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Abstract

This thesis is the study of a particular method of detection of gravitational wave
chirp signals from coalescing compact binary stars – the so-called dynamical tuning,
i.e. amplification of the signal via tracking of its instantaneous frequency by the tun-
ing of the signal-recycled detector. A quasi-stationary approximation presented here
describes the sensitivity of dynamical tuning with respect to the full noise budget.
However fast movement of the signal recycling mirror, required at the last stages
of chirp, having high rate of frequency change, causes a non-stationary detection
regime. Time-domain consideration describes the signal and noise evolution in the
non-stationary detector, neglecting radiation pressure noise. The time-domain anal-
ysis of a dynamically tuned detection is presented for GEO600, a Michelson-based
gravitational wave detector with folded arms, which are modeled by simple straight
arms. We prove that the shot noise, injected from the dark port and optical losses,
remains white. The analysis of the transient effects shows that during the perfect
tracking of the chirp frequency only transients from amplitude changes arise. The
signal-to-noise-ratio gain, calculated in this thesis, is ∼ 17 for a shot-noise limited
detector and ∼ 7 for a detector with displacement noise. With further development
model may also describe non-stationary dynamical tuning in the other operating
gravitational wave detectors, such as LIGO, Virgo, as well as the planning Einstein
Telescope and KAGRA, that have the additional Fabry-Perot cavity in arms.

Keywords: gravitational waves, chirp signals, signal recycling, GEO600, dynamical
tuning
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Kurzzusammenfassung

Diese Dissertation untersucht eine besondere Methode der Detektion von Gravitations-
wellen-Chirpsignalen von verschmelzenden kompakten Doppelsternsystemen – das so-
gennante dynamische Tuning, d.h. die Verstärkung des Signals indem ein Interfero-
meter mit Signal-Recycling auf die instantane Frequenz des Signals abgestimmt wird.
Eine quasi stationäre Annäherung kann benutzt werden um den Empfindlichkeits-
gewinn durch das dynamische Tuning zu berechnen. Aber die hohe Änderungsrate
der Abstimmungsfrequenz in der letzten Phase des Chirpsignals bedingt eine schnel-
le Bewegung des Signal-Recycling-Spiegels, welche eine nicht stationäre Betrachtung
notwendig macht. Die Betrachtung im Zeitbereich beschreibt die Entwicklung von Si-
gnal und Rauschen in einem nicht stationärem Detektor, dabei wird das Strahlungs-
druckrauschen vernachlässigt. Die Analyse einer Detektion von Gravitationswellen
mit dynamischem Tuning im Zeitbereich wird für GEO 600 entwickelt. GEO 600 ist
ein interferometrischer Gravitationswellendetektor, basierend auf einem Michelson-
Interferometer mit gefalteten Armen, welche in dieser Arbeit als einfache ungefal-
tete Arme modelliert werden. Es wird bewiesen, dass das Photonenschrotrauschen
vom Darkport und von den optischen Verlusten weiss bleibt. Die Analyse transienter
Effekte zeigt, dass während der dynamischen Signalverfolgung des Chirpsignals nur
Transienten vom Änderungen der Amplitude auftreten. Die Verstärkung im Signal-
zu-Rauschverhältnis ist ∼ 17 für einen schrotrauschbegrenzten Detektor, und ∼ 7
für einen Detektor mit thermischem Rauschen. Ein weiterentwickeltes Modell könnte
auch nichtstationäres dynamisches Tuning in anderen Gravitationswellendetektoren
mit Fabry-Perot Resonatoren in den Armen beschreiben, z.B. für LIGO, Virgo, das
geplante Einstein Telescope und KAGRA.

Schlüsselwörter: Gravitationswellen, Chirpsignale, Signal-Recycling, GEO 600, dy-
namisches Tuning
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Introduction

Gravitational wave observations

G ravitational waves (GWs) are quadrupole curvatures of space-time, propa-
gating with the speed of light. They were predicted first by Albert Einstein

in 1916 [1] as a solution of his general relativity equations. A more thorough mathe-
matical explanation of this solution is derived in [2–4]. There are various sources of
gravitational waves predicted among the most highly-energetic known astrophysical
phenomena, with fast quadrupole motion of compact large masses. The most con-
venient and well-known sources are supernovas, coalescences of binary systems, and
rotations of pulsars [2, 3, 5–7]. There are also predictions for stochastic background
GW radiation [8, 9], for the detection of which the correlated data from several de-
tectors is required [10]. Among the more exotic sources of GWs we can mention the
relic background radiation with frequencies up to 1010 Hz [11, 12], predicted by the
string theory cosmological model [13]. Some astrophysical models predict also GWs
at optical spectrum, e.g. caused by relic black holes evaporation [14].
Compact binary stars, such as neutron stars or black holes, emit a special kind

of gravitational waves, usually referred to as a chirp signal, as they inspiral towards
each other and then coalesce. The chirp signal gives us unique information about
matter and space-time non-linear dynamics, as the GWs are emitted from regions
with strong space-time curvature. The efforts in improving the sensitivity of the
second generation GW detectors increase the expected observable event rate up to
1000 yr−1 [15,16]. Compact binary coalescence (CBC) and corresponding GW signal
are conventionally split into three stages: inspiral, merger and ring down. The Post-
Newtonian approximation of General relativity (GR) [17–20] allows prediction of the
larger part of the inspiral stage. At this stage the signal has a sinusoidal shape with
frequency and amplitude increasing in time. The latter stages of inspiral, and both
merger and ring down stages are modeled by Numerical Relativity, and then all stages
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Introduction

are continuously sewed together.

Once a signal is measured and compared to the templates, one can extract the
information about masses and spins of the inspiraling binary objects, as well as the
equation of state of dense nuclear matter in case of the merging neutron stars [21,22].
Therefore sensitive detection of the chirp signal might verify of falsify GR or alterna-
tive theories of gravity via comparing their predictions with the measured parameters.
Schutz in [23] also proposed that the Hubble constant can be independently deter-
mined in a new and potentially accurate way by observation of the inspiral stage of
the chirp GWs.

The first experiments to detect gravitational waves took place in 1967 by Joseph
Weber from Maryland University [24]. The antenna in his experiments was a large
aluminum cylinder, 2 meter long and 1 meter in diameter, suspended on steel wires.
The resonant frequency of the antenna was 1660 Hz, and the sensitivity of piezo-based
probes was of the order of 10−16 m. A gravitational wave, passing the detector, could
excite the resonant oscillations in it with an amplitude large enough to detect. To
exclude the influence of local noise, two detectors of this kind were installed with 2
km distance from each other. In his paper Weber has reported about a number of
simultaneous signals with very small probability that they are accidental. Webber
stated that the origin for some of these events could be gravitational waves.

Later the experiments of Weber were repeated, but with negative results: there were
no signals detected. After the recent analysis of the overall data it was concluded,
that the events, which Webber has taken as gravitational waves, were data processing
artifacts [25]. The intensity and the rate of Weber’s signals required the vicinity of
the Sun to be full of events of supernova scale. Nevertheless, thanks to Weber, the
attention of the scientists was attracted to the gravitational wave detection task.

The first convincing prove of the GW existence was published in 1981 in [26]. Taylor
and Weisberg showed that the binary pulsar PSR 1913+16, discovered previously by
Hulse and Taylor [27], loses energy in agreement with gravitational wave emission
rate. However, the direct observation of a gravitational wave is yet to come.

The currently operating gravitational wave detectors can be divided into inter-
ferometric and bar resonant ones. There are only two resonant bar detectors left,
MiniGRAIL and Auriga [28, 29], both operating at cryogenic temperature. Weber’s
detector had also a bar resonant configuration.

Ground-based laser interferometers, such as LIGO, GEO600 and Virgo make the
most sensitive detectors of GWs [30–35]. GEO600 is keeping the science run nowa-
days, in the period 2011 - 2015, while LIGO and Virgo are switched off and are being
upgraded to their advanced configurations. There are also two missions for gravi-
tational wave laser interferometers planned for the future: the Eintstein telescope
[36,37], 10-km scale underground cryogenic detector and the 10 million kilometer scale
space mission eLIGO/NGO recently confirmed by European Space agency [38,39].
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GEO600

GEO600 is a joint British/German gravitational wave detector [34] located near
Hanover. Its main aims are currently the gravitational wave detection and test of
the techniques of advanced detectors. Initially GEO600 was planned as a 3 km un-
derground detector in the Harz mountains [40]. Due to the financial reasons, the
approved configuration of GEO600, differing significantly from the initial proposal,
was begun to be constructed on September 1995 in its current place with only 600 m
long arms. The first stable operation mode of the detector took place in December
2001, also with a short coincidence run with the LIGO detectors [41]. From August
2002 until October 2010 GEO600 joined 6 joint scientific data run with LIGO.

The GWs upon reaching the Earth become only tiny perturbations of space-time
metric causing a small variation of the proper distances between the quasi-free-falling
test masses of laser interferometer. According to this reason GEO600, as well as all the
mentioned above operating and planned GW detectors, are based on the traditional
Michelson topology. The simplest layout of Michelson-based detector (see figure 0.1)
is the following: the interferometer consists of a balanced 50/50 beamsplitter, per-
fectly reflecting end-mirrors and additional mirrors for signal and power amplification,
referred to as a signal recycling mirror (SRM) and a power recycling mirror (PRM)
respectively. GEO600 uses a laser source with a master/slave Nd:YAG laser with
wavelength of 1064 nm [42]. Interferometers usually operate near the dark fringe in
the output port, meaning that the laser beams reflected from the end-mirrors destruc-
tively interfere on the beamsplitter. Since the Michelson topology is only susceptible
to the ’+’-polarized GWs, the latter cause antisymmetric (differential) motion of the
interferometer’s end-mirrors relative to the beamsplitter. This breaks the destructive
interference on the beam splitter allowing a tiny part of the optical field carrying the
information about the GW signal to reach the photodetector. This signal field gets
recirculated by the SRM, forming the differential mode of the interferometer in the
effective signal recycling cavity (SRC). The PRM in the laser port creates the com-
mon mode of the interferometer in the power recycling cavity (PRC) by recirculating
mean laser power reflected from the end-mirrors performing symmetric (common)
motion. Therefore the common mode does not contain any information about the
GW signal and in the rest of this paper we only consider the differential mode. This
dual recycling technique was first proposed and tested by [43,44]. In addition to this
layout most of the existing detectors, such as Virgo, LIGO and ET, have Fabry-Perot
cavities instead of the end-mirrors of Michelson. GEO600 has folded arms with an
overall optical length of 1200 m.
The signals on the photodiode are detected using special techniques. Recently the

output readout was changed from one of such techniques, called RF or heterodyne
readout [45], to the a self-homodyne, DC readout [34, 46–50]. The reason for this
change to another way of detection was in an additional vacuum noise from twice the
modulation frequency, as it described in [3].
Parameters of the SRC are determined by the properties of the SRM: the frequency

bandwidth of the cavity is defined by the SRM transmittance, while the detuning of
laser carrier frequency from cavity resonance is defined by the microscopic position of

3
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Figure 0.1.: Scheme of the simplified GEO600 layout considered in this thesis
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the SRM. In this sense the SRC is equivalent to a simple Fabry-Perot cavity. The SRC
can be tuned to any desired signal frequency via proper choice of the cavity detuning.
Currently all GW detectors operate stationary in time, meaning that the parameters
of the SRC are fixed. There are two typical regimes of detection of chirp signals in this
case: a wide-band operation and a narrow-band operation. In the former regime the
detector is sensitive to the entire frequency band of the chirp signal, but at moderate
sensitivity. Contrary, in the narrow-band regime the detector is much more sensitive,
but only in the narrow band around the signal frequency the SRC is tuned to. Since
the chirp signal at the inspiral stage is a sine function with frequency increasing in
time, the peak sensitivity of the narrow-band-operated detector will only be achieved
during the short interval of time, when the particular instantaneous frequency of
the chirp approximately coincides with the detuning of the SRC. The study of the
optimization of the detection of the chirp signals by a stationary detector is presented
in [51].

Dynamical tuning

Another option for the detection of a chirp signal was proposed by Krolak and Meers
in [52]: real-time tuning of the SRC to the instantaneous frequency of a signal via
positioning of the SRM, i.e. real-time signal tracking. This method of detection is
referred to as dynamical tuning. However the analysis in [52] was performed under
the following approximations: (i) a shot-noise limited detector, and (ii) slow enough
motion of the SRM such that the detector can be considered as a quasi-stationary
one, i.e. all the optical fields evolve adiabatically on the time-scale of the motion of the
SRM. The latter approximation also sets the limiting instant of time until which the
signal can be observed before entering the regime of rapid frequency increase, where
quasi-stationary approximation doesn’t hold. To agree with these approximations,
the authors considered the detection only of the part of the chirp signal with the
instantaneous frequency varying from 100 up to 500 Hz.

Overview of this thesis

The method we develop in this thesis allows us treating the problem of dynamical
tuning outside the approximations, described above. It should be noted that we do
not consider the problem of signal prediction; we only assume that the initial time
evolution of the signal is known, for instance, from the low-frequency data of other
GW detectors, such that subsequent evolution of the signal can predicted. The other
idea to wait for the certain frequency, and then predict the further frequency behavior
on the fly, as it is proposed in [52] and developed in [53]. During this work we develop
the model of GW detectors from the basics, first repeating the already known steps,
then coming to the new results.
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Stationary GW detectors in frequency domain

The response of a stationary operated detector to GWs and to all kinds of noise
sources is usually calculated in frequency domain. In this part we mostly repeat the
analysis, performed by [47], and calculate the sensitivities for a Fabry-Perot cavity
and for GEO600 layout. This considerations allows to formulate a quasi-stationary
approximation for dynamical tuning. For the detailed analysis see references [33,54–
58].
In the first chapter we consider the field propagation inside the simplest layout of

gravitational wave detectors, a Fabry-Perot cavity. According to the scaling law [59],
a dual recycled Michelson interferometer with straight arms or Fabry-Perot cavity in
the arms, may also be effectively reduced to a single Fabry-Perot cavity. Originally
Fabry-Perot cavities were invented and have been successfully used as instruments
to resolve close spectral lines of incoherent light, e.g. during the optical astronomical
observations [60–63]. In the era of lasers the ability of Fabry-Perot cavities to store
a coherent light made them an integral part of almost every laser [64, 65]. The same
property made them useful for gravitational wave detections [66]. To detect gravi-
tational waves, a Fabry-Perot cavity should be very long and should have movable
mirrors. The description of fields in it is based on the reflection from the moving
mirrors, introducing a negligible frequency dependence due to relativistic effects. The
reflections together with wave properties of light define the resonance conditions, de-
scribed by Airy function. The small jitters of the mirrors, caused by the gravitational
waves, introduce very small but measurable field deviations inside and outside the
cavity, allowing to extract the information about GWs: theoretically with homodyne
detection, and experimentally with Pound-Driver-Hall method [67]. Apart from the
GW influence, there are also the fluctuations of the measured fields, caused by Brow-
nian motion of the optical surfaces, and by quantum fluctuations of electromagnetic
field. Radiation pressure introduces the additional noisy displacement, caused by the
injected quantum noise, and the optical spring effect, forming the second (after opti-
cal) resonance of the cavity. Both signal and noise deviations from stationary regime
are very small, and this allows to effectively separate fields inside the detector into the
zeroth and the first order terms, and neglect the higher order terms. The response of
a Fabry-Perot cavity to these fluctuations defines the sensitivity to a signal, making
a well-known result typical for all laser GW-detectors.
The second chapter studies the more complex layout of a dual-recycled Michelson-

based interferometer. The fields inside the Michelson configuration [68] are explicitly
divided into a common and a differential mode. The scaling law [59], defining the
opto-mechanical equivalence between the signal recycling mode of the detector and a
single Fabry-Perot cavity, is presented in details for their fields, forces and sensitivities.
There was also shown the boundary between the common and the differential modes,
caused by the dark-fringe offset, required for DC readout [69]. This boundary however
is negligible. Based on the standard stationary sensitivity for GEO600 the quasi-
stationary model for dynamical tuning may be developed. The shot-noise quasi-
stationary dynamical tuning was considered by [52]. In this work we add the new
influence of displacement noises and radiation pressure effects into this approximation.
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Non-stationary GW detectors in time-domain

The frequency of the part of a chirp GW changes very fast. It kicks the detector per-
forming dynamical tuning out of the stationary regime, so frequency domain analysis
becomes not adequate. Therefore, we want to make a new model of the non-stationary
detector in time-domain. The consideration used in this part is based on the difference
equation, introduced by Malik Rakhmanov in his thesis [70].

The shot noise in gravitational wave detectors is described as an injection from
the dark port and from the lossy elements [71]. In the third chapter we develop
a time-domain non-stationary model for the response of the detector to shot noise,
transforming the difference equations into an infinite sum, and neglecting radiation
pressure effects. The detector response takes the form of a series over an infinite
number of round trips of the light inside the SRC [70, 72], the so-called impulse
response. This model allows to study and simulate the autocorrelation function of
the output shot noise in case of both ground state and squeezed state dark-port
injections.

It is also possible to simulate similarly the non-stationary response of the detector
to the end-mirror motion caused by GWs, as it is presented in chapter 4. It is also
described by an impulse response of a similar appearance. Several configurations of
the Michelson based interferometer were studied: the one with straight arms, the one
with delayed lines and the one with Fabry-Perot cavity in the arms. For the first
two tasks, the explicit impulse responses were found, for the latter the corresponding
non-trivial difference equation was posed. The impulse responses allow to study the
response of the detector on the step-wise change of signal parameters as well as of
the SRM position. Similar to dynamic resonance to the phase fluctuation of the
inner cavity field, introduced in [70], we present a dynamical resonance to a chirp
frequency, when the GW phase change during one round-trip is compensated by the
SRM detuning. We define and study a so-called resonant tracking, when the detector
keeps dynamically resonance during the whole chirp signal detection. We established
that detection during perfect resonant tracking of a chirp signal with negligible rate
of amplitude displays a so-called virtual stationarity, when the field oscillations inside
the detector possess the corresponding stationary value. Since the displacement noise,
caused by seismic, gravity gradient and Brownian influences on the mirror surface, is
also an end-mirror motion, and its differential component influences the output, it is
possible to simulate the component of the thermal noise in the output photocurrent,
using the response to the end-mirror motion. We also find the inverse impulse response
that could restore the GW signal from the output current.

In chapter 5 we study the behavior of the non-stationary detector with a DC read-
out. The "DC" component obtains a complex non-stationary shape after evolution
inside the detector. We developed the formula for the photocurrent components,
caused by this zero-order field component, and its beating with the signal first-order
signal component. The transient effects of this configuration, and the shot noise were
also studied.
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Simulations of signal detection
In chapter 6 we repeat the Neyman-Pearson criteria for detection of the signals with
known shape on the Gaussian noise background. We specify the SNR, defined in the
criteria, for a shot noise and a thermal noise limited detection. The more difficult task
of calculating the SNR on the background of both noises was formulated explicitly.
The final seventh chapter is dedicated to the simulation. We present the algorithm,

allowing to simulate numerically the output current for the configurations, considered
in this thesis. And we use the signals, simulated for the Michelson configuration, for
the estimations of SNR gain of the dynamically tuned interferometer, assuming the
limitation of sensitivity by the thermal and by the shot noise separately, with respect
to the currently existing GEO600 configuration. We also compare the time-domain
non-stationary result with the frequency-domain quasi-stationary one to estimate the
influence of transient dynamical effects.
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CHAPTER 1

Fabri-Perot cavity

1.1. Reflecting from moving mirror. Linear correction
due to special relativity

L et us consider the scheme consisting of two beams: one propagating to the left,
and one propagating to the right, both interacting with a mirror (see FIG. 1.1).

We assume one polarization of the light, and direct the x-axes parallel to the beam,
propagating to the left. The z-axes is chosen parallel to the electrical field oscillations
of the field, then the z-component of the field is

Êa(t) =

√
2π~ωp

Ac
(A(t)e−iωpt +A∗(t)eiωpt)+

+

∞∫
0

√
2π~ω
Ac

[â(ω)e−iωt + â†(ω)eiωt]
dω

2π
(1.1)

with the notations presented in table 1.1. Since electrical field E, magnetic fieldH and
wave vector field k always form the right-hand set of vectors, we direct y-axes along
the corresponding magnetic field vector. In this thesis, all the waves, propagating to
the left turn to those propagating to the right and vice versa by reflecting, therefore
their electric fields will be oppositely directed. Any other polarization of light may
be considered similarly, therefore the consideration described here is general.
The fields throughout this work are divided in two clearly distinctive parts. The

first part is a classic carrier light in the zeroth order approximation. It is sourced
by a very stationary laser, in this case A(t) = A, C(t) = C. It can be considered
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Table 1.1.: Notations and definitions used in field expressions in this thesis
Notation Definition

ωp the frequency of the carrier laser
c the speed of light
A the cross-section of the beam

A ,B, C, D laser field amplitude (see FIG. 1.1)
â(t), b̂(t), ĉ(t), d̂(t) the small field perturbations,including quantum noise

stationary, because all the noisy processes and perturbations, introduced by mirrors
motion, are very small and can be neglected in comparison to the amplitude of the
carrier light. The fields of the zeroth approximation are denoted with big letters:
A,B,C and D, corresponding to the location (see FIG. 1.1). All the perturbations,
caused mainly by (i) the injected ground state quantum fluctuations: â(Ω) and ĉ(Ω)
in this case, and (ii) the microscopic mirror motion: for this mirror Xm(Ω), are very
small and assumed to be of the same order. We denote them with small latin letters,
indicating the point of consideration, and with hats, meaning some part of it has
quantum nature.

The electrical field of the two electromagnetic waves, depicted in FIG. 1.1 and
propagating to the left, is described by E(t, x) = E(t − x/c), while the field of the
waves propagating to the right is by E(t, x) = E(t+ x/c). These beams are spatially
separated by the mirror, depicted as the blue plane: each descended beam ends on the
mirror and is partly reflected and partly transmitted into the outcome beams, starting
on the mirror. The descending and the reflected beams are depicted separately for
convenience, though spatially they coincide. The point of reflection is moving with
the mirror, but for convenience of the model we use the initial position of the mirror
with the coordinate xm, depicted as the dashed shape, as a reference to connect all
the four described beams. Strictly speaking, at least two beams do not exist at this
point, but we can extrapolate them, forming a virtual link between the left and the
right beams. The z-components of electric fields in the referent point at arbitrary
instance t are:

Êa(t,−xm) = Êa(t+ xm/c), (1.2a)

Êb(t,−xm) = Êb(t− xm/c), (1.2b)

Êc(t,−xm) = Êc(t− xm/c), (1.2c)

Êd(t,−xm) = Êd(t+ xm/c). (1.2d)

The y-components of the magnetic fields, defined by the directions and values of
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Figure 1.1.: Laser reflecting from a moving mirror

the corresponding wave vectors and electric fields, are

Ĥa(t,−xm) = Êa(t+ xm/c), (1.3a)

Ĥb(t,−xm) = −Êb(t− xm/c), (1.3b)

Ĥc(t,−xm) = −Êc(t− xm/c), (1.3c)

Ĥd(t,−xm) = Êd(t+ xm/c). (1.3d)

In the special relativity it is convenient to consider the reflection from the mirror
in the instantaneously comoving inertial frame, where at some local instance the mir-
ror is resting and the reflection is described classically. We introduce the laboratory
and the comoving frames as it shown in FIG. 1.1, with the beginning of coordinates
at the actual mirror position. Coordinates, time and properties of waves, corre-
sponding to the laboratory frame, are denoted without primes: x, y, z, t, ~E, ~H,~k, ω,
while the corresponding values in the comoving frame are denoted with primes:
x′, y′, z′, t′, ~E′, ~H ′, ~k′, ω′. The Lorentz transformations from the laboratory to the

13
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moving frame:

x′ = −βγct0 + γx− βγct, (1.4a)

t′ = t0 + γt− βγ x
c
, (1.4b)

E′a,d(x′, t′) = (γ + βγ)Ea,d(x, t), (1.4c)

E′b,c(x′, t′) = (γ − βγ)Eb,c(x, t), (1.4d)

ω′ = (γ − βγ)ω, (1.4e)

where β = v
c , γ = 1√

1− v2
c2

and the term −βγct0 is chosen to set the point of reflection

event at x′ = 0.
The events of the waves in the instance t0 in laboratory frame occur in different

instances of time in the comoving frame, so the reflection will happen at

x′1 = 0, (1.5a)
t′1 = γt1, (1.5b)

when the mirror rests. The reference point with coordinates (−xm, t0) transforms
into

x′2 = −γβct0 + γ(−xm)− βγct0, (1.6a)

t′2 = γt1 − βγ
−xm

c
. (1.6b)

The fields at the referent points and at the reflection are:

E′a,d(x2, t2) = (γ + βγ)Ea,d(−xm, t1), (1.7a)

E′a,d(x′1, t
′
1) = (γ + βγ)Ea,d(0, t1), (1.7b)

E′b,c(x2, t2) = (γ − βγ)Eb,c(−xm, t1), (1.7c)

E′b,c(x′1, t
′
1) = (γ − βγ)Eb,c(0, t1). (1.7d)

The fields at the reflection event, calculated from the fields at the referent points
in the comoving frame using the Lorentz transformation (1.4),(1.6-1.7), and keeping
only the terms of the first order of smallness: (i) with respect to v

c in the Lorentz
transformations, (ii) with respect to kpxm(t) in the phase shift, and (iii) with respect
to â, b̂, ĉ and d̂ in the field amplitude, read:

Ê′a(t′0, 0) =

√
2π~ωp

Ac
Ae−iωpt0 −

√
2π~ωp

Ac

(
−ẋm(t0)

c
+ ikpxm

)
Ae−iωpt0+

+

∞∫
0

√
2π~ω
Ac

[â(ω)e−iωt0 ]
dω

2π
+ h.c. (1.8a)
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Ê′b(t′0, 0) =

√
2π~ωp

Ac
Be−iωpt0 −

√
2π~ωp

Ac

(
ẋm(t0)

c
− ikpxm(t0)

)
Be−iωpt0+

+

∞∫
0

√
2π~ω
Ac

[b̂(ω)e−iωt0 ]
dω

2π
+ h.c. (1.8b)

Ê′c(t′0, 0) =

√
2π~ωp

Ac
Ce−iωpt0 −

√
2π~ωp

Ac

(
ẋm(t0)

c
− ikpxm(t0)

)
Ce−iωpt0+

+

∞∫
0

√
2π~ω
Ac

[ĉ(ω)e−iωt0 ]
dω

2π
+ h.c. (1.8c)

Ê′d(t′0, 0) =

√
2π~ωp

Ac
De−iωpt0 −

√
2π~ωp

Ac

(
−ẋm(t0)

c
+ ikpxm(t0)

)
De−iωpt0+

+

∞∫
0

√
2π~ω
Ac

[d̂(ω)e−iωt0 ]
dω

2π
+ h.c. (1.8d)

The boundary conditions on the resting in the comoving frame mirror is:

Ê′b(t′0, 0) = −RmÊ
′
a(t′0, 0) + iTmÊ

′
c(t′0, 0), (1.9a)

Ê′d(t′0, 0) = −RmÊ
′
c(t′0, 0) + iTmÊ

′
a(t′0, 0), (1.9b)

where Tm and Rm are the amplitude transmittance and the reflectivity of the mirror,
bound through the energy conservation equation T 2

m + R2
m = 1. The losses here are

neglected.
This equations give in the zeroth approximation:

B = −RmA+ iTmC, (1.10a)
D = −RmC + iTmA. (1.10b)

It is more convenient to consider the coordinate of the end-mirror in the Fourier
domain:

X(Ω) =

∞∫
−∞

xm(t)eiΩtdt (1.11)

In the terms of the spectrum, ẋm(t) differs from xm(t) by factor of Ω = ω − ωp,
therefore the term with ẋm(t) would transform kpX(Ω) into kX(Ω), where k = ω

c .
The first approximations, based on this transformation, reads:

b̂(ω) = −Rmâ(ω)− 2iRm

√
kpkX(ω − ωp)Ax + iTmĉ(ω), (1.12a)

d̂(ω) = −Rmĉ(ω) + 2iRm

√
kpkX(ω − ωp)Cx + iTmâ(ω). (1.12b)
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Figure 1.2.: Electromagnetic field in a Fabri-Perot cavity

b̂†(ω) = −Rmâ†(ω) + 2iRm

√
kpkX(ωp − ω)A∗x − iTmĉ†(ω), (1.12c)

d̂†(ω) = −Rmĉ†(ω)− 2iRm

√
kpkX(ωp − ω)C∗x − iTmâ†(ω). (1.12d)

One can see, that (1.12a),(1.12c) describes reflection to the left, and (1.12b),(1.12d)
describes reflection to the right.

1.2. Fields in Fabri-Perot cavity with two moving
mirrors

Two parallel mirrors form a Fabri-Perot cavity (see FIG. 1.2), the simplest topology
of gravitational wave detectors. Gravitational waves cause microscopic motion of the
right mirror, and these motions along with the thermal motion of both mirror, are
measured by the Fabry-Perot cavity through the field perturbations, introduced by
them.
Inside the cavity the fields of the zeroth approximation, denoted, as usual, with

big letters, corresponding to their points, is sourced by the laser A(t) = A. All the
perturbations, caused mainly by (i) the injected ground state quantum fluctuations:
â(Ω) and ĝ(Ω), and (ii) the microscopic mirror motion Xi(Ω) and Xe(Ω), are very
small and both assumed to be of the first order of smallness. We denote them with
small latin letters, indicating the point of consideration, and with hats, meaning some
part of it has quantum nature.
Denote the boundary conditions on the mirrors for the zeroth approximation fields:

B = −RiA+ iTiC, (1.13a)
C = iTiA−RiD, (1.13b)
F = −ReE. (1.13c)
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The propagation of light inside the cavity continuously shifts its phase. There is a
length of the cavity L, corresponding to exactly the whole number of the wavelengths
of the carrier light during the round trip, meeting the resonant condition eikp2L =
1. We call the cavity of this length, resonant to the carrier laser or tuned. The
displacement of a mirror from its tuned position δL introduces into zeroth-order mode
fields the additional phase detuning δφ,0 = 2kpδL of the cavity from the resonance.
Therefore:

E = Ceiδφ,0/2, (1.14a)

D = Feiδφ,0/2. (1.14b)

The solution of these equations is the expression for the field inside the cavity
dependent from the detuning:

C =
iTiA

1−RiReeiδφ,0
. (1.15)

The factor
1

1−RiReeiδφ,0
, which is usually referred to as Airy function, describes the

resonant features of the cavity. The maximum of this function at δφ,0 = 0 corresponds
to the resonance. The detuning phaseshift δφ,0 may be expressed in terms of round-
frequency shift δ, referred to also as detuning, from the cavity resonance.

δφ,0 = δ2τ. (1.16)

Here τ is the time of one-way trip of light inside the cavity: τ = L/c.
The detuning γ, at which the field amplitude inside the detector differs from the

resonant value by factor of
√

2, is called half-bandwidth, and its dependence on the
optical properties of mirrors, i.e. their transmittances, may be obtained from the
(1.15):

γ =
T 2

i c

4L
+
T 2

e c

4L
. (1.17)

Here and everywhere in the chapter we use the following assumptions:

δφ,0 � 1, Ti, Te � 1. (1.18)

The mirrors influence on the half-bandwidth independently. So it is convenient to
associate an individual bandwidth to each of them:

γi =
T 2

i c

4L
, (1.19a)

γe =
T 2

e c

4L
. (1.19b)

The physical meaning of each of the values is a bandwidth of a Fabry-Perot cavity,
where the non-considered mirror is replaced by the ideally reflecting one. Easy to see
that γ = γe + γi.
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The Airy function (1.15), expressed in these values, is:

1

1−ReRieiδφ,1
=

1

(γ − iδ)2τ
. (1.20)

The evolution of the first order terms of the field, carrying the information about
mirrors motion, is calculated from (1.12a) for the reflection to the left and (1.12b) for
the reflection to the right as following:

b̂(ω) = −Riâ(ω)− 2iRi

√
kpkXi(Ω)A+ iTiĉ(ω), (1.21a)

d̂(ω) = −Riĉ(ω) + 2iRi

√
kpkXi(Ω)C + iTiâ(ω), (1.21b)

f̂(ω) = −Riê(ω)− 2iRe

√
kpkXe(Ω)E + iTeĥ(ω), (1.21c)

ĥ(ω) = −Riĝ(ω) + iTeê(ω). (1.21d)

Here Ω = ω − ωp is a frequency of mirror motion, causing the corresponding modu-
lation sidebands. The field â(ω) on the input mirror is injected oscillations of ground
state mode of electromagnetic field. The end-mirrors are usually highly reflective,
they have minor losses and do not transmit anything. However, due to fluctuation-
dissipation theorem (FDT), the noise, corresponding to the losses on the mirror and
everywhere in the cavity, is equivalent to the injected ground state mode ĝ(ω) through
the mirror with transmittance Te equal to losses of the end mirror. The injected fields
â(ω) and ĝ(ω) are objects to the following commutation relation:

[
â(ω), â†(ω′)

]
= 2πδ(ω − ω′) (1.22)

The equations for the propagation of the first order approximation fields are:

ê(ω) = d̂(ω)eiδφ,1/2, (1.23a)

ĉ(ω) = f̂(ω)eiδφ,1/2, (1.23b)

where δφ,1 =
2ωδL

c
is a phase detuning of the sideband from its resonance, and δL is

a constant displacement of the cavity mirrors from the resonant position.
The solution for the fields in cavity, found from (1.21) and (1.23) is then

b̂(ω) =
1

1−ReRieiδφ,1

[
â(ω)(Ree

iδφ,1 −Ri)− Tiŝe(ω)eiδφ,1/2 +

+ TiRee
iδφ,12Ri

√
kpkXi(Ω)C

]
− 2iRe

√
kpkXi(Ω)A, (1.24a)
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ĉ(ω) =
iŝe(ω)eiδφ,1/2 − iRee

iδφ,1 ŝi(ω)

1−RiReeiδφ,1
, (1.24b)

d̂(ω) =
iŝi(ω)− iRie

iδφ,1/2ŝe(ω)

1−RiReeiδφ,1
, (1.24c)

ê(ω) =
iŝi(ω)eiδφ,1/2 − iRie

iδφ,1 ŝe(ω)

1−RiReeiδφ,1
, (1.24d)

f̂(ω) =
iŝe(ω)− iRee

iδφ,1/2ŝi(ω)

1−RiReeiδφ,1
, (1.24e)

where the injections of light into the cavity from the input and the end mirrors are
correspondingly:

ŝi(ω) = 2Ri

√
kpkXi(Ω)C + Tiâ(ω), (1.25a)

ŝe(ω) = −2Re

√
kpkXe(Ω)E + Teĝ(ω). (1.25b)

For the simplification of this solution we make the following assumptions and rede-
notations. We assume here and everywhere in the chapter that optical frequency ωp

is much larger than all other frequencies:

Ω� ωp, (1.26)

that cavity, as it was mentioned before, is short enough and mirrors are highly reflec-
tive (1.18).
We denote:

`(Ω) = γe + γi − i(δ + Ω), (1.27a)
X(Ω) = Xe(Ω)−Xi(Ω), (1.27b)

therefore the motion of two mirrors are equivalent to the motion of the one mirror
only. We introduce the new, "rotated" annihilation and creation operators:

ânew(ω) =
`∗(Ω)

`(Ω)

√
γiâ(ω)−√γeĝ(ω)

√
γ

, (1.28a)

ĝnew(ω) =

√
γiĝ(ω) +

√
γeâ(ω)

√
γ

, (1.28b)

that, as it may be easily checked, obey the same commutation relations as the original
ones: [

ânew(ω)â†new(ω′)
]

= 2πδ(ω − ω′) (1.29a)[
ĝnew(ω)ĝ†new(ω′)

]
= 2πδ(ω − ω′). (1.29b)
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Using these assumptions and notations, we get the following expression for the field
disturbances, caused by the ground state injections and the mirror motions:

b̂(ω) =

√
γiâ(ω)−√γeĝ(ω)

√
γ

+

√
γi

τ

2kpEX(Ω)

`(Ω)
, (1.30a)

−ĉ(ω) = d̂(ω) = ê(ω) = −f̂(ω) = i

√
γ

τ

â(ω)

`∗(Ω)
+
iωpEX(Ω)

L`(Ω)
. (1.30b)

The equations for annihilation operators, may be obtained similarly from (1.12c)
and (1.12d) using the same transformations, described in this section. It is easy
to show that the result is a complex conjugate of (1.30), meaning the creation op-
erator transforms to the annihilation ones, classic field components transform to
their complex conjugate and the functions X(Ω), `(Ω) transform correspondingly to
X(−Ω), `∗(Ω). So, we get:

b̂†(ω) =

√
γiâ
†(ω)−√γeĝ†(ω)
√
γ

+

√
γi

τ

2ωpE
∗X(−Ω)

c`∗(Ω)
, (1.31a)

−ĉ†(ω) = d̂†(ω) = ê†(ω) = −f̂†(ω) = −i
√
γ

τ

â†(ω)

`(Ω)
+
−iωpE

∗X(−Ω)

L`∗(Ω)
. (1.31b)

1.3. Radiation pressure force on a mirror.
Ponderomotive forces

All the fields and forces in this section, and everywhere in the thesis, are considered in
CGS-system (see appendix A). Let us consider a beam falling perpendicularly on the
mirror. Both electric and magnetic fields are perpendicular to the wave vector and,
therefore, parallel to the mirror surface. Electric field pushes the charged particles of
the mirror surface parallel to the surface, and magnetic force, acting on this pushed
charges, causes a force, perpendicular to the mirror surface. The single beam, falling
perpendicular to the surface of the mirror, will have the following electric and magnetic
field in Cartesian basis, the components of which correspond to two independent
polarizations, as it shown in FIG. 1.1:

~B(t) = Ez~ey − Ey~ez, (1.32a)
~E(t) = Ey~ey + Ez~ez. (1.32b)

The electromagnetic wave pushes the current in the surface of the mirror:

~j(t) = jx~ex − jy~ey + jz~ez. (1.33)

The x-component of the Lorentz force (A.7), caused by the light on the mirror, is
then:

Fl(t) =
W (t)

c
. (1.34)
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Chapter 1. Fabri-Perot cavity 1.3. Radiation pressure

Here we’ve used that (i) within the framework of CGS, the electric field in a wave
equals to the magnetic field, (ii) the wave vector, the electric field and magnetic field
form the right-hand set of vectors, (iii) the electric field multiplied by the charges
of current gives us the force and (iv) the electric force multiplied by the velocity of
charges, extracted from the current, gives the power.

The power W (t) can be expressed through volume energy w(t):

W (t) = w(t)Ac, (1.35)

which can be itself expressed through electric field:

w(t) =
|E(t)|2

4π
. (1.36)

The following formula shows, that the Lorentz force, pushing the mirror, is predeter-
mined by the electric field of the wave.

Fl(t) =
|E(t)|2

4π
A. (1.37)

The high frequency oscillations of the Lorentz’s force are unobservable on the mir-
ror, so the force, we percept as the radiation pressure force, is only an averaged (per
an optical period) part of it:

Fp(t) = Fl(t). (1.38)

Each mirror of the cavity in the FIG. 1.2 is pushed by four beams: one falling and
one outgoing at each side of the mirror, i.e.:

Ftot = Fpe + Fpf − Fpg − Fph. (1.39)

Throughout this thesis the radiation pressure is considered on the mirrors bounding a
cavity, in this case a Fabry-Perot cavity, and therefore only two of the beams applies
the major force: the two from the inside of the cavity.
The expression for the squared modulus of the field, taken in the general form from

(1.1), contains two significant terms: the squared modulus of the zeroth approximation
term and the cross multiplication of the terms of the zeroth and the first order. The
first term is of the zeroth order and describes the strong constant pressure of the
carrier light. This value for a single beam is:

W0 = hωp|E|2. (1.40)

The second term, of the first order, describes the smaller, but in principle measurable,
influence of the perturbations in the field. The residuary term, formed by multipli-
cation of two small quantities, has the second order of smallness and is therefore
negligible. The radiation pressure of zeroth order is always constant, it is counter-
balanced by the forces of actuators and of the suspension pendulum, and is of no
interest. Radiation pressure in the first approximation of the both a descending E
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1.4. Radiation pressure Chapter 1. Fabri-Perot cavity

and a reflected F beams, which affect the dynamics of the detector, has the following
appearance:

F̂p(t) = 2
~ωp

c

∞∫
−∞

[
E∗ê(ωp + Ω) + Eê†(ωp − Ω)

]
e−iΩt

dΩ

2π
. (1.41)

This expression was obtained in assumption of high mirror reflectivity, meaning the
approximate equality of the descending and reflected beams, and neglecting the in-
fluence of optical frequency oscillation

RE ≈ 1, (1.42a)
Ω� ωp. (1.42b)

The formula for radiation pressure, obtained by substituting of the explicit expres-
sion for the field, considered on the mirror inside the Fabry-Perot cavity (1.24),

F̂p(t) =

∞∫
−∞

(F̂fluct(Ω)−K(Ω)X(Ω))e−iΩt
dΩ

2π
, (1.43)

consists of the fluctuational:

F̂fluct(Ω) =
2i~ωp

c

√
γ

τ

[
E∗â(ωp + Ω)

`∗(Ω)
− Eâ†(ωp − Ω)

`(−Ω)

]
(1.44)

and the ponderomotive K(Ω)X(Ω) parts with:

K(Ω) =
4ωpW0δ

cL`(Ω)`∗(−Ω)
, (1.45)

where W0 is the power from (1.40).

1.4. Dynamics of the mirrors in the Fabry-Perot
cavity

The mirrors in a gravitational-wave detector are suspended as pendulums with the
low-frequency resonance, therefore they are well isolated and can be considered as
free masses at frequencies of GW. According to the Newton’s second law, the motion
of the mass center of such a mirror is caused by the external forces, which we divide
into radiation pressure force Fp(Ω), and the other non-optical external forces Fno(Ω).
Easy to show, that radiation pressure has the equal influence on both mirrors within
approximations R ≈ 1 and Ω � ωp . The non-optical external forces include the
external displacement noise forces Fdis(Ω) and the influence of gravitational waves,
which is a force in a local-Lorentz frame Fgw(Ω). The equations for the central masses
of the mirrors (see FIG. 1.2) read:

−miΩ
2Xcm i(Ω) = −Fp(Ω) + Fno i(Ω), (1.46a)

−meΩ2Xcm e(Ω) = Fp(Ω) + Fno e(Ω), (1.46b)
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Chapter 1. Fabri-Perot cavity 1.5. Detection of output fields

where

FNO i(Ω) = Fex i(Ω), (1.47a)
FNO e(Ω) = Fex e(Ω) + Fgw e(Ω). (1.47b)

The field on the output (1.30,1.31) is sensitive not only to the central mass displace-
ment of the mirror Xcm(Ω), but also to the displacement of the surface with respect
to the mass center Xsurf(Ω), caused by internal thermal noises of the mirror, so for
the measured displacement components of (1.27b) we have:

Xi(Ω) = Xcm i(Ω) +Xsurf i(Ω), (1.48a)
Xe(Ω) = Xcm e(Ω) +Xsurf e(Ω). (1.48b)

The optical spring, however, affects only to the motion of mass centers, therefore the
displacement of surface is left unaffected.
The solution of (1.46), obtained by taking into account the optical spring part of

Fp, gives the following expression for the measured displacement:

X(Ω) =
−F̂fluct(Ω)− F̂ex(Ω) +mΩ2Xsurf(Ω)− Fgw(Ω)

mΩ2 −K(Ω)
, (1.49)

with the equivalent quantities:

m =
memi

me +mi
, (1.50a)

Fex(Ω) =
miFdis e(Ω)−meFdis I(Ω)

me +mi
, (1.50b)

Xsurf(Ω) = Xsurf E(Ω)−Xsurf i(Ω), (1.50c)

Fgw(Ω) =
m

me
Fgw e(Ω). (1.50d)

We see that optomechanical properties of the Fabry-Perot cavity may be described by
the mechanics of a cavity with one fixed mirror. There’s a correspondence between
the masses, position of mass centers and the fields of these equivalent systems. The
displacement noise in general case is not the subject to this equivalence.

1.5. Detection of the output field in a Fabry-Perot
cavity. Spectral density of coordinate, force and
correlated noise

The motion of the mirror, caused by the GW, is measured by the Fabry-Perot cavity
via the phase shift of the output field b (see FIG. 1.2) with respect to the initial mirror
position, corresponding to the preset detuning of the mirror. The field is detected by a
homodyne detection, by interfering it with the so called local oscillator, the reference
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1.5. Detection of output fields Chapter 1. Fabri-Perot cavity

beam, synchronized with the carrier laser, with some preset homodyne phase φlo. The
interference of the output signal with the local oscillator on a beam splitter gives a
sum and a difference of their fields. By the subtraction of the signals from detection
of these two fields, we keep only the following term:

Îdet(t) ∼ Êb(t) sin(ωpt+ φlo). (1.51)

The substitution of the field (1.1) with its amplitude (1.30a) give the explicit ex-
pression for the signal in the photocurrent:

Îsig(t) =
1

i

∞∫
−∞

√
2π~ω
Ac

(r̂(Ω) + k(Ω)X(Ω)) e−iΩt
dΩ

2π
, (1.52)

where

r̂(Ω) =

[√
γI√
γ

â(ωp + Ω)−
√
γe√
γ

ĝ(ωp + Ω)

]
eiφlo−

−
[√

γI√
γ

â†(ωp − Ω)−
√
γe√
γ

ĝ†(ωp − Ω)

]
e−iφlo (1.53a)

and

k(Ω) =

√
γI

τ

2ωp

c

[
eiφloE

`(Ω)
− e−iφloE∗

`∗(−Ω)

]
. (1.53b)

The ground state oscillation r̂(Ω) gives an additional noise to the detected signal, and
is referred to as shot noise. For some tasks it is more convenient to present the shot
noise reduced to mirror motion:

x̂(Ω) =
r̂(Ω)

k(Ω)
, (1.54)

a so-called coordinate noise. It is a quantity, describing the properties of the real
detected shot noise, as if it arose from some imaginary noisy mirror motion.
In Heisenberg picture the noise of a quantum quantity α̂(Ω), caused by the ground

state oscillations, reads

2πδ(Ω− Ω′)Sα(Ω) =
〈
0
∣∣α̂(Ω)α̂†(Ω′)

∣∣ 0〉
sym

, (1.55)

The spectral density of coordinate noise (1.54) is therefore:

Sx(Ω) =
c2τ

16γIω2
p|E|2

|D(Ω)|2

(δ cosφh + γ sinφh)2 + Ω2 sin2 φh

, (1.56)

where
φh = φlo + φargE, (1.57)

and
D(Ω) = (iΩ + γ)2 + δ2. (1.58)
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The homodyne angle φh determines the quadrature of the output field detected
by the homodyne detector. For tuned detector δ = 0 the minimal noise corresponds
to the quadrature with φh =

π

2
, carrying the GW signal, which is conventionally

called phase quadrature. The orthogonal quadrature with φh = 0 gives us the infinite
noise in a tuned case, meaning absence of the signal component. This quadrature is
called amplitude. Detuning changes the quadrature carrying the signal component.
The angle φh minimizing the noise for each detuning δ, determines the quadrature
carrying the signal.
The coordinate noise operator consists of two factors: the shot noise on the pho-

todetector r̂(Ω) and transfer function of the Fabry-Perot cavity k(Ω). Easy to show
that the shot noise is white:

Sr(Ω) = 1. (1.59)

Therefore the frequency dependence of the coordinate noise comes from the resonant

transfer function, and is the inverse square of it Sx(Ω) =
1

|k2(Ω)|
.

The other influence of the ground state oscillations is radiation pressure noise
Ffluct(Ω), the spectral density of which, according to (1.44) and (1.55), is:

SF (Ω) =
4~2ω2

pγ

c2τ
|E|2 γ

2 + δ2 + Ω2

|D(Ω)|2
. (1.60)

The electrical field on the mirror, caused by the injected fluctuations, is proportional
to transfer function of the cavity, therefore the radiation pressure noise, acting on the
mirror, has the resonant properties. The fluctuating force is proportional to the
quantum oscillations inside cavity, and therefore is also proportional to the transfer
function of the cavity. The influence of the force on the mirror motion is affected by
the optomechanical term K(Ω) −mΩ2. Therefore, the radiation pressure noise in a
simple case, with strong detuning and negligible optical spring, (i) decreases as 1

Ω2 at
low frequencies, (ii) has local steepness increasing and decreasing around the tuning
frequency and (iii) decreases as 1

Ω4 at high frequencies.
Since both parts of quantum noise, the coordinate (1.54) and the radiation pressure

(1.44) noises, are caused by the ground state oscillations injected from the input
mirror, they are not independent. The correlation for the two quantities α and β
caused by the injections in general case in the same Heisenberg picture reads similarly
to (1.55):

2πδ(Ω− Ω′)Sαβ =
1

2

〈
0
∣∣∣α̂(Ω)β̂†fluct(Ω

′)
∣∣∣ 0〉

sym
. (1.61)

Substituting the corresponding expressions we get the correlation between coordinate
and force noises:

SxF = −~
2

δ sinφh − γ cosφh + iΩ cosφh

γ sinφh + δ cosφh − iΩ sinφh
. (1.62)
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1.6. Detection of gravitational waves. The noise,
reduced to GW strain

The gravitational waves are the perturbations of the metrics of time-space. The strain
of the wave passing the detector perpendicular to its plane has two polarizations

h(Ω) = h+(Ω) + h×(Ω). (1.63)

Since the cavity is placed along the x-axis, it will be sensitive to h+(Ω) polarization
only. Gravitational wave, passing the detector, in the local-Lorentz frame acts on the
end mirror of the cavity with the moving force, which reads in linear approximation:

FGW = mΩ2Lh+(Ω). (1.64)

The influence of the desired quantity h+(Ω) in the measured photo current is worsen
by the mentioned sources of noises that are conventionally reduced to the GW strain:

Îdet =
1

i

∞∫
−∞

√
2π~ω
Ac

k1(Ω)(ĥ(Ω) + h+(Ω))e−iΩt
dΩ

2π
, (1.65)

where

ĥ(Ω) =
2

mΩ2L
(mΩ2 −K(Ω))x̂(Ω)− 2

mΩ2L
F̂fluct(Ω) +

2

L
Xdis(Ω), (1.66a)

k1(Ω) = k(Ω)
mΩ2L

2(mΩ2 −K(Ω))
. (1.66b)

The term Xdis(Ω) is formed here from the displacement of the surface mirror with re-
spect to mass center Xmc(Ω) and the equivalent free mass displacement corresponding

to the external noise forces − Fext

mΩ2
. It describes the displacement noise of the mirror

surface, both external and internal thermal, with respect to the inertial frame. So
this noise, reduced to the GW strain, is independent from the optical spring effect
and the optical cavity configuration. The displacement noise is usually stationary:

Sdis(Ω)2πδ(Ω− Ω′) = 〈Xdis(Ω)Xdis(Ω
′)〉 (1.67)

It is also the subject to the dissipation-fluctuation theorem.
The spectral density of the whole quantum noise, reduced to the gravitational wave

strain, may be obtained from the corresponding terms of (1.66a) into (1.55). The
The spectral density resulting from this operation, as well as the previous frequency-
domain quantities dependent on Ω, is double-sided, meaning it is determined for
both positive and negative sideband frequencies. However the positive frequencies
are usually much clearer intuitively, therefore the noise is conventionally described
by single-sided spectral density, differing from the double sided by factor of 2. So,
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transforming term with cross-corelated noise we obtain:

Sh+(Ω) =
8

m2Ω4L2

(
|K(Ω)−mΩ2|2Sx(Ω)+

+ 2<
[
(K(Ω)−mΩ2)SxF (Ω)

]
+ SF (Ω) + Sdis(Ω)

)
. (1.68)

For convenience we omit the index "+" below.
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CHAPTER 2

GEO600

2.1. GEO600. Fields in equivalent cavities

G EO600 is a ground-based detector operating near Hanover, Germany. Its main
optical layout is shown in figure 2.1 and is described in introduction. The only

difference of this layout from the actual one is the folded arms, and this difference
will be considered later in section 2.3.
The electromagnetic fields inside GEO600 may be described using the same physical

grounds as the fields of a Fabry-Perot cavity in chapter 1: the propagation through the
vacuum, the reflection from the mirrors, the radiation pressure, the losses, replaced
by the equivalent transparency of the end mirror. The physical parameters of the
GEO600 elements we use in this work are represented in table 2.1 along with their
expressions, descriptions and typical values in the current operation regime. The
parameters of the laser used in GEO600 one can find in table 2.2.
The fields in GEO600 may be effectively separated into the power and the signal

recycling cavities: the first is formed by the PRM and the end-mirrors, the latter one is
formed by the SRM and the end-mirrors. The expressions for the fields, corresponding
to these two cavities read:

ê(ω) =≈
i

√
γp

τ
â(ω)eikLi + i

kp

τ
Xsrc(Ω)E + i

√
γf

τ
q̂1(ω)

γp + γf − iΩ
−

−

1

2
(γe − γn + iδωdf ) ĥ(ω)

γp + γf − iΩ
, (2.1)
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Figure 2.1.: Electromagnetic field in GEO 600
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Table 2.1
Symbol Quantity Expressions via Typical value

other quantities
Power losses

|Am|2 on each mirror and 130 ppm (10−6)
BS
Scattering on

|Abs|2 the beamsplitter 60 ppm

Amplitude losses
Ae in the east arm

√
3|Am|2 + |Abs|2 2.5× 10−2

Amplitude losses
An in the north

√
3|Am|2 2.0× 10−2

arm
Amplitude losses

Af in the equivalent

√
A2

e +A2
n

2
2.3× 10−2

end mirror
Amplitude transmittance

Tp of the power
√

900 ppm 3.0× 10−2

recycling mirror (PRM)
Amplitude transmittance

Ts of the current signal
√

0.1 0.32
recycling mirror (SRM)
Amplitude transmittance

Ts of the SRM, optimal for Af 2.3× 10−2

dynamical tuning
Half-bandwidth of
the equivalent
interferometer

γe with mirror
A2

ec

4L
26.9 1/s

reflectivities
-1 and Ae

Half-bandwidth

γn corresponding to
A2

nc

4L
24.4 1/s

north mirror
Half-bandwidth

γp corresponding to
T 2

p c

4L
56.3 1/s

PRM
Continued on next page
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Table 2.1 – continued from previous page
Symbol Quantity Expressions via Typical value

other quantities
Half-bandwidth

γs corresponding to
T 2

s c

4L
1250 1/s

SRM
Half-bandwidth
corresponding to

γf the equivalent
γe + γn

2
25.6 1/s

end mirror

Length of one-
L way trip of light 1200 m

in arm
Time of one-

τ way trip of light
L

c
4.0× 10−6s

in arm
Dark-fringe

δLdf length offset
δφfc

2ωp
12 pm (40 pm?)

Dark-fringe

δφf phase offset
2ωpδLdf

c
1.4× 10−4 rad

Dark-fringe

δωdf offset of arms’
δφf

2τ
18 rad/s

eigenfrequency
Frequency detuning

δ of signal 2ωp
Ls + L

c
1-10000 1/s

recycling cavity
Mass of an actual

mm GEO600 end-mirror 5,6 kg

Mass of an equivalent
me GEO600 end-mirror

mm

5
1,12 kg

in a straight arm
Continued on next page
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Table 2.1 – continued from previous page
Symbol Quantity Expressions via Typical value

other quantities
Mass of an equivalent

m Fabry-Perot cavity
me

2
2,24 kg

end mirror
Mass of a

mbs beamsplitter 9,3 kg
in GEO600

Table 2.1.: Parameters of GEO600 used in this thesis

and

ĥ(ω) ≈
i

√
γs

τ
ẑ(ω)eikLs + i

√
γf

τ
q̂2(ω)eikLs +

Rskp

τ
X(Ω)E

γs + γf − i (δ + Ω)
−

− iRs
γe − γn + iδωdf

2 (γs + γf − i (δ + Ω))
ê(ω). (2.2)

The equations (2.1) and (2.2) are equivalent to the expression of the fields inside
a Fabry-Perot cavity (compare with (1.24b) and (1.25b)). The field in the power
recycling cavity carries the information about the common end-mirror motion (B.42)
and the differential mode of ground-state field injections (B.39b), while the one in
signal recycling cavity – about the differential end-mirror motion (B.55), as if it was
caused by the motion of the equivalent mirror, and the common mode of ground-state
field injections (B.51). The field from the orthogonal modes are injected only with
the leaking from signal recycling mode due to dark-fringe offset and the differential
end-mirror losses.
The detailed derivation of these two fields as well as the influence of leaks from

orthogonal modes are presented in appendix (B).

2.2. Detection of the field in GEO600
The field ĥ(ω) from (B.59) with neglected corrections from the leaks is equivalent to
the field inside the Fabry-Perot cavity (1.24a,1.24b). The only difference is the zeroth
order field in the term with the differential end-mirrors motion: in the expression for
the Fabry-Perot cavity it is caused by the field on the end-mirror, while in GEO600
it is caused by the field E on the beamsplitter, the phase of which corresponds to a
phase of light on the distance Ls from the SRM. It means that field on the output of
the detector is described with the following equation, equivalent to (1.30a):

ŷ(ω) =

√
γsẑ(ω)−√γf q̂2(ω)

√
γ

− i2
√
γs

τ
Ekp

X(Ω)

`(Ω)
e−ikpLseiδφ/2, (2.3)
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Table 2.2.: Laser parameters used in this thesis
Symbol Quantity Expressions via Typical value

other quantities

Wa Input laser power ~ωp|A|2 3.2 W

Power inside 4.08 kW

We power recyclling WA

T 2
p(

T 2
p

2
+
A2

f

2
+ 3

A2
m

2

)2 Experimental at 2013

cavity 2 - 5 kW
Wavelength of laser

λ light 1064 nm

Pumping frequqncy

ωp of laser light
2πc

λ
1.8× 1015 rad/s

Considered frequency
ω of quantum field 1.8× 1015 rad/s

Considered frequency
Ω of signal and noise ω − ωp 10− 10000 rad/s

spectrum
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where the new, rotated, annihilation operators are introduced similar to (1.28):

ẑnew(ω) =
`∗2(Ω)

`2(Ω)

√
γsẑ(ω) +

√
γf q̂2(ω)eiδφ/2
√
γ2

, (2.4a)

q̂2(new)(ω) =
−√γsq̂2(ω)eiδφ/2 +

√
γf ẑ(ω)

√
γ2

. (2.4b)

This field together with the dark-fringe offset (B.34) is detected on the photodiode.
The first order term is obtained after the filtering out the zeroth order dc-component:

Idet(t) =
2π~ωp

Ac
Y0

∞∫
−∞

(r̂(Ω) + k(Ω)X(Ω)) e−iΩt
dΩ

2π
, (2.5)

where:

r̂(Ω) =

√
γs

γ

(
e−iφY ẑ(ωp + Ω) + eiφY ẑ†(ωp − Ω)

)
−

−
√
γf

γ

(
e−iφY q̂2(ωp + Ω) + eiφY q̂†2(ωp − Ω)

)
, (2.6a)

k(Ω) = i2

√
γs

τ

ωp

c
|E|
[
− e

iφh

`(Ω)
+

e−iφh

`∗(−Ω)

]
, (2.6b)

where

φh = arctan
δωdf

γn − γe
− arctan

δ

γs + γe
(2.7)

is a homodyne angle (compare to (1.57)).
We have introduced a so-called displacement noise in section 1.5, that describes the

equivalent noise of the mirror displacement caused by shot noise on the photodetector.
The spectral density of this noise can be calculated from (1.54) using (1.55):

Sx(Ω) =
c2τ

16γsω2
p|E|2

|D(Ω)|2

(δ cosφh + γ2 sinφh)
2

+ Ω2 sin2 φh
, (2.8)

where
D(Ω) = (iΩ + γ2)2 + (δ)2, (2.9a)

and
γ2 = γs + γf . (2.9b)

Comparing (2.8) and (1.56) one can see the equivalence of the coordinate noise of
GEO600 to the coordinate noise of a Fabry-Perot cavity.
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Figure 2.2.: GEO folded arm. A straight arm, equivalent to it
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2.3. Equivalent straight arm

In contrast to the original Michelson interferometer with a single mirror in the arms,
and to other gravitational wave detectors with Fabry-Perot cavities an arms, GEO600
has so-called folded arms. The second mirror in the folded arm, is placed near the
beamsplitter above the beam, forming a delay line instead of a Fabry-Perot cavity
(see figure 2.2).

The dynamics of the mirrors, moved by radiation pressure and gravitational waves,
is expressed in the following equations:

−mmXmc fe(Ω)Ω2 = −mm
L

4
Ω2h(Ω) + 2F̂p(Ω), (2.10a)

−mmXmc ne(Ω)Ω2 = F̂p(Ω), (2.10b)

where L is an optical length of the arm.
Similar to the dynamics of the mirrors of a Fabry-Perot cavity, described in sec-

tion 1.4, the mirrors of the folded arms are also affected by the internal and the
external noisy forces, causing an additional displacement of their mass centers and
of surfaces with respect to mass centers. These displacements influence on both the
measured quantity, and on the optical spring effects of radiation pressure. Similar
to the dynamics of the Fabry-Perot cavity, this noisy displacements can be expressed
as an equivalent displacement noise in the output signal. However, it doesn’t affect
the optomechanical properties of the detector with respect to the gravitational wave
influence. Therefore, in this section we omit the consideration of the displacement
noises, assuming laser measures the displacement of the mass centers of the mirrors,
caused by radiation pressure and gravitational waves only.
Under these assumptions, the overall phase shift, caused by the reflection from the

folded arm, may be described by the reflection (see (1.4)) from the equivalent mirror
with the displacement:

Xe(Ω) = 2Xfe(Ω) +Xne(Ω) =
L

2
h(Ω)− F̂p(Ω)

meΩ2
, (2.11)

the response of which to the radiation pressure and to the gravitational wave is ex-
plained by the equivalent mass

me =
mM

5
, (2.12)

and distance L from the beamsplitter to the equivalent mirror.
The optical properties of the mirror are defined by the reflectivities of the mirrors:

Re = (−Rfe)2(−Rne). (2.13)
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2.4. Radiation pressure force on the end-mirrors.
Spectral density of radiation pressure.
Correlation between coordinate and radiation
pressure noise

The differential motion of the equivalent end-mirrors (B.55) measured on the pho-
todiode is affected and disturbed by radiation pressure. The ponderomotive force is
dependent on the motion of the mirror surfaces, i.e. both mass center positions and
the displacements of the surface with respect to mass center. This relative motion of
the surface however do not affect the influence of gravitational waves and radiation
pressure on the output signal, it only transforms the displacement noises in non-trivial
way. Since the displacement motions are not the object of this work, we would omit
the relative displacement of the surface, assuming the optical spring effect depends
only on the mass center position.
The motion law of the two equivalent end-mirrors of GEO600 (see figure 2.1) is

following:

−meΩ2Xn(Ω) = F̂ n
fluct(Ω)−Kn(Ω) (Xn(Ω)−Xe(Ω)) + Fgw(Ω), (2.14a)

−meΩ2Xe(Ω) = F̂ e
fluct(Ω)−Ke(Ω) (Xn(Ω)−Xe(Ω))− Fgw(Ω), (2.14b)

where F̂ n
fluct(Ω), F̂ e

fluct(Ω),Kn(Ω) and Ke(Ω) are defined by formula (1.41) The force,
acting by the gravitational wave on the mirror:

Fgw(Ω) =
1

2
meΩ2Lh(Ω). (2.15)

The optical behavior of the signal recycling mirror, as it was shown in section B.6, is
equivalent to the Fabry-Perot cavity with a mirror making differential motion (B.55).
The dynamical behavior of this equivalent mirror is described as following:

X(Ω) ≡
F̂fluct(Ω) +

1

2
mΩ2Lh(Ω)

K(Ω)−mΩ2
, (2.16)

where the following equivalent quantities are introduced:

F̂fluct(Ω) ≡ F̂ e
fluct(Ω)− F̂ n

fluct(Ω) =

− 2~ωp

c
×


√
γs

τ
ẑ(ωp + Ω) +

√
γf

τ
q̂2(ωp + Ω)

γs + γf − i (δ + Ω)
E∗ +

+

√
γs

τ
ẑ†(ωp − Ω) +

√
γf

τ
q̂†2(ωp − Ω)

γs + γf + i (δ − Ω)
E

 (2.17a)
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K(Ω) ≡ Ke(Ω)−Kn(Ω) =
2~ω2

p|E|2δ
c2τ`2(Ω)`∗2(−Ω)

, (2.17b)

m =
me

2
, (2.17c)

`2(Ω) = γs + γf − i(δ + Ω). (2.17d)

The fluctuational forces and optical rigidity, defined by the zeroth order field E and
equivalent mirror motion X(Ω), are deduced from (B.6), (B.7) and (1.41). From
these quantities follows the equivalent mass m of the Fabry-Perot cavity, describing
dynamical properties of the detector. The spectral density of the equivalent radiation
pressure noise, found with (1.55) from (2.17a), reads:

SF (Ω) =
4~2ω2

pγ2

c2τ
|E|2 γ

2
2 + δ2 + Ω2

|D2(Ω)|2
. (2.18)

The correlation between radiation pressure and coordinate noises is, according to
(1.61), using (1.54):

SxF (Ω) = −~
2

δ sinφh − γ2 cosφh + iΩ cosφh
γ2 sinφh + δ cosφh − iΩ sinφh

. (2.19)

The noise, reduced to the gravitational wave, is determined by (2.5), (2.6) and
(2.16):

ĥ(Ω) =
2

mΩ2L

[(
K(Ω)−mΩ2

)
x̂(Ω) + F̂ (Ω)

]
. (2.20)

Therefore, the doubled, single-sided spectral density of the full quantum noise of
GEO600, scaled to gravitational wave strain may be found from this expression:

Sh+(Ω) =
8

m2Ω4L2

(∣∣K(Ω)−mΩ2
∣∣2 Sx(Ω)+

+ 2<
[(
K(Ω)−mΩ2

)
SxF (Ω)

]
+ Sf(Ω)

)
. (2.21)

For convenience we again omit the index "+" below.

2.5. Radiation pressure noise on a beamsplitter
The GEO600 is a detector without Fabry-Perot cavities in arms, therefore the full
power of the laser beam interacts also with the beamsplitter. The part of the beam,
reflecting from the beamsplitter applies a pressure, including the noisy influence due
to the shot noise and ponderomotive force, similar to the beam, reflecting from the
mirror. This pressure causes the jittering of the beamsplitter, and this causes the
additional noise disturbances into the output field.
The motions of the beamsplitter, depicted in figure 2.3, introduces the disturbances

of phase shift into the reflected light. The phase of light on the scale of the beam-
splitter size may be represented with the following function:

φ(x, y) = φ(0, y)eikpx. (2.22)
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Figure 2.3.: Motions and fields of a beamsplitter
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The equation for the reflecting mirror surface is following:

y(Ω) = x(Ω)−Xbs(Ω) + Ybs(Ω) (2.23)

The shift between phases of the beams at the displaced and at resting beamsplitter
is then:

δφ = φ(x(Ω), y(Ω))− φ(y(Ω), y(Ω)) ≈ ikpXr(Ω), (2.24)

where

Xr(Ω) = Xbs(Ω)− Ybs(Ω) (2.25)

is an optical displacement, or displacement of the reflection point, of the beamsplitter.
The small phase shifts for the zeroth approximation fields introduces the corrections

of the first order of smallness, therefore the corrections, introduced by fields falling
from the dark port are negligible. The displacement of the beamsplitter introduces the
phase shift only to the beams, propagating into x-axes, because the distance between
the point of reflection and the the north mirror doesn’t change. There will be no
additional phase shift into the transmitted beams.
The following perturbations of the fields at the point of reflection caused by the

beamsplitter motions make the influence to the measurements:

êr(ω) = ê(ω) + ikpXr(Ω)E, (2.26a)

îr(ω) = î(ω)− ikpXr(Ω)I, (2.26b)

f̂r(ω) = f̂(ω)− ikpXr(Ω)F. (2.26c)

These perturbations introduce the following corrections into the input-output rela-
tions of GEO600 (see section B.1):

k̂(ω) = i

√
2

2
ĥ(ω)−

√
2

2
ê(ω)− i

√
2

2
kpXr(Ω)E, (2.27a)

f̂(ω) = i

√
2

2
î(ω)−

√
2

2
l̂(ω)− ikpXr(Ω)E, (2.27b)

ĝ(ω) = i

√
2

2
l̂(ω)−

√
2

2
ˆi(ω) +

1

2
kpXr(Ω)E. (2.27c)

They introduce the corresponding corrections into the first order fields of the power
and of the signal recycling modes:

ĥ(ω) = i

√
γ2

τ

eiδφ/2

`∗2(Ω)
ẑnew(ω) +

kpE

τ`2(Ω)

(
X(Ω)− 1

2
Xr(Ω)

)
eiδφ , (2.28a)

ê(ω) = −
√
γ1

τ

ânew(ω)

`∗1(Ω)
− i kpE

τ`1(Ω)

(
XI(Ω) +Xsrc(Ω) +

3

4
Xr(Ω)

)
. (2.28b)
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Here there were used the rotated annihilation operators: from (2.4) and

ânew(ω) =
`∗1(Ω)

`1(Ω)

√
γPâ(ω) +

√
γf q̂1(ω)

√
γ1

, (2.29a)

q̂1(new)(ω) =
−√γPq̂1(ω) +

√
γf â(ω)

√
γ1

. (2.29b)

The field inside the signal recycling cavity with the resting beamsplitter is sensitive
to the differential motion of mirror, caused by the gravitational waves. The motion of
the beamsplitter, caused by the radiation pressure, however introduces the additional
perturbations to the field, effectively changing the signal end-mirror motion toX(Ω)−
1

2
Xr(Ω) instead of X(Ω).
This equivalent mirror motion defines the signal in the photodiode current via (2.5):

Idet(t) =
2π~ωp

Ac
Y0

∞∫
−∞

(
r̂(Ω) + k(Ω)

(
X(Ω)− 1

2
Xr(Ω)

))
e−iΩt

dΩ

2π
, (2.30)

where r̂(Ω) and k(Ω) are identical to those from (2.6). Therefore the beamsplitter
pushed by the radiation pressure noise doesn’t change the coordinate noise Sx(Ω)
(2.8).
The consideration of the radiation pressure noise requires the joint consideration of

dynamics of the beamsplitter and the end-mirrors.
The laser fields on the beamsplitter, the radiation pressure of which is set in (1.41),

push considerably from the north in the vertical direction, also from the east and
from the PRM side in horizontal direction. The fields, pushing from the direction of
the SRM is negligible, since the fields are very small there. The corresponding combi-
nation of the Newtons’ Law equations for the coordinates of the beamsplitter, defines
the displacement of the reflection surface Xr(Ω) caused by this radiation pressure as
following:

−mbsΩ
2Xr(Ω) = F̂bs(Ω), (2.31)

where the equivalent force, causing the displacement is

F̂bs(Ω) =
2~ωp

c

(
E∗ê(ωp + Ω) + Eê†(ωp − Ω)

)
−

− 2i
~ωp

c

(
E∗ĥ(ωp + Ω)− Eĥ†(ωp − Ω)

)
, (2.32)

and mbs is the mass of the beamsplitter.
The dynamics of the end mirrors, caused by radiation pressure (1.41) and gravita-

tional wave can be described in the following way (compare to (2.14)):

−mΩ2X(Ω) = F̂ (Ω) +
1

2
mΩ2Lh(Ω), (2.33)

where
F̂ (Ω) = 2i

~ωp

c

(
E∗ĥ(ωp + Ω)− Eĥ†(ωp − Ω)

)
. (2.34)
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The joint dynamics of the beamsplitter and the differential mirror motion may
be simplified by the division of the fields, acting on it, to those from the power
recycling cavity and from the signal recycling cavity. The radiation pressure, caused
by fields from the signal recycling cavity is equal to the equivalent force F̂ (Ω), acting
on the differential motion of the end-mirrors. Therefore, the radiation pressure on
the beamsplitter may be represented in the following way:

F̂bs(Ω) = ∆F̂ (Ω)− F̂ (Ω), (2.35)

where the pressure from the fields of the power recycling cavity is additional to the
usual fields from the signal recycling cavity:

∆F̂ (Ω) =
2~ωp

c

(
E∗ê(ωp + Ω) + Eê†(ωp − Ω)

)
. (2.36)

The field ê(ω), as it follows from (2.28b), contains the dependence on the optical
displacement of the beamsplitter, therefore should introduce the optical rigidity into
this motion. However, the optical spring factor KPRC(Ω) in the Fabry-Perot cavity, to
which the power recycling cavity is equivalent, is proportional to the detuning of the
cavity according to (2.17b). To achieve the maximal light power, the power recycling
cavity is tuned to the carrier frequency of the laser, therefore KPRC(Ω) equals to zero.

As it follows from (1.41) and (2.28a), the radiation pressure force F̂ (Ω), acting on
the differential end-mirror motion in the signal recycling cavity, can be described in
the following way (compare with (2.16)):

F̂ (Ω) = F̂fluct(Ω)−K(Ω)

(
X(Ω)− 1

2
Xr(Ω)

)
, (2.37)

where F̂fluct(Ω) and K(Ω) are the same as in (2.17a) and (2.17b) correspondingly.
The joint dynamics of the beamsplitter and the end-mirrors in the signal recycling

mode is described by the following Newton equations:

−mΩ2X(Ω) = F̂fluct(Ω)−K(Ω)X(Ω) +K(Ω)Xr(Ω) +meΩ2Lh(Ω), (2.38a)

−mbsΩ
2Xr(Ω) = ∆F̂ (Ω)− 2F̂fluct(Ω) + 2K(Ω)X(Ω)− 2K(Ω)Xr(Ω). (2.38b)

The solution of this equation system gives the following motion of the end-mirror
in the equivalent signal recycling cavity:

X(Ω)− 1

2
Xr(Ω) =

F̂fluct(Ω)

(
1 +

m

mbs

)
− ∆F̂fluct(Ω)

2

m

mbs
+
m

2
Ω2Lh(Ω)

K(Ω)

(
1 +

m

mbs

)
−mΩ2

. (2.39)

F̂fluct(Ω) in this expression is equivalent to the one in (2.17a). Since the coordinate
noise also doesn’t change, the expressions for the spectral density for the coordinate
Sx(Ω), radiation pressure SF (Ω) and correlation noise SxF (Ω) are the same, as in
section 2.4.
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The spectral density of the radiation pressure of the fields in the power recycling
mode, calculated with (1.55), reads:

S∆F =
4~2ω2

pγ1|E|2

c2τ(γ2
1 + Ω2)

. (2.40)

Then the single-sided spectral density of the full quantum noise of GEO600 with the
included radiation pressure on the beamsplitter, scaled to gravitational wave strain,
is following:

Sh+(Ω) =
8

m2Ω4L2

(∣∣∣∣K(Ω)

(
1 +

m

mbs

)
−mΩ2

∣∣∣∣2 Sx(Ω)+

+ 2<
[(
K(Ω)

(
1 +

m

mbs

)
−mΩ2

)(
1 +

m

mbs

)
SxF (Ω)

]
+

+

(
1 +

m

mbs

)2

Sf(Ω) +
m2

m2
bs

S∆F

)
. (2.41)

As usual, we omit index "+" below.
The asymptotic case of the beam splitter with the infinite mass mbs corresponds

to the detector with the resting beamsplitter. Logically, under this assumption (2.41)
turns to (2.21).
The influence of the radiation on the beamsplitter, considered in this section, is

shown on the figure 2.4, where spectral densities of GEO600 with and without radi-
ation pressure on the beamsplitter are represented.

2.6. Squeezed vacuum
The sensitivity of GEO600 is shot-noise limited at the high frequencies. The quantum
effects cause the uncertainties, or noise, in two orthogonal light quadratures, e.g. the
number of photons and their phase. The quantum noise of both quadratures is equal
in the ground state, and is subject to the uncertainty principle of Heisenberg. The
injection of the squeezed vacuum [54,71,73–75] into the dark-port decreases the noise
along one of the light quadratures, increasing it in the orthogonal one, keeping the
uncertainty principle. The scheme of the shot-noise injection is depicted on figure 2.5.
Mathematically it is described by the changing of the ground state shot noise at the
dark port into:

|ζ〉 = Ŝ(R) |0ζ〉 (2.42)

The correction to the annihilation and creation operator of the injected to the dark
port fields ẑ(ω) and ẑ†(ω), caused by the squeezed state at the dark port is described
by the equation (A7) in [54]:

Ŝ†(R)ẑ(ωp + Ω)Ŝ(R) = ẑ(ωp + Ω) coshR+ ẑ†(ωp − Ω)e2iθ sinhR, (2.43a)

Ŝ†(R)ẑ†(ωp − Ω)Ŝ(R) = ẑ†(ωp − Ω) coshR+ ẑ(ωp + Ω)e−2iθ sinhR. (2.43b)

44



Chapter 2. GEO600 2.6. Squeezed vacuum

10 −1 10 0 10 1 10 2 10 3 10 4
10 −22

10 −21

10 −20

10 −19

10 −18

10 −17

 

 
Radiation pressure on the end mirror only.
Radiation pressure on the end mirrors and beam splitter.

Frequency, Hz

G
W

 s
tr

ai
n

Figure 2.4.: Comparison of spectral densities of the quantum noise in GEO600 with and
without influence of the radiation pressure on the beamsplitter.
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Figure 2.5.: GEO with squeezed vacuum
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It should be mentioned here, that this squeezing transformation is applied to initial,
non-rotated annihilation and creation operator.

This modification leads to the new expressions for the coordinate and the radiation
pressure force and correlated parts of quantum noise. The substitution of the new
dark-port injected field into (2.6) and (2.17a), expressed in the non-rotated operators,
turns them into:

x̂(Ω) = A1(Ω)ẑ†(ωp − Ω) +A2(Ω)ẑ(ωp + Ω)+

+A3(Ω)q̂†(ωp − Ω) +A4q̂(ωp + Ω), (2.44a)

F̂ (Ω) = B1(Ω)ẑ†(ωp − Ω) +B2(Ω)ẑ(ωp + Ω)+

+B3(Ω)q̂†(ωp − Ω) +B4q̂(ωp + Ω), (2.44b)

where

A1 =

[
`(−Ω)− 2γf

`∗(−Ω)
coshR+

`∗(Ω)− 2γf

`(Ω)
sinhRe2iθ1

]
eiφY

k(Ω)
, (2.45a)

A2 =

[
`(−Ω)− 2γf

`∗(−Ω)
sinhRe−2iθ1 +

`∗(Ω)− 2γf

`(Ω)
coshR

]
e−iφY

k(Ω)
, (2.45b)

A3 =
2
√
γSγfe

iφY

`∗(−Ω)

1

k(Ω)
, (2.45c)

A4 =
2
√
γSγfe

−iφY

`(Ω)

1

k(Ω)
, (2.45d)

and

B1 = −2
~ωp

c
|E|
√
γS

τ
eiφE

(
e2i(θ1−φh) sinhR+ coshR

) 1

`∗(−Ω)
, (2.46a)

B2 = −2
~ωp

c
|E|
√
γS

τ
e−iφE

(
e−2i(θ1−φh) sinhR+ coshR

) 1

`(Ω)
, (2.46b)

B3 = −2
~ωp

c
|E|
√
γS

τ
eiφE

1

`∗(−Ω)
, (2.46c)

B4 = −2
~ωp

c
|E|
√
γS

τ
e−iφE

1

`(Ω)
, (2.46d)

The spectral densities of the coordinate, radiation pressure and correlated parts of
quantum noise, followed from here, read:

Sx(Ω) =
1

2

(
|A1(Ω)|2 + |A2(Ω)|2 + |A3(Ω)|2 + |A4(Ω)|2

)
, (2.47a)

SxF (Ω) =
1

2
(A1(Ω)B∗1(Ω) +A2(Ω)B∗2(Ω) +A3(Ω)B∗3(Ω) +A4(Ω)B∗4(Ω)) , (2.47b)

Sf(Ω) =
1

2

(
|B1(Ω)|2 + |B2(Ω)|2 + |B3(Ω)|2 + |B4(Ω)|2

)
, (2.47c)

In expression for SxF we can use that ei(φE−φY ) = e−iφh .
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Figure 2.6.: Comparison of the spectral densities of the quantum shot noise, predicted by
the model of this chapter for GEO600, with the predictions of Finesse. The configuration
of the detector here slightly differs from the real configuration of GEO600

2.7. Comparison of the frequency-domain model with
the results of Finesse. Fitness with experimental
results

The frequency-domain model of the quantum noises, represented in this chapter, is
rather general. It predicts the sensitivity of GEO600 depending from all its param-
eters, including the masses, positions and the optical parameters of elements, and
properties of electromagnetic fields in the detector.
There is a widely accepted computer program Finesse [76], designed by Andreas

Freise to simulate the shot noise of GW detectors. The results of the model were
checked numerous number of times, and are trusted by the experimentalists working
in the field for GW detetors. We compared the shot noise of the GEO600 configuration
simulated by Finesse and calculated, using (2.21). The noises represented in figure 2.6
are calculated under the following assumptions: (i) the power on the beamsplitter
We = 2 kW, (ii) the detuning of the signal recycling cavity δ = 1 kHz, (iii) the
transmittance of the SRM, defining the bandwidth of the signal recycling cavity,
T 2

s = 2 %. The other parameters for the detector are taken from the tables 2.1, 2.2.
The model, described in this chapter fits to the results of the Finesse very well.
The quantum noise in GEO600 are dominate at high frequencies. At the other

frequencies the other noise overcome it. Therefore the proper comparison of the
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Figure 2.7.: Comparison of the theoretical noise prediction and the experimental GEO600
noise

current frequency-domain model is only possible at high frequencies. In figure 2.7
the model of squeezed quantum noise, defined by (2.21,2.47), is compared to the
real GEO600 noise measured on march, the 5th, 2013. GEO was operating at the
following parameters: (i) the power on the beamsplitter We = 2, 1 kW, (ii) tuned
detector δ = 0 kHz, (iii) the new low-reflectivity SRM with T 2

s = 10 %, (iv) and the
squeezed dark-port injection with the squeezing factor of 2 dB at the detector output.
The other parameters for the detector are also taken from the tables 2.1, 2.2. The
predictions of the model for the squeezed quantum noise coincide with the actually
measured noise.
Therefore, the model, described in this chapter, fits to the existing model of Finesse,

and to the real measured noise in GEO600 and is, therefore, trustworthy.

2.8. Quasi-stationary approximation of dynamical
tuning

The GW detector, more precisely the sensitive to GWs signal recycling mode, is
equivalent to a Fabry-Perot cavity. The shot noise on the photodiode, defined by
r̂(Ω) in (2.6a), is white, and its intensity is independent from the parameters of the
detector. The amplification of the GW inside the detector k(Ω)(2.6b), according to
the Airy function, has resonant features, defined mostly by the parameters of the
SRM: the halfbandwidth γs is defined by the transmittance of the SRM (B.32a), and
the resonant frequency δ, or detuning, is defined by the displacement of the SRM
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Figure 2.8.: Comparison of broad-band and narrow-band tunings. Effective quasi-stationary
quantum noise for dynamical tuning

from its resonant position (B.32b).
There are two typical operational regimes of the detector: (i) a narrow-band one,

when the small γ defines a high amplification of the signal in the low frequency band,
and (ii) a broad-band regime, when the high γ defines a moderate amplification for
a broad-band signal. Comparison of these regimes is presented in figure 2.8, where
the quantum noise of broad-band configuration is compared to the quantum noise
of the narrow-band configuration. All the noise curves, presented on the plot, are
calculated by the formula (2.21): the broad-band configuration contains the tuned
SRM with 10 % transmittance, in the narrow-band configuration the position of the
SRM corresponds to the tuning frequency, and has the 0,1 % transmittance. The
peak sensitivity at 100 Hz is less than at higher frequencies, because of the noticeable
influence of the radiation-pressure effects.
The broad-band regime is good for the signal with wide spectrum, while the narrow-

band regime fits to the signal sinusoidal signal with the constant frequency. The chirp
signal from the compact binary coalescences has a special in this sense shape: it has
a sinusoidal shape, with the carrier frequency significantly changing in time. Meers
and Krolak [52] have proposed a new way of precise detection of the chirp signal: its
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instantaneous frequency may be followed by the detuning of the detector.
When the frequency changes sufficiently slow, the fields in the detector approxi-

mately keep their stationary values, and this regime of detection may be considered
as quasi-stationary. The model for the quasi-stationary, in frame of which the results
in [52] were obtained, is following: each value of the carrier frequency lasts infinitely
long, and the changes of the interferometer detuning take an infinite amount of time to
occur. The spectrum of such a signal component would consist of the single frequency
component, and it will "see" only one point of the noise spectral density, correspond-
ing to this frequency. After the frequency of a signal passes the whole bandwidth,
the continuum of these points form a new, effective curve of spectral density during
the dynamical tuning detection. This effective spectral density, the set of the optical
resonances, is also depicted in figure 2.8. The quasi-stationary quantum noise curve
may be therefore calculated from (2.21), by setting the optical resonance condition
for each signal frequency: δ = Ω.

The quasi-stationary quantum noise, based on the following of the signal frequency
by the optical resonance of the cavity, is not optimal at lower frequency, as it shown
figure 2.8. Due to the optical spring the detector tuned optically e.g. to 500 Hz has
another resonance at the frequency around 70 Hz, where it provides much higher
sensitivity, than the detector, tuned optically to this frequency. The comparison of
quasi-stationary shot-noise and full quantum noise for the dynamical tuning, calcu-
lated from (2.21) and (2.8), is depicted in figure 2.9. As it follows from this figure, the
contribution of the radiation pressure effect becomes negligible at frequencies above
200 Hz, and the shot noise becomes the good approximation for the quantum noise.
This value depends on the laser power inside the detector as well as the transmittance
of the SRM. This particular number was obtained for the power 2 kW and the SRM
of TS = 420 ppm. Additionaly, the sensitivity below 100 Hz is dominated by technical
noise.
The quasi-stationary approximation is applicable, when the velocity of the mirror,

defined by the signal instantaneous frequency change, is rather small. On the fig-
ure 2.10, on the plot of chirp signal and its frequency, the area from 100 Hz to 500
Hz, considered in [52] as quasi-stationary, is depicted. The frequency of signal above
500 Hz changes very fast in a short time. The SRM, moving to follow this frequency,
is shifted faster, than it requires for the field to reach steady state. Therefore the
dynamical tuning of the marked signal section from 500 Hz to the end of merger,
where the signal frequency reaches the maximal value ans stops to change, cannot be
described in the quasi-stationary approximation.
Though the area of the non-stationary dynamical tuning detection is very short in

comparison to the overall signal, it contains the information about the last stage of
inspiral and about the merger of two binary elements. This part of the coalescence
could verify or falsify the GR with the new precision, and carries the information
about the state of dense nuclear matter in case of neutron stars. The response of
the detector during the non-stationary detection of this section cannot be modeled in
quasi-stationary approximation and requires therefore the non-stationary model.

51



2.8. Validation of the model Chapter 2. GEO600

10
0

10
2

10
−22

10
−20

10
−18

G
W

 S
tr

ai
n,

  H
z-1

/2

 

 

full quantum noise
only shot noise

Frequency (Hz)
20

0 
 H

z

region of 
interest

Figure 2.9.: Comparison of the full quantum noise and the shot noise only for quasi-stationary
model of the dynamical tuning

20 20.05 20.1 20.15 20.2 20.25 20.3 20.35 20.4
0

0.5

1

1.5

2

G
W

 fr
eq

ue
nc

y,
kH

z 
   

   
   

time, sec

10
0 

H
z

50
0 

H
z

20 20.05 20.1 20.15 20.2 20.25 20.3 20.35 20.4

−1

0

1

G
W

 s
tr

ai
n,

   
 

re
la

tiv
e 

un
its

time, sec
20.25

Figure 2.10.: Chirp signal and its instantaneous frequency. The signal section fitting for
quasi-stationary approximation

52



Part II.

Non-stationary GW detectors
in time-domain
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T he properties of a stationary detector, considered in the previous chapter, make
it appropriate for a special kind of the chirp signals detection, a so called dy-

namical tuning, when the frequency of the signal is followed by the optical resonance
of detector. The frequency-domain model gives a quasi-stationary approximation of
the dynamical tuning, emphasizing the area of its applicability. There is a short sec-
tion with rapidly increasing, beginning from 500 Hz, where the detector falls out of
the quasi-stationary regime (see figure 2.10).
The study of the radiation pressure established the frequency band above 200 Hz,

where the quantum noise is shot noise dominated with negligible influence of radiation-
pressure effects. This shot noise dominated frequency band covers the band of non-
stationary detection regime during dynamical tuning. Therefore it is convenient to
study the non-stationary dynamical detection only of the certain part of the GW,
starting from the 200 Hz instantaneous frequency, by inventing a time-domain model
for the detector response on the shot noise, displacement noise, GWs, and neglecting
radiation-pressure effects.
The stationary detector is modeled as a linear system with constant parameters.

It is very convenient to describe its response in the frequency domain, because every
frequency component of the input influence causes the output signal with the same
frequency, and can be considered separately. This response is described with a transfer
function R(Ω) (see for example k(Ω) (2.6b)), and for some input z(Ω) one can easily
find the output:

y(Ω) = R(Ω)z(Ω) (2.48)

When parameters of the detector, such as position of the SRM in the case of dynam-
ical tuning, change fast enough, the frequency domain loses its charming attraction,
because a single frequency component on the input causes the output with a finite-
band spectrum, and the transfer function has no sense. It is possible to build a
frequency-domain model, including all this finite band responses, but it is much more
intuitively clear to switch to the time-domain.
In time domain we split the input influence in the infinitely short delta-impulses and

sum the output responses of the detector on them. This reaction is called an impulse
response L(t1, t2) and is analogous to the transfer function in the frequency-domain.
The signal on the output is then:

y(t) =

t∫
−∞

L(t, t1)z(t1)dt1 (2.49)

It is easy to show, that in the stationary case the impulse response depends from the
single argument:

L(t1, t2) = L(t1 − t2), (2.50)

and it is bounded to the transfer function via the Fourier transform:

R(Ω) =

∞∫
−∞

L(τ)e−iΩτdτ. (2.51)
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The impulse response defines the signals and noise on the output of the detector, as
response on the input injections.
The sensitivity of the detector in the frequency-domain is defined by the signal

spectrum y(Ω) and the spectral density of noise S(Ω). Similarly to this, the sensitivity
of the detector in time-domain is defined by the signal y(t) and the properties of noise,
described by the autocorrelation function B(t1, t2). The autocorrelation function in
the stationary case is also a function of one variable and is bounded to the spectral
density via the Fourier transform:

S(Ω) =

∞∫
−∞

B(τ)e−iΩτdτ. (2.52)

This chapter is dedicated to the autocorrelation function of the shot noise in time-
domain.
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CHAPTER 3

Analysis of shot noise

T he shot noise of the detector is caused by ground state oscillations of the electro-
magnetic field in the vacuum. These oscillations may be assumed as injections

into the dark-port or in the end-mirrors of the field [71], described by the quantum
part of the equation (1.1) with the annihilation and creation operator as the field
amplitude. The non-stationary evolution of the injected field, obeying the equations
of Maxwell, may be described by the impulse response operator, which is obtained in
this chapter.
The losses in the arms and on the optics introduce additional shot noise, which

may be equivalently described as injections in the end-mirrors. The evolution of
these injections is represented by their own impulse response operator.
Finally, the evolution of the squeezed injection is considered similarly to shot noise.

3.1. Noise in time domain

The noise in the detector is a response on different inevitable stochastic processes,
occurring at almost every part of the detector. The main sources of noise are the
thermal fluctuations of the mirror coating and the ground state oscillations of the
electromagnetic fields. The basics, this consideration is grounded on, are presented
in [77]. The stochastic noisy process may be described by a random function ξ(t) of
a real variable t, meaning it has a random value for each t. This function is called a
random process if t is time. The autocorrelation function, describing the stochastic
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properties of the random process, is defined as follows:

Bα(t1, t2) = m{α(t1)α(t2)} =

∞∫
−∞

a1a2wa(a1a2, t1, t2)da1da2. (3.1)

Here the moment of the function is denoted by m. The stochastic processes are
denoted by greek letters, e.g. α(t), corresponding to the latin letter of the considered
physical quantity, here a. The values that the noise takes at the instances of time
t1, t2 we denote a1, a2. wx(a1, a2, t1, t2) is the two dimensional probability density
function, defining the stochastic properties of the process.
The operators of physical quantities are time-dependent in Heisenberg picture. The

autocorrelation function of any such quantity of the shot noise, injected with state
|ψ〉 is then:

Bα(t1, t2) = m{α(t1)α(t2)} = 〈ψ |â(t1)â(t2)|ψ〉sym , (3.2)

where ψ is the quantum state, â(t) is the quantum operator of the considered quantity.
The autocorrelation function of the noise process a is analogous to the spectral density
in frequency-domain (1.55).
The ground state shot noise is an inevitable side-effect of measuring the perturba-

tions in electromagnetic field, caused by GWs. As it was mentioned in the previous
chapter, the current on the photodiode as the result of each homodyne or the DC-
readout detection, is the physical value we measure directly.
The electrical field of the ground noise electromagnetic oscillations are described

with (1.1). The result of the homodyne detection (1.51) of this field is:

Îdet(t) =
1

2i

∞∫
−∞

√
2π~ωp
Ac

[â(ωp + Ω)eiφlo − â†(ωp − Ω)e−iφlo ]e−iΩt
dΩ

2π
, (3.3)

where Ω = ω − ωp is a is frequency of a sideband modulation. The current in the
photodiode, depending on the different parameters of the measuring device, is deter-
mined up to some constant factor. For distinctness, we use the same factor for the
homodyne detection here as on the right-hand side of (1.51).
The autocorrelation function for the shot noise, calculated from the definition (3.2),

reads:
Bα(t1, t2) = Czδ(t1 − t2), (3.4)

where

Cz =
π~ωp
2Ac

(3.5)

is a constant. The shot noise is delta-correlated, and therefore is white. Strictly speak-
ing, it is white only under the assumption of the low-frequency sidebands of carrier
frequency Ω� ωp – at higher frequencies there appears a frequency dependence.
The squeezed noise is a modified shot noise, that has a decreased uncertainty along

one quadrature, and an increased one along the perpendicular quadrature. If we now
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measure the current Îdet(t) from the squeezed state |α〉 = Ŝ(Ω) |0a〉, using (2.43), we
get the following autocorrelation function for it:

Bsq(t1, t2) = Cz (cosh 2R− sinh 2R cos(2θ + 2φlo)) δ(t1 − t2). (3.6)

We can see that depending on the squeezing angle θ we reach the quadrature with
minimal (squeezed noise) and with maximal noise intensity (anti-squeezed noise):

Bmin(t1, t2) = Cze
−2Rδ(t1 − t2), (3.7a)

Bmax(t1, t2) = Cze
2Rδ(t1 − t2), (3.7b)

that differ from the shot noise by exponent with the squeezed factor R.
The shot noise injected into the dark port of the detector interacts optically and via

radiation pressure with the GW detector and is reflected back towards the photodiode
afterwards. Though both injected and reflected noises are random, the reflected one
is defined by the input one: the field on the output is defined by the field on the input
in the previous instances time.
The injections of shot noise in the detector, as it was shown in the section B.1,

propagate between the elements, change their amplitudes and are split on the mirrors
and beamsplitter, all according to the Maxwell’s equations. Mathematically it is
impossible to describe the phase shift of the real oscillating input signal, using only
arithmetical operations: it also requires manipulations with the wave, shifted by the
π

2
in the oscillations at the optical frequency of the input signal. Therefore instead

of the impulse response function we introduce the impulse response operator:

y(t) =

t∫
−∞

L(t, t′)[z(t′)]dt′, (3.8)

describing also the phase shift.
For the shot noise the considered input and output of the interferometer are z

and y correspondingly, as it depicted in figure 2.1. It is convenient to consider the
transformations of a wave, using the complex amplitude, when the real signal is
represented as the real part of some complex number. The phase of the signal is
considered then as argument of the complex quantity, and the amplitude – as its
modulus.
The sinusoidal wave on the input of the detector may be represented in this picture

as the following:
z(t) = <(e−iωt) = <(eiωt). (3.9)

The transformation of the input field, caused by the reflection from the detector,
and described by the impulse response operator L(t, t′), may be modeled by a complex
function, describing the phase shift and amplitude ratio between the fields on the input
and on the output at the instances t′ and t correspondingly. The same phase shift in
this complex function, also referred to as complex impulse response, corresponds to
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the positive and to the negative argument of function, depending on the sign of the
argument of the wave:

t∫
−∞

L(t, t1)<(e−iωt1)dt1 ≡
t∫

−∞

|Lc(t, t1)| e−iϕL(t,t1)e−iωt1)dt1 =

=

t∫
−∞

<(Lc(t, t1)e−iωt1)dt1. (3.10a)

t∫
−∞

L(t, t1)<(e−iωt1)dt1 =

t∫
−∞

<(L∗c(t, t1)eiωt1)dt1. (3.10b)

Therefore the impulse operator L(t, t1) is by definition a complex impulse function
Lc(t, t1) for the negatively oscillating exponent, and its conjugate L∗c(t, t1) for the
positively oscillating exponent.
The response of the detector on the monochromatic signal is dependent on the

frequency of the input signal as a parameter. In the complex domain it reads:

R(t, ω) ≡
t∫

−∞

Lc(t, t1)eiωt1dt1 (3.11)

According to Fourier transform, we could "construct" an arbitrary input signal
from the monochromatic signals of different frequencies. This property also mean
that we can "construct" the complex impulse response from the responses on the
monochromatic signals on different frequency. In other words, as it follows from
(3.10a) the complex impulse response is a Fourier transform of this parametrized
response on monochromatic waves:

Lc(t, t1) =

∞∫
−∞

dω

2π
R(t, ω)eiωt1 . (3.12)

The field of the shot noise (1.1), injected from the dark port, is also an integral of
the components with the positive and negative frequencies. Then, the shot noise on
the output, followed from (3.10a) and (B.23), reads:

y(t) =

t∫
−∞

dt1

∞∫
0

dω

2π

√
2π~ω
Ac

[
â(ω)Lc(t, t1)e−iωt1 + â†(ω)L∗c(t, t1)eiωt1

]
. (3.13)
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The current on the photodiode after a homodyne detection (1.51) reads:

Îdet(t) =
1

2i

t∫
−∞

dt1

∞∫
−∞

dΩ

2π

√
2π~ω
Ac

[
â(ωp + Ω)Lc(t, t1)eiωp(t−t1)eiφlo−

− â†(ωp − Ω)L∗c(t, t1)e−iωp(t−t1)e−iφlo

]
e−iΩt1 (3.14)

And the autocorrelation function of this noise:

Bvac(t1, t2) = Cz

∫ t1

−∞
dt′1< (Ls(t1, t

′
1)L∗s (t2, t

′
1)) , (3.15)

where Ls(t1, t
′
1) is an auxiliary function introduced as

Ls(t1, t
′
1) = Lc(t1, t

′
1)eiωp(t1−t′1), (3.16)

here "s" stands for "shot-noise".
The photocurrent of squeezed input, reflected from the detector, reads:

Îsq(t) =
1

2i

t∫
−∞

dt1

∞∫
−∞

dΩ

2π

√
2π~ω
Ac
×

×
[
â(ωp + Ω)

(
Ls(t, t1)eiφlo coshR− L∗s (t, t1)e−2iθe−iφlo sinhR

)
+

+â†(ωp − Ω)
(
−L∗s (t, t1)e−iφlo coshR+ Ls(t, t1)e2iθeiφlo sinhR

)]
e−iΩt

dΩ

2π
. (3.17)

The autocorrelation function for this noise:

Bsq(t1, t2) = Cz

t1∫
−∞

dt′1 |Ls(t1, t
′
1)Ls(t2, t

′
1)| ×

× [cosh 2R cos(ϕs(t1, t
′
1)− ϕs(t2, t

′
1))−

− sinh 2R cos(ϕs(t1, t
′
1) + ϕs(t2, t

′
1) + 2θ + 2φlo)] , (3.18)

where the argument of the auxiliary function is presented explicitly:

Ls(t, t1) = |Ls(t, t1)| eiϕs(t,t1). (3.19)

3.2. Complex impulse response on the shot noise,
injected into the dark port

The explicit expression for the complex impulse response of the detector on the shot
noise, as it was mentioned in the previous section, may be obtained from the response

61



3.2. Impulse response from the dark port Chapter 3. Analysis of shot noise

of the detector on a monochromatic input signal. We first consider the response of
the detector on an arbitrary signal
In appendix C it was shown that fields inside the detector, for all their realistic

frequencies, reflect back from the end-mirror completely to the signal recycling mode.
According to propagation of the light in arms, as it is depicted in figure 2.1 it reads:

ĝ(t) =
1

2
Rnĥ

(
t− 2

2Ln

c

)
− 1

2
Reĥ

(
t− 2

Le

c

)
. (3.20)

Let us consider the response on an injection into the dark port by the source Z0(t),
placed at such a distance from the source to the BS L0 to have a whole number of
waves there. The field reflected from the beamsplitter and the injections through the
SRM are connected through the following equation:

ĥ(t) = −1

2
RsRnĥ

(
t− 2

Ls

(
t− Ls

c

)
+ Ln

c

)
+

+
1

2
RsRnĥ

(
t− 2

Ls

(
t− Ls

c

)
+ Le

c

)
+ iTsẑ0

(
t− L0

c

)
. (3.21)

This equation is a difference equation for the field and is a convenient form for the
description of the signal. It is also used in the other time-domain analysis of GW
detectors [70,72].
From this equation we can get the response to a monochromatic input signal

ẑ0(t) = e−iωt (3.22)

under the following assumptions and using the following methods.
1) During dynamical tuning we move the SRM, i.e. change the length between

the beamsplitter and the SRM with time Ls(t), to follow the chirp signal frequency.
However, the motions of the mirror are slow enough with respect to the characteristic
duration of the light propagation inside the detector. To keep the high precision of
the model, the displacement of the mirror during one round-trip 2τ is taken into
account, while its displacement, the propagation from the beamsplitter to the SRM,

is negligible Ls

(
t− Ls

c

)
≈ Ls(t).

2) For the time-delay of the signal, and for the signal frequencies the difference of
lengths between arms is negligible:

τ ≈ Le

c
≈ Ln

c
. (3.23)

3) The dark-port condition is represented as follows (see notations in table 2.1):

2kpLe = 2kpLe − δφf , (3.24a)
2kpLn = 2kpLn + δφf (3.24b)
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4) The reflection of the field back to the SRM from the arms is described as follow-
ing:

1

2

(
Ree

−iδφf +RNe
iδφf
)

= Rfe
iφf , (3.25)

where up to the first order of the smallness:

Rf ≡
1

2

√
R2

n +R2
e + 2RnRe cos 2δφf ≈

1

2
(Rn +Re) (3.26a)

and
φf ≡ arctan

(
Re −Rn

Re +Rn
tan δφf

)
≈ 0. (3.26b)

5) The equation (3.21) may be solved for the case of the monochromatic input
signal (3.22). Using method of mathematical induction one can prove the following
solution for the field inside the signal recycling cavity:

ĥ(t) =

∞∑
n=1

iTse
−iωt (RfRs)

n×

×
(
ei2τΩ

)n
exp

(
n∑
k=1

i2kpx(t− 2(k − 1)τ)

)
+ iTSe

−iωt. (3.27)

The field in this point defines also the field on the photodetector outside the cavity.
Assume, the distance from the beamsplitter to the photodetector introduces the same
phase shift, the whole number of 2π, as the distance from the source of injection into
the dark port. The field at the output detector gives us the response of the detector
on the input signal:

R(t, ω) =

∞∑
n=2

T 2
s (RF)

n
Rn−1

s

(
ei2τΩ

)n
exp

(
n−1∑
k=1

i2kpx(t− 2kτ)

)
+

+ T 2
s e
−iωtei2τΩRf −Rse

−iωt exp (−2ikpx(t)) . (3.28)

From this response of the detector on the harmonic signal, substituting (3.28) into
(3.12), we get the complex impulse response:

Lc(t, t1) = eiωp(t1−t)

[ ∞∑
n=2

T 2
s R

n
f R

n−1
s exp

(
n−1∑
k=1

i2kpx(t− 2kτ)

)
×

× δ(t1 − t+ 2nτ) + T 2
s Rfδ(t1 − t+ 2τ)−
− Rs exp (−2ikpx(t)) δ(t1 − t)] . (3.29)

The physical meaning of the complex response, in contrast to the usual impulse
response, is a response not on the delta-shaped quantity of the input field, but on
the delta-shaped modulation of the wave with optical frequency ωp. In this model we
can really assume an infinitely short duration of the modulation as the elementary
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components of the signals. However, this model is valid for signals with some finite
duration of more than 10−9 seconds, according to the boundary conditions on the
spectrum bandwidth described in appendix C.
The delta-like impulse of a laser light modulation is injected in the SRM at the

instance t1. The bigger part of the incident light is reflected from the SRM with
the reflectivity Rs. The rest is injected inside the signal recycling cavity. Accroding
to the model the injected part during its propagation inside the detector is split on
the beamsplitter towards the arms, and assembles back on the beamsplitter after the
reflection from the end-mirrors. Hence it is convenient to consider the evolution of
the perturbations, caused by dark port injection, as the propagation of the amplitude
modulation inside the single equivalent Fabry-Perot cavity formed by the SRM and
the end-mirror with the reflectivity Rf . The time the light requires for the round
trip inside the equivalent cavity is 2τ . The smaller part of this delta-impulse that
reaches the SRM after the reflection from the arms is transmitted with the coefficient
TS , while the rest of it is reflected with, respectively, RS . The reflected part comes
back to the SRM after another full roundtrip, and the process repeats infinitely. As
the result we have an infinite number of decaying "echo"-impulses with corresponding
amplitudes C0, C1, C2, ... on the photodiode. The decay factor during one round trip
is RsRf , and the phase shift between two consequent impulses, k-th and (k+1)-th,
reads

∆φk(t) = 2kpx(t′k), (3.30)
where t′k = t + 2kτ is the reflection instance of the k-th impulse, and x(t) is the
microscopic displacement of the SRM from the resonant position of the equivalent
cavity (see also appendix (D)).
The auxiliary function Ls(t, t1) from (3.16), found from (3.29) reads:

Ls(t, t1) =

∞∑
n=2

T 2
s R

n
f R

n−1
s exp

(
n−1∑
k=1

i2kpx(t− 2kτ)

)
×

× δ(t1 − t+ 2nτ) + T 2
s Rfδ(t1 − t+ 2τ)−
−Rs exp (−2ikpx(t)) δ(t1 − t). (3.31)

This function describes the evolution of the modulations without the time-evolution
of the optical oscillations, or the evolution of the "frozen" optical wave. In other
words, it describes the evolution of the field inside the detector in the rotated frame.
To simplify the notation of the complex impulse response, denote the phase of k-th

term from (3.29) as ϕk(t). Using the accumulated phase shift (D.2-D.4), defined in
appendix D they can be expressed by the simple formula:

ϕn(t) = ΦN−1 − ΦN−n,∀n ≥ 0. (3.32)

Using the phase shift, noted in such a way, the complex impulse response (3.29)
gets the following look:

Lc(t, t1) = eωp(t1−t)
∞∑
n=1

T 2
s exp (iϕn(t))Rnf R

n−1
s δ(t1−t+2nτ)−Rsδ(t1−t) exp iϕ0(t).

(3.33)
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Figure 3.1.: Two quadratures of the auxiliary impulse response Ls(t, t1) on the vacuum quan-
tum oscillations, injected from the dark port: (a) on a large amplitude scale, depicting the
direct reflection of the impulse from the SRM inpulse, (b) on a small amplitude scale, rep-
resenting SRM transmission from the inner SRC oscillations and decay, (c) on a short time
scale, picturing the discrete nature of the impulse function and the round-trip time

And the auxiliary impulse response (3.16) turns in these notations to:

Ls(t, t1) =

∞∑
n=1

T 2
s exp (iϕn(t))Rnf R

n−1
s δ(t1 − t+ 2nτ)−Rsδ(t1 − t) exp iϕ0(t) (3.34)

The typical plot of the impulse response for the GEO 600 with the signal recycling
cavity tuned to 100 Hz, and with other parameters, presented in tables 2.1 and 2.2,
is in figure 3.1.

3.3. Output noise autocorrelation function

The autocorrelation function of the output shot noise, caused by the injections into the
dark-port, may be calculated by the substitution of the auxiliary impulse response
Ls(t, t1) from (3.34) into the general expression for the shot noise autocorrelation
function (3.15). The result of the integration of two delta functions, arising in the
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obtained formula, is also a delta function:

min(t1,t2)∫
−∞

dt′1δ(t
′
1 − (t1 −∆t1))δ(t′1 − (t2 −∆t2)) = δ(t1 −∆t1 − t2 + ∆t2),

(∆t1,∆t2 ≥ 0). (3.35)

After the integration of these delta-functions multiplications and combining the
terms, we could also express the phases of each term via the accumulated phase shifts
(D.2-D.4) from appendix (D):

ϕn(t1)− ϕm(t1 + 2(m− n)τ) = ΦN1−1 − ΦN1+m−n−1;∀n,m ≥ 0. (3.36)

Here we used that the accumulated phase shifts are zero for the negative indices.
As the result we get the following expression:

Bvac(t1, t2) = Cz

∞∑
n=1

∞∑
m=1

T 4
s cos (ΦN1−1 − ΦN1+m−n−1)Rn+m

f Rn+m−2
s δ(t2−t1−2(m−n)τ)−

− Cz
∞∑
n=1

T 2
s cos (ΦN1−1 − ΦN1−n−1)Rnf R

n
s δ(t2 − t1 + 2nτ)−

− Cz
∞∑
n=1

T 2
s cos (ΦN1−1 − ΦN1+n−1)Rnf R

n
s δ(t1 − t2 + 2nτ) + CzRsδ(t1 − t2) (3.37)

For the further simplification of this expression we do the following steps.
1) We redefine N = N1 − 1 for the convenience of the indices notation.
2) The double sum in (3.37) has terms with repeating arguments of delta functions,

with equal n−m. These terms may combined by introducing of the new set of indices:

m′ = n−m, (3.38a)
n′ = n+m. (3.38b)

In the sum with the new indices m′ changes from −∞ to ∞ with step one, and n′

changes from |m′|+ 2 to ∞ with step 2.
3) The two single sum with index changing from 1 to∞may be combined to a single

sum with the new index changing from −∞ to ∞ with the step 1, by changing the
index in one of this terms n→ −n, and by inserting an additional term, corresponding
to n = 0.
Each sum has summands that consist of the same set of delta functions, therefore

these two sums may be simply combined, giving the following expression as the result:

Bvac(t1, t2) =

= Cz

∞∑
n=−∞

cos(ΦN − ΦN−n)R
|n|
F T 2

SR
|n|
S

[
−1 +R2

F

1−R2
FR

2
S

]
δ(t1 − t2 − 2nτ)+

+ Czδ(t1 − t2). (3.39)
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If the output shot noise is caused only by the injections from the dark port, i.e. by
the ideally reflective end-mirrors Rf = 0, the whole sum becomes zero, and the auto-
correlation function becomes equal to the one of the injected noise:

Bη(t1, t2) = Czδ(t1 − t2). (3.40)

It means that though the detector with the SRM moving during a detection trans-
forms the fields of the injected shot noise in a non-stationary way, they keep their
autocorrelation function the same.
The finite transmittance and the losses of the end-mirrors, however, changes the

noise on the output: it becomes correlated. The values of the noise are correlated every
natural number of the round-trips, and the correlation decreases with the increasing
of this number.
However, the imperfections in the arms and in the end-mirrors introduce their own

additional injections into the output shot noise, which are therefore inseparable from
the described above. If there are losses in the detector, the output noise, caused only
by the injections in the SRM, has no physical meaning, and should be treated only
together with the shot noise injections on the losses.

3.4. Complex impulse response on the shot noise,
injected into the end-mirrors

In this section we repeat the calculation from section 3.2, finding the complex impulse
response for the injection in the end-mirrors.
We remember the outcome of appendix C, that for all realistic frequencies of the

fields inside the detector are reflected back from the end-mirror completely to the
signal recycling mode.
According to the propagation of the fields in the detector, for the field, reflected

from the arms and sourced by the injection of the shot noise in the end arms, we can
write the following difference equation (see figure 2.1 for notations):

ĥ(t) =
1

2
Rs

[
Reĥ

(
t− 2

Ls(t)

c
− 2

Le

c

)
−Rnĥ

(
t− 2

Ls(t)

c
− 2

Ln

c

)]
+

+û

(
t− 2

Ls(t)

c
− Le

c

)
(iAe)

(
−
√

2

2

)
(−Rs)+r̂

(
t− 2

Ls(t)

c
− Ln

c

)
(iAn)

(
i

√
2

2

)
(−Rs).

(3.41)

To calculate the complex impulse responses to the injection in the end-mirrors, we
inject separately the complex exponent into the north mirror:

r̂(t) = e−iωt, (3.42a)
û(t) = 0, (3.42b)
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and into the east mirror:

r̂(t) = 0, (3.43a)

û(t) = e−iωt (3.43b)

The final expressions could be obtained under the following assumptions, repeating
those of section 3.2.
1) During dynamical tuning we move the SRM, i.e. change the length between

the beamsplitter and the SRM with time Ls(t), to follow the chirp signal frequency.
However, the motions of the mirror are slow enough with respect to the characteristic
duration of the light propagation inside the detector. To keep the high precision of the
model, the displacement of the mirror during one round-trip 2τ is taken into account,
while its displacement, while the light propagates from the beamsplitter to the SRM,

is negligible Ls

(
t− Ls

c

)
≈ Ls(t).

2) For the time-delay of the signal, and for the signal frequencies the difference of
lengths between the arms is negligible:

τ ≈ Le

c
≈ Ln

c
. (3.44)

3) The dark-port condition is represented as following (see notations in table 2.1):

2kpLe = 2kpLe − δφf , (3.45a)
2kpLn = 2kpLn + δφf (3.45b)

4) The reflection of the field back to the SRM from the arms is described as follow-
ing:

1

2

(
Ree

−iδφf +Rne
iδφf
)

= Rfe
iφf , (3.46)

where up to the first order of smallness:
5) For the monochromatic signal injected at the north and the east end-mirrors

correspondingly (3.42-3.43), the equation (3.41) may be solved, using the method of
mathematical induction. For each injection we have the following fields inside the
detector correspondingly:

ĥn(t) = iAn

√
2

2
Rse
−iωteiΩτ

∞∑
n=0

Rnf R
n
s e
i2nΩτe

n∑
k=0

2ikpx(t−2kτ)
. (3.47a)

ĥe(t) = iAe

√
2

2
Rse
−iωteiΩτ

∞∑
n=0

Rnf R
n
s e
i2nΩτe

n∑
k=0

2ikpx(t−2kτ)
. (3.47b)

These fields in this point, as for the dark-port injections, define the field on the
photodetector outside the cavity. The photodetector is the same, i.e. on the same
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distance of the the whole number of the wavelengths from the beamsplitter. The
responses on the monochromatic injections in the end-mirrors are correspondingly:

Rn(t, ω) = AnTs

√
2

2
e−iωteiΩτ+

+AnTs

√
2

2
e−iωteiΩτ

∞∑
n=1

(RfRs)
n
ei2nΩτe

n∑
k=1

2ikpx(t−2kτ)
. (3.48a)

Re(t, ω) = AeTs

√
2

2
e−iωteiΩτ+

+AeTs

√
2

2
e−iωteiΩτ

∞∑
n=1

(RfRs)
n
ei2nΩτe

n∑
k=1

2ikpx(t−2kτ)
. (3.48b)

From these responses of the detector on the harmonic signal, substituting (3.48)
into (3.12), and using phase shift trains (D.2) from appendix D, we get the complex
impulse responses:

Lc,n→d = AnTs

√
2

2
eiωp(t1−t) [δ (t1 − t+ τ) +

+

∞∑
n=1

(RfRs)
n
eiφn(t)δ (t1 − t+ τ + 2nτ)

]
. (3.49a)

Lc,e→d = AeTs

√
2

2
eiωp(t1−t) [δ (t1 − t+ τ) +

+

∞∑
n=1

(RfRs)
n
eiφn(t)δ (t1 − t+ τ + 2nτ)

]
. (3.49b)

Here the indices n → d and e → d mean correspondingly "north to detector" and
"east to detector".
The physical meaning of these complex responses is also a response on the delta-

shaped modulation, but here it shows a bit different behavior of the impulse on the
detector.
The delta-like impulse of a laser light modulation is injected in the end-mirror. The

field requires time τ to pass the beamsplitter, and reach the SRM. The smaller part
reaching the SRM is partly transmitted through and partly reflected from it, and then
makes the round-trips, as it was described in section 3.2.
The impulse responses in the rotating frame are then:

Ls,n→d(t, t1) = AnTs

√
2

2
[δ (t1 − t+ τ) +

+

∞∑
n=1

(RFRS)
n
eiφn(t)δ (t1 − t+ τ + 2nτ)

]
. (3.50a)
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Figure 3.2.: Two quadratures of the impulse response on the vacuum quantum oscillations,
injected from the equivalent end-mirrors: (a) from the north end-mirror, (c) from the east
end-mirror

Ls,e→d(t, t1) = AeTs

√
2

2
[δ (t1 − t+ τ) +

+

∞∑
n=1

(RFRS)
n
eiφn(t)δ (t1 − t+ τ + 2nτ)

]
. (3.50b)

The typical plots of the impulse responses for the shot noise, injected from the
end-mirrors, for the GEO 600 with the signal recycling cavity tuned to 100 Hz, and
with other parameters, presented in tables 2.1 and 2.2, are in figure 3.2.

3.5. Autocorrelation function of output noise,
sourced from the end mirrors

One can calculate the autocorrelation functions of the output shot noise, caused by the
injections of the ground state oscillations in the end mirrors, substituting Ls(t, t1) from
(3.50a) into (3.15). The expressions for the autocorrelation functions after integrating
over two delta functions, as in (3.35), and substituting accumulated phase shift (D.12)
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read correspondingly:

Bη(n)(t1, t2) =
1

2
CzA

2
nT

2
s [δ (t2 − t1) +

+

∞∑
n=1

(RfRs)
n

cos(ΦN1−1 − ΦN1−n−1)δ (t2 − t1 + 2nτ) +

+

∞∑
n=1

(RfRs)
n

cos(ΦN1+n−1 − ΦN1−1)δ (t1 − t2 + 2nτ) +

+

∞∑
n=1

∞∑
m=1

(RfRs)
n+m

cos(ΦN1−1 − ΦN1+m−n−1)δ (t1 − t2 + 2(m− n)τ)

]
. (3.51a)

Bη(e)(t1, t2) =
1

2
CzA

2
eT

2
s [δ (t2 − t1) +

+

∞∑
n=1

(RfRs)
n

cos(ΦN1−1 − ΦN1−n−1)δ (t2 − t1 + 2nτ) +

+

∞∑
n=1

(RfRs)
n

cos(ΦN1+n−1 − ΦN1−1)δ (t1 − t2 + 2nτ) +

+

∞∑
n=1

∞∑
m=1

(RfRs)
n+m

cos(ΦN1−1 − ΦN1+m−n−1)δ (t1 − t2 + 2(m− n)τ)

]
. (3.51b)

Here η corresponds to the point y in (2.1), where the noise is measured.
The simplifications here repeat those of 3.3. Let us write them explicitly in this

section as well:
1) We redefine N = N1 − 1 for the convenience of the indices notation.
2) The double sum in (3.51a) has terms with repeating arguments of delta functions,

with equal n−m. These terms may be combined by introducing a new set of indices:

m′ = n−m, (3.52a)
n′ = n+m. (3.52b)

In the sum with the new indices m′ changes from −∞ to ∞ with step one, and n′

changes from |m′|+ 2 to ∞ with step 2.
3) The two single sums with index going from 1 to ∞ may be combined to a single

sum with index ranging from −∞ to∞ with the step 1, by changing the index in one
of this terms n→ −n, and by inserting an additional term, corresponding to n = 0.
Each sum has summands, that consist of the same set of delta functions, therefore

these two sums may be simply combined, giving the following expression as result:

Bη(n)(t1, t2) =
1

2
CzA

2
nT

2
s

∞∑
n=−∞

cos(ΦN −ΦN−n)
(RfRs)

|n|

1− [RfRs]2
δ(t1− t2−2nτ), (3.53a)
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Bη(e)(t1, t2) =
1

2
CzA

2
eT

2
s

∞∑
n=−∞

cos(ΦN −ΦN−n)
(RfRs)

|n|

1− [RfRs]2
δ(t1− t2− 2nτ) (3.53b)

The autocorrelation function from two uncorrelated noises is the sum of their au-
tocorrelation functions. Therefore, the total output noise from the injections into the
end-mirrors reads:

Bη(f)(t1, t2) = Cz(RfRs)
|n|T 2

s

∞∑
n=−∞

cos(ΦN − ΦN−n)
1−R2

f

1− [RfRs]
2×

× δ(t1 − t2 − 2nτ). (3.54)

One could recognize in this expression the part of (3.39). Easy to see, that the total
noise, formed by the ground state injections in the dark-port and in the end mirrors
gives us the white noise:

Btot
vac(t1, t2) = Czδ(t1 − t2). (3.55)

Therefore the output noise of GEO600 with the moving SRM stays white, inde-
pendently from its motion law and from the losses on the end-mirrors, and, corre-
spondingly, from the injection of the ground-state oscillations in them. There are two
laws leading to this result: the energy conversation law on the mirrors T 2 + R2 = 1
and fluctuation dissipation theorem, connecting the losses and injection of the noise
in the detector.
This result is also consistent with the results obtained in the frequency-domain

consideration in chapter 2, where the quantum noise on the photodiode is represented
by operator r̂(Ω), defined in (2.6a). The spectral density of that noise is constant, and
therefore, the autocorrelation function is detla-function. The constants of these two
noises fit to each other up to the amplitude of the local oscillator during homodyne
detection.

3.6. Squeezed light

The shot noise on the photodetector is formed by the shot noise, injected into the
dark port and injected into the end-mirrors. To reduce the level of noise at some
quadrature, the squeezed quantum noise instead of the ground state noise is injected
into the dark port. The squeezed noise evolves inside the detector and is detected on
the photodetector along with the injections from the end-mirrors.
The autocorrelation function of the part of the noise, caused only by the squeezing

injections, obtained by the substitution of the auxiliary delta response (3.34) into the
general formula for the squeezed noise (3.18), reads:

Bsq(t1, t2) = Cz

∞∑
n=0

∞∑
m=0

AnAmδ(t2−t1−(m−n)τ) [cos(ϕ′n(t1)− ϕ′m(t2)) cosh 2R −

− cos(ϕ′n(t1) + ϕ′m(t2)) sinh 2R] , (3.56)
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where the following variables were introduced for simplicity:

A0 = −Rs (3.57a)

An = T 2
s R

n
f R

n−1
s , n > 0, (3.57b)

ϕ′n(t) = ϕn(t) + φlo + θ. (3.57c)

An are the amplitudes of the terms of the linear response in the rotated frame (see
(3.34)).
It is convenient to describe the influence of the ground state oscillations, injected

from the end-mirrors as the difference between the total shot noise (3.55) and the
ground state injections from the dark port, that can be represented as (3.56) with the
squeezing factor R equals to zero. The result reads:

Bsq(t1, t2) = Czδ(t1 − t2)+

+ Cz

∞∑
n=0

∞∑
m=0

AnAmδ(t2 − t1 − (m− n)τ) [cos(ϕ′n(t1)− ϕ′m(t2))(cosh 2R− 1) −

− cos(ϕ′n(t1) + ϕ′m(t2)) sinh 2R] , (3.58)

Squeezed noise, given by the formula (3.56) may be simulated numerically.
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CHAPTER 4

Analysis of differential end-mirror motion.

A gravitational wave affects the fields inside the detector via differential end-
mirror motion. The impulse response, describing the modulations of the field

inside the detector, caused by this motion, is described in this chapter. The explicitly
found impulse response allows to analyze some features of the dynamical tuning. We
can establish the exact conditions of the resonant tracking, and also the transforma-
tions it introduces to the shape of the detected GW signal.
A bunch of influences on the detector, referred together to as displacement noise,

causes a stochastic end-mirror motion. The response of the detector on the differential
mode of this motion also has non-stationary features, due to SRM motion. The
impulse response to the differential motion allows to calculate the autocorrelation
function of the displacement noise, the main components of which are the seismic
fluctuations, gravity gradient noise, and Brownian noise of the mirror coatings and of
the suspension.
The signal on the output of the detector would have the deformed shape with

respect to the incident GW. However, this transformation, defined by the impulse
response, has one to one correspondence, and therefore, it is possible to restore, or
deconvolute, the initial GW shape from the measured one on the photodiode.
As it was shown in the previous chapter, a part of the current, measured on the

photodiode, is caused not by the differential mirror motion, but from the shot noise.
Therefore, a real deconvoluted signal would have a part not corresponding to the real
mirror-motion. The deconvolution of this noise was also described in this chapter.
The DC-readout is a more realistic way of detecting GWs than homodyne detection.

However it gives a different signal on the photodetector. The last part of this chapter
will be dedicated to the signals and noise in the current from the photodetector during
the DC-readout.
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4.1. Impulse response at the dark port

4.1.1. Recycled Michelson configuration

GEO600 measures the differential end-mirror motion, caused by gravitational waves.
An arbitrary motion of the end-mirrors, xe(t) and xn(t) respectively, produces a
sideband in the signal-recycling cavity. This wave falling on the beamsplitter from
the dark port is reflected back from the end-mirrors completely. The component of
the field, sourced by the end-mirror motion, together with its round-trip evolution
gives the following difference equation:

ĥ(t) = Rskpe
2ikpx(t)ER1(t− τ)eiϕ1(t−τ) +Rse

2ikpx(t)Rfe
iφf ĥ(t− 2τ), (4.1)

where the end-mirror influence is described by the following expressions, obtained by
a linear approximation with respect to the phase of dark-fringe offset:

R1(t) ≈ 2Rfxd(t) + 2R0xs(t) (4.2a)

ϕ1 : (sinϕ1(t) ≈ Rexe(t) +Rnxn(t)

R1
δφf) ∩ (cosϕ1 ≈

2Rfxd(t) + 2R0xs(t)

R1
cos δφf)

(4.2b)
with the new quantities introduced for convenience:

Rf =
Re +Rn

2
≈ 1, (4.3a)

R0 =
Re −Rn

2
≈ 3× 10−5, (4.3b)

xs(t) =
xe(t) + xn(t)

2
, (4.3c)

xd(t) =
xe(t)− xn(t)

2
. (4.3d)

The quantities Rf and R0 define the sensitivity of the detector to differential and
common mirror motions correspondingly. Their typical values allow to neglect R0,
making the following approximation for them:

R1(t) ≈ 2Rfxd(t), (4.4a)

ϕ1(t) ≈ 0. (4.4b)

The phase ϕ1(t) varies significantly from zero, when R1(t) has very small values.
However, since we could neglect such values, large phases have no physical meaning.
With these approximation, the difference equation for the field inside the signal

recycling cavity, sourced by the end-mirror motion, reads:

ĥ(t) ≈ 2RsRfEkpxd(t− τ)e2ikpx(t) +RsRf ĥ(t− 2τ)e2ikpx(t). (4.5)
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The solution for the field, described for convenience in a different point of the signal
recycling cavity is:

ĝ(t) = −2RfEkpxd (t− τ)−

− 2

∞∑
n=1

Rn+1
f Rns Ekpxd (t− 2nτ − τ) e

2ikp
n∑
k=1

x(t−2kτ)
. (4.6)

After taking into account the evolution of the sideband towards the dark-port, and
its detection using a homodyne local oscillator (1.51), we get the influence of the
differential end-mirror motion on the current in the photodetector:

Idet(t) =

∞∑
n=0

Cn cos(ξn(t))xd (t− (2n+ 1)τ) , (4.7)

where the amplitudes and the phase shifts of the terms are defined as following:

C0 = −2
√

2

√
π~ωp
Ac

RfTs|E|kp, (4.8a)

Cn = C0(RfRs)
n, (4.8b)

ξ0(t) = φh, (4.8c)

ξn(t) = φh + 2kp

n∑
k=1

x(t− 2kτ) (4.8d)

and
φh = φlo + φe (4.9)

is a homodyne angle, and φe is the phase of field E.
Unlike the response on the shot noise, the response on the differential mirror motion,

though carried by the laser radiation, doesn’t contain the optical oscillation part, and
can therefore be described by the normal impulse response, i.e. the response to the
delta-like input impulse:

Ls→c =

∞∑
n=0

Cn cos(ξn(t))δ (t1 − t+ (2n+ 1)τ) . (4.10)

The plot of the impulse response is depicted in FIG. 4.1. For the plot we use the
parameters from tables 2.1 and 2.2.
The delta-like impulse in the differential motion of the end-mirrors modulates the

phase of the laser fields at their surfaces. These fields are formed from the field E
falling on the beamsplitter. The phases of two modulations in the arms have the
opposite signs, therefore they interfere constructively towards the dark port on the
beamsplitter forming the amplitude modulation, which has the shape of a short laser
impulse. The interference is reversible, hence it is convenient to consider the evolution
of the perturbations, caused by differential end-mirrors motion, as the propagation
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Figure 4.1.: The typical impulse response of the considered detector with a constant detuning
ftun = 100Hz: (a) in the response decay-time scale, (b) in the single round-trip time scale
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of the amplitude modulation inside a single equivalent Fabry-Perot cavity formed by
the SRM and the end-mirror with the reflectivity Rf . The time the light requires for
a round trip inside the equivalent cavity is 2τ . The smaller part of the laser impulse
that reaches the SRM is transmitted with the coefficient TS , while the rest of it is
reflected with, respectively, RS . The reflected part comes back to the SRM after the
full roundtrip and the process repeats infinitely. As the result we have an infinite
number of decaying "echo"-impulses with corresponding amplitudes C0, C1, C2, ... on
the photodiode. The decay factor during one round trip is RSRF, and the phase shift
between two consequent impulses, k-th and (k+1)-th, reads

δ(t′k) = 2kpx(t′k), (4.11)

where t′k = t1 + (2k + 1)τ is the reflection instance of the k-th impulse, and x(t) is
the microscopic displacement of the SRM from the resonant position of the equivalent
cavity.
It can be shown that the impulse response for the case of stationary detector with

x(t) =const is a Fourier transform of the transfer function k(Ω) from the frequency-
domain description of the detector, defined in (2.6b).

4.1.2. Delay line

The early proposals for GW detectors had the delay lines instead of Fabry-Perot cav-
ities to increase the optical length of the arm and, therefore, the sensitivity to the
GWs. Unlike the Fabry-Perot cavity, the light inside the delay line makes only the
certain number of roundtrips before it is reflected back to the beamsplitter, as it de-
picted in figure 4.2. Similar to the layout with the Fabry-Perot cavities in arms, delay
lines require additional mirrors near the beamsplitter. We denote the reflectivities
of these closer mirrors as Rec and Rnc for, correspondingly, the east and the north
arms. The number of round trips in an early proposal [40] was Nrt = 40. The current
GEO 600 configuration has folded arms (see section 2.3), which are delay lines with
Nrt = 2.

If the GW has a slow frequency, the change displacement of the end-mirrors, caused
by GWs, is insignificant during the time the light spends in a delay line. The reflection
from the delay line in this case is equivalent to the reflection from a single arm with
an optical length of the whole delay line, and with an end-mirror reflectivity equal
to joint reflectivity of all the reflections during light travels there. A GW with high
frequency may change the value of its strain fast enough to break the equivalence.
For such frequencies the reflection from the arms with delay lines is described by the
following equations, which are modifications of (B.7) and (B.5):

îdl(t) = −i
√

2

2
RNrt

e RNrt−1
ec ê(t− 2Nrtτ)−

−
√

2

2
RNrt

e RNrt−1
ec ĥ(t− 2Nrtτ) +

Nrt−1∑
k=0

√
2Rekpxe(t− τ − 2kτ)E (ReRec)

k
. (4.12a)
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Figure 4.2.: Scheme of a delay line.
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l̂dl(t) =

√
2

2
RNrt

n RNrt−1
nc ê(t− 2Nrtτ)+

+ i

√
2

2
RNrt

n RNrt−1
nc ĥ(t− 2Nrtτ) +

Nrt−1∑
k=0

√
2iRnkpxe(t− τ − 2kτ)E (RnRnc)

k
.

(4.12b)

The maximal signal amplification is obtained, when the mirrors in a delay line
are tuned to resonance, so the the signals, injected by the displaced mirrors, sum
up in phase. In this subsection we assume the detector without the signal recycling
mirror, therefore the phase, the field obtains propagating from the delay line to the
photodetector, is unimportant. Under this considerations, and also under the dark-
port conditions, similar to (4.1-4.5), the reflection from the arms with the delay line
reads:

ĝ(t) ≈ −Rf(Nrt − 1)ĥ(t−Nrtτ) + 2

Nrt−1∑
k=0

ωp
c
ERf(k)xd(t− (2k + 1)τ), (4.13)

where the new equivalent reflectivity after k round-trips in a delay line is introduced:

Rf(k) =
Rk+1

n Rknc +Rk+1
e Rkec

2
. (4.14)

The propagation of this field to the detector, followed by the homodyne detection,
defines the photocurrent, caused by the differential mirror motion. By setting a delta-
shaped motion of the end-mirrors one gets the impulse response of a Michelson based
detector with delay lines:

Ls→c(dl)(t1, t
′
1) =

Nrt−1∑
k=0

Ak cos(φh)δ(t1 − t′1 + τ/2 + kτ), (4.15)

where
Ak = 4

√
2kp|E|Rf(k). (4.16)

4.1.3. Delay line with SRM.

The detector with delay lines may also be dynamically tuned to the detected chirp
GW, by implementing and moving the SRM. The equation (4.13), describing the light
injection due to the end-mirror differential motion, may be modified to describe the
recycling:

ĥ(t) = −RsRf(Nrt − 1)ĥ(t− 2Nrtτ)e2ikpx(t)−

− 2

Nrt−1∑
k=0

kpERsRf(k)e2ikpx(t)xd(t− τ/2− kτ). (4.17)
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Figure 4.3.: Scheme of a Fabry Perot cavity in the arm.

The solution of this recurrent equation reads:

ĥ(t) = −2

∞∑
n=0

Nrt−1∑
k=0

kpERsRf(k) (RsRf(Nrt − 1))
n
e

n∑
j=0

2ikpx(t−2jNrtτ)

×

× xd(t− (2nNrt + 2k + 1)τ). (4.18)

After the calculation of the field evolution from the beamsplitter through the SRM
and towards the point of the detection on the homodyne detector, and after the
substituting the delta-like signal end-mirror motion we get the impulse response of
the signal recycled detector with the delay line:

Ls→c(dlsr)(t1, t
′
1) =

=

∞∑
n=0

Nrt−1∑
k=0

Ank cos (ξn(t)) δ(t1 − t′1 + (2nNrt + 2k + 1)τ), (4.19)

where

Ank = −4
√

2kp|E|TsRf(k) (RsRf(Nrt − 1))
n
, (4.20a)

ξn(t) =

n∑
j=0

2ikpx(t− 2jNrtτ)− 2ikpx(t) + φh ≡ φn(t) + φh. (4.20b)

The phase shift ξn(t), that the field gets during n roundtrips inside the detector, may
also be described via the accumulated phase shift, introduced in appendix D.2, with
phase-shift trains φn(t) defined in (D.16).

4.1.4. Fabry-Perot cavity in arm
All interferometric gravitational wave detectors, except for the one considered in this
thesis, GEO600, have Fabry-Perot cavities in the arms. The difficulty of considering
this configuration in the time-domain is in the double cavity system.

82



Chapter 4. End-mirror motion 4.1. Impulse operator

The scheme of the detector is modified by adding a Fabry-Perot cavity in the arms,
which is shown in figure 4.3. On the plot the new notations for the fields in the
Fabry-Perot cavity of the east arm are presented, while the notations of the north
arm are equivalent. The cavities in the arms are tuned in order to get the maximal
field amplitude on the mirrors. The boundary conditions for east arm cavity are:

î(t) = −Reîj(t) + iTeit̂i(t), (4.21a)

ŝi(t) = −Reit̂i(t) + iTeîj(t), (4.21b)

t̂i(t) = −Reeŝi(t− 2τ)− 2iReekpxe(t− τ)S. (4.21c)

The equivalent set of the equations for the north cavity mirrors reads:

l̂(t) = −Rnik̂(t) + iTnim̂i(t), (4.22a)

n̂i(t) = −Rnim̂i(t) + iTnIk̂(t), (4.22b)
m̂i(t) = −Rnen̂i(t− 2τ)− 2iRnekpxn(t− τ)N. (4.22c)

From this equations the fields, leaking out of a Fabry-Perot cavities may be ex-
pressed:

î(t) = −Reîj(t) + T 2
eiRee

∞∑
k=0

ĵ(t− 2(k + 1)τ)(ReeRei)
k+

+ 2TeiRee

∞∑
k=0

kpxe(t− (2k + 1)τ)S(ReeRei)
k (4.23a)

l̂(t) = −Rnik̂(t) + T 2
niRne

∞∑
k=0

k̂(t− 2(k + 1)τ)(RneRni)
k+

+ 2TniRne

∞∑
k=0

kpxn(t− (2k + 1)τ)N(RneRni)
k, (4.23b)

The fields in the signal recycling cavity may be calculated as the corresponding
interference of these two fields with the dark-port condition. Both paths of the field
in the signal recycling cavity, propagating through the east and through the north
arms, have the same distinguishable parts: (i) inside the Fabry-Perot cavity, where
the one-way trip lasts for τ ; and (ii) between the input mirror of the cavity and the
SRM, for describing which the new quantity τin is introduced.

The fields on the end-mirrors, which is responsible for the leaks from the power
recycling cavity due to the end-mirror motion, may be described in terms of the field
E, falling on the beamsplitter:

S = −
√

2

2

Tei

1−ReeRei
E, (4.24a)

N = −i
√

2

2

Tni

1−RneRni
E. (4.24b)
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All the fields of the first order in (4.23) may be expressed from the field h(t) a
round-trip ago, and they read:

ĥ(t) =

∞∑
k=0

RsAgkĥ(t− 2τin − 2kτ)e2ikpx(t) +RsBgkExd(t− 2τin − (2k+ 1)τ)e2ikpx(t),

(4.25)
where

Ag0 = −Rei +Rni

2
, (4.26a)

Agk =
T 2

eiRee(ReeRei)
k + T 2

niRne(RneRni)
k

2
, k > 0, (4.26b)

Bgk =
T 2

eiReekp(ReeRei)
k

1−ReeRei
+
T 2

niRnekp(RneRni)
k

1−RneRni
. (4.26c)

The field on the output may be simulated numerically using the recurrent substitu-
tion of h(t) into the formula. One could also try different approximations to simplify
the equations, for example assuming the time of propagation between the input mir-
ror of a Fabry-Perot and the SRM to be short τin � τ , or the resonant tuning of the
Fabry-Perot 2ωpτ = 2πk, k ∈ N .

4.2. Particular cases of detected signal

The impulse responses of the different detector configurations, considered in the pre-
vious section, have a rather tricky dependence on the input end-mirror motion and
the SRM displacement, revealing the complex behavior of the fields inside the detec-
tor. There are some very simple particular cases of the input signal and the SRM
motion, for which the output signal may be calculated analytically. In this section
we consider the output of the different detector layouts, namely recycled Michelson
configuration, the configuration with a delay line in the arms with and without the
SRM for the following partial cases: stationary case, when the input signal has a con-
stant amplitude and frequency, and the SRM has a constant position; and a step-wise
change of every of these parameters in a very fast way, keeping the other parameters
constant.

4.2.1. Recycled Michelson configuration

Let us consider the recycled Michelson configuration, the impulse response of which
is defined by (4.10). The following partial cases are interesting to us.
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Stationary case

Here the response of the detector with constant detuning to a signal with constant
frequency and constant amplitude is considered:

xd(t) = A0 cos(Ωt), (4.27a)
2kpx(t) = δ. (4.27b)

After the expansion of both cosines in the expression of the photocurrent, obtained
by the substitution of (4.27a) into (4.10), according to Euler’s formula into complex
exponents, the four infinite geometric series appear. After solving these series, every
pair of the resulting expressions with the same arguments of the complex exponents
may be summed, turning into:

Idet(t) = C0A0
1

2

{
cos(Ωt− Ωτ + φh − ζ1)√
1− 2R cos(2Ωτ − δ) +R2

+

+
cos(Ωt− Ωτ − φh − ζ2)√
1− 2R cos(2Ωτ + δ) +R2

}
, (4.28)

where

ζ1 = arctan
R sin(Ωτ − δ)

1−R cos(Ωτ − δ)
, (4.29a)

ζ2 = arctan
R sin(Ωτ + δ)

1−R cos(Ωτ + δ)
. (4.29b)

We also denote here and below in this thesis for the simplicity the total reflectivity
during a round-trip:

R ≡ RsRf . (4.30)

The two terms in this equation correspond to two sidebands, caused by the signal
end-mirror oscillations, deformed by the resonant Airy function of the detector. This
result is obviously consistent with the result, considered in the frequency domain with
the equations (2.5) and (2.6b).
When the detector is tuned to one of the sidebands, i.e. δ = 2Ωτ , the denominator

of the corresponding terms becomes very small with respect to the other term, and it
overwhelms the non-resonant sideband:

Idet(t) ≈ C0A0
1

2

cos(Ωt− Ωτ + φh)

1−R
(4.31)

Both terms in (4.28) oscillate at the GW-frequency, which one can see after merging
of the terms:

Idet(t) = C0
1

2
B cos(Ωt− Ωτ + φh − θ), (4.32)
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where

B =
1

A2
1

+
1

A2
2

+
2

A1A2
cos(ζ1 − ζ2), (4.33a)

θ = arctan
1
A1

cos ζ1 + 1
A2

cos ζ2
1
A1

sin ζ1 + 1
A2

sin ζ2
, (4.33b)

A1 =
√

1− 2R cos(2Ωτ − δ) +R2, (4.33c)

A2 =
√

1− 2R cos(Ωτ + δ) +R2. (4.33d)

Step-wise change of amplitude

One can mathematically set the case of the stationary detector, with constant de-
tuning, detecting the signal with constant frequency and step-wise change of the
amplitude:

xd(t) =

{
A1 cos(Ωt), t < t1,

A2 cos(Ωt), t >≥ t1,
(4.34a)

2kpx(t) = δ. (4.34b)

Before the change of the amplitude t < t1 the system still remains stationary, and
has no "idea" about the future transient. The output current for this area of the
signal is:

Idet(t) =
1

4
A1C0

{
exp(i(Ωt− Ωτ + φh))

1−R exp(−i(2Ωτ − δ))
+

exp(−i(Ωt− Ωτ + φh))

1−R exp(i(2Ωτ − δ))
+

+
exp(i(Ωt− Ωτ − φh))

1−R exp(−i(2Ωτ + δ))
+

exp(−i(Ωt− Ωτ − φh))

1−R exp(i(2Ωτ + δ))

}
. (4.35)

This expression is another form of (4.28), written without merging of the terms with
the same frequency.
The four infinite geometric series, describing the build up of the signal, are separated

after the change of amplitude into the finite part, describing the part of the current,
sourced by the fragment of GW with the new amplitude, and the residuary, sourced
by the part of GW with the old amplitude:

Idet(t) =
1

4
C0 {exp (i (Ωt− Ωτ + φh)) ×

× A2 + (A1 − A2) (R exp (−2iΩτ + iδ))
b t−t1τ + 1

2 c

1−R exp (−2iΩτ + iδ)
+

+ exp (i (Ωt− Ωτ − φh))×

×A2 + (A1 − A2) (R exp (−2iΩτ − iδ))b
t−t1
τ + 1

2 c

1−R exp (−2iΩτ − iδ)
+ h.c.

}
. (4.36)
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To analyze the frequency components of this signal in the photocurrent, the equa-
tion (4.36) should be respresented in the following way:

Idet(t) ≈
1

4
C0

{
A2 exp (i (Ωt+ φh))

1−R exp (−2iΩτ + iδ)
+

+

(A1 − A2)

(
R
t−t1
2τ exp

[
i

(
δt

2τ
− δt1

2τ
+ Ωt1 + φh

)])
1−R exp (−2iΩτ + iδ)

+

+
A2 exp (i (Ωt− φh))

1−R exp (−2iΩτ + iδ)
+

+

(A1 − A2)

(
R
t−t1
τ exp

[
i

(
− δt

2τ
+
δt1
2τ
− Ωt1 − φh

)])
1−R exp (−2iΩτ + iδ)

+ h.c.

 . (4.37)

The stationary part of this expression has the frequency of the signal, while both
transient components decay at the eigenfrequency of the detector. Also all the field,
stored in the detector before the transition, switches instantaneously to the eigen-
frequency of the detector, decaying on it, while the arising part has both frequency
components, resulting into the stationary term with time. This transient behavior of
the detector can be seen in figure 4.4 (a).

Step-wise change of frequency

The response of a stationary detector with constant detuning on the GW signal with
constant amplitude but the step-wise change of the frequency may be described like
this:

xd(t) =

{
A0 cos(Ω1t), t < t1,

A0 cos(Ω2t), t >≥ t1,
(4.38a)

2kpx(t) = δ. (4.38b)

Before the step, the system, as in previous cases, is in the stationary state:

Idet(t) =
1

4
C0A0

{
exp(i(Ω1t− Ω1τ + φh))

1−R exp(−i(2Ω1τ − δ))
+

exp(−i(Ω1t− Ω1τ + φh))

1−R exp(i(2Ω1τ − δ))
+

+
exp(i(Ω1t− Ω1τ − φh))

1−R exp(−i(2Ω1τ + δ))
+

exp(−i(Ω1t− Ω1τ − φh))

1−R exp(i(2Ω1τ + δ))

}
. (4.39)

For the field evolution after the step the infinite sums of geometric series, split into
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Figure 4.4.: The typical transients of the considered detector on the step-wise change of (a)
X(t), (b) f(t), (c) δ(t)
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two parts, describing the response to the new and to the old signal frequency:

Idet(t) =
1

4
C0A0

{
exp(i(Ω1t− Ω1τ + φh))

(R exp(−2iΩ1 + iδτ))
b t−t12τ + 1

2 c

1−R exp(−2iΩ1τ + iδ))
+

+ exp(i(Ω2t− Ω2τ + (Ω1 − Ω2)t1 + φh))
1− (R exp(−2iΩ2τ + iδ))

b t−t12τ + 1
2 c

1−R exp(−2iΩ2τ + iδ)
+

+ exp(i(Ω1t− Ω1τ − φh))
(R exp(−2iΩ1 − iδτ))

b t−t12τ + 1
2 c

1−R exp(−2iΩ1τ − iδ))
+

+exp(i(Ω2t− Ω2τ + (Ω1 − Ω2)t1 − φh))
1− (R exp(−2iΩ2τ − iδ))b

t−t1
2τ + 1

2 c

1−R exp(−2iΩ2τ − iδ)
+ h.c.

}
.

(4.40)

To reveal explicitly the frequency component, this expression is represented in the
following way:

Idet(t) ≈
1

4
C0A0


R

t−t1
2τ exp

(
i
δt

2τ
− i δt1

2τ
+ iΩ1t1 + iφh

)
1−R exp(−2iΩ1τ + iδ))

+

+
exp(i(Ω2t+ (Ω1 − Ω2)t1 + φh))

1−R exp(−i2Ω2τ + iδ)
−
R
t−t1
2τ exp

(
i
δt

2τ
− i δt1

2τ
+ iΩ1t1 + iφh

)
1−R exp(−2iΩ2τ + iδ)

+

+

R
t−t1
2τ exp

(
−i δt

2τ
+ i

δt1
2τ

+ iΩ1t1 − iφh

)
1−R exp(−2iΩ1τ − iδ))

+

+
exp(i(Ω2t+ (Ω1 − Ω2)t1 − φh))

1−R exp(−i2Ω2τ − iδ)
−
R
t−t1
2τ exp

(
−i δt

2τ
+ i

δt1
2τ

+ iΩ1t1 − iφh

)
1−R exp(−2iΩ2τ − iδ)

+ h.c.

 .

(4.41)

We can see in this case, similarly to the previous case, that the new stationary field
oscillates at the signal frequency, while all transient processes, including the field
accumulated before the frequency step, occur at the eigenfrequency of the detector.
The response of the detector on the frequency step-change as well as the fields behavior
one can see in figure 4.4 (b).

Step-wise change of detuning

The detection of a signal with constant amplitude and frequency, performed by the
detector with a very fast, step-wise change of the detuning during the detection, is
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described mathematically as following:

xd(t) = A0 cos(Ωt), (4.42a)

2kpx(t) =

{
δ1, t < t1

δ2, t ≥ t1.
(4.42b)

The detection before the change of the detuning t < t1 remains obviously stationary
and repeats therefore the result (4.28):

Idet(t) =
1

4
C0A0

{
exp(i(Ωt− Ωτ + φh))

1−R exp(−i(2Ωτ − δ1))
+

exp(−i(Ωt− Ωτ + φh))

1−R exp(i(2Ωτ − δ1))
+

+
exp(i(Ωt− Ωτ − φh))

1−R exp(−i(2Ωτ + δ1))
+

exp(−i(Ωt− Ωτ − φh))

1−R exp(i(2Ωτ + δ1))

}
. (4.43)

After the change of the detuning t > t1 the output field, that was so far described as
the single geometric series, can be divided in two new homogeneous parts: the finite
one, describing the influence of the new detuning, and the residuary infinite sum,
carrying the phase shifts from the old detunings, and after applying the formulas for
the geometric series, one gets the following:

Idet(t) =
1

4
C0A0

{
exp(i(Ωt− Ωτ + φh))

[
1− (R exp(−i(2Ωτ − δ2)))b

t−t1
2τ +1c

1−R exp(−i(2Ωτ − δ2))
+

+ exp

(
i(δ2 − δ1)b t− t1

1τ
c
)

(R exp(−i(2Ωτ − δ1)))b
t−t1
2τ +1c

1−R exp(−i(2Ωτ − δ1))

]
+

+ exp(i(Ωt− Ωτ − φh))

[
1− (R exp(−i(2Ωτ + δ2)))b

t−t1
2τ +1c

1−R exp(−i(2Ωτ + δ2))
+

+ exp

(
−i(δ2 − δ1)b t− t1

2τ
c
)

(R exp(−i(2Ωτ + δ1)))b
t−t1
2τ +1c

1−R exp(−i(2Ωτ + δ1))

]
+ h.c.

}
. (4.44)

Here bac means the whole part of the rational value a.

To see the actual frequencies of the oscillations, we should combine the complex
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exponents in the terms:

Idet(t) ≈
1

4
C0A0

{[
exp(i(Ωt+ φh))

1−R exp(−i(2Ωτ − δ2))
+

+

R
t−t1
2τ exp

[
i

(
δ2t

2τ
− δ2t1

2τ
+ Ωt1 + φh

)]
1−R exp(−i(2Ωτ − δ2))

+

+

R
t−t1
2τ exp

[
i

(
δ2t

2τ
− δ2t1

2τ
+ Ωt1 + φh

)]
1−R exp(−i(2Ωτ − δ1))

+

+

[
exp(i(Ωt− φh))

1−R exp(−i(2Ωτ − δ2))
+

+

R
t−t1
2τ exp

[
i

(
−δ2t

2τ
+
δ2t1
2τ

+ Ωt1 − φh

)]
1−R exp(−i(2Ωτ − δ2))

+

+

R
t−t1
2τ exp

[
i

(
−δ2t

2τ
+
δ2t1
2τ

+ Ωt1 − φh

)]
1−R exp(−i(2Ωτ − δ1))

+ h.c.

 . (4.45)

Here we have neglected the phase-shifts in the field during a single round-trip due to
the signal oscillations and the SRC-detuning.

The expression consists of four similar parts, each of them holds the terms of the
exponents of one sign, corresponding to one of the sidebands. Each part consists of the
three term, whose physical meaning can be expressed in two ways. The first term in
each part describes the stationary condition, corresponding to the infinite time passed
after the transition, while the second and the third terms describe the transients. The
stationary process after the transition occurs at the signal frequency Ω, while all the

transient processes occur at the new eigenfrequency
δ

2τ
of the detector.

From another point of view, the field inside the detector may be divided into the
decaying and arising one. The whole field, accumulated by the detector before the
transition is described with the third term of each part. It decays with time, but,
what is surprising, not on the signal frequency. The frequency of this field part
switches instantaneously after the SRM displacement to the new eigenfrequency of
the detector. The first two terms in each part of (4.45) describe the arising field in
the detector, which is a superposition of the oscillations on the signal frequency and
on the detector eigenfrequency, becoming in the end the monochromatic stationary
signal with the signal frequency. This behavior is depicted on the plot of the detector
response in figure 4.4 (c).
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Composite step-wise change

The remarkable consequence of the described processes becomes apparent as both
GW and of the SRC detuning frequency are changing synchronized, this is depicted
in the figure 4.5(a). The perturbations caused by these changes are canceled, so the
frequency of the output signal switches instantaneously from one value to another
without any relaxation processes. Hence, only amplitude transient effects affect the
output signal during the resonant tracking of the GW with both frequency and am-
plitude dependent on time. The response of the detector to the joint synchronized
step-wise change of signal amplitude and the SRC detuning as well as all three con-
sidered parameters are presented in figure 4.5(b,c).

4.2.2. Delay line
The mirrors in the delay lines in both arms are assumed to have the equal reflectivity,
and, therefore,

Rf(k) = R(0)R2k. (4.46)

Stationary case

The detection of a signal with constant amplitude and frequency by the configuration
with delay lines is defined only by the GW:

xd(t) = B0 cos(Ωt). (4.47)

For this the current, calculated from (7.8), is:

Idet(t) =
1

2
A0

[
[1− (R2e−2iΩτ )Nrt ]eiΩ(t−τ/2)

1−R2e−2iΩτ
+

[1− (R2e2iΩτ )Nrt ]e−iΩ(t−τ)

1−R2e2iΩτ

]
.

(4.48)
The current oscillates at frequency Ω with the amplitude:

Iamp = A0

√
1− 2R2Nrt cos(2NrtΩτ) +R2Nrt√

1− 2R2 cos(2Ωτ) +R4
. (4.49)

Step-wise amplitude change

The detection of the signal with the amplitude, quickly changing at the instance t1,
is set as:

xd(t) =

{
A1 cos(Ωt), t < t1,

A2 cos(Ωt), t >≥ t1,
(4.50)

The current before the step is stationary, as in (4.48), with the corresponding
amplitude:

Idet(t) =
1

2
A1A0

[
[1− (R2e−2iΩτ )Nrt ]eiΩ(t−τ/2)

1−R2e−2iΩτ
+

[1− (R2e2iΩτ )Nrt ]e−iΩ(t−τ)

1−R2e2iΩτ

]
.

(4.51)
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Figure 4.5.: The transients of the considered detector on the combinations of step-wise
changes of (a) f(t) and δ(t), (b) X(t), f(t) and δ(t), (c)X(t) and δ(t)
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After the step the transient will last for (2Nrt − 2)τ . The signal during this time,
(t > t1 + τ/2) ∩ (t < t1 + (2Nrt − 1)τ), reads:

Idet(t) =
1

2
A0

[
[1− A2(R2e−2iΩτ )b

t−t1
2τ + 1

2 c − A1(R2e−2iΩτ )bNrt− t−t12τ + 1
2 c]eiΩ(t−τ)

1−R2e−2iΩτ
+

+
[1− A2(R2e2iΩτ )b

t−t1
2τ + 1

2 c − A1(R2e2iΩτ )bNrt− t−t12τ + 1
2 c]e−iΩ(t−τ)

1−R2e2iΩτ

]
. (4.52)

After this transition signal reaches its stationary oscillations:

Idet(t) =
1

2
A2A0

[
[1− (R2e−2iΩτ )Nrt ]eiΩ(t−τ)

1−R2e−2iΩτ
+

[1− (R2e2iΩτ )Nrt ]e−iΩ(t−τ)

1−R2e2iΩτ

]
.

(4.53)

4.2.3. Delay lines with SRM

We assume the delay line layout of the detector with the equal far and close mirrors
in the arms:

R = RsR
2Nrt−1
m (4.54)

Stationary case

The detection of a stationary oscillating signal with constant detuning of the detector
may be described as following:

xd(t) = A0 cos(Ωt), (4.55a)
2kpx(t) = δ. (4.55b)

The current on the photodiode will have the following behavior, obtained from
(7.10):

Idet(t) =
A0A0

4

{
eiΩ(t−τ)+iφh(1− (R2

me
−2iΩτ )Nrt)

(1−R2
me
−2iΩτ )(1−Re−2iΩNrtτeiδ)

+

+
eiΩ(t−τ)−iφh(1− (R2

me
−2iΩτ )Nrt)

(1−R2
me
−2iΩτ )(1−Re−2iΩNrtτe−iδ)

+ h.c.

}
(4.56)

The amplitudes of oscillations of the two sidebands of this field are:

Iamp,1 =
A0A0

2

√
1− 2R2Nrt cos(2NrtΩτ) +R2Nrt√

1− 2R2 cos(2Ωτ) +R4
×

× 1√
1− 2R cos(δφ − 2ΩNrtτ) +R2

. (4.57a)

94



Chapter 4. End-mirror motion 4.2. Particular cases of detected signal

Iamp,2 =
A0A0

2

√
1− 2R2Nrt cos(2NrtΩτ) +R2Nrt√

1− 2R2 cos(Ωτ) +R4
×

× 1√
1− 2R cos(δφ + Ω2Nrtτ) +R2

. (4.57b)

The first amplitude gives a factor of 6 for the amplifications of resonant oscillations.
This value is obtained with T 2

s = 400ppm, T 2
m = 50 ppm.

Step-wise change

The detection of a stationary oscillating GW signal with the interferometer with delay
lines in the arms, and the detuning changing fast at the instance t1:

xd(t) = A0 cos(Ωt), (4.58a)

2kpx(t) =

{
δ1, t < t1

δ2, t ≥ t1.
(4.58b)

The signal remains stationary, before it feels the influence of the step t < t1,
similarly to (4.56):

Idet(t) =
A0A0

4

{
eiΩ(t−τ)+iφh(1− (R2

me
−2iΩτ )Nrt)

(1−R2
me
−2iΩτ )(1−Re−2iΩNrtτeiδ1)

+

+
eiΩ(t−τ)−iφh(1− (R2

me
−2iΩτ )Nrt)

(1−R2
me
−2iΩτ )(1−Re−2iΩNrtτe−iδ1)

+ h.c.

}
(4.59)

The transient process for t ≥ t1 reads:

Idet(t) =
A0A0

4

{
exp(i(Ωt− Ωτ + φh))(1− (R2

me
−2iΩτ )Nrt)

(1−R2
me
−2iΩτ )

×

×

[
1− (R exp(−i(2ΩNrtτ − δ2)))b

t−t1
Nrtτ

+1c

1−R exp(−i(2ΩNrtτ − δ2))
+

+ exp

(
i(δ2 − δ1)

t− t1
τ

)
(R exp(−i(2ΩNrtτ − δ1)))b

t−t1
2Nrtτ

+1c

1−R exp(−i(2ΩNrtτ − δ1))

]
+

+
exp(i(Ωt− Ωτ − φh))(1− (R2

me
−2iΩτ )Nrt)

(1−R2
me
−2iΩτ )

×

×

[
1− (R exp(−i(2ΩNrtτ + δ2)))b

t−t1
2Nrtτ

+1c

1−R exp(−i(2ΩNrtτ + δ2))
+

+ exp

(
i(δ1 − δ2)

t− t1
τ

)
(R exp(−i(2ΩNrtτ + δ1)))b

t−t1
2Nrtτ

+1c

1−R exp(−i(2ΩNrtτ + δ1))

]
+ h.c.

}
. (4.60)
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4.3. Dynamical resonance conditions

4.3.1. Recycled Michelson configuration
The dynamical tuning of the detector is designed to detect a chirp signal, keeping the
detector constantly in resonance to the changing instantaneous GW frequency. The
sinusoidal chirp GW signal may be represented as following:

xd(t) = Re[X(t)eiζ(t)], (4.61)

where X(t) is the slowly changing real amplitude and ζ(t) is a phase of sinusoidal
wave.
The cavity is resonant to only one of the sidebands, while the other one is sup-

pressed. The tuning to a sideband takes place, when during one roundtrip the phase
shift of this sideband, caused by the GW oscillations, is canceled by the correspond-
ing displacement of the SRM from the laser resonance position. Generally speaking,
this condition is defined within one roundtrip and therefore we can express it math-
ematically for the non-stationary detector with the moving SRM. It is easy to see
by substituting of the sinusoidal signal (4.61) into the impulse response, that for one
of sidebands, appearing after a trigonometric transformations of the cosine product
to their sum, the following condition makes all the terms of the corresponding series
in-phase:

ζ(t− (2n+ 1)τ) = ξn(t) + C, (4.62)

where C is a constant. If this condition is satisfied, the sum of all the terms of the
sideband is simply the sum of their amplitudes. Obviously, it gives the maximal
possible field amplitude for the interference. The condition (4.62) is valid for every n
and t, therefore by comparing the phases of the terms for the number of roundtrips
n = k and n = k + 1, the SRM motion, required to follow the gravitational wave
resonantly, is the following:

x(t) =
1

2kp
[ζ(t+ τ)− ζ(t− τ)] . (4.63)

Since we assume the frequency of the signal to be determined, the phase of the
signal reads:

ζ(t) =

t∫
t0

f(t1)dt1. (4.64)

The right side of (4.63), expressed via frequency f(t), turns to the integral with
the limits t− τ and t+ τ . The frequency changes in these limits insignificantly, and
therefore we could approximate this change as a linear function drawn between the
frequency values at the borders of the integration interval. The result of such an
integration would be a square of trapezium:

x(t) =
τ

kp

f(t− τ) + f(t+ τ)

2
. (4.65)
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This expression determines the required law of motion of the SRM, to keep the detec-
tor resonant to the instantaneous frequency at each instance of the time. The effect
of being resonant to the time-variant frequency is called a dynamic resonance, and
was considered first in the thesis of Malik Rakhmanov [70] as dynamical resonant
condition for the fluctuations of the carrier frequency inside a Fabry-Perot cavity. In
this work the dynamic resonance is defined for the source of an enhanced light inside
the cavity, e.g. the sideband, injected into it and caused by the end-mirror motion.
It appears that the resonant motion of the SRM may be conveniently found from

the accumulated phase shift, defined in appendix D. From (D.3-D.11a) it follows that:

x(t) =
1

2kp
(ΦN − ΦN−1) . (4.66)

This formula is especially useful for the discrete simulations.
In this section we also can find from (4.66) and (4.63) the physical meaning of the

accumulated phase shift, defined by the SRM motion:

ΦN − Φ0 = ζ(t+ τ)− ζ(t− 2Nτ + τ). (4.67)

It is a phase of the chirp GW, to which the corresponding motion of the SRM is
resonant to.
For the negligible changes of the frequency during the roundtrip:

|f(t+ τ)− f(t− τ)| � f(t), (4.68)

the resonant condition is simplified down to the quasi-stationary condition:

x(t) =
τ

kp
f(t). (4.69)

4.3.2. Delay line with SRM

The signal recycled detector with delay lines may also detect chirp gravitational waves
with dynamical tuning. Let us consider again the sinusoidal GW (4.61), neglecting
its amplitude change.
In the Michelson configuration with straight arms, the field during a round-trip

obtains only one injection. The light goes out of the delay-line as a package of such
injections. Each of them carries the information about a single value of a GW,
therefore the whole package carries the information about Nrt consequent values of
GW, separated by the round-trip time. This package, being a superposition of some
number of injected coherent waves with their phases and amplitudes, has its own
phase and amplitude. Two consecutive packages make the strongest amplification of
the signal when they are in phase. Describe the two last component packages for the
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signal photocurrent, detected at the instance t, in the complex amplitudes:

I1(t) =

Nrt−1∑
k=0

A1ke
iξ1(t)e−iζ(t−(2Nrt+2k+1)τ), (4.70a)

I2(t) =

Nrt−1∑
k=0

A0ke
iξ0(t)e−iζ(t−(2k+1)τ), (4.70b)

where ξk(t) are defined by (4.20).
The phases of these components are:

tanZ1(t) =

Nrt−1∑
k=0

A1k sin(∆φ1(t) + φh − ζNrt+k(t))

Nrt−1∑
k=0

A1k cos(∆φ1(t) + φh − ζNrt+k(t))

, (4.71a)

tanZ2(t) =

Nrt−1∑
k=0

A0k sin(φh − ζk(t))

Nrt−1∑
k=0

A0k cos(φh − ζk(t))

. (4.71b)

with a single phase shift from (D.14):

∆φ1(t) = 2kpx(t− 2Nrtτ), (4.72)

and new variable, defined as:

ζn(t) = ζ(t− (2n+ 1)τ), n ∈ Z. (4.73)

∆φ1(t) is a phase shift, which field Z2(t) (and all other components of light) obtains
during refliection from the SRM, before the last roundtrip. We could choose the
microscopical position of the SRM such, so the field Z2(t) gets the same phase after
the reflection from the delay line, as the package Z1(t), following after him. From this
the explicit resonant condition for the SRM motion may be obtained:

x(t) =
1

2kp
arctan


Nrt−1∑
k=0

Nrt−1∑
k′=0

A1kA0k′ sin(ζk′−Nrt
(t)− ζk(t))

Nrt−1∑
k=0

Nrt−1∑
k′=0

A1kA0k′ cos(ζk′−Nrt(t)− ζk(t))

 . (4.74)

The more intuitively clear result may be obtained under the following simple as-
sumptions: (i) every mirror has the same reflectivity Rf (and the same losses), so
the expressions for the delay-line reflectivity (4.14), and for the amplitudes of the
impulses (4.20a) become:

Rf(k) = R2k+1
f , (4.75a)

Ank = −4
√

2kp|E|TsR
2k+1
f

(
RsR

2Nrt−1
f

)n
; (4.75b)
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(ii) the frequency changes slow enough to neglect its variations during a round trip
inside the delay line, so:

f(t+Nrtτ)− f(t−Nrtτ)� f(t), (4.76a)
ζn(t)− ζm(t) = 2(n−m)f(t)τ. (4.76b)

Under these assumption the resonant condition (4.74) is simplified to the quasi-
stationary expression:

x(t) =
1

2kp
2Nrtf(t)τ. (4.77)

This result is easy to understand. To keep the detector in resonance the SRM should
introduce the same phase shift to the light, that changes in the gravitational wave
during the full roundtrip.

4.4. Resonant tracking of the chirp sinusoidal signal
The dynamical resonant condition of a Michelson interferometer defines the position
of the SRM, that adds the injections from GWs in-phase, or satisfying the dynamic
resonant conditions (4.63). The detection of a GW, keeping the detector dynamically
resonant, is called resonant tracking of the signal.
The response of the resonantly tracking detector to the chirp input signal may be

obtained by substituting the dynamical resonant conditions (4.63) into (4.10):

Ls→c(t, t1) =

∞∑
n=0

Cn cos(ζ0(t)− ζn(t) + φh)δ (t1 − t+ (2n+ 1)τ) . (4.78)

Here we have used the definitions for ζk from (4.73).
The response of the resonantly tracking detector to the input signal (4.61) may be

calculated by substituting it in (4.78):

Idet(t) =

∞∑
n=0

Cn cos(ζ0(t)− ζn(t) + φh)X (t− (2n+ 1)τ) cos ζn(t). (4.79)

The multiplication of every two cosines in the series is a sum of the two cosines:
with sum and with difference of their arguments, describing the behavior of two signal
sidebands inside the cavity. The cosines with sum of the arguments have uncorrelated
phases, while the phases of the cosines with the difference arguments become equal,
i.e. the fields corresponding to them are summed up in-phase, therefore significantly
overcoming the non-correlated side-band, which is neglected:

Idet(t) ≈ Z(t) cos [ζ0(t) + φh] , (4.80)

where

Z(t) =
1

2

∞∑
n=0

CnX (t− (2n+ 1)τ) . (4.81)
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The phase (and therefore frequency) behavior of the detected photocurrent repeats
the one of the input gravitational wave, excepting a phase shift, corresponding to the
time the light requires to travel from the end-mirrors to the photodiode. Therefore
the resonant tracking changes only the time-variant amplitude X(t) of the input
signal. The more convenient appearance for amplitude Z(t) of the photocurrent may
be obtained by developing it into Taylor’s series, and summing the resulting terms,
corresponding to each derivative, as a geometric series, taking into account (4.8a,4.8b):

Z(t) = C0
X(t− τ)

1−R
+ C0

∞∑
k=1

X(k) (t− τ) (−2τ)k

(1−R)k+1
, (4.82)

where X(k)(t) is a k-th derivative of the time-dependent GW amplitude and

R = RfRs. (4.83)

The first term in (4.82), describing the response on a GW with the negligibly
slowly changing amplitude, corresponds to the photodetector signal from the quasi-
stationary detection of the chirp (compare with (2.6b) with δ = Ω). However, it is
not a quasi-stationary detector in the usual sence. Even though the instantaneous
amplitude of the response is equal to the corresponding response of the stationary
detector to the monochromatic GW, the typical times of the frequency change and
of the SRM motion could be much less than the transient times of the detector. This
kind of detection is referred to therefore as virtually stationary.
As it follows from (4.82), the speed of the amplitude change and its higher deriva-

tives X(k)(t) break virtual stationarity, cause the transient processes preventing the
detector from achieving the maximal, "quasi-stationary" amplification of the GW
signal. The condition of virtual stationarity is convenient to describe in the relative
perturbations caused by the derivatives of the GW amplitude, normalized by the
virtual-stationary values:

εk(t) =
X(k)

(
t− τ

2

)
X(t− τ

2 )

(
−2τ

1−R

)k
≈
X(k)

(
t− τ

2

)
X(t− τ

2 )
(−0.02)

k
, (4.84)

where the numerical value was calculated for the typical GEO values of τ , Ts and Af

presented in table 2.1.
Another way of binding the amplitudes of GW and photocurrent may be found in

the frequency domain. The time shifts of n round trips become the exponents with
power n in the Fourier transform of (4.81). These factors make the series in this
expression geometric, and after calculating its limit one gets:

Z(Ω) = R(Ω)X(Ω). (4.85)

So during resonant tracking the photocurrent amplitude is bound with the GW am-
plitude through the stationary transformation, characterized by the transfer function:

R(Ω) =
1

2

C0e
iΩτ/2

1−ReiΩτ
(4.86)
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The transfer function here is an Airy function for the equivalent Fabry-Perot cavity
with the frequency bandwidth calculated from (1.17):

γ =
T 2

s +A2
f

4τ
, (4.87)

and equal to 8.3Hz. Here A2
f = 1−R2

f is a transmittance (or losses) of the end-mirror
of an equivalent FP cavity.
On the scale of considered frequencies (102 − 104 Hz) this bandwidth could be

considered as very narrow.
So we could harmlessly linearize (4.86):

R(Ω) =
1

2

C0e
iΩτ/2

1−R− iΩτ
. (4.88)

As the outcome, the phase and the frequency behavior of the output signal repeats
that of the input GW, while the amplitude at the output is smoothed with respect
to the amplitude of the GW signal. In other words, during the resonant tracking the
shape of the output signal is obtained by low pass filtering of the GW shape.

4.5. Thermal noise on the output
Apart from the quantum noises there is the number of noise sources resulting in
the end-mirror displacement. The main sources of this displacement noise are the
seismic, the thermal fluctuations of the mirror coating and of the suspension. The
detector is sensitive to the differential end-mirror motion, and since the independent
stochastic motion of the end-mirror has the differential component, this noise affects
the sensitivity.
To calculate the sensitivity the signal and stochastic changes of the same value

should be considered. In chapter 3 as well as in the first sections of the current
chapter the shot noise and GW signals were considered in the variations of the pho-
tocurrent. To include properly the displacement noise in the sensitivity calculations,
the fluctuations of the photocurrent, caused by them, should be found.
The displacement noise is the fluctuation of the optical elements in the interfer-

ometer, e.g. of mirrors, beamsplitter, etc. Normally the displacement noise may be
described as the noisy motion of the end-mirrors. Since this motion is independent
from any optical parameters of the detector, including the time-dependent detuning,
it is stationary, even during the dynamical tuning. Its properties are described by the
spectral density Sdis(Ω) and the corresponding autocorrelation function:

Bdis(τ) =

∞∫
−∞

Sdis(Ω)e−iΩτ
dΩ

2π
. (4.89)

On the contrary, the displacement noise in the photocurrent is a stationary noise
detected by a non-stationary detector, and therefore is also non-stationary. The
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4.6. The signal deconvolution Chapter 4. End-mirror motion

displacement noise in the end-mirrors xdis(t) and in the photocurrent Idis(t) are bound
by the evolution of the fields inside the detector described by the impulse response to
the differential end-mirror motion (4.10). From this boundary and the definition of
an autocorrelation function (3.1) the properties of the noise in the photocurrent may
be expressed from those of the end-mirror motion in the following way:

Bi(t1, t2) =

t1∫
−∞

dt′1

t2∫
−∞

dt′2Ls→c(t1, t
′
1)Ls→c(t2, t

′
2)Bdis(t

′
1, t
′
2). (4.90)

The explicit substitution of the impulse response gives the following expression for
the output autocorrelation function:

Bi(t1, t2) =

∞∑
m=0

∞∑
n=0

CmCn cos [ξm(t1)] cos [ξn(t2)]Bdis(t2 − t1 + 2(m− n)τ). (4.91)

The merging of the terms with the same argument of Bdis(t) may be done changing
of the sum indices to

m′ = m+ n, (4.92a)
n′ = m− n. (4.92b)

After substitution of the impulse amplitudes (4.8a,4.8b) we get:

Bi(t1, t2) =

∞∑
m′=0

∞∑
n′

C2
0R

m′ cos ξm′+n′
2

(t1) cos ξm′−n′
2

(t2)Bdis(t2 − t1 + 2n′τ), (4.93)

where m’ covers values from 0 to infinity, and n′ε[−m′,m′] with the step of 2.
The properties of the end-mirror displacement noise are usually described by the

spectral density function. The photocurrent autocorrelation function expressed through
it may be obtained via the Fourier transform:

Bi(t1, t2) =

=

∞∫
−∞

dΩ

2π
S(Ω)

∞∑
m=0

∞∑
n=0

CmCn cos ξm(t1) cos ξn(t2)eiΩ(t2−t1+2(m−n)τ). (4.94)

4.6. The signal deconvolution
The dynamical tuning of the chirp GW signal amplifies the signal part of the output
photocurrent. On the contrast to the stationary operating detector, where spectrums
of the output and the input signals are bound via transfer function, the dynamical
tuning deforms the shape of the detected wave in a non-stationary way, so the restora-
tion of the initial shape becomes an important task. The resonantly tracked signal
is easy to restore by the deconvolution of the envelope in accordance with formula
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(4.85). However, in real life the resonant tracking of the signal isn’t perfect: the
inevitable errors of the tracking makes this way of restoration wrong.

However, it is possible to restore the differential end-mirror from the measured
photocurrent if we have also know the SRMmotion during the detection, and therefore
the impulse response function, precisely. Assume for convenience the homodyne angle
equal to zero and write down the response on the arbitrary differential motion using
(4.78) in the following way:

Idet(t) = C0xd (t− τ) +

+R
[
cos (2kpx(t− 2τ)) Idet(t− 2τ)− sin (2kpx(t− 2τ)) Ĩdet(t− 2τ)

]
, (4.95)

where we introduce the other, undetected quadrature of the photocurrent:

Ĩdet(t) ≡
∞∑
n=0

Cn sin(ζ(t− τ)− ζ(t− (2n+ 1)τ))xd (t− (2n+ 1)τ) =

= R
[
sin (2kpx(t− 2τ)) Idet(t− 2τ) + cos (2kpx(t− 2τ)) Ĩdet(t− 2τ)

]
. (4.96)

The last expression in this equation is a recurrent formula for Ĩdet(t), using which we
could explicitly express it through the measured photocurrent:

Ĩdet(t) = R sin (2kpx(t− 2τ)) Idet(t− 2τ)+

+

∞∑
k=2

Rk
k−1∏
l=1

cos (2kpx(t− 2lτ)) sin (2kpx(t− 2kτ)) Idet(t− 2τ). (4.97)

After substituting this formula in (4.95) the differential end-mirror motion, and there-
fore, the inverse impulse response, may be found explicitly:

Lc→s(t, t1) =

∞∑
n=0

Ãn(t)δ(t1 − t+ (2n− 1)τ), (4.98)

where:

Ã0(t) =
1

C0
, (4.99a)

Ã1(t) = − R

C0
cos (2kpx(t− τ)) , (4.99b)

Ã2(t) =
R2

C0
sin (2kpx(t− τ)) sin (2kpx(t− 3τ)) (4.99c)

Ãn(t) =
Rn

C0

n−1∏
l=2

cos (2kpx(t− (2l − 1)τ)) sin (2kpx(t− τ))×

× sin (2kpx(t− (2n− 1)τ)) , n ≥ 3. (4.99d)
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The following equation proves that the eigenbases of both direct and inverse impulse
response transformations are full, and theoretically no information about the GW
signal is lost during the resonant tracking:

∞∫
−∞

Lc→s(t, t1)Ls→c(t1, t
′
1) = δ(t− t′1). (4.100)

4.7. Projection of the output quantum noise on the
end-mirror motion

Both displacement noise and GW signals occur at the end-mirrors. Only shot noise is
considered on the photodetector. So far the problem of sensitivity was studied on the
photodetector, by calculating displacement noise and GW signal there. However, it
may be easier to do on the end-mirrors. By the detection we don’t really care, where
the noise appeared, since two noises, having the same characteristics, but originated
at different places, are indistinguishable for us. Therefore we could calculate the auto-
correlation function of the virtual shot noise at the end-mirrors, or the noise reduced
to the end-mirros: it will be the projected noise, which causes the corresponding
white noise on the photodetector (3.55). Since we know the inverse impulse response
of the detector (4.98), we can calculate the reduced noise. The delta-function allows
to integrate the expression for the autocorrelation function once:

Bq
s (t1, t2) = Cz

t1∫
−∞

dt′1LC→S(t1, t
′
1)LC→S(t2, t

′
1). (4.101)

The inverse impulse response also depends on time as a sum of delta-functions,
therefore we could perform the second integration, substituting the explicit expression
of the impulse response:

Bqs(t1, t2) = Cz

∞∑
k=−∞

B̃k(t1, t2)δ(t2 − t1 + kτ), (4.102)

In order to merge all the terms, where the delta-function has the same parameter, we
introduce the new indices and a new variable:

k = m− n, (4.103a)
l = m+ n, (4.103b)

B̃k(t1, t2) =

k∑
l/2=−k

Ã(l−k)/2(t1)Ã(l+k)/2(t2), (4.103c)

where the limits of the sum, depicted in this way, mean that l changes from −2k to
2k with step 2.
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CHAPTER 5

DC Readout.

5.1. DC part of the output light

DC -readout is an important way to detect the field oscillations on the
output, caused in the detector by GWs. In a stationary detector the DC-

offset of the interference at the beamsplitter from the dark port causes a zero-order
leak from the power recycling cavity. After the stationary amplification this leak
result in the monochromatic laser radiation on the photodiode, being a very nice
local oscillator (B.33), synchronized with the laser frequency fluctuations.

The motion of the SRM, performing the dynamical tuning, establishes a non-
stationary response on the DC-offset source in the signal recycling cavity, complexi-
fying the detection. In the stationary case the beating of the DC leak with the signal
field may be extracted by low-pass filtering of a zero-order component. During the
dynamical detection the parameters of the signal recycling cavity vary so rapidly, that
the zeroth order component of the field, caused by the DC-offset, belongs no longer
to the low-frequency region, arising the problem of the signal extraction.

Let us describe the evolution of the zero-order component in the detector with
the DC-offset. The equation, describing the zero-order leak from the power recycling
cavity due to dark fringe offset in time-domain, and its evolution during one round-trip
inside the signal recycling cavity reads:

Hdc(t) = E
(
−iRsR2e

iϕ2e2ikpx(t)
)

+
(
RsRfe

2ikpx(t)
)
H(t− 2τ), (5.1)
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where

R2 =
1

2

√
R2

e +R2
n − 2ReRn cos(2δφf), (5.2a)

ϕ2 = arccot
(
Re −Rn

Re +Rn
cot δφf

)
(5.2b)

The solution for the field in the signal recycling cavity is then:

Hdc(t) = −i
∞∑
n=0

Rn+1
s Rnf R2Ee

2ikp
n∑
k=0

x(t−2kτ)
eiϕ2 , (5.3)

The explicit field on the photodiode, caused by the DC-leaks, may be found from
the field inside the cavity, describing the evolution of light between the corresponding
points:

Edc(t) =

∞∑
n=0

Bn cos(ωpt− ξn(t)), (5.4)

where

B0 = −2
√

2

√
π~ωp
Ac

TsR2|E|, (5.5a)

Bn = B0(RsRf)
n, (5.5b)

ξ0(t) = ϕ2 + φe, (5.5c)

ξn(t) = ξ0 + 2kp

n∑
k=1

x(t− 2kτ), (5.5d)

and φe is a phase of light E.
The current of the photodiode for the detector with DC-readout is described by

the following expression:

Idet = const× |Edc(t) + Ey(t)|2 ≈ Idc(t) + Iy(t), (5.6)

where Ey(t) is a first order term on the photodiode, caused by GWs and noise. The
measured photocurrent, the zeroth and the first order terms of which are denoted
correspondingly Idc(t) and Iy(t), is proportional to the audio-frequency components of
the detected laser power (below we set the corresponding constant to 1 for simplicity).
The information about GW is carried only by the first order term, describing beating
of the fields of the zeroth and of the first order. The zeroth order term, being only
a non-stationarily amplified DC-leak from the power recycling cavity, is therefore
undesirable. Its expression may be found explicitly by the substitution of (5.4) into
(5.6):

Idc(t) =
1

2

∞∑
n=0

∞∑
m=0

BnBm cos(ΦN−n−1 − ΦN−m−1), (5.7)

Where we used the accumulated phase shift from (D.11a). The zeroth-order compo-
nent is defined by the SRM motion, and therefore can theoretically be simulated and
subtracted from the measured signal, once this motion is measured precisely enough,
leaving only the signal component.
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5.2. The signal from the end-mirror motion in
DC-readout

The field on the photodetector, sourced by the differential end-mirror motion is the
same for both DC-readout and homodyne detection, and therefore can be taken from
the section 4.1 directly:

Ey(t) =

∞∑
n=0

2Cn sin [ωpt− φe − (ΦN−1 − ΦN−n−1)]xd (t− (2n+ 1)τ) , (5.8)

where the amplitudes Cn are defined in (4.8a,4.8a), and the Φn is an accumulated
phase shift, defined in appendix D by the expression (D.11a).
Therefore, the photocurrent component, caused by the end-mirror motion, and also

we get the impulse response by setting the delta-function to the differential end-mirror
motion:

Ldc
s→c(t, t1) =

∞∑
n=0

∞∑
m=0

BnCm sin(ΦN−n−1 − ΦN−m−1 − ϕ2)δ (t− t1 + (2n+ 1)τ) .

(5.9)
The restoration of the gravitational wave from the measured photocurrent is theo-

retically possible in a similar way to the described one in section 4.6.

5.3. Particular cases of detected signal

In this section we consider the partial cases of the signal detection with the detector,
operating with time-varying position of the SRM and the DC-readout. The simplest
cases are stationary detection, assuming the constant amplitude and frequency of the
signal, and the constant detuning of the detector. Another case is the detection of
such a signal with a step-wise change of the detuning. The fields, caused by the GW
motion have two sidebands, however in this section we consider only one of them,
assuming it to be close to resonance, effectively overwhelming the other one.

Stationary case

The operational regime of the detection with the constant detuning of the GW with
the constant amplitude and frequency is defined by:

xd(t) = A0 cos(Ωt), (5.10a)
2kpx(t) = δ. (5.10b)

The output current during this detection may be represented as two sets of infinite
sums, corresponding to the zero and the first order terms, in the following way, defined
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by (5.6), (5.7) and (5.9):

Idet(t) =
1

2

∞∑
n=0

∞∑
m=0

BnBm cos ((m− n)δ) +

+

∞∑
n=0

∞∑
m=0

CnBm sin ((m− n)δ + ϕ2) cos(Ω(t− (2n+ 1)τ)). (5.11)

The zero-order term, found after a significant amount of trivial transformations of
the geometric series read:

Idet,0 =
B2

0

1− 2R cos δ +R2
. (5.12)

The first-order current after even larger amount of the similar geometric series
transformations, keeping only one sideband, assumed to be close to resonance:

Idet,1 ≈ A0C0B0
cos(Ωt− Ωτ − ζ)√

(1− 2R cos(δ − 2Ωτ) +R2)(1− 2R cos δ +R2)
, (5.13)

where

ζ = arctan {[cosϕ2 −R cos(δ − 2Ωτ + ϕ2)−R cos(δ − ϕ2)+

+ R2 (cos(δ − ϕ2) cos(δ − 2Ωτ) + sin(δ − ϕ2) sin(δ − 2Ωτ))
]
/

/ [sinϕ2 −R sin(δ − 2Ωτ + ϕ2) +R sin(δ − ϕ2)−
− R2 (sin(δ − ϕ2) cos(δ − 2Ωτ)− cos(δ − ϕ2) sin(δ − 2Ωτ))

]}
. (5.14)

Step-wise change of detuning

The step-wise change of the detuning during the detection of the monochromatic GW
signal can be described as:

xd(t) = A0 cos(Ωt), (5.15a)

2kpx(t) =

{
δ1, t < t1

δ2, t ≥ t1.
(5.15b)

The system before the step does not experience the stationary state:

Idet,1 ≈ C0B0
cos(Ωt− Ωτ − ζ)√

(1− 2R cos(δ1 − 2Ωτ) +R2)(1− 2R cos δ1 +R2)
, (5.16)
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For the calculation of the transients terms at t > t1 we used Mathematica. The
zero order terms reads:

Idet,0(t) =
B2

0

1− 2R cos δ2 +R2
+

+
B2

0R
2 sin2

(
δ1−δ2

2

)
(1− 2R cos δ1 +R2)(1− 2R cos δ2 +R2)

R
2(t−t1)

τ +

+
2B2

0R
∣∣sin ( δ1−δ22

)∣∣
√

1 +R2 − 2R cos δ1(1 +R2 − 2R cos δ2)
R
t−t1
τ cos

(
δ2
τ
t− ξ − δ2

τ
t1

)
, (5.17)

where

ξ = arctan
sin δ2 +R sin(δ1 − δ2)− sin δ1

cos δ1 +R(−1 + cos(δ1 − δ2))− cos δ2
. (5.18)

The first order component of the current is correspondingly:

Idet,1(t) = A0

{
B1 cos(Ωt− ξ1) + B2R

t−t1
2τ +1 cos

[
(δ1 − 2Ωτ)

t− t1
2τ

− ξ2
]

+

+ B3R
t−t1
2τ +1 cos

[
(δ1 + 2Ωτ)

t− t1
2τ

− ξ3
]

+ B4R
t−t1
2τ +1 cos

[
(δ2 − 2Ωτ)

t− t1
2τ

− ξ4
]

+

+B5R
t−t1
2τ +1 cos

[
(δ2 + 2Ωτ)

t− t1
2τ

− ξ5
]
+B6R

t−t1
2τ +1 cos (lδ1 − ξ6)+B7R

t−t1
2τ +1 cos

(
δ2
t− t1

2τ
− ξ8

)
+

+ B8R
2( t−t12τ +1) cos

[
(δ1 − δ2)

t− t1
2τ

− ξ8
]}

, (5.19)

where

B1 =
1

1− 2R cos δ2 +R2
×

× 2R| sin δ2 sin(Ωτ)|√
(1− 2R cos(δ2 − 2Ωτ) +R2)(1− 2R cos(δ2 + 2Ωτ) +R2)

(5.20a)

B2 =
1

2
√

(1 +R2 − 2R cos δ1)(1 +R2 − 2R cos(δ2 − 2τΩ))
, (5.20b)

B3 =
1

2
√

(1 +R2 − 2R cos δ1)(1 +R2 − 2R cos(δ2 + 2τΩ))
, (5.20c)

B4 =
1

2
√

(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ2 − 2τΩ))
, (5.20d)

B5 =
1

2
√

(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ2 + 2τΩ))
(5.20e)
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B6 =

√
1 +R2 +R2 cos 2φ0 − 4R cos δ1 cosφ0 cos(2Ωτ − φ0) + cos 2(2Ωτ − φ0)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ1 − 2Ωτ))(1 +R2 − 2R cos(δ1 + 2Ωτ))
,

(5.20f)

B7 =

√
1 +R2 +R2 cos 2φ0 − 4R cos δ2 cosφ0 cos(2Ωτ − φ0) + cos 2(2Ωτ − φ0)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ2 − 2Ωτ))(1 +R2 − 2R cos(δ2 + 2Ωτ))
,

(5.20g)

B8 =

{[
R2 −R(cos δ2 + cos(δ1 − 2Ωτ)) + cos(δ1 − δ2 − 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ1 − 2Ωτ))
−

− R2 −R(cos[δ1 + cos(δ2 − 2Ωτ)) + cos(δ1 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos[δ1)(1 +R2 − 2R cos(δ2 − 2Ωτ))
+

+
R2 −R(cos δ2 + cos(δ1 + 2Ωτ)) + cos(δ1 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ1 + 2Ωτ))
−

− R2 + cos(δ1 − δ2 − 2Ωτ)−R(cos δ1 + cos(δ2 + 2Ωτ))

2(1 +R2 − 2R cos δ1)(1 +R2 − 2R cos(δ2 + 2Ωτ))

]2

+

+

[
R sin(δ2 −R sin δ1 − 2Ωτ) + sin(δ2 − δ2 − 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ2 − 2Ωτ))
−

− −R sin δ2] +R sin(δ2 − 2Ωτ) + sin(δ2 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ2 − 2Ωτ))
+

+
R sin δ2 −R sin(δ2 + 2Ωτ) + sin(δ2 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ1 + 2Ωτ))
+

+
(R− cos(δ2 + 2Ωτ)) sin δ1 + (−R+ cos δ1) sin(δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ1)(1 +R2 − 2R cos(δ2 + 2Ωτ))

]2
} 1

2

(5.20h)

tan ξ1 = − (−1 +R2 + 2R cos δ2 − 2R2 cos 2Ωτ) sin 2Ωτ

(−1 +R2 − 2R cos δ2 + 2R2 cos 2Ωτ)(1− cos 2Ωτ)
, (5.20i)

tan ξ2 =
− cos(δ1 − φ0) +R(cosφ0 −R cos(δ2 − φ0 − 2Ωτ) + cos(δ1 + δ2 − φ0 − 2Ωτ))

sin(δ1 − φ0) +R(sinφ0 +R sin(δ2 − φ0 − 2Ωτ)− sin(δ1 + δ2 − φ0 − 2Ωτ))
,

(5.20j)

tan ξ3 =
− cos(δ1 + φ0) +R(cosφ0 −R cos(δ2 + φ0 + 2Ωτ) + cos(δ1 + δ2 + φ0 + 2Ωτ))

sin(δ1 + φ0) +R(− sinφ0 +R sin(δ2 + φ0 + 2Ωτ)− sin(δ1 + δ2 + φ0 + 2Ωτ))
,

(5.20k)

tan ξ4 =
− cos(δ2 − φ0) +R(cosφ0 −R cos(δ2 − φ0 − 2Ωτ) + cos(2δ2 − φ0 − 2Ωτ))

sin(δ2 − φ0) +R(sinφ0 +R sin(δ2 − φ0 − 2Ωτ)− sin(2δ2 − φ0 − 2Ωτ))
,

(5.20l)

tan ξ5 =
− cos(δ2 + φ0) +R(cosφ0 −R cos(δ2 + φ0 + 2Ωτ) + cos(2δ2 + φ0 + 2Ωτ))

sin(δ2 + φ0) +R(− sinφ0 +R sin(δ2 + φ0 + 2Ωτ)− sin(2δ2 + φ0 + 2Ωτ))
(5.20m)
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tan ξ6 =

[
cos(δ1 + φ0 − 2Ωτ) +R(− cosφ0 +R cos(δ2 + φ0)− cos(δ1 + δ2 + φ0 − 2Ωτ))

1 +R2 − 2R cos(δ1 − 2Ωτ)
+

+
R2 cos(δ2 − φ0) + cos(δ1 − φ0 + 2Ωτ)−R(cosφ0 + cos(δ1 + δ2 − φ0 + 2Ωτ))

1 +R2 − 2R cos(δ1 + 2Ωτ)

]
/

/

[
cos(δ2 + φ0 − 2Ωτ) +R(− cosφ0 +R cos(δ2 + φ0)− cos(2δ2 + φ0 − 2Ωτ))

1 +R2 − 2R cos(δ2 − 2Ωτ)
+

+
R2 cos(δ2 − φ0) + cos(δ2 − φ0 + 2Ωτ)−R(cosφ0 + cos(2δ2 − φ0 + 2Ωτ))

1 +R2 − 2R cos(δ2 + 2Ωτ)

]
,

(5.20n)

tan ξ7 =

[
− cos(δ2 + φ0 − 2Ωτ) +R(cosφ0 −R cos(δ2 + φ0) + cos(2δ2 + φ0 − 2Ωτ)])

1 +R2 − 2R cos(δ2 − 2Ωτ)
+

+
− cos(δ2 − φ0 + 2Ωτ) +R(−R cos(δ2 − φ0) + cosφ0 + cos(2δ2 − φ0 + 2Ωτ))

1 +R2 − 2R cos(δ2 + 2Ωτ)

]
/

/

[
sin(δ2 + φ0 − 2Ωτ) +R(− sinφ0 +R sin(δ2 + Φ0)− sin(2δ2 + φ0 − 2Ωτ))

1 +R2 − 2R cos(δ2 − 2Ωτ)
+

+
sin(δ2 − φ0 + 2Ωτ) +R(R sin(δ2 − φ0) + sinφ0 − sin(2δ2 − φ0 + 2Ωτ))

1 +R2 − 2R cos(δ2 + 2Ωτ)

]
(5.20o)

tan ξ8 =

[
R2 −R(cos δ2 + cos(δ1 − 2Ωτ)) + cos(δ1 − δ2 − 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ1 − 2Ωτ))
−

− R2 −R(cos[δ1 + cos(δ2 − 2Ωτ)) + cos(δ1 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos[δ1)(1 +R2 − 2R cos(δ2 − 2Ωτ))
+

+
R2 −R(cos δ2 + cos(δ1 + 2Ωτ)) + cos(δ1 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ1 + 2Ωτ))
−

− R2 + cos(δ1 − δ2 − 2Ωτ)−R(cos δ1 + cos(δ2 + 2Ωτ))

2(1 +R2 − 2R cos δ1)(1 +R2 − 2R cos(δ2 + 2Ωτ))

]
/

[
R sin(δ2 −R sin δ1 − 2Ωτ) + sin(δ2 − δ2 − 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ2 − 2Ωτ))
−

− −R sin δ2] +R sin(δ2 − 2Ωτ) + sin(δ2 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ2 − 2Ωτ))
+

+
R sin δ2 −R sin(δ2 + 2Ωτ) + sin(δ2 − δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ2)(1 +R2 − 2R cos(δ1 + 2Ωτ))
+

+
(R− cos(δ2 + 2Ωτ)) sin δ1 + (−R+ cos δ1) sin(δ2 + 2Ωτ)

2(1 +R2 − 2R cos δ1)(1 +R2 − 2R cos(δ2 + 2Ωτ))

]
. (5.20p)

5.4. Shot noise in time domain with DC readout
The fields of the shot noise, caused by the ground state quantum oscillations, like the
signal fields considered in the previous section, are not changing from replacing the
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homodyne detection by the DC-readout. The photocurrent component, sourced by
the shot noise, injected somewhere in the detector, is calculated as the beating of its
field, described by the amplitude (3.13), with the zeroth order field:

Isn(t) = 2

∞∑
n=0

t∫
−∞

dt1

∞∫
−∞

dΩ

2π

√
2π~ωp
Ac

Bn
2

[
â(ωp + Ω)Ls(t, t1)e−iξn(t) +

+ â†(ωp − Ω)L∗s (t, t1)eiξn(t)
]
e−iΩt1 (5.21)

The full shot noise is summed up by the injections into the dark-port and the end-
mirrors (losses), the response of the detector to which is described by the impulse
responses (3.34), (3.50a) and (3.50b). The autocorrelation function of the shot noise,
caused by these injections reads:

Bdc(t1, t2) = 4

∞∑
n=0

∞∑
m=0

BnBmCz<
{
ei(ξm(t2)−ξn(t1)) ×

×
min(t1,t2)∫
−∞

dt′1
[
Ls(t1, t

′
1)L∗s (t2, t

′
1) + Lc,n→d(t1, t

′
1)L∗c,n→d(t2, t

′
1) +

+Lc,e→d(t1, t
′
1)L∗c,e→d(t2, t

′
1)
]}

(5.22)

The integral in this expression is by chance the expression for the shot noise auto-
correlation function with the homodyne detection (3.15). Substituting the result of
this integration, which was explicitly found in (3.55), we get:

Bdc(t1, t2) = 8Idc(t1)Czδ(t1 − t2). (5.23)

So, during the dynamical tuning with DC-readout, the shot noise of the detector
becomes non-stationary. Though it stays delta-correlated, the value of this correlation
is proportional to the zeroth-order component.
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Simulations of signal
detection
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T he photocurrent on the output of a GW detector consists always of a signal
and a noise part, for both conventional and for a dynamically tuned detector.

Dynamical tuning of the Michelson-based detector increases the amplification of the
chirp gravitational wave in the whole frequency range with respect to the conventional
stationary detector. However, the fast motion of the SRM, required for resonant
tracking of the signal, causes a non-stationary operational regime of the detector.
The time-domain model of the detector, considered in chapter II, describes these
non-stationary transformations of both signals and noise, allowing to simulate their
corresponding photocurrent components.
The successful detection of the GW component as well as the determination of

its parameters depends also on the noise level. The comparison of the intensities of
signals and of noise defines the sensitivity of the detector to the particular signal via a
so called signal-to-noise-ratio (SNR). This quantity is independently defined through
both Neyman-Pearson criteria, which is described in the chapter 6, and through the
matched filtering (see e.g. [78]).
The calculations of the SNR require the explicitly calculated signal and the param-

eters of the noise in the output photocurrent, or reduced to any other quantity, e.g. to
the end-mirror motion. The simulations of the output from chirp GW signals as well
as the SNRs are analyzed in chapter 7. It allows us to compare the sensitivity of the
dynamically tuned detection with respect to a conventional stationary detector.
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CHAPTER 6

Detection theory

6.1. Detection of the signal with noise in time
domain. Neyman-Pearson approach. SNR

The calculation of the SNR for the dynamically tuned detection of a chirp signal is
based on the maximum likelihood principle, first described by Neyman and Pearson
[79] and applied for the detection of chirp GW signals in Gaussian noise, which is a
good approximation after vetoing, e.g. in [80].
Assume the two hypotheses about the measured signal x(t): (i) H0, assuming

a pure, without any signal, Gaussian noise n(t) with the autocorrelation function
B(t, u) and, generally speaking, non-stationary; (ii) H1, assuming the known signal
s(t) on the background of this noise:

x(t) =

{
n(t), 0 ≤ t ≤ T, if H0 is true,
s(t) + n(t), 0 ≤ t ≤ T, if H1 is true.

(6.1)

For these hypotheses the probability distribution to measure the discrete number
of signal values at the instances of time xi = x(ti), 0 ≤ i ≤ N reads:

p0(xi) =
1

(2π)N/2|Skl|−1/2
exp

−1

2

N∑
i,j=0

[xi − s(ti)]S−1
ij [xj − s(tj)]

 , (6.2a)

p1(xi) =
1

(2π)N/2|Skl|−1/2
exp

−1

2

N∑
i,j=0

xiS
−1
ij xj

 , (6.2b)

117



6.2. Signal detection and SNR Chapter 6. Detection theory

where Sij ≡ E[(xi − s(ti))(xj − s(tj))] is the covariation matrix that describes the
noise statistics.
The likelihood ratio for this signal is

Λ(xi) ≡
p1(xi)

p0(xi)
=

= exp

−1

2

N∑
i,j=0

[xi − s(ti)]S−1
ij [xj − s(tj)]+

1

2

N∑
i,j=0

xiS
−1
ij xj

 , (6.3)

The logarithm of likelihood for the continuous measurement may be obtained by
the change of the sum over each index to the integration over the corresponding
moment of time and by the introduction of an auxiliary inverse function q(t) =
T∫
0

S−1(t, t1)s(t1)dt1:

log Λ[x(t)] =

T∫
0

x(t)q(t)dt− 1

2

T∫
0

s(t)q(t)dt, (6.4)

where q(t) is the solution of the following integral equation:

s(t) =

T∫
0

q(u)B(t, u)du. (6.5)

The likelihood ratio Λ[x(t)] depends on the measured data only through an integral
called detection statistics:

G =

T∫
0

x(t)q(t)dt. (6.6)

According to the assumptions, every measured value x(t) is Gaussian, therefore G,
being their linear combination, is also Gaussian, and the parameters of its distribution
are < G >= d2 (for H1) and σG =< G2− < G >2>= d2, where

d2 =

T∫
0

s(t)q(t)dt (6.7)

is the signal-to-noise ratio.
The signal s(t) we measure in this work is a photocurrent Idet(t), calculated with

the impulse response to the end-mirror motion (see section 4.1). The main detected
fractions of noise, with respect to which the SNR is calculated are the shot noise
(3.55) and the end-mirror displacement noise (see section 4.5).
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6.2. SNR for a shot-noise-limited detector
The dynamical tuning amplifies the same components of the thermal noise as of the
GW signals. Therefore, the most noticeable increase of sensitivity would occur in a
shot noise limited detection. The integral equation (6.5) after the explicit substitution
of a white shot noise (3.55) reads:

s(t) = Cz

T∫
0

q(u)δ(t− u)du = Czq(t), (6.8)

and its solution becomes:
q(t) =

s(t)

Cz
. (6.9)

The SNR, obtained from (6.7), is for the white shot noise:

d2 =
1

Cz

T∫
0

s2(t)dt. (6.10)

Therefore, physically the SNR of the dynamically tuned and shot-noise limited
detection is proportional to the overall energy of the signal during detection (i.e. to
the integral over the squared amplitude).
From here it follows that only the amplification of the signal determines the sen-

sitivity during the shot-noise-limited detection. The simulations of the signal on the
photodiode are therefore enough to calculate the increase of sensitivity.
The non-stationarity of the noise during the detection with DC-readout (5.23) mod-

ifies the integral equation:

s(t) = 8Cz

T∫
0

q(u)Idc(t)δ(t− u)du = Czq(t)WDC(t), (6.11)

the solution for which reads:
q(t) =

s(t)

8Idc(t)Cz
, (6.12)

and the corresponding SNR is therefore:

d2 =
1

Cz

T∫
0

s2(t)

8Idc(t)
dt. (6.13)

6.3. SNR for a displacement-noise-limited detection
In the current design of the stationary operated detectors the shot noise and the dis-
placement noise are on a similar level. The dynamical tuning significantly amplifies
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both the signal and thermal noise, reducing the influence of the shot noise to the
detection (see also section 2.8). The displacement-noise-limited detection could be-
come therefore a convenient model with well-known results, applicable also for the
dynamical tuning detection.
It is easy to show, that if the eigenbasis of the impulse response of the detector

is full, or in other words the equation (4.100) is valid, the SNRs, calculated in both
photocurrent and in the end-mirror motion are equivalent. Since the displacement
noise on the end-mirrors is stationary independently from the SRM motion, it is more
convenient to solve the sensitivity task there. For stationary noise:

B(t, u) = B(t− u) =

∞∫
−∞

S(Ω)e−iΩ(t−u) dΩ

2π
(6.14)

the inverse function (6.5) may be conveniently found in the frequency domain:

q̃(Ω) =
s̃(Ω)

S(Ω)
. (6.15)

And the expression for the SNR becomes therefore:

d2 =

∞∫
−∞

|s̃(Ω)|2

S(Ω)

dΩ

2π
. (6.16)

6.4. Detector with thermal and shot noise
Even if the perfect tracking of a GW signal amplifies the displacement noise signif-
icantly higher than level of shot noise, the inevitable tracking errors could reduce
the amplification, forcing to take the full noise, both shot and displacement, into
account. After the substitution the expression for the noise autocorrelation function
from (3.55) and (4.90), the integral equation for the inverse function reads:

s(t) = Czq(t) +

T∫
0

q(u)Bi(t, u)du. (6.17)

The task of solution of this equation is non-trivial. It could theoretically be obtained
from the numerical simulation of the Bi(t, u), using (4.94), in the discrete form of
matrix, and calculating its inverse matrix.
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CHAPTER 7

Simulations of the signal

T here are two partial cases of noise configurations of a dynamically tuned de-
tector we consider in this work: a thermal noise limited and a shot noise limited

ones. As it was shown in section 6.3, the SNR for the thermal noise limited dynami-
cally tuned detection repeats that of the stationary detection, since the thermal noise
and the signal are transformed in the same way. The calculation of the SNR dur-
ing the shot-noise limited detection, is basically a detection of the photocurrent on a
white-noise background, unaffected by the transitions inside the detector. Therefore,
the calculation of the SNR is reduced to the simulation of the GW signal on the
output.
The impulse response of the detector to the end-mirror motion, described in sec-

tion 4.1, defines the current on the photodetector continuously. Unfortunately the
influence of the SRM position affects the photocurrent in a complex non-trivial way,
via phase shifts of the single round-trips, and therefore the explicit values of the
photocurrent can be analytically calculated only in very simple cases, described and
analyzed in section 4.2: (i) with the constant detuning, meaning the stationary de-
tection, (ii) and with the step-wise changes, meaning the response to the Heaviside
step-function. The linear motion of the mirror is already too complex to calculate the
output analytically. The motion of the SRM, required for the dynamical tuning of the
chirp signal, is much more complicated that the linear one, therefore the numerical
simulation of the output signal is required.
It is possible however to simulate the output numerically with the good precision.

During the development of the numerical algorithm for the output signal calculation
the two questions should be addressed: (i) how to discretize the values in the detector
to bind them efficiently, (ii) how to model the resulting discretized value of the output
signal as full as possible, using the finite number of mathematical calculations. These
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questions are considered in the first section of these chapter.
The second section is the final step of the work, performed in this thesis. The

time-domain model for the signal simulations, invented in this work, is used for the
simulations of the chirp GW signals, predicted by the current binary stars coalescence
models. The explicitly simulated signals in the photocurrent allow to calculate and
to analyze the resulting SNR.

7.1. Numerical algorithms of the simulations of the
output signals

7.1.1. Recycled Michelson configuration.
The current, caused by a gravitational wave in the dynamically tuned Michelson based
interferometer with a homodyne detector, may be calculated with (4.7). Though this
formula describes the signal at any instance t of the continuous time, it has a discrete
nature: it uses the values of input parameters, namely of the differential end-mirror
motion and of the SRM displacement, only at certain previous isolated instances,
divided by the round-trip time.

Idet(t) =

∞∑
n=0

Cnxd(t− (2n+ 1)τ) cos(φn(t) + φh), (7.1)

where the amplitudes Cn are defined in (4.8a, 4.8b), and φn(t) is a phase shift train
from (D.2).
We can define a one discrete set of the input parameters, separated by the round-

trips, which will define in our simulations the output current, which will consequently
also be a discretized output with the same separation:

IN =

N−1∑
n=0

Cnxd,N−n cos(ΦN − ΦN−n + φh). (7.2)

Here discretized values were introduced in the following way:

IN ≡ I(2(N − 1)τ), (7.3a)
xN ≡ x(2(N − 1)τ), (7.3b)

xd,N ≡ xd(2(N − 1)τ − τ), (7.3c)
fN ≡ f(2(N − 1)τ − τ), (7.3d)
Φ1 ≡ 0, (7.3e)

ΦN ≡
N−1∑
j=1

2kpxj , N ≥ 1. (7.3f)

For clearness these values and their indices are depicted in figures 7.1 and 7.2. ΦN
in this consideration is an accumulated phase shift from appendix D, and defined by
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 0 t 2τ 4τ 6τ 8τ 10τ -2τ 

xd,1 xd,6 xd,3 xd,5 xd,4 xd,2 

f1 f3 f2 f6 f4 f5 

Figure 7.1.: Indices-time correspondence of gravitational wave signal and its frequency

 

0 t 2τ 4τ 6τ 8τ 10τ -2τ 

I1 I2 I4 I3 I5 I6 

x1 x2 x3 x4 x5 x6 

Φ1 

Φ 2 Φ 4 Φ 3 Φ 5 Φ 6 Φ 7 

Figure 7.2.: Indices-time correspondence of the output signal, the SRM displacement and the
accumulative phase

(D.11a) with t0 = 0 (here the instance of the beginning was set to zero). The sum in
(7.2) is interrupted at the beginning of the detection, assuming the signal beforehand
to be zero.
This discretization allows to express the discretized number of the output values

through the discretized set of the input values. However, a large sum in (7.2), in spite
of being finite, seems quite challenging from the point of view of computational time,
while interrupting it may affect the simulations precisions. To overcome this problem
we may notice, that this sum, starting from (M +1)-st term, looks very similar to the
full expression for the output value with an index N −M − 1. Physically, it means
that the output light IN is a light, reflected from the SRM (M + 1) roundtrips ago,
a smaller part of which was transmitted through it and detected as IN−M−1. The
part remaining in the detector complement another M signal injections, becoming
IN . Therefore one could develop the following algorithm, where every new value for
the output signal is calculated from the previous signal values, keeping therefore the
full information about all the previous signal injections:

IN =

M∑
n=0

Cnxd,N−n cos(ΦN − ΦN−n + φh)+

RM+1 [cos(ΦN − ΦN−M−1)IN−M−1− sin(ΦN − ΦN−M−1)Isin,N−M−1] , (7.4)

where we have redefined after the explicit substitution of Cn:

R = RFRS . (7.5)
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The new quantity is also required for this simulation algorithm:

Isin,N ≡
N−1∑
n=0

Anxd,N−n sin(ΦN − ΦN−n + φh) =

=

M∑
n=0

Anxd,N−n sin(ΦN − ΦN−n + φh)+

+RM+1 [cos(ΦN − ΦN−M−1)Esin,N−M−1 + sin(ΦN − ΦN−M−1)EN−M−1] . (7.6)

The physical meaning of this new value is the quadrature of the light on the detector,
perpendicular to the one that is actually detected with the defined local oscillator.
The dynamical resonance condition (4.65), required to track the signal resonantly,

reads in these discrete notations:

Φn − Φn−1 = 2kpxn−1 = (fn−1 + fn)τ. (7.7)

7.1.2. Delay line
In the delay line the light makes a finite and a small number of round-trips Nrt before
being detected. Therefore, using the discretion (7.3), the following formula output
signal of the corresponding configuration may be obtained from (4.15):

IN =

Nrt−1∑
n=0

Anxd,N−n cos(φh), (7.8)

where Ak is defined in (4.16).

7.1.3. Signal recycled delay line configuration
In a signal recycled detector with delay lines in the arms the light has to types of
round-trips: between the mirrors of the delay line, and between two reflections from
the SRM. The later we call full round trip. For the delay line with Nrt round trips
inside we require therefore the following indices to specify the path of the light:

tN = 2(N − 1)τ, (7.9a)
N − 1 = (M − 1)Nrt +m− 1, (7.9b)

m = N − b N
Nrt
cNrt, (7.9c)

M = bNNrtc+ 1, (7.9d)

where bac denotes the whole part (of the floor) of a.
Using these notations, and (7.3), the following discrete formula is obtained from

(4.19):

IN =

∞∑
n=0

Nrt−1∑
k=0

Ankxd,N−nNrt−k) cos(ΦM,m − ΦM−n,m + φh), (7.10)
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where Ank is taken from (4.20a), and ΦM,m is an accumulated phase shift for this
configuration, defined in appendix D.2 by (4.20a).
The finite simulation formula, using the field value Nrt round trips ago (compare

with (7.4)) is the following:

IN =

Nrt−1∑
k=0

A0kxd,N−k cosφh+

+RIN−Nrt
cos(2kpxN−Nrt

)−RIN−Nsin,rt
sin(2kpxN−Nrt

). (7.11a)

The corresponding perpendicular quadrature of this quantity, required for the signal
simulations is as follows:

Isin,N =

NRT−1∑
k=0

A0kxd,N−k sinφh+

+RIN−Nrt
sin(2kpxN−Nrt

) +REsin,N−Nrt
cos(2kpxN−Nrt

). (7.11b)

For the time, when the detection has begun quite recently, and the light hasn’t
finished the full round-trip, i.e. N < NRT , the field and its perpendicular quadratures
are subsequently:

IN =

N∑
k=0

A0kxd,N−k) cosφh, (7.11c)

Isin,N =

N∑
k=0

A0kxd,N−k sinφh. (7.11d)

7.1.4. Recycled Michelson with DC readout

Since the current GW detectors operate with DC readout, the simulation of the fields
in this case during dynamical tuning is important. Let us write down the equations
for the fields on the photodetector (5.7,5.9) in the following way:

Idet(t) =
1

2

∞∑
n=0

∞∑
m=0

BnBm cos (φm(t)− φn(t)) +

+

∞∑
n=0

∞∑
m=0

CnBm sin (φm(t)− φn(t) + ϕ2)×

× xd(t− (2n+ 1)τ). (7.12)

In the case of dc-readout the assumption of the absence of the GW-signal before
the detection doesn’t cancel the dc-part of the field. We assume, that before the
detection, the detector was waiting in the position x(0), corresponding to the initial

125



7.1. Numerical algorithms Chapter 7. Simulations of the signal

signal frequency:

x(t) = x(0), t < 0, (7.13a)
2kpx(0) = φ0 = 2f(0)τ. (7.13b)

In the expression (7.12), where the discretized values (7.3) are used, we could divide
the infinite sum, corresponding to the evolution of the detector before the detection
t < 0, n > N − 1 and during the detection t < 0, n > N − 1.
After some significant piece of mathematics the following discrete formula is ob-

tained:

IN =
1

2

N−1∑
n=0

Bn
(
<
[
e−iΦN−nSN

]
+

+
B0R

N cos (ΦN−n + φ0)−B0R
N+1 cos ΦN−n

1− 2R cosφ0 +R2

)
+

+
1

2

B2
0R

2N

1− 2R cosφ0 +R2
+

N−1∑
n=0

Cn

(
=
[
e−i(ΦN−n−ϕ2)SN

]
−

−B0R
N sin (ΦN−n + φ0 − ϕ2)−B0R

N+1 sin (ΦN−n − ϕ2)

1− 2R cosφ0 +R2

)
xd,N−n. (7.14)

Here the quantity, describing the time evolution of the zeroth order dc-component, is
introduced for the simplification:

SN =

N−1∑
m=0

Bme
iΦN−m . (7.15)

7.1.5. Signal deconvolution

The task of the deconvolution, studied in this thesis for the recycled Michelson inter-
ferometer, allows to restore the input signal from the output photocurrent. As it was
mentioned, the discrete set of the output current, separated by the round-trip time,
is bound to another set of the discrete values of the input signal. Therefore, we could
use the discretization, defined in (7.3) and shown in figures 7.1 and 7.2, without any
error from switching from the continuous to discrete data. The discrete set of the
output current is bound with the discrete set of the input signal values, therefore, we
could simulate the deconvolution for the one set of the bound data, using (4.98) and
(4.99):

xd,N =

N−1∑
n=0

Ãn,NIN−n, (7.16)
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where:

Ã0,N =
1

C0
, (7.17a)

Ã1,N = − R

C0
cos

(
2ωp

x((N − 1)τ − τ)

c

)
= − R

C0
cos ∆φN−1, (7.17b)

Ã2,N =
R2

C0
sin ∆φN−1 sin ∆φN−2, (7.17c)

Ãn,N =
Rn

C0

n−1∏
l=2

cos ∆φN−l sin ∆φN−1 sin ∆φN−n, n ≥ 3, (7.17d)

∆φN ≡ 2kpxN . (7.17e)

The numerical calculation of this sum implies either a significant calculation time, or
the inevitable error from interruption of the sum. However, similarly to the direct im-
pulse response, the end-mirror displacement is calculated from the information about
the previous output current signals, and, therefore can be used for the calculation of
the next displacements by adding only the recent values of the photocurrent:

xd,N = R
sin ∆φN−1 cos ∆φN−2

sin ∆φN−2
xd,N−1 +

1

C0
IN−

−R sin(∆φN−1 + ∆φN−2)

sin ∆φN−2

1

C0
IN−1 +R

sin ∆φN−1

sin ∆φN−2

R

C0
IN−2. (7.18)

7.2. Simulation results. The improvement of
sensitivity from dynamical tuning

The main goal of any detector development is increasing the sensitivity of the signal
detection. The sensitivity of a certain detection regime with an arbitrary, also non-
stationary, known Gaussian noise budget to a given signal, is commonly described by
the SNR defined in the previous chapter. The increase of sensitivity by the imple-
mentation of the dynamical tuning is very much dependent on the specific detector
configuration. To estimate the realistic benefits from the dynamical tuning, the im-
provement of the SNR, caused by its implementation into an existing detector, should
be calculated.
GEO600 [34,81] is the only currently operating detector, and is traditionally used

for testing advanced technologies, such as signal recycling or squeezing. It could be a
good candidate for the test or the science run implementations of the dynamical tun-
ing. The response of GEO600, assumed for simplicity with the folded arms replaced
by straight ones with the same optical length, is described by (4.10) and is modelled,
using (7.4) and (7.6). The current stationary regime of GEO600, with respect to
which we study the increasing of sensitivity, has a broad frequency band (∼ 1000Hz),
established by a low-reflective SRM, and is therefore optimized for chirp signals. The
dynamical tuning can be implemented into GEO600 by: (i) installation of a new SRM
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Figure 7.3.: (a) The gravitational wave signal from a 5+5 Solar mass spinless black hole
binary. (b) The instantaneous frequency of this signal. (c) The resonantly tracked detection
signal, compared to the low-pass-filtered GW amplitude and the output in quasistationary
approximation
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Figure 7.4.: The response to the GW of a stationary detector (a) in current GEO configura-
tion, (b) with narrow-band sensitivity and tuned, and (c) with narrow-band sensitivity and
detuned to 200 Hz
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Figure 7.5.: The response to the GW of a stationary detector (a) with narrow-band sensitivity
and detuned to 500 Hz, (b) with narrow-band sensitivity and detuned to 1000 Hz, and (c)
with narrow-band sensitivity and detuned to 1800 Hz
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Figure 7.6.: The noise budget of GEO600. The gain of the real noise at high frequencies is
due to the injection of squeezed light

with high reflectivity, instead of the old one, to achieve the narrow-band regime, and
(ii) moving the SRM very precisely, synchronized to the chirp frequency change, also
keeping the detector locked. The sensitivity of the dynamically tuned detection is
compared to the current operation mode of the detector, also referred to as reference
configuration, or a reference detector. The parameters of GEO600 and its laser used
for the simulations are presented in tables 2.1 and 2.2, and the differences between
the considered regimes are in the table 7.1.
The chirp signals, used for the simulations, are modeled by hybrid models [17–20]

for an arbitrary set of masses and spins of the binary elements. In this work the
sensitivity to only one group of signals is studied: to spinless binaries with equal
masses and total mass ranging from 3 to 10 solar masses.
Since the hybrid model contains the time dependency of the instantaneous frequency

of a chirp signal, it is possible to simulate its resonant tracking, using an algorithm
for Michelson-based detectors (7.7). The example of such a simulation is presented
in figure 7.3. In its parts (a) and (b) the latter stage of a chirp signal, emitted by
the binary with 5+5 Solar masses, and its frequency are depicted. The simulation
of the resonantly tracked detection of this signal is presented in figure 7.3 (c). The
simulated output signal is compared to the low-passed filtering of the GW envelope
according to (4.85) (see also the whole section (4.4)). These two results fit, validating
both the numerical model and resonant tracking approximation. It also evident that
the non-resonant sideband, neglected in the resonant tracking approximation, is really
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Table 7.1.: GEO parameters, modified for the dynamical tuning
Symbol Quantity Current configuration Value for dynamical

value tuning configuration
Power transmission

T 2
S on the signal 0.1 420 ppm

recycling mirror (SRM)
Frequency detuning

δ of signal 0Hz resonant tracking
recycling cavity

very small.
The comparison of the simulated response to the GW with the non-physical result

of quasistationary (or mathematically equivalent virtually stationary, as described in
section 4.4) approximation, shows where the amplitude of the signal changes very fast,
kicking the detection out of both quasi-stationary and virtually stationary regime,
namely at the instantaneous frequencies f > 200 Hz. This frequency region coincides
with the one, depicted in figure 2.9, where the effect of radiation pressure noise is
negligible. Therefore, the time-domain model, developed in this thesis, is required for
the proper simulation of this part of the signal, and we may assume the detection to
be free of radiation pressure effects.
For these reasons all the segments of the signals, the SNR-gain to which is calcu-

lated, are taken with the instantaneous frequency starting from 200 Hz. To study
the dependence on the source masses, the sensitivity to the signal from the binary
systems with equal components and with total masses ranging from 3 to 10 Solar
masses is considered.
The sensitivity improvement of dynamical tuning is calculated with respect to the

current configuration of the detector, the response of which to the signal in figure 7.3
is depicted in the same relative units in figure 7.4(a). To give an additional feeling
of the narrow-band regime, a few detection results, performed in this regime for
different detunings, is represented in figure 7.4(b,c) and in figure 7.5. In these plots
the excitations of different signal frequency components are clearly seen.
The noise of the detector can be divided into three parts, according to their origins:

shot noise, radiation pressure noise and thermal noise as it is shown in figure 7.6
[82,83]. We assume, that the real noise will be reduced to the theoretical predictions,
and we use them for the sensitivity analysis. As it was mentioned before, the radiation
pressure noise is negligible in the frequency band of our interest. The increase in
sensitivity occurs from the enhancement of the GW signal in comparison to shot noise
only, because dynamical tuning amplifies the same components of thermal noise as of
GWs, keeping the constant sensitivity with respect to the thermal noise. Therefore
first we study the sensitivity increasing in the shot noise limited assumption. GEO600
is operating with squeezed shot noise. And for the dynamical tuning simulations we
use the ground-state shot noise (without squeezing), for it is easier to simulate and is
low enough to overcome the thermal noises, as it will be shown later.
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Figure 7.7.: The SNR gain of the dynamical tuning in comparison with the stationary broad-
band regime. Both regimes are considered as shot noise limited
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The ground state shot noise on the photodiode remains delta-correlated indepen-
dently from the changed parameters of the SRM, namely its motion during the detec-
tion and its transmittance (see section 3.5). Therefore the SNR with respect to this
noise, as it follows directly from (6.10), may be compared via the corresponding sig-
nal in the output current. The additional squeezing of the shot noise in the reference
configuration reduces the SNR increase corresponding to the squeeze factor in (3.7).
For this study we use the realistic squeezing factors [84,85].
The gain in the SNR for the shot-noise limited detector for different squeezing

factors of the reference configuration is presented in figure 7.7. It has values from
∼ 5 to ∼ 17, depending on the squeezing factor of the reference detector. It decreases
slightly with increasing of the mass of the system. The SNR-gain with respect to the
vacuum shot noise limited configuration, obtained in quasi-stationary approximation,
is also depicted in the figure to estimate the dynamical effects of the detector. The
output signal, simulated in this approximation, was presented before, in figure 7.3.
It significantly differs from the real values, but due to slow change of frequency and
amplitude for most of signal duration the integral effect of this difference is of the
order of 15%.
The thermal noise in figure 7.6 is comparable to the shot noise in the frequency band

of interest. Since dynamical tuning decreases dramatically the influence of shot noise
to the sensitivity, the influence of the thermal noise, which stays the same, becomes
dominant, at least by factor of 12, as it shown in figure 7.8. Therefore the thermal
noise limited detector makes a good approximation for the SNR gain achievable by
dynamical tuning in a real detector, considered with both shot and thermal noise.
The values for the SNR-gain, simulated in this thermal-noise-limited approximation is
depicted in figure 7.9 with respected to the different squeezing factors in the reference
regime. It has values varying from factor of ∼ 3 to factor of ∼ 8, depending on the
squeezing factor of the reference detection regime.
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Summary and outlook

In this thesis we have studied the so-called dynamical tuning, a method of detecting
chirp GW signals, during which the instantaneous signal frequency is tracked by the
detuning of the detector.

We have repeated the frequency-domain consideration of a Fabry-Perot cavity and
of a Michelson-based interferometer, considered in [47]. The resulted sensitivity al-
lowed us to make a quasi-stationary model of a dynamically tuned detection with full
quantum (both shot and radiation pressure) and displacement noise. It is a gener-
alization of the approach from [52], where the analogous task was performed for the
shot-noise-limited detection.
We have developed a time-domain method of analysis, since the detector, per-

forming dynamical tuning, operates in a non-stationary regime (detuning of the SRC
rapidly changes in time to match the frequency of the signal). We have considered
the response of the detector to the shot noise injected through the dark port and
lossy optical elements, and to differential motion of the end-mirrors, caused by GW
signal and displacement noise. We found that although the optical fields describing
vacuum fluctuations transform non-trivially inside the non-stationary detector, the
output shot noise remains delta-correlated for arbitrary realistic motions of the SRM.
Using the signal response to the differential end-mirror motion we have defined a

dynamical resonance, when the phase shifts of light, caused by the GW evolution and
by the SRC detuning are canceled. We have studied a so-called resonant tracking of
a signal, when the detuning of the SRC keeps the ideal dynamical resonance with the
chirp frequency. We established that the detection during perfect resonant tracking of
a chirp signal with negligible rate of amplitude displays a so-called virtual stationarity,
when the field oscillations inside the detector possesses the corresponding stationary
value. If the amplitude of a GW changes significantly, as in a chirp GW, the ampli-
tude of the output photocurrent would have the shape of the low-pass-filtered GW
amplitude. In principle, the fast changes of signal frequency and amplitude as well
as of the SRM position cause transient effects. However, by properly adjusting the

137



Summary and outlook

mirror motion to the signal frequency, the corresponding transient effects are canceled
by each other, leaving only the amplitude related ones.
Assuming a shot noise limited detector, the enhancement factor in SNR of a dy-

namically tuned detector over the current broadband GEO600 configuration is 17.
The analogous values with respect to the 2 dB and 3 dB squeezing in the reference
detector gives 12 and 4 respectively. The influence of dynamical effects in the chirp
signal detection is of the order of 15 percent. However we can neglect them if we
perfectly track the signal frequency, because then the detector becomes displacement
noise limited, so there are no transient effects of the gravitational wave with respect
to displacement noise. Also the current level of displacement noise reduces the SNR
enhancement factor down to 7, 5 and 3 correspondingly.
These number are the upper limit for the SNR gain for dynamical tuning with the

theoretically predicted displacement noise, and we could achieve the value of 17, 12
and 4 if we could decrease the thermal noise sufficiently. The enhancement values
will also be modified when we take into account the error of the resonant tracking
that will cause a contribution of both shot and displacement noise into the dynamical
tuning sensitivity.
The set of SNRs for the dynamical tuning we presented in section 7.2 was obtained

with very special assumptions: (i) the SRM tracks resonantly the frequency of the
chirp signal, (ii) the detector is considered to be either thermal, or shot noise limited.
The inevitable error in the SRM position during its motion makes perfect resonant
tracking of the signal impossible, preventing the signal and displacement noise from
reaching their maximal amplification in comparison to shot noise. Even a small error,
comparable with the band-width of the dynamically tuned detector, i.e. 8Hz, makes
the influence of shot and displacement noise of the same order.
The calculation of the SNR for both noise terms, using (6.7), requires in this case

a numerical solving of the integral equation (6.5) with the composite detector noise,
which can be in principle calculated with an arbitrary precision,

Btot(t1, t2) = Btot
η (t1, t2) +Bth(t1, t2), (7.19)

where the items from the sum should be taken from (4.94) and (3.55) respectively.
The solution of (6.5) allows also to estimate the influence from the signal tracking
error, as it was done in [52], giving us the realistic benefits of the dynamical tuning.
In all the real GW detectors, a DC readout is used instead of a homodyne detection.

The additional leak of laser light from the power recycling cavity of a Michelson based
interferometer, caused by dark-fringe offset, becomes an equivalent local homodyne
oscillator. The leaking power on the photodiode depends on SRC detuning, and
therefore becomes time-dependent during a dynamical tuning detection. The filtering
of the new time-dependent “DC"-part of the photo-current requires new solutions in
the signal processing.
The considered Michelson configuration is used only in GEO600, while the other

GW detectors, namely Advanced LIGO, Advanced VIRGO and the Einstein Tele-
scope, have Fabry-Perot cavities in the arms. The time-domain model for their layout
may be obtained by the development of the described time-domain model. However,
the shot and the displacement noise of these detectors have similar proportions as
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depicted in FIG. 7.6, therefore the thermal-noise-limited configurations will give a
good approximation for the maximal sensitivity gain which is possible by the imple-
mentation of dynamical tuning.
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APPENDIX A

Brief CGS and SI based eletricity basics

Laws of electrical interaction are conventionally expressed in units of the two systems:
CGS (centimeter, gram, second) and SI(french: Systeme international). Basis for the
units in SI-system is definition of currency, Ampere. Ampere is the current in two
infinite parallel conductors, placed on the distance of 1 meter from each other, causing
the interaction force between them of 2×10−7 newtons. The unit of charge, 1 coulomb,
is a charge, transmitted by current of 1 Ampere flow through a cross-section during
1 second. The CGS system is based on the charge definition. The unit of charge in
it is the charge of two point particles, separated from each other by the distance of 1
cm, creating the force of one dyne. The Coulomb’s Law in both systems:

~F =
q1q2

r2

~r

|~r|
in CGS-system, (A.1a)

~F =
1

4πε0

q1q2

r2

~r

|~r|
in SI-system. (A.1b)

Here 1
4πε0

= 9× 109Nm2

C2

Because the force, acting the between the particles, is defined by charges and dis-
tances, and is independent from the units system, the charge unit of CGS-system has
a one-to-one correspondence with coulombs:

1 coulumb = 3× 109 units CGS. (A.2)

The equation for interaction of particle with electrical field is the same for both
systems:

~F = ~Eq. (A.3)
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The boundary between the units of the fields, the force and charge in both units
defines the boundary for the units of eletrical field E:

1V/m =
1

3
× 10−4 units CGS. (A.4)

The law of Ampere-Bio-Savar-Laplace for the magnetic field, caused by an elemen-
tary current in units of the both systems is:

d ~H =
I

c

d~l × ~r
r3

in SI-system, (A.5a)

d ~H =
2I

cr

d~l × ~r
r3

in CGS-system. (A.5b)

The boundary for the units of magnetic field in both systems is, therefore:

1A/m = 4π × 10−3 units CGS. (A.6)

And in the end, the force of Lorentz, caused by this field, is defined in both units
as following:

~F = q
[
~v × ~B

]
in SI-system (A.7a)

~F =
q

c

[
~v × ~B

]
in CGS-system. (A.7b)
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APPENDIX B

Fields in GEO600 layout

B.1. Input-output relation

The layout of the detector is represented in figure 2.1. All the values used in this
appendix could be found in tables 2.1 and 2.2.

Similar to the fields in a Fabry-Perot cavity, it is convenient to split the fields,
propagating in GEO600, into the zeroth and the first order terms. Again the zeroth
order mode fields are sourced by the well-stabilized laser, and the perturbation, caused
by the noise sources and the GWs, make contribution only to the first order terms.

The reflections of the laser field on the optical elements of GEO600 as well as prop-
agation in vacuum, described in this section, are based on formulas of the reflection
from the mirrors, (1.12a) and (1.12b), and of the phase shift. The 50/50 reflections
from the beam splitter are described similarly:

J = i

√
2

2
E −

√
2

2
H. (B.1)

It is convenient to write the input-output relations of the optical elements in
GEO600 (figure 2.1) sorted by parts of optical paths and approximation orders.

1. Power recycling arm (between the beamsplitter and the PRM).
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a. Zeroth approximation:

D = iTpA−RpC, (B.2a)

E = DeikpLi , (B.2b)

F = i

√
2

2
I−
√

2

2
L, (B.2c)

C = FeikpLi , (B.2d)
B = iTpC −RpA. (B.2e)

b. First approximation:

d̂(ω) = iTpâ(ω)−Rpĉ(ω) + 2iRpkpXi(Ω)C, (B.3a)

ê(ω) = d̂(ω)eikLi , (B.3b)

f̂(ω) = i

√
2

2
î(ω)−

√
2

2
l̂(ω), (B.3c)

ĉ(ω) = f̂eikLi , (B.3d)

b̂(ω) = iTpĉ(ω)−Rpâ(ω)− 2iRpkpXi(Ω)A. (B.3e)

2. North arm (upwards from the beamsplitter).
a. Zeroth approximation:

K = i

√
2

2
H −

√
2

2
E, (B.4a)

N = KeikpLn , (B.4b)
M = iAnR−RnN, (B.4c)

L = MeikpLn . (B.4d)

b. First approximation:

k̂(t) = i

√
2

2
ĥ(t)−

√
2

2
ê(t), (B.5a)

n̂(t) = k̂(t− Ln/c)e
ikpLn , (B.5b)

m̂(t) = iAnr(t)−Rnn̂(t)− 2iRnkpxn(t)N, (B.5c)

l̂(t) = m̂(t− Ln/c)e
ikpLn . (B.5d)

3. East arm (between the beamsplitter and the PRM).
a. Zeroth approximation:

J = i

√
2

2
E −

√
2

2
H, (B.6a)

S = JeikpLe , (B.6b)
T = iAeU −ReS, (B.6c)

I = TeikpLe . (B.6d)
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b. First approximation:

ĵ(t) = i

√
2

2
ê(t)−

√
2

2
ĥ(t), (B.7a)

ŝ(t) = ĵ(t− Le/c)e
ikpLe , (B.7b)

t̂(t) = iAer̂(t)−Reŝ(t)− 2iRekpxe(t)S, (B.7c)

î(t) = t̂(t− Le/c)e
ikpLe . (B.7d)

4. Signal recycling arm (between the beamsplitter and the SRM).
a. Zeroth approximation:

G = i

√
2

2
L−

√
2

2
I, (B.8a)

W = GeikpLs , (B.8b)
O = −RsW, (B.8c)

H = OeikpLs , (B.8d)
Y = iTsW. (B.8e)

b. First approximation:

ĝ(t) = i

√
2

2
l̂(t)−

√
2

2
î(t), (B.9a)

ŵ(t) = ĝ(t− Ls/c)e
ikpLs(t), (B.9b)

ô(t) = iTsẑ(t)−Rsŵ(t) + 2iRskpXO(Ω)W, (B.9c)

ĥ(t) = ô(t− Ls/c)e
ikpLs(t), (B.9d)

ŷ(t) = iTsŵ(t)−Rsẑ(t). (B.9e)

The notations of transmission and reflectivity coefficients used in these relations are
denoted in figure 2.1. There are no sources of electromagnetic waves of zeroth order
from the SRM and the end-mirrors. The quantities Ln, Le, Lp and Ls are correspond-
ingly the lengths of north, east arms and the distances from the beamsplitter to the
PRM and the SRM.
Because of the dark-port condition of GEO600 on the beamsplitter, the fields inside

the detector are divided in two modes: the power recycling, formed by the PRM and
the end-mirrors, and the signal recycling, formed by the SRM and the end-mirrors.
So the fields inside the detector maybe separately considered in these modes and in
two different approximations.

B.2. Zeroth approximation in the power recycling
mode. Dark-fringe port and dark-fringe offset

As it was mentioned, the light of zeroth mode in detector is constant. Any field inside
the power recycling mode, e.g. E, is a superposition of three parts: of the field come
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from the laser EA, of the field, originated from the same field E, propagated through
the north En and the east Ee arms, and reflected from the PRM:

E = EA + En + Ee. (B.10)

The field EA, coming from laser, is transmitted through the input mirror iTp and
propagates from the PRM to the beamsplitter eikpLi :

EA = AiTpe
ikpLi . (B.11)

The field, propagating through the north arm, is the field E, reflected from beam-
splitter −

√
2

2 , propagated through the north arm eikpLn , reflected from the north
end mirror −Rn, passed back through the north arm eikpLn , reflected again from the
beamsplitter −

√
2

2 , and finally traveled twice through from the beamsplitter to the
PRM e2ikpLi , reflected in between from it −Rp:

En =
1

2
RnRpe

2ikp(Ln+Li)E. (B.12)

In the similar way, the field coming through the east arm is twice propagated
through the east arm and from the beamsplitter to the PRM e2ikp(Li+Le), twice trans-

mitted through the beamsplitter
(
i
√

2
2

)2

, and once reflected from the PRM and the
east mirror (−Re)(−Rp):

Ee = −1

2
ReRpe

2ikp(Li+Le)E. (B.13)

The substitution of these fields into (B.10) gives the explicit equation for the field
on the beamsplitter:

E = iTpe
ikpLiA+

1

2
Rpe

2ikpLiE
(
e2ikpLnRn − e2ikpLeRe

)
(B.14)

The interference on the beamsplitter of two fields, reflected from the end mirrors, is
described by the sum in the brackets. The superposition of the fields can be adjusted
by tuning of the end-mirrors positions and therefore of the lengths of arms Le and
Le.
The dark-fringe port is the operation regime of GEO 600, when the fields reflected

from the end mirror interfere destructively towards the dark port, and constructively
towards the laser port. The dark-port condition is therefore:

2ikpLn = 2ikpLe + iπ + 2iπn, n ∈ N. (B.15)

With the condition of dark-port, the field on the beamsplitter (B.14) becomes:

E = iTpe
iωp

Li
c A− 1

2
Rpe

2ikpLiEe2ikpLe(Re +Rn). (B.16)
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This equation is equivalent to the equation for the field inside the Fabry-Perot
cavity with formed by the mirrors with reflectivities Rp and

Rf =
Re +Rn

2
(B.17)

and separated by the distance Li+Le (compare with (1.15)). We call this an equivalent
power recycling cavity (PRC). The field E in this cavity is considered on the distance
Li from the first mirror. Therefore the solution for the field in the PRC is an Airy
function again:

E =
iTpe

ikpLiA

1 +RpRfe2ikp(Li+Le)
. (B.18)

We are interested in the strongest amplitude of laser field on the end-mirrors,
therefore we want the power recycling cavity to be in resonance. The resonance
condition, as it follows from (B.18), is:

eikp(Li+Le) = i. (B.19)

The field in resonantly enhanced PRC is therefore:

Eres =
iTpe

ikpLiA

1−RpRf
. (B.20)

The field can be represented in terms of half-bandwidths:

1−RpRf ≈ (γp + γf)2τ, (B.21)

where

γp =
T 2

p c

4L
, (B.22a)

γf =
γn + γe

2
=

(T 2
e + T 2

n )c

8L
(B.22b)

are the bandwidth, corresponding to each mirror separately (compare to (1.19)).
In the real interferometer the signal, coming from the dark port, requires a ref-

erence field, a local oscillator, as it was mentioned in section 1.5. It is technically
inconvenient to use a local oscillator, sourced from the detector laser, in the large-
scale interferometer. To have a referent beam in these circumstances the interference
on the beamsplitter is set to a slight offset from the dark-fringe, causing a small
constant field to dark port. Then the dark-port condition (B.15) turns to:

2ikpLn = 2ikpLe + δφF + iπ + 2iπn, n ∈ N. (B.23)

The field inside the power-recycling cavity for the dark-port for this offset is

E =
iTpAe

ikpLi

1− 1
2Rpe2ikp(Li+Le)(eiδφFRn +Re)

. (B.24)
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In the approximation of small dark-fringe offset and high reflectivities:

Rp ≈ Rn ≈ Re ≈ 1, (B.25a)
δφF � 1, (B.25b)

the resonant condition for the power recycling mode is:

2kp (Li + Le) = −δφF
2
. (B.26)

Then the resonant field on the beamsplitter of the GEO 600 with dark-fringe offset
is:

Eres ≈
iTpAe

ikpLi

1− 1
2Rp(eiδφF /2Rn + e−iδφF /2Re)

≈ iTpAe
ikpLi

2τ(γp + γf)
. (B.27)

Therefore, in the linear approximation, which is very good for 40 pm dark-fringe
offset, the power on the beamsplitter is independent from the offset.

B.3. Zeroth approximation in the signal recycling
mode

The zeroth approximation of field inside a signal recycling cavity, as everywhere else
is a constant. The field inside the signal recycling mode, e.g H on Fig.2.1, is a
superposition of two parts: of the field come from the field E of power recycling
mode, and of the field come from the field H of the signal recycling mode: both after
one round-trip through the north and east arms.
1. The path of field E:
a. through the north arm: it is once reflected from and once transmitted through

the beamsplitter, has twice propagated both through the north arm and between the
beamsplitter and the SRM, and is once reflected from the north mirror and the SRM
each: −

√
2

2 × i
√

2
2 × e

2iωp
Ln+Ls

c × (−Rs)× (−Rn).
b. through the east arm: it is once transmitted through and once reflected from

the beamsplitter, has twice propagated both through the east arm and between the
beamsplitter and the SRM, and is once reflected from the east mirror and the SRM
each: i

√
2

2 ×
(
−
√

2
2

)
× e2iωp

Le+Ls
c × (−Rs)× (−Re).

2. The path of field H:
a. through the north arm: it is twice transmitted through the beamsplitter, has

twice propagated through both the north arm and between the beamsplitter and

the SRM, and is once reflected by the north mirror and the SRM each:
(
i
√

2
2

)2

×

e2iωp
Ln+Ls

c × (−Rs)× (−Rn).
b. through the east arm: it is twice reflected by the beamsplitter, has twice prop-

agated through the east arm and between the beamsplitter and the SRM, and once

reflected by the east mirror and the SRM each:
(
−
√

2
2

)2

×e2iωp
Le+Ls
c ×(−Rs)×(−Re).
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The equation for the field H may be easily derived from these considerations:

H = E

(
−1

2
iRse

2ikpLs(Rne
i2kpLn +Ree

i2kpLe)

)
+

+H

(
1

2
Rse

2ikpLs(Ree
i2kpLe −Rne

i2kpLn)

)
. (B.28)

The terms in the brackets are dependent on the arms length difference. Under
the dark port condition (B.23) the field inside the signal recycling mode, keeping the
terms of the first order of smallness, reads:

H = −
E 1

2 iRse
iδφ(−Rne

iδφf/2 +Ree
−iδφf/2)

1−RsRfeiδφ
, (B.29)

where:

L =
Le + Ln

2
, (B.30a)

δφ = 2kp (L+ Ls) . (B.30b)

The additional factors of eiδφf/2 and e−iδφf/2, multiplied by Rn and Re in the denom-
inator of (B.29) are canceled in the first-order approximation. The whole expression
is similar to the expression for the Fabry-Perot cavity (see (1.15)), but with some
equivalent input laser power, therefore the signal recycling mode is conventionally
described as an equivalent signal recycling cavity (SRC), formed by the mirrors with
reflectivities Rs and Rf , and detuned from the laser frequency by the angle δφ. The
power of the light inside the SRC is dependent from the constant differential displace-
ment of the mirrors. However, if the lengths of the arms would precisely obey the
dark-port condition, the zeroth order field will turn to zero.
The field H, transformed to the frequency language reads:

H ≈ −1

2
Eeiδφ

i(γn − γe − iδωdf)

γs + γf − iδ
, (B.31)

where

γs =
T 2

s c

4L
, (B.32a)

δ =
δφ
2τ
, (B.32b)

δωdf = δφf/2τ. (B.32c)

The quantity δωdf = δφf/2τ is length difference between north and east arms, derived
in frequency. The half band-width, corresponding to the losses in the arms γf is defined
in (B.22). The single phase shifts are supposed to be very small and neglected.
The dependence of the power of the light inside the SRC is shown in figure B.1.
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Figure B.1.: Power of laser field inside the signal recycling mode. Differential losses. Depen-
dence on the dark-fringe port.

B.4. DC-readout

The laser field in the dark port outside the detector is determined by the field inside
the SRC (B.31). The expression for the amplitude of light on the photodetector reads,
derived using (B.8), reads:

Y ≈ −1

2
Ee−ikpLs

Ts(γN − γe − iδωdf)

γs + γf − iδ
= Y0e

iφY , (B.33)

where

Y0 = −1

2
E
Ts

√
(γN − γe)2 + δω2

df√
(γs + γf)2 + δ2

, (B.34a)

φY = φE − kpLs + arctan
δωdf

γN − γe
− arctan

δ

γs + γe
. (B.34b)

The quantity φE is a phase of the light amplitude E.
This small output piece of light, referred to as a DC component, is usually used

as a local oscillator for the homodyne detection. Easy to see, that the phase of the
DC component may be changed by varying the dark-fringe offset. Its dependence is
shown in Fig.B.2.
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Figure B.2.: Homodyne angle of the local oscillator.

B.5. First approximation in the power recycling mode

The first approximation carries all the noises and perturbations. The field inside the
power recycling mode, e.g. ê(ω), is formed, unlike the fields in zeroth approximation,
by a bigger number of sources. The behavior of light inside the detector is described by
the input-output relations (B.3), (B.5), (B.7) and (B.9) and depicted in FIG2.1. The
sources of electromagnetic field inside, described here, may be conveniently ordered
as following:
1. The sources at the mirrors are the injections of the ground state, and the

leak from the fields of zeroth order, caused by the mirror motion (compare with
(1.12a),(1.12b)):
a. The field, sourced at the PRM, iTpâ(ω)+2iRpkpXi(Ω)C propagates the distance

between the PRM and the beamsplitter: eikLi .
b. The field, sourced at the north mirror, iAnr̂(ω) − 2iRnkpXn(Ω)N propagates

once through the north arm, is reflected once from from both the beamsplitter and
the PRM and propagates twice between the beamsplitter and the PRM: eikLn+2Li ×(
−
√

2
2

)
× (−Rp).

c. The fields, sourced at the east mirror, iAeû(ω)−2iRekpXe(Ω)S propagates once
through the east arm, is transmitted once through the beamsplitter, is reflected once
from the input mirror and propagates twice between the beamsplitter and the PRM
eikLe+2Li ×

(
i
√

2
2

)
× (−Rp).
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2. The fields of the first order of smallness, leaking from the signal recycling mode
ĥ(ω) (see section B.6).
a. The part of this field come through the north arm is once transmitted through

and once reflected from the beamsplitter, is once reflected from each of the north
and the input mirrors, and propagates twice through each of the north and the input
arms:

(
i
√

2
2

)
×
(
−
√

2
2

)
× (−Rn)× (−Rp)× e2ik(Li+Ln).

b. The part of the field come through the east arm is once reflected by and once
transmitted through the beamsplitter, is once reflected from each of the east and the
input mirrors and propagates twice through each of east and input arms:

(
−
√

2
2

)
×(

i
√

2
2

)
× (−Re)× (−Rp)× e2ikLi+Le .

3. The fields of the first order of smallness originated from the considered field
ê(ω), made one round-trip through the PRC.
a. The part of this field come through the north arm is twice reflected from the

beamsplitter, is once reflected from each of the north and the input mirrors, and
propagates twice through each of the north and the input arms:

(
−
√

2
2

)
×
(
−
√

2
2

)
×

(−Rn)× (−Rp)× e2ik(Li+Ln).
b. The part of this field come through the east arm is twice transmitted through

the beamsplitter, once reflected from each of the east and the input mirrors, and is
twice passed through each of the east and the input arms:

(
i
√

2
2

)
×
(
i
√

2
2

)
× (−Re)×

(−Rp)× e2ik(Li+Le).
Note that C ≈ −Ee−ikpLi , S = i

√
2

2 Ee
ikpLe and N = −i

√
2

2 Ee
ikpLn . The equation

for the field inside the cavity is:

ê(ω) = iTpâ(ω)eikLi − 2ikpRpXiEe
ikLie−ikpLi−

−
√

2

2
iRpe

ik2Li
(
iAeû(ω)eikLe −Anr̂(ω)eikLn

)
−

− iRpkpEe
2ikLieikpLe

(
ReXe(Ω)eikLe +RnXn(Ω)eikLn

)
−

− i1
2
Rpe

2ikLi
(
Rne

2ikLn +Ree
2ikLe

)
ĥ(ω)− 1

2
Rpe

2ikpLi
(
Ree

2ikLe −Rne
2ikLn

)
ê(ω).

(B.35)

This expression may be simplified under the usual assumptions of the dark-port
conditions (B.23), highly reflective mirrors(B.25), cavity resonant conditions, and
smallness of dark-fringe offset (B.26) we used for the zeroth order terms with an
additional assumption of the small frequencies of signal spectrum:

Ω� ωp, (B.36)

The first term is already simple enough.

In the second term the phase shift 2
ΩLi

c
is negligible because of the low values of

signal frequency and of the short distance between the PRM and the beamsplitter.
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ê2(ω) = 2ikpRpXiE. (B.37)

The third term in the expression, with the injected fields of ground state oscillations
from the end-mirrors, can be represented as an equivalent ground state insertion from
the equivalent mirror:

ê3(ω) = iAf q̂1(ω)eikLi , (B.38)

where

Af =

√
A2

e +A2
n

2
, (B.39a)

q̂1(ω) ≈ Ae√
A2

e +A2
n

û(ω)− An√
A2

e +A2
n

r̂(ω) (B.39b)

are the equivalent losses of the mirror and the annihilation operator of the equivalent
ground state oscillations. The creation and annihilation operator chosen in this way
remarkably fits the necessary commutation relation:[

q̂1(ω)q̂†1(ω′)
]

= 2πδ(ω − ω′). (B.40)

The fourth term, carrying the information about motion of the end-mirrors may be
simplified as following:

ê4(ω) ≈ i2EkpX+(Ω). (B.41)

This term is equivalent to the response of the field with zeroth term E inside a cavity
on the equivalent mirror with motion of the end mirrors common displacement:

X+(Ω) =
Xe(Ω) +Xn(Ω)

2
. (B.42)

The fifth term in (B.35), describing the contribution from the signal recycling mode,
is simplified, using also the half bandwidths (B.22), giving:

ê5(ω) ≈ 1

2
i

(
A2

e

2
− A2

n

2
+ iδφf

)
ĥ(ω) ≈ iτ(γe − γn − iδωdf )ĥ(ω), (B.43)

where ωdf is an equivalent frequency version of dark-fringe offset:

ωdf =
φf

2τ
. (B.44)

This contribution is the same, as the contribution from the power recycling mode into
signal recycling mode for the terms of zeroth order (compare with section (B.3)). The
ratio of this contribution with respect to contribution to the shot noise, injected from
the laser port is of the order:

1
2Rp

∣∣∣A2
e

2 −
A2

n

2 + iδφf

∣∣∣
Tp

∼ 2× 10−3 (B.45)

153



Appendix B. Fields in GEO600 layout

The sixth part in (B.35), consisting of terms with ê(ω) put together, and considered
with the transformations during one round-trip inside the power recycling mode, is
required tj find the field explicitly:

ê6(ω) ≈
[
1− 1

2
Rpe

2iΩτ (Re + Rn)

]
ê(ω) ≈

≈ 2τ

(
γp + γf − i

(
Ω +

δωdf
2

))
ê(ω). (B.46)

The transformation of the field during one round-trip inside the power recycling mode
is equivalent to the one of a Fabry-Perot cavity (compare with transformations de-
scribed in (1.24d) and (1.25b)).
The simplified solution of (B.35), constructed from the simplified terms above, then

reads

ê(ω) =
iTpâ(ω)eikLi + iAf q̂1(ω)eikLi + i2Ekp (X+(Ω)−Xi(Ω))

1− 1
2Rpe2iΩτ (Re +Rn)

+

+
1

2

i
(
A2

e

2 −
A2

n

2 + iδφf

)
ĥ(ω)

1− 1
2Rpe2iΩτ (Re +Rn)

≈

≈
i

√
γp

τ
â(ω)eikLi + i

kp

τ
Xsrc(Ω)E + i

√
γf

τ
q̂1(ω)

γp + γf − iΩ
−

−

1

2
(γe − γn + iδωdf ) ĥ(ω)

γp + γf − iΩ
, (B.47)

where

Xsrc(Ω) = X+(Ω)−Xi(Ω) (B.48)

is an equivalent single mirror motion, introducing the same signal into first order
terms of fields in the power recycling mode of GEO600, as the joint motion of the
PRM and the end-mirrors in the SRC.
The equation (2.1) is equivalent to the expression of the fields inside a Fabry-Perot

cavity (compare with (1.24b) and (1.25b)). The field carries the information about
the common end-mirror motion (B.42) and the differential mode of ground-state field
injections (B.39b). The field from the orthogonal mode is injected only with the
leaking from signal recycling mode due to dark-fringe offset and the differential end-
mirror losses.
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B.6. First approximation in the signal recycling
mode.

The perturbations and noise inside GEO600 affect the first approximation field in
the signal recycling mode as well. We consider the behavior and sources for the first
order terms of field, using equations (B.3), (B.5), (B.7) and (B.9), and looking in
FIG.2.1. The sources of the first order electromagnetic fields, e.g. ĥ(ω), inside the
signal recycling mode may be ordered, similarly to previous section, as following:
1. The sources at the mirrors are the injections of the ground state, and the leak

from the zeroth order fields due to the mirror motion (see (1.12a),(1.12b)):
a. The field, sourced at the SRM, iTsẑ(ω) (the leaks from the zeroth order fields

due to the SRM motion are negligible here) propagates between the SRM and the
beamsplitter: eikLs .

b. The field, sourced at the north mirror, iAnr̂(ω) − 2iRnkpXn(Ω)N propagate
once through the north arm, is transmitted once through the beamsplitter, is reflected
once from the SRM, and propagates twice between the SRM and the beamsplitter:
eik(Ln+2Ls) ×

(
i
√

2
2

)
× (−Rs).

c. The field, sourced at the east mirror, iAeû(ω) − 2iRekpXe(Ω)S propagates
once through the east arm, is reflected once from the beamsplitter, is reflected from
the output mirror, and propagates twice between the SRM and the beamsplitter:
eik(Le+2Ls) ×

(
−
√

2
2

)
× (−Rs).

2. The field of the first order of smallness, leaking from the power recycling mode
ê(ω) (see section B.5).
a. The part of this field come through the north arm is once reflected from and

once transmitted through the beamsplitter, is once reflected from each of the north
mirror and the SRM, and propagates twice through the north mirror and between
the SRM:

(
−
√

2
2

)
×
(
i
√

2
2

)
× (−Rn)× (−Rs)× e2ik(Ls+Ln).

b. The part of the field come through the east arm is once transmitted through and
once reflected from the beamsplitter, is once reflected from each of the east mirror
and the SRM, and propagates twice through the east arm and between the SRM and
the beamsplitter:

(
i
√

2
2

)
×
(
−
√

2
2

)
× (−Re)× (−Rs)× e2ik(LI+Ls).

3. The field of the first order of smallness originated from the considered field ĥ(ω),
made one trip-through the SRC.
a. The part of this field come through the north arm is twice transmitted through

the beamsplitter, is once reflected from each of the north mirror and of the SRM, and
propagates twice through the north arm and between the SRM and the beamsplitter:(
i
√

2
2

)
×
(
i
√

2
2

)
× (−Rn)× (−Rs)× e2ik(LI+Ls).

b. The part of the field come through the east arm is twice reflected from the
beamsplitter, is once reflected from each of the east mirror and the SRM, and prop-
agates twice through the east arm and between the SRM and the beamsplitter:(
−
√

2
2

)
×
(
−
√

2
2

)
× (−Re)× (−Rs)× e2ik(Ls+Le).
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Noting that S = i
√

2
2 Ee

ikpLe and N = −
√

2
2 Ee

ikpLn , we get the following equation
for the field:

ĥ(ω) = iTsẑ(ω)eikLs +

√
2

2
eik2LsRs

(
iAeû(ω)eikLe +Anr̂(ω)eikLn

)
+

+Rskpe
2ikLsE

(
ReXe(Ω)eikpLeeikLe +RnXn(Ω)eikpLneikLn

)
−

− i1
2
Rse

2ikLs
(
Rne

2ikLn +Ree
2ikLe

)
ê(ω) +

1

2
Rse

2ikpLs
(
Ree

2ikLe −Rne
2ikLn

)
ĥ(ω).

(B.49)

Similar to the previous section, this equation for the field may be simplified. The
assumptions for the simplification are: the dark-port condition (B.23), high reflectivity
of the mirrors(B.25), the SRC detuning condition (B.30b), the smallness of dark-fringe
offset (B.26), and the smallness of signal frequencies (B.36).
The first term of (B.49) requires no further simplification.
The second term, describing the injected through the end-mirrors ground state oscil-

lations, can be represented as an equivalent ground state insertion from the equivalent
mirror:

ĥ2(ω) ≈ iAf q̂2(ω)eikLs , (B.50)

Where

q̂2(ω) ≈ Ae√
A2

e +A2
n

û(ω) +
Ane

iδφF√
A2

e +A2
n

r̂(ω) (B.51)

is an equivalent annihilation operator of a mode of ground state oscillations. The
annihilation and the corresponding creation operator appear to be the normalized
quantum annihilation and creation operators:[

q̂2(ω)q̂†2(ω′)
]

= 2πδ(ω − ω′). (B.52)

The modes of ground state electromagnetic fluctuations, injected into signal recy-
cling and power recycling modes obey the following commutation relation:[

q̂1(ω)q̂†2(ω′)
]

= 0, (B.53)

meaning q̂1(ω) and q̂2(ω) are orthogonal.
In this simplification we noticed that detunings caused by the difference Ω of the

considered and pumping frequencies contribute the negligible value.
The third term, carrying the information about the end-mirrors motion may be

simplified in the following way:

ĥ3(ω) ≈ 2RsEkpX(Ω) (B.54)

This term is equivalent to the response that a field would have in a cavity with zeroth
term of field E with the equivalent differential motion of the end-mirror:

X(Ω) =
Xe(Ω)−Xn(Ω)

2
. (B.55)

156



Appendix B. Fields in GEO600 layout

The fourth term, describing the contribution from the power recycling mode, is
simplified, using (B.22):

ĥ4(ω) ≈ −1

2
iRs

(
A2

e

2
− A2

n

2
+ iδφF

)
ê(ω) ≈ −iτ(γe − γn + iδωdf)ê(ω). (B.56)

The fifth part in (B.35), consisting of terms with ĥ(ω) put together includes the
description of the transformation of the field during one round-trip inside the signal
recycling mode:

ĥ5(ω) ≈
[
1−RsRfe

iδφ
]

ĥ(ω) ≈ 2τ (γs + γf − i (Ω + δ)) ĥ(ω). (B.57)

As well as in the power recycling mode, the transformation of the field during one
round-trip inside the signal recycling mode is equivalent to the one of a Fabry-Perot
cavity (compare with transformations described in (1.24d) and (1.25b)).

The simplified solution of (B.49), constructed from the simplified terms above, then
reads

ĥ(ω) ≈ iTsẑ(ω)eikLs + iAf q̂2(ω)eikLs + 2RsEkpX(Ω)

1−RsRfeiδφ
−

−

1

2
iRs

(
A2

e

2
− A2

n

2
+ iδφF

)
1−RsRfeiδφ

ê(ω) ≈

≈
i

√
γs

τ
ẑ(ω)eikLs + i

√
γf

τ
q̂2(ω)eikLs +

Rskp

τ
X(Ω)E

γs + γf − i (δ + Ω)
−

− iRs
γe − γn + iδωdf

2 (γs + γf − i (δ + Ω))
ê(ω). (B.58)

As for the power recycling mode, the equation (2.2) is equivalent to the expression
for the fields inside a Fabry-Perot cavity (see (1.24b) and (1.25b)) with the pumping
field E. The field perturbations carry the information about the differential end-
mirror motion (B.55), as if it was caused by the motion of the equivalent mirror,
and the common mode of ground-state field injections (B.51). The signal from the
common mirror motion and differential mode of ground-state injections are injected
with the leaks from the power recycling mode with the term ê(ω). This term however
also depends on ĥ(ω). The solution for the first order field inside the SRC, got by the
substitution of the field ê(ω) from the PRC (2.1), gives after linear expansion of the
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derived denominator:

ĥ(ω) ≈

 i
√
γs

τ
ẑ(ω)eikLs + i

√
γf

τ
q̂2(ω)eikLs +

Rskp

τ
X(Ω)E

γs + γf − i (δ + Ω)
−

−iRs
γe − γn + iδωdf

2 (γs + γf − i (δ + Ω))

i

√
γp

τ
â(ω)eikLI + ikp

Xsrc(Ω)

τ
E + i

√
γf

τ
q̂1(ω)

γp + γf − iΩ

×
×

(
1− iRs (γe − γn + iδωdf)

2

4 (γs + γf − i (δ + Ω)) (γp + γf − iΩ)

)
(B.59)

There is a source of field inside the power recycling mode corresponding to each
of the sources in the signal recycling mode, that have the same order of amplitude.
Thus we could estimate the corrections to the field from each of the sources, caused
by the leaks from the power recycling mode:
1) The signal, caused by the injections of the ground-state oscillations through the

SRM ẑ(ω) is stronger than signal from the ground-state injections through the PRM
by factor of: ∣∣∣∣∣∣∣∣

(γe − γn + iδωdf)

√
γp

γs

γp + γf − iΩ

∣∣∣∣∣∣∣∣ ∼ 10−2, (B.60)

2) Both signals, caused by the SRC mode q̂2(ω) of ground state injections with
respect to the PRC mode q̂1(ω), and by the differential mirror motion X(Ω) with
respect to the common mirror motion Xsrc(Ω), are stronger by factor of:∣∣∣∣ (γe − γn + iδωdf)

γp + γf − iΩ

∣∣∣∣ ∼ 0.2. (B.61)

3) The additional correction, caused by the double leaks of the field from the signal
recycling mode to the power recycling mode and back again:∣∣∣∣ (γe − γn + iδωdf)

2

(γp + γf − iΩ) (γs + γf − i (δ + Ω))

∣∣∣∣ ∼ 10−3. (B.62)

All these three influence of leaking gives the corrections in factor of the order of
less than 4% in power, and therefore are considered negligible.
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APPENDIX C

The boundary for the spectrum width of signals in the
time-domain models

Even though the fields inside the signal recycling cavity are considered in the time-
domain to include the response on the SRM motion, we cannot ignore their wave
properties and frequency band of spectrum. Since the detector is designed to operate
in dark-port, separating fields into the signal recycling and the power recycling mode,
the spectral components should be within a certain limit, to remain within its mode.

The interference on the beamsplitter for a frequency component ω and correspond-
ing to it wave vector k of the signal reads, taking into account the strict dark-fringe
condition with dark-fringe offset for the carrier frequency (B.23) (see notations in
table 2.1):

e2ikLe + e2ikLn = e2ikLe(1− eikp∆LeiΩπ/ωpeiΩδLdf/c). (C.1)

The factor in brackets is responsible for the interference. The dark port condition is
valid only for those frequencies, for which the correction to the dark-fringe offset in
these brackets is negligible. The conditions for the Ω for this is the following:

(Ω� ωp) ∩
(

Ω� c

∆L

)
. (C.2)

The second condition here is stronger. Since the arm length difference is of the order
of 10 cm, the Dark Port condition (B.23) is valid for all the fields in the signal recycling
cavity if:

Ω� 109rad/s, (C.3)

which is very relaxed, since the signal frequency of interest is of the order of 105 Hz.
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APPENDIX D

Accumulated phase shifts during the propagation inside the
detector

D.1. Straight arms
Each term in the expression for the impulse response function (3.31) has an exponent,
describing phase shift of the light during its round-trips inside the detector since the
moment of its injection and until it goes out. The phase shifts in all the field terms
consist of the same elementary items, describing the phase shift, caused by the SRM-
displacement at the instance of reflection

∆φk(t) = 2ωp
x(t− 2kτ)

c
, k ∈ N. (D.1)

This item describes, which phase shift the light got during the reflection from the
SRM occurred k roundtrips ago.
For the every impulse, injected inside the detector the phase shifts of the light

components are summed one after the other, in a consequent train of the individual
phase shifts, while the light makes round trips inside the detector. Therefore, the
phase shift train in the past, the overall phase shift, which the impulse gets during
its propagation inside the detector may be described using a following function:

φn(t) =

n∑
k=1

∆φk(t), (D.2)

describing, how big phase shift gets the light, gone out of the detector at the instance
t, injected n + 1 roundtrips before into the SRC, and made the first reflection from
the SRM n roundtrips before its leaking out.
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Appendix D. Accumulated phase shifts

Similar to (D.1) we introduce the phase shift, that the light will get during a single
reflection from the SRM occurring after k roundtrips inside the detector:

∆φ+
k (t) = 2ωp

x(t+ 2kτ)

c
, k ∈ N. (D.3)

Using this we may introduce a similar to φn(t) a phase shift train in the future:

φ+
n (t) =

n∑
k=1

∆φ+
k (t), (D.4)

describing, the overall phase shift, that the light, injected into the detector at the
instance t, will get within the next n round-trips inside the detector.
The single phase shifts from reflection in the past has the following property:

∆φk(t− 2mτ) = ∆φk+m(t),m ∈ N. (D.5)

and therefore the phase shift train in the past has the consequent property:

φn(t− 2mτ) = φn+m(t)− φm(t),m ∈ N. (D.6)

Analogous properties has the phase shift from the reflection in the future:

∆φ+
k (t+ 2mτ) = ∆φ+

k+m(t),m ∈ N (D.7)

and the future phase shift train:

φ+
n (t+ 2mτ) = φ+

n+m(t)− φ+
m(t),m ∈ N. (D.8)

The phase shift from the reflection in the past is the future event for a time instances
before the reflection. Via this phase shifts from the single reflections in the future
and in the past are bound:

∆φk(t) = ∆φ+
n−k(t− 2nτ), (n, k ∈ Z;n ≥ k). (D.9)

The same consideration binds the future and the past phase shift trains:

φn(t) = φ+
n (t− 2(n+ 1)τ). (D.10)

Both φn(t) and φ+
n (t) has the same physical meaning, namely a phase shift after n

round trips in the row. The total phase shift, accumulated from the single phase shifts,
caused by the reflections from the SRM, contains the information about these single
phase shifts. And vice a versa from these accumulated phase shifts one can restore
the information about single phase shifts. Therefore, it is convenient to introduce the
new accumulated phase shift, that light, injected in the beginning of measurements
t0, could get during the detection, without leaving the detector:

Φn = φ+
n (t0), (D.11a)

Φ0 = 0, (D.11b)
Φk = 0, k ∈ Z, k < 0. (D.11c)
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Appendix D. Accumulated phase shifts

By setting the values of the accumulated phase with negative indices to zero we assume
that detector was tuned before the beginning of the measurements.
The accumulated phase shift has also the physical meaning described in subsection

(4.3.1). This accumulated phase shift contains the information about all the phase
shifts, that get the echoes of the injected impulse after going out of the detector, all
the past phase shift trains:

φn(t1) = φn(t0 + 2Nτ) = φ+
n (t0 + 2(N − n− 1)τ) = ΦN−1 − ΦN−n−1. (D.12)

The future phase shift trains could also be expressed via these accumulated phase
shift:

φ+
n (t1) = φ+

n (t0 + 2Nτ) = φ+
N+n(t0)− φ+

N (t0) = Φn+N − ΦN (D.13)

For the convenience of the simulation in Matlab we could begin indices in D.11a
from one. Then the following change of indices takes would take place: Φn′−1 = Φn

D.2. Delay line in arms
Assume the detector with the delayed line in arms. In this configuration the impulse
reaches the signal recycling mirror, and hence gets the phase shift, only every NRT

round trips, where NRT is the number of round trips inside the delay line. Keeping
this in mind, we redefine the single phase shifts:

∆φk(t) = 2ωp
x(t− 2kNrtτ)

c
, (D.14)

∆φ+
k (t) = 2ωp

x(t+ 2kNrtτ)

c
. (D.15)

The phase shift trains (D.2-D.12) read therefore for the case of delayed line:

φn(t) =

n∑
k=1

∆φk(t), (D.16)

φ+
n (t) =

n∑
k=1

∆φ+
k (t). (D.17)

The properties of the phase shifts for delay lines are:

∆φk(t− 2mNrtτ) = ∆φk+m(t),m ∈ N, (D.18)

φn(t− 2mNrtτ) = φn+m(t)− φm(t),m ∈ N, (D.19)

∆φ+
k (t+ 2mNrtτ) = ∆φ+

k+m(t),m ∈ N (D.20)

and
φ+
n (t+ 2mNrtτ) = φ+

n+m(t)− φ+
m(t),m ∈ N. (D.21)
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Appendix D. Accumulated phase shifts

The boundary conditions are following:

∆φk(t) = ∆φ+
n−k(t− 2nNrtτ), (n, k ∈ Z;n ≥ k). (D.22)

φn(t) = φ+
n (t− 2(n+ 1)Nrtτ). (D.23)

We can correspondingly introduce the following accumulated phase shift:

Φn,m = φ+
n (t0 + 2mτ), (D.24a)

Φ0,m = 0; (D.24b)

And express in terms of it the phase shift trains:

φ+
n (t1) = Φn+N,m − ΦN,m, (D.25)

φn(t1) = ΦN−1,m − ΦN−n−1,m. (D.26)

For convenience of simulations in Matlab we could also change the indices Φn′,m′ =
Φn− 1,m− 1.
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