients (Al)new from the same data instance are used, ε is a measure of how well a

certain data instance can be approximated by a VAR-model of order p. Recalling that Y has nt
samples, ε is ∈ R

m×nt−p−1. Two condition parameters are derived from the residue ε: One is the

coefficient of determination according to Neter et al. [132], with

R2 =
1
m

m∑

s=1


1−

√√√√
∑nt
i=p+1(y(s),i − ŷ(s),i)

2

∑nt
i=p+1(y(s),i − y(s))2


 . (2.68)

Here, y(s) is the mean value of the measured channel s. The fitted coefficient of determination,

which takes the model order and number of samples into account, is the first AR-condition

parameter with

C̃P
R2

= R
2 = 1− (1−R2)

nt − 1
nt − p− 1

. (2.69)

From theory, the boundaries for R2 can be given as in Table 2.1. Nevertheless, these boundaries

will not be used directly since the validity for large scale structures under unknown EOCs is not

granted and a similar processing of all CPs was desired in the presented scheme.

Since this parameter has an upper border of one and tends towards negative values for bad

agreement between data instances, the suggestions is to transform C̃P
R2

to behave as do the

other monitored parameters according to

CPR
2
(p) = −1 ∗ (C̃P

R2

− 1). (2.70)

This formulation is used in the presented SHM framework, CPR
2

has a lower border of zero and

Table 2.1: Theoretical boundaries for R
2

R
2 = 1 Perfect linear correlation between measurement and approximation, no dam-

age.

0.8 < R
2
< 1 Statistical deviation, no damage.

R
2
<< 0.8 No linear correlation, damage possible.
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tends towards higher values for bad agreement. Table 2.1 translates to CPR
2

= 0, 0 < CPR
2
< 0.2,

and CPR
2
> 0.2, respectively.

The second CP is based on the M-Test according to Box [21], Stevens [187]. For a derivation,

the residue covariance matrix of a data instance is defined as

Σ̂AR =
1

nt −mp− 1

nt−mp−1∑

k=1

εkεk
T ∈ R

m×m. (2.71)

The M-Test compares the consistency of distributions of a new covariance matrix Σ̂AR,new to the

distributions of one (or several) reference covariance matrices Σ̂AR,ref . The test statistic value is

M with

M = (ñ− g)log|Σ| −
g∑

i=1

(ñi − 1)log|Σi| and (2.72)

Σ =
1

ñ− g
g∑

i=1

(mi − 1)Σi; ñ =
g∑

i=1

ñi. (2.73)

m is the number of vectors in ε. Hence, it correlates with the number of input channels of the

m-variant model. ñi is the number of data points in ε, depending on the number of samples nt,

the model order p and number of input channels m with ñi = nt −mp − 1. Further, g is the

number of covariance matrices combined in the pooled covariance matrix Σ. If two data instances

are compared, covariance matrices Σ̂AR,new and Σ̂AR,ref are used. For sufficiently large ñi ( e.g.

ñi > 20 see [187], which is assumed here) M approximately has a χ2 distribution with fχ2 degrees

of freedom. For smaller values, M is F-distributed and further values have to be calculated,

see [21]. M is fitted in a manner that the confidence interval can directly be calculated from the

inverse χ2-distribution. The level of significance P , which displays the probability for a certain

value of M , is then calculated by

P = 1− χ2(M(1− γ),fχ2) (2.74)

with

fχ2 =
m(m+ 1)(g − 1)

2
and γ =

2m2 + 3m− 1
6(m+ 1)(g − 1)

( g∑

i=1

1
ñi − 1

1
ñ− g

)
. (2.75)

The desired condition parameter is defined as

CPM(p) = M(1− γ) <
[
χ2

(1−α),fχ2

]−1
. (2.76)

CPM is zero if two similar data instances are compared and tends to large values for differing

sets.
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Estimation of an Optimal Model Order

In contrast to the extraction of modal parameters (using stability diagrams), a single model order

p is used for both VAR-based CPs. Hence, it is important to choose this order carefully. An

a priori estimation of model orders for AR-models is a wide field that provides many different

approaches and possible parameters. It is beyond the scope of this work to discuss these values in

detail. Two different approaches are introduced to indicate an optimal model order for m-variant

time series. Namely, the Schwarz’s Bayesian Criterion(SBC) and the Akaikes’s Final Prediction

Error(FPE), derivations for these and further iterative criteria can be found in [111, 133]. A

third, straight forward criterion, the Cover-Factor(CF) according to Haake [75], Rolfes et al. [163]

which is estimated empirically, is also taken into account.

SBC(p) =
log(det(Σ̂ARñt))

m
− (1− mp+ 1

nt
)log(N) (2.77)

FPE(p) =
log(det(Σ̂ARñt))

m
− log ntñt

nt +mp+ 1
(2.78)

CF =
kAR,fu · fs

fu
. (2.79)

With ñt = nt − (mp+ 1). In (2.79), fu is the lowest frequency that needs to be described by the

AR-Model and kAR,fu is the Cover Factor that describes what percentage of the fu-oscillation is

covered by the AR-coefficients. A value of kAR,fu = 0.7 provided good results for different offshore

structures with a mono-pile foundation [75]. Due to their slender structure, this value can also

be assumed to be sufficient for tripod and jacket based OWTs. Furthermore, this Cover Factor

is also applicable to SSI-models. The number of offsets e.g. from (2.25) or (2.29) times inverse

sampling frequency fs gives a certain time span. This time span compared to the period of the

lowest modal frequency of interest can also be interpreted as a Cover Factor.

2.7 Hypothesis Testing

Hypothesis testing (HT) defines the process of evaluating a postulated hypothesis, in this case

the healthy state of a structure. Up to this point, different procedures for machine learning

(ML), along with the definition of several condition parameters (CPs), have been introduced.

Independent of what ML-CP combination is used, a set of CP values from training data instances,

in combination with a similar CP from a new, incoming data instance, forms the basis for the

targeted decision making process, in which the H0-hypothesis of a healthy structure is evaluated.

Hence, a necessary first step lies in the definition of decision boundaries.

2.7.1 Decision Boundaries

Let X be a vector of CPs with length nX, each entry holds a CP-value for a single data instance

D̃ (from the training phase). Further, the probability density function (PDF) of a continuous

variable x is defined as p(x). In general, p(x) is continuous and unknown a priori. Often, p(x) is
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assumed to be normally distributed with a PDF defined as

p(x) =
1

σx

√
2π
e−(x−x̄)2/2σx

2
= N (x̄,σx), (2.80)

with x̄ and σx as mean and standard deviation. Many other PDFs exist to define the distribution

of a (random) variable such as the gamma or Weibull-distribution with

p(x) =
xk−1e−x/θ

θxΓ (k)
;Γ (k) = (k − 1)!;x > 0, (2.81)

and

p(x) =
x

λ

(
x

λ

)k−1

e(−λ/k)k

;x > 0, (2.82)

respectively. See [57] for an example of a detailed discussion of statistical derivations in the

context of SHM. The probability of a single variable Xi taking a value between certain boundaries

a and b, p(Xi = x; a < x < b), is defined as the integral from a to b over p(x) as in 2.83.

p(Xi = x; a < x < b) =
b∫

a

p(x)dx. (2.83)

A general property is p(Xi = x; a < x < b) = 1 for a = −∞ and b =∞. The integration of p(x) is

called cumulative distribution function (CDF) with

P (x) =
∫
p(x)dx. (2.84)

Since p(x) ≧ 0 for all x, the CDF increases monotonically, expressing the cumulative probability

that x takes on a value up to b with

P (x ≦ b) =
b∫

−∞

p(x)dx. (2.85)

The value P (x ≦ b) is also called percentile, linking a parameter value b with a percentage of

values from x lying in an interval [−∞, b]. The percentile is formally written as Xp%, describing

the value below which p% of X resides. E.g. X50% = x̄ for normally distributed variables. Through

solving P (x ≦ b) = p/100, p ∈ [0,100] for b, percentiles Xp% can be directly calculated from the

CDF function.

Xp% can also be calculated if no distribution is fitted to the data. To do so, the CDF is

represented in a discrete manner: First the data vector X is sorted in ascending order, written X́.

Afterwards, the i-th entry is taken as the 100((i− 0.5)/nX)%-percentile:

X́i = Xpi%, pi% = 100((i− 0.5)/nX). (2.86)
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Values are interpolated linearly to estimate percentiles which do not fit into the raster. Figure 2.1

shows the procedure for a vector X with ten entries. In the left plot, counts of X are given along

with the analytical and fitted PDF functions of a normal distribution. The fitted function shows

a small shift to the right with a slight differing standard deviation. On the right side, CDFs are

plotted for the fitted and analytical PDF. The blue line denotes the percentiles calculated with

Equation 2.86.

The boundaries which Xi lies in between with a certain probability W ∈ [0,1] are called the

confidence or tolerance interval, written P (W) = [a,b] = P (a < Xi < b) = 1− α. Where α is the

percentage of values outside the interval. E.g. in the case of a normal distribution 68.269% of

the values lie within 1σ-boundaries around the mean. Hence, P (0.68269) = [x̄ − σx,x̄ + σx]. For

a known, PDF function P (W) can be calculated for a given interval, or a given interval can be

calculated for a given P (W). For normally distributed variables, the error function

erf(x) =
1√
π

x∫

−x

et
2
dt, (2.87)

is used to calculate those boundaries. For symmetric and asymmetric distributions, the interval

starts from the median (= mean for a normal distribution) assuring equal areas to both sides of

the median. If the PDF of a variable is unknown a common PDF can be fitted to the sample of

the variable or alternatively one can work with percentiles. Accordingly, P (W) can be expressed

through a lower boundary X(1−W)/2% and an upper boundary X1−(1−W)/2% in between which

W% of the variables will lie. Typically W is replaced by 1− α and Xα/2%, X(1−α/2)% become the

desired decision boundaries.

2.7.2 Control Charts and Hypothesis Testing Results

Monitoring a certain variable over time is a common task in industry, usually implemented using

control charts [128]. In general, the control variable (X) is compared to upper and lower control
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Figure 2.1: Exemplary comparison of PDFs (left) and CFDs (right) for a normally distributed
random vector X = {0.68, 0.62, 0.57, 0.75, 0.69, 0.55, 0.36, 0.37, 0.74, 0.18} with X̄ = 0.5 and σX = 0.2.
Analytic (light grey) and fitted (dark grey) functions are given along with the counts and estimated
percentiles (blue).
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limits (UCL, LCL) around a center line (CL) for a number of consecutive measurements. For

the SHM framework, these measurements are CPs from incoming data instances during the

testing phase. For a detailed, educational introduction to quality control, see e.g. [128]. Among

many others, so-called x̄-control charts are widely used to monitor the mean of a control variable.

When several measurements are combined to rational subgroups it is also possible to monitor the

parameter’s variability.

For x̄-control charts, the CL is defined as the variable mean X̄ or X50%, and UCL/LCL are

defined in terms of the parameter’s standard deviation σX with

LCL = X̄ −AL,nrsσX = Xα/2%

UCL = X̄ +AU,nrsσX = X(1−α/2)%.
(2.88)

AL,nrs and AU,nrs are scalar factors depending on the subgroup size nrs. Obviously, AL,nrs = AU,nrs

is valid for symmetric distributions such as the normal distribution. Using Equation 2.88, one has

two options to determine the control limits for a given set of training data: 1. Through evaluation

of a fitted PDF e.g. an estimate of the mean and standard deviation and accordingly estimated

constants for AL,nrs and AU,nrs using Equation 2.87. 2. Defining a confidence interval through α

and estimating the percentiles Xα/2% and X(1−α/2)%.

Evaluation of a control chart for a new variable (CPs from data instance in testing) is equal

to performing a hypothesis test on the variable: If LCL < Xi < UCL the structure from which

the data was captured is assumed to be in a healthy state (H0-Hypothesis). If LCL > Xi or

Xi > UCL, the structure is assumed to be possibly damaged, the H1-Hypothesis. It should be

noted that there is always a α-percentage of parameters which lie outside the boundaries for a

healthy system. In the benchmark case, in which the correct state of the structure is known,

control charts can be evaluated against the correct hypothesis: All testing data instances are

plotted in the control chart and correct and wrong decisions can be counted and divided by

the total number of healthy and damaged data instances. Two types of errors are commonly

distinguished with false positive (FP) indications and false negative (FN) indications. Many other

nomenclatures for those errors exist as shown in Table. 2.2 [2, 40, 57, 128, 130].

Table 2.2: Present nomenclature in literature for the errors and results of hypothesis testing.

False positive (FP) in % False negative (FN) in %

Synonyms: Synonyms:

Type I Error (engineering) Type II Error (engineering)

Producer’s risk (production) Consumer’s risk (production)

1-detection rate or 1-power

1-specificity (medicine) 1-sensitivity (medicine)

1-true negative (TN) with FP+TN=100% 1-true positive (TP) with FN+TP=100%

H1 at H0 := H10 with H10 +H00 = 100% H0 at H1 := H01 with H01 +H11 = 100%
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It should be noted that those counts or percentages strongly depend on the chosen value for α,

since it defines the value range for X being linked to a healthy condition. Accordingly H10 and

H01 must be understood as a function of α:

H10 = H10(α) H01 = H01(α) ∈ [0,100]. (2.89)

If these parameters are analyzed for different α-values, receiver operating characteristic (ROC)

curves can be drawn.

2.7.3 Receiver Operating Characteristic Curves

Originating from the field of medicine, where HT is present in the form of diverse medical checks,

ROCs can be used to evaluate the over-all performance of a test through a variation of the

confidence interval. The curve is defined by detection rate H11(α) over false alarm rate H10(α) as

a two dimensional vector ROC(α):

ROC(α) := [H11(α),H10(α)] = [1− FN(α),FP (α)]. (2.90)

As a result, ROCs can be used to select an optimal operating point. Figure 2.2 (right) shows typical

ROC-curves for two CPs, with distributions given in the left sub-plot, evaluated for different

α-values. Start and end of these curves at ROC(α = 0) = [0,0] and ROC(α = 1) = [100,100],

respectively, are fix points from theory: If α = 0, the confidence interval covers (theoretically)

the whole parameter range and all monitored parameters will fall into it. As a result, there will

be no false alarm but also no damage detection, so the point lies in the lower left corner of the

ROC-diagram. In contrast α = 1 denotes a confidence interval with zero width. Accordingly all

monitored parameters will lie outside the boundaries and the detection rate will be 100% but

also the false alarm rate will be at 100%. A straight line from (0,0) to (100,100) represents a

ROC characteristic which is “completely useless” [2] for a differentiation between healthy and

potentially damaged data instances. The more the curve tends towards the upper left corner, the

better the test performance. A perfect discrimination is located at (0,100), and accordingly all

damaged sets are identified without any false positive alarms. This is only achievable if there is

no overlap of parameter distributions from healthy and damaged sets in the analyzed data. An

optimal curve starts at the lower left corner, goes straight up to the upper left and horizontally to

the upper right. The trend to the upper right is inevitable since a growing α and hence a smaller

confidence interval will lead to false positive alarms at a certain point.

The given example in Figure 2.2 (left) shows a parameter distribution for the healthy state H0

for both CPs and two distributions in the damaged state. It is obvious that CP1-values from the

damaged state strongly overlap with the healthy parameters while CP2 performs much better.

Accordingly the ROC-curves in Figure 2.2 (right) differ significantly: For CP2, it directly reaches

a 100% detection rate, going over to the upper right with a constant detection rate of 100%, and

an increasing number of false positive alarms with increasing α. CP1 in contrast is not able to

distinguish between the two states perfectly and the ROC-curve runs below the CP2 curve for all
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Figure 2.2: Parameter distributions (left) for the healthy state of CP1 and CP2 (µ = 0.5;σ = 0.2)
and the damaged state for both CPs (CP1: µ = 1;σ = 0.4 and CP2: µ = 2;σ = 0.3), 100 random
parameter each. ROC-curves per CP are given for different α-values [0, 0.02 : 0.04 : 0.98, 1] in the right
plot. Newly introduced performance lines given for 2:1, 3:1, and 10:1 ratios.

investigated α-values. Performance lines are introduced for a better visual interpretation of the

curves.

From this investigation, a scalar metric for ROC-curves and hypothesis test performance can

be defined with the area under the curve (AUC)’ [2]:

A =
100∫

0

ROC(α)dα. (2.91)

It is obvious that in the general real world case, an analytical formulation for the ROCs is not

available and Equation 2.91 has to be implemented through numerical integration. Values between

the points on the ROC curve derived for discrete α-values are unknown. Hence, an estimate is

necessary to calculate an AUC. Since for a finite number of test sets, the ROC curve increases

monotonically, not strictly monotonic, step-functions can be used as lower and upper boundaries

and linear interpolation, as implemented for this work, as a compromise. The larger the area

below the curve, the better the performance. Boundaries are given by Akobeng [2] with: A > 0.9

indicating high accuracy, 0.9 > A > 0.7 indicating moderate accuracy, and 0.7 > A > 0.5 for low

accuracy. Another performance indicator is the maximum distance between ROC-curve and the

diagonal, dubbed Youden index (J ) [2, 217], with

J = max{H11(α)−H01(α)}. (2.92)

A second parameter that can be taken out of an ROC curve is the minimum distance to the

optimum in the upper left corner, d̄. It is simply calculated as

d̄ = min{
√
H10(α)2 +H01(α)2}. (2.93)
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All three parameters provide a global index for a comparison of HT. J and d̄ will also result in an

optimal value for α for a single point on the ROC-curve. Both parameters will be used to compare

different combinations of ML, CP, and HT as outlined in detail in the following chapter (see 3.4).



3 Novelties and Benchmark Studies

To this point motivation for structural health monitoring has been given and existing approaches

for the automated extraction of modal parameters and SHM have been presented in Chapter 1.

Further, the theoretical background for the following studies was given in Chapter 2. Before

investigating results of OMA and SHM for large-scale structures, this chapter gives a detailed

description into the TEMP procedure used in combination with SSI for OMA, and the SHM

framework with its subsequent steps of machine learning (ML), condition parameters (CP) and

hypothesis testing (HT). TEMP is exemplarily applied to a data base of the New Carquinez bridge.

Exemplary plots used for analysis are introduced before the chapter closes with an application

within an exemplary public database, generated from the LANL 4-DoF system, a small scale

physical model.

3.1 Accumulated Energy as Condition Parameter

The accumulated energy (AE) in Equation 2.46 is the integral of a power spectral density over

frequency (see Equation 2.5) and serves as an indicator for energy distribution within a certain

frequency range of a given signal. Following 2.46 and 2.47 Eyy(ωi) ranges form 0 to 100 %, linking

each increasing frequency bin with a cumulative energy level. The value for Eyy(ωk) denotes the

percentage of energy that is present in the signal up to ωk. Vice versa, once Eyy(ωi) is calculated,

the frequency ωej where a given energy level ej ∈ [0,100] is crossed can be calculated. Figure 3.1

shows the PSD of a channel (left) and the corresponding AE (right). Accordingly, ne discrete

frequencies ω̃j can be identified within a certain energy interval [ea − eb], ea < eb ∈ [0,100]. The

condition parameter for channel i is then defined as the mean frequency value for a certain energy

interval:

CP
Eyy

(i),[ea−eb] = CP
Eyy

i,k =
1
nb

na∑

j=1

ω̃j . (3.1)

k indicates the interval number and na and nb the indexes at the beginning and the end of the

interval, respectively.

Since this frequency depends on the energy distribution within the spectrum being measured,

the resulting mean frequency per energy section takes changes in the whole frequency range into

account instead of tracking single peaks of a spectrum (e.g. modal frequencies). This derivation

differs from the one in [208] where AE is built from spectra and its centroid is tracked or visual

inspection is performed. The parameter has also been used e.g. for shape analysis [41] and to

characterize earthquakes in time domain [192].

59
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Figure 3.1: Power spectral density (left) and accumulated energy (right) for a single data-channel. In
the right plot, the estimation of the CPE

(i),[ea−eb] is indicated through lower and upper energy bound
ea and eb, the according frequency range and finally the mean frequency between ω̃1 and ω̃ne

.

CPE(i),[ea−eb] is a scalar for a single channel, accordingly an m × 1 vector results for a single

data instance with m channels. If several energy sectors are included each channel results in a

vector and each data instance in a CP matrix. Further, the parameter was extended to include

not only auto-correlations but also cross-correlations to use information between sensor positions.

This results in an accumulated energy matrix where CPE(i,j),[ea−eb] is the frequency corresponding

to the energy interval [ea − eb] for the accumulated energy resulting from the cross-correlation

between channel i and j. Through this correlation m2 values result from m channels. To reduce

the dimensionality all cross-correlations between channel i and all other channels are averaged.

Accordingly, information for the correlation between channel i and all other channels is merged.

Through this procedure 2m parameters result from m channels, dubbed CP
Exy

i,j . ‘xy’ indicates

the cross correlations used for estimation. Only one of the two will be indicated in labels of plots.

3.2 TEMP: Triangulation-Based Extraction of Modal Parameters

In long term SHM and online monitoring, the computational demands of automated extraction of

modal parameters becomes a critical issue, as thousands of data instances have to be analyzed

or computation has to be relocated to wireless sensor nodes. In this context, the extraction

of modal parameters is applied to the solutions of the system identification step (dubbed S),

which is carried out by e.g. SSI, collected in stabilization diagrams. It is not argued that the

quality of the extracted frequencies, damping-values, and mode shapes strongly depends on

these solutions. In fact, the advantage of the presented procedure lies in the way the results

are extracted and can be stated by the number of comparisons needed: The known procedures

comprise time-consuming calculation steps since clustering is applied to the (very) large set of

solutions S, where each possible pair of poles is investigated (see 1.5). If S is comprised of n

solutions, this leads to (n2 − n)/2 comparisons for each metric. The approach introduced here,

dubbed triangulation-based extraction of modal parameters (TEMP), uses triangle objects of a

Delaunay-triangulation in the frequency-damping-plane for a comparison of neighboring solutions
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only. The triangulation results in 2n− 2− b triangles1. Three comparisons are calculated on each

triangle resulting in only 3(2n− 2− b) comparisons. The Delaunay-triangulation is a well known,

robust technique that leads to a unique solution. This results in a strongly reduced computational

effort and robust extraction results [77].

The procedure provides an easily traceable solution for both improving the stability-diagram

and grouping the solutions by connected triangles. Finally, each cluster might comprehend several

paths (modes), detected as graphs through each cluster. Not every solution in a cluster will

necessarily participate in a mode, which is an advance on most clustering approaches which

assume each cluster to be a single mode ignoring possible mode splits. This triangulation based

approach further enables a general display of the distribution of solutions from parametric system

identification procedures and parameter sensitivities by triangle dimensions indicating different

stability diagram characteristics for e.g. SSI and VAR.

For path estimation, the set of modes/solutions S (see 2.3 and 2.4), calculated from the

preferred system identification procedure, with nS solutions, serves as the initial set2. The

presented procedure is organized as follows (Symbolsˆandˆ̂indicate reduced solution sets):

1. Reduction of S to Ŝ by weighted Mean Phase Deviation (MPD).

2. Building a Delaunay-Triangulation in the f -ζ-plane (frequency-damping) of Ŝ.

3. Reduction of Ŝ to ˆ̂S by triangle dimensions.

4. Division of remaining solutions by connected triangles into sub sets P̂i ∈ ˆ̂S.

5. Identification of stable paths for each sub set P̂i.

6. Reduction of path objects by their length.

Initially, all modes in S are tested to exist in complex conjugate pairs, and one half of the

solutions is kept since each pair lies on the same point in the frequency-damping or frequency-model

orders space. Further, mean phase deviations (MPD, Equation (2.36)) for all remaining solutions

are calculated and all solutions with mode shapes exceeding the criterion φcrit are rejected. Then,

the remaining solutions Ŝi are compared in the frequency damping plane to reduce the number

of solutions. In this plane the set of points Ŝf,ζ := {Ŝf,ζ1 , . . . ,Ŝf,ζn
Ŝ
} is defined by frequency and

damping of each solution. Assuming that Ŝf,ζ is in general position, which means that no four

point of Ŝf,ζ lie exactly on a circle, a unique Delaunay-Triangulation D(Ŝf,ζ) can be performed

[43]. The procedure is very efficient and can be accessed e.g. using built-in functions of Matlab.

The Delaunay-Triangulation is a special case of many possible triangulations for Ŝf,ζ where the

minimum angle (of all triangles) of the triangulation is maximised. A set of n∆ triangles ∆i ∈ ∆,

each holding a unique set of points Ŝl, Ŝm, Ŝn ∈ ∆i, is the result of this triangulation. For each

1 Where b is the number of vertices (points) on the convex hull.
2 A basic criterion for physical solutions is their existence in conjugate-complex pairs. Since frequency and

damping are equal for both of these solutions, only one of the pair is considered for path identification here.
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∆i, the distances between the corner nodes in frequency and damping can be calculated with

(2.31) and (2.32) , see also Figure 3.2. The distances are denoted by

∆i,δf =
[
df0,l,m

,df0,l,n
,df0,n,m

]
; ∆i,δζ =

[
dζl,m

,dζl,n
,dζn,m

]
. (3.2)

Further, the MAC values of (2.33) between the three points serve as a third indicator. It follows

∆i,δMAC =
[
MAC(Sψl ,Sψm),MAC(Sψl ,Sψn ),MAC(Sψn ,Sψm)

]
. (3.3)

When all triangle dimensions have been calculated, thresholds can be applied to determine a sub

set of ∆, denoted ∆̂, in which each ∆̂i has proper dimensions. According to frequency, damping

and MAC, three critical values fcrit, ζcrit and MACcrit are defined. The values for damping and

frequency are expressed in percent and define the maximal relative divergence within a triangle.

For MAC, the criterion defines a minimum MAC-value. Finally, the criterion if a triangle ∆i

belongs to ∆̂ can be formulated as follows:

∆i ∈ ∆̂ if max




max(∆i,δfs)

min(Sf0

l ,S
f0
m ,Sf0

n )fcrit

max(∆i,δζ)

min(Sζl ,S
ζ
m,Sζn)ζcrit

min(∆i,δMAC)
MACcrit




≤ 1 (3.4)

If this condition is fulfilled, the triangle is sufficiently small and all solutions have similar

Eigenvectors.

To illustrate the procedure, Figure 3.3 shows the initial triangulation (blue) in the frequency-

damping-plane for an arbitrary ten minute data instance originating form the wind turbine in 5.

As initial S solutions of SSI-Data(50) are used1. Each corner node of a blue triangle represents

one solution/mode of the system identification procedure. To clarify the triangulation, only the

lower frequencies from 0 to 5Hz are plotted. Further, green circles mark the corners of remaining

triangles after frequency and damping criteria have been applied. Finally red crosses indicate

solutions that remain after MAC values have been checked within the triangles. It is clearly

visible how this procedure reduces S to the dense regions with low damping values. Without

the need to reduce S by hard criteria such as maximal damping values, the low damped modes

remain in ∆̂2. All mentioned operations can be executed using vector operations and hence suit

Matlab very well, resulting in a very fast computation.

The set of points that builds ∆̂ is called ˆ̂S. To divide the subset ˆ̂S into groups of connected

1 model orders from 1 to 200 are considered, reduction through a maximum MPD of 25◦ was applied before
triangulation.

2 As long as a mode participates in a single triangle with proper dimensions it remains in
ˆ̂
S.
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Figure 3.2: Triangle object in frequency-damping-plane used in TEMP-procedure with frequency and
damping distances between corner points of triangle. Triangle sides also represent MAC-comparisons
between corner-nodes.

points, the triangulation is very useful as well. Starting with a set of three points of an arbitrary

triangle P̂start := ˆ̂Sl, ˆ̂Sm, ˆ̂Sn ∈ ∆̂i, further points, belonging to triangles that contain one or two

points of the initial point set, can be added to P̂i. The search is continued for the increased set

of points/triangles until no additional triangles containing points of the set, can be found. The

identified triangles are erased from ∆̂ and the procedure is repeated until no triangles are left

and all points are allocated to specific P̂i1. For the initial triangulation this procedure would

collect all points in one P̂i. Since many triangles have been erased, gaps between the triangles

will let this procedure split the complete set of points. Accordingly, Ŝ is divided into n∆̂ sub

sets P̂i. Figure 3.4 shows the result of this procedure for ˆ̂S from Figure 3.3. Again, the initial

triangulation is plotted as a reference, colored circles indicate the different P̂i.

For each P̂i the path identification algorithm can be run: Initially, all points from P̂i with the

highest model order are understood as different path-objects. Then, a loop runs over all other

(lower) model orders nk contained in P̂i, collecting solutions with the appropriate model order.

Within those loops, the closest solution to a path-object (in a frequency, damping, and MAC

sense, fulfilling fcrit, ζcrit and MACcrit ) is appended to an object. One solution can hence be

added to two different path objects to merge them2. This results in a number of path-objects per

sub set P̂i. To distinguish between these objects, their length (indicating how many model orders

a path involves) serves as indicator. A last criterion removes all paths with a number of model

orders lower than P̂crit defines. It is suggested that a path-object should contain at least 50 % of

the total number of model orders.

The reduction of ˆ̂S is plotted in the frequency-model order-plane in Figure 3.5. The upper plot

shows the initial set of solutions. This set is also given by the blue triangulation in Figure 3.3

and Figure 3.4, here after application of the phase criterion φcrit. The very same solutions are

displayed as standard stabilization diagram in the upper plot of Figure 3.5. In this example,

1 It should be noted that this routine does not work with the call of neighbouring triangles since these have one
side in common, here the connection of only one point is sufficient.

2 If one solution is added to two different path-objects both objects will add the same solutions in further loops.
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colors. Stable paths are subsequently identified within each P̂i.

a majority of the solutions is located below 10 Hz with further accumulations at 12, 19.5 and

24 Hz, respectively. After the reduction, the lower plot results. It is clearly visible that a fair

amount of noise is erased from the stability plot and that certain paths occur. The remaining set

is split through grouping connected triangles as indicated by bullets in Figure 3.4. Each group is

separately taken for the path-identification procedure. Finally, Table 3.1 gives an overview of all

used criteria with a brief description and minimal/maximal values.

It is clear that the quality of reduction is closely related to the choice of the reduction criteria.

Different values for φcrit, fcrit, ζcrit and MACcrit will influence the number of remaining solutions
ˆ̂Si. If each criterion is varied over its value range, the trend of the amount of remaining solutions

indicates the distribution and sensitivity of the addressed modal validation parameter. For this
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Table 3.1: TEMP criteria for modal parameter extraction at LANL 4-DoF system.
Criterion Description Min Max
φcrit Criterion for mean phase divergence within a single Eigenvector. Used

to reduce initial set of modes/solutions S.
0◦ 45◦

fcrit Relative frequency difference between two solutions in %. %-value based
on smallest frequency within triangle (for triangulation procedure) or
smaller frequency between two points (for path identification). Used to
reduce S based on triangulation & path identification

0 ∞

ζcrit Relative damping difference between two solutions in %. %-value based
on smallest damping within triangle (for triangulation procedure) or
smaller frequency between two points (for path identification). Used to
reduce S based on triangulation & path identification

0 ∞

MACcrit MAC value between two solutions. Used to reduce S based on triangula-
tion & path identification

0 1

P̂crit Minumum number of model orders participating in path object. Used
for path identification

1 pmax
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Figure 3.5: Initial stabilization diagram from SSI-Data (S, upper plot) and cleared stabilization

diagram after TEMP ( ˆ̂S, lower plot). Reduction through phase-, frequency-, damping-, and MAC
-criterion, with a threshold of 25◦, 5 %, 75 % and 0.1, respectively.
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purpose, solutions of 300 system identifications based on SSI and VAR are analyzed in [77]. Here,

differences and statistical properties can be investigated.

It is stated that an automated extraction of modal parameters should be based on the detailed

knowledge of the validation parameter’s statistical distributions. Only if the parameter distri-

butions/sensitivities for a given system identification method with fixed sets of model orders

do not change for several data instances, inner, statistical values can be taken for a reliable

automation. If the statistical distributions of the criteria differ from normal distributions, and

hence the estimation of statistical parameters becomes more costly, parameter-percentiles serve

as a easy to interpret boundary.

3.3 Application of TEMP to the Database of New Carquinez bridge

The New Carquinez Bridge (NCB), officially named Alfre Zampa Memorial Bridge, is a suspension

bridge of 1056 m length that crosses the Carquinez Straight in Vallejo, CA, north of San Francisco.

The main span has a length of 728 m with two side spans of 147 and 181 m, carried by two

hollow concrete towers of 120 m height. A continuous orthotropic steel box girder forms the

deck of the bridge. It was completed in 2003 as a part of the seismic retrofit program of the Bay

Area Toll Authority. Today, it supports four lanes of westbound traffic on freeway I-80 between

Sacramento and San Francisco. Due to the high risk of seismic hazards, the California Department

of Transportation as the bridge operator, is required to decide about the safety of reopening the

bridge after any seismic event. Hence, a monitoring system was put into place.

In the summer of 2010, the Laboratory for Intelligent Systems and Technologies, University

of Michigan, implemented a wireless long-term structural (health) monitoring system on the

NCB. For the monitoring, different sensors divided into three sub networks (N for north, S for

south, and T for tower) were installed as displayed in the upper graphic of Figure 3.6. In total,

the wireless monitoring system supports 33 tri-axial accelerometers, 9 strain gages, 3 string

potentiometers, 1 GPS node and 3 weather stations (which include thermometers, anemometers

and wind vanes). The lower left and lower middle picture in Figure 3.6 display these weather

stations and wireless sensor nodes. The Narada sensor nodes [190], including those carrying

accelerometers, are attached magnetically to the bottom of the deck, outside the girder. All nodes

are powered by solar panels. The data collection times were changed after a couple of months

from 4:00, 8:00, 12:00, 16:00, and 20:00 h to 2:00, 6:00, 10, 14:00, 18:00, and 22:00 h (as can be

seen in subsequent figures). A validation and benchmark comparison to a wired sensor system can

be found in [102]. First insights into modal properties and a comparison to FEM were analyzed

in [101] and [83].

In this section, sensor nodes from the southern sub network (S1 to S9 in Figure 3.6) are used

to perform the automated extraction of modal parameters by TEMP (see Chapter 3.2). To do

so, SSI is first run and poles for model orders between 100 and 300 are extracted in steps of two.

These results are evaluated by the introduced TEMP procedure. Each data instance is composed

of nine bi-axial acceleration sensors resulting in 18 channels. Measurements were taken with a

sampling frequency of fs=20 Hz over a period of 480 s. A custom designed 4-pole Butterworth
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Figure 3.6: Structure and data acquisition system for the New Carquinez Bridge. Side view and
sensor locations are given in the upper plot, the middle plots shows a side view from south, and a
weather station, sensor nodes and a bottom view are given in the bottom row (left to right).

filter is used as a combined DC refection and anti-alias filter configured with a pass-band from

0.001Hz to 10 Hz. Results from TEMP were compared to a knowledge based approach in [222],

showing very good agreement but also highlighting that certain modes are less present in one of

the two sub network. Settings for the TEMP application in this section are as follows: Shifs: 80

Model orders: 100 to 300, φcrit = 17.5◦, fcrit = 1.5%, ζcrit = 35%, MACcrit = 0.9, P̂crit = 501.

In total, 1158 data instances were analyzed. TEMP-parameters are kept constant for every

data instance. Results of the automated procedure are shown in Figure 3.7 (left). Even though

modes were identified up to 10 Hz, a close-up to the range of 0 to 1 Hz is chosen since the main

1 The number of shifts results from the estimated lowest mode at 0.18 Hz which has a period of 5.55 s and hence
111 samples. To cover about 70% of the samples 80 shifts are necessary. Due to the 18 channels, a state space
model order of 36 results. This order should be well overestimated with chosen orders of 100 to 300. Values for
MPD, frequency, damping, and MAC are empirical values recommended for large-scale structures. An overview
for TEMP settings for all investigated structures is given in Table 6.1
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global bending modes are present in the range up to 1 Hz (see [83]). It can be seen that all modes

are identified very constantly over the different data instances and that only a few spurious modes

lie between the desired physical modes. This is underlined by sharp peaks in the very left plot for

mode occurrence over frequency. Some symmetric modes are not identified from the signal due

to insufficient amplitudes. Over the different data instances, between 20 and 35 solutions result

as physical modes from TEMP. Here some data instances stick out, where distinctively fewer

solutions are calculated. Further, fewer solutions are identified from data instance 400 onwards,

where a system update was performed and less spurious solutions result (upper plot).

In order to track the structure’s modes over time, one can make repeated use of the TEMP

procedure: Data in Figure 3.7 (left) can be used for path identification to track modes over the

different data instances. The data instance number is simply interpreted as model order and

TEMP can be applied to all the solutions. Results can be seen in the right plot of Figure 3.7, where

different modes are indicated by different colors reaching over all the analyzed data instances.

Due to noise in the data, colored excitation, path-split or path merging, spurious solutions might

result from single data instances. These solutions might pollute the overall results. Through the

repeated application of TEMP, similar modes can be extracted for analysis. Also, if modes should

switch position in frequency, these can be traced with the comparison of damping and MAC.

The option of path-detail exploration also provides the ability to track changes in mode shapes

over time. It should be noted that TEMP-criteria should be adjusted for this analysis to allow

for stronger fluctuations between data instances – Depending on the measurement interval it is

obvious that changes in frequency, damping, and mode shape might be more distinct between

data instances than within a single measurement.

Mode shapes for all eight modes, indicated in Figure 3.7 (right), are given in Figure 3.8. It should

be noted that measurements represent the southern sub-network of sensor nodes; accordingly

mode shapes reach up to the middle of the bridge and repeat themselves from that point on

towards the northern end of the NCB. All measured degrees of freedom are indicated by red

arrows. Additionally, fix points are included into the plot at both ends of the side span where

bearings constrain the structure’s movements.

The modes with mean frequencies at 0.194 Hz (upper left), 0.257 Hz (upper right), 0.363 Hz

(2nd row left), 0.48 Hz (2nd row right), and 0.644 Hz (4th row left) represent global, vertical

bending modes of the bridge with an increasing number of maxima and some torsional content.

For the highest bending mode at 0.644 Hz the two adjacent maxima on the left move in the same

direction, indicating that the spatial solution might be too low to capture this mode correctly,

possibly missing a maximum between nodes, or the phase information is erroneous. The mode

at 0.18, 0.53, and 1.04 Hz (1st row left, 3rd row right, and 5th row right) form the first three

horizontal bending modes. The mode at 0.557 Hz (4th row left) is dominated by the side span

where both vertical measurements show the largest absolute amplitudes. It should be noted that

this mode is close to one mode referred to as a mix between symmetric and antisymmetric vertical

bending at a frequency of 0.561 Hz in [83]. Finally, the mode at 0.743 Hz (5th row right) is

the first antisymmetric global torsion mode where points on either side of the bridge deck move

in opposite directions. It should be noted that the side span does not continue the torsional
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movement.

To gain an insight into the influence of EOCs on the modes, frequencies and damping values are

analyzed over five different EOCs using standard box-plots for one mode in Figure 3.9. Within the

figure, wind speed, wind direction, temperature, hour of the day, and mean maximum acceleration

are analyzed. If a bin contains less than 10 values, e.g. if less than 10 data instances with solutions

for those modes exist in the EOC-range, the bin is omitted in the plot. Accordingly the number

of bins might vary between the different modes. Values indicated at the bins mark the mean

values per bin.

Figure 3.9 shows the EOC influence on the first global bending mode. The mode has a major

maximum at the middle of the main span and two small maxima at the side span and at the

beginning of the main span. With an increase in wind speed the mean resonance frequency drops

by 0.5% before slightly increasing with stronger wind back to 0.178 Hz (1st row). Damping ratios

follow a similar trend, slightly decreasing before increasing again. The wind direction (2nd row)

also has a minor influence on frequency and damping. Only the frequency follows a slight trend

reaching a maximum at the 82.5 degree bin. Temperature influences manifest most strongly in

the damping values (3rd row). For lower temperatures around 11 degrees Celsius mean damping

values lie above 1% and rise up to 1.5%. With an increase in temperature, damping drops down

to a third with 0.5% for temperatures higher than 17 degrees. Usually an increase in temperature

would be considered to coince with an increase in damping. The hour of the day reveals a higher

frequency at 4 am night time and lower frequencies for day time, indicating more traffic load
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during the day (4th row). Further, the first modal frequency seems to decrease slightly with an

increase of acceleration amplitude indicating non-linear behavior (5th row).

For this benchmark example, TEMP proved to be an effective tool for aiding the automated

processing of dynamic bridge response data. The automated analysis enables a statistical

evaluation of identified modes through e.g. box-plots. Here, EOC dependencies are revealed and

aid subsequent analysis and validation of simulations and numerical models. Overall, temperature

changes reveal the most significant effect on the analyzed mode. Nevertheless, different EOCs

correlate and further analysis is necessary to investigate changing dynamics. The knowledge of

EOCs which affect the structures behavior and those who do not, can be included in the SHM

process as aid for decisions regarding which EOCs can be employed in machine learning.
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Figure 3.9: Dependencies of modal frequency and damping for first NCB bending mode at 0.194 Hz.
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3.4 A SHM Framework – How to Estimate SHM Performance Holistically

This section will give an insight into the different steps of the proposed modular SHM framework.

To realize this task and following Montgomery [128], a differentiation is desired between “chance

cause of variation”, the variation due to natural variability, and “assignable causes”, changes

due to system abnormalities. Approaching the problem of monitoring a mechanical structure,

Deraemaeker et al. [46] state a general relation between input (EOCs and resulting loads) and

output Y (CPs) through an unknown mapping of functional f(•) with

Y = f(EOCs) + g(η). (3.5)

g(η) represents an unknown residual term from damage and noise effects and Y ∈ R
m̄×k is

the state matrix, with m̄-dimensional CPs and k training sets. Providing a sound and reliable

formulation for f(•) and to minimize g(η) is the main task in SHM. This formulation will be

extended to cover all necessary steps for an SHM application. The main focus of the proposed

framework is damage detection (SHM-level one), e.g. to separate normal from abnormal states

and the performance evaluation of different ML-CP-HT combinations. If an abnormal state is

detected, the possibility of damage localization (SHM-level two) can be addressed.

Postulating a valid data acquisition, four different steps are defined: Data selection, machine

learning (ML), condition parameters (CPs), and hypothesis testing (HT) (see Figure 3.10). This

is motivated by the SHM axioms and the following statements:

1. No evaluation can be performed without a parameter to judge on (CP).

2. No decision on a parameter can be taken without a threshold (HT).

3. No threshold can be defined without a basis of data instances even if only a

single data instance or a single data group is used (ML).

4. No basis can be defined without data selection.

Hence, the following points of variation occur during application:

1. Training data, in count and selection of training sets.

2. Machine learning, in type and setting of applied techniques.

3. Condition parameters, in type and settings for the extracted parameters.

4. Hypothesis testing, in probability density functions and confidence intervals.

Since there is no underlying mechanical model of the structure involved, it is applicable to any

given mechanical structure from which dynamic responses can be measured. For complex, large

scale structures it is widely accepted that a measurement of the single time instance will not

be sufficient as reference. Hence, most of the recent SHM-procedures as well as this framework

consist of a so called training or base-line phase (indicated by solid lines in Figure 3.10) and a

testing or monitoring phase (dotted lines in Figure 3.10).

ML, as a tool to learn the systems behavior during healthy states, is applied to the training

database by utilizing attributes of each data instance (DEOC
i ). These can either be values
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extracted from the measured response time series or, more commonly, additionally collected EOCs.

A CP can be any value derived from the recorded time series per data instance. The definition of

relative and absolute CPs is based on the CP formulation: If by definition a second data instance

is needed to calculate the CP for a certain set, the CP is categorized as relative. Absolute CPs

in contrast are directly derived from a single data instance. Modal frequencies for example are

absolute CPs, if a frequency difference is used, they become relative CPs.

This does not contradict the statements above since both CP types are compared to the training

phase during HT. The distinction is more of a practical kind since the implementation effort for

relative CPs is higher1 and they prohibit supervised ML. It should be noted that the order of ML

and CPs might be reversed depending on the applied scheme, e.g. for machine learning techniques

that neglect EOCs or supervised machine learning. Further, HT is understood as both building a

probabilistic model for CPs during training with respect to machine learning and evaluating new

incoming data instances with respect to these probabilistic models. The result is a hypothesis

test with a decision about whether the structure is healthy or not.

Once CPs are calculated for all data instances, their distribution (e.g. within clusters) can be

calculated and confidence intervals serve as thresholds for future data instances to differentiate

between healthy or unhealthy states:

• Training phase
– Data acquisition: Initial database composed of valid and sound data instances;
– Machine learning: Training with data under differing system states2;
– Estimation of condition parameters;
– Hypothesis testing: Setting up probabilistic models for CPs with respect to ML;

• Testing phase
– Data acquisition: New, incoming data instances (usually 10 min. blocks for OWTs);
– Machine learning: Data instance assignment and integration;
– Calculation of CP(s) (if necessary, with respect to machine learning);
– Hypothesis testing: Evaluation of CP(s) within probabilistic model(s);

Many different approaches can be implemented to achieve these SHM steps (see 1.3.2 to 1.3.3

and 2.5 to 2.7), in Figure 3.10 represented through (a-c),(A-C), and (a-c), respectively. If the

structure is considered healthy during a monitoring phase, the base-line phase can be extended

by further data instances to increase reliability. Based on the decision of whether the structure is

in a healthy or abnormal (potentially unhealthy) state, further SHM-levels may be investigated.

Following the framework from Equation 3.5, where a state matrix is defined as function of

EOCs and noise, an extension leads to a global description of SHM:

ML = f(EOCs,CP ) + g(η)

CP = f(EOCs,ML) + g(η) = Ỹ
HT = f(ML,CP ) + g(η)

(3.6)

1 Since relative CPs need a reference for their estimation, a change in ML and hence a (possible) change in data
classification leads to the need of a re-estimation of those parameters for every ML setting.

2 This step is often also referred to as data normalization and might be applied subsequently to the estimation of
condition parameters, depending on the procedure chosen.
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Figure 3.10: Modular SHM framework: Training and subsequently testing data instances are
analyzed through a combination of machine learning algorithm, damage parameter and probabilistic
model to draw a decision about the state.

Again, g(η) represents an unknown residual term from damage and noise effects and Ỹ is a

modification of the state matrix. Machine learning becomes a function of EOCs and noise, CPs are

indicated in grey since they are only involved when supervised ML is applied. CPs are defined as

a function of EOCs and noise, former denoted as state matrix (see Equation (3.5)). If relative CPs

are used, the dependency also includes ML (grey). Hypothesis testing as the final step depends

always on ML and CP. During operation, the SHM procedure results in a series of hypothesis

tests. The number of tests depends on the number of applied ML procedures and settings, the

number of different CPs and the number of HT variations. The resulting, binary decision H is

always a function of ML, CP and HT and can be defined as

Hn,k = H(ML,CP,HT ) =

{
H0 for Healthy states

H1 for Abnormal states
. (3.7)

Hn,k is the HT result for data instance n under the k-th ML-CP-HT-combination. In general,

there is no information about how well the SHM framework performs, no matter which techniques

are chosen in the single steps.

However, if the monitored structure can be damaged or modified artificially, as for the examples

given in Chapter 3.5 and 4, or abnormal states are known in the testing phase, the SHM procedure

can be evaluated both for false positive (FP, H10 in Figure 3.10) and false negative (FN - H01

in Figure 3.10) HT results. Further, if the training phase is sufficiently long and the structure

remains healthy, which is mostly proven through conventional inspections, the hypothesis tests of

the SHM framework can be checked against false positive alarms, since they should not exceed

the confidence intervals chosen.
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3.4.1 Training Phase

Machine Learning

Starting with the initial step after data collection and validation, many different options exist

for machine learning. It is emphasized that the assumption of a healthy, or normally behaving,

structure during the training phase must hold. In Chapter 2, four variants are discussed with

manual classification, k-means, affinity propagation and least squares support vector machines.

While the latter is a supervised learning method (dependencies between EOCs and CPs are trained)

all other approaches can be used as unsupervised techniques with EOCs as their input. Figure 3.11

shows the exemplary applications of these variants. Here a two dimensional, normalized EOC

vector of wind speed and rotor speed is considered. It is advisable to normalize each EOC to

neglect different weighting through distance measures in the EOC space. For manual classification,

this step can be omitted. The following normalization by median and maximum absolute value is

performed per EOC before automated clustering:

x̃i = xi − p50(x) x̂i = x̃i/max(|x̃|) ∈ [−1,1] (3.8)

Here, xi is an EOC value for data instance i, p50(x) is the median of the EOC vector (all data

instances participating in the training phase), and x̂i is the scaled EOC.

In case of a base classification (upper left in Figure 3.11) all data instances are put into a single

cluster where no distinction is made by EOCs. Sometimes this case is referred as a technique that

overcomes machine learning, but is basically the most simple example of it. For easily separable

EOCs, manual classification can lead to a proper separation of data instances, as given in the

upper right plot of Figure 3.11. Here, four non-overlapping clusters result. Nevertheless, with an

increasing number of input EOCs, manual classification will become impractical. An example for

automated clustering is given in the lower left plot of Figure 3.11: Each color indicates a cluster

resulting from affinity propagation. In contrast to manual clustering, each data instance which is

part of the training phase is automatically assigned to a cluster. If one decides for unsupervised

ML and further for data clustering, there are a vast number of different classification procedures

available at this point. Affinity propagation by Dueck [52], as introduced to SHM in [77], has the

potential to provide a well performing and fast solution.

Independent from the chosen procedure, the step of data classification or clustering results in

the assignment of data instances from the training phase to a certain cluster. This assignment can

be stored e.g. in a vector for each classification variation, later denoted as MLX (see Table 3.2).

Different manual borders as well as different settings1 for affinity propagation or k-means will

result in different assignments. Hence, each realization (potentially) results in a different number

of clusters, with differing cluster sizes.

If a supervised machine learning technique is chosen, such as a realization of neural networks

1 Settings can either concern parameters that need to be set for the procedure itself, e.g. cluster number for
classical approaches or the preference for affinity propagation, or also the number and type of EOCs used.
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Figure 3.11: Exemplary machine learning cases for base classification (upper left), manual classifica-
tion (upper right), k-means or affinity propagation (lower left), and regression analysis (lower right) in
a two-dimensional, normalized EOC-space. Data distribution shows a typical distribution for rotor
speed over wind speed of a pitch-controlled, multi-MW wind turbine.

or regression analysis, the dependency between EOCs and CPs is trained. The lower right plot

of Figure 3.11 shows a least-squares support vector regression for the example data instances.

It should be noted that EOC2 (rotor speed) is assumed to be a CP (goal value) here. The

procedure results in a forecast (blue line) for the CP (EOC2), depending on the input given

by EOC1. Additionally, the procedure provides varying confidence intervals which depend on

the input variable (red lines). The input parameter can be multi dimensional, resulting in CP

spheres. (LS-)SVM are a handy tool for well correlated processes with no ambiguities. Also the

input-output relation should not contain gaps. Additionally the definition of proper reference data

instances for relative condition parameters, is more difficult to realize since both, input (EOCs)

and output (CP) are needed simultaneously for supervised ML.

Superior performance of AP compared to standard k-centers clustering was already stated.

Figure 3.12 shows results for the comparison of cluster quality by the mean Euclidean distance

between the cluster center and nodes for AP and k-centers, seven EOCs are used as input1.

Analysis is carried out for four training set sizes and different numbers of cluster each. For a fixed

1 Rotor speed, wind speed, nacelle position, wind direction, turbulence intensity, temperature, and air pressure
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number of clusters, AP calculates the desired solution iteratively. Further, AP was run a single

time and k-centers 10,000 times. AP is able to outperform the classical clustering approach for

almost all displayed cases with a single run. Only for 1008 data sts and very high numbers of

clusters k-centers is able to lead to better results than AP. Accordingly, AP is favored.

As stated before, due to these limitations and the desire to use relative CPs and accordingly

unsupervised machine learning procedures, base classification, manual classifications and affinity

propagation are used to investigate SHM performances within the presented framework. Table 3.2

gives an overview of the nomenclature and variables.

Condition Parameters

After the ML step is performed, absolute and relative condition parameters can be calculated.

The calculation of absolute CPs is independent from ML since the parameters result from the

data instance itself. In contrast, relative parameters necessitate the definition of one or more

reference data instances and hence depend on the ML instance. While for absolute parameters

ML only defines the separation into clusters, new relative parameters have to be calculated for

every ML instance due to the dependency on reference sets (clusters). Table 3.3 gives an overview

of the investigated parameters, the nomenclature, description, input variables and references to

theory and definitions.

Hypothesis Testing

Once all desired CPs have been calculated for all training data instances and ML in stances,

probabilistic features per cluster and classification can be calculated. These serve as basis for

hypothesis testing and control charts in the latter testing phase. Basically, a number of CP values

form a discrete probability density function (PDF) within each cluster. If desired, a continuous

PDF can be fitted to this sample. Figure 3.13 shows the difference between the base classification

and a classification by affinity propagation for the example data instances from Figure 3.11 for an

absolute CP1. A sophisticated classification has the potential to reduce the CP variation within

Table 3.2: Used machine learning techniques in SHM framework with nomenclature, input parameters,
description, and reference.

Symbol Description Input Variables Ref

Machine Learning Procedures

MLMan Manual data classification EOCs with boundaries or vector with
data instance assignment.

MLAP Clustering algorithm using message
passing between data instances.

p - Preference for data instances;
Number and type of EOCs.

2.5.2

1 If a relative CP was used, the right hand plots would differ since different references would result from the single
cluster and five cluster in the upper and lower plot, respectively.
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Table 3.3: Used condition parameters in SHM framework with nomenclature, input parameters,
description, and reference.

Symbol Description Input Variables Ref

Absolute CPs, calculated for each channel separately (locally), except modal frequencies CP fi .

CPMax
(i) Signal maximum per channel -

CP σ
(i) Signal standard deviation per chan-

nel
- Eq.(2.43)

CP γ1

(i) Signal skewness per channel - Eq.(2.44)

CP γ2

(i) Signal kurtosis per channel - Eq.(2.45)

CP fi Modal frequencies per data in-
stance

Nshift - Number of blocks/shifts in
Block-Hankel-Matrix,
NOrders - Model orders for stabi-
lization diagram, and
krit - TEMP parameters

P.60ff

CP
Eyy

i,[ea−eb] Frequencies linked to accumulated
energy levels per channel

Nintervals - Number of intervals for
energy/frequency.

Eq.(3.1)

CP
Exy

i,[ea−eb] Frequencies linked to accumulated
energy levels for all cross correla-
tions with channel i

Nintervals - Number of intervals for
energy/frequency.

Eq.(3.1)

Relative CPs, calculated for all channels at once (globally).

CPR2
Measure of difference between data
simulated by VAR and measured
data per data instance

p - Number of backward time steps
taken.

Eq.(2.69)

CP M Test value of M-Box-Test for data
simulated, per data instance

p - Number of backward time steps
taken.

Eq.(2.76)

CP ε Summed residual vector of Hankel-
Matrix multiplied by reference
Nullspace

nshift - Number of blocks/shifts in
Block-Hankel-Matrix,
nis - number of non significant
(right) columns in left SVD-matrix,
defining the size of Nullspace.

Eq.(2.55)

CP γ Subspace based damage residual for
data instance

nshift - Number of blocks/shifts in
Block-Hankel-Matrix,
nsig - number of significant (left)
columns in left SVD-matrix, and
nb - number of sub blocks.

Eq.(2.64)

CPMSD Distance measure using an arbi-
trary combination of CP in vector
form

Combination of the above



80 3 Novelties and Benchmark Studies

50 100 150 200 250
102

103

104

Su
m

m
ed

E
uc

le
ad

ia
n

di
st

.

k −means
AP

(a) 1008 data instances

50 100 150 200 250
102

103

104

(b) 2016 data instances

50 100 150 200 250
102

103

104

Number of exemplars

Su
m

m
ed

E
uc

le
ad

ia
n

di
st

.

(c) 4032 data instances

50 100 150 200 250
102

103

104

Number of exemplars

(d) 8064 data instances

Figure 3.12: Mean euclidean distance between cluster centre and corresponding datums for different
numbers of exemplars and training data instances quantities. Solutions for a single AP–run and 10,000
runs for k-centers (mean, minimal and maximal results given). Green, dashed lines indicate sets with
automatically chosen numbers of exemplars by AP.

each resulting cluster, compared to the overall variation. Further, a damaged structure under

EOC combination x might behave as the intact structure under EOC combination y. In this case

the damage is masked by variations due to EOCs.

Since the fitted distributions serve as boundary estimators for hypothesis testing, it is important

to extract good estimates for upper and lower control limits (UCL/LCL) as discussed in Chaper 2.7.

Both depend on the assigned cluster, chosen confidence interval, and distribution type.

It is obvious that for the artificial case in Figure 3.13, five clusters in the lower right plot

(MLAP ) result in a better description of the five overlaying distributions compared to the single

cluster in the upper right plot (MLMan). E.g. a CP value from a damaged structure of 10 would

be close to the center of the fitted distribution for MLMan, while it would probably be indicated

as outlier with the distributions in MLAP . Accordingly, the SHM performance based on five

clusters will be better in the testing phase where each new data instance is assigned to a cluster

by EOCs (here EOC1 and EOC2) and control limits are taken from the individual cluster.

Next to the CPs, the ML decision influences the performance of a hypothesis test for a new

data instance. Nevertheless, further decisions have to be made to extract boundaries (upper

and lower control limits, UCL/LCL). As depicted in the right hand plots in Figure 3.13, only a
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Figure 3.13: Base classification with a single cluster (upper left) and classification by affinity
propagation with several clusters (lower left) for exemplary training phase. According discrete density
functions over clustered CPs are given in plots on the right hand side. Continuous PDFs for a normal
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discrete sample of the true parameter distribution exists. The sample size is directly influenced

by the size of the training phase and the number and characteristics of clusters resulting from

machine learning. Once the sample per cluster is defined by ML and CP, one has to draw limits

based on an assumption for the distribution type. Here the distribution type (normal, extreme

value, discrete etc.) and the desired confidence interval form the two main variables. In this case

only Gaussian normal- and discrete distributions will be investigated. It should be noted that the

precision that can be achieved formally depends on the sample size.

3.4.2 Testing Phase

After the training phase and hence after ML and CP estimation, new data instances are analyzed

in the testing phase. Each data instance is therefore assigned to a cluster in each ML variation

MLX and the desired PDF can be built for each CP Y . The upper plot in Figure 3.14 shows an

exemplary plot for a single CP Y (MLX)-combination over the training and testing phase. Again,

five clusters appear in the training phase in which CP Y takes on different value distributions in

each cluster. CP Y values for the testing phase are plotted chronologically in the right part of the

upper plot. Phases in which known abnormalities or damage (in the benchmark case) are marked

with grey patches. It can be seen that the complete parameter range during the test phase is

covered by the range of the training phase. Only the comparison within the correct cluster (1 to

5) reveals abnormal CP Y values.

For the testing phase of the SHM framework, a well known tool for process observation can be

utilized by using control charts (lower plot in Figure 3.14). Every new data instance is assigned

to its corresponding cluster in the training phase by its EOCs. For each cluster possibly different

parameter distributions result which CP Y , denoted Xi, is compared to. It is convenient to define

a normalized control chart with LCL = −1, UCL = 1 and CL = 0 in the spirit of a standardized

normal distribution. Therefore, Xi is normalized to

X̂D
i =





Xi−X50%
X50%−Xα/2%

< 0 for Xi − X50% < 0

Xi−X50%
X(1−α/2)%−X50%

> 0 for Xi − X50% > 0

(3.9)

for a discrete distribution by percentiles and

X̂G
i = (Xi − µi)/(ñiσi) (3.10)

for a Gaussian distribution. Xi represents the CP for a data instance i from the testing phase,

depending on MLX if a relative CP is investigated. Further, the percentiles pn,i, mean µi, and

standard deviation σi have to be calculated with respect to the current data instance. Through

the normalization in Equation (3.9), UCL and LCL lie at +1 and −1 for any data instance and

CP-ML combination. It is important to take the scaling of the CPs into account since these might

range over various orders of magnitude. For some analysis it aids the inspection of control charts

to use logarithmic scaling, as applied in Section 3.5. In such a case the absolute value of the
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control variable is used and both control limits lie at +1.

After application of Equation (3.9), a normalized control chart can be plotted for all new

parameters (CPs from new data instances). The lower plot of Figure 3.14 shows the control chart

normalized through 3.9 and 3.10 and hence a normalized version of the testing phase in the upper

plot. Again, grey areas mark damaged data instances and red lines indicate UCL and LCL (±1).

If the control variable remains between these lines, the structure is assumed to be healthy. If it

exceeds these limits, potentially abnormal dynamic behavior is detected (H0 and H1 in (3.7)).

The two lines result from two different distribution assumptions; one from a Gaussian normal

distribution (dashed) the other from a discrete distribution (solid). In the benchmark case, the

information about detection rate (100-FN) and FP can be used to evaluate the performance of a

certain MLX − CP Y −HTZ-combination though FP/FN percentages (indicated at the lower

right of the lower plot).

Based on the knowledge of FP and FN percentages, performance maps are introduced to evaluate

the quality of a given MLX − CP Y −HTZ-combination in a normalized manner. Figure 3.15

shows such a performance map with the false alarm rate (FP) in % on the x-axis and the detection

rate (1-FN) on the y-axis. Each MLX −CP Y −HTZ-combination results in a point on this map.

It should be noted that maps are drawn for a single HT type here, e.g. for a discrete or a Gaussian

normal distribution. To distinguish between the different combinations, different markers indicate

different ML types and numbers indicate different CPs. Hence, a marker-number combination

uniquely defines a MLX − CP Y −HTZ-combination. Results can be interpreted as in receiver

operating characteristics (ROCs) in Chapter 2.7.3. Performance maps can be extended to ROCs

if confidence intervals are varied for an analyzed combination. The area under the (ROC-) curve

(AUC) will be used as final performance indicator in the presented SHM framework.

It is suggested to add the performance lines from Figure 3.15 to the ROCs to facilitate the

visual inspection. An evaluation by the AUCs of ROCs can be used to evaluate performance for
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different damage scenarios separately or for different damage scenarios at once. The analysis

always leads to the optimal setting for all damage scenarios present in the testing data instances:

If the testing data contains e.g. 100 damaged data instances, next to another 100 healthy sets,

and 90 of the damaged sets represent a severe damage scenario, the other a very small, most

ML-CP-HT combination will start off with a detection rate of 90%. Still, the procedure will

optimize the SHM framework to the one realization which additionally identifies the 10% of data

instances with less severe damage. In other words, it is not prohibited to mix different damage

cases in the testing data instances, keeping in mind that some might be easier to identify than

others. For instance this can be observed in the control charts of the subsequent example as long

as all ML-CP-HT scenarios are compared for the same data instances.

3.5 Concept Validation: Monitoring of Three-Story Building Structure

The following section will outline the application of the modular SHM framework to a benchmark

database that is publicly available and is provided by the Engineering Institute of Los Alamos

National Laboratories1. A description of the structure and test setup is followed by the extraction

of modal parameters through the TEMP procedure. Finally, the different steps of the SHM

framework are illustrated and different data, ML, CP and HT combinations will be evaluated by

their performance.

3.5.1 Experimental Set-up

The structure analyzed is a three story frame with base excitation, sliding on rails in a single

direction as depicted in Figure 3.16. Each plate (30.5 x 30.5 x 2.5 cm3) is connected to the adjacent

one by four columns (17.7 x 2.5 x 0.6 cm3). A shaker excites the structure unidirectionally at

the base plate, where a load cell is mounted to measure the applied forces. Further, a column is

suspended from the middle of the upper floor reaching down to a bumper on the floor below in

order to simulate non-linear damage scenarios. On each of the four plates, an acceleration sensor

is installed. The shaker excites the structure by a band-limited random white noise in the range

of 20-150 Hz with an excitation level of 2.6 V.

Forces and time series for 17 different states were recorded, see Table 3.4 for a description.

Each state consists of 50 data instances, each measured with 320 Hz over a period of 25.6 s.

Hence, each set consists of five channels (one load cell and four acceleration channels) with

8192 samples. In state # 1, the structure remains in the initial setup. During states # 2 & 3,

additional masses of 1.2 kg were clamped on the base and first floor, respectively (about 19%

of the total mass of a floor). These mass changes can be understood as a change due to EOCs,

e.g. floor loading in a building. The first three states will be dubbed base-line condition in the

following discussions. During states # 4-9 the structure’s stiffness was altered (later referred to as

linear-damage). Here, a single and then two columns on the shaker facing side were replaced on

1 For download visit http : //institute.lanl.gov/ei/damageid/data/4DOF _Mat_F ormat.zip
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each floor by columns with half thickness, resulting in a stiffness reduction of 87.5 % per column

(k ∝ d3; kred = (d2/d1)3 = 0.53 = 12.5). In states # 10 to 14, the bumper is installed and the gap

between bumper and suspended column is reduced from 0.20 to 0.05 mm resulting in an increase

of non-linearity (later referred to as non-linear-damage). Finally, in states # 15 to 17 non-linear

damage are combined with additional mass loading, simulating damage under changing EOCs.

Further details on the setup, equipment and data can be found in [59] and [60].

Data from the three-story building structure has been the subject of several past scientific pub-

lications: The original report from LANL by Figueiredo et al. [59] contains extensive descriptions

of the experimental set-up along with different examinations. Recently Farrar and Worden [57]

put the results from the original report into a broader SHM context and evaluated the overall

performance.

The extensive initial report implies a set-up and data description, machine learning, and

investigation of several condition parameters as well as hypothesis testing approaches. Modal

frequencies and damping values are estimated through the complex mode identification index and

further used as damage sensitive features (see Table 3.6 for a comparison to the new results).

An AR-model is fitted to time series of channel 5 (4 in this study) and AR-parameters are used

to predict time series for all states. The difference between prediction and measurement are

plotted in Shewhart X-Bar control charts in subgroups of four. Confidence intervals are chosen to

3σ based on state #9 in Table 3.4, two AR-Models (AR(5) and AR(30)) are implemented. It

is shown that the AR(30) performs better, nevertheless state 16 is not identified as damaged.

Further, the approach only accounts for channel four (most affected on 3rd floor) and control

limits are not drawn with respect to the complete training phase. Using prediction errors from

an auto-associative neural network (AANN) as CPs, trained on channel four of the healthy data

instances, results are improved and state #16 is also classified as damaged. Through the usage of

Figure 3.16: Experimental sep-up for LANL three-storey building structure with side views and
detail for mass mounting (source: [59]). Since the load cell is not included, channels 2 to 5 in this
figure are referred to as channel 1 to 4 in this study.
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Table 3.4: Overview of System states for LAN 4-DoF system (⋆Originally treated as healthy states.)

Label Set Condition Description

State 1 1 -50 Undamaged Baseline condition

State 2 51 -100 Undamaged Added mass (1.2 kg) at the base

State 3 101 -150 Undamaged Added mass (1.2 kg) on the 1st floor

State 4 151 -200 Damaged⋆ Stiffness reduction in column 1BD

State 5 201 -250 Damaged⋆ Stiffness reduction in column 1AD and 1BD

State 6 251 -300 Damaged⋆ Stiffness reduction in column 2BD

State 7 301 -350 Damaged⋆ Stiffness reduction in column 2AD and 2BD

State 8 351 -400 Damaged⋆ Stiffness reduction in column 3BD

State 9 401 -450 Damaged⋆ Stiffness reduction in column 3AD and 3BD

State 10 451 -500 Damaged Gap (0.20 mm)

State 11 501 -550 Damaged Gap (0.15 mm)

State 12 551 -600 Damaged Gap (0.13 mm)

State 13 601 -650 Damaged Gap (0.10 mm)

State 14 651 -700 Damaged Gap (0.05 mm)

State 15 701 -750 Damaged Gap (0.20 mm) and mass (1.2 kg) at the base

State 16 751 -800 Damaged Gap (0.20 mm) and mass (1.2 kg) on the 1st floor

State 17 801 -850 Damaged Gap (0.10 mm) and mass (1.2 kg) on the 1st floor

the Mahalanobis square distances for AR(5/30)-models as CPs, even better results are achieved.

Here, also state #16 is correctly classified as damaged.

In [57][60], the investigated data is also used to carry out a linearity study through a comparison

of FRF magnitudes under different excitation levels for the healthy and damaged structure. A

strong non-linearity results for the non-linear-damage. Further, the performance of different ML

algorithms, namely AANN, factor analysis, Mahalanobis squared-distance and singular value

decomposition is demonstrated1. FP and FN errors are summarized for all four approaches

resulting in total errors of less than 3.8%, favoring the AANN procedure.

In [61] a VAR(15)-model is used in combination with the MSD to identify damage. As in the

literature mentioned before, a base line clustering with a single cluster in the training phase

is used. The model order was estimated by AIC and state #15 and 16 remain difficult to be

correctly accounted as damaged. The analysis also includes approaches with only two/one data

channel(s), resulting in a slightly better detection rate. Zhan et al. [218] use the first nine states

to apply a model based parameter identification to capture stiffness and mass changes with some

success.

1 the latter two are not understood as ML techniques in this work but as CPs based on a single cluster.
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The available damage states in the data base reach from a small to quite severe changes in the

structure’s dynamics and both linear and non-linear scenarios can be investigated. Making the

provided database a valuable benchmark for new CPs and HT approaches. In summary, many

different condition parameters were already applied to the data and state #16 turns out to be the

most difficult for damage detection since the non-linearity is the weakest and additional masses

influence the behavior. Further, in present studies classification is not applied, and the task of

damage localization and the influence of different hypothesis testing approaches remains an open

task. Among others, these points will be investigated in the next section.

3.5.2 Data Analysis

In this section, the benchmark database is used to verify the presented system identification

procedure, the SHM framework and condition parameters. Main settings for the analysis are listed

in Table 3.5: The analyzed database consists of 850 data instances grouped into 17 states (50 data

instances each). Each data instance holds measured output data from the four accelerometers at a

sampling rate of 320 Hz, input force measures are not included. States #1-3 serve as the training

phase, while state #4-17 are understood as damaged. Ten data instances of states #1-3 are kept

to account for false positive detection. Hence, 120 data instances are used for training and 730 for

testing. In contrast to past studies, stiffness changes are understood as damage. As a result, state

#1 can serve as reference for states #4-14, state #2 for state #15 and state #3 for #16 and 17.

Since the different states are well known in this example, no automated machine learning is

necessary. Two manual classifications are further analyzed: 1. A so-called base line classification

with a single cluster for the complete training phase and 2. A classification with three clusters

according to the known system states in Table 3.4. Several CPs are calculated for those two ML

options and for each CP and ML, hypothesis testing is carried out. Here a Gaussian and a discrete

distribution by percentiles are analyzed. For both, a ROC is calculated with the confidence

intervals noted in Table 3.5. The following points will be investigated for the different settings:

• How does the TEMP procedure perform on the data?

• Is there a difference between one cluster (no EOCs included) and the manual classification

with three clusters according to EOCs?

• Which damage type (linear, non-linear, EOC + non-linear) is detected through the CPs?

• If damage is detected, does the CP amplitude allow for a relative quantification?

• Is it possible to localize damage without the use of a numerical model?
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Table 3.5: Settings for SHM scheme at LANL 4-DoF system. Comments on parameter settings are
given at appropriate points in the text.

Number of channels: 4 (@ 320 Hz) Data sets in training: 120 [1:40, 51:90, 101:140]
Total number of data sets: 850 Data sets in testing: 730 [41:50, 91:100, 141:850]
Number of ML types: 2
ML Names: ’Man1’ ’Man2’
Number of clusters: 1 3
Reference EOCs: State Added mass

Settings for condition parameter(s):
CP fi : Shifs: 70 Model orders: 100 to 300

φcrit = 12.5 fcrit = 1.5 ζcrit = 35 MACcrit = 0.9 P̂crit = 50
CP

Eyy

i,j : Number of energy bins = 10
CP ε: Shifts = 16 Non-sign. col. = 4
CP M/CPR2

: AR-Model Order = 16
CP γ : Shifts = 4 Sign. col. = 12 Blocks = 25

Analyzed distribution types: Discrete, Gaussian
Confidence interval - α-values for hypothesis testing: [0.1:0.1:2, 2:1:20, 20:2:40, 40:10:90]%

3.5.3 Operational Modal Analysis

Modal parameters were calculated using the TEMP presented in 3.2, input parameter settings can

be found in Table 3.51 for CP fi . Table 3.6 shows averaged results for frequency and damping for

50 data instances in state #1. Results from the initial study are stated as reference. As expected,

agreement between frequencies is very good while estimates for damping values do differ more.

It should be noted that damping decreases with increasing frequency. Figure 3.17 shows the

according mode shapes for the 4-DoF system from a single data instance in state #1. Modes c

to e are the first three bending modes of the structure while the low frequent mode at 9.1 Hz

is linked to a rigid body motion. It results from the connection between shaker and structure

and is not addressed subsequently. Further, the mode at about 20 Hz seems to be an effect of

the band limited input excitation being between 20 and 150 Hz. This mode appears in the same

shape as the first bending mode. S-plane plots of the modes can be found in Section A.1, here all

DoFs align well in the complex plane, but none of the modes lies on the real axis. This proves the

complexity of a mode shape being an inferior extraction parameter.

More details about the modes reveals Figure 3.18(a), where all TEMP solutions between 0 and

80 Hz are plotted over the analyzed 850 data instances. If TEMP is applied to these solutions, and

1 After the inspection of PSDs from different data instances and channles a lower frequency of interest of
fmin = 5 Hz was determined (see Figure 3.18(c)). Accordingly the number of shifts was chosen to 70 > 64 =
fs/fmin = 320/5. The number of model orders as well as criteria fcrit, ζcrit, and MACcrit are empirical. The
MPD criterion φcrit could be set to a low value of 12.5 due to the laboratory surrounding. P̂crit should be
chosen to one half to a fifth of the given model orders, 200 in this case. Explanation on CP settings will be
given in the corresponding subsections



3.5 Concept Validation: Monitoring of Three-Story Building Structure 89

Table 3.6: Averaged TEMP results for data instances 1 to 50 (state #1) and reference results from
LANL report [59] in braces.

f01 f02 f1 f2 f3

rigid body mode excitation noise 1st bending 2nd bending 3rd bending
f in Hz 9.6 21.2 30.7 (30.7) 54.4 (54.2) 71.2 (70.7)
ζ in % 9.3 4.9 3.8 (6.3) 2.1 (2.0) 0.78 (0.97)
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0.4

(a) 9.1 Hz
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(b) 19.8 Hz
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(c) 29.7 Hz
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(d) 53.9 Hz
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(e) 71.5 Hz

Figure 3.17: First five identified global bending modes at LANL 4-DoF system from data instance
‘state01_05’. See Appendix A.1 for s-plane plots.

the data instance number is understood as model order, path objects can be extracted to track

the modes over the different data instances (see Figure 3.18(b)). In addition, Figure 3.18(c) holds

the averaged PSD for selected states. The rigid body mode is identified at a constant frequency

for the first ten states (set 1 to 500), with less identifications in state #7. In states #11 to 17

the identification is disturbed by increasing non-linearities. The mode at 20 Hz, which is not

mentioned in the initial report, is constantly identified over all data instances with a fairly large

scatter in frequency. This mode will not be included as CP here.

The second bending mode at around 54 Hz reveals some interesting insight in connection

with the PSDs plotted in Figure 3.18(c): In 3.18(a), there is notably more scattering for the

identification during states #4, 6, 8, and 9, even indicating two close modes for f2 in states #4

and 8. The spectra confirm this result. Here, for states #4 and 8, the second mode clearly shifts

down and switches from a single peak to two (red circles in Figure 3.18(c)). This is most probably

a result of the asymmetric damage that is introduced by only altering the stiffness of a single
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column. Which results in torsional movements additional to the main bending mode. Accordingly,

the effect is not present for states #5 and 7 and only slightly in state #9 where two columns are

damaged each. For state #10 with a very low non-linearity, the spectrum is almost similar to the

first state. For stronger non-linearities in states #14 and 17, some transformations can be seen at

the peak of the second and third mode.

It is obvious that even for such a simple structure as the investigated 4-DoF model, changes in

dynamic characteristics due to damage and/or EOCs might be complex and difficult to predict,

especially the alterations of the dynamic behavior, in this case visualized by PSDs, is not limited

to simple frequency shifts. Due to system changes new peaks will occur and energy will shift

from one frequency band to another. Here, the combination of SSI and TEMP is able to identify

varying numbers of modes at differing frequencies over the complete database. Further, TEMP can

also be used to track modes over the database for the extraction of modal frequencies, damping,

and mode shapes as CPs. In that case, the set number is used as model order for the path

identification. It should be noted that since in TEMP the occurrence in conjugate-complex pairs

is one of the initial checks in the routine, the conjugate complex matrix of all solutions has to be

added (see Chapter 3.2).

3.5.4 Application of the SHM framework

In the following section, results from the SHM framework’s application to the outlined benchmark

database will be shown. Since the structure’s states are well known and documented, machine

learning in an automated manner can be omitted. Hence, one source of variability can be omitted

and data variation, condition parameters as well as hypothesis testing remain to be analyzed.

Nevertheless, two different ML set-ups are introduced for a comparison: 1. “Man1” - A so-called

base-line classification, where the complete training phase is understood as a single cluster. This

attempt is always used when EOCs are disregarded. 2. “Man2” - A clustering that is orientated on

the system states where separate clusters are formed for states #1 to 3, respectively. Accordingly,

the difference between absolute and relative CPs becomes obvious in this example as well. First,

trends and control charts will be discussed for selected CPs, each for both ML settings and a fixed

confidence interval and a Gaussian and discrete distribution in hypothesis testing. Subsequently,

performance of all settings will be compared by different ROC metrics.

Absolute Condition Parameters

In the following, two examples of absolute CP are chosen for a detailed discussion.

Skewness As a measure of asymmetry the skewness is a CP that potentially indicates non-

linearities in the structures dynamic behavior. Figure 3.19 shows the CP γ1

(i) trends for all four

measured channels over the 850 data instances in the first and second sub-plot. On the left, the

training phase is separated by orange vertical lines. For the second sub-plot, three vertical lines

indicate the three clusters during the training phase. For each cluster and CP, the parameter

distribution is indicated by red symbols displaying major percentiles. On the right side, the
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(c) Averaged and normalized Energy content by PSDs for different system states.

Figure 3.18: Overview of automatically identified modal frequencies for all 379 data instances using
TEMP method in (a) along with occurrence of frequencies and number of solutions per data instance.
Automatically extracted path objects given in (b). The change in dynamic behaviour between different
states is visualized by PSDs in (c)

testing phase is visualized, where the grey shading indicates damaged data instances for states

#4 to 17. Here, parameter trends are similar between sub-plot 1 and 2 for this absolute Cs, since

its estimation does not rely on reference data instances. For relative CPs, these plots will differ

accordingly.

In sub-plot 3 and 4 (from top), control charts for both ML set-ups are drawn based on the CP

trends in sub-plot 1 and 2, respectively. Again, grey shading indicates damaged sets. Additionally,

vertical dashed orange lines indicate the different states. Here, numbers on top indicate the
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state #. For state #1 to 3, only 10 sets each are used in the testing while for states #4 to

17, 50 sets are used. It should be noted that the vertical scaling is set logarithmic to aid the

visualization. Hence, outliers below the LCL and above the UCL lie above +1. This concept of

data presentation is repeated for all selected CPs.

For the first 500 data instances the skewness has no relevant peaks for all four channels. Values

range around zero, indicating a symmetric distribution of acceleration values in each time series.

From state #11 (set 501) on, the skewness increases for channel 3 and decreases for channel 4

(CP γ1

(3), CP γ1

(a)). These sensors are located at the second and third floor of the structure, right

where the impact between bumper and column is introduced. This indicates that an increase in

non-linearity through a smaller gap results in an increase of higher acceleration values on the

second floor and smaller accelerations on the third floor. Channels two and one (CP γ1

(2), CP γ1

(1))

show only minor trends towards negative skewness values for data instance 600 to 700. For state

#17 results are similar to state #13 (also a gap size of 0.1 mm) with slightly smaller amplitudes.

Both control charts show a similar picture: All healthy states lie predominantly within the

limits but also states with a linear damage set-up (4 to 9, data instance 31 to 430) lie within

the control limits for a large number of data instances and are falsely-classified as healthy. From

state #10 to 14, where non-linearity is introduced, data instances are increasingly identified as

damaged, both for the assumption of a Gaussian and discrete distribution. For state #15 and 16

only a few sets lie outside the control limits, state #17 is again correctly identified as damaged.

Two distinct differences can be seen here: 1. the classification into three clusters (”Man2”) leads

to a slight amplification of the control variables. 2. The analysis through percentiles as a discrete

distribution leads to slightly stronger outlier than the assumption of a Gaussian distribution in

states 11 to 14.

In this example, the skewness is a good indicator for non-linear damage cases, with increasing

amplitude as the level of non-linearity increases. Also, damage localization can be realized using

the tracking of amplitude and sign shift of the CP. Through an easy computation, it is an

attractive CP for SHM frameworks. Data flagged as damaged with more sophisticated CPs could

be analyzed by the skewness in a second step in order to indicate the type of damage present.

Accumulated Energy Figure 3.20 for CP
Eyy

i,9 is organized in the same manner as Figure 3.19: The

upper two sub-plots show CP trends the lower two control charts. Both, for “Man1” (upper and

3rd plot) and “Man2” (2nd and 4th plot). In total, eight parameters result from the four measured

channels, four auto- and four summed cross-correlations. Here, only the control charts based on

percentiles are displayed to preserve clear charts. For the analysis, ten equally spaced energy bins

are investigated per channel (see Table 3.5). CP
Eyy

j,9 , j = 1,2,..4 as the best performing parameter

is chosen for a detailed investigation over all j channels.

For the sake of lucidity control charts are only plotted for the analysis through a discrete

distribution by percentiles as compared to the Gaussian distribution, results were of equal or

better quality. As described in 3.1, eight CPs result from four measured channels in the control

charts, where CPEyy

1,9 -CPEyy

4,9 result only from autocorrelation and CP
Exy

1,9 -CPExy

4,9 include also

cross-correlations between channels.
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γ1

(2),G

ĈP
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ĈP
γ1

(3),D ĈP
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ĈP
γ1

(1),G ĈP
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Figure 3.19: Absolute CP trends (upper two plots) and normalized control charts (lower two plots)
for CP γ1 , given for ML set-up “Manual1’ (upper and 3rd plot) with one cluster and “Manual2” (2nd

and 4th plot) with three clusters. Numbers on the upper edge indicate reference states from Table 3.4.
Training and testing data is separated by a red line in the upper two plots and parameter distributions
in each cluster during training are indicated by red symbols (+,o,*). It should be noted that both
control limits lie at +1 for the lower two plots due to logarithmic scaling.
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Values per channel of CP
Eyy

i,9 range from 50 to 120 Hz (see 1st and 2nd plot in Figure 3.20). The

parameters react to the different system states and mostly clear plateaus are visible in blocks of

50 data instances each. It can be seen that between one cluster in “Man1” in sub-plot 1 and three

clusters in “Man2” in sub-plot 2, CP variation within clusters can be reduced during training,

especially for channel 2 and 3. This leads to more accurate control limits. Comparing both control

charts in sub-plot 3 and 4, this results in a strong amplification of the parameter sensitivity. For

“Man2”, state #4 already exceeds the control limits distinctively, while control variables remain

within the limits for “Man1” in this state. All other linear damage (states#5-9) are identified

as damaged through “Man2”. With only a base line classification in “Man1”, many of the linear

damage cases are classified as healthy.

Investigating sub-plot 4, even a damage localization results from the CPs: for states #4 and

5 (damage between base and 1st floor) CP
Eyy

2,9 has a maximum amplitude, for states #6 and 7

(damage between 1st and 2nd floor) CP
Eyy

2,9 , CP
Eyy

3,9 and CP
Exy

4,9 have maximum amplitudes, and

for states #8 and 9 (damage between 2nd and 3rd floor) maximum amplitudes also result from

CP
Eyy

3,9 and CP
Exy

3,9 . Overall the damage location between 2nd and 3rd floor is identified with less

distinct amplitudes in the control variables.

Non-linearities in states #10 to 14 can be detected for a maximum gap size of 0.15 mm (state

#11). Leading to the conclusion that a gap size of 0.20 mm lies above the sensitivity of the CP.

Accordingly, the CP has trouble in identifying the first two states (15 and 16) with a combination

of added mass and gap of 0.20 mm. The last scenario with a smaller gap and additional EOCs is

identified again. Positively, for smaller gaps a localization is possible since CP
Eyy

3,9 and CP
Exy

3,9

result in the most distinct outlier.

It should be noted that for all linear damage cases, the mean frequencies for the tracked

accumulated energy levels decrease, indicating a shift of energy to lower frequencies in the

spectrum. For non-linear damage in contrast, frequencies increase indicating an energy shift

to higher frequency ranges. This follows the physical understanding of both damage scenarios

since non-linearity, present through impact loading, has distinctively high-frequency contents

compared to the normal movement, excited by the shaker. On the other hand, through the

degradation of stiffness in the linear damage cases, the system becomes softer with content in

lower frequency-ranges.

Being an excellent parameter for linear damage and damage localization as well as indication of

non-linear damage, accumulated energies have the potential to add important knowledge to a

SHM system. Further the parameter has low computational costs and provides a physical meaning.

Relative Condition Parameters

The calculation of relative Cps becomes more complex compared to absolute CPs as CP γ1 or

CP
Exy

(i,9). While CP γ1 has no parameter to be set and CP
Exy

(i,9) requires only a number of energy bins,

SSI and VAR based parameters necessitate the estimation of more complex initial parameters or

settings (see Table 3.3). Selected parameters are given in Table 3.5. These can again be derived
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ĈP
Exy

1,9,D ĈP
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Figure 3.20: Absolute CP trends (upper two plots) and normalized control charts (lower two plots)
for CP

Eyy

(i,9) and CP
Exy

(i,9), given for ML set-up “Manual1’ (upper and 3rd plot) with one cluster and

“Manual2” (2nd and 4th plot) with three clusters. Numbers on the upper edge indicate reference states
from Table 3.4. Training and testing data is separated by a red line in the upper two plots and
parameter distributions in each cluster during training are indicated by red symbols (+,o,*). It should
be noted that both control limits lie at +1 for the lower two plots due to logarithmic scaling.
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from a rough estimation of the lowest frequency of interest fu and the sampling frequency fs.

For CP M and CPR2
the VAR model order p could be chosen to the number of samples needed

to cover one oscillation of the lowest frequency of interest with p = fs/fmin = 320/20 = 16. As

mentioned by Haake [75], it can be sufficient to cover about 70% of the oscillation for good system

identification results.

For the SSI based parameters CP ε and CP γ the number of shifts nshift to build the Block

Hankel matrix could be interpreted in a similar manner as p and was chosen accordingly. Recalling

the size of the Hankel matrix is nshift ∗m wich is split into significant and insignificant columns,

hence nshift ∗m = nsig + nis.

nsig should be equal the (state space) model order of the physical system, a first guess leads

to nsig = 2m = 8 since four channels are measured. Unfortunately, a continuous system is

not limited in the model order and Figure 3.18 already revealed that some damage cases might

lead to pole splits and an increase of the model order. nis could be directly calculated through

nis = nshift ∗m − nsig = 16 ∗ 4 − 8 = 56. Nevertheless, nis and nsig could also be chosen to

violate this equation since both are used for separate parameters. The block size needs to satisfy

statistical independence between blocks, for a lowest frequency of 30 Hz Nb = 320/30 = 11

samples as block length would result.

For the given benchmark example, it is possible to perform parameter studies on these variable

to estimate optimal settings with respect to AUCs. These studies are carried out to validate the

theoretical assumptions (see Figures 3.21, 3.24, and 3.25) before parameter trends and control

charts are investigated for optimal parameter settings in Figures 3.22, 3.23, 3.26, and 3.27.

VAR-Residues In contrast to statistics and accumulated energies, the residues from VAR-models

result in a scalar CP for each data instance since all channels are taken into account at once.

Both, CP M and CPR2
will be investigated here. Figueiredo et al. [59] suggest an AR-model

order of 15 based on AIC. To investigate the model, a parameter study based on the evaluation

of ROCs was performed. The AUC values are used as an indicator (see 2.7). Figure 3.21 shows

the results for AR-model orders from 1 to 40 for all four ML-HT combinations and both CPs

(left and right sub-plot). The analysis is run with 120 training sets as described in 3.5 for every

analyzed AR-model order. A maximum value of 1 for the AUC indicates perfect separation of

healthy and damaged states. It is clearly visible that for both CPs, classification “Man2” (dark

blue and green) with three clusters in the training phase outperforms “Man1” (light blue and

green) with a single cluster. After reaching a peak for CP M and p = 4 performance decreases for

“Man1”. For higher model orders the AUC stabilizes a bit above 0.8. In the case of CPR2
(right

plot), the performance of “Man1” is even worse with stronger fluctuations for low model orders

below p = 10 with a stabilization around 0.7 for higher model orders.

For CP M and ‘Man2’, the AUC reaches 1 for p = 2 for CPR2
a minimum model order of 5

is needed. For increasing model orders AUC values constantly remain at 1 for both CPs and

‘Man2’. On the safe side, a model order of 16 was chosen on the safe side as model order for

further detailed investigations.

Figures 3.22 and 3.23 are organized as above for skewness in Figure 3.19: The upper two
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Figure 3.21: Parameter study for VAR-based CP M (left) and CP R2

(right). Different ML-HT
combinations analyzed over AR-model orders from 1 to 40.

sub-plots show CP trends for “Man1” and “Man2”, respectively. The lower to plots show the

control charts. Compared to absolute CPs, the difference in the classification within the training

phase results in differences of the absolute values of the CPs (compare sub-plot 1 and 2 in

Figure 3.23 and Figure 3.22). For both CPs, the values are reduced significantly for the training

phase in “Man2” (105.5 to 105 and 100.5 to 10−1), indicating a better inner-cluster agreement of

the measured data. Further, a strong amplification of the control variables is achieved using three

clusters in comparison of sub-plot three and four in Figure 3.23 and Figure 3.22, respectively: For

CP M from maximum values of 4 to around 15 and for CPR2
from maximum values around 10 to

600. Both parameters lack the possibility of damage localization as they combine all measured

channels.

CPR2
shows clear distinction in parameter amplitudes for each measured state. Even within

the training the additional masses change the CP values, if a single cluster is used as in “Man1”

(upper sub-plot in Figure 3.22). Within the linear damage cases in states #4 to 9 for both ML

set-ups, damage at columns between base and 1st floor (#4/5) seem to have a similar influence as

between 2nd and 3rd floor (#8/9) (see sub-plot 2 and 4 in Figure 3.22). Damage between 1st and

2nd floor result in larger CP values indicating stronger damage even if the extent of the damage is

similar. For the non-linear damage in states #10 to 17, an decrease of the gap coincides with an

increase of the CP. Here, the difference between 0.2 and 0.15 mm (#10/11) seems more distinct

than for the other reductions. Overall, building the control limits with the use of a Gaussian

distribution leads to more distinct outliers in the control charts and hence a better distinction.

If the clusters are not separated in the training, the variations in the training are large which

results in a misclassification of data instances from states #4, 10 to 12, 15, and 16. Using “Man2”

all damaged states are classified correctly with states #10, 15, and 16 lying closest to the control

limits. CPR2
proved to be a very valuable CP for the benchmark example, displaying perfect

performance and an indication of the damage extent.

CP M is an excellent parameter to detect damaged states if three clusters are used during

the training phase, too. In Figure 3.23 the control chart in sub-plot 4 gives a clear distinction
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between states #1 to 3 and 4 to 17. With a single cluster in the training phase, states #4 and 16

lie directly on the UCL and data instances from states #10 and 15 are misclassified as healthy.

Another useful result of “Man2” is the constant amplitude for similar damage cases in states #4,

6, and 8 as well as in states #5, 7, and 9 for a single and two replaced columns, respectively. A

decreasing gap size is also quantified by a clear trend of CP M in states #10 to 14.

As for CPR2
, a Gaussian distribution leads to an improved distinction in the control charts.

Accordingly, CP M also performs perfectly for the analyzed data and damage quantification is

possible. Both parameters have their advantage: While CPR2
is able to distinct more clearly

between healthy and damaged, CP M gives a better quantification of damages.

SSI-Residues In a similar manner as VAR based CPs, the estimation of SSI based CPs depends

on different input variables. As described in Table 3.3, CP ε depends on the number of shifts

nshift in the Hankel matrix and the number of insignificant columns nis of the Nullspace. CP γ

depends on nshift and further on the number of significant columns nsig and the block length Nb.

As in the VAR case, optimal parameter values are not exactly known a priori. Hence, parameter

studies are carried out to optimize AUCs, before the performance of the two CPs are discussed by

means of control charts and ROCs.

As mentioned above, nshift and nis need to be set for CP ε. In Figure 3.24 the AUC is plotted for

different parameter setting of CP ε, the assumption of a Gaussian distribution, and classification

“Man2” as optimal combination from their former absolute CPs is used here. Figures for the

remaining three combinations (“Man1”, percentiles) can be found in Chapter A.2. 400 different

combinations of nshift and nis reveal a broad picture of the performance here. Again, 120 training

sets and 730 testing sets are used in the same manner as for the absolute CPs. Blue areas with

no AUC values indicate parameter boundaries, e.g. nis needs to be smaller than or equal to

nshift ∗m = nshift ∗ 4.

In agreement with the theoretical derivation, high AUC values can be seen around nshift = 16 (14

to 17) over all analyzed nis values. Here values lie above 0.9, indicating a good overall performance

of the parameter. According to the theoretical estimation optimal values of nis can be calculated

by nis = nshift ∗m − nsig = nshift ∗ 4 − 8. For nsig =3, 4, 5, 6, and 7 nis =4, 8, 12, 16 and 20

result. Those points lie in a region of poor performance that stretches as a band from the top left

downwards to the right in Figure 3.24 (orange to yellow). The high AUC values for nshift > 8 and

nis <= 20 indicates that the model order of the analyzed system is in fact larger than 8. Local

optima can be found at (nis, nshift)= (1,16), (4,16), (8,15), and (9,15) all reaching AUC=0.95

indicating a (theoretical) number of significant columns of nsig = m ∗ nshift − nis =63, 60, 52,

and 51, respectively. From these optima, the combination (4, 16) was chosen for later analysis

since nis influences the computational cost and should be kept low while a value of 1 was assumed

to be too small.

The parameter study for CP γ is more complex since a third variable, Nb, has to be taken into

account. Variables nshift and nsig can be estimated in the same manner as for CP ε. Figure 3.25

holds the AUCs for CP γ for a variation of nshift and nsig for eight different block lengths Nb.

Again, the assumption of a Gaussian distribution and classification “Man2” are shown. It should
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Figure 3.22: Absolute CP trends (upper two plots) and normalized control charts (lower two plots)
for CP R2

, given for ML set-up “Manual1’ (upper and 3rd plot) with one cluster and “Manual2” (2nd

and 4th plot) with three clusters. Numbers on the upper edge indicate reference states from Table 3.4.
Training and testing data is separated by a red line in the upper two plots and parameter distributions
in each cluster during training are indicated by red symbols (+,o,*). It should be noted that both
control limits lie at +1 for the lower two plots due to logarithmic scaling.
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Figure 3.23: Absolute CP trends (upper two plots) and normalized control charts (lower two plots)
for CP M, given for ML set-up “Manual1’ (upper and 3rd plot) with one cluster and “Manual2” (2nd

and 4th plot) with three clusters. Numbers on the upper edge indicate reference states from Table 3.4.
Training and testing data is separated by a red line in the upper two plots and parameter distributions
in each cluster during training are indicated by red symbols (+,o,*). It should be noted that both
control limits lie at +1 for the lower two plots due to logarithmic scaling.
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Figure 3.24: Parameter study for CP ε at 4-DoF system. AUCs are shown for different model orders
nshift and number of insignificant columns nis. Best performing combination MLMan2 with the
assumption of a normally distributed variable is given here, remaining three combinations are given in
Figure A.2.

be noted that numbers in the fields are given in values from 0 to 100 instead of 0 to 1 for the

AUC for a better displayability. The remaining three plots for all other ML-HT combinations

can be found in Chapter A.2. In total, 1768 runs were performed to investigate performances,

sub-plots are given for different block lengths Nb.

Nb was derived to be chosen appropriately to assure statistical independence between data

blocks. Recalling the lower band limit of 20 Hz and a lowest eigenfrequency of 30 Hz, results in

a block length of 10 to 20. Since with short block lengths the number of blocks and hence the

computational costs increase, Nb = 10 was taken as a lower boundary for the study and larger

block lengths should be tested for their performance.

Upon looking at all sub-plots in Figure 3.25, a general pattern can be seen: A region of bad

performance on the lower right grows from Nb = 50 (second row, left plot in ) to Nb = 250.

For Nb = 25 this region disappears and emerges again for Nb = 10. An overall comparison of

different Nb settings can be made by averaging the AUC values over all parameter combinations

per sub-plot (Mb), indicated in each title. Here Nb = 25 clearly performs best. Further, regions of

good performance (AUC>0.8) form a more or less distinct ‘r’-shaped character in the nshift-nsig
parameter space. The vertical line of this ‘r’ contains well performing combinations but maxima

with an AUC>0.96 can only be found in the ‘arch’. Regions of best performance are located close

to the parameter boundaries on the upper right side. This indicates that really the majority of the

SVD matrix should be considered as being significant and that the real model order is larger or

equal to eight. Further, optimal model orders nshift are lower than for CP ε with values between

3 and 8. This is indicating that dynamic changes due to damage manifest in higher frequency

regions of the measured spectrum since e.g. nshift = 4 result in 320/4 = 80 Hz for fmin. Since an
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Figure 3.25: Parameter study for HT G(CP γ(MLMan2)) over different model orders Nshift (Block
size of Hankel-matrix), number of significant columns (Ns), and number of samples per block (Nb).
It should be noted that for a better displayability the AUC is ranging form 0 to 100 instead of 0 to
1. Best performing combination MLMan2 with the assumption of a normally distributed variable is
given here, remaining three combinations are given in Figure A.3, A.4, and A.5.
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increased computational cost goes along with an increase of both, nshift and nsig, a combination

of (Nb, Ns, Nshift)= (25, 12, 4) was chosen (AUC=0.99).

Analogous to the aforementioned CPs, CP ε and CP γ are analyzed using control charts in

logarithmic scaling given in Figure 3.26 and Figure 3.27, respectively. As for the relative CPs

CPM and CPR
2

difference in the absolute CP values between “Man1” and “Man2” can be seen

between the 1st and 2nd sub-plot. For CP ε, values can be reduced from 10−3 to 10−5 (1st and

2nd sub-plot in Figure 3.26) and for CP γ from 105 to 102 (1st and 2nd sub-plot in Figure 3.27).

Both indicate a strong increase of inner cluster similarity for three clusters in “Man2”. This fact

also manifests in the performance within the displayed control charts: outlier amplitudes for both

CPs are strongly increased from sub-plot 3 to 4. For “Man1”, CP ε only indicates state #5, 9,

and 11 to 14 as damaged and only under the usage of percentiles. For “ Man2” in contrast, only

states #15 and 16 and the first sets of #10 remain undetected. A similar picture results for CP γ

in Figure 3.27: For “Man1” states #4 to 9 as well as 13, 14, 16 and 17 are indicated as damaged

and performance is again improved for “Man2”. Overall, CP γ performs better than CP ε here. In

the case of “Man2” in sub-plot 4, only state #10 and 16 remain in a false indication. In terms of

HT, the discrete distribution performs better for CP ε while a Gaussian does for CP γ (light blue

compared to dark blue).

For CP ε the stiffness reduction for one column between the base and 1st floor (#4) as well as

1st and 2nd floor (#6) is indicated correctly as less severe than for the reduction in two columns

(#5 and 7). Nevertheless, amplitudes are reversed for damage between the 2nd and 3rd floor

(#8/9). The increase of non-linearity follows a clear trend with larger CP ε values the smaller the

gap gets. CP γ indicates all linear damage correctly, having stronger amplitudes for damage at

both columns (#5, 7, and 9) than in one column (#4, 6, and 8). Here the damage between 2nd

and 3rd floor (#8/9) results in slightly larger CP amplitudes. The increase in non-linearity is

again indicated correctly. The least severe, combined damage scenarios in #15 and 16 are only

handled well by CP γ .

As explained above, the evaluation for false positive alarms and damage detection rate for many

control charts based on different confidence intervals leads to receiver operating characteristics

(ROCs). Figure 3.28 shows such ROCs for CPR
2

(upper plot) and CP γ (lower plot), respectively.

Confidence intervals were varied as indicated by α values in Table 3.5. Again, all four ML-HT

combinations are plotted: “Man1” is indicated by light blue, “Man2” by dark blue, an underlying

Gaussian distribution is indicated by dotted and a discrete distribution by solid lines. Optimal

points on the ROCs per classification in terms of Youden index (J ) and maximum distance to

diagonal (d̄) are indicated as well.

It is obvious how both parameters indicate better performance if they act on data that was

clustered during training (dark blue lines, “Man2”): ROC curves run closer to the upper left

corner than for the base line classification. CPR
2

even runs through the upper left corner, showing

optimal performance. A difference between the assumption of normally distributed parameters

and an estimation by percentiles is not visible for “Man2”. For “Man1” the discrete version

performs better in the upper right region where very large false positive rates have already been

reached.
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ε

,G

CL Dmgd

Figure 3.26: Absolute CP trends (upper two plots) and normalized control charts (lower two plots)
for CP ε, given for ML set-up “Manual1’ (upper and 3rd plot) with one cluster and “Manual2” (2nd

and 4th plot) with three clusters. Numbers on the upper edge indicate reference states from Table 3.4.
Training and testing data is separated by a red line in the upper two plots and parameter distributions
in each cluster during training are indicated by red symbols (+,o,*). It should be noted that both
control limits lie at +1 for the lower two plots due to logarithmic scaling.
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Ĉ
P
γ
(M

L
M
a
n

1
) ĈP
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Figure 3.27: Absolute CP trends (upper two plots) and normalized control charts (lower two plots)
for CP γ , given for ML set-up “Manual1’ (upper and 3rd plot) with one cluster and “Manual2” (2nd

and 4th plot) with three clusters. Numbers on the upper edge indicate reference states from Table 3.4.
Training and testing data is separated by a red line in the upper two plots and parameter distributions
in each cluster during training are indicated by red symbols (+,o,*). It should be noted that both
control limits lie at +1 for the lower two plots due to logarithmic scaling.
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Figure 3.28: ROCs for CP R2

(upper plot) and CP γ (lower plot). Classification “Man1” is indicated
by light blue, “Man2” by dark blue, an underlying Gaussian distribution is indicated by dotted, a
discrete by solid lines.
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It is another important insight to investigate the distribution of different points on the ROCs.

Since the confidence interval is defined by 1− α, small α values indicate a wide interval, which is

desired. For CPR2
optimal points are reached at a small α value of 0.001 (0.1%) while for CP γ

a larger value of 0.016 (1.6%) is necessary to result in the best performance for this parameter.

While ROC curves for CPR2
start of with high detection rates, ROCs for CP γ approach their

optimum with rising α values, indicating a better separation of CP values between healthy and

damaged by CPR2
. As discussed before, these plots provide a very useful tool for interpreting the

performance of an ML-CP-HT realization.

Finally, it was noted that for all relative CPs (both, VAR and SSI based) parameter trends

in the training phase of “Man2” show a decrease towards the middle of each cluster with a

subsequent increase of CP values (see second sub-plot in Figure 3.22, Figure 3.23, Figure 3.26,

and Figure 3.27). This is most possibly a result of averaging all reference matrices from each

cluster. The structure is subject to continuous changes during data acquisition, e.g. a warm up or

equipoising of the structure-shaker system, which alter the system’s dynamics over time. Hence,

data instances from the middle of each cluster fit best to the averaged references.

Performance Overview

For a final comparison of selected CPs, results from all ROCs are combined in Table 3.7. Results

for further CPs, such as time series statistics and other accumulated energy levels, are given in

Table A.1 in Chapter A.2. The first four columns of Table 3.7 show AUCs for different ML-HT

combinations (two classifications “Man1” and “Man2” and two distribution types). Values >0.7

are underlined whereas values >0.9 are written within a box. Further, maxima per CP (line)

are set bold. The last four columns indicate single points on the ROCs with best performance

with respect to d̄ and J . Points belong to the best performance in column 1 to 4 (bold) and

corresponding α values are given. A small α indicates a wide confidence interval (1-α) and vice

versa. If a CP is able to separate well between healthy and damaged states, a small α results.

All CPs, except modal parameters, achieve a performance with AUC values > 0.9. CP M,

and CPR2
even perform perfectly (AUC=1). For accumulated energies (CP

Eyy

i,j and CP
Exy

i,j ),

parameters from cross-correlations outperform the auto correlated channels 2 and 3 (see lower two

blocks in Table A.1. Optimal α values for CP
Exy

2,9 and CP
Exy

3,9 lie at 0.18 and 0.14, respectively.

Modal frequencies show a moderate to bad performance for damage detection, most feasible

here is f4 as the third bending mode. Optimal α values range from 0.05 to 0.5. All relative

damage parameters display very good performance with a clear distinction in α values: While

SSI based CPs perform best for α =0.17/0.38, both VAR-based CPs can be applied with a much

wider confidence interval with α =0.01. As seen in the control charts in Figures 3.19, 3.20, 3.22,

3.23, 3.26, and 3.27, the best damage quantification was achieved through CP M. CP
Eyy

i,j and

CP
Exy

i,j display a good performance with AUC>0.9 and provide in addition the possibility of

damage localization which the global CPs from SSI and VAR are lacking. The extension to cross

correlations provides additional insight here.

To get a visual insight into the performance over the different damage scenarios, Figure 3.29
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Table 3.7: ROC metrics for different CPs. Values >0.7 are underlined whereas values >0.9 are written
within a box. Further, maxima per CP (line) are set in bold. An overview for further investigated
CPs can be found in Table A.1

Man1-D Man2-D Man1-G Man2-G d̄ α J α

Absolute CPs:
CP

Exy

2,9 0.71 0.939 0.659 0.941 85.3/3.3 0.18 84.6/0 0.16

CP
Exy

3,9 0.74 0.945 0.646 0.943 87/3.3 0.14 87/3.3 0.14
CP f1 0.473 0.517 0.464 0.497 60.3/53.3 0.5 60.3/53.3 0.5
CP f2 0.477 0.518 0.479 0.494 77.3/73.3 0.17 89.4/80 0.36
CP f3 0.611 0.599 0.611 0.567 76/50 0.05 80.6/53.3 0.13
CP f4 0.712 0.685 0.73 0.778 84.1/26.7 0.12 84.1/26.7 0.12
Relative CPs:
CP ε 0.764 0.946 0.681 0.948 87.7/0 0.17 87.7/0 0.17
CP γ 0.798 0.988 0.774 0.991 96.6/0 0.38 96.6/0 0.38
CP M 0.879 0.999 0.893 1 100/0 0.01 100/0 0.01
CPR2

0.733 1 0.696 1 100/0 0.01 100/0 0.01

shows the damage detection results for all CPs in Table 3.7 over the test phase. The known

reference is given in the first line. Here the first 30 sets are indicated as healthy, belonging to

states #1-3, all remaining sets (states #4-17) are flagged red as damaged. The upper plot uses a

discrete parameter distribution the lower one a Gaussian. All parameters except modal frequencies

identify the healthy sets correctly, CP γ has some trouble for the discrete distribution. Further,

states #4 to 9 with stiffness reductions are also well identified by the majority of parameters.

State #10 with the widest gap between column and bumper is always identified correctly by

CP M and CPR2
. CPEyy

, , CPExy
, , CP γ , and CP ε in contrast have difficulties. In these states,

better performance is achieved under the assumption of a discrete distribution. States #11 to 14

with a decreasing gap width are identified correctly, only CP
Exy

2,9 flags some sets as healthy. The

combined states #15 to 17 are correctly identified by CP M and CPR2
, CP γ performs better in

using percentiles in terms of damage detection but also starts to suffer from false positive alarms.

Variation of Training Instances

To this point, variations in ML, CP, and HT have been analyzed, addressing point 2.) to 4.) of

the initially stated variations within every SHM procedure. Hence, the effect of training data

instances remains open. Figure 3.30 addresses this problem. Here, the six best performing CPs

were selected to analyze the influence of the number of training sets and a random selection of

those. Results are given for “Man2” with three clusters in the training phase and a Gaussian

distribution from which confidence intervals are drawn. The number of training sets was varied

in steps of five from 5 to 45 data instances. It should be noted that the number of training sets

denotes the number of data instances taken from each of the three states during the training

phase. For each of the nine training set sizes, 25 runs were performed in which the data instances

were chosen randomly from the training data to investigate the influence of differing training sets.

Results are plotted in standard box-plots. The median is indicated by a red bar, 25 and 75%
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(a) Performance overview for different CPs based on percentiles.
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(b) Performance overview for different CPs based on a normal distribution.

Figure 3.29: Overview of damage identification for all CPs for 4-DoF system based on percentiles
((a)) and a normal distribution ((b)). Reference for the 730 data instances given in first row, red
indicates a damaged and green a healthy state. Vertical lines and numbers on top indicate the 17
different states as given in Table 3.4.
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percentiles by the blue box, 5 and 95% percentiles by the whiskers, and outliers by red crosses.

This also affects the absolute CPs as well as the relative ones from SSI and VAR. The parameter

range is a close up from 0.8 to 1.01, only for CP ε (Figure 3.30(a)) the range was extended down

to 0.7 due to an outlier for five training sets. The first row of Figure 3.30 ((a) and (b)) shows

values for CPs from SSI, the second row ((c) and (d)) the two CPs from VARmodels and in the

lower row two parameters derived from accumulated energies are given in (e) and (f).

Overall, there is a tendency of increasing AUC values with an increasing number of training

sets with stronger and weaker characteristics. CP M and CP γ are the two CPs affected most,

while CP
Exy

2,9 and CP
Exy

3,9 show constant behavior over all different numbers of training sets. While

for CP γ performance increases constantly with an increase of training sets, the other CPs seem

to find an equilibrium at around 15 to 25 training sets from each state (45 to 75 data instances in

total). CP ε, CP
Exy

2,9 , and CP
Exy

3,9 have an upper performance limit at around 0.95 the other three

parameters (CPR2
, CP M, and CP γ) reach values up to AUC=1.

3.6 Conclusions

This chapter forms a central part of this thesis: It contains an outline of the presented evaluation

framework for SHM performance plus the description of modal parameter extraction through

TEMP and derivation of an extension of accumulated energies as CP. The application of all three

points is given through benchmark examples.

Accumulated energies, as CP for SHM, are promising quantities since they combine the possibility

of physical interpretation, as it can be done for modal parameters, with the consideration of

the complete measured frequency spectrum, as for the residues from SSI and VAR models.

An extension was presented in which summed power spectral densities of cross-correlations of

sensor signals are used to derive the CPs, dubbed CP
Exy

i,j . Improved performance results for this

parameter in application to the given benchmark example of the three-story building structure.

Further, the triangulation-based extraction of modal parameters, short TEMP, is outlined.

In this procedure, a Delaunay-triangulation in the frequency-damping-plane allows for a fast

comparison and grouping of neighboring solutions in a stabilization diagram. A first application

is provided by means of modal parameter extraction for a long-span suspension bridge. It is also

included for derivation of modal quantities as CP within the SHM framework for the application

on the three-story building structure. Two sets of initial criteria for TEMP are given and discussed

in this chapter. These can be used as starting point for future research and applications.

Finally, the SHM framework for performance evaluation is derived based on the theoretical

formulations given in Chapter 2. Its main constituents are the consideration of different machine

learning techniques, different condition parameters and different probability distributions and

confidence intervals for hypothesis testing. An overview of the techniques and parameters used is

given in Tables 3.2 and 3.3 (pages 78 and 79). To allow for a variation of the confidence intervals,

receiver operating characteristic curves are adopted and the area under their curves (AUC) is

introduced as a performance criterion to the field of SHM. The framework also allows for a fast

comparison of varying numbers and selections of training data
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Figure 3.30: Condition parameter robustness against number and selection of training sets, evaluated
by area under curve (AUC) of ROCs. Six CPs tested with selected, optimal parameter settings for
different numbers of training data (5:5:45), 25 random selections were evaluated per set up. It should
be noted that the number of training sets indicates the number of sets taken from each of the three
healthy states (#1-3).

Considering this, the values of condition parameters must be understood with respect to machine

learning (CP (ML)) and accordingly hypothesis testing with respect to machine learning and

condition parameters HT (CP (ML)) as stated in Equations (3.6) and (3.7) on page 74.

Application of the SHM framework and an evaluation of performance is carried out using a

benchmark database. It is publicly available and contains linear and non-linear damage scenarios

on a base-excited frame structure. Damage detection and localization are successfully applied to

the example and different combinations of SHM constituents are compared using the presented

approach.

In general, the division of the training phase into three clusters improves the SHM performance

significantly. For some CPs, it even facilitates damage detection. It should be noted that also the
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relative CPs, which are sometimes claimed to work without ML or EOC compensation1, benefit

strongly from the ML step, e.g. manual clustering.

It is summarized that modal parameters are not feasible to detect damage. All four relative CPs

(CPR2
, CP M, CP ε and CP γ) are able to detect linear an non-linear damage with high AUCs;

CPR2
and CP M result in slightly better performance. Another advantage of the VAR-based

residues is the dependency on only one parameter while CP ε and CP γ need two and three initial

parameters, respectively. The setting of these parameters is even more critical for the SHM

performance of SSI based than VAR based CPs, since a safe side (larger model order p) can be

chosen for VAR residues. A recommendation to estimate the parameters is given with respect to

the number of measured channels m, sampling frequency fs, and the lowest frequency of interest

fmin:

p ' 0.7 ∗ fs/fmin

nshift ≈ fs/fmin for CP ε

nshift / fs/fmin for CP γ

Nb ≈ fs/fmin

nsig ' 2 ∗m

nis ≈ nshift ∗m− nsig.

Where fmin can be the lowest eigenfrequency, the first eigenfrequency considered as damage

sensitive, or a band limit of a filter.

The newly formulated absolute CP based on accumulated energies performs almost as good as

the more complex relative CPs and additionally provides the possibility of damage localization if

calculated per measured channel. It is suggested to utilize the mean frequency between the 80

and 90% energy level as CP. The cross-correlation based CPExy
, performs slightly better than the

formulation with auto correlations CPEyy
, .

For HT, results from discrete and normal distributions are very similar but the normal distribu-

tion is considered to be more robust. The number of training sets has influence on the achievable

AUC level, it is suggested to use at least 15, better 20, instances per state the benchmark case.

This number can also be transferred as minimum number of data instances per cluster for further

analysis.

Over all, the applicability and validity of the approach are proven, establishing reasonable

confidence that further analysis can be carried out in the same manner on different structures.

To gain more belief in the used CPs and parameter settings, application will be presented in the

following on a small-scale wind turbine with artificially introduced damage in (Chapter 4) and on

an in-operation industrial-scale 5 MW wind turbine in Chapter 5.

1 In these cases a single cluster is used.
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Being of moderate size, the Los Alamos National Laboratories (LANL) wind turbine structure

provides a link between small scale physical models and full-scale industrial power plants. Its

dimensions are large enough to result in complex dynamic behavior under realistic loading and

excitation while still allow for an application of artificial damage scenarios. For the measurement

campaign, three main goals were set:

• Verification and in-situ test of Martlet wireless sensor nodes,

• dynamic characterization of the structure, through the triangulation based extraction of

modal parameters (TEMP),

• application of the proposed SHM framework under challenging conditions and evaluation of

performances.

For the design, performance, and evaluation of the Martlet wireless sensor nodes, it is referred

to [93, 94]. The following sections will provide information on the structure itself, the data

acquisition, identified dynamic characteristics and the application of the proposed modular SHM

framework for performance evaluation. The set-up is very challenging for SHM since a new

measurement chain is linked to a very limited collection of EOCs. Hence, this example must be

understood as a validation under sub-optimal conditions rather than a proof of concept with

perfect performance in all points.

4.1 The Structure

The subject of the study is a steel support structure for a Whisper 500 wind turbine. Located at

a tech area of the LANL at about 2150 m elevation. The turbine is a two-bladed system with a

rotor diameter of 4.5 m and a rated power of 3 kW at 10.5 m/s wind speed (peak power 3.2 kW

at 12 m/s). Operational wind speeds reach from 3.4 m/s to max. 55 m/s. The nominal rotor

speed is 500 rpm (8.2 Hz). A 12.2 m high steel structure carries the 70 kg heavy nacelle. For

maintenance and experimental purposes, the whole tower can be tilted around a pivot point,

which is located at a third of the tower height.

Figure 4.1 shows the overall structure with sensor positions (left), close up views of the bottom

section, the tower in tilted position, and a bolt at the bottom (used to fix the structure in the

upward position). The bolt was used to introduce damage to the structure by inserting a longer

bolt with a spring. This changes boundary conditions slightly from fixed to only partially fixed

and introduces additional non-linearities. An earlier experimental study, including a numerical

113
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Figure 4.1: Wind turbine structure in erected position with six mounted sensor nodes, indicated
by arrows (left). Turbine during tilting procedure with battery shed and schematic of top view with
measurement directions (upper right). Close up of bottom sensor nodes (bottom middle) as well as
healthy and damaged bolt state (bottom right).

model of the turbine, was published in [34]. In which the focus is put on the turbine’s blades

including modal analysis and the overall power production using a FAST model. Blade modes

were identified at 9.1, 27.0, 33.4, and 75.5 Hz.

Each of the six wireless nodes consists of a tri-axial acceleration sensor (only the horizontal plane
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in mounted position is recorded), power supply board, Martlet unit (see Kane et al. [93], Kane

[94] for further details), and a board for sensor connection. The sensors were daisy chained and

powered with 5 V from the wind turbine’s battery bank. Data transmission to the base station

was realized via radio.

During the test, the base station was placed in the weather proof battery shed. It consists of a

raspberry pi for system control, crontab execution and data storage and a radio connected to

the raspberry pi via USB, which controls the sensor network. A water proof outlet was used to

connect the antenna and provide power supply for the sensor nodes.

As mentioned, the turbine tower can be tilted down via a wire crank for maintenance and

experimental purposes as can be seen in Figure 4.1 (right). This feature was used to mount the

upper three sensors above the pivot point (see arrows Figure 4.1 (left)). The lower three sensors

were mounted below the pivot point, two close to the bolt and one further up in the middle of the

lower field.

Additional information about weather conditions was taken from a weather station, located

about 50 m north of the wind turbine. It is instrumented at four levels and located on the Pajarito

Plateau in an open area, fetch within several hundred meters of the weather tower is over short

grasses.

4.2 Data Aquisition

Sensor application and a first test run were performed in June 2013. First data instances were

recorded on June 19th, 21st, 22nd, and 24th 2013. All of those data instances were collected under

healthy conditions with the original bolt in place and the wire crank tightened.

A new base station was installed on September 13th. Data was collected in a second testing

campaign on September 16th-18th 2013, both under healthy and damaged states. Damage

introduction, manual stops and manual starts of the turbine were performed during the following

times:

• 16.09.2013: 13:00-16:30 pm
• 17.09.2013: 09:15-11:55 am & 14:00-17:00 pm
• 18.09.2013: 09:15-12:47 pm

Beyond these time slots, data was automatically collected in five minute intervals under healthy

conditions with 500 Hz or 1 kHz sampling rate for 23 s without the need for interaction. For the

application of the SHM framework, data was sampled down to 100 Hz, only spectrograms are

derived from the 500 Hz data instances. Each set was saved and transferred into Matlab-format

with its name indicating the date and starting time of data collection.

Table 4.1 gives an overview of the collected data: On September 16th the turbine was under

normal operation when the data collection started (13:00). For the first hour, data was collected

under normal operation and additional handwritten notes for wind and performance were taken.

Then, a first manual stop was performed and the bolt was exchanged to introduce damage.

Subsequently the break was switched off. Then data was collected in the damaged state under

normal operation. At the end, the break was again switched on and the original bolt was put back



116 4 Monitoring a Small-scale Wind Turbine

into place. Finally, the break was switched off and data was collected under normal operation

throughout the night (State 2 in Table 4.1). Since some data collection issues occurred, only data

from 16:20 H on was used.

Table 4.1: Overview of database for LAN WT.

Label Set Condition Description Date and Time (DD.MM.JJJJ)

State 1 1 Damaged Break on 16.09.2013; 16:20 h

State 2 2-200 Healthy Normal operation 16.09.2013; 16:20 h - 17.09.2013; 9:20 h

State 3 201-215 Damaged Spring installed 17.09.2013; 9:25 h - 17.09.2013; 11:25 h

State 4 216-237 Healthy Normal operation 17.09.2013; 12:00 h - 17.09.2013;
14:21 h

State 5 238-250 Damaged Break on + spring 17.09.2013; 14:40 h - 17.09.2013;
16:40 h

State 6 251-340 Healthy Normal operation 17.09.2013; 18:15 h - 18.09.2013; 9:10 h

State 7 341 Damaged Break switched on 18.09.2013 9:15 h

State 8 342, 343 Healthy Normal operation 18.09.2013 9:40 h, 18.09.2013 9:45 h

State 9 344-349 Damaged Break on + spring 18.09.2013; 9:55 h - 18.09.2013; 12:00 h

State 10 350-351 Healthy Normal operation 18.09.2013 12:18 h, 18.09.2013 12:20 h

State 11 352 Damaged Break switched on 18.09.2013 12:18 h, 18.09.2013 12:20 h

State 12 353, 354 Healthy Normal operation 18.09.2013 12:34 h, 18.09.2013 12:43 h

On September 17th, wind was very low in the morning. The break was switched on while the

rotor was not turning. Afterwards, the bolt was changed to the damaged state and the sampling

frequency was set to 1 kHz to gain knowledge about higher frequency content in the signals. Wind

picked up and data was collected under normal operations. Between 10:55 and 11:20 sampling

rates were further increased and then set back to 1 kHz. Then, the break was switched on, the

original bolt was installed and the sampling rate was set back to 500 Hz. The break was taken

off and data was collected under normal operation for two hours in the healthy state. Later, the

turbine was stopped and the damaged state was introduced again by inserting the longer bolt

with the spring. After a short period the sampling frequency was increased to 1 kHz for 11 data

instances, and then set back to 500 Hz. A stop and start was performed twice and during the

second standstill, the original bolt was put back into place. The sampling frequency was also set

back to 1 kHz and left at this value over night.

During the morning of the third day, a stop and start was performed under healthy conditions

and a second stop was used to put the longer bolt with spring into place. One stop and start

was performed under the damaged state, a second stop was used to decrease the spring length to

41 mm (51 mm before). In this state, a hammer was used to perform impacts during two data

collection cycles. Then the break was released and normal operation in the damaged state was

recorded. Finally, the brake was switched on and the original bolt was put into place. Another
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stop and start was collected before the test was finished and all sensors were dismounted from the

turbine.

It should be noted that the main wind direction is south which causes the tower to lean against

the sub structure rather than the bolt or spring. Hence, the severity of the damage must be

assumed to be very small for the overall dynamic behaviour. During the three days of testing, the

wind constantly came from southern directions tending more to south-southeast for about the

first 175 data instances before switching to more south southwestern directions for a short period.

After about the first 30 to 40 data instances, the wind speed decreased significantly resulting in

less excitation of the structure. The lower excitation level without significant rotor movement also

influenced the automated system identification procedure accordingly less modes were identified

during that period (see Figure 4.6).

To provide easier accesses, data for all instances was saved in a single Matlab file. This file

contains the raw data, environmental and operational conditions as well as further essential

information (see B.1) and is named after the start time of data collection.

4.3 Spectrograms and Modal Properties

Short time Fourier transforms, displayed in spectrograms, are used as a first tool to get an insight

into the structure’s dynamic behavior. These allow a visual inspection of changing frequency

contents of a signal over time. Due to the limited recording length of each data instance, the

successive Fourier transforms (512 samples each) is calculated with a large overlap of 500 samples).

For a close-up to the lower frequency range (0-25 Hz), a higher frequency resolution was desired.

Hence, the settings were changed to 2048 samples with an overlap of 2000 samples.

Figure 4.2 shows four spectrograms of two sensors (Node-202 and Node-206) in two directions

each for normal operation under wind with a released break and without damage. It can be seen

that for Node-206 and Node-202, the z-axis perpendicular to the wind direction (lower plot in

Figure 4.2(b)) receives a higher excitation level by the southern wind than the x-direction. Wind

speed variations result in variations of the rotor speed and in time variant frequency bands. The

spectra in Figure 4.2 are full of harmonics with a number of side bands that range up to the

Nyquist frequency of 250 Hz. Tracking these frequency bands, a slow decrease of wind and rotor

speed can be read from the data recorded. Also, an aliasing effect can be seen in the lower right

plot of Figure 4.2(b): A frequency band starts at around 225 Hz and behaves contrarily to the

tendencies of all other bands until, at about half of the recording time, the band actually re-enters

the observable frequency range. Similar phenomena can be seen for higher frequencies in the

other spectrograms and are detected throughout the whole database.

The main reason for the strong harmonics and varying frequency content is obviously the rotor

excitation. Also, the rotation speed adapts very fast to changing wind speeds and hence underlies

significant fluctuations even within the rather short measuring period of up to 23 s. In Figure 4.3

a data instance with such a rotor speed change is depicted. A dominant frequency band with

side harmonics can be seen, starting at about 170 Hz and decreasing over the measuring period

to about 110 Hz (see Figure 4.3(a)). To verify frequency changes in the lower frequency range
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(a) Lower sensor node
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(b) Upper sensor node

Figure 4.2: Spectrograms during normal operation. Break is turned off, no damage is introduced
and turbine turns under wind. data instance recorded on 17. Sep. 2013 14:05 pm.

0.5 5 9.6 14.2 18.8 23.4

250

200.1

150.3

100.5

50.7

0.9

Fr
eq

ue
nc

y
in

H
z

Node-206X 9.18 m; Max=161 mG

0.5 5 9.6 14.2 18.8 23.4

250

200.1

150.3

100.5

50.7

0.9

Time in s

Fr
eq

ue
nc

y
in

H
z

Node-206Z 9.18 m; Max=127 mG

(a) Full frequency range
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(b) Zoom

Figure 4.3: Spectrograms with full frequency range and zoom during normal operation. Break is
turned off, no damage is introduced and turbine turns under wind. data instance recorded on 16. Sep.
2013 19:30 pm
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(a) Strong wind, undamaged
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(b) No wind, undamaged
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(c) Strong wind, damaged
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(d) No wind, damaged

Figure 4.4: Spectrograms for x- and z-direction of node 206 at 9.18 m for undamaged state under
wind 4.4a and without wind 4.4a. Spectrograms for the damaged scenario under wind 4.4c and without
wind 4.4d. data instance recorded on 17.09.13 12:50, 18.09.13 11:57, 18.09.13 10:06, and 18.09.13 11:06,
respectively.
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(a) Break turned on, undamaged
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(b) Break turned on, undamaged
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(c) Break turned on, damaged
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(d) Break turned on, damaged

Figure 4.5: Spectrograms for dynamic behavior under break switch-on for complete frequency range
(4.5a and 4.5c) and zoom from 0 to 25 Hz (4.5b and 4.5d). Break was truned on under healthy (4.5a
and 4.5b) and damaged condition (4.5c and 4.5d). data instance recorded on 18.09.13 9:15, and
18.09.13 10:58, respectively.
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and constant (modal) frequencies, a zoom for both measuring directions of Node-206 is given in

Figure 4.3(b) (see also Figure 4.4 and 4.5 for spectrograms under healthy and damaged conditions

with close-ups to the lower frequency band.).

Low frequency modes (between 1 and 2 Hz) only appear vague in Figure 4.3, for a more clear

view see Figure 4.4(d). Below 5 Hz a varying band is present in both directions. A next constant

line for both directions can be detected at around 7.5 Hz. For the x-direction, another constant

frequency band, which is corrupted by a changing frequency, lies at about 6 Hz. In the z-direction

the next constant band lies at about 9 Hz. Figure 4.4(b) and 4.4(d) display the constant frequency

bands for the x-direction (1.5 Hz, 6 Hz, 7.5 Hz, and 12 Hz) and for the z-direction (2 Hz, 9.5 Hz,

and 14.5 Hz) clearly. Spectrograms for data instances under an artificial switch-on of the wind

turbine’s brake are given in Figure 4.5. Both, full spectrum and zoom are given for Node-206.

The brake’s influence is clearly visible around 3.7 s when vibration amplitudes for frequencies

up to 250 Hz drop and distinct harmonics of the rotor speed decrease to zero at about 8.2 s.

Sub-figures 4.4(b) and 4.4(d) show the distinction between constant frequency bands and those

driven by the rotor (harmonics).

The presence of many resonance frequencies with side bands distinctively complicates the

system identification procedure. As a consequence, the analysis is limited to the very first modal

frequencies which are already difficult to extract.

The TEMP method was introduced in Chapter 2. TEMP was used to automatically extract

modal parameters for the discussed database with 354 data instances. Table 4.2 holds the applied

criteria for the extraction1. Every data instance is opened and TEMP is applied to the raw

stabilization diagrams from SSI-Data, based on all 12 channels. When data was sampled with

more than 100 Hz, the sampling rate was reduced through omission of samples.

Table 4.2: TEMP criteria for modal parameter extraction at LANL WT1.

Nshifts Norder φcrit fcrit ζcrit MACcrit P̂crit

60 2 : 2 : 200 30◦ 5% 80% 0.88 30

After a run for all data instances, an overview of the resulting solutions can be plotted as

given in Figure 4.6. The lower right sub-plot holds all identified modal frequencies over each data

instance for a range of 0 to 40 Hz. This frequency range was selected for discussion of the first

global bending modes. From this plot it is obvious that from set 50 to about 200 the procedure

resulted in significantly fewer solutions than for all other data instances. This is emphasized by the

upper plot, where solutions per data instance are counted. The number of resulting modes drops

from a value around 30 to less than 5. It was noted that for these data instances the wind speed

1 The number of shifts results from the estimated lowest mode at 1.4 Hz which has a period of 0.7 s and hence 70
samples at fs = 100 Hz. To cover 70% of the samples 50 shifts are necessary, a little larger number was chosen
here. Due to the 12 channels, a state space model order of 24 results. This order should be well overestimated
with chosen orders of 2 to 200. Values for MPD, frequency, damping, and MAC are again empirical values
recommended for large-scale structures. An overview for TEMP settings for all investigated structures is given
in Table 6.1
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dropped below 3 m/s. Hence, the turbine was not spinning and potentially only low frequency

modes are present due to external (wind) excitation. Another more likely cause for the lack of

mode identification could be caused by the (too) low and fixed resolution, set for the on-board

amplifier of the Martlet-node. With only small acceleration amplitudes, the signal is not properly

gained and thus the effective number of bits, used for digital representation, is insufficient. Hence,

content with higher frequencies and lower amplitudes is not sampled in the signal. TEMP shows

a distinct advantage over conventional clustering since the number of resulting modes is not user

defined as in many present automated system identification procedures.

As previously mentioned, the automated identification (under operation) suffers from the

harmonics present in the input and hence a violation of the white noise input assumption for SSI.

Nevertheless, if the left plot in Figure 4.6 is investigated, distinct peaks with more modes identified

occur in the histogram: two peaks below 2.0 Hz, one around 6.0 Hz, one around 8.0 Hz, and one

between 9.0 and 10.0 Hz. Two less distinctive peaks are present around 12-14 and 16 Hz. These

results agree with the frequency bands in the spectrograms discussed above. For a characterization

of the global modes a data instance which contains all of these solutions was desired. The second

set, recorded on 19.09.2013 16:20 pm, holds solutions within the following frequency bands:

1.2-1.4 Hz, 1.65-2.1 Hz, 6.5-5.5 Hz, 7.5-8.3 Hz, and 8.7-9.7 Hz. Results for identified frequencies

and damping values for this data instance are listed in Table 4.3. Additionally, in the range of

8.7-9.7 Hz, some spurious modes occur. These are assumed to belong to the first blade mode at

about 9.1 Hz [34] and rotor excitation and are omitted.

Table 4.3: TEMP results for data instance two, recorded 19.09.2013 16:20 pm
f1 f2 f3 f4 f5 f6 f7

f in Hz 1.4 1.9 6.0 7.8 9.6 12.3 14.8
ζ in % 1.6 2.9 0.3 0.1 1.7 1.3 0.4

This single data instance is used to illustrate the functionality of the TEMP approach in detail.

As in Figure 4.6, a focus is put on the lower frequency range up to 40 Hz for the sake of clarity.

As stated above, each sensor node captures accelerations in the horizontal plane through

two orthogonal axes. Hence, three dimensional mode shapes can be derived from the system

identification process. In the case of TEMP, the complex mode shape from the solution with the

highest model order is taken from each path in the stability diagram derived within each data

instance. Figure 4.7, along with Figure B.2 in Appendix B.2, gives an insight into the first seven

global bending modes of the experimental wind turbine structure. Plots 4.7a, 4.7d, 4.7g, and 4.7j

hold the top view to the turbine, the main axis of the mode shape can be identified. All other

plots show side views for the x- and z-axis, respectively.

The first two modes at 1.4 and 1.9 Hz show typical first bending modes for a cantilevered beam,

moving in orthogonal directions which correspond to the sensor axis. The fifth mode at 9.6 Hz is

almost orthogonal to the third and fourth mode. Mode number three at 6.0 Hz and five at 9.6 Hz

seem to form an orthogonal pair since both have small amplitudes for the lower sensors, depicting
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Figure 4.6: Overview of automatically identified modal frequencies for all 354 data instances using
TEMP method (bottom middle) along with occurrence of frequencies (left) and number of solutions
per data instance (top). Modal objects from a second run of TEMP over the complete database
indicated by different colors (right)

a curve with a vertical tangent, typically for a cantilevered beam. Also, both have a maximum at

the second highest node. In contrast, the fourth mode at 7.8 Hz has its maximum amplitude at

the third highest node and the lower sensors curve as for a simply supported beam. Having two

sensors on one level at the edges of the structure might reveal if mode four is a torsional. Again,

the two highest modes form an orthogonal pair, too. Both have a zero crossing and two maxima.

Mode six at 12.3 Hz appears oddly at the highest two sensor nodes since these almost have the

same amplitude (see B.2d, B.2e, andB.2f).

As for the three story building structure, the complexity of a mode shape is not useful for the

extraction of modal parameters. Again, most solutions align in the complex plane but do not lie

purely on the real axis (see B.2). Hence MPD should be used to identify physical solutions.
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Figure 4.7: Identified global bending modes 1 to 4 for LANL wind turbine at 1.4, 1.9, 6.0, and 7.8 Hz
with top and both side views. See Appendix B.2 for modes 5 to 7.
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4.4 Application of SHM framework

For the application of the proposed SHM framework, the whole database as described above was

used. An overview of the database by wind speed and temperature is given in Figure 4.8 (upper

left). Here, artificially introduced brake scenarios and the loosened bolt are both understood as

abnormal/damaged states. Further, the database is divided into learning and a testing phase

(upper right in Figure 4.8). As stated, in Table 4.1, reversible damage was introduced multiple

times. Training sets are drawn only from healthy sets covering the complete wind and temperature

ranges.

The machine learning (ML) part was achieved using manual classification and automated

classification through affinity propagation (AP). In the manual case, one reference classification

and one by wind speed were used:

• Manual1 or Man1 : All training data instances form a single cluster (2nd row left in

Figure 4.8).

• Manual2 or Man2 : Wind speed is used as a classification criterion for intervals from 12 to

16, 16 to 20, and 20 to 24 m/s (2nd row center in Figure 4.8).

Affinity propagation, as an automated clustering procedure, is used in four further cases, where

the preference is set empirically to values of [-20,-10,-7.5,-5] resulting in [2, 4, 6, 7] clusters1

based on wind speed and temperature information. Table 4.4 gives an overview of the different

parameters used for SHM.

It is emphasized that the recording of rotor speed as a major system parameter has the potential

to increase the performance of clustering and subsequently the SHM-performance significantly.

The ML step results in six different variants of data clustering through which the comparison

of CPs, and for relative CPs also their estimation, are defined. Table 4.5 gives an overview of

the classification nomenclature and attributes2. The data instance separation in the temperature

and wind speed plane for all six ML instances is given in the lower two rows of sub-figures in

Figure 4.8.

For ‘Manual1’, all training CPs are taken to build the probabilistic model in a single cluster.

Cluster sizes are indicated to provide information about the number of samples available for the

construction of probabilistic models in the HT step during training. The following section will

1 Again, the smaller the absolute values of the preference (as gravity indicator), the more clusters will result from
the AP procedure.

2 After the inspection of PSDs from different data instances and channels a lower frequency of interest of
fmin = 5 Hz was determined. Accordingly the number of shifts was chosen to 60 ≫ 20 = fs/fmin = 100/5. The
number of model orders as well as criteria fcrit, ζcrit, and MACcrit are empirical. The MPD criterion φcrit was
set to a high value of 30 due to the in field conditions. P̂crit should be chosen to one half to a fifth of the given
model orders, 30 in this case. Selection of the different CP input variables goes along the introduced rules of
thumb. nshift = fs/fmin = 100/5 = 20 is taken into account for CP ε, nis is chosen to a very low value of 2
here. For CP γ , nshift = 7 < fs/fmin = 20 is a small value assuming significant changes in dynamics above
13 Hz and nsig = 10 violates the rule of being equal to two times the number of sensors. The motivation lies in
an excitation of mainly one sensor direction. For the VAR-based CPs, the model order was chosen on the safe
side with 30 > fs/fmin = 20.



126 4 Monitoring a Small-scale Wind Turbine

12 14 16 18 20 22 24
0

2

4

6
Healthy/damaged: 317/37 sets

Temperature in deg-C

W
in

d
sp

ee
d

in
m

/s

Healthy
Damaged

12 14 16 18 20 22 24
0

2

4

6
Training/testing: 200/154 sets

Temperature in deg-C

Training
Testing

15 20
0

2

4

6

Man1

Temperature in deg-C

W
in

d
sp

ee
d

in
m

/s

15 20
0

2

4

6

Man2

Temperature in deg-C

W
in

d
sp

ee
d

in
m

/s

15 20
0

2

4

6

AP1

Temperature in deg-C
W

in
d

sp
ee

d
in

m
/s

15 20
0

2

4

6

AP2

Temperature in deg-C

W
in

d
sp

ee
d

in
m

/s

15 20
0

2

4

6

AP3

Temperature in deg-C

W
in

d
sp

ee
d

in
m

/s

15 20
0

2

4

6

AP4

Temperature in deg-C

W
in

d
sp

ee
d

in
m

/s

Figure 4.8: Complete analyzed database displayed over wind speed and temperature for healthy and
damaged states (upper left) and training and testing (upper right). Clusters for the six analyzed ML
setups are displayed in the lower two sub figure rows. It should be noted that three EOCs have been
analyzed for “AP 1” to “AP 4” (temperature, wind speed and turbulence intensity, see Table 4.4).
Hence, overlapping might occur in the 2d projections of the first two principal components.

show selected CPs during the training phase and control charts for a certain ML setting and

confidence interval.

4.4.1 Selected Condition Parameters

Within this section, parameter trends and control charts for three CPs, one absolute and two

relative, are investigated in detail before all implemented are compared with respect to AUC

values. CP
Exy

i,9 and CP
Eyy

i,9 are chosen because the energy interval between 80 and 90% showed

good performance and further the ability to locate damage as demonstrated in the preceding

example (see Chapter 3.5). One VAR based CP, CPR2
, and one SSI based CP, CP γ , are also

taken into account here.
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Table 4.4: Settings for SHM scheme at LANL WT

Number of channels: 12 (@ 100 Hz) Data sets in training: 200
Total number of data sets: 354 Data sets in testing: 154
Number of ML types: 6
ML Names: ’Man1’ ’Man2’ ’AP1’ ’AP2’ ’AP3’ ’AP4’
Number of clusters: 1 3 2 4 6 7
Reference EOCs: Temperature; wind speed; wind speed stddev; wind direction

Settings for condition parameter(s):
CP fi : Shifs: 60 Model orders: 2 to 200

φcrit = 30 fcrit = 5 ζcrit = 80 MACcrit = 0.88 P̂crit = 30
CP

Eyy

i,j : Number of energy bins = 10
CP ε: Shifts = 20 Non-sign. col. = 2
CP M/CPR2

: AR-Model Order = 30
CP γ : Shifts = 7 Sign. col. = 10 Blocks = 100

Analyzed distribution types: Discrete, Gaussian
α-values for control chart figures: 1%
α-values for hypothesis testing: [0.1:0.1:2, 2:1:20, 20:2:40, 40:10:90]%

Table 4.5: Classification attributes for LANL WT
Classification name MLMan1 MLMan2 MLAP1 MLAP2 MLAP3 MLAP4

Number of clusters 1.0 3.0 2.0 4.0 6.0 7.0
Minimal cluster size 200.0 14.0 95.0 14.0 13.0 13.0
Average cluster size 200.0 66.7 100.0 50.0 33.3 28.6
Maximum cluster size 200.0 133.0 105.0 80.0 55.0 39.0

Figures 4.9, 4.10, and 4.11 are arranged in the same manner as for the benchmark example

in Chapter 3.5: The upper two plots show the absolute CP values for training and testing in

dependency to a certain ML setup, written CP x(MLy) (“condition parameter x in dependency to

machine learning instance y”). For the training phase up to data instance # 200, on the left side

of these plots, different clusters are separated with vertical lines (orange). Within a single cluster,

data instances are plotted chronologically and vertical lines indicate the parameter distribution

within the cluster by percentiles (+,*,o). For accumulated energies in Figure 4.9, four lines are

displayed, one for each channel of the lowest two sensor nodes but all channels are included into

the final comparison. The lower two plots show control charts for the same ML types as the upper

two plots. Here, the 154 data instances from the testing phase are plotted chronologically. Each

control chart for a certain CP is calculated and plotted with an optimal α value resulting from

the corresponding ROC (see Table 4.6). Damaged data instances during testing are indicated by

grey rectangles.

Anticipating the final stage of performance evaluation, Table 4.6 displays the performance

indicator AUC for all investigated ML-CP-HT combinations. These values will be referred to in
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the next sections.

Regarding accumulated energies, it was observed in the previous chapter that frequencies linked

to energy levels between 80 and 90% have a high sensitivity to structural changes. Accordingly,

CP
Exy

i,9 and CP
Eyy

i,9 are chosen for further investigation at the LANL WT structure. Figure 4.9

shows results for two selected ML scenarios. Being independent from ML, the absolute CP
Exy

i,9 ,

results in exactly the same CP values in the two upper sub-plots. In this case data values are only

arranged differently within the training phase. Values range from about 15 up to 45 Hz as mean

frequencies for the energy interval. The percentiles per cluster indicate a reduction of parameter

variability for most channels and cluster for MLAP2 (second plot from the top). During testing

(lower two plots), some outliers can be found around data instance #10.

Taking a variation of confidence intervals into account to calculate ROC curves, Table 4.6

indicates the performance for parameters CP
Exy

i,9 (Table B.2 for CP
Eyy

i,9 ). Here, the base-line

classification MLMan1 results in a poor performance for both distribution types. MLAP1 to

MLAP4 in contrast, performs better for HTG , reaching values of up to 0.828. For CP
Eyy

i,9 even

higher performance rates of 0.852 are achieved and channels close to the damage location perform

better than those further apart. Hence, the autocorrelated parameter has a better performance

for this structure.

The VAR-based, relative CPR2
showed perfect discrimination between healthy and damaged

states in the benchmark example. In Figure 4.10, MLMan1 and MLAP2 are investigated for these

parameters. As relative CP, values depend on the ML-step. This can be observed in the upper

two plots of Figure 4.10, where the CP takes on different values. Again, clustering through AP

(2nd plot from top) compared to ‘Man1’ (top plot) results in a reduced variability of the CP within

most clusters. While for MLMan1 most parameters during damaged states (grey boxes in the

2nd plot from the bottom) lie with the control limits, MLAP2 leads to an identification of all sets

during the first damage scenario. Most sets within the second damage interval are also classified

correctly. For both ML-types, damage in the last scenario are difficult to detect. Again, control

charts based on the assumption of a normal distribution (dark blue) perform better than those

derived from percentiles (light blue). It is repeated that damaged sets exceed the UCL and not

LCL due to the re-formulation of CPR2
in Equation (2.70).

The SSI-based CP γ is the second relative CP, and is displayed in Figure 4.11. In the upper plot,

for a single cluster, the CP fluctuates during training and CP values during damaged states (right)

lie in the training CP-range. For the four clusters in contrast (2nd plot from top), CP values

clearly differ between clusters, spanning over a larger range than for the reference classification

‘Man1’ with values up to 10. Here, the third cluster has notably higher values than the others,

indicating stronger changes in dynamic behavior for these data instances under similar conditions.

In an industrial application, those states with higher uncertainties might be omitted to improve

damage detection. In the testing phase, CP values around the first two damaged data instance

groups have high values, too. Within the control charts in the lower two plots of Figure 4.11,

MLMan1 results in many FP alarms in the control chart, both for Gaussian (subscript G) and

discrete (subscript D) distributions. Neither parameter curve differs strongly but most values

during the last healthy section lie outside the confidence interval for CP γ
,G , leading to high false
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Figure 4.9: Condition parameter trends and control charts for CP
Eyy

i,9 . Upper two plots show the
absolute parameter trends the lower two plots the control charts for “Manual1” and “AP2” ML types,
respectively. For control charts, hypothesis testing through a discrete distribution (subscript D) and a
Gaussian distribution (subscript G) is analyzed. UCL and LCL located at ±1 for α = 0.46.
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ĈP
R2

,D ĈP
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R2

,G

CL Dmgd

Figure 4.10: Condition parameter trends and control charts for CP R2

. Upper two plots show
the absolute parameter trends, the lower two plots the control charts for “Manual1” and “AP2”,
respectively. For control charts, hypothesis testing through a discrete distribution (subscript D) and a
Gaussian distribution (subscript G) is analyzed. UCL and LCL located at ±1 for α = 0.09.
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positive indication rates. For MLAP2 , the performance is better. It should be noted that the

parameter based on percentiles performs better (light blue). This curve also suffers from a high

FP detection rate during the final healthy states around testing set 120 to 140. If a normal

distribution is assumed, values during the first two damaged sections were close to the control

limit showing a clear ‘gap’ in the chart but do not distinctively exceed the LCL boundary (dark

blue in lowest plot of Figure 4.11). For CP γ
,D the LCL is clearly exceeded. It must be noted that

values exceed the threshold on the LCL which is not covered by theory, where less agreement

with the references results in higher CP values for CP γ .

Even though the absolute CP variation is smaller for CP γ compared to CPR2
, CPR2

results in

a better performance since CP values for damaged sets lie (mostly) out of the range of CP values

in healthy states. CP γ in contrast, results in CP values for damaged sets which lie close to or

even within the range of CP values during healthy states (see second plot in Figure 4.10 and 4.11).

These control charts only display a small selection of possible tests to detect damage. Each

control chart is drawn for a single confidence interval only and the visual inspection or extraction

of false positive and false negative rates is not of general value for performance evaluation. Next,

receiver operating characteristic curves are derived to complete the performance analysis.

4.4.2 Receiver Operating Characteristic Curves

To gain insight into the overall performance of the applied ML-CP-HT combinations this section

utilizes ROCs to display detection rates (1-FN) over FP rates. Namely, ROC curves for the

two relative CPs based on VAR-models and one ROC plot for a hybrid CP based on SSI- and

VAR-residues which is simply a combination of the four CPs within a vector. The relative

parameter is defined by the MSD between the reference vectors and the one of a new data instance

(see Section 2.6.2). To derive the different ROCs, control charts for varying α-values are evaluated

regarding false positive and false negative alarms. Figure 4.12 holds the different ROC curves for

CPR2
and CP M, respectively. In both plots, twelve lines are drawn for the six different ML-types

(see Tab. 4.5) and for two distributions per ML-type. Normal and discrete distribution indicated

by subscripts G and D in the legend. Each ML-type is indicated by a different colour. Marks

indicate different α values, dashed lines belong to the normal distribution assumption solid lines

to a distribution by percentiles. Optimal values with respect to the Youden-index and distance

to the optimum (J and d̄) are indicated for both distribution types and according α-values are

given.

Overall, ROC curves for CP M in the upper plot lie close together, indicating more robust

behavior against different classifications in the ML-step. The ROC for CP M
D (MLMan2), clustered

by wind speed, is worse, even lying below the diagonal. For all ML-types, the ROC based on a

normal distribution (dashed lines, subscript G) lie above the counterpart based on percentiles

(solid lines, subscript D) and hence, closer to the optimum in the upper left corner.

MLMan1 is an exception here: in the range of lower detection rates (<40% on the y-axis)

MLMan1 outperforms the other classifications with very small FP rates. MLAP1 , MLAP2 , and

MLAP3 perform equally well. Depending on the desired maximum FP rate or performance ratio,
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Figure 4.11: Condition parameter trends and control charts for CP γ . Upper two plots show the
absolute parameter trends, the lower two plots the control charts for “Manual1” and “AP2”, respectively.
For control charts, hypothesis testing through a discrete distribution (subscript D) and a Gaussian
distribution (subscript G) is analyzed. UCL and LCL located at ±1 for α = 0.22.



4.4 Application of SHM framework 133

one of these three classifications is suited best. Performance decreases for MLAP4 : the ROC curve

lies closer to the diagonal again. Most of the ROCs range slightly above the 3:1 performance line,

only MLMan1 reaches a 10:1 performance in the lower detection rate range.

The range for different ROC curves for CPR2
is much larger than for CP M (see lower plot in

Figure 4.12). Hence, the dependency of this CP to ML is stronger and ML gains importance.

Accordingly, if this parameter is included, EOCs and ML play an important role. Being least

favorable, MLMan1 and MLMan2 lie on and below the diagonal respectively. Again, the Gaussian

normal distribution leads to better performance than the discrete counterpart from percentiles for

all ML types. The best values for CPR2
lie around the 10:1 performance lines with a detection

rate of 80% and only <8% false alarms for CPR2

G (MLAP2) and CPR2

G (MLAP3). MLAP2 and

MLAP3 result in similar ROC curves with slight advantages for MLAP2 .

Another important aspect which can be investigated by ROCs is the influence of the confidence

interval. Since its width is defined by 1 − α, a small α corresponds to a wide interval. For

CP M points for different α values along the ROCs are distributed equally. Optima, denoted by

red circles in the Figure 4.12 (upper plot for CP M), can be found for α = 1.5% for a discrete

distribution and α = 12% for a normal distribution. For CPR2
, points on the ROC curves start

of with higher detection rates even for small α values. Optimal α values lie at 0.2, 0.9, and 4.0%,

respectively (red circles in lower plot of Figure 4.12). This indicates a better separation of CP

distributions between healthy and damaged states since a wider confidence interval can be chosen.

This goes along with the results from ROCs in Figure 3.28 for the benchmark example.

Hybrid Condition Parameter using MSD As mentioned earlier, different condition parameters can

be combined to form a hybrid parameter. To do so, the CPs values for a single data instance are

stacked into a vector. If necessary, multi-dimensional CPs must be vectorized and/or reduced

previously. The resulting vector is then analyzed by Mahalanobis square distances between a

new data instance and the references of the cluster. The distance measure is then taken as new

CP for evaluation. In the given example, the four relative CPs based on VAR and SSI residues

CPR2
, CP M, CP γ , and CP ε are combined. Figure 4.13 shows the ROC curves for the new,

hybrid CPMSD. In comparison to Figure 4.12 performance is increased, visible through a shift

of most ROC curves to the left. Also, only very few points lie below the diagonal and more lie

above the 3:1 performance line for CPMSD. Maximum detection rates increase to about 90% for

MLAP2 . FP rates are slightly higher compared to the best ROCs from CPR2
. It should be noted

that an optimum is reached for the minimum α investigated (the widest confidence interval with

α = 0.1%) and that, for smaller α-values, performance might increase due to smaller FP rates.

4.4.3 Final Comparison

Due to the usage of areas under receiver operating characteristics curves (AUCs) in the SHM

framework, a normalized comparison between all different realizations, namely ML-CP-HT

combinations, is possible. To do so, Table 4.6 holds the AUCs for all the investigated combinations.

One CP is given per row. The first six columns hold results for discrete distributions used for
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Figure 4.12: ROCs for CP R2

(lower plot) and CP M (upper plot). Classifications are indicated by
different colors, an underlying Gaussian distribution is indicated by dotted, a discrete by solid lines.
Optimal values with respect to the Youden-index and minimal distance to the optimum are marked as
well (J and d̄).



4.4 Application of SHM framework 135

0 20 40 60 80 100
0

20

40

60

80

100Optimum

only H0

1:12:13:110:1

d̄(D,α = 0.1%)
J (D,α = 0.1%)
d̄(G,α = 0.1%)
J (G,α = 0.1%)

False alarm rate in % (H1 at H0)

D
et

ec
ti

on
ra

te
in

%
(H

1
at
H

1
)

CPMSD
,D (MLMan1)

CP MSD
,D (MLMan2)

CP MSD
,D (MLAP1)

CP MSD
,D (MLAP2)

CP MSD
,D (MLAP3)

CP MSD
,D (MLAP4)

CP MSD
,G (MLMan1)

CP MSD
,G (MLMan2)

CP MSD
,G (MLAP1)

CP MSD
,G (MLAP2)

CP MSD
,G (MLAP3)

CP MSD
,G (MLAP4)

Figure 4.13: ROCs for CP MSD. Classifications are indicated by different colors, an underlying
Gaussian distribution is indicated by dotted, a discrete by solid lines. Optimal values with respect to
the Youden index and minimal distance to the optimum are marked as well (J and d̄).

confidence intervals (D), the columns 7 to 12 hold the AUCs for the assumption of a normal

distribution (G). The best AUCs per row are in bold, values above 0.7 are underlined, values

above 0.9 set in boxes. In the last four columns, the optimal point d̄, its corresponding α-value,

the Jouden-index J , and its corresponding α-value are given respectively. Detection rates above

80% and FP rates below 10% are indicated with bold numbers.

Overall, optimal values for the CPs are located between column 7 to 12 for AUCs based on

normal distributions. Only for CP γ , the best performance is achieved under a discrete distribution

assumption (column four, line four from bottom). Based on the extracted AUCs, the accumulated

energy as CP can compete with the relative CPs for the analyzed example. MLAP2 works best

for relative CPs from SSI and VAR while MLAP2 and MLAP3 tend to work better for CP
Eyy

i,9

also, VAR-based parameters tend to work better than SSI-based residues in this case. The

highest performance rates are indicated by channels 1 to 3 and 10 for CP
Eyy

i,9 , giving the ability of

damage localization applied between sensor node 1 and 2 (channels 1, 2 and 3, 4). Values for

the cross-correlated accumulated energy CPs also have high AUCs for the first four channels (see

Table 4.6). MLAP1 results in the best performances. MLMan1 is the least favorable ML setting,

it provides no damage detection ability. This is in agreement with a core idea of this thesis: That

a classification by EOCs aids performance or is even necessary to ensure damage detection. EOC

correlation to absolute CPs, as accumulated energies or modal frequencies, can be used to choose

optimal EOCs for classification as demonstrated in the next Chapter.

The Youden index J and optimal values d̄ result in quite high alpha values, indicating a difficult

separation between healthy and damaged states. High detection rates for d̄ and J always go along
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with fairly high false alarm rates (20-30%, 1st number in 4th-last and 2nd-last column). Both

indicators for optimal operation point result in very similar α-values. As already mentioned, not

every CP will work for all damage scenarios, especially given the difficult boundary conditions in

this example. This underlines the strength of a multi-CP-based SHM framework, where some

parameters indicate damage while others will not.

4.4.4 Variation of Training Instances

So far, the results displayed are based on a single realization of randomly selected training (and

implicitly testing) data instances. To gain an insight into the dependency of performance on the

selection and number of training data instances, these two parameters are varied for the best

performing ML-type MLAP2 . To do so, five different numbers of training sets, from 100 to 300 in

steps of 50, are analyzed in Figure 4.14. If possible, due to the number of available training sets,

25 random selections for training and testing sets are realized each. Otherwise, some random

selections are taken several times. It should be noted that the importance of damage detection,

in contrast to the identification of healthy sets, increases with the number of training sets since

only a limited number of sets for both types is available and only healthy sets can be chosen for

training.

Hence, if more healthy sets are used in the training phase, less healthy sets remain for testing.

Accordingly, the percentage of damaged sets increases in the testing phase, which in turn puts

more weight on damage detection but also penalizes single FP alarms with a high percentage.

With only ten healthy sets in the testing phase, each FP weights 10%, with a single set 100%. If

only damaged states existed in testing, FP rates would always be zero and the AUC is purely

dependent on the detection rate since all supporting points of ROC curves lie on the y-axis.

The different performances are evaluated in terms of AUC values from ROC curves. The 25

results for each training set size are displayed in box-plots in Figure 4.14. Values from 0.5 to 1 are

displayed for all CPs, to guarantee similar scaling. Lower values are not of interest for monitoring

purposes. The median is indicated by a red bar, 25 and 75% percentiles by the blue box, 5 and

95% percentiles by the whiskers, and outliers by red crosses.

CP ε has a large scatter for each training set group size, indicating a strong dependency on

the selection (see 4.14(a)). The parameter has a relatively constant performance for differing

numbers of training sets, values lie around 0.7. In 4.14(b), CP γ shows a strong dependency on

the number of sets and has a large scatter for different selections. Performances are rather low for

the given example with values below 0.8.

CPR2
has a larger scatter for smaller group size during training (see 4.14(c)). For 250 and

300 training instances, the variation is reduced. This results from the fact that a number of 317

healthy sets are available for training, and accordingly the majority of utilized sets for the 25

random selections is similar if many sets are used for training. The parameter has a relatively

constant performance for differing numbers of training sets. And even the highest median for

only 100 sets in training. Values lie around 0.7, for 100 and 200 training sets the 75% percentile

exceeds 0.8.
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CP M has the smallest scatter over different selections with an increase in performance for an

increasing number of training sets, values range around 0.8.

Both CP
Eyy

(1,9) and CP
Eyy

(2,10) have a slight increase in performance if more training sets are used. In

both cases the scatter remains constant with an increase in training sets. CP
Eyy

(2,10) performs slightly

better given the presented database. Overall, CPEyy and CP M have the best performance and the

lowest dependency on the number and selection of training sets. CPMSD in Figure 4.14(g) shows

very good performance, reaching high values with 100 training sets already. An improvement

is visible, with an increasing number of training sets up to 200. For 250 and 300 training sets,

performance drops back to 0.8 most probably being influenced by the decreasing performance of

both SSI-based residues.

4.5 Conclusions

The chapter presents the evaluation of a newly collected database from a small scale wind

turbine, located at the Los Alamos National Laboratories, NM, USA. The structure allowed for an

introduction of a small, reversible damage while displaying complex dynamic behaviour influenced

by environmental and operational conditions. Newly developed wireless sensor nodes, namely

the Martlet node, were utilized to collect bi-axial acceleration data at six levels. Damage was

introduced by replacing a bolt through a spring at the bottom of the structure. The example was

chosen to validate the extraction of modal parameter and damage identification under difficult

circumstances. Hence, the results cannot be understood as a second proof of framework with

perfect performance, e.g. AUCs of 1.

To begin with, data was analyzed by spectrograms. The extraction of modal parameters

followed in a second step. Here the introduced TEMP procedure was successfully applied to the

complete database in an automated manner. Even data instances with insufficient amplification of

measured signals during low wind excitation can be used to identify the first two bending modes.

Modal parameter estimation through TEMP works well with the stated empirical parameters

along with a number of shifts for the block Hankel matrix calculated from nshifts ≈ fs/fmin.

For the evaluation of SHM performance, using the proposed framework, the damage introduced

is very small. Due to the dominant southern wind direction during data collection, the tower was

excited sideways leaning against the sub-structure with almost no leaning against the bolt and

spring. Accordingly, values from SSI and VAR parameters indicate damage but do not change

strongly. In addition, EOC collection was limited and only available at a low frequency. The wind

turbine, in contrast, follows the wind direction and speed very quickly, changing nacelle direction

and rotor speed. Accordingly, wind might have changed direction or there may have been gusts,

which are not displayed in the mean values of wind speed by the met tower close by, which would

change the dynamic characteristics strongly. For future testing, the measurement of EOCs at

higher frequencies is suggested. Especially the rotor speed is critical for harmonic excitation here.

Overall, taking into account the limited EOC availability and data collection through new,

wireless nodes (prototypes), performance rates above 0.8 are quite promising, and show that
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the CPs used are able to detect damage. It was shown that a base-line classification with a

single cluster is insufficient for damage detection purposes, independently from CPs and HT. Best

performances were achieved under the assumption of a normal distribution. In this more complex

example, auto correlated CP
Eyy

(i,9) perform slightly better than CP
Exy

(i,9). A localization is not as

distinct as for the laboratory structure. Relative CP perform equal where CPR2
performs best

with respect to AUC values followed by CP ε.

Again, the initial parameters to set give the VAR based parameter an advantage since those

are easier to handle. For both, SSI and VAR, the calculation rules for initial parameters proved

to work well (see Chapter 3.6). The combination of different CPs to a hybrid CP leads to more

robust damage detection results (smaller α for optimum on ROC) and could even improve absolute

performance to an AUC of 0.908. From training set variation a number of 200 training sets that

should be used in this case results.

Overall, the proposed procedure of SHM-performance evaluation, again, proves to be of great

value for the comparison of many different ML-CP-HT-combinations. The introduced performance

lines in the ROC plots aid a quick inspection of the diagrams. The knowledge gained about

TEMP and ML, CP, and HT settings will subsequently be transferred to the application of modal

analysis and monitoring for an industrial size offshore wind turbine within the next chapter.
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11,9 0.558 0.493 0.695 0.458 0.561 0.559 0.513 0.497 0.765 0.627 0.713 0.67 78/29 0.6 27/11 0.34

CP
Exy

12,9 0.618 0.522 0.652 0.551 0.606 0.613 0.558 0.616 0.731 0.7 0.745 0.712 81/33 0.6 65/34 0.6

CP f1 0.621 0.107 0.623 0.112 0.329 0.435 0.621 0.508 0.624 0.532 0.644 0.61 92/65 0.01 100/67 0.06

CP f2 0.679 0.126 0.679 0.15 0.361 0.446 0.675 0.697 0.675 0.697 0.738 0.686 100/52 0.01 100/52 0.01

CP ε 0.372 0.742 0.575 0.745 0.655 0.654 0.469 0.771 0.513 0.805 0.781 0.668 76/14 0.5 8/4 0.7

CP γ 0.448 0.164 0.336 0.744 0.613 0.645 0.522 0.099 0.346 0.694 0.576 0.617 76/25 0.22 89/93 0.9

CP M 0.711 0.355 0.731 0.77 0.677 0.694 0.697 0.607 0.768 0.791 0.753 0.716 84/24 0.38 65/24 0.32

CPR2
0.404 0.527 0.64 0.766 0.694 0.609 0.428 0.661 0.685 0.851 0.843 0.793 81/13 0.22 27/10 0.24

CPMSD0.788 0.569 0.747 0.903 0.755 0.759 0.65 0.537 0.746 0.908 0.798 0.76 89/14 0.001 81/68 0.11
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Figure 4.14: Area under curve (AUC) values for investigated CPs for varying number of training
sets. Seven CPs tested with selected, optimal parameter settings for different numbers of training
data (100:50:300), 25 random selections were evaluated per set up. CP MSD is based on CP R2

, CP M,
CP γ , and CP ε.
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Having discussed a validation of the SHM framework and investigated an application on a small

wind turbine with artificial damage, this chapter will complete the analysis with the investigation

of an industrial-scale offshore wind turbine. An introduction of the structure and the test field it

is located in, is followed by discussion of the system dynamics under changing environmental and

operational conditions. The question of a proper classification of the different states for modal

parameter prediction will then extend to an application of the proposed SHM framework.

5.1 Structure, Environment, and Data

In general, wind turbines have a rather slender and flexible structure with a high head mass in

the nacelle and blades while the boundary conditions depend strongly on the foundation type.

Large uncertainties in soil parameters, especially under drained conditions, and the aerodynamic

behavior of the rotor still complicate numerical modeling, in particular for dynamic proposes

which are addressed in monitoring tasks. Onshore, most turbines are based on lattice towers or

monopiles on concrete foundations with ground anchors. Some older turbines with smaller nacelle

heights are based on guyed towers. For offshore turbines, a variety of support structures exist, as

displayed in Figure 5.1. While gravity foundations and monopiles are used for near-shore parks

with smaller water depth, jacket foundations are used for deeper seas as well as tripod and tri-pile

solutions. Jackets and tripods must be considered as especially stiff foundation types. Floating

structures, such as tension leg platforms (TLPs), provide solutions for large water depth. Each

support structure type comprises its own characteristics and damage scenarios. Accordingly, local

monitoring tasks will strongly depend on the investigated structure while global approaches can

possibly be applied to all foundation types.

For SHM purposes, three main types of possible damage sources are of particular interest.

Grouted joints, serving as connections to the driven piles for offshore structures, were adapted

from the oil and gas industry. Monopiles and tripiles are connected to the tower above sea level

while jackets and tripods use grouted joints to connect the piles to the support structure right

above the sea bed. Since the loading behavior differs strongly from large oil and gas platforms,

long term behavior of these connections is of high interest. Further, welded connections occur

at many different locations at on- and offshore structures. Due to many welded nodes, jacket

structures play a particularly outstanding role here. Welding seams are considered to be potential

starting points for cracks; fatigue could also be a problem here. Depending on the specific design,

so called hot spots within the structure with maximal strain amplitudes form areas of special

interest, where damage could have potentially more severe consequences. Each steel tower typically

141
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Jacket Suction Bucket TripodMonopile Gravity Tripile

JacketMonopile Hybrid Spar Barge TLP

Figure 5.1: Typical supports structures for on- and offshore wind turbines. Support structures for
onshore installation and floating solutions for deep sea installation in the upper row, structures for
shallow and moderate water depth in the lower row.

consists of multiple sections, connected with a large number of bolts. Concrete towers, so far built

only onshore, also consist of different sections of precast or in-situ concrete. These connections

must be considered as critical points and are of high interest for monitoring approaches.

5.1.1 Adwen AD5-116 in alpha ventus

The test field alpha ventus was installed with a strong focus on research, represented by the RAVE

(research at alpha ventus) initiative. During this pilot project, twelve offshore wind turbines were

installed far away from the coast to test feasibility of design, logistics, installation and operation.

The plants are located in the German Bight at the position [54◦00′ N, 6◦35′ E], about 45 km

north of the Island Borkum (see lower left in Figure 5.2). Twelve turbines are installed, each with

a rated output of 5 MW, among the largest wind energy converters classes on the market so far.

Two different types of turbines and foundations – six REpower 5M turbines on jacket foundations

and six Adwen AD5-116 turbines on so called tripods – form a rectangle of 3 by 4 plants (see

upper left in Figure 5.2). The turbines were erected between 2009 and 2010 in about 30 m water
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depth, exploring a completely new field for constructors and logistics. Energy production of all

twelve converters was reported in April 2010. Two turbines, one of each type, were intensively

equipped with over 1200 sensors, covering acceleration, inclination, and strain along with the

measurement of operational conditions. Conventional sensor types are installed in addition with

up-to-date approaches as optical sensors and prototypes to measure grout displacements. In mid

2010 the 1200 sensors started collecting data which is stored into an on-line database. In addition,

the research platform FINO1, located close to alpha ventus, with a height of 105 m above lowest

astronomical tide (LAT) collects environmental conditions, e.g. wind and temperature sensors

installed on a lattice tower.

The studies presented focus on the tripod-based turbines in alpha ventus, more precisely on

the Adwen AD5-116 plant AV 07 (hereafter AV 07). The right sub-plot in Figure 5.2 provides an

overview of the structure with selected sensor positions. The hub height is 118 m (90 m above

LAT), the 710 t heavy tripod spans 45 m from the sea bed, the nacelle and three-bladed rotor

have a total weight of 349 tons. Along with the different tower parts, a weight of more than

1500 tons rests on the three piles. All forces are transmitted through the grouted joints. These

connections between piles and pile sleeves at sea bed level are realized through injected high

performance concrete. The diameter of the main column is 6 m with a wall thickness of only a few

centimeters. At the indicated sensor locations (Level1 to Level6), two biaxial acceleration sensors

are mounted at the same level on the northern and southern side of the tower (see Figure 5.2). The

different sensor levels are at 26, 61.1, 71.2, 82.25, 96.5 and 110 m above the seabed. Accordingly,

24 channels at six different levels are present for data processing. Each data instance holds the

structure’s responses over ten minutes. With a given sampling rate of 50 Hz, 30.000 data points

per channel and set result over the period of 10 min. In addition, wind speed, relative wind to

nacelle direction, rotor speed, nacelle position, air temperature, air pressure, wind turbulence

intensity, wave heights, and wave period as key EOCs are present for each data instance through

ten minute mean values. These data instances will form the basis for the performed classification,

system identification, and extraction of modal parameters and estimation of condition parameters

in this chapter. The data structure is realized in the same way as the LANL WT example. In

total, data over a period of 17 months was used here, resulting in 19,135 valid ten minute data

instances1.

5.1.2 Loading from Operation and Environment

WTs face highly complex loading scenarios in a harsh environment and, by definition, a WT is

supposed to collect forces, rather than avoid them. In most cases, excitation frequencies up to

10 Hz are relevant for tower, nacelle and blades while for the electrical components, gear, and

generator higher frequencies must be considered in condition monitoring (see 1.2). Gasch and

Twele [68] define four major groups of excitation:

1 It should be noted that due to construction and maintenance data instances are missing. Further, data instances
were not used when one key EOC, from the plant or FINO1, was missing, or acceleration data was erroneous.
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Figure 5.2: Location of test field alpha ventus (lower left) and park layout (upper left). Tripod
structure with indicated sensor locations, measurement directions for each level and footprint of tripod
(right plot). Grouted joints between piles and sleeves are marked with dashed red rectangles.

• Stationary forces from gravity, centrifugal forces, mean thrust, and wind.

• Periodic forces from mass imbalance, aerodynamic forces (wind profile, gusts), tower dam,

sloped incoming flow, blade-tower passages.

• Stochastic forces from aerodynamic and hydrodynamic forces, and earthquakes.

• Transient forces from friction, braking, and earthquakes.

From the above mentioned excitation groups, periodic excitation from rotor blades plays an

significant role for SHM. The revolving frequency is dubbed ‘1P ’, its nth higher harmonic ‘nP ’.

1P excitation mainly results from imbalances while 3P excitation results from the tower-blade

passage and gusts. While imbalances can be influenced and reduced, the rotor harmonics will

have to be dealt with. Higher harmonics of the base excitation frequencies, e.g. 1P and 3P , are

therefore problematic as structural modes located at these frequencies can also be easily excited

by these base frequencies. This happens not with each oscillation of the mode but with every nth

oscillation, where one blade passes the tower, it introduces new energy to the mode.

During the design process, the rated wind- and rotor speed are defined and excitation frequencies

are known. For the AV 07, the cut-in wind speed lies at about 3 m/s in 10 min average where
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the turbine starts with 5 revolutions per minute (RPM) and reaches the rated rotor speed of

15 RPM at 10 m/s wind speed (see e.g. Figure 5.7 top, where 10 min mean values of wind

speed are plotted over the rotor speed.). From that point on, the rotor speed is kept constant

up to a wind speed of 25 m/s through pitch-angle variation of the blades. Accordingly, 15 RPM

= 15/60 [1/s] = 0.25 [Hz] = 1P and 3P, 6P,..., nP lie at 0.75, 1.5,..., n ∗ 0.25 Hz, respectively.

Guidelines and codes usually call for structural modes not to be close to rotor excitation, e.g. ±5%

around the 1 and 3P -frequencies (see [70]). It will be seen subsequently that higher harmonics

also play an important role in the operation of an (O)WT.

In addition to the rotor speed as a major operational effect, different environmental quantities

influence the behavior of OWTs. Table 5.1 holds value ranges for selected EOCs measured at the

AV 07 site.

Table 5.1: Selected EOCs and their boundaries for AV 071.
Rotor
spd

Nacelle
pos

Wind
dir

Wind
spd

Turbulence
intensity

Temp. Pressure Wave
freq

Wave
Hs

rot/min Deg./◦ Deg./◦ m/s - ◦C hPa Hz m
Min 0 0 0 0.196 0.0108 -4.04 841.6 0.03 0.02
Max 15 60 167.1 25.5 1.1 28.1 1039 0.59 7.25

Further, distribution for wind speed, wind direction, wave frequency and turbulence intensity are

given in Figure 5.3. For the wind speed occurrence (Figure 5.3(a), top left), a Weibull distribution

is fitted to the measured data. Clearly a mean wind speed around 8 m/s is visible. Main wind

direction for the test field is South-West to South (Figure 5.3(a), top right). Here, maximum

wind speeds above 20 m/s result from a long fetch over the English Channel. Wind from North

also results in a small portion of strong wind since the German Bight is open to the North and

allows the wind to build up over long distances. Most of the moderate wind up to 10 m/s occurs

from South-Eastern directions, blowing from the mainland towards alpha ventus.

The turbulence intensity (I), defined as standard deviation of wind speed divided by the mean,

both over 10 min, is an important factor for numerical simulations and turbine design. Figure 5.3b

(left) displays measured turbulence intensities in a Box-plot along with different recommendations

from codes. Here, the assumption of a constant value of 0.12, made by the Germanischer Lloyd

(P.111 in [70]), does not capture peak values of I for wind speeds below 15 m/s (red crosses for

outliers in Box-plot). In the IEC 61400-1 [90], I is defined with repect to a reference intensity

Iref . The given examples correspond to “higher” and “lower” turbulence characteristics. The

values calculated for Iref = 0.12 lie in good agreement with the 95%-percentiles of AV 07 and thus

build a good upper limit estimation.

1 It should be noted that for classification nacelle positions between 0 and 360◦ are not suitable since 0 and 360
define the same point. Consequently, the nacelle position is projected to a range of 0 to 60◦ exploiting symmetry.
0◦ equals a nacelle tip position above one tripod leg, 60◦ exactly between two tripod legs. Further, the wind
direction is measured in relation to the nacelle position and can take on values from -180 to 180◦. Here, only
the absolute value is used.
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Figure 5.3: Wind speed, -direction, turbulence intensity and wave frequency at AV 07 site.

Finally, wave characteristics and tidal levels are considered to be able to interfere with the

dynamics of offshore wind turbines. In alpha ventus, tidal levels underlie only a minor change

with less than 1 m and hence do not influence the dynamics through e.g. added water mass. A

distribution of mean wave frequencies is given in Figure 5.3b (right). Density functions for both,

Pierson-Moskowitz (P-M) and JONSWAP (JS), are fitted as well. P-M gives a better fit here. It

must be noted that these values always represent average values over time and, more importantly,

over a three dimensional wave pattern. Therefore the wave frequency derived from mean periods

must not be interpreted as strictly harmonic excitation as present from the rotor. Nevertheless,

the measurements are in agreement with theoretical references such as in [87]. Here, a wide wave
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spectrum is provided, ranging from astronomical tides with frequencies of 10−5 to 10−4 Hz over

seiches, tsunamis, infra-gravity waves to wind generated waves between 10−1 to 10−0 Hz. Here,

the “wind sea” has maximum energy at about 0.25 Hz. For the specific case at AV 07 and the

analyzed database, most data instances have a wave frequency below 0.2 Hz, well below the first

modal frequency at 0.33 Hz.

The different stochastic, transient, and harmonic forces pose a challenge for operational modal

analysis since the white noise assumption for system excitation is violated. Rotor harmonics play

the main role here, wave excitation participates less, since the forces are acting at fairly low levels,

especially for tripods where the lower part of the structure is very stiff. Temperature fluctuations

on the sea are less distinct than for onshore WT with a continental climate. Still, a range of 30 ◦C

is monitored and could alter material properties. The following section will investigate principal,

global modes of the OWT. The identification of modes is followed by an investigation of EOC

influence’s on the structures dynamics.

5.2 Modal Analysis and Structural Dynamics

Automated modal analysis for all 19,135 10 min data instances as a core point of interest to

gain knowledge of the system behavior is performed through the combination of SSI-Data and

TEMP. For SSI-Data, 80 block shifts are used to derive model orders from 100 to 300 as initial

input to TEMP. Further, criteria for TEMP are listed in Table 5.21. For solutions from a single

Table 5.2: TEMP parameter for system identification at AV 071.

nshifts Norder φcrit fcrit ζcrit MACcrit P̂crit

80 100 : 2 : 300 32.5◦ 3% 50% 0.95 50

data instance, TEMP takes about 4 seconds to run. It is advisable to store raw SSI results, to

be capable of running TEMP with different settings subsequently without recalculating these

results since this step takes the majority of time. A discussion of the TEMP process and mean

distributions for triangle object attributes are presented in [77]. The following subsection will

introduce the principal modes of the analyzed support structure, followed by an analysis of

variations in dynamics, leading to the application of the SHM framework in section 5.3.

1 Again, the number of shifts results from the estimated lowest mode at 0.3 Hz which has a period of 3 s and
hence 166 samples at fs = 50 Hz. To cover 70% of the samples 117 shifts are necessary. Since the number of
shifts is a major factor for computational costs and many data instances had to be analyzed, the feasibility of a
smaller number was tested and 80 was chosen for nshifts. Due to the 24 channels, a state space model order of
48 results. This order should be well overestimated with chosen orders of 100 to 300. Values for MPD, frequency,
damping, and MAC are again empirical values recommended for large-scale structures. An overview for TEMP
settings for all investigated structures is given in Table 6.1. It is suggested to test the TEMP performance on a
small number of data instances before being applied to the whole data base.
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5.2.1 Principal Modes in Standstill

An overview of the TEMP results for the complete database is presented in Figure 5.4. The

middle plot on the bottom contains solutions from TEMP by rotor speed over frequency. Left

and above, occurrences are given for solutions over rotor speed and frequency, respectively. In

analogy to a (transposed) Campbell diagram, red lines in the center plot indicate rotor harmonics

up to 99P in steps of 3P . A close-up of 0-2 Hz is given in the upper right sub-plot. It can be seen

how modal parameters are identified at some of the red lines, especially when close to a global

bending mode. This indicates interaction and a transmission of excitation frequencies through

the system identification due to colored excitation. Nevertheless, the upper bar plot reveals that

distinct peaks result at the location of modal frequencies, which are identified more frequently.

The right plot in Figure 5.4 holds solutions from TEMP over data instance numbers. Modal

object-paths are indicated by colored lines. It should be noted that due to the large number of

solutions (>106), TEMP was not used to extract the modes throughout the database. Instead,

modes are tracked by frequency, damping and MAC within frequency bands. It is important to

include the mode shape, since e.g. the two first bending modes, fore-aft (FA) and side-side (SS),

lie very close together and the third bending modes in FA- and SS-direction interfere as well.

Mode shapes for selected modes are displayed as side views in the principal coordinate system,

defined by rotor-axis and rotor-plane, in Figure 5.5 and 5.6. All modes are extracted under

standstill and moderate wind speed. To derive mode shapes in the principal axis, extracted

mode shapes had to be rotated by the mean rotor position of 10 min data instances. Another

approach could be taken here with a projection (rotation) of the sensor signals for every orthogonal

measurement sensor pair. For both approaches, it must be kept in mind that the nacelle position

represents a mean value over 10 minutes. Three-dimensional views on the mode shapes, including

the indication of the nacelle position are given in Figure C.2. In Figure 5.5 and 5.6, the first

three global bending modes in each direction are displayed along with the first two torsional

modes. For each mode, FA- and SS-views are displayed. The green and blue lines represent

the northern and southern sensor locations, respectively. For global bending modes, these lines

are in congruence (cf. 5.5(a) to 5.5(d), 5.6(a), and 5.6(b)). Torsional modes, in contrast, show

anti-cyclical patterns between sensors located on a similar level (cf. 5.6(c), and 5.6(d)). It should

be noted that for a clean torsional movement, theoretically only the tangential sensor location

should indicate amplitudes (x-z-plane in Figure C.2(j) and Figure C.2(k)). In this case, also the

orthogonal directions show amplitudes possibly due to bending and/or deformation present in the

modes.

For both first bending modes, a clear distinction in FA and SS direction is possible. Although,

the FA-1 shows some participation in the SS-direction for the chosen data instance. SS-1 shows

almost exclusive movement in the rotor plane after rotation. Both second bending modes (FA-2,

SS-2) clearly move in one plane each. The same accounts for FA-3 and SS-3 (Figure 5.6(a)

and 5.6(b)) which show a very similar shape. The inclusion of blade movements for an derivation

of rotor mode shapes could aid a distinction here. The two torsional modes in 5.6c and 5.6d

show a different pattern. Here, sensors located on the same level move in opposing directions,
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Figure 5.4: Overview of automatically identified modal frequencies for all 19,135 data instances using
TEMP method (bottom middle) along with occurrence of frequencies (left) and number of solutions
per data instance (middle top). Modal objects over the complete database indicated by different colors
(bottom right). The upper right plots provides additionally a standard Campbell-Diagram up to 2 Hz.

indicating the torsional movement of the tower. T-1 shows different patterns in both planes.

Mode shapes from each side (green and blue line) show no zero-crossing while for T-2 a single

crossing can clearly be seen. It is noted that another mode with torsional tendencies was detected

at a lower frequency of 1.19 Hz (T-0, see Figure C.1). FA-2, SS-2, and T-0 with less accuracy

than the above mentioned and, for the bending modes, with a possible source in blade modes or

interaction. Accordingly modes FA-1, SS-1, FA-3, SS-3, T-1, and T-2 are used subsequently for

an analysis in different operational states.

It was observed that the extraction of the SS-1 mode was corrupted by the 3P harmonic,

when passing its frequency band during run up. This mode is also more difficult to extract

under operation and was less frequently identified by TEMP. Frequencies for identified modes

for a data instance in standstill are given in the upper section of Table 5.3. The lower section

contains frequency and damping ranges during operation. Results are taken from the analysis of

different manually defined clusters. Clusters where the interference of mode and rotor harmonics

were critical have been left out. In particular modes FA-1, FA-2, SS-3, and FA-3 show distinct

frequency changes over 5%. Most probably as a result from changes of the rotor’s mass of inertia

due to rotation. For all modes, damping values have a range of about one order of magnitude

between different states. Hence, the upper section of Table 5.3 does not hold damping values

since values for a single data instance have very limited significance. Insights into the changing
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Figure 5.5: Three-dimensional, global mode shapes of offshore wind energy converter below 2.0 Hz
including projections in global xz- and yz-plane. Rotated coordinate system indicates nacelle position,
blue and turquoise the southern and northern sensors within the tower, respectively.

modal characteristics will be discussed in the next sub-section.

5.2.2 Changes of Structural Dynamics under EOC variation

Table 5.3 already indicated significant changes in modal properties for the offshore wind turbine

AV 07. These changes are of high interest for operators and designers since resonance phenomena

could occur and damping estimates have a distinct influence on the design life-time. Before taking

a detailed look at the dynamics of the first global modes, different operational states have to

be defined. Figure 5.7(a) displays the well-known dependency between wind speed and rotor

speed of the investigated wind turbine. Each dot represents a 10 min data instance. With slight

alterations, it is applicable to most industrial scale turbines: From a certain wind speed on, the

rotor picks up speed, here at about 5 RPM. With an increase in wind speed the rotor speed

increases linearly, depending on the turbine control. At a certain (rated) wind speed, the rated

rotor speed is reached, 15 RPM at about 11 m/s for the AV 07. Due to pitch control of the blades,
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Figure 5.6: Three-dimensional, global mode shapes of offshore wind energy converter between 2 and
7.5 Hz including projections in global xz- and yz-plane. Rotated coordinate system indicates nacelle
position, blue and turquoise the southern and northern sensors within the tower, respectively.

an increase in wind speed does not result in a higher rotor speed, and it is kept constant up to a

cut-out wind speed of about 25 m/s. When the rotor cuts-out, e.g. for high wind speeds, the

rotor speed is reduced again, resulting in a separate point cloud at the right hand side with about

2 RPM. Another cluster of data instances can be seen at 0 RPM over wind speed fro 0 to 16 m/s

where the turbine is not in operation.

In [76] clustering of data instances by the main operational states of rotor and wind speed was

introduced for an analysis of modal parameters: Main states are standstill, run-up, rated-speed,

and pitch-controlled operation. Here, in each of the four clusters a linear regression is used to

model the modal frequencies in dependency to further EOCs. Weijtjens et al. [206, 207] use

similar clustering for operational states and apply linear and non-linear regression for frequencies

of the FA-1 to 3 and SS-1 to 3 modes for a monopile OWT foundation, based on additional

EOCs within each cluster. They define eight clusters by rotor speed and pitch angle. Pitch

controlled operation above rated wind speed remains a single cluster here. The stiffening effect
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four sensors on the level.

Figure 5.7: Main operational states and accumulated energies in such for AV 07
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Table 5.3: Results for TEMP extraction of modal parameters for AV 07.

Mode2 FA-1 SS-1 FA-2 SS-2 SS-3 FA-3 T-1 T-2

Single data instance in standstill used in Figure 5.5 and 5.6

Frequency [Hz] 0.33 0.333 1.37 1.61 2.17 2.49 7.29 7.44

Operational variation3

Frequency [Hz] 0.32-
0.34

0.33-
0.334

1.34-
1.38

1.43-
1.61

2.15-
2.50

2.17-
2.50

7.26-
7.35

7.41-
7.50

∆f [%] 5.4 1.0 3.0 12.6 16.1 15.1 1.2 1.2

Damping [%] 0.3-4.2 0.2-1.3 1.5-4.0 0.5-6.0 0.4-2.7 0.8-6.2 0.3-2.2 0.3-2.2

of the J-tube, a structural component to guide and protect the power-cable, is revealed through

data normalization (Weijtjens et al. [207]). Further, a raise in frequencies for the 2nd and 3rd FA

and SS modes is detected during a second period of monitoring one year after the initial data was

collected. In [206], damping ratios and frequencies are also investigated for the above mentioned

operational states. The FA modes especially show a significant dependency on the rotor speed,

as already theoretically indicated by Salzmann and Van der Tempel [167] and Valamanesh and

Myers [195].

For the study presented, the classification of [76] and [206] is improved through division of

clusters, as displayed in Figure 5.7(a): In total, 17 clusters1 are defined for standstill (4 clusters,

#1 to 4), run up (5 clusters, #5 to 9), rated speed (1 cluster, #10), pitch-controlled operation (6

clusters, #11 to 16), and cut-out (1 cluster, #17). Both, run up and pitch-controlled operation

are split into several groups in comparison to the before mentioned references, respectively. Large

variations in damping under differing pitch-angles (state 7 in [206]) are particularly reduced here.

In [76], strong dependencies of the first modal frequency on rotor speed and wind speed exist. All

clusters are defined by wind speed and rotor speed only, these two parameters also allow for a

separation of different acceleration amplitudes as shown subsequently. Boundaries are given in

Table 5.4. This classification will also be used as a classification ‘Manual2’ for the subsequent

SHM analysis.

Before discussing frequency and damping variations between states for single modes, a general

view is taken over the WT’s dynamics. An important question for the dynamic analysis is:

Which mode contributes most to the system’s dynamic response? Using a conventional frequency

spectrum, it could be difficult to tell quantitatively which modes contribute to the response most.

To overcome this difficulty, accumulated energies are investigated instead. Figure 5.7(b) therefore

1 The notation cluster and state will be used ambivalent here.
2 FA: fore-aft in rotor axis-direction; SS: side-side in rotor plane direction; T: torsional around vertical z-axis.
3 From min. lower quartile (25%-percentile) to max. upper quartile (75%-percentile) in Figure 5.9 and C.3,

respectively.
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Table 5.4: State boundaries for classification ‘Man1’ by wind- and rotor speed for AV 07.

State # 1 2 3 4 5 6 7 8 9

Rotor
speed1

Min
Max

−0.30
−0.01

−0.30
−0.01

−0.30
−0.01

−0.01
0.50

5.30
6.30

6.30
8.35

8.35
10.4

10.40
12.45

12.45
14.50

Wind
speed

Min
Max

0.0
5.0

5.0
10.0

10.0
18.0

0.0
5.0

2.0
7.0

4.0
7.0

5.0
9.0

6.0
10.0

7.0
11.5

State # 10 11 12 13 14 15 16 17

Rotor
speed

Min
Max

14.5
15.0

14.7
15.0

14.7
15.0

14.7
15.0

14.7
15.0

14.7
15.0

14.7
15

1.8
2.8

Wind
speed

Min
Max

8.0
12.0

12.0
14.0

14.0
16.0

16.0
18.0

18.0
20.0

20.0
22.0

22.0
26.0

19.5
27.0

displays accumulated energies between 0 and 10 Hz, averaged for all four sensors at measurement

level 5 (see 5.1), for the 17 different states in 5.7(a). 100 randomly chosen data instances are

averaged per state. The sensor level was chosen since this position has high amplitudes in the

three lowest mode shapes (cf. 5.5(a) to 5.5(d)). It was also observed that the majority of energy

(&99%), between the possible 0 and 25 Hz boundaries, is present between 0 and 10 Hz. In this

plot, a steep gradient indicates large energy content at a frequency band.

The different states can now be split by their dynamic behavior, e.g. energy distribution

between 0 and 10 Hz (accumulated energy). One group with similar behavior is formed of states 1

to 4 and 17. Here, the first FA and SS mode at 0.33 Hz are clearly dominant. In state 5 (pink) and

6 (red) energy shifts to the third bending mode and, for state 5, also the sixth mode above 9 Hz.

This trend continues for state 7 (orange) where roughly similar amounts of energy are present in

the first and third bending modes. States 8 to 16, the middle of run-up to end of pitch-controlled

operation, form a second group with similar energy distribution: All have dominant energy jumps

at the third bending modes above 2 Hz. State 9, right before rated speed, also shows energy in

higher frequency modes at 7.5 and 9.5 Hz.

These general shifts in energy distribution between states are most probably caused by rotor

excitation frequencies: At rated speed 9P lies at 2.25 Hz right between the two modes FA-3 and

SS-3. Also, the 30P harmonic lies at 7.5 Hz at rated speed, right between T-1 and T-2. The

33P harmonic at 8.25 Hz lies close to the FA-4 bending mode. All of these harmonics introduce

energy close to global bending modes. These general observations indicate the importance of

taking higher rotor harmonics into account. Nevertheless, resonance phenomena are not known

for the plant.

If these phenomena are investigated by standard deviation of acceleration signals on different

1 Due to aliasing effects of the sensor for rotor speed rotor speed values between -0.03 and -0.015 indicate a parked
position here.
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Figure 5.8: Median for the standard deviation of the investigated acceleration sensors on six different
levels at AV 07 for all 17 system states according to Figure 5.7(a). Values for all four sensors on each
measurement level are averaged per data instance and subsequently for all sets within the cluster.

levels, a shift in amplitudes between measurement levels over different states can be revealed. Of

course, the signal’s standard deviation comprises all activated modes simultaneously and is used

as measure of energy content in the signal. To illustrate this aspect, Figure 5.8 holds the median

for the standard deviation of the investigated acceleration sensors on six different levels for all 17

system states. Within each state, all available data instances were used and median values for all

four sensors on each level were averaged per data instance. The left plot in linear scale shows

a general increase in acceleration levels: In standstill (state 1 to 3) acceleration levels increase

with an increase in wind speed, level four with lower wind speeds has a reduced acceleration level.

From state 5 to 16, acceleration levels increase significantly as expected. In cut-out (state 17) the

amplitudes are reduced again.

The right hand plot in logarithmic scale reveals an insight into the acceleration amplitude

ratios between the different measurement levels. Having in mind the three first mode shapes in

both directions, the acceleration levels reveal distinct similarities: for states 1 to 4 acceleration

amplitudes increase from level 2 to level 6 (indicated by flag ‘1.Mode’). Only accelerations at

level 1 are not in the right order, probably due to additional excitation through waves at the sea

level. Between states four and eight, a transition takes place where the acceleration amplitude on

level 6 decreases. A second clear pattern results between states 8 and 16: Acceleration at levels 2

and 6 as well as at 3, 4, and 5 have similar amplitudes corresponding to the third mode shape.

For state 17 the order switches back to the first mode. This examination confirms the conclusion

drawn from Figure 5.7(b) on a global level: A switch in dynamic behavior from the first bending

mode in standstill to the third bending mode being dominant in the acceleration signals during

operation.

The conclusion on differing dominant modes leads to the question on how these modes can be

characterized under changing EOCs. Before evaluating the data, a short reference to codes and

present literature on the topic is stated.

In the IEC-61400-1 [90] structural damping of 1% critical damping and no aerodynamic damping

are defined. The American Wind Energy Association (AWEA) and American Society of Civil
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Engineers (ASCE) differentiate in their report damping in non-operational and operational states

and recommend an assumption of 1% and 5%, respectively.

Valamanesh and Myers [195] use the software package FAST [135] to simulate FA and SS

damping values for the 1.5 MW base-line turbine, developed by NREL [120]. Both, a flexible and

rigid rotor are considered. Aerodynamic damping for the FA-1 mode increases linearly to 0.5%

for standstill and takes on values between 4 and 5% for operational states.

Salzmann and Van der Tempel [167] compare different theoretical methods for damping estima-

tion with numerical simulations for four wind turbines (Vestas V66, NEG Micon NM92, Vestas

V90, 5.5 MW desktop design). For all scenarios, a linear increase of aerodynamic damping up to

the rated wind speed results. Values range from 3.5 to 7%, depending on the WT. Above the

rated wind speed, damping values drop by 2%, for two cases damping increases for higher wind

speeds. In [170] damping ratios of FA-1 and SS-1 modes for a Vestas V90 3 MW OWT on a

monopile foundation are extracted from measurements during an over-speed stop (comparable

to the cut-out state 17). 1.05% in FA and 1.27% in SS-direction result from modal analysis,

numerical simulations lead to values of 1.05% for both directions.

Damgaard et al. [42] analyze damping values of four different monopile-based wind turbines in

different wind parks. Results for FA-1 damping values range from 2.34% to 2.59% in median and

1.43 to 1.75% for 5%-percentiles. Additionally a decrease of the modal frequency by 3 to 6% is

linked to a rise in acceleration amplitudes. In the presented study, states 1 to 16 also represent

an increase in acceleration (see Figure 5.8).

According to the presented references, modal damping and frequency are assumed to change

from standstill to operation. To investigate the behaviour of the AV 07, Figure 5.9 displays box-

plots of frequency and damping over the different operational states. States with few identified

modes or rotor interaction were left out here.

In Figure 5.9(a), the FA-1 frequency increases from standstill (states 1-3) to run up (states 5-7)

before constantly decreasing for higher wind speeds and higher acceleration amplitudes (states 7

to 15). In the cut-out state the highest frequency values are extracted, resulting in a total range

of 5.4% similar to what was reported in [42]. The frequency increase results from changes in the

translational mass of inertia and the amplitude of the structure’s movement. In a second phase,

from state 10 to 15, the pitch of the rotor blades leads to a softening effect. A new observation is

the increase in frequency for the cut-out state 17, where higher acceleration amplitudes are also

present (cf. Figure 5.8).

Damping values display interesting behavior as well (see Figure 5.9(a), right). During states 1

to 3, damping increases linearly from 0.5 to 1.5%. The first states of the run up states, 4 to 6,

show damping values below 1% which increase to 2% at state 10 and further, with a small gap at

states 11 and 12, to 3% in state 15. The cut-out results in a decrease back to about 1.5% due

to a lack of aerodynamic damping and as reported in literature. It is concluded that non-linear

damping effects from larger dynamic amplitudes and aerodynamic damping add 1.5% critical

damping which corresponds to 100% of the damping under standstill and low wind.

For mode SS-1 states 1 to 4, 11, and 17 were considered. In all other states interaction with

rotor harmonics was present. Damping values stay at 0.3% below the damping of the FA mode
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(a) Frequency and damping distributions for FA-1 at f = 0.33 Hz
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(b) Frequency and damping distributions for SS-1 at f = 0.333 Hz
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(c) Frequency and damping distributions for FA-3 at f = 2.17 Hz
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(d) Frequency and damping distributions for SS-3 at f = 2.49 Hz

Figure 5.9: EOC influences on first bending mode of AV07 offshore wind energy converter below
2.5 Hz. Boxplots show mean (red line), 25% and 50% percentiles (blue box), 5% and 95% percentiles
(whiskers), and outliers (red crosses, outside µ± 2.7σ)
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as expected. In state 11 and 17 damping jumps to 2 and 1%, respectively. Again aerodynamic

damping and non-linear effects add substantially to the damping values. The modal frequency

drops slightly in state 11 and 17. In general, damping values lie below theoretical values and other

observations on monopiles. One reason could be a smaller activation of soil damping, compared

to monopiles, since amplitudes at mud line level are smaller for tripod and jacket foundations due

to their stiff structure.

The third bending modes SS-3 and FA-3 display a very interesting behavior as already indicated

by large frequency variations in Table 5.3. Compared to each other, Figure 5.9(c) and 5.9(d)

reveal a commutation of frequencies between standstill and run-up. In contrast to [206], the FA

mode has a lower frequency during standstill than the SS mode. For these modes, the rotational

mass of inertia and gyroscopic forces are crucial since the mode shapes have no large amplitudes

at the nacelle but distinct rotation.

Damping values of FA-3 lie at about 2% for states 2 to 6 and decrease to 0.7% at state 8.

SS-3 shows an increase of damping values up to state 7 before passing a die at state 12 and

increasing again up to state 16. Nevertheless, FA-3 remains higher damped during states with

rotor movement. It must be noted that especially for FA-3 and SS-3 the 9P and 12P harmonics

pass the frequency bands of interest during states 7 to 9 and could potentially alter damping

results. For these two modes, aerodynamic damping is not adding to the overall extracted damping

values since no significant deflection of the rotor is caused in these modes. While the FA-3 mode

recovers 2% damping in operation, the SS-3 mode’s damping is cut into half which makes it a

critical mode for fatigue. The low damping can also explain the dominant energy in this mode

under operation as depicted in Figure 5.7(b).

Similar plots for frequencies SS-2, FA-2, T-1 , and T-2 can be found in Figure C.3. FA-2

shows stronger frequency and damping differences between standstill (state 1 to 3) and operation,

damping values drop significantly below 1%. Again rotor interaction must be taken into account,

these could cause low damping estimates. Frequencies for T-1 and T-2 increase during state 1 to

3, decrease up to state 10 and stay relatively constant for higher states. Damping values range

around 1% critical damping. A distinct change in damping from state 9 to 10 can be seen. Here,

SS-3 and T-2 drop and T-1 increases.

Recalling Figure 5.7 and 5.8, three main types of behavior occur during operation: a) the first

bending mode is dominant in states 1 to 4 and 17, b) a transition period exists from state 5

to 7, and c) the third bending mode is dominating in states 8 to 16. Nevertheless, the division

into several sub states for standstill, run-up, and pitch-controlled operation in comparison to [76]

and [206] give further valuable insight into the dynamic behavior as displayed in Figure 5.9. The

discussed changes in dynamic characteristics due to different operational conditions clearly show

the necessity of a differentiation between these states for monitoring purposes, e.g. through

machine learning. Also, the question of a proper separation between states arises here. The

following section will outline the application of long-term monitoring to the AV 07 with a focus

on different ML realizations.



5.3 Application of SHM-Framewokr 159

5.3 Application of SHM-Framewokr

After significant influences of EOCs on the dynamic behavior of the wind turbine have been

shown in the last section, the SHM framework is utilized to gain further insight. The goal for its

application within this section is twofold: The desire is to use the SHM framework to evaluate

the influence of machine learning (ML) on the distribution of condition parameters (CP) without

application of hypothesis testing (HT). The other to utilize abnormal states for a first condition

identification step, using ML, CP, and HT, to see how beneficial the proposed line of action is for

identifying deviations in the structural behavior.

To achieve these goals, the same database as for modal analysis and structural dynamics in

Section 5.2 is used. Table 5.5 sums up the different settings for the SHM steps1. To decrease

computational costs for parameter studies, the data instances are reduced to 12 channels and

4096 samples each. Two orthogonal channels from one sensor are selected on each level, for level 1

to 3 sensors from the southern side for levels 4 to 6 sensors from the northern side, respectively.

A switch between north and south is included to capture torsional movements of the tower.

Table 5.5: Settings for SHM framework at AV 07

Number of channels: 12 (@ 50 Hz) Data sets in training: 1000
Total number of data sets: 19135 Data sets in testing: 1000
Number of ML types: 35 Maximum nuber of EOCs: 8
ML Names: ’Man1’ - ’Man3’ ’AP1’ -’AP32’

Settings for condition parameter(s):
CP fi : Shifs: 80 Model orders: 100 to 300

φcrit = 32.5 fcrit = 3 ζcrit = 50 MACcrit = 0.95 P̂crit = 50
CP

Eyy

i,j : Number of energy bins = 10
CP ε: Shifts = 10 Non-sign. col. = 24
CP M/CPR2

: AR-Model Order = 25
CP γ : Shifts = 10 Sign. col. = 24 Blocks = 150

Analyzed distribution types: Discrete, Gaussian
α-values for control chart figures: 0.01
α-values for hypothesis testing: [0.1:0.1:2, 2:1:20, 20:2:40, 40:10:90]%

1 After the inspection of PSDs from different data instances and channels a lower frequency of interest of
fmin = 0.3 Hz was determined. Shifts was chosen to 80 indicating a lower frequency of interest of 0.6 Hz. It
was noted that with this number of shifts and model orders between 100 and 300, modes down to 0.3 Hz could
be identified in a robust manner. This is assumed to correspond to the dominance of the primary bending
modes, which are picked up by the numerical model even if low numbers of shifts are used. The criteria
fcrit, ζcrit, and MACcrit are empirical. The MPD criterion φcrit was set to a high value of 32.5 due to the in
field conditions. P̂crit should be chosen to one half to a fifth of the given model orders, 50 in this case. Selection
of the different CP input variables goes along the introduced rules of thumb. The lowest damage sensitice
frequency is set to 5 Hz. nshift = fs/fmin = 50/5 = 10 is taken into account for CP ε, nis is chosen to 24. For
CP γ , nshift = 10 = fs/fmin and nsig = 24 being equal to two times the number of sensors. For the VAR-based
CPs, the model order was chosen on the safe side with 25 > fs/fmin = 10.
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For training and testing 1000 data instances are used each. A distribution over wind and rotor

speed of the included sets can be seen in Figure 5.10: Within the left plot all data instances are

plotted, normal states correspond to data instances which lie in the clusters previously defined for

examination of structural dynamics in Figure 5.7a. This classification is dubbed ‘Manual2’. All

data instances outside these clusters are assumed to be deviant in their dynamic behaviour.

It is emphasized that this definition was chosen due to the lack of actual structural damage.

Hence, data instances marked in blue still belong to an intact and healthy structure. Deviation

is only defined by abnormal EOC flags in terms of wind speed and rotor speed or controller

deviations. These might result from the turbine being in a transition phase between states since

EOC values represent 10 min mean values and would be difficult to identify by e.g. regression

analysis between rotor speed and wind speed since the dependency between these two EOCs is

not unique (a wind speed between 10 and 15 m/s can result in 0 or 15 RPM rotor speed). The

right plot in Figure 5.10 shows both training and testing data instances (1000 each). It can be

seen that training sets cover the whole range of normal states while testing sets also include the

deviant states defined in the left plot of Figure 5.10.

In total, 35 different instances of ML (from reference, manual and AP) are analyzed with a

maximum of 8 EOCs as input variables. As indicated in Table 5.5, the first three are manual

classifications (’Man1’ - ‘Man3’) followed by 32 classifications through affinity propagation (AP)

named ‘AP1’ to ‘AP32’, differing in EOCs and preferences. Further details on ML will be given

in the next sub-section. In the next block of Table 5.5, settings for the different CPs are given.

CP fi exploits the same values as for modal parameter investigation in Section 5.2. Accumulated

energies are again calculated and mean frequencies for ten energy intervals (j) extracted to serve

as CPs, namely CP
Eyy

i,j and CP
Exy

i,j . For CP M and CPR2
, both VAR-based relative CPs, a model

order of p = 25 is chosen. With a sampling rate of 50 Hz, this results in a p/fs =0.5 s long time

span, covered by AR-coefficients and accordingly 2 Hz as lowest frequency of interest, right below

the second bending modes FA-2 and SS-2. These modes dominate the structural behavior during

operation and are considered to be authoritative.
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Figure 5.10: Overview of training and testing data instances for AV 07.
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For SSI-based residues CP ε and CP γ the same procedure as for the foregoing examples can

be applied by definition of a lowest frequency of interest fmin = 0.3 Hz. nshift follows to

fs/fmin = 50/0.3 = 166.7 which is obviously too large for an efficient computation.

Also, important changes in dynamics within the clusters are assumed to express themselves in

higher frequency regions above 3-5 Hz and low values for nshift already showed good performance

in the benchmark examples. To allow the processing of many different SHM realizations, a (very)

small number of 10 shifts is selected here. ns =24 significant columns represent the assumed state

space model order with 12 channels in use. Further, a block size of 150 samples (3 s) is chosen to

assure independence between data blocks after each rotor revolution. The chosen values do not

represent the results of an optimization process since no actual damage scenarios are included in

the database.

Finally, settings in the HT-step are listed. As before, a normal distribution is fitted to the CPs

within each cluster and alternatively percentiles are calculated from the discrete samples. Control

charts are calculated with a confidence interval of 0.99= 1− α = 1− 0.01. For ROC generation,

different α-values are included as given in Table 5.5: a:b:c denotes an interval with starting/ending

point a and c, and interval size b. For later analysis, it is suggested to e.g. optimize the CP

criteria with respect to the FP values.

5.3.1 Influence of Machine Learning

This sub-section will address the analysis of the ML influence on CPs. In this case AP, which

showed good performance in the previous example, is used in the ML step. Along with this

automated method, three different manual classifications (or ML instances) are analyzed:

• Manual1 or Man1 : All training data instances form a single cluster (upper left plot in

Figure 5.12).

• Manual2 or Man2 : data instances are separated into 17 clusters as for the analysis of modal

parameters (upper right plot in Figure 5.12).

• Manual3 or Man3 : Here, fewer clusters than in Man2 are used. Standstill, run-up and

pich-regulated operation are merged into a single cluster each.

Man1 represents the standard reference classification used in the previous examples. Again, it is

included to demonstrate the superior performance if proper ML, in this case using AP, is included

into the SHM framework. For AP, many different possibilities for a application exist. One is the

combination of EOCs in number and type, the other is the preference value set for AP.

For absolute CPs, a dependency on EOCs can be drawn directly by analyzing the correlation

coefficients between EOC and CP. For relative CP in contrast, analysis is more difficult since

these parameters depend on the ML instance and a direct correlation to EOCs does not exist in

a simple manner. To evaluate the dependency of these parameters, different ML instances are

analyzed to investigate the influence on relative CPs.

As stated in Table 5.5, 1000 data instances are used in the training phase. These are drawn

randomly from the 19,354 data instances in the database, except those flagged as ‘deviant’ from
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normal operation. The following are present in the database: 1. Rotor speed, 2. Wind speed,

3. Nacelle position (relative), 4. Temperature, 5. Turbulence intensity, 6. wave heights (Hs mean

of highest third), 7. Wave period, and 8. Relative wind direction. Wind and rotor speed show

especially strong influences on dynamics and are considered to be appropriate for a first clustering

of states, as executed for Man2 and Man3. These two parameters represent the pitch action and

angle indirectly and are included in the controller, too. The lack of pitch angle information, which

was not present at the given point of time, should be corrected in future analysis. Nevertheless,

detection of erroneous pitch information could be one of the goals for future SHM and hence

application without pitch information is a valid scenario. Available EOCs are systematically used

to derive different ML settings, as described subsequently.

To avoid the introduction of a lengthy table, different ML set-ups are displayed via a spy-plot

in Figure 5.11a. Different EOCs are indicated on the y-axis, and different ML instances on the

x-axis. A blue dot symbolizes the usage of a certain EOCs in the ML instance. On top, preference

values for CPs are given. Vertical red lines separate different blocks: The first block is formed

from the three manual classifications mentioned above. The second block is built by AP based

on rotor and wind speed differing in preference values from -50 to -0.5 (AP1-AP5). Preferences

should be varied in such an analysis over one or two orders of magnitude. The third block uses

the same preferences as the preceding one but with all available EOCs (AP6-AP10). In block

four, three EOCs are used. Rotor speed and wind speed provide the basis and instances vary in

the third EOC included (AP11-AP16). In this block, all instances are calculated with the same

preference of -5. Within the last block, a combination of four EOCs is analyzed (AP18-AP32).

Again rotor and wind speed form the basis and all combinations for two of the remaining EOCs

are investigated. AP17 was used as revisal for different results and will not be discussed further

on.

The whole analysis was run ten times with 250, 500, and 1000 sets and randomly chosen training

data instances each time. As a first result, a count of clusters can be investigated as shown

in Figure 5.11b. Of course, the number of clusters is constant for manual classifications. An

exception results when few data instances are used in training, as then some clusters might end up

empty. In contrast, empty or almost empty clusters will not result from automatic clustering. For

AP1-AP5 and AP6-AP10 a decrease in absolute value or preference results in an increase of cluster

numbers as expected. When more EOCs are included, more clusters result. This is due to the

relatively large distances between data instances in higher dimensional space even if normalized to

[-1,1]. For future research, it is suggested to suppress this effect by introducing a scaled Euclidean

distance measure by dividing the Euclidean distance by
√

n for an n-dimensional EOC-space.

Over the ten runs, cluster quantity stays fairly constant. In the third block, AP11, AP12 and

AP15, representing the choice of nacelle position, temperature, and wave period respectively,

result in larger numbers of clusters. A similar phenomenon can be investigated for the last block:

All instances including the nacelle position, namely AP18 to AP22, result in higher cluster counts.

The remaining instances behave quite similar. The outcome of more clusters with similarly

EOC-dimensionality and preference indicates that the EOC ‘nacelle position’ seems to spread

the data instance distribution more strongly. Similar phenomena are seen when the amount of
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Figure 5.11: Overview of machine learning set-ups for AV 07: Selected environmental and operational
conditions per ML set-up indicated by blue dots (5.11(a)). Pereference, used for affinity propagation
is indicated above each column. The settings are valid for all three investigated cases (250, 500, 1000
training sets). Number of clusters for different machine learning settings over ten runs with randomly
chosen training data for AV 07 (5.11(b)). 1000 training sets each. Analysis for 250 and 500 training
sets are given in Figure C.5 and Figure C.6.

training data is reduced. In analogy to Figure 5.11b, Figure C.5 and Figure C.6 show cluster

counts for 250 and 500 training sets, respectively.

To investigate the different outcomes, Figure 5.12 gives an insight into the six different ML

instances AP4, AP5, AP11, AP13, AP26, and AP29. Again, each dot represents the 10 min

mean values of one data instance. AP4 and AP5 base on 2 EOCs and different preference values,

AP11 and AP13 base on three EOCs, one includes nacelle position one turbulence, and AP26

and AP29 are derived with four EOCs each. If more than two EOCs are included, the first two

principal components are used as projection to display the cluster geometry. In the first row,

the well-known curve of wind speed and rotor speed can be identified as in the case for manual
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classification. Here the influence of a decrease in preference, from -5 (left) to -0.5 (right) is striking

due to the number of clusters which increase from 12 to 40. For a two-dimensional space, AP

mimics the manual classification (Man2, 12 clusters) well. Therefore, AP4 will serve as reference

to Manual2.

With three and four EOCs in use, a principal component analysis of the normalized EOCs is

used from which the first two principal components are plotted against each other to display the

clusters (row two and three in Figure 5.12). The distribution of principal component clearly differs

between AP11 (middle left) and AP13 (middle right), in which nacelle position and turbulence

intensity are used, respectively. AP13 still shows a rotated picture of the original data distribution

for AP4 and AP5 and hence rotor and wind speed. This is expected since turbulence intensity

shows a clear dependency on wind speed as seen in Figure 5.3. The distribution of data instances

in the PCA space differs strongly for AP 26 and 29. In the lower row, a T-shape is visible for both

classifications. These examples show typical shapes for the database in question. As discussed

before, the differing classification of the database results in different groups of data instances and

thus in different groups of CPs. For relative CP in particular, as residues, the grouping strongly

influences the CP values.

To investigate the influence of ML on the robust and well-performing CPR2
, plots for CP-values

during the training and testing-phase are used in Figure 5.13. For each cluster in the training

phase, median, mean, and different percentiles indicate the CP distribution and are connected

by a line1. These vertical lines can be used to give a first, visual estimation of variability. It is

clear that variability is somehow linked to the number of data instances within a cluster. Large

numbers of clusters will reduce variability but also the number of data instances in the single

clusters and hence robustness in the decision process. A balance between these two factors is

desired.

The reduction of variability between the reference classification Man1 (top plot in Figure 5.13)

and the other classifications is obvious at first sight. Also, the cluster averages are reduced below

10−0.5 for most of the resulting classes in Man2, AP4 and AP13. Some classes for the three

ML instances result in higher average CP-values. And hence consist of data instances with less

agreement in dynamic behavior than clusters with lower CP values. Potentially, data instances

during testing which fall in these clusters can be omitted in the SHM process. Another insight

can be drawn by comparing cluster sizes between Man2 and AP4 and AP13 (2nd to 4th plot in

Figure 5.13): Since boundaries are fixed for the manual classification Man2 and data instances

are drawn randomly from the database, it is not guaranteed that all clusters are filled equally and

contain similar numbers of data instances. Hence more effort for a manual selection of training

sets would have to be made to avoid this phenomenon. For AP, only a single cluster with very few

data instances results (cluster #10 for AP4 and #7 for AP13). Inter-percentile ranges (IPR), as

distance between 2.5% and 97.5%-percentile percentile values, can be calculated for each cluster.

An average of all clusters in a single classification gives a proper indicator for the variance of a

1 2.5%, 25%, 50% (median), 75%, and 97.5%-percentiles are indicated.
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Figure 5.12: Different cluster geometries for ML instances at AV 07: AP4 and AP5 constructed from
two, AP11 and AP13 are constructed from three and AP26 and AP29 from four EOCs, respectively
(row wise, top to bottom).
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Figure 5.13: Influence of different ML instances on values of CP R2

: Reference classification with a
single cluster in training (upper plot), ML instance Man2 (2nd plot), AP4 and AP13. The left side
represents the training phase, cluster seperated by vertical orange lines, the right side the testing
phase including deviant data instances.
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CP for a certain classification or ML instance.

For a broader understanding of how ML affects the estimation and distribution of CPs, averaged

IPRs per CP and ML instance are investigated. Results for the ten runs with random training

set selection are depicted in Figure 5.14: The plots hold the mean IPRs per classification for

relative CPs from SSI and VAR. Additionally, CPMSP is included, it is built from all four

relative CPs. The upper plot holds all 10 runs, the lower the average values. All mean IPRs are

normalized with respect to the base line classification Man1. Values below 1 indicate in average a

reduced variability within clusters. Again, vertical red lines indicate the five different groups of

ML instances. Recalling the five blocks, the first is constructed from manual classifications the

second from AP with two EOCs and varying preference, the third with eight EOCs and varying

preferences. In the fourth block, rotor speed and wind speed are combined with a third, in the

fifth block with a third and fourth EOC. In both blocks, a constant preference of -5 is used. A

strong dependency on the selected data instances can be seen for CP ε in the upper plot. The

remaining CPs behave distinctively more robust.

Within block 1, both manual classifications are able to reduce parameter variability significantly

compared to the reference Man1. CPMSP shows the strongest reduction. CP M, CPR2
, and CP γ

behave similarly, CP ε shows less reduction for Man3. It must be recalled that initial parameters

for CP γ and CP ε were chosen only based on previous observations and might not be optimal.

After the occurrence of damage, parameters could be re-calibrated for the damage scenario.

For block 2 and 3 a similar ranking is visible. CP M, CPR2
, and CP γ underlie moderate

changes while CPMSP and CP ε change more drastically with the increasing number of clusters

from AP1 to AP5 and AP6 to AP10. On average, CP ε even results in values above 1 for AP1,

AP2, AP6, and AP7. Parameter CP ε strongly decreases from AP7 to AP8 reaching a mean IPR

of 0.5. It can be concluded that the number of clusters has a distinct influence on the variability

of relative CP as it was expected. A small number of clusters, below e.g. 12/13 for 1000 training

sets in this case, is especially harmful for CP ε.

Block four investigates combinations of three EOCs. It is obvious that IPR variations are less

distinct than in the previous blocks and different CPs lie closer together, except CPMSP which

has small IPR values. Depending on the CP, different EOCs give here a slightly stronger reduction

of mean IPRs: CP M results in AP14 (wave height), CPR2
in AP12 (with temperature), CP γ

in AP15 (wave period), and CP ε also in AP12. AP13 is a good choice for all CPs. Overall, no

strong improvement can be seen compared to AP4 where only the two main EOCs are included.

Block 5 results in similar reductions of mean IPRs as block four. Mean values of IPRs lie right

below 0.5 for CP γ and CPR2
. If CP ε is taken as an indicator, AP18, AP23 to AP26 show a

stronger reduction than the others, all linked to temperature as included EOC. A reduction of

mean IPR to 0.5 compared to Man1 is possible for most ML instances, meaning the relative

parameter distribution has only half the width.

Using the given modular framework of SHM, an analysis of many different realizations of ML-CP

combinations is possible. From the observation above, regarding the influence of ML instance on

the relative CPs, no strong reduction of mean IPRs can be achieved by adding more than the

two initially used EOCs to the automated ML procedure. If desired, temperature and turbulence
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Figure 5.14: CP variation for different ML instances at AV 07: Averaged inter-percentile-ranges
(IPRs) for relative CPs from SSI and VAR, 10 runs with 1000 training sets each. All 10 values given in
top plot, averages for 10 runs at the bottom. All values are normalized with respect to the reference
ML instance Manual1.

intensity result as candidates for inclusion. For temperature, this is backed by investigations on

absolute CPs, showing strong correlation with wind speed, rotor speed temperature and partially

with wave height (see Figure C.4 for correlation coefficients between EOCs and absolute CPs for

the complete database.). The next step leads to the estimation of SHM performance. In this

case corresponds to an artificial case with the identification of deviant system states as defined in

Figure 5.10, as discussed in the next section.

5.3.2 Detection of Deviant Operational States

Since no real structural damage is present for the wind turbine, the aim is to apply the SHM

framework for a detection of deviant system states as defined in Figure 5.10. These states are

identified by EOC values of rotor and wind speed. If a data instance lies outside any of the

clusters defined in ML instance Manual2, it is flagged as deviant from normal operation. From

the turbine’s operational point of view it has to be stated that these deviations are a not linked to

damages. This procedure is valid since it leads to a detection of differences in structural dynamics.

If the deviant sets are included in the training, e.g. the complete wind speed - rotor speed plane

is used, further deviations due to damages can be investigated. In other words: The definition of
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normal operation is altered to reveal deviations of the structural response automatically through

SHM.

The presented evaluation framework allows for a fast, general overview of how well each of the

above mentioned ML instances in combination with different CPs, and HT settings, is able to

identify these deviant states. In general, the example is run without the goal to detect 100% of

the deviant data instances since some lie very close to the borders of Man2 clusters and might

have minor differences in dynamic characteristics.

For the following investigation areas under the ROC curves are used. In the ML step, 35 different

instances are included and 59 different CPs1. For each combination two different probability

density functions are evaluated, with a normal distribution and discrete distribution by percentiles,

resulting in 35∗59∗2 = 4,130 combinations. To derive the analyzed AUCs, 105 different confidence

intervals are used per ROC, resulting in more than half a million control charts being evaluated

for false positive alarms and detection rates.

Figure 5.15 holds all AUC results for all ML-CP combinations and the assumption of a normal

distribution. An overview for the assumption of a discrete distribution, not differing strongly

from the normal distribution case, can be found in Figure C.10. In both cases AUC values, which

have been displayed in tables in previous examples, are indicated by color. Dark red indicates

high performances with AUC values around 0.8. One CP is plotted per row and one ML instance

per column. White horizontal lines are utilized to separate the different parameters. Vertical

lines indicate the five blocks from ML as discussed above. At the top, average performances

for each ML instance, on the right average performance for every CP are given by mean AUCs,

respectively. It should be noted that performance, as area under the ROC curve, includes correct

identification of both healthy and deviant sets. Again, since some of the deviant sets lie very close

to normal operation visually, these are probably not deviant. These sets will most probably not

be identified, which is correct, but decrease the detection rate. Due to this fact, a detection rate

of 100% is unrealistic in this case. This overview can now be addressed from two directions: One

is the influence of ML on the performance, the other the investigation of different CP.

Performance by ML Some HT and performance independent insights into ML were already

discussed in the previous section. In Figure 5.15, Man1 clearly results in the worst performance

(1st column). This underlines again one basic theorem of this thesis, namely that a classification

with more than one cluster is needed. In average Man2 and Man3 result in similar performances,

well performing CPs tend to perform better under Man2, leading to the conclusion that Man3

has marginally too few clusters. In the next two ML blocks, performance increases from AP1 to

AP5 and AP6 to AP10, being directly linked to the reduction in CP variability (see Figure 5.14).

But, a slight decrease (average AUC 0.67 to 0.66) can be seen for AP5 and also for AP10. Still,

1 12 channels result in 24 values for accumulated energies for each energy bin (12 auto-correlations and 12 summed
cross-correlations). Energy intervals 9 and 10 are displayed in 48 rows total. In addition two residues each, from
SSI and VAR modes are inspected as well as six modal frequencies and one hybrid residue based on all four
relative CPs.
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Figure 5.15: SHM performance overview for AV 07: AUC values for 1.925 ML-CP-HT combinations.
ML-CP combinations for the assumption of normal distributed parameters within each cluster. Only
every 2nd y-label is set for CP E

i,10 and CP E
i,p for readability. AP17 is excluded and padded with zeros.
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performances does not drop strongly, indicating a robust behavior also with few data instances in

a cluster.

In the 4th block, an additional EOC is included for ML. Investigating the average AUCs on top,

a slight increase can be noticed compared to the first three blocks. Also, peak performances are

reached for AP12, AP13, and AP16, underlining IPR observations. AP11, linked to the nacelle

position, shows the lowest performance. Wave height and -period, included in AP14 and AP15

perform on a similar level as AP11. The last block with two additional EOCs to wind and rotor

speed indicates no strong improvement: Average AUCs lie between 0.64 and 0.68 in the same

range as for block four. AP18 to AP22, linked to the nacelle position, as well as AP30 to AP32,

linked to wave period and wave height, perform less well. This inspection results in a favor to

temperature, turbulence and relative wind direction above wave period wave height and nacelle

position as input EOCs.

Performance by CP Analysis of AUCs according to CP types will be discussed from top (accumu-

lated energies) to bottom (hybrid CP by Mahalanobis square distance). Due to good performance

in the previous examples, parameter CP
Eyy

i,9 , CP
Exy

i,9 , CP
Eyy

i,10 , and CP
Exy

i,10 were chosen for investiga-

tion of accumulated energies. These four parameters track mean frequencies between 80 and 90%

and 90 and 100% accumulated energy, respectively. CP
Eyy

i, indicates accumulated energies from

auto-correlated data, CP
Exy

i, for a summation of accumulated energies of all cross-correlations

between channel x and all other channels. Both result in similar overall performances, reaching

from 0.59 to 0.72 for CP
Eyy

i,9 and CP
Exy

i,9 and 0.58 to 0.72 for CP
Eyy

i,10 and CP
Exy

i,10 . CP
Exy

i,9 tends to

perform better here, showing AUCs close to 0.8 (dark red). The introduction of cross correlations

can increase the performance. Peak performances are dominantly found in the rows of CP
Exy

i,

for both energy ranges. Specifically, parameters for cross-correlations 4, 6, 7, 9, 10 perform best.

These are linked to measurement levels 5, 3, 6, 2, 2 and underline, with one exception, more

distinct dynamics on levels 2 to 5.

Modal frequencies in contrast do not allow an indication of deviant states. Here performances

range around 0.5 representing ROC curves on the diagonal of the performance map and hence

the complete lack of the ability to distinguish between states. Regarding SSI-based residues, CP γ

performs better than CP ε but both parameters do not reach high performance rates in this case.

Perhaps since nshifts was chosen too small. The correct tuning of all three parameters complicates

the application. VAR-based residues in contrast, perform very well. An average value overall

different ML instances of 0.72 for CP M marks a peak value. CP R2
does not perform as well,

resulting in an average AUC of 0.64. Finally, CPMSD shows strong fluctuations with partly very

good and bad performance values. It is concluded that the hybrid parameter suffers from the

non-optimal performance of the included SSI-residues CP γ and CP ε.

An exemplary evaluation of performances with respect to the identification of deviant system

states can be carried out in a convenient way through the presented framework. Even allowing

for an automation through identifying peak performances (AUCs) in the matrix displayed in

Figure 5.15. In this case, AP4 and AP13 as well as AP26 und AP29 in combination with CP M

and CP
Exy

7,9 can be considered as best performing alternatives. Selection of ML-instances also
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relies on investigations of inner cluster CP variability by IPRs.

In combination, these results allow the exemplary visualization of SHM for the Adwen AD5-116

wind turbine. As stated in the introduction, no single CP will be able to solve all difficulties in

SHM but rather a combination of different CPs with a sophisticated choice of ML and HT. To

visualize a possible outcome of the SHM procedure Figure 5.16 shows a combination of CP M,

CPR2
and all 12 CPs CP

Exy

i,9 along with fitted normal distributions: Identification of deviant states

for the complete set of 1000 randomly chosen testing data instances is presented by indications

per set in the well known rotor speed - wind speed - plane where deviate sets were defined. A

hit per data instance results if one of the three CPs1 indicates damage. In this spirit a robust

detection results which does not overweight hits by a single CP. A normal distribution is assumed

in HT.

This type of display goes along with the merging of CPs by Mahalanobis square distance but

combines final results from CPs rather than merging them at an earlier stage. It is considered to

be advantageous to point towards a probability of damage or deviation for a data instance, rather

than a single black and white interpretation. If only a single CP gives an alarm, an outlier, covered

by statistics, could have been occurred. If several CPs show hits, the probability of indication is

more profound. In this case, most of the data instances in normal operation show zero or one hit.

Most of the data instances with 2 and 3 hits lie away from the normal operation characteristic.

This last step finalizes the use of the presented SHM evaluation framework summing up the many

different paths that can be taken using ML, CPs, and HT towards a robust decision making and

SHM visualization.
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Figure 5.16: Final stage of SHM framework: Hits for possibly deviant data instances at AV 07 in
rotor speed - wind speed - plane. Included CP are CP M, CP R2

and all 12 CPs CP
Exy

i,9 (combined).

1 The twelve CPs for accumulated energy is summarized, if more than 6 indicate damage a hit results
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5.4 Conclusions

Detailed analysis of modal parameters and dynamic behavior and application of the introduced

SHM evaluation framework onto the 5MW Adwen AD5-116 (short AV 07) offshore wind turbine is

the subject of this chapter and its investigations. The RAVE-initiative (Research at alpha ventus)

provides a large database of structural response data which was utilized to carry out the studies

presented. More precisely, data over a period of 17 months, immediately after initial operation of

the 12 plants, is used.

The first section names general aspects on the WT’s dynamic behavior through accumulated

energies, standard deviation of acceleration signals on different levels, and modal frequencies and

damping. It is revealed that the rotor speed and wind speed have a distinct influence on the

structure’s dynamics. Modal frequencies underlie a change of several percent, damping values can

change over one order of magnitude between standstill and rotation. In standstill, the acceleration

amplitude influences the damping, e.g. of mode FA-1, which increases form 0.5 to 1.5%, and hence

indicates non-linear behavior. Accumulated energies and acceleration standard deviation are used

to prove a change in dynamic behavior from a dominating first bending mode in standstill to a

dominant third bending mode when the rotor is turning. The shift to a dominating third mode

can be explained by an increase of damping for the first (0.5 to 3.0%) and a decrease of damping

for the third bending mode (3 to 1%). Close rotor harmonics introduce energy in this frequency

region. In combination with the increase of damping under standstill with an increase of standard

deviation of acceleration, soil damping can add 1% and aerodynamic 1.5% critical damping to the

first mode in average. Overall, variability of modal parameters is stronger for in-operation states,

especially right before the rated speed is reached.

These findings underline the common practice of avoiding interaction between bending modes

and rotor harmonics. Even if taken care of in design, the interaction between 3rd bending modes

along with a 6P excitation should be considered in guidelines and codes.

Regarding modal parameters, states with strong pitch action and possible interaction with rotor

harmonics should not be considered to calibrate numerical models or extract values for design due

to larger uncertainties. The extended manual clustering for modal parameter inspection allows

for detailed investigations and is suggested to be applied similarly to all monitored foundation

types of OWT to guarantee comparability.

Investigating the switch in dominant modes in acceleration signals, it is also important to

remember acceleration being the second derivative of the displacement, which causes fatigue

of the structure through strain. In the harmonic case, a double integration (from acceleration

to displacement) is equal to multiplication of 1/ω2. The acceleration amplitudes at 0.3 Hz are

multiplied by a factor of 1/(2∗π ∗0.3)2 = 0.28 while amplitudes at 2.17 Hz are reduced by a factor

of 1/(2 ∗ π ∗ 2.17)2 = 0.0054, putting a strong weight on low frequent acceleration for fatigue.

ML improves performance from average AUCs 0f 0.57 to 0.67 since it leads to a reduced

variability within the sub groups or clusters of each classification instance. Also, ML instances

with an average of 15 to 20 sets per cluster and a normal distribution performed best. MOst

important EOCs are wind speed, rotor speed and turbulence intensity.
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Accumulated energies were able to perform equally to the more complex residues from SSI

and VAR with average AUCs>0.7 over all analyzed HT instances. The Interval between 80 and

90% energy is most sensible for changes in the dynamic behavior. Also, the new cross correlated

CPExy could outperform the autocorrelated CPEyy .

The derived guidelines to set initial parameters for relative CPs could be applied for the WT. For

SSI based CPs, the parameter nshifts was probably chosen too small which needs to be validated

in future analysis. With the given settings, CP γ outperforms CP ε. Both are outperformed

by the VAR based parameters with CP M performing best. Also for the hybrid CPs based on

Mahalanobis square distances, which are often claimed to omit the use of EOCs, it is stated the

ML improves performance significantly from AUC=0.5 to AUC>0.7.

It is seen that modal parameters were not able to detect deviant states, possibly also due

to interaction phenomena with rotor excitation. All other parameters do not suffer from this

phenomenon. They naturally involve the rotor excitation since the complete (measured) spectrum

is included. Accordingly, later states in the same operation point will have the same rotor

excitation, causing no change to the overall dynamics. – Only a change in the response due to

damage or non-trained EOCs is then detected.

Performance for the detection of deviant states is promising with AUC up to 0.8. The final

combination of three CP-types (CP M, CPR2
, and CP

Exy

i,9 ) for optimal ML-instances (MLAP26)

and Gaussian normal distributions within clusters show the feasibility of the presented framework

for damage detection and a possible outcome for SHM applications.
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6.1 Summary

Alongside the SHM levels and SHM axioms, a consistent evaluation of procedures is essential

for research and industry. In this thesis, a variety of methods from different scientific fields are

combined to contribute to the goal of a holistic evaluation of SHM performance. Along the way,

more technical implementations were added to the core task.

First, a general introduction to SHM, a distinction to other monitoring fields and a description

of SHM applications on (offshore) wind turbines is given. To pioneer the way for the suggested

evaluation of variability in SHM, different SHM components namely machine learning, condition

parameter, and hypothesis testing (ML-CP-HT), are introduced and reviewed by applications and

available methods. Subsequently, the necessary theoretical background for the analyzed procedures

is provided. On this basis, the holistic approach for performance evaluation is introduced and

formulated theoretically. Further, different technical novelties such as the triangulation-based

extraction of modal parameters (TEMP) are given. Automated extraction of modal parameters is

shown for a long-span suspension bridge. Finally, an extensive SHM performance evaluation for a

benchmark example on a public database is provided and damage detection was realized for the

presented damage scenarios. A localization was also possible through accumulated energies. A

next step is taken with the application of the proposed procedure to a small-scale wind turbine

structure. Through the introduction of reversible damage, SHM performance can be evaluated as

well. Again, damage detection could be achieved and performances be evaluated. Finally, the

work closes with a real-life monitoring example: A 5 MW offshore wind turbine is investigated

with respect to changes in dynamic characteristics due to different operational states. Influences

of different ML-instances on CP variability is also analyzed. Subsequently, identification of

deviate system states is carried out to illustrate the ability to detect changes in dynamics and the

usefulness of a holistic evaluation concept. It is shown that the proposed concept is capable of

providing a common basis for the performance evaluation and comparison for a variety of different

SHM approaches.

6.2 Conclusions

The following paragraphs will outline conclusions which can be taken from the different analysis

presented in Chapters 3 through 5.

175
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Automated Operational Modal Analysis Since modal parameters play a key role as linkage to

numerical models and as a possible condition parameter with physical meaning, many monitoring

approaches do and will aim for their extraction. To facilitate the analysis of vast amounts of data,

a new method to extract modal parameters from parametric system identification procedures, e.g.

stabilization diagrams, is presented with the triangulation-based extraction of modal parameters

(TEMP). The procedure was applied successfully to data sets from the New Carquinez Bridge

(NCB), the three-story benchmark data set (LANL-4DoF), the small-scale wind turbine (LANL-

WT), and the full scale 5 MW plant (AV07). Table 6.1 gives an overview of different settings

for TEMP in combination with SSI-Data. A rule of thump for the estimation is defined by a

minimum frequency of interest fmin which should be set to e.g. the lowest modal frequency or a

lower filter band limit. The number of extracted model order should be 4 to 10 times higher than

the expected state space model order (2*number of channels). The minimum path length should

then equal a half to a fourht of the extracted model orders in the stability diagram. For φcrit,

fcrit, ζcrit, and MACcrit empirical value ranges of 10-32.5◦, 1-5%, 30-100%, and >0.85 should be

used, respectively. The stated parameter values can be used as a basis for future research an

application. Through less comparisons between solution in a stability diagram, TEMP provides a

fast alternative to existing procedures.

Machine Learning, Condition Parameter, and Hypothesis Testing Machine learning was realized

through manual classification and affinity propagation (AP). As shown in Figure 3.12 and

in agreement with present literature, AP outperforms classical clustering approaches and is

recommended if clustering is a desired ML technique. First, the necessity of clustering is shown

by manual clustering with known system states at the benchmark 4-DoF system in Chapter 3.5.

Performance improvement through automated clustering by AP is presented in Chapter 4. In

Chapter 5, one way to evaluate the influence of different ML settings on parameter distributions

within clusters was discussed with inter-percentile ranges as the width of a possible confidence

interval. To assure a relatively equal number of data sets in each cluster, a moderate number

of clusters is suggested. Overall, an indication of the number of clusters can be taken from the

number of data sets in each cluster which should not be smaller than 15 to 20, better 50, to allow

Table 6.1: Overview of TEMP parameter for system identification at investigated structures.

Structure fs fmin Nshifts Norder φcrit fcrit ζcrit MACcrit P̂crit

Recommended: fs/fmin∗
0.7

4 to 10∗2∗m 10-
32.5◦

1-
5%

30-
100%

>0.85

NCB 20 Hz 0.18 Hz 80 100 : 2 : 300 17.5◦ 1.5% 35% 0.90 50

LANL-4DoF 320 Hz 5.0 Hz 70 100 : 2 : 300 12.5◦ 1.5% 35% 0.90 50

LANL-WT 100 Hz 1.4 Hz 60 2 : 2 : 200 30◦ 5% 80% 0.88 30

AV07 50 Hz 0.3 Hz 80 100 : 2 : 300 32.5◦ 3% 50% 0.95 50
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for the assessment of robust parameter distributions.

Different condition parameters have been included within the analysis; still, many others exist

and need to be evaluated. Modal parameters always represent important values for the linkage to

numerical models and physical phenomena and should be retained but did not have the ability to

detect damage reliably. Accumulated energy proved to be a very valuable addition with a robust

behavior, cheap computation, and linkage to physical changes. For the benchmark example in

Chapter 3.5, a differentiation between linear and non-linear damage and damage localization

is possible. In both Chapters 4 and 5 accumulated energy proved to perform very well in the

range of the more complex relative CPs. Overall, the energy level between 80 and 90% energy

should be used as CP. Further, the possibility of damage localization is a promising factor. VAR

residues CPR2
, CP M behave well in the presented analysis, since performance stabilizes as the

model order increases. In this spirit, a ‘safe side’ can be chosen for the model order p with

p ' 0.7 ∗ fs/fmin. In the benchmark case of Chapter 3.5, a relative quantification of different

damage states could be achieved by CP M. Both parameters showed good performance for all

three structures investigated and are considered to be of great potential. SSI based residues CP ε

and CP γ provide even higher sensitivity to structural changes but also require more initial effort

to tune parameters needed for their estimation where no safe side exist. Guidelines for their

estimation given with

nshift / fs/fmin for CP γ nshift ≈ fs/fmin for CP ε

Nb ≈ fs/fmin for CP γ nis ≈ nshift ∗m− nsig for CP ε

nsig ' 2 ∗m for CP γ

proved to work well and can be used for further benchmark studies. Damage quantification was

not as good as for CP M. It can be concluded that kurtosis and accumulated energies of each

channel are valuable additions for damage interpretation since VAR- and SSI-based CPs only

indicate a severity of changes and dynamics while kurtosis and accumulated energy give a physical

interpretation, e.g. sign or the trend of change.

Relative CPs are formulated as residues between (at least) two data sets. In the presented

studies clustering aided sensitivity and robustness of the parameters since inner-cluster uniformity

is increased through clustering. Finally, a combination of different CPs in a single vector and

evaluation through MSD is a promising attempt to create even more robust parameters which

benefit from all included CPs. The right choice of CPs is a critical point here. It is suggested to

only include single parameters from statistics or accumulated energies, or to include relative CPs

multiple times into the MSD vector, since every instance in the vector is weighted equally.

Without hypothesis testing (HT), no damage identification is possible. It was shown that the

variation of confidence intervals reveals important insight into the quality of a test procedure.

Especially many wide vonfidence intervals with 1− α > 0.95 should be included in the analysis.

The wider the confidence interval with good performance the better. The area under the ROC

curve (AUC) is concluded to be a key-component during evaluation and testing of any SHM-

system. It is, again, emphasized that the optimization according to AUCs leads to an optimum
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for the most difficult detection case within the given testing data sets. The assumption of normal

distributed parameters within the clusters forms a good assumption for most of the investigated

cases. Nevertheless, investigation of percentiles can reveal abnormal behavior and should be

included.

It is stated that the modular SHM concept can be used for damage detection and partially

damage localization. For the benchmark case, all damage states can be detected and accumulated

energies indicate damage location. For the small-scale wind turbine, even unfavorable conditions

for SHM lead to good results. For the investigation of the large-scale wind turbine, based on

knowledge drawn from the foregoing examples, detection of abnormal states is possible. In future,

profound confidence in different CPs, ML techniques, and HT settings will only be gained through

performance evaluation of different structures with different damage scenarios.

Holistic evaluation of SHM performance It was the goal to set up a global concept for a holistic

evaluation of SHM performance with respect to the three main blocks (ML, CP, and HT) in any

SHM application. A universal performance metric allows for an investigation of the four main

points of variability, namely variation in:

1. Type and parameter setting for machine learning.

2. Type and parameter setting for condition parameter(s).

3. Hypothesis testing: Probability density function, control chart, and confidence interval limit.

4. Training data in number and composition of training sets.

Analysis of different realizations is carried out via the comparison of receiver operating-characteristic

curves, more precisely, the area under the curve plus the Youden index. These scalar value enable

the comparison of many different settings in a clear manner. All four points mentioned above play

an important role for the performance. For machine learning, the adopted affinity propagation is

used as clustering approach. - For the initial preference it is suggested to work with the median of

the point distances, or values in the same size of magnitude. This results in a feasible amount of

clusters. Clustering the database improves performance for all investigated parameters compared

to the reference of a single cluster.

It is not possible to recommend one single condition parameter (CP) or setting for a perfect

SHM system. It is rather recommended to combine different CPs as accumulated energies plus

SSI- and VAR-residues. Including supposingly ‘simple’ parameters such as time-series statistics

and modal parameters aids the SHM system under small expenses, giving feedback to physical

phenomena in damage cases or sensor faults. Hypotheses testing (HT) is a critical point as

based on the presented examples working with receiver operating characteristics and, potentially,

multiple distribution types is highly recommended. The introduced performance lines aid a better

visual interpretation of these charts. Having found well operating combinations of ML-CP-HT, a

variation not only in testing data but also in training data is crucial for the proof of a robust SHM

system. The applicability and usefulness of the concept was demonstrated on a public database

as well on a more complex small-scale wind turbine with artificial damage. Finally, the Adwen
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wind turbine provided a first example of how to apply the concept under circumstances where no

damage can be introduced.

Changes in Structural Dynamics of Large OWTs From the long term observation of measurements

at the Adwen AD5-116, different conclusions can be drawn: First, TEMP fundamentally aided

the analysis of up to 19,135 data sets in an automated manner with feasible computational efforts.

Secondly, assuming fixed values for modal properties of OWT is insufficient since distinct changes

are documented.

Through the investigation of different states, it is concluded that soil damping can add 1%

and aerodynamic damping 1.5% to the overall critical damping to the first mode for different

acceleration amplitudes under standstill. The suggested, refined classification of operational states

aids a simpler distinction here.

Through investigation of accumulated energies and averaged standard deviations of acceleration

signals on different measurement levels, it was shown that decisive characteristics changes between

standstill and in-operation from the first to the third bending mode. The shift from a dominating

first global to the third global mode from standstill to operation can be explained by an increase

of damping for the first (0.5 to 3.0%) and a decrease of damping for the third bending mode (3 to

1%) in combination with close rotor harmonics. Another remarkable outcome of the analysis is

the switch in order of the third SS and FA mode from FA 2.2 to 2.4 Hz and SS from 2.5 to 2.2 Hz,

respectively. These findings can aid the general understanding of the dynamic bahviour of wind

turbines. E.g. extracted damping values, which were shown to vary over one order of magnitude

in mean over different states, could improve the estimation design life to be less conservative.

6.3 Outlook

Setting up the described SHM concept and carrying out the foregoing analysis marks only the

beginning of data evaluation with respect to SHM performance and structural dynamics. Of course,

many other methods can and should be added within each step to challenge best performing

ML-CP-HT combinations.

In the block of machine learning, further potential candidates exist with Neural-Networks

and Regression analysis, to name only two. The methods may be introduced alternatively or in

combination with the presented clustering approach. The formulation of how to define references

for relative condition parameters (residues) in combination with supervised machine learning is

an interesting point.

Condition parameters hold, probably by far, the largest potential for variation in the given four

points of variability. With the derived benchmark example a quick test is possible to evaluate

whether a newly derived parameter performs accurately. The investigated global SSI and VAR

residues should be extended to a local version, where only a sub-set of channels is included, to

reduce computational effort and include the possibility of damage localization. If sensor pairs

or subgroups are used, correlations spanning over damage locations could probably differ more

than those that do not. In this thesis, the attempt at cross-correlated accumulated energies
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points in a similar direction. Further, major cost factors for residues are reference matrices which

must be stored for every data set in the analysis. More importantly, these references must also

be stored for each parameter setting of the specific relative CP, e.g. the VAR-model-order. A

mathematical extension towards references from which one could extract matrices for a variety

of parameter settings could improve computational speed, lower hardware requirements, and

facilitate parameter studies.

In hypothesis testing, analyzing the trade-off between the usage of multivariate control charts,

for instance to capture AR-coefficients from several sensors, and the usage of VAR-residues is an

interesting point. In the first case, dimensionality is reduced in the HT step, while in the latter

dimensionality is already reduced in the CP step. Also, rational sub-groups are frequently used in

statistical quality control and could provide a possible addition.

For structural health monitoring and damage identification in general and the extraction of

modal parameters in specific, the reduction of necessary sensor locations is an important goal. In

this sense, the given database from alpha ventus provides good potential. Damage detection with

a minimum sensor number was evaluated at the presented benchmark. Down-sampling is also

applied to data sets from the LANL wind turbine, which can now be evaluated within the global

performance . Further sensor types such as velocity, strain, and inclination should be considered

as well.

Regarding the analyzed data from the test field alpha ventus, further data sets should be

added to the database to get a larger base line for modal parameter evaluation and long-term

trends. The more estimates under changing environmental and operational conditions exist for

damping and frequency; the more profound models can be developed. Also, strain amplitudes

should be correlated to the described behavior between standstill and revolving rotor. Recently,

different planned maintenance works on both wind turbine types in alpha ventus provide possible

verification scenarios with a variety of abnormal system states to be identified.

The presented thesis is based on a package of different Matlab functions implemented by a

civil, not a software engineer, hence, implementation can be improved to speed up the analysis.

Also the user-friendly integration of additional blocks for machine learning, condition parameters,

and hypothesis testing should be further realized. If desired, an easy to use package could be

developed to allow novice researchers to evaluate self implemented methods on different SHM

levels. An adoption or fusion with the Matlab-based SHM system existing at LANL would be a

good possibility to start. A transfer to LabView or SimuLink is also a desirable step towards the

end user.

With the goal of an objective comparison of performances, a public benchmark database

with different structures and damage types, defined by standards, would be a logical next step.

Obviously, data from other structures will have to be included, as some CP might perform better

for other specific damage scenarios. The database could be used to evaluate many different

available condition parameters, machine learning techniques and hypothesis testing schemes on a

common basis. Ultimately, only accepted benchmarks will lead to a legitimate comparison of the

multitude of present methods, techniques and concepts. This could provide an important step

towards the applicability and acceptance of SHM in industry and society.
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Figure A.1: S-plane plot for identified global bending modes 1 to 6 at LANL 4-DoF system from
data set ’state01_05’. Nodes in Eigenvectors from TEMP plotted before and after rotation by mean
phase-angle in complex plane (linear regression). Phase orientation for display of the mode shapes can
be derived form the orthogonal dashed line.
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Figure A.2: Parameter study for CP ε at 4-DoF system. AUCs are state for different model orders
p and number of insignificant columns nis. Performance values given for CP ε in combination with
MLMan1 (1st and 2nd plot) and MLMan2 (3rd plot).
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Figure A.3: Parameter study for HT D(CP γ(MLMan1)) over different model orders p (Block size of
Hankel-matrix), number of significant columns (nsig), and number of samples per block (Nb). Note,
that for the sake of displayability the AUC is ranging form 0 to 100 instead og 0 to 1.
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Figure A.4: Parameter study for HT D(CP γ(MLMan2)) over different model orders p (Block size of
Hankel-matrix), number of significant columns (nsig), and number of samples per block (Nb). Note,
that for the sake of displayability the AUC is ranging form 0 to 100 instead og 0 to 1.
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Figure A.5: Parameter study for HT G(CP γ(MLMan1)) over different model orders p (Block size of
Hankel-matrix), number of significant columns (nsig), and number of samples per block (Nb). Note,
that for the sake of displayability the AUC is ranging form 0 to 100 instead og 0 to 1.
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Figure A.6: ROCs for CP ε (upper plot) and CP M (lower plot). Classification “Man1” is indicated
by light blue, “Man2” by dark blue, an underlying Gaussian distribution (G) is indicated by dotted a
discrete by solid lines (D).
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Table A.1: ROC metrics for different CPs. Values >0.7 are underlined whereas values >0.9 are
written within a box. Further, maxima per CP (line) are set bold.

Man1-D Man2-D Man1-G Man2-G d̄ α J α

CPMax
(1) 0.398 0.451 0.392 0.459 38.4/43.3 0.34 19.4/16.7 0.17

CPMax
(2) 0.493 0.596 0.485 0.593 60.6/46.7 0.5 25.6/0 0.17

CPMax
(3) 0.609 0.575 0.628 0.62 51/26.7 0.36 51/26.7 0.36

CPMax
(4) 0.704 0.708 0.715 0.703 63.6/30 0.4 40.6/3.3 0.15

CP σ
(1) 0.346 0.725 0.243 0.731 69.1/30 0.38 69.1/30 0.38

CP σ
(2) 0.555 0.74 0.526 0.733 65.9/20 0.28 59.6/10 0.2

CP σ
(3) 0.712 0.76 0.706 0.772 65.4/16.7 0.22 63.9/13.3 0.2

CP σ
(4) 0.648 0.705 0.643 0.709 56.4/23.3 0.24 41/6.7 0.09

CP γ1

(1) 0.608 0.651 0.615 0.63 66.6/43.3 0.6 66.6/43.3 0.6
CP γ1

(2) 0.646 0.604 0.645 0.636 59.1/36.7 0.5 41.7/13.3 0.28
CP γ1

(3) 0.862 0.824 0.865 0.828 80.3/16.7 0.4 71.6/6.7 0.24
CP γ1

(4) 0.769 0.78 0.772 0.778 59.9/6.7 0.16 59.9/6.7 0.16
CP γ2

(1) 0.52 0.518 0.524 0.513 71.1/60 0.7 71.1/60 0.7
CP γ2

(2) 0.499 0.506 0.5 0.492 58/53.3 0.6 34/26.7 0.34
CP γ2

(3) 0.561 0.563 0.563 0.525 49.6/36.7 0.5 30.6/16.7 0.26
CP γ2

(4) 0.701 0.672 0.71 0.694 57.1/26.7 0.3 39.7/3.3 0.07

CP
Eyy

1,9 0.669 0.675 0.67 0.65 55.4/26.7 0.32 41.9/3.3 0.19

CP
Eyy

2,9 0.68 0.919 0.652 0.922 85.7/10 0.1 78.9/0 0.03

CP
Eyy

3,9 0.735 0.887 0.651 0.918 86.1/3.3 0.09 86.1/3.3 0.09

CP
Eyy

4,9 0.718 0.718 0.705 0.726 60.6/20 0.2 41.7/0 0.04

CP
Exy

1,9 0.728 0.888 0.715 0.905 82.6/6.7 0.24 81.1/3.3 0.19

CP
Exy

2,9 0.71 0.939 0.659 0.941 85.3/3.3 0.18 84.6/0 0.16

CP
Exy

3,9 0.74 0.945 0.646 0.943 87/3.3 0.14 87/3.3 0.14

CP
Exy

4,9 0.776 0.865 0.781 0.867 74/10 0.12 68/0 0.03

CP
Eyy

1,10 0.663 0.637 0.66 0.586 57.6/30 0.4 57.6/30 0.4

CP
Eyy

2,10 0.713 0.847 0.718 0.847 77.7/16.7 0.13 72.3/6.7 0.05

CP
Eyy

3,10 0.758 0.898 0.773 0.893 83.9/10 0.06 81.1/3.3 0.03

CP
Eyy

4,10 0.825 0.896 0.796 0.898 80.7/3.3 0.06 78.7/0 0.02

CP
Exy

1,10 0.779 0.917 0.788 0.918 82.3/3.3 0.14 80.3/0 0.06

CP
Exy

2,10 0.739 0.877 0.746 0.902 81.9/10 0.11 76/0 0.01

CP
Exy

3,10 0.784 0.873 0.817 0.899 81.3/6.7 0.06 79.4/0 0.01

CP
Exy

4,10 0.802 0.903 0.812 0.916 82.3/3.3 0.16 80/0 0.04
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Figure A.7: ROCs for CP
Eyy

3,9 , classification “Man1” is indicated by light blue, “Man2” by dark blue,
an underlying Gaussian distribution (G) is indicated by dotted a discrete by solid lines (D).
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B.1 Data Structure

Table B.1: Description of stored variable for each data set in database in Matlab format.
Dat
Field names Description

.Time [2013 6 21 16 9 37]
A datevec type vector - Vector holding start time in Matlab time format.

.Data [12000x10 double] Acceleration time series (e.g. 24 s at 500 Hz) - channels
stacked column wise.

.Fs [double] Sampling rate in Hz

.ChannelNames 10x1 cell / Cell array with channel names

.ChannelUnits 10x1 cell / Cell array with channel units

.ChannelPos [10x6 double]
Matrix with channel positions and orientations: (1-3) x-;y-;z-position in m;
(4-6) x-;y-;z-measurement direction (1 -> positive in xyz-direction). Global
coordinate system has origin in the tower base with z-axis facing upwards
and x-axis pointing away from the wire crank.

.Comm Commentary notes as string (if available)

.EOCdat [1x36 double]
Row vector with environmental and operational conditions (EOCs), belonging
to data set. Values are closest 15min mean values accessible on-line at LANL
"The Weather Machine" . A link to a PDF that describes the weather stations
is provided on-line.

.EOCinf 2x36 cell
Cell array with EOC description (names from LANL weather machine).

B.2 Mode Shapes

Figure B.3 shows plots for mode shape 1 to 7 in the complex plane, twelve nodes (one per sensor)

each. The solid lines represent the linear regression of best fit through the origin, the dotted lines

an orthogonal. The orthogonal is a very important decision boundary for in- and out-of-phase

movement of each node. If the complex numbers of one mode are rotated by the angle of the linear

regression, and defining a reference node, phase angles for the whole mode can easily be assigned.

These plots can also directly be linked to the MPD, where the deviation from a straight line in

the complex plane is measured. Here, only the first mode appears as almost purely real-valued,

189
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mode four at 7.8 Hz has the largest complex parts. In general, the modes behave well, aligning

almost on straight lines giving clear decisions for the phase orientation. In general, as well as for

this example, decisions about phase orientation are more critical for low amplitude nodes.
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Figure B.1: Path details for second extracted mode: Close up for path in stabilization diagram
(B.1b, left) and MAC matrix for all solutions within path (B.1b, right). Extracted path in frequency-
damping-plane with outlier, and initial and final set of triangles(B.1a)
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Figure B.2: Identified global bending modes for LANL wind turbine at 9.6, 12.3, and 14.8 Hz
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Figure B.3: S-plane plot for identified global bending modes 1 to 7 at LANL WT system. Nodes in
Eigenvectors from TEMP plotted before and after rotation by mean phase-angle in complex plane
(linear regression). Phase orientation for display of the mode shapes can be derived form the orthogonal
dashed line.
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Figure C.1: Additional modes in FA- and SS-plane for AV07.
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Figure C.2: Three-dimensional, global Eigenvectors of offshore wind energy converter below 10 Hz
including projections in global xz- and yz-plane. Rotated coordinate system indicates nacelle position,
blue and turquoise the southern and northern sensors within the tower, respectively. Note that the
mode for f=1.60 Hz was taken from a different data set and hence nacelle orientation.
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(b) Frequency and damping distributions for SS-2 at f = 8.29 Hz
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(c) Frequency and damping distributions for T-1 at f = 7.29 Hz
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(d) Frequency and damping distributions for T-2 at f = 7.44 Hz

Figure C.3: EOC influences on second bending mode of AV07 offshore wind energy converter below
2.5 Hz. Boxplots show mean (red line), 25% and 50% percentiles (blue box), 5% and 95% percentiles
(whiskers), and outliers (red crosses, outside µ± 2.7σ)
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C.2 SHM Performance
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Figure C.5: Number of clusters for different machine learning settings over ten runs with randomly
chosen training data for AV07. 250 training sets each.
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Figure C.6: Number of clusters for different machine learning settings over ten runs with randomly
chosen training data for AV07. 500 training sets each.
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Figure C.7: CP variation for different ML instances at AV 07: Averaged inter-percentile-ranges
(IPRs) for relative CPs from SSI and VAR, 250 training sets used. All values are normalized with
respect to the reference ML instance Manual1.
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Figure C.8: CP variation for different ML instances at AV 07: Averaged inter-percentile-ranges
(IPRs) for relative CPs from SSI and VAR, 5000 training sets used. All values are normalized with
respect to the reference ML instance Manual1.
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