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Abstract

Black holes are among the most fascinating predictions of Einstein’s theory of general
relativity. They are expected to be the final state of gravitational collapse. To substantiate
this physically reasonable scenario, a proof of non-linear stability of the Kerr solution is
needed.

This thesis explores aspects of Maxwell and linearized gravity equations as a model-
problem on vacuum spacetimes of Petrov type D. These include the Kerr solution de-
scribing a rotating black hole. A combination of exterior and spinor calculus with the
Geroch-Held-Penrose (GHP) formalism provides a powerful tool for the analysis.

Decoupled wave-like equations for all tetrad components for the linearized curvature
are presented. The fields admit time-independent, finite energy solutions. These non-
radiating modes for the linearized gravitational field are investigated, using the concept
of spin-lowering with a Killing spinor. Obstructions for the existence of a quasi-local
angular momentum charge in terms of curvature are extracted.

Symmetry operators for the Maxwell equations and linearized gravity are discussed.
For this reason the Lie derivative of GHP-weighted fields along isometries is introduced.
In the discussion of second order operators, the Carter operator is generalized to spin-s
fields. Also an anti-linear symmetry operator for the Fackerell-Ipser equation is derived
using the method of adjoint operators.

Keywords: General Relativity, black holes, stability
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Zusammenfassung

Schwarze Locher gehdren zu den faszinierendsten Vorhersagen der Allgemeinen Relativ-
itdtstheorie. Erwartungsgemifl wird das Endstadium eines gravitativen Kollapses durch
ein solches Objekt beschrieben. Mit einem Beweis der nichtlinearen Stabilitit der Kerr-
Losung kann dieses Szenarium weiter bekriftigt werden.

In dieser Arbeit werden Aspekte der Maxwell Gleichungen und der lineariserten Gravi-
tation als Modellproblem auf Vakuum-Raumzeiten vom Petrov-Typ D untersucht. Diese
Klasse beinhaltet die Kerr Losung eines rotierenden schwarzen Loches. Fiir die wei-
tere Analyse wird eine Kombination des Differentialformen- und Spinorkalkiils mit dem
Geroch-Held-Penrose (GHP) Formalismus entwickelt.

Entkoppelte Wellengleichungen fiir alle Tetradenkomponenten der linearisierten Kriim-
mung werden abgeleitet. Die Felder lassen zeitunabhingige Losungen endlicher Energie
zu. Diese nichtstrahlenden Moden fiir das linearisierte Gravitationsfeld werden mithilfe
von Killing-Spinoren untersucht. Einschrinkungen fiir die Existenz einer quasilokalen
Drehimpulsladung aus Kriimmungsgrof3en werden angegeben.

Im Anschluss werden Symmetrieoperatoren fiir die Maxwell-Gleichungen sowie die
Feldgleichungen der linearisierten Gravitation betrachtet. Aus diesem Grund wird die
Lie-Ableitung von GHP-gewichteten Feldern entlang von Isometrien eingefiihrt. In der
Diskussion von Operatoren zweiter Ordnung wird der Carter-Operator auf spin-s Felder
verallgemeinert. Weiterhin wird mit der Methode der adjungierten Operatoren ein antilin-
earer Symmetrieoperator fiir die Fackerell-Ipser Gleichung hergeleitet.

Schlagworte: Allgemeine Relativititstheorie, schwarze Locher, Stabilitét
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1. Introduction

General Relativity is a geometric description of gravity interacting with matter. This
dynamical characterization of space and time by Albert Einstein in 1915 has increased
our understanding of nature tremendously. The theory, condensed into the at first sight
not too complicated looking equation

Ry, - %Rgab = 87TTab7 (11)

relating the curvature on the left hand side to properties of matter fields on the right hand
side, is extraordinary rich of physical effects and mathematical structure. One of its most
fascinating predictions is the existence of black holes as asymptotic states of gravitational
collapse. For half a century, these extreme scenarios were viewed as mathematical curiosi-
ties and only over the years, with deeper physical insights these objects became accepted.
Nowadays, there is pretty plausible evidence of a super massive black hole in the center
of our galaxy, see e.g. [58]. To quote Chandrasekhar, [29, p. 1]:

"The black holes of nature are the most perfect macroscopic objects there are
in the universe: the only elements in their construction are our concepts of
space and time. And since the general theory of relativity provides only a
single unique family of solutions for their descriptions, they are the simplest
objects as well."

The solutions he refers to are the family of Kerr spacetimes with the two parameters for
mass M and angular momentum M a. It is expected to be the end state of gravitational col-
lapse. To substantiate this physically reasonable scenario, a proof of non-linear stability
of the Kerr solution is needed. This is a very complicated mathematical problem. An im-
portant result in this direction is the proof of non-linear stability of Minkowski spacetime
by Christodoulou and Klainerman, [31]. Roughly speaking and heavily oversimplifying,
the proof is based on energy estimates adapted to the symmetries of the background. A
generalization of these methods towards a proof of non-linear stability of Kerr spacetime
creates many difficult problems. A constructive procedure is to split the problem into a se-
ries of model problems of increasing complexity. This program enables one to understand
the obstructions step by step. There are basically two complexity-increasing "directions".
The first is the spacetime under consideration. Examples are the non-rotating (a = 0)
Schwarzschild solution or the slowly rotating (a << M) Kerr solution as intermediate
cases. The second direction is to look at various field equations on such backgrounds.
Here, it is natural to start with the scalar wave equation and generalize e.g. to higher spin
fields. A crucial step in the above mentioned stability proof is the analysis of linear field
equations, see [30].

We now briefly review some achievements in this program and refer to chapter 6 for
further information. On a Schwarzschild background, decay estimates for the wave equa-
tion were proven in [22], [39]. Maxwell equations in that background were analyzed in
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[21] and solutions to (1.1) approaching the Schwarzschild spacetime asymptotically were
investigated in [67]. The scalar wave equation V,V%p = 0 can be viewed as a model
problem for the linearization of the vacuum Einstein equations. Great progress has been
made on this equation on a Kerr background in the last years. Boundedness and decay
for a << M were proven in [9], see also [52, 40, 107], and very recently results for the
Maxwell equations on that background were obtained in [10]. The first results for the
wave equation in the whole range a < M are proven in [41].

In order to generalize concepts from Minkowski spacetime to a curved background,
a good understanding of the geometry is inevitable. Important examples are the role
of symmetries and, strongly related, the existence of a non-trivial Killing tensor on the
Kerr background. In the Minkowski limit it becomes a symmetrized product of Killing
vectors and so does not contain any new information compared to the isometries. Many
miraculous relations of fields on Kerr spacetime are contained in the monograph The
Mathematical Theory of Black Holes, [29]. In a review of Chandrasekhar’s work, Penrose
remarks in [89, p. 228]:

"In view of the many intriguing relationships with different features of inte-
gral systems that Chandra’s work has thrown up, I feel sure that there is a
good deal that is deep, yet to be learned, from a study of the insights that he
gained from his work in general relativity.

The same can also be said of a study of his analysis of the separation of grav-
itational perturbations and of other systems of equations in stationary black
hole backgrounds. There is yet much mystery to be unravelled. Some of this
has already been achieved in the work of Carter (1968), Walker and Penrose
(1970), Carter and McLenaghan (1979), Kamran and McLenaghan (1984)
and many others, whereby separation can be related to the existence of a
Killing Tensor, Killing spinor and Killing-Yano tensor. There are relations
to twistor theory here also, and it is my guess that a further study of Chan-
dra’s work from this direction may well throw some profound light on these
issues."

The results for Maxwell fields and linearized gravity on Minkowski spacetime in [30]
can be understood quite naturally in the null tetrad formalism of Newman and Penrose
[87]. There, the Maxwell field strength F}; is encoded in the three complex scalars
®i,1 = 0,1,2 and the linearized Weyl curvature C’abcd is described by the five complex
scalars W;,i = 0,1,2,3,4. All these scalars satisfy decoupled wave-like equations and a
remarkable fact is that this also holds for a Kerr background. For the "extreme compo-
nents" ¢, ¢, ¥o, ¥y, these are known as Teukolsky equations, [110]. They have the great
advantage of being gauge invariant and separable. The vector field method (and so the en-
ergy estimates), which are briefly reviewed in section 6.1, have not yet been generalized
to handle such complex wave-like equations. On the other hand, gravitational perturba-
tions on a Schwarzschild background can be described by two scalar wave equations with
potential, known as Regge-Wheeler [97] and Zerilli [123] equations. Motivated by the
intriguing relation to the wave equation for the middle curvature component W,, it seems
natural to ask for a generalization. Such an equation is presented in (3.39¢). Assuming a
suitable gauge condition, it is of the form

(Vava + CS\IIQ)Q)S = 07



with s = 2, cg = 8, and O, = \1152/ 3\112. This equation also includes the Fackerell-Ipser
equation [50] for the middle Maxwell scalar with s = 1, ¢; = 2, &; = \I/;/ 3¢1 and the
scalar wave equation for the case s = 0, ¢y = 0, ¢g = ¢. It turned out that the Fackerell-
Ipser equation plays an important role in deriving energy estimates for Maxwell fields
on Schwarzschild, [21], and Kerr spacetime, [10]. The parameter s is an example of the
above mentioned complexity-increasing directions. For s = 1,2 the equation allows for
non-trivial, stationary finite energy solutions. These additional solutions are obstructions
to decay and its characterization will be discussed in this thesis.

The separability properties of the scalar wave equation on Kerr spacetime can be char-
acterized by symmetry operators which are the Lie derivatives along the two isometries
and the Carter operator. These structures are also very important for the vector field
method, see [9]. For this reason, symmetry operators for the more general Maxwell and
linearized gravity equations are analyzed. They admit symmetry operators of two differ-
ent types and connections to the above mentioned miraculous relations are extracted. This
fits quite nicely into Penrose’s suggestion in the above quote and it turns out that some
relations occur quite naturally if one uses geometry as a guiding principle. This means in
particular that results are coordinate independent.

With the geometric and analytic tools discussed in this thesis, we try to give a glimpse
on the upcoming interaction of two fields of research, which only in the last decade began
to merge and to benefit from each other. This is on the one hand the theory of gravitational
perturbations and on the other hand the analytic tools based on energy estimates.

The thesis is structured as follows. In chapter 2, basics about null tetrad formalisms and
spinors are reviewed. Killing spinors, the Lie derivative along isometries and Petrov type
D spacetimes are discussed afterwards and in particular properties of the Kerr solutions
are reviewed. The spinorial form of the Maxwell equations and Bianchi identities are
derived in chapter 3. Then, decoupled equations for linearized gravity are presented and
the gauge dependence is reviewed. Chapter 4 is an account on the non-radiating modes of
the above mentioned fields. A conservation law for linearized mass is derived and charges
for Kerr spacetime are discussed. From the results for Minkowski space, obstructions
for an angular momentum charge in terms of linearized curvature are derived. Symmetry
operators are introduced in chapter 5. The connection to separability of the Teukolsky
equation is clarified and an anti-linear symmetry operator for the Fackerell-Ipser equation
is deduced from the method of adjoint operators. The vector fields method is reviewed in
chapter 6. Finally, chapter 7 contains a summary and proposals for further research. Parts
of the results are already published in [2], [3].






2. Mathematical structures

The theory of General Relativity describes gravity as a geometric effect. In mathematical
terms, spacetime is a four-dimensional manifold A and the notion of distance is described
by a symmetric tensor field g,;, of Lorentzian signature, the metric. In this chapter we in-
troduce basic notions of Lorentzian geometry. If not stated differently, we will assume the
vacuum Einstein equations to hold. Those can be expressed as the condition of vanishing
Ricci curvature,

Rup=0. (2.1)

An important structure in Lorentzian geometry is the light cone spanned by null vectors
Ve, VaVbg,, = 0. A formulation tied to this is the null tetrad formalism of Newman and
Penrose [87] (hereafter NP) and its advancement, the Geroch-Held-Penrose [57] (here-
after GHP) formalism. In addition, we will assume the existence of a spinor structure,
so that the NP formalism can be traced back to spinors as the fundamental quantities, see
[90, 91] for a thorough description.

Exterior calculus on the space of 2-forms (sometimes called bivector formalism, [77,
19, 26, 71]) provides an elegant framework for linearized gravity. Following [71, 37], the
equations of structure are derived and applied in chapter 4 and section 5.2. Relations to
the GHP formalism are shown.

Properties of Killing spinors and the Petrov classification are reviewed in sections 2.3
and 2.4, respectively. Finally, some properties of Black holes and in particular the Kerr
solution are discussed in section 2.5.

Parts of sections 2.2, 2.3 and 2.4 are adapted from my publications [2], [3] with Lars
Andersson.

2.1. Preliminaries and notation

We only consider real spacetimes N with metric g, of Lorentzian signature (+,—,—, ).
Furthermore, we assume the existence of a spinor structure, so that a spinor dyad can
be introduced. On globally hyperbolic spacetimes this structure is inherent as shown in
[56]. The unique torsion-free and metric Levi-Civita connection will be used through-
out the thesis and we denote its covariant derivative by V. For convenience, we will
sometimes write X*V,T' = VxT1 and V, 1" = T',. The "abstract index notation" is used,
in which indices merely characterize a quantity instead of denoting components. The
notation 2x,Ys] = Talp — YoTp for anti-symmetrization and 2x oY) = Talp + YoTp for
symmetrization is used. Geometric units are used in which the speed of light ¢ and the
gravitational constant GG are set to 1.

In tensor notation (in the tangent bundle) we use lowercase latin indices a, b, ¢, . .. with
values 0,1,2,3. For spinors, we use uppercase latin indices A, B,C,... A", B',C", . ...
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with values 0, 1. Uppercase Latin indices starting at [, J, K, ... will be used for bivectors
and take values in the range 0, 1, 2.

2.2. Some differential geometry

The 2-spinor calculus, developed in [90], is a powerful tool to describe 4-dimensional
geometries. Following [118, Chapter 13], we introduce a complex 2-dimensional vector
space V and its dual V* = {f : V — C, f linear}. There is also the space of anti-linear
maps V* and its dual V. For v € V, f € V*, the natural anti-isomorphism j : V - V given
by j(v)(f) = f(v) defines complex conjugation of vectors. By spinors we understand
elements in the tensor algebra over the vector spaces V,V*, V', V*. Conventionally, the
notation ¢4 € V , ¢4 € V*, A € V and 14 € V* for their elements is used with the
natural generalization to tensor products. The space of anti-symmetric 2-spinors is 1-
dimensional and we define € 45 to be a representative (fixed up to a complex constant). It
is an isomorphism from V* to V and together with the element 5, fixed by € 4c€5¢ = 6%,
used to “raise and lower indices”,

€AB¢A =¢p, €AB¢B =—¢u, €AB¢B = ¢A7 EAB§Z5A = —¢B .

Care has to be taken of the sign change depending on index positions. We will find the
mnemonic

Left <+ Lowering , Right < Raising, (2.2)
convenient, which prevents us from inserting minus signs.
We start by introducing a spinor dyad 04, ¢4 for V* and the "spinor metric"

€AB = 0ALB — LAOR, eAB = oM B — ApB , (2.3)

so that 04¢4 = 1. It is preserved under dyad transformations

L(OA) - (O‘ 5) (OA), detL=ad-pBy=1, (2.4)

LA v o) \ea

i.e. L € SL(2,C). The spinors gzﬁA'_A comprise a complex 4-dimensional vector space
and the subspace of spinors ¢4'4 = 44" will be identified with the tangent space of N.
Another convenient basis for the complexified tangent space is given by

_ A/ _ Al _ _ Al AT
14 = o467, me = o, m® = 4%, n® = A7 (2.5)
This null tetrad,

[*l, =0, nng, =0, mimg, =0, mmg, =0, (2.6)

with its real null vectors [* and n® adapted to the light-cone is the basis of the NP formal-
ism. Furthermore [%n, = -m%mn, = 1 and all other inner products being zero. The metric
can be expanded into

Gab = €EABEA'B’ = 2l(anb) - 2m(amb) . 2.7
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Of particular importance in physics are 2-forms 7, = 741, Which occur as field strengths
in Cartan’s equations of structure, see (2.20). Given the spinor dyad above, a natural
choice! for the 6-dimensional space of 2-forms is

Ty = 2mpany) = talpEarp (2.8a)
Zyy = 2n(ale) = 2mMpame) = —20(atpyEarpy (2.8b)
7%, = 2l[gmy) = 040BEA B | (2.8¢)

together with the complex conjugated forms Z°, Z!, Z2. The metric g,; induces a triad
metric G7; and its inverse G, given by

0 0 1 0 0 1
GlV=z7"7"=10 -2 0], Gry=10 -5 0
1 0 0 1 0 0

Here, - is the induced inner product on 2-forms, Z - Z7 = %Z I 774 Triad indices are
raised and lowered with this metric,

Zy =22, Zy=-17", Zy =20,
More generally, we have

Proposition 2.2.1. The bivectors (2.8) satisfy the equations

1
ZJaCZKbc = §GJKgab + 6JKLZLab s (29&)
271525 . =0, (2.9b)
Z7h 7K =0, (2.9¢)

with /5L the totally antisymmetric symbol fixed by €12 = 1.

The action of the 6-dimensional group of Lorentz transformations can be decomposed
into three abelian subgroups (a, b, A € C),

I null rotations around (€ : n¢ - n® + am® + am® + aal®, m® - m® + al®, (2.10a)

II null rotations around n¢ : I¢ — [° + bin® + bm® + bbn® , m® - me + bn®, (2.10b)

III ni-boosts and mm-rotations : [¢ — AI¢, n¢ — (AN)'n¢, m® - A\"'m¢,  (2.10c)

leaving the tetrad normalization invariant. Restricting to transformations of the third
class?, parametrized by a complex scalar A, we define the notion of weighted fields.

Definition 2.2.2. A field T,,, with some (multi)-index o, transforming under (2.10c) ac-
cording to

T = (AN (ANH T, = \PXIT,, (2.11)

is of spin-weight s and boost-weight b. Here, s and b can be arbitrary integers and we
also defined the weights p=b+ s and ¢ =b - s.

'We use the convention of [51], which differs from [71, 49] by a factor of 2 in the middle component and
the numbering.
2This is of particular interest for geometries having distinguished null directions, see section 2.4 below.
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The (p,q) weights encode the same information as s and b but are sometimes more
convenient to work with (e.g. components of spin-s fields are g = 0 weighted).

Example 2.2.3. The NP tetrad (2.5) is by definition of (p, q) weight
[*:(1,1), n®:(-1,-1), m®:(1,-1), m®:(-1,1). (2.12)

The representation of class Il on the spinor dyad yields o, - \oa and 14 — X'y, so
they are of (p, q) weight

o4:(1,0), ta:(-1,0), 04:(0,1), ta:(0,-1). (2.13)
We also find the weights of the 2-forms (2.8) to be
7%:(-2,0), Z':(0,0), Z%:(2,0). (2.14)

We note that tensor fields are a priori unweighted and that NP tetrad vectors (or any
other fields from the example above) can be understood as maps from the cotangent space
into the space (complex line-bundle) of weighted fields. Also partial projection is possible,
e.g. for an unweighted field H,, we have H,I? : (1,1). The spinor dyad (o4, t4) makes
also half integer spin and boost weights possible.

Remark 2.2.4. In GHP formalism, discrete transformations of the tetrad,

"o n® m* < m, (2.15a)
“:mf® < m?, (2.15b)
"> m* n - -m* m*—- -1 m*—->n?, (2.15¢)

denoted prime’, bar and star, respectively, are introduced. The number of equations
can be effectively reduced by using these operations. We note, that "' = id for tetrad
projections and find for the 2-forms (2.8),

7% =72, ZV=-7', 7¥=-7°. (2.16)

For later use it is convenient to define connection 1-forms oy, or equivalently the NP
spin coefficients x, k', 0,0, 7,7, p, p', €, €, B, 5’ by

Ooa = MV aly =Tlg+ KNg — pmg — oMy, (2.17a)
1

Ola = 5 (nbvalb - meamb) = _Ella +ENg + ﬁlma - Bma ) (217b)

Oog =~V g1 = —K'ly—T'ng +0'mg + p'my, . (2.17¢)

The middle component o4, is not properly weighted and transforms inhomogeneously via
11, . A A
W == (=1, (M) + =mbv, (S
o1 2()\)\nv ( b)+>\mV ()\mb))

1 . A
=010+ = (Vo In(AN) =V, In <)
2 A
Va
A Y
3The symbol ’ will never be used for a derivative in this thesis, but always denote the GHP prime or a
spinor index. This should be clear from context.

=01q t+
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under (2.10c¢). It defines the GHP connection, [57],
GaTa :(Va —DPO1a — qa-la)Toz ) (218)

on the line-bundle of weighted fields, because on a (p, ¢) weighted field T, we find

0,7, —>Va()\p/_\qTa) - [pala + p%’/\ +(q01q + V;A]/\pj\qTa
_NNO,T, + TQ[VQ(A”;\‘?) NIRRT V;A]

= \M\10,T, ,
so O, is of proper weight (0,0). Since the middle connection form o is absorbed into the

connection, we will sometimes find it convenient to write og = I and o5 = —I"'. Derivatives
of the spinor dyad can now be written in the compact form

0401 = Ty, Ot = -T" ot (2.19)
Next, we will rederive the equations of structure in bivector formalism following [71],
see also [77, 19, 26]. This provides an intermediate description between the tensorial and
component formulation. Making use of Cartan’s equations of structure for tetrad 1-forms*
de? = —w% A el 0% = dw? + w AW, (2.20)

Bianchi identities

Q% Aet=0, dO%, = Q% AwS — W A QS (2.21)

the relation to the connection 1-forms o ; in (2.17) and the definition of curvature 2-forms
%7

wap i net=-20,77 -25,77 Qe net=-2%;77-2%,77 (2.22)
we find the following result.
Proposition 2.2.5. The bivector equations of structure are
dz7 = 2’8 Lo A 271, Y,=doy+ %eJKLaK Aol (2.23)
while the Bianchi identities read
YunZgy =0, d¥y = —ejx 25 Aot (2.24)

Here A is the usual wedge product of 1-forms o’ and 2-forms Z7,%.

“For a given tetrad e%,, connection and curvature are defined by w%, = eﬁbvaegb and Q% =
2e%.V 4V €p°, respectively. The underlined indices number the tetrad components.
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Proof. Expanding the bivectors Z7/ = 577 e2 A eb, we find

1
Az’ ==77, (deg Ael— et A deb) = 77 de n eb
2 ab ab
= 7% wheC A el
=Zh (o 25 + o Z25% ) nec neb
= EJKLZL@O'K A€EEN GQ

_9¢IKL

O'K/\ZL,

where proposition 2.2.1 has been used in the third step. For the second equation of struc-
ture, we plug (2.22) into (2.20),

;70 5,70 = ~do; 70, - 6,72, + (0,22, + 6520 ) n (0 25 + 5 Z25<).
Using proposition 2.2.1, the self-dual part reads
EJZ&]b = dUJZan + GKLJZJabO'K ANOT, .

Changing index positions on ¢%%/ and using det G ;i = % gives the second equation of
structure. For the first Bianchi identity, look at

1
0=—-d>z’
2
= —EJKL (dO'K/\ZL —O'K/\dZL)

1
= —EJKL (EK N ZL - §€KNMO'N /\O'M A ZL + 0Kk /\ELNMO'N N ZM

=B N2 +o P AdT NZ -0 Ao NZp 20 n0 A ZE vo Ao B AT
—_—
-0 -0

where the identity e//%e;yy = 05,05, — 07,0 has been used. Finally, the second Bianchi
identity is given by

dEJ = —EJKLdO'K /\O'L

KMN L

Z—EJKL(EK—G O'M/\O'N)/\O'

=—cj X8 Aot +opnognol—o nop Aol

——— — ——
=0 =0

]

Remark 2.2.6. Instead of using Cartan equations (2.20) for the tetrad and translating to
2-forms, one could have used directly the bivector connection form

Wl Jja = E[JKo_é( = Zf)ﬁvaZ]]bc. (225)

Let us collect some equations which will turn out to be useful for later calculations.
The components of the first equations of structure in (2.23) read

d®Z0=T" A 7! RN dZ°= 20y AZ°% -0y A 27, (2.26a)
d®Z' =2 A Z0 + 21 A Z2 < dZ' =209 A Z° = 209 A Z2, (2.26b)
d®z2=TnaZ" < dZ% =20y N Z? + oo N 2. (2.26¢)
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Here we introduced a covariant exterior derivative d® = d — po; A —go 1A, cf. (2.18), to
present a properly weighted form of the equations. Note that the middle component can
be simplified to dZ' = —h A Z! with the 1-form

he =2(p'ly + png — T'mg — TMy) . (2.27)

This fact and a relation between type D curvature W, and h, see (2.60) below, will be
crucial in the derivation of a conservation law in section 4.3.2. The components of the
second equation of structure in (2.23) read

Y, =d°T < Yo = dog - 201 A 0y, (2.28a)
ledgl—F/\F/ <~ 21:d<71+00/\02, (228b)
Y, = —d°T” < Yo =doy + 207 Aoy . (2.28¢)

The middle equation is of weight (0,0) because d?In A = 0.

From the point of view of weighted line-bundles, it does not belong to the second
equations of structure. It is rather the curvature of the bundle connection oy,. In GHP
formalism this is sometimes phrased as "part of the Ricci identities are encoded in the
commutators", see (2.38). The Weyl scalars are

Wy = Wpep 0toBoCol = ~Cupegl®mblom? = -C - (Zy, Zo), (2.29a)
U = Wuapep0toBotiP = ~Cuegl®n®lem?d = -C - (Zy, Z1), (2.29b)
Wy = U apop 020P 190 = ~Cupegl®mPmin? = -C'-(Zy, Z2) = C - (Z1,71), (2.29¢)
Uy = WyupepotBlOP = —Cueglon®men? = -C-(Zy, Z1), (2.294)
Uy = WupeptMPilOP = -Cppegn®mPnimd = -C - (Zy, Z5) . (2.29)

They contain the full information of the Weyl curvature Cpeq = Qgpape®ce2q (in vacuum)
and we used the notation C - (Z,Z) = 1CopeqZ?Z4. The curvature spinor U 4pcp is
introduced in (3.21). The GHP prime (2.15a) yields ¥} = Wy, Wi = W, W) = U, and the
curvature 2-forms > ; can now be expanded into

Uy Uy Uy
Sr=CrZ7, Cry=|¥1 Vs V3|, (2.30)
Wy, Wy WU,

with the Weyl 2-bivector C};. Finally, the Bianchi identities in (2.24) can be decomposed
into

d®%g=-2I'n Y, < d¥g = 201 A X — 200 A X, (2.31a)
d®% = -T"AXS)-T A%, <= d¥) = o) A X — 01 A o, (2.31b)
d®%, = 2T A 3 < Ay = =207 A Xy + 209 A 4. (2.31¢)

The GHP derivatives are defined to be the projections of the covariant derivative (2.18),
b=10"0,, p' =n"0O,, 0=m"0,, d' =m0, (2.32)
and so © = [*p" + n®p-m2d’" — m*d. The divergence of a vector field X expands into

O.X" = (b=p= X"+ (B = = )X~ (=7 = P)X" = (& =7 =X, 2.33)
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For NP based calculations it turns out to be very useful to have explicit expressions for
the weighted derivatives of the tetrad,
Ouly = —(Tly + Bng —amg — pimig)my, — (T, + Kng — pmy — 0, )y,
= —00aMp — ToaMp , (2.34a)
Oy = —(R'ly +T'ng = p'mg — Mg )y — (K'ly + T'ng — 0'my, — p'mg)my,
= T9aMyp + TogMy (2.34b)
Oump =—(F'ly +T'ng — p'mg — 7'y )ly — (Tl + Kng — pmg — 0T, )Ny,
= Toulp — Ooap s (2.34¢)
O my = —(K'ly + T'ng — 0'my — p'mg )y — (Tly + Kng — Mg — pimg ) ny,
= 024ly — Toamlp (2.34d)
following from (2.17). So the GHP derivatives of the tetrad are,

bla = —Fmg - kMg, bmg = ~T'ly - kng, (2.35a)
bl = -Tma — 7, p'mg = -F'l, — g, (2.35b)
dl, =—pmg —omy, dmg =-0ly—on,, (2.35¢)
O'ly = —0mg — ping 0'mg = —7'ly — prig (2.35d)
bne=-1"mg - 7'm,, bMg = —7'ly — Rng , (2.35e)
b'na = —K'mg — F'Mq, Py = —K'ly - Tng (2.35f)
g = —p'Mg — My, My = —p'la = pna, (2.35¢)
g = —0'mg - p'ma, g = —0'l, —ong , (2.35h)

and we also find the weighted derivatives of the 2-forms (2.8) to be

0,720 =T 7} . (2.36a)
OuZL = 20,70 + 21" 72 . (2.36b)
O, 7% =T 7L . (2.36¢)

The GHP equations are found to be the tetrad components of (2.28) and (2.31). For
convenience, we give the list of scalar equations (the full list contains the GHP primed
(2.15a) and complex conjugated, (2.15b), versions as well). The GHP form of the second
equations of structure (2.28) are the vacuum Ricci identities,

(b=p)p=(0"~7")k +00 ~Fr, (2372
(8=7)7 = (b~ p')o ~p+ iR (2370)
(@-7)p=8'c~pr+ (7 - )i - Wy, 2:37¢)
(b-p)r =P -Tp+(T-7)o+ V1, (2-37d)

(b =7)p= (3 -F)7+00" - k' = s, (2.37¢)
(b-p-P)o = (8-7-T)r+ Vo, 2370

and GHP commutators,
[b.p']=(7-7")0+(7 - 7)& - p(kr’ = 77"+ Wy) — q(RE' =77 + U,),  (2.38a)
[p,0]=p0+00 -7 p-rp' -p(p'k —T'0+ V1) —q(¢'k - p7'), (2.38b)
[6,8'] = (7' = ") b+(p— PP +p(pp’ — 00"+ Wy) —q(pp' —55" +¥y).  (2.38¢c)
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The Bianchi identities (2.31) expand into

(b-4p) Wy = (8' — 7)o — 360, (2.39a)
(b-3p)Wy = (8 = 27\ + 0"V — 2605, (2.39b)
(b—2p) W3 = (8' = 37" ) Wy + 20"V — kT, (2.39¢)

(b-p) Wy = (&' —47") V3 + 3070, . (2.39d)

2.3. Killing spinors and conformal Killing-Yano
tensors

An interesting mathematical structure is the valence (n, m) Killing spinor equation,

VA arAAm) 4y =0, (2.40)

. AlLLAL C o . . o . .
for a spinor £} "\, symmetric in its mm primed and n unprimed indices. It unifies certain
well known equations, e.g. for

* n=1,m =0, it is known as twistor equation

VA’(AHB) =0. (241)

* n =1 =m, it reduces to the conformal Killing vector equation,
V(akb) = 19V e =0, (2.42)
for a complex vector k% = k44, see [91, p. 82].

* n=2,m =0, it is the conformal Killing-Yano equation,

Ya(b;c) = gvea — ga(béc)a with &, = %vb}/ab ) (2.43)

for a complex 2-form Yy, = kapearpr, [91, p. 77]. This is the case of most interest
in this thesis>.

* n =2 =m is the conformal Killing tensor equation for a complex, trace-free sym-
metric tensor K, = ka4 ap'B, [91, p. 106],

Kabe) = garKey, with K, = 12K 0 + K%..). (2.44)

Note that symmetrized products of valence (n,m) and (k,[) solutions to (2.40), are so-
lutions of valence (n + k,m +[). A solution which can not be represented as a product is
called irreducible. Moreover on a vacuum background, the fields

A

Al ATA LA ALLA
UV aya, =V KA A, X2 m g = Vg a0 (2.45)

>The more general conformal Killing-Yano equation for n-forms does not contain any new information in
four dimensions, because the dual of a solution is again a solution of rank 4 — n, see [55, p. 427]. In
particular conformal Killing-Yano 3-forms always correspond to conformal Killing vectors (2.42).
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for n,m = 2,3, ... are solutions of valence (n —1,1) and (1, m — 1), respectively. This
follows from the commutator relations (2.6) in [7] together with the footnote on p. 14.
For n = 2, the first equation expresses the fact that the divergence of a valence (2,0)
Killing spinor is a conformal Killing vector. Another interesting connection along the
same lines is that the anti-symmetrized derivative of a Killing vector is a spin-1 field,
sometimes called Killing potential, see section 4.2.3. We shift further discussion of the
deep relationship between all these quantities to chapter 7 and focus now on the Killing
spinor equation (2.40). It is heavily restricted in curved spacetime due to an integrability
condition®. For convenience, we restrict to valence (n,0) Killing spinors in vacuum.
Contracting a second derivative V4’ on (2.40) and symmetrizing gives’

AI
0=V" (BVa1akA,..4,)
=—UuB KA. .Ay)
=y ¢ +-o+ U ¢
- (ABA1 ’%CAQ...AW,) (ABAn ’iAl...An_l(J)

=1V apa,“Kca,. A, - (2.46)

For Killing spinors of valence (1,0) this yields 0 = ¥ 4gcpr?, so £ has to be a four-fold
principal spinor. To find any non trivial solution, the spacetime has to be of Petrov type
N or O. We will now stick to the valence (2,0) case,

VA’(A/{BC) =0 s (247)

because it has an irreducible solution in physically interesting spacetimes and will be of
frequent use in subsequent sections. The above integrability condition yields

0= \IJ(ABCD/{DE) . (248)

The existence of a non-trivial solution x 45 to (2.47) restricts the spacetime to be of Petrov
type D, N or O. On the other hand, on a spactimes of Petrov type D, (2.48) restricts the
space of Killing spinors considerably, see section 2.4. A divergence of (2.47) yields

Okap = Vapopk©?, (2.49)

as follows from the footnote on p. 14. The divergence of the Killing spinor itself,

1 1
§aar = ngYab = —§VA'B/€AB, (2.50)
introduced in (2.43) as an abbreviation, is not only a conformal Killing vector as follows
from (2.45), but a proper Killing vector because VAAL 4 = 3048 k5 = 0. In case it
vanishes, Y, in (2.43) solves the Killing- Yano equation

Yty = 0. (2.51)

5This is similar to the restrictions on spin-s fields due to the Buchdahl constraint, see section 3.1.

7 We use the notation 2V[aVy] = €arpr OAB +€ap0arp withOap = 4B Viaa'Vp] = VA,(AVB)A ,
following [91, Section 4.9]. In vacuum, this derivation acts via DABgZ)cDC/D’ = —‘IJABCEQSEDC,D' +

\I/ABDEgbCECrD . Note also the decomposition VaraVA 5 =04p - %EABEI.
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Symmetrized products X, Y;¢ = Ky, of conformal Killing-Yano tensors X, Yy, are
conformal Killing tensors (2.44) as already mentioned above. If X, and Y,;, have vanish-
ing divergence (2.50), then K is a solution to the Killing tensor equation

V(oK) = 0. (2.52)

The metric g, is a solution, but it is pure trace and therefore not constructable from a
Killing spinor. More general the conformal metric fg, is a conformal Killing tensor for
any function f. The well known applications of Killing tensors in constructing constants
of motion for geodesics and symmetry operators for scalar waves due to Carter [27] will
be reviewed in chapter 5.

The projection of (2.47) into a spinor dyad yields for the components Kap = Kotalp —
2K1004LBy + K2040p the following set of eight scalar equations:

bko=-2kkK1, Okg=-20K1, DPko=-2k'Ky, 0Ky=-20"k1, (2.53a)
(0" + 27" )k + 2(p +p) k1 = 2Kk, (P'+2p ko +2(8+7)k1 = —20kKg,

2.53b
(0+27)ko +2(p + p') k1 = —2k'Ko, (P+2p)k2+2(0 +7" )k = —20"ks. ( )

Thus, the three (sets of) equations, (2.43), (2.47) and (2.53) characterize the same geo-
metric object. We will find the component form (2.53) most convenient to calculate exact
solutions in sections 2.4 and 4.2.1. The tensorial form (2.43) can also be studied in other
dimensions. It can be shown that the dual of a conformal Killing-Yano tensor is again
a conformal Killing-Yano tensor. This is less obvious in the spinorial formulation, if we
e.g. want to show that the dual of a conformal Killing-Yano 3-form is a conformal Killing
vector.

Remark 2.3.1 (Twistor equation in components). Defining the components of a twistor
by X0 = M4, N = =\ 404, the twistor equation (2.41) has components

PA =kX0, PO =kN (8 TN = (p+p))0, (2.54)

N =o)X, AN =o' N (PN = (0+7)N, '
cf. [90, eq. (4.12.46)]. If the spin frame is aligned with a 2-sphere such that m® = 0®1*
and m® = o1 are tangential, the restricted equations are

N =o)X\, I\ =o'\ (2.55)

Penrose uses these 2-surface twistors in [91, Section 9.9] to construct charges in general
spacetimes. Note that the Kinnersley and Carter tetrad (2.107) cannot be used to study

these equations on a Kerr background since (m,m) are not tangential to the (0, p) coor-
iavV/A

T 2(r2+a?)

dinate spheres. A Lorentz transformation of class I and Il with parameter a = b =
makes them tangential.

2.4. Spacetimes of Petrov type D

So far, we discussed general 4-dimensional Lorentzian vacuum spacetimes. But for cer-
tain structures, e.g. Killing spinors, to exist we have to focus on a subclass restricted by
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the curvature tensor. In vacuum, the curvature tensor equals the Weyl tensor and it can be
classified by a procedure due to Petrov. This can be thought of as a classification of the
eigenvectors for the symmetric 2-tensor (2.30) over bivector space. These eigenvectors
are named principal null directions (hereafter PND) and the multiplicity of the vectors
defines the classes. Many equivalent approaches can be found in the literature, e.g. [29]
for a tensorial version, [118] using spinors or [60, Appendix B] with a bivector approach.
We will not repeat the arguments here, but only give the result. The Weyl tensor can be
classified according to the following Petrov types:

I The four PND are linearly independent
IT  Two PND coincide
D  Two pairs of coinciding PND
III Three PND coincide
N  All four PND coincide
O Flat space, PND not defined

The advantage of the NP formulation is that the null tetrad can be aligned with the PND
(wich is then called principal tetrad) so that field equations simplify considerably. For the
vacuum case, we cite the Goldberg-Sachs theorem, see e.g. [29]8,

Theorem 2.4.1 (Goldberg-Sachs). If the Riemann tensor is of type Il and a null basis
is chosen that [* is the repeated null direction and Vg = ¥, = 0, then k = 0 = 0; and,
conversely, if k = 0 =0, then Vy = ¥, = 0 and the Riemann tensor is of type I1.

The vanishing connection coefficients x = 0 and o = 0 imply that [ is geodesic and
shear-free, as seen from (2.17). It should be noted that the algebraic classification holds
pointwise and general solutions will have different types in different parts of spacetime.
An interesting approach to “detect” whether some spacetime settles down to a Kerr black
hole by introducing a Killing spinor candidate is given in [13]. This candidate is tightly
related to a Killing spinor of valence two, which restricts spacetime to Petrov type D. We
will focus on this class in the remainder of this thesis.

The vacuum field equations in the algebraically special case of Petrov type D have
been integrated explicitly and classified by Kinnersley in [81]. We also want to mention
the coordinate independent integration method by Held, [65]. An explicit type D line ele-
ment solving the Einstein-Maxwell equations with cosmological constant is known, from
which all type D line elements of this type can be derived by certain limiting procedures,
see [104, Section 19.1.2], [42]. The family of type D spacetimes contains the Kerr and
Schwarzschild solutions, but also solutions with more complicated topology and asymp-
totic behavior, such as the NUT- or C-metrics, and solutions whose orbits of the isometry
group are null. In the following, we again restrict to the vacuum case.

A Newman-Penrose tetrad with the two real null vectors [%, n® aligned along the two
repeated principal null directions of a Weyl tensor of Petrov type D is called a principal
tetrad. In a spacetime of Petrov type D in a principal tetrad, we have

\I’OZ\Ijlz():\Dg:\p;l, K:HI:O:UZOJ, (256)

8 A more general version can be found in [91, p. 195].
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due to the Goldberg-Sachs theorem 2.4.1. Only the middle curvature component W5 is
non-vanishing and for convenience, we introduce a new variable

Coc U P (2.57)

The constant of proportionality is chosen such that ( is non-vanishing in the Minkowski
limit, see section 4.2.2. The Ricci-identities (2.37) simplify to

bp=p (2.58a)
dr =12, (2.58b)
dp=(p-p)T, (2.58¢)
pr=(r-7")p, (2.58d)
pp=01+pp —77 - Uy, (2.58¢)

and the Bianchi identities (2.39) reduce in this case to
(p-3p)¥y=0, (0-37)Uy=0, (p'-3p)¥y=0, (8-37)¥y=0. (2.59)
With the 1-form (2.27) this can be expressed in the more compact form
20,V = 3h,Vs. (2.60)

Applying further derivatives and commutators to the above equations yields for a general
vacuum type D background the additional identities
pp'=p'p, TT=T'T, bp=bp’, br'=0p=-pr'+2r'p-p7, (2.61)

as shown in [47].
We also note the simplified first equations of structure (2.26),

d°2°=-IhnZ°,  d°Z'=-hnAZ', d°Zz2=-thnZ?, (262

with h the 1-form corresponding to (2.27).

We now come to the Killing spinor equation (2.47). It has been shown in [120] that a
spacetime of Petrov type D admits a Killing spinor of valence two. This follows from the
integrability condition (2.48), which becomes

0=2Wy0040BLctD (ROLDLE) - lilODLE) - lﬁLDoE) + HQODOE))

= —Wakgo(atptotp) + Vakal(40BOCOE) , (2.63)
so Ko = 0 = Ky. Hence, the components (2.53) of the Killing spinor equation simplify to
(b+p)k1 =0, (0+7)r1 =0, (p'+p )1 =0, (0'+7")k1 =0, (2.64)

and comparison with the Bianchi identities (2.59) shows that x; = ¢, with ¢ givenin (2.57),
is a solution. It follows from this argument that it is in fact the only non-trivial solution of
the Killing spinor equation in Petrov type D. So explicit coordinate calculations, as done
in [59], are not necessary.
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Remark 2.4.2 (Rescaling). In component calculations, a multiplication by some power
of VU, is often used to absorb lower order terms, e.g. in the Teukolsky equation. We prefer
to use the Killing spinor coefficient, which is defined so that it does not vanish in the
Minkowski limit. Therefore it is convenient to have a full table of derivatives for later
calculations:

l)Cz_pC7 l)lcz_p,C7 5C=_T<7 5’C=—T'C’

pC=-iC.  HC=-§C. al=-7C, d=-rC.

Summarized, the general solution to the Killing spinor equation (2.47) on a vacuum
spacetime of Petrov type D in a principal tetrad with ¢ given by (2.57) reads

(2.65)

RAB = —QCO(ALB) . (266)
Therefore, the 2-form
Yoo = Kapearp =CZY,, (2.67)

is a complex conformal Killing-Yano tensor. We will look at the real and imaginary parts
in more detail below. Let us now calculate the complex Killing vector (2.50),

1 1
Eanr = —§VA/B/€AB = gvb (¢z%)

1 1
= gg (—§hbng +2I° 20, + QP'bng)
=C(p'ly—png—1'mg +71My) , (2.68)

using (2.57), (2.60) and (2.36). It either spans the 2-dimensional space of isometries of
type D, or a Killing tensor exists from which the space can be constructed, see below.
Note that, because (' = —(, &, is GHP prime invariant as we expect for a (formalism
independent) isometry. We find the squared norm in coordinate independent form,

£, =204t - pp'). (2.69)

We might ask ourself, if it is possible to construct valence two Killing spinors from Killing
vectors. Given a Killing vector £2, one reasonable candidate is the Komar form wsp =
VA'(ASEV), see section 4.2.3. But we find

v (awpe) = 2V apepgPY (2.70)

which has no solutions on Petrov type D backgrounds.

2.4.1. The Kerr-NUT class

The Kerr-NUT subclass of Petrov type D spacetimes in which real and imaginary parts of
the Killing vector (2.68) are linearly dependent will be investigated in this section. This
excludes only class IIIB (e.g. Ehlers and Kundts C-metric) in the Kinnersley classification
[81] of Petrov type D spacetimes and is sometimes called non-accelerating, see [34]. In
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the Kerr-NUT class, the Hamilton Jacobi eq. is separable due to the existence of a Killing
tensor. It can be characterized by the condition®

0=2Imé* = ¢ (p'1% - pn® — 7'm® + 7m®) - { (p'1* - pn® — F'm? + Tm?)
= -n*(Cp—Cp) +1(Cp" = Cp') =m(CT/ + (7) + m(CT + (7). (2.71)
To vanish, all coefficients must be zero,

/ / -
PP T_T.¢ (2.72)
pp T T C

Due to these equations, we can add to the above list (2.58) of Ricci identities

dp=27p, p'r=21p, bp=pp +7(7"-T) - %\112 - £@2 , (2.73)

2¢
which can be derived from the commutators relations (2.38) applied to spin coefficients.

Remark 2.4.3. A neat way to derive the last identity is to expand 0 = L¢p with the Lie
derivative on weighted scalars introduced below in (2.83).

An investigation of Komar forms in section 4.2.3 leads to the purely algebraic identities

e +eép-1'B-7p" = —%\112 , (2.74a)
2I°(ep’ +€'p) + 2R*(7'B+78") = 1 (P + gi2)\I/2 - %52@27
+pp'C(C=C) +7T'C(C+C), (2.74b)

if a tetrad invariant under £, and L, is chosen, see remark 2.4.4 on p. 21. We used the
abbreviations R = Re ¢ and I = Im (. The straight forward but tedious proof is shifted to
appendix A.3.

The conformal Killing-Yano tensor (2.67) can be decomposed into a real 2-form f,
and its dual, Yy, = f,, +1 * fu. Since real and imaginary parts decouple, f,;, and * f;, are
conformal Killing-Yano tensors,

1 _

fav = 5 (Yas + Yap) = 2R npalyy = 28 L mgamyy (2.75a)
1 _

*fop = o (Yap = Ya) = 2L ngalyy + 2 Rmarmy (2.75b)

On Kerr-NUT, = f,, is a proper Killing-Yano tensor, because of (2.71). We can now build
the conformal Killing tensors

Kap = facf = 2[R2n(alb) + IQm(amb)] ; (2.76a)
Kab = fac >efcb = 2-Rj[n(alb) - m(amb)] s (276b)
Ko = # fac 5 f = 2[I*nalyy + R*mamy)] . (2.76¢)

‘Instead of adding a complex phase el° for full generality, see [36], we choose a complex prefactor in the
Killing spinor solution (2.66).
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Their traces are given by 2(R? — [?), 4RI and 2(/? — R?), respectively. The last one is
a proper Killing tensor. Of particularly simple form are the complex conformal Killing
tensors directly derived from Y,

1
YoY% = ZCanba (2.77a)
o 1-
Yo Y = ZC2gab> (2.77b)
_ 1 -
YoY% = ECC(n(alb) + MMy ) 5 (2.77¢)

with traces (2, (2 and 0, respectively. This set is of course equivalent to (2.76). Because
f gap for an arbitrary function f is a conformal Killing tensor, we find from (2.76) the real
conformal Killing tensors

CClamy CCmamyy , (2.78)
by using f = ¢C. The second Killing vector can be constructed via
0t =K = ¢ [I2(p1° = pn®) - B2 (rm® = 7'm")] (2.79)

with the Killing tensor (2.76¢). On a Kerr background, £% and n® are linearly indepen-
dent and span the space of isometries, see [69]. In the special case of a Schwarzschild
background, n® vanishes, see (2.115) and [36] for details.

2.4.2. Lie derivative of weighted fields

Let us have a look at the Lie derivative of spinor fields, following Penrose-Rindler, [91, p.
101]. For a general spinor field ¢%%, and a conformal Killing vector w* it is of the form

BB’ _ BB’ C, BB |7 C' BB B.,.CB _3 B /BC’
Ew AA’ _wava(bAA’ +hA ¢CA’+hA, (bAC’—h‘C (bAA’_hC' AA’ (2.80)

with hyP = 3VauwPY - 2e4PVeowC, of. [91, eq. (6.6.11)]. For spinors of higher

valence an additional term for each index must be added in the usual way. We are mostly
interested in the case of proper Killing fields w®, for which we find
hag = 5V arawip - (2.81)

This is the anti-self-dual part of the exterior derivative of the Killing 1-form w,, as will be
discussed in section 4.2.3. With an expansion hsp = hotatp — 2h10(atp) + hp040p, the
Lie derivative (2.80) of the dyad itself reads

L,04 =w*Ve04—hi10a+hoty, Lota=wala+hita—hooy, (2.82)
and the covariant derivatives can be rewritten into algebraic form by using (2.19),
W'V ,04 = W01404 — W02l A , WVt = —wW01gta + WT9,04 . (2.83)

So far the equations hold for any Killing vector w in any NP tetrad. In the remainder, we
will write ,,h 4p for (2.81) to distinguish the fields for different Killing vectors.



2.4. Spacetimes of Petrov type D 21

Remark 2.4.4. By definition, we have L,qgq., = 0, but this does not imply that the Lie
derivative of a tetrad or spinor dyad vanish. However, for a set {iw,... w} of n < 4
commuting Killing vectors, there exist tetrads with vanishing Lie derivatives along all
w, 1 <1< n, see [35]. If we restrict to the Kerr-NUT classfand choose such a tetrad
which is invariant under £ and n) given in (2.68) and (2.79), this indeed implies

EﬁOAZO, EgLAZO, EWOA:O, EnLA:O, (2.84)

for the normalized dyad (2.5). This condition holds for the Kinnersley and Carter tetrads
(2.103) and (2.107).

Restricting to the Kerr-NUT class, we show in section 4.2.3 that (2.81) for the Killing
vector (2.50) becomes

¢hap =3V apopk” = (Va0 atp), < chi = —3C0,. (2.85)
Thus (2.82) simplifies for this particular Killing vector to
Leoa = 01504 + 3¢ P304, Leva=—E0100a — 5CWota, (2.86)

by using (2.83) together with {%0(, = 0 = £%09,.
As an example, the Lie derivative of a symmetric 2-spinor ¢ ap = oL — 2010(alBy +
P20 40p reads

Lepap = (£7Oqpo = (Vo) tatp + (fava¢1)0(ALB) +(£90a02 + (Vap2)o0p, (2.87)

and the generalization to arbitrary valence follows from repeated application of (2.86) and
Leibniz rule. Hence, the Lie derivative of a {p, ¢} weighted scalar ¢ along £* reads,

Leo=|~C b = -7 +7'0) - Eewy - 200 ] 0
- [¢0. - Bows - Lt o (2.882)
2OV, (2.88b)

The last equality holds under the condition of remark 2.4.4. To summarize, if a dyad
is chosen, such that (2.84) holds, then the Lie derivative of weighted scalars along &
simplifies to a directional derivative. This in turn implies the interesting identity {0y, =
—%C W, relating the curvature to products of connection coefficients in a purely algebraic
way. An explicit form is given in (2.74a). We also note that (2.88a) applied to NP scalars
gives non-trivial identities, see remark 2.4.3 on p. 19. The calculation of ,h4p for the
second Killing vector is rather lengthy and shiftet to section A.3 onp. 95. It is found that
nho = n%00, and ,ho = N0y, are satisfied identically. This leads to the Lie derivative

Ly =[O0+ pohy + qyha]d = 1°Va0, (2.89)

1%0ne needs to check, whether real and imaginary parts of £ commute, to generalize to all Petrov type D
spacetimes.
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with
= H(C + P = 3T+ I C(C- O+ PO 290

Under condition (2.84) we find for the second Killing vector the identity ,h; = 101,
which is expanded in (2.74b) and yields the * equality in (2.89). The Lie derivatives
(2.88a) and (2.89) are the symmetry operators VV and P found in [94, p. 37].

The identities implied by condition (2.84) can be summarized by

whr =wor,, (2.91)

for all Killing vectors w?®. This will turn out to be useful to analyze Komar integrals in
section 4.2.3.

2.5. Black holes and the Kerr spacetime

The no-hair theorem states that a black hole equilibrium state is completely described
by only three parameters, the mass M, the angular momentum Ma and the charge q.
It can be described by an explicit solution of the Einstein-Maxwell equation, known as
the Kerr-Newman metric. For vanishing charge ¢ it reduces to the Kerr metric and the
Schwarzschild metric is contained in the limit of vanishing angular momentum A a. More
generally, there are uniqueness and singularity theorems due to Hawking and Penrose,
which describe black hole formation as a generic process.

Assuming spherical symmetry, the Schwarzschild solution can be calculated rather
straightforwardly from the vacuum field equations (2.1). A derivation of the Kerr metric
from an axially symmetric line element is much more involved, see [29] for a full account.
Most commonly, the metric is written in Boyer-Lindquist coordinates (¢, 7,0, ¢),

2M 4AMrasin®6 )y [Isin?6
gapdzdz? = ( 1- —T) dt? + 2O Y o - Zdr? - 2de? - o P dg? ) (2.92)
5 D A
where
A=r?-2Mr+a?® X =r%+a%cos?0, II=(r’+a®)?-a?Asin’6.  (2.93)

This representation of the metric does have the advantage that mass M and angular mo-
mentum Ma can be read off directly for large r . We will only consider the situation
a < M, where proper horizons exist (they disappear for @ > M and cosmic censorship is
violated). The case a = M is called extreme and a > M over-extreme. At present, no
"inner solution", e.g. rotating star, is known which connects to the Kerr solution in the
vacuum region. The two roots of A =0,

ro=M+VM?2-a2, ro=M-M?-a2, (2.94)

describe the outer horizon and inner horizon, respectively. The ring singularity is para-
metrized by the circle r = 0, § = 7/2 and equivalent to the condition > = 0. It is not a
coordinate artifact, because the invariant R R diverges. The condition g;; = 0 holds
for

ro=M +\VM?—-a?cos?0, ri =M -~ M?—-a2cos?6. (2.95)
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The radius 7, is the outer boundary of the ergo-region. Particles and fields can extract en-
ergy from the black hole inside this region due to the Penrose process and super-radiance,
respectively.

Of particular interest in the analysis of dispersive estimates, see section 6.1, are null
geodesics with orbits of constant 7. In the special case of Schwarzschild spacetime, this is
only possible at 7 = 3M and called photon-sphere. These orbits are unstable to perturba-
tions in the radial direction and a scalar field disperses away from this sphere. On a Kerr
background the = const. null geodesics (photon orbits) fill a whole region characterized
by the inequality [63],

(4rA - 28,A)? < 16a*r>Asin® 0. (2.96)
The minimal and maximal radii,
Tphe = 2M [1 + cos (g arccos (i'ﬂ ))] , (2.97)

are possible only for null geodesics in the equatorial plane. Here the minus sign holds for
direct orbits and the plus for retrograde orbits. Null geodesics outside the equatorial plane
can have stationary orbits between these radii and so the set (2.96) is not a 2-dimensional
sphere, as it is on Schwarzschild, see [29, p. 330] and [108] for a more detailed discussion
of the bounded null-geodesics.

The inverse metric to (2.92) reads

IT

gabaaﬁb _ . AMra A 1 X -2Mr

82 + (9t8<p — Eaf - 5892

2
NGRS 9 (2.98)

YAsin?0 ¢

The wave operator on a scalar field can in general be expanded into

0 (VIglg™ 0 (2.99)

Ogu = VOVeu = V*Oqu = 0%0,u — ¢T3 “0,u =

\/_

where the last equality follows from 9,+/|g| = $/9/9**Gagse. In Boyer-Lindquist coordi-
nates (¢, 7,0, ¢), this yields

r2 4+ q2)> ' daMr
ZDu=l% —a2S1H29]Utt+ A Ut
1 a?
[Sm 9 A ] gy — O (Auy) - —89(8111 Oug) . (2.100)

Specializing to Schwarzschild (¢ = 0) yields ¥ = 72 and A = r2 - 2Mr. With [ =
(1 -2M r) the wave operator reduces to

1

r2sin®6

Ou = fluy — T%&(fﬁur) - 1n Op(sin Ouy) -

[82 oz —iA52+f— (ru). (2.101)

fr
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Further specialization to Minkowski (M = 0) gives f = 1 and the wave operator in spher-
ical coordinates,

1., 1 _ 1
Ou = Uy — ﬁ@(r Ur) - 2 Sineag(SHl 9169) - muw
1 1
= Uy — —28T(7"2ur) - —Ag2u
T T
— = Agst. (2.102)

2.5.1. Kinnersley and Carter tetrad

The mostly used Newman-Penrose tetrad for the Kerr solution is due to Kinnersley. With
p:=1—iacosf itis given by

b= %[7‘2 +a%, A0, a:| , (2.103a)
b_ Lo, o
n :ﬁlr +a ,—A,O,a], (2.103b)
. 1] i
m :\/513 1asm9,0,1,ﬁ , (2.103c¢)
mb=fi2p[—iasm9,o,1,—si;9]. (2.103d)

For exterior calculations, it is convenient to also have explicit expressions for their duals,

Py
ly = [1, -=.0, -asin? 9] , (2.104a)
A
ny = i[l, Z,O, —a sin 9] , (2.104b)
1
my = —|iasin®, 0, -%, -i(r* + a*) sin 9] , (2.104c¢)
\/515[

m-il
b_\/ip

The spin coefficients in the Kinnersley tetrad read

—iasinf,0,-%,i(r? + a?) sin 9:| ) (2.1044d)

1 A iasin @ iasin 6
_L o8 ;oo oY 0105
= P opp? V2% V2p?
M t0 _
f=p-—_ 5= B =B+ (2.105b)

N

It has in addition to k = 5’ = 0 = 0’ = 0 also € = 0. The identity 3’ = 7/ + 3 has no invariant
meaning. Because of the special form p = —(~', this spin coefficient is sometimes used
for rescaling. This does not have invariant meaning and is very unnatural from the GHP
weighted point of view.
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To simplify the expressions as much as possible, a tetrad transformation of class III,

P AP, nt > An?, mb > e®m? b

(2.106)

with A =1/23/A and €i® = \/jp/p transforms it into the symmetric Carter tetrad, [124],

(2 4 2
nb = \/%nrz\;zaz,—\/&(),%],
mb = \/%:iasin&o,l,ﬁ],
mb = \/%:—iasin&O,l,—ﬁ],

\/Z7 —i, 0, —av/Asin? 9] ,

1

ol VA

1| )Y
n=—| V&, ,o,_aasmw],
Vel VA

T
mp = ——|iasing,0, -3, —i(r? + a®)sind |,
-] (e a?ysin)
my = L —iasin6,0, —Z,i(r2+a2)sin9].

|

The spin coefficients in this tetrad read

G=g T, cot , tasinf
= = — s T=T = — s
2 2V2% V2%p
;P r—-M ’ \/Z
€=—€ ==+ —F0-— p=—p = ———.
2 2/2oVA V25p
The components of the Weyl tensor in both tetrads are
M
‘PQZ—p—S, Wi =0.

(2.107a)

(2.107b)

(2.107¢)

(2.107d)

(2.108a)

(2.108b)

(2.108c¢)

(2.108d)

(2.109a)

(2.109b)

(2.110)

The coefficient ( of the type D Killing spinor (2.57) is determined up to a constant,
which we fix by setting M (=3 = —=W,, or { = p. The bivectors and connection forms in a
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Carter tetrad are given by

0 -1 —iasind 0
1 0 0 —asin®
1
Zap = iasin 6 0 0 —i(r? +a?)sinf |’ (2.111a)
0 asin®@ i(r?+a?)sinf 0
0 —iasind A —-iAsin6
1 |iasin® 0 z -i(r?2 + a?)sinf
0 _
Zab = Al A - 0 alAsin® 6 ’ (2.111b)
iAsing i(r2+a2?)sind -aAsin®6 0
0 iasin 6 -A —-iAsin6
1 |-iasinf 0 Y i(r? +a?)sind
2 _
Za = WA A -3 0 —aAsin?6 |’ (2.111¢)
iAsing —i(r2+a?)sinf aAsin®6 0

oo = 7iasin&j_\/z’_i Asin@) 7 (2.112a)
oVvVA 2p 2p
M Masin?60  a+ircosf
«=|=—,0,0,- - , 2.112b
o1 2p? 2p? 2p ) ( )
ia sin 6 A iVAsind
— ia sin 7_\/_’1 sin ) (2.1120)
ovVA 2p 2p
The real Killing-Yano tensors (2.75) become
Jab = 2r npgly) + 2ia cos O myamy,) , (2.113a)
* fap = 2a.cos O npgly) — 21 mpgmy) . (2.113b)

While * f,; is a Killing-Yano tensor, f,;, is a conformal Killing-Yano tensor and does have
the time-like Killing field as divergence,

%0, =0y . (2.114)
The second Killing vector (2.79) in coordinates becomes
n°dy = a®0; + ad,, (2.115)

so the axial Killing vector is given by

1
E=-n-a§=0,. (2.116)
a

In addition to the continuous symmetries due to the Killing vectors and tensors, there is
also a discrete symmetry

Pito—t, p——p. (2.117)
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The conformal Killing tensors (2.76) have the simple form

K, = 2[r2n(alb) +a? cos? Gm(amb)] , (2.118a)
l*(ab = -2racos H[n(alb) - m(amb)], (2.118b)
}%ab = 2[@2 cos? Onaly) + r2m(amb)] ) (2.118¢)

Their traces are 2(r? — a? cos? 0), —4ra cosf and —2(r? — a? cos? §). Note that ;éab is the
well known Killing tensor on Kerr spacetime and that [*( ab= —racosfgy. It also follows

that ;(*’ is reducible in the case a = 0.

We want to point out another potentially interesting set of coordinates introduced by
Doran in [46], see also [100] for Kerr-Newman. It generalizes the Painlevé-Gullstrand
coordinates of Schwarzschild spacetime. The "time coordinate" ¢ is the local proper time
of specific freely falling observers, g = 1, and the metric is regular at the horizon.

2.5.2. Geometric choice of coordinates

The Boyer-Lindquist and Doran coordinates do have particular advantages, but one might
ask whether the geometry itself singles out preferred coordinates. This is indeed the case
as shown in [55, Appendix D] (they use the opposite signature). We will briefly review
this from the point of view taken in this thesis. Viewing the Killing spinor equation (2.40)
as fundamental, we derived the valence two solution in (2.66). Its divergence is the Killing
vector (2.68), which can be made real for the Kerr-Nut class. In that case the imaginary
part of the Killing spinor yields a Killing-Yano tensor (2.75b), which itself squares to the
Killing tensor (2.76¢). In case, the spacetime admits less than four isometries, a second
Killing vector can be constructed according to (2.79). One can check L7 = 0 and the first
two coordinates z°, x4 are defined to have these Killing vectors as its flow,

=00, n=05. (2.119)

The remaining coordinate freedom is fixed by analyzing the eigenvalue problem for the
Killing tensor,

Kon® = An®. (2.120)

From the representation (2.76¢) the eigenvectors Al%, Bn®, Cm®, Dm® with free functions
A, B,C, D follow immediately. The first two have the common eigenvalue /2 and the
second two have the common eigenvalue —R2.!! The two eigenspaces are orthogonal,
because [*m, = 0 = [*m, and n®*m, = 0 = n%mn,. To construct coordinates, we need four
mutually commuting vector fields. With the ansatz

[Al® + Bn®,Cm® + Din®] = 0, (2.121)

Tn 55, p- 420], the Killing-Yano tensor (2.75b) is called non-degenerate, if the associated Killing tensor
(2.76¢) does have two different eigenvalues. For Schwarzschild spacetime it is degenerate, because of
I? = 0 and geometric coordinates can be constructed purely from Killing vectors.
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we find an element in each eigenspace, such that their commutator vanishes,
e = C2C(p'1* + pn®) , e =iC?¢(7'm* + Tm®) , [e1,e2]=0. (2.122)

These vectors are real, because of (2.72). Also L¢e; =0 = L,e;,7 = 1,2 holds. More gen-
erally one can show that the Schouten-Nijenhuis bracket [ X, K] = XV K- K%y X"
of the Killing vectors with the Killing tensor vanishes, see [44]. We find the norms

§%6a = =2C(pp' = 77"), n"na = =2C(I"pp’ = R'77')
eclbela = 2C4§2pp,7 6362(1 = 2C4C2TT,7
&g = —2(’2(]2pp’ + RZTT’) , e, =0=eln, =efes, .

Now, we introduce coordinates x* with (0, = 0;),
§=0o, er =01, ez =0y, n =0, (2.123)
and we read off the metric

gapdx®da® = = 2C3(pp’ - 77')dad - 2C3(I*pp’ — R*r7")da?
+ 204 pp'da? + 2¢A P dad - 2C3(IPpp’ + RP*r7)dwodry.  (2.124)

It is expressed purely in terms of the Killing spinor, since pIn( = p etc.. Comparison to
the Kerr spacetime in the usual Boyer-Lindquist coordinates shows

Oy = 0, 01 = A0, Oy = asinfoy , Oy =a’0; +ad, . (2.125)

We note that the coordinate x! shifts the horizon to —oo like the tortoise coordinates. The
Schwarzschild limit @ — 0 is singular in these coordinates. Separability properties are not
affected by coordinate changes 0,: - f(x")0,: for any fixed i. The choice in [55] leads to
coordinates (7,7,y,1) in which the metric takes the particularly nice form

dr? | dy?
A A

1
242

ds? [—Ar(dr +y2dy)? + A, (dr - r2d1/1)2] +(r* +9?%) l

For the Kerr spacetime the functions A,.(r) and A, (y) read
A, =7?-2Mr +a?, A, =a* -y,

but they can also be solved for in the whole Kerr-NUT class. The scalar wave operator
takes the symmetric form,

(7’287— + 8¢)2

(y20, ~ 9y)°
A, '

2, .2
= 0,A,0, —
(r*+y*)0=0,A,0, ;

+0,A,0, +
The overall factor is the density ¥ = r? + y? = \/—det g.
For further research, it would be interesting to investigate possible extensions of this re-

sult to Petrov type D spacetimes. This might give a simplified approach to the Kinnersley
classification [81] and to Held’s coordinate free integration method [65].



3. Spin-s fields and linearized
gravity

In the last chapter we investigated mathematical descriptions of vacuum spacetimes and
their inherent structure. The next step is to describe fields on such backgrounds. For that
reason, the spin-s equation is introduced in the next section and its integrability conditions
are derived. We will not deal with fields coupled to the curvaturez. In section 3.2, we
will translate the Maxwell equations into spinorial form and show the equivalence of the
Bianchi identities to the spin-2 field equations. Finally, field equations for linearized
gravity and its gauge freedom are discussed and compared to the spin-2 equations in
section 3.4.
The results of section 3.4 are partly based on the publication [2].

3.1. The spin-s field equation

The formulation in terms of spinors yields in many cases much simpler equations then the
corresponding tensorial version. An example is the Killing spinor equation discussed in
section 2.3, which unifies several tensorial equations related to conservation laws. More
examples can be found in the books [90] and [91] of Penrose and Rindler. Another one is
the spin-s equation,

VAN b4 a5 05, =0, (3.1)

for a symmetric Spinor ¢, a,...A,, = P(A; As...A,,) With s a positive half-integer.

It can be shown to be equivalent to the neutrino equation for s = 1/2, the Maxwell
equation for s = 1, the Rarita-Schwinger equation for s = 3/2 and the Bianchi identities
for s = 2. Before we proceed with the explicit derivation for s = 1,2 in the next section,
we derive the integrability conditions of the spin-s equation. Applying another derivative
to (3.1) and using the footnote on p. 14 yields,

A'A
0=VasV" 1 baa,. A,

1 A
= —300BAy.. Ay, T OB PA, A,... 45,

1
= =5 00B4; Ay~ VBN 4,0 ,0 0, = = Up™M 4, “baa, 0 (3.2)

So the totally symmetric part becomes the wave equation,

D¢A1...A25 - 2(23 - 1)\II(A1A2BC¢)A3...A25)BC = 07 (3'3)

12This test field approximation neglects the quadratic occurrence of the field in the energy-momentum
tensor on the right hand side of the Einstein equations.

29
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while the only non trivial trace part is the contraction with 242 resulting in

AlA
0=o0™ 2¢A1A2~~A25

= A2 — A1 A2

B B
Az ¢A1A2B'~~A23 - Ags ¢A1A2...A23_1B
A1AsB
= (25 = 2)UME 4 Ay Ar) A ALB - (3.4)

This last purely algebraic identity is known as the Buchdahl constraint, [25]. Note that
this construction is non-trivial only for s > 3/2. So only fields of spin greater than one are
constrained in this way. For the spin-2 (e.g. gravity) case, we have explicitly

0=U4%% pomyapc, (3.5)

which results on a type-D background in a principal frame (¥ 4pcp = 6¥20(40BLcLp)) In
0 = ¢30(pOE) — P1L(DLE), SO @1 = 0 = ¢3. Attempts have been made to reformulate the
spin-s equation into a constraint free form by non-minimal coupling to curvature, see e.g.
[70].

The wave equation with a curvature potential (3.3) for s = 2 and ¢ = V is called Penrose
wave equation. The projection into a NP-tetrad for s = 1, 2 can be found in [20]. To linear
order this leads to the Teukolsky equations for the extreme components, see section 3.4,
and the form is also convenient to extract perturbation equations of higher order.

3.2. Maxwell equations and Bianchi identities
Let us first have a look at the source-free Maxwell equations
VialFre) =0, Vil =0, (3.6)
for a real 2-form F;. Following [90, eq. (3.3.31)], we define the alternating tensor
Cabed = 1€ACE€BDEA D € — I€ADEBCEACTERI DY (3.7)
and the Hodge dual on 2-forms,
*Fap = 3€apeaF . (3.8)
Now, the first equation in (3.6) can be rewritten in divergence form,
0= LeaweaVP F = VP #Fy,. (3.9)
Alternatively, the second equation yields,
0= V%apea * F4 = €gpeq VI + FU | (3.10)

because of *xF' = —F'. So with the complex linear combination F, = %(Fab +1x% Fy), the
Maxwell equations do have the two alternative representations,

dF =0 < VeFa=0. (3.11)
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Since any real 2-form can be expanded into

Fuy= Gapéarp + Qarprean, (3.12)

with a symmetric spinor ¢ 4p = ¢(4p) and the Hodge dual reads,

«Fup = ~ipapEap +idapeas (3.13)
we find the spinorial version of (3.6) for F,;, = ¢ 4p€arp to be
0=V*4Gapean = Va'das, (3.14)
so the source-free Maxwell equations (3.6) are equivalent to
Valoas =0, (3.15)
which is (3.1) for s = 1. The wave equation (3.3) in this case yields
O¢ap =2V apcpd“”. (3.16)

A valence-2 spinor can be decomposed into ¢ 4p = 2040B — 2010(atp) + Potatp and the
six real degrees of freedom of F};, are encoded in 3 complex scalars

¢o = papo’o” = Fylm® = F- Zy, (3.17a)
¢1 = papttof = LF,(1onb —m*m®) = F - 7, (3.17b)
¢2 = paptP = Fym®n = F - Zs. (3.17¢)
So the real 2-form does have the bivector representation
F=Z%+ 32" + 0022+ 02 + 012 + 0o, (3.18)

or in index notation ¢; = F'- Z; and F = ¢; 27 + 5121. The components of (3.15) yield
the vacuum Maxwell equations in GHP form,

(b-2p)p1 = (8 = 7)o — K2, (3.19a)
(0-27)¢p1 = (b~ p')po ~ 02, (3.19b)
(b 20" )p1 = (8- 7)pa — K¢, (3.19¢)
(0" =27")¢1 = (b-p)p2— 0’90 (3.19d)

The Bianchi identity for the Weyl or conformal curvature Cypeq = Clapiea = Capfea) =
C'gap reads

v[acvbc]de =0. (3.20)
Defining the left dual, *Cepeq, and right dual, C, ., by taking the dual with respect to
the first and last index pair, respectively, one finds *C%, = —Cgeq. So analogous to

Maxwell’s equations, we can rewrite (3.20) into divergence form V%*Cpyp.q = 0. On the
other hand, contracting indices in (3.20) (there is only one non-trivial possibility) yields
vaCabcd = 0.

The Weyl tensor does have the spinor representation

~Cabed = Vapcpeap€cp + VY arporp€apecn (3.21)

where ¥ 4 5o p is a completely symmetric 4-spinor. The 10 degrees of freedom of the Weyl
tensor are given by 5 complex scalars Wy, ...V, given in (2.29). The vacuum Bianchi
identity in the form V¢(Clupeq +1*Capea) = 0 then translates into the spin-2 equation

VA agep = 0. (3.22)
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3.3. Spin lowering

Suppose ¢4 p 1s a solution of the spin-s field equation (3.1) and k¢ p solves the va-
lence (n,0) Killing spinor equation (2.40). The concept of spin lowering is based on the
observation [91, p. 75] that

VA ¢4 po..pk P = K9PV G4 po.p+ da.po.pVARTP =0, (3.23)

So the spin lowered field

Ya.B= ¢A...BC...DI‘<&C"'D ) (3.24)

solves the spin-(s — %) equation. The argument holds for arbitrary backgrounds, but the
fields involved are in general heavily restricted due to the integrability conditions (3.4)
and (2.46). Of particular interest is the construction of Maxwell fields (spin-1) from spin-
2 fields and Killing spinors of valence two, because their charges can be calculated by
integration, see chapter 4. For later reference, we present the component form of this
case. For symmetric valence two and four spinors,

KAB = KolALB — 2K10(ALB) + K20408B, (3.25)
\I/ABCD = \I/()LALBchp - 4\1110(ALBL0LD) + 6\1120(AOBL0LD)
- 4\1130(AOBOC/»D) + \IJ4OAOBOCOD s (326)

the contraction over two indices results in the symmetric 2-spinor

¢an = Vapcopk®?
= [\110/42 AL \IJQ,%O]LALB
- 2[\111%2 - 2Ugky + \IJ3I€0:|0(ALB)
+ [Waks — 2Usky + Uyko|oaop . (3.27)

3.4. Linearized gravity

The field equations (1.1) of General Relativity are a set of ten non-linear, coupled second
order partial differential equations. A vast field of research is the study of exact solutions
to these equations [104]. But mostly, symmetry assumptions have to be made to simplify
the equations into manageable form. Another approach is to linearize the field equations
in some parameter € around a given exact solution (background) and analyze the resulting
linear system. This can be used to investigate effects like gravitational radiation, but of
course only for “small field strength* so that higher order effects can be neglected. For a
general solution GG, to the field equations and a given background metric g, we define
the linearized metric

Ga ~ Ya
hay = lim Sl Z b
e—0,e+0 €

(3.28)

The linearized field equations then take the form

_% a hab - %vavbhcc + vCv(ahb)c + %gab(Dhcc - vcvdhcd) = 87TTab . (329)
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This is still a set of ten coupled partial differential equations, but it is linear. An additional
difficulty is the gauge dependence of h,, due to infinitesimal coordinate changes, see
section 3.5. On a flat background with g, = 1, the Minkowski metric, the trace reversed
metric hgp = hap — %nabhcc solves the reduced wave equation

Ohgy = 1671, , (3.30)

after imposing the gauge condition V%A, = 0. This choice of gauge-source-function is
compatible with the radiation gauge, which can be imposed on the initial slice and then
propagates. There are two remaining degrees of freedom which characterize the linearized
gravitational field, see e.g. [118, Section 4.4] for more details.

On a spherically symmetric background with non-vanishing curvature, the extraction of
the true degrees of freedom is much more involved. Due to the symmetry, everything can
be decomposed into tensor spherical harmonics and a natural decomposition into odd and
even parity!? is inherent. For example the metric can be expanded into (f = 1-2Mr1, s =
sinf, ¢ = cos ),

0 —hoS—la%j h0389
_ . 0 —hls‘l(’?w hlsag
Mo = o hy(s10 ~ e5720,) Bha(s102 + cdy - s03) |V (3.31)
* % * —hg(sagw - Cap)
with 3 free functions Ay, h1, ho depending on ¢, r for the odd parity and
JTHy H hoOs hoO,
.| x [TH: h10 h,0,
hab T * * r2K + 7”2G892 T2G(092¢J _ 03716¢) Yzm; (3.32)
* * * r2s2 K +1r?G (02 + scdy)

with 7 free functions Hy, Hy, Hs, ho, hy, K, G depending on ¢, r for the even parity part.
The tensor spherical harmonics are generated by the differential operators acting on the
scalar spherical harmonics Y},,,. After imposing a suitable gauge condition in [97], Regge
and Wheeler were able to extract a wave equation with curvature potential governing
the odd parity sector. More then ten years later a similar equation for the even parity
sector has been found by Zerilli, [123]. Moncrief then showed in [84] the gauge invariant
significance of the equations using a Hamiltonian formulation and a derivation without
spherical harmonic decomposition can be found in the article [74] of Jezierski. Using
tortoise coordinates 0,, = f0,, which transform the horizon at r = 2M to r, = —oo, the
equations take the form,

[07-02 +V=]Q*=0. (3.33)

Here, we denote the even parity by + and the odd parity by —. The variables and potentials
can be written in the form

f

O = 5 (201 + (9, - 2r )] , Vo= fI+Dr?-6Mr],  (3.34a)
+ _ 2 + - _ 2
Q=51 V=V -20% InA, (3.34b)

3This corresponds to the sign change for transformations (6, ¢) — (7 — 0, ¢ + 7) on the 2-sphere.
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with A = (1-1)(I+2)/2+3Mr~! and ¢, related to the even parity metric (3.32) by

q1 = 4f27”]€2 + l(l + 1)7‘]{31 , (3353.)
k= K +1[r?0,G -2h], (3.35b)
2fky = Hy — 10k + (1 =10, In\/f) = (0, + Mr~2)(r20,G — 2hy) . (3.35¢)

The Regge-Wheeler and Zerilli equations (3.33) are most common to study effects of
the linearized gravitational field around a Schwarzschild black hole. Applications in the
stability analysis will be discussed in chapter 6.

This approach heavily depends on the spherical symmetry of the background and can-
not be directly carried over to Kerr spacetime in a natural way. However, Teukolsky
derived in [109] complex wave equations for the linearized and gauge-invariant curvature
components W, and ¥,. We use a dot to distinguish linearized quantities from the back-
ground fields. The derivation is based on the Bianchi identities (2.39) in linearized form
and so has a different origin than the Regge-Wheeler approach. The implications will
be discussed below, but first we present the equations. With a modification of the GHP
connection (2.18)'*15 introduced in [2],

D,=0,-pB, - qBa , B, =pn,—1myg, (3.36)

the weighted wave operator reads

mpvq = DaDa
=2(b-pp - (q¢+1)p)(p' = p") —2(0-p7 - 7)(8' - ¢7 - 7')
+(3p-2)Wy - q(2(07) +2pp" - U5). 337)

The last term can be simplified further if restricted to the Kerr-NUT family. However,
only the case ¢ = 0 is of interest in this chapter and we write @, = @,. We also not that
for unweighted fields, it reduces to the usual wave operator, @y o = O.

Remark 3.4.1. Note that B, in (3.36) is not GHP prime invariant. With the I-form h,
defined in (2.27) we find h, = 2(B, + B’) and it follows

(Da®)' = Dg¢' = (2 Du(C?9) . (3.38)

It is also interesting that the time like isometry (2.68) can be written &, = (( B!, — B,).
On a vacuum background of Petrov type D, a set of decoupled wave equations for the
linearized curvature scalars can be derived. The full calculation will not be repeated here.

We only mention that one can either apply another derivative!¢ to the linearized Bianchi
identities (2.39) or project the linearized wave equation (3.3) into a tetrad to derive the

4Adding a (0,0) weighted field B, to o1, yields again a connection on the weighted line bundle.
ISNotation differs from [2] by a sign in B,,.
16This approach can be formalized by the decoupling operators S, further discussed in section 5.2.
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equations
[@4— 16T,] 0, = (3.39)
[my — 40, ] (¢ ): —6@1/2 [(p'+2p - )k — (0 +2r" =7)o +20,],  (3.39b)
[0+8T,] (¢*W,) = -30(¢%0,) | (3.39¢)
[m_y - 40, ] (3T3) = -6 Ta[(b+2p - p)i’ — (3 +27 - 7)o" +203],  (3.39d)
[@_4 - 16W,] (¢*¥4) = 0. (3.3%)

Remark 3.4.2. Sometimes the spin coefficient p is used in the literature for rescaling
the fields in the Teukolsky equation. This only works in the Kinnersley tetrad, since in
that case the relation p ~ (~' holds. More often, a fractional power of Vs, is used for
rescaling. This works for all principal tetrads, because of (2.57), but it degenerates in the
Minkowski limit. The Killing spinor does have a well defined Minkowski limit and also
gives the correct interpretation to the conservation law (4.18) discussed below.

Details about the derivation of (3.39) can be found in [2]. The spin-2 Teukolsky equa-
tions are (3.39a) and (3.39¢). The other three equations are in general gauge dependent
as we discuss in the next section. However, on Schwarzschild ¥y = ~Mr~3 and { = r are
real and therefore

[0+8W,] ((*Im ¥,) =0, (3.40)

follows for the (gauge invariant) imaginary part of (3.39c). After a spherical harmonic
decomposition and an expansion of the wave operator (2.101), this is for / > 1 the Regge-
Wheeler equation (3.33). This was already noticed by Price in [95, Section 4A] and an
expansion of 0, in terms of linearized metric shows

(I+2)!

3 . —
—r°0dm Wy = 1(0=2)]

Q. (3.41)

as was also calculated in [2]. It follows that ¢-independent as well as [ = 0, 1 solutions of
(3.40) cannot be described by ()~. This suggests to use Im U, as a representative for odd
parity perturbations of Schwarzschild spacetime. Moreover, we showed for even parity
perturbations

: M
r3Re Wy + 37 [2K +1(1+1)G] = 4AQ", (3.42)

so a "slight" modification!” of Re ¥, makes it gauge invariant and, up to functions in case
of spherical harmonic decomposition, equivalent to the gauge invariant Zerilli variable
*. However, the even parity part is more complicated, because it is non-trivial already in
the background. On a Kerr background, W5 is complex and therefore real and imaginary
parts of (3.39¢) are gauge dependent.

7The correction term is the spherical trace of the linearized metric (3.32). We note the similarity to the
metric term in W in the expansion (3.51c).
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Remark 3.4.3. The decomposition into odd and even parity on a spherically symmetric
background corresponds to imaginary and real parts of unweighted scalars. For weighted
scalars the decomposition is most easily done by "despinning" first, see [95]. On a Kerr
background the discrete transformation (t,) — —(t, ) would be a natural generaliza-
tion, see also [94, Section 3.1]. The operators for "despinning" are presented in ap-
pendix A.2.

Remark 3.4.4. In a vacuum type D background the Maxwell components (3.17) fulfill the
equations

[m - 4W5]¢0 =0, (3.43a)
[o+20,5] (¢¢1) =0, (3.43b)
[m_5 - 40,] (¢%¢2) =0, (3.43c)

The middle equation is known as Fackerell-Ipser equation, [50], and the other two are the
spin-1 Teukolsky equations.

The equations (3.43a) and (3.39a) together with their versions for spin 0,1/2,3/2 can
be unified into the Teukolsky master equation (5.53). It is the most common equation to
analyze linearized gravitational perturbations of the Kerr spacetime, because of its gauge
invariance and separability. It is the starting point of Chandrasekhar’s integration program
[29] and also used in the proof of mode stability by Whiting in [121]. On the other hand
the operator does have a complex connection and a long range potential. This makes it
difficult to analyze with the methods reviewed in chapter 6. We will take this, together
with the fact that (3.39¢) and (3.43b) are scalar wave equations, as a motivation to further
investigate the middle equations in this thesis.

Before we discuss the gauge transformations in the next section, let us briefly review the
situation for coupled electromagnetic and gravitational perturbations of a Kerr-Newman
background. A single decoupled scalar wave equation for this case is not known. Follow-
ing the approach for the vacuum case and using the gauge-invariant variables

Wy, Xo = 3¥200 — 261, Xa = 3Wachy — 20, V3, 0, (3.44)
Lee [82] ended with equations of the form (neglecting lower order terms)
(Db’ = f(Ws,61) 30| W = g(¢1, ¥2) pO o, (3.45)
! 1 ! . 1 %47
-————d3'90 = h(Ws, vy, 3.46
[b'p (W o0) o = h(W2, ¢1)p'8V, (3.46)

and the GHP primed versions for y, and W,. The equations do not separate, see also [29,
p- 582]. In the special case of vanishing angular momentum (Reissner-Nordstrém), the
equations decouple after a separation of variables is performed, see [116]. The right hand
side of (3.45) vanishes in the case of vanishing background electromagnetic field and the
equations reduce to the usual Teukolsky equations for spin s = 1,2. Another approach
to Kerr-Newman perturbations by Fackerell and Crossmann, [37], is based on the middle
three linearized curvature components and the Maxwell scalars. However, their equations
also do not decouple, even though a gauge condition for a decoupled gravitational part is
derived, see also [15].

Finally, we mention a recent result of [88], where it is used that the equations decouple
to first order in a and give an approximation for slowly rotating Kerr backgrounds.
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3.5. Gauge freedom

For linearized gravity in a tetrad based approach, there are gauge degrees of freedom
corresponding to infinitesimal changes of the tetrad (tetrad gauge) and of the coordinates
(coordinate gauge). In this section, we will review these gauge transformations and collect
equations which are needed in section 4.3.2. For further details and tabulated results, we
refer to [105],[23].

The tetrad gauge freedom is the freedom of infinitesimal Lorentz transformations (2.10)
of the linearized NP tetrad. With a, b complex and A, ¥ real functions they read,

@ A 0 b b @
na 0 -A a a na
g me|l |a b i 0 moe (3:47)
mo B a b 0 -i9) \mo

Here the subscript B denotes linearized quantities, o stands for an infinitesimal tetrad
transformation and the matrix entries itself are linear in the perturbation parameter. The
effect on any NP scalar can now be calculated. As an example, we derive the tetrad gauge
freedom of the curvature scalars.

With four real functions Ny, Ny, Ly, L, and six complex functions L3, N3, M;,1=1,..,4,
the linearized tetrad can be expanded in terms of the background tetrad via

e Ly Ly Ly Lsg\/[l
n® _ N1 NQ N3 Ng ne
me B M1 M2 M3 M4 ma |’ (348)
me)  \ar, 3, 1) e

Here, we use a subscript B instead of a dot for the linearized tetrad. Note that the matrix
entries are by definition linearized quantities and we suppress an overdot to avoid clutter.
There are 16 degrees of freedom at a point, ten correspond to metric perturbations and
six are infinitesimal Lorentz transformations (tetrad gauge). The linearized tetrad 1-forms
have the representation

l, -N, -Ly, My, My\/I1,
Ng _ -Ni -1,y Ml M, Ng
Mg - Ng zg —Mg —M4 myg, ‘ (349)

Ma)y \ N3 Ly -My -Ms) \M,
For the bivectors (2.8), it follows
70 = —(Ly + M3)Z° + LM, + N3) Z' - ML, Z' - (M, - N5)Z + N\ Z*,  (3.50a)
Z' = ~(My+ L3)Z° = (L1 + No+ Ms + M3)Z" = (M, + N3)Z*
+(Ly - )7 - 5(L1+ Ny — M; - M3)Z' +(Ns-M)Z (3.50b)
7%= Y (My+ L3)Z" = (Ny + M3) 22 + L7 + 2(My-T3)Z - M,Z".  (3.500)
Linearization of the tetrad representation of the metric, g, = 2[(4np) — 2m (o), yields

hin, = =Ly = Ny, hmm=M3+M3, hnﬁz:NS_M17 hlm=Z3_M27
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and therefore tryh = =2(L1 + Ny + M3+ M 3) Linearization of the curvature scalars (2.29)
shows
o =-C-(Zy, Zy), (3.51a)
Uy =-C(Zo, Z1) + 2Vo(Ls + M), (3.51b)
Uy =-C-(Z1,71) - $Watr,h, (3.51c¢)
Uy =~C - (Zo, Z1) + 3Wo(N3 + M), (3.51d)
Uy =-C-(Zy,Z), (3.51e)

which follows from e.g. Wy = -C'- (Zy,Z1) = C - (Zo, Z1) = C - (Zy, Z1) and (3.50).
The linearized curvature C’abcd is of course independent of any tetrad and therefore only
the additional terms transform non-trivial under (3.47). It follows that \Ilo, \114 and \112 are
tetrad gauge-invariant. The remaining components transform via

\ill hd \111 + 3b\112 s \Dg d \113 + 3@‘112 . (352)
From (3.47), we find for (3.50b)
67" = -202° - 2a22. (3.53)

Under infinitesimal coordinate transformations z* — x%+£%, a tensor field T transforms
with the Lie derivative according to

T —T+6T, 6T = -LT. (3.54)
The gauge term can be expressed in terms of covariant derivatives,

£ Tbl an — Cv Tbl bm, + (valé' )Tbl bm, + .+ (van )Tbl bm,

at...an at...an €az...an, ajg...anp-1C
b ba...bm bm by...bm—
- (vcg I)Ta612 an (vcg )Tall .an 1C

and for the linearized metric this implies
hap = hap = V(agb) . (355)

The linearized curvature around a Minkowski spacetime is gauge invariant, because it
vanishes in the background. Moreover o, Uy, Uy, U, are coordinate gauge invariant on
Petrov type D spacetimes in a principal tetrad, because of (2.56). Also Im 0, the variable
in the Regge-Wheeler equation (3.40), is gauge-invariant on a Schwarzschild background,
because dWy = -L:V, and U, is real in that background.

For the middle bivector component Z! = n Al —m A m and with gauge vector £ =
X1+Yn+Zm+ Zm we find

LeZyy = ENV Ly, + (Vo) Zh + (V&) Zy,
- QV (5 Zc|b ) + gc(vCchtb - Vllchb + vaca)

= (df)ab + 3€C(dzl)cab )

where Weputé=Xl—Yn+Zm—Zm.
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A general 1-form ¢, has spherical harmonic decomposition
6; = (O, O; _As_lagpa AS@@)YEm ) 5; = (N07 N17 Nag, Nago)yim )

with functions A, Ny, N1, N depending on ¢, r. The metric transforms according to (3.55),
for which we find

5h0 = 8,5/\, 5h1 = (& - Q/T)A, (Shg =-2A

for the odd parity perturbations (3.31) and

5UHO = 2815]\[0 - QMT’_B(T‘ - 2M)N1 , 5H1 = (8, + - 2M))N0 + 8tN1 ,
51)_1H2 22(87,-1— - 2]\/[))]\/vl, 5h0 =N0+8t
dhy = N1+ (0, - 2/r)N, or*K =2(r-2M)Ny, or’G = 2N,

for the even parity perturbations (3.32). The Regge-Wheelers gauge, [97], is given by
* A = 1h, for odd parity. It gauges hy — 0.

e N = —%7‘2G, Ny = —hg = 0N, Ny = =hy — (0, — 2/r)N for even parity. It gauges
ho, hl, G — 0.

A neat formulation of this gauge conditions independent of a decomposition into spherical
harmonics is derived in [94, p. 57]. It is of the form

hmm = O = hmm y 6,hlm + ahlm = O = 6hnm + 6,hnm . (356)

A different and very flexible point of view on the gauge freedom is the notion of gauge-
source-functions devised in [54]. Here one extracts a reduced system of evolution equa-
tions, which is equivalent to the actual system for a particular choice of gauge-source-
function. Consider an equation of the form F' = dA for a 1-form A, e.g. Maxwell equa-
tions or each of (2.20). In equations of this form, the gauge freedom 0A = df for a
function f is inherent. Instead of fixing this function directly to fix the gauge, e.g. the
Coulomb gauge A° = 0 for Maxwell’s equations, one can add an equation of the form

V,A°=0f =G, (3.57)

with the gauge-source-function G depending on A, see [53, Section 3.2]. For Einstein
equations in first order form, given by the Cartan equations, the coordinate and tetrad
gauge-source-functions G and G take the form

ozt = G*, vietay el = G, (3.58)

for coordinates x. For the linearized Ricci tensor, the coordinate gauge-source-function
leads to

1
(SRab = —5 Ohgy — Racbdhcd + V(aGb) . (359)
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The harmonic coordinates gauge G¢ = 0 leads to the vacuum Einstein equations in wave
form, Ohgy, + 2R,%%heq = 0. Since G is of the form G = V,h* - VhY,, we find for the
linearized scalar wave operator

0=-h"V,V,-G"V,. (3.60)
So, one can choose the gauge-source-function such that
0(¢*W,) = 0. (3.61)
This makes (3.39¢) into the generalized Regge-Wheeler equation

(O+8W,)(¢Wy) =0. (3.62)



4. Non-radiating modes and
conserved charges

In contrast to the scalar wave equation, the spin-s field equations with s > 0 on a Kerr
background admit non-trivial, time-independent, finite energy solutions. We will call
these solutions non-radiating modes. There is a close relation between gauge-invariant,
non-radiating modes and conserved quasi-local charge integrals. For the Maxwell field,
there is a two parameter family of non-radiating, Coulomb type solutions which carry the
two conserved electric and magnetic charges. In fact, a Maxwell field on the Kerr exterior
will disperse exactly when it has vanishing charges, see [21] for the Schwarzschild case
and [10] for a slowly rotating Kerr background.

For linearized gravity, however, there are both non-radiating modes corresponding to
gauge-invariant conserved charges and “pure gauge” non-radiating modes. Thus condi-
tions ensuring that a solution of linearized gravity will disperse must be a combination
of charge-vanishing and gauge conditions. For the Kerr background, the non-radiating
modes include perturbations within the Kerr family, i.e. infinitesimal changes of mass
and axial rotation. We denote the parameters for these deformations M .. Since M,a
are gauge-invariant quantities, it is not possible to eliminate these modes by imposing
a gauge condition. A canonical analysis along the lines of [72], see below, yields con-
served charges corresponding to the Killing fields 0;, J,;, which in turn correspond to the
gauge-invariant deformations M, ¢ mentioned above.

The infinitesimal boosts, translations and (non-axial) rotations of the black hole yield
further non-radiating modes which are, however, “pure gauge” in the sense that they are
generated by infinitesimal coordinate changes. If one imposes suitable regularity condi-
tions on the perturbations which exclude e.g. those which turn on the NUT charge, a 10-
dimensional space of non-radiating modes remains. This is spanned by the 2-dimensional
space of non-gauge modes which carry the M, a charges, together with the “pure gauge”
non-radiating modes, and corresponds in a natural way to the Lie algebra of the Poincaré
group. It can be seen from this discussion that a combination of charge vanishing condi-
tions and gauge conditions allows one to eliminate all non-radiating solutions of linearized
gravity.

We also note that the constraint equations implied by the Maxwell and linearized grav-
ity equations are underdetermined elliptic systems, and therefore admit solutions of com-
pact support, see [43] and references therein. In particular, one may find solutions of the
constraint equations with arbitrarily rapid fall-off at infinity. The corresponding solutions
of the Maxwell equations have vanishing charges. For the case of linearized gravity, the
charges corresponding to M, @ vanish for solutions of the field equations with rapid fall-
off at infinity. For such solutions, all non-radiating modes may therefore be eliminated by
imposing suitable gauge conditions.

There are many candidates for a quasi-local mass expression in the literature including,

41
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to mention just a few, those put forward by Penrose, Brown and York, and Wang and
Yau. See the review of Szabados [106] for background and references. But in order to
make effective use of such charge vanishing conditions, it is necessary to have simple
expressions for the charge integrals in terms of the field strengths. Therefore the goal is
to find quasi-local mass and angular momentum for linearized gravity on Kerr spacetime
in terms of the curvature. Here the approach of spin lowering due to Penrose, reviewed in
section 3.3, seemed to be most promising, see also [62].

We start by discussing the relation between non-radiating modes and charges for the
case of a Maxwell field in section 4.1. The spin-2 equation on Minkowski and Petrov
type D spacetimes is discussed in section 4.2, where the results are also compared to the
Komar integrals. In section 4.3, non-radiating modes for linearized gravity on Petrov
type D backgrounds are derived, in particular an expression for the conserved charge
corresponding to the linearized mass in terms of linearized curvature quantities on the Kerr
background is presented in section 4.3.2. Obstructions for angular momentum charges
are discussed in section 4.3.3. Finally, the lowest modes for the scalar wave equation with
curvature potential, as they occur for the middle components for spin one and two, are
derived in section 4.4.

Sections 4.2.1, 4.2.2 and 4.3.2 are based on the publication [3].

4.1. Maxwell equations

Let F; be a solution of the source-free Maxwell equations dF' = 0 = d = F'. The charge
integral

1
qE+iqB:—f>eF+iF, 4.1)
A7 Js

depends only on the homology class of the closed 2-surface S. Here real and imaginary
parts correspond to electric and magnetic charges, respectively. The Kerr exterior, be-
ing diffeomorphic to R* with a solid cylinder removed, contains topologically non-trivial
2-spheres, and hence the source-free Maxwell equations on the Kerr exterior admits so-
lutions with non-vanishing charges. In view of the fact that the charges are conserved,
it is natural that there is a time-independent solution which “carries” the charge. It is
most conveniently expressed in the equivalent representation of Newman-Penrose, see
section (3.2), in which it takes the explicit form

_4stigp

¢

where ( is the coefficient of the type D Killing spinor (2.66) and known as the Coulomb
solution.

In order to prove boundedness and decay for the Maxwell field, it is necessary to elim-
inate the non-radiating modes by imposing the charge vanishing condition

o1 ®0=0=0¢y, 4.2)

f*F+iF:O, 4.3)
S
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see section 6.1 and [10, Section 3]. Written in terms of the Newman-Penrose scalars ¢y,
I =0,1,2, the charge vanishing condition (4.3) in the Carter tetrad (2.107) takes the form

fs . 2(r2 + a®) by +iav/Dsin 0(cp — o )dpt = 0. (4.4)
2(t,r

as follows from (3.18) and (2.111). Here S?(¢,r) is a sphere of constant ¢, 7 in Boyer-
Lindquist coordinates and dy = sin 6dfd.

4.2. Spin-2 equations

The situation is much more involved for spin-2. The heuristic picture is that the [ = 0
and [ = 1 modes are non-radiating and their charges correspond to mass and angular
momentum, respectively. But an "/ = 0,1 mode" of a spin-2 field needs to be defined
appropriately, spherical harmonics are tight to spherically symmetric situations and gauge
dependence on curved backgrounds affects the discussion.

In addition, the choice of variables is non-trivial in the case of linearized gravity, since
the equations for the linearized curvature components admit solutions!® which do not cor-
respond to solutions of the linearized Einstein equations. This will be explained in more
detail in the next section, where the concept of Penrose charges is applied on Minkowski
space.

The basic idea of Penrose charges is to use solutions of the Killing spinor equation
(2.47) to spin-lower a spin-2 field into a spin-1 field, see section 3.3. The resulting
field can be integrated in a natural way over any 2-sphere, as mentioned already for the
Maxwell field strength in (4.1). The resulting charges only depend on the homology class
of the 2-sphere and are therefore called quasi-local.

In the next section we calculate all valence-2 Killing spinors on Minkowski spacetime
in spherical coordinates. This gives a clear correspondence of the charges (generated by
some source) to the lowest modes of the spin-2 field. In section 4.2.2, the remaining
Killing spinor (2.66) on type D backgrounds is used to derive a quasi-local mass in terms
of the curvature. The absence of an angular momentum charge in this context is discussed
and compared to Komar integrals in section 4.2.3.

4.2.1. Non-radiating modes on Minkowski spacetime

Minkowski spacetime is topologically R* and all spheres can be contracted to a point. It
follows, that quasi-local charges for spin-s fields vanish identically. However, removing
a ball (or just a point) gives a good model to motivate the approach.

The Killing spinor equation (2.47) and its tensorial counterpart, the conformal Killing-
Yano equation (2.43), on Minkowski space have been widely discussed in the literature
[91, 76, 66] and the explicit solution in Cartesian coordinates is well known. Denoting
them by 24’4, it is of the form

RAB = UAB 1 2g VAV D) o g A4 BBYY g (4.5)

8The space of solutions depends on regularity and fall-off conditions. For example a magnetic monopole
g¢p # 01in Maxwell theory is excluded, if the existence of a regular vector potential is assumed. The field
strength remains regular, even with magnetic charge, see (4.2).
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Table 4.1.: Poincaré isometries and corresponding charges

label isometry charge #
T time translation mass 1
T spatial translations linear momenta 3
Li; rotations angular momenta 3
Ly boosts center of mass 3

Here UAB, W 4 p/ are constant, symmetric spinors and V£ is a constant complex vector,
so the space of real solution is of dimension 2-6 + 8 = 20. Each solution, contracted into a
spin-2 field, e.g. the linearized Weyl tensor on Minkowski spacetime, and integrated over
a 2-sphere results in a quasi-local charge.

We follow [91, p. 99], where 10 of these charges are related to a source for linearized
gravity in the following sense. Given a divergence free, symmetric energy momentum
tensor 7T,;, one has for each Killing field £° the divergence free current j, = T,,£%. Using
linearized Einstein equations,

Gab = RacbC - §gabRchd = _87rTab 5 (46)

and the conformal Killing-Yano equation (2.43), it is shown that
3 f Rupeq Y da A da® = 167 f earc Tl da® A da® A dae. @.7)
% by

Here Y denotes a 3 dimensional hyper-surface with boundary 0% and e is the Levi-
Civita tensor. Outside the support of Tiw, the left hand side is the charge integral described
above, while the right hand side gives the more familiar form of a conserved 3-form cor-
responding to a linearized source and a Killing vector £¢ = %Y“b;b. Note that it is the dual
conformal Killing-Yano tensor on the left hand side, which gives the charge associated to
the isometry £¢. In Cartesian coordinates z¢ = (¢, x,y, z) the Poincaré isometries read

0 0 0
o= Hra’ Lay = ﬂfa@ - be% ) (4.8)

and the relation to the charges is listed in table 4.1. The angular momentum around the
z-axis is found in the component £,, = J,. Explicit expressions for linearized sources
generating these charges can be found in [73, eq. (27)].

The ten remaining charges cannot be generated this way, since the corresponding con-
formal Killing-Yano tensors have vanishing divergence (they are Killing-Yano tensors).
Their occurrence is much more subtle, see [73] and the discussion below. One of these
charges corresponds to the NUT parameter'?, and the remaining nine are three dual linear
momenta and six ofam?® charges. In the expression (4.5) for a general Killing spinor, they
correspond to U4P and the imaginary part of V1.

YThe parameter is sometimes called dual mass, because a duality rotation from Schwarzschild to NUT
spacetime exists, see the appendix in [96].

20This name was introduced in [75] and means obstructions for angular momentum. Non-vanishing ofam
charges imply very slow fall-off of the spin-2 field.
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Table 4.2.: Solutions to the Killing spinor equation on Minkowski spacetime in spherical
coordinates. Real and imaginary parts of their divergences (2.50) are given in
the last two columns.

components divergence
label Ko/ V2 K1 Ko/ V2 combination Re Im
Qo 0 0
Q%L 1}/1m 0}/1m —1}/1777, Qg 0 0
Q9 0 0
Ot T 0
Ot 0 r OYE]O 0 Q% - Qll 7; 0
Q}n (t - 7’) 15/1m t()Yim (t + 7’) 71Y’1m IQ% + IQEI 71—11 0
QL 7. 0
Q% - le £ta: Lyz
02, (t-7)2Yim (E-r2)Yim (t+7)2_1Yin 02 +iQ0%, Ly L.
Q% Etz ‘Cmy

To understand the charges as projections into [ = 0 and [ = 1 modes, we rederive the
complete set of solutions to the Killing spinor equation (2.47) in spherical coordinates,
using spin-weighted spherical harmonics, see section A.1 and [90, Section 4.15]. A null
tetrad for Minkowski spacetime in spherical coordinates (¢, 7,6, ¢) (the M, a — 0 limit of
the symmetric Carter tetrad (2.107)) is given by

1 1 1 1
1°=—|1,1,0,0|, n®=—|1,-1,0,0], m*=—-{0,0,1,—|,
ﬂl ] ﬁl ] ﬁr[ Sm@]

and the non-vanishing spin coefficients are

1 , cot 6
e r—a s /B = = 6, .
g V2r 4 2/2r
For a Killing spinor kap = Kotatp — 2K10(4LB) + K2040B, the subset (2.53a) of the Killing
spinor equation becomes

(0y+0,) Ko =0, (89+ _1 8¢—cot9)/10:0,
sin 6
(0y—0y) k2 =0, ((99—Si;9&p—cot9)m2:0,

0 kg = fo(t=7) 1Y and ko = f1(t+7) _1Y1.,, Where the functions f; depend on advanced
and retarded coordinates only and .Y}, are the spin-weighted spherical harmonics, see
(A.10) for the explicit form of the first few harmonics. Finally (2.53b) can be solved for
k1, which is only possible for particular functions f;. The result is given in table 4.2.

In that table, Q! represents one complex solution of the Killing spinor equation, while
Qi i =0,1,2 represent 3 complex solutions each (m = 0,+1), so they sum up to 20
real solutions. Furthermore, Q! is the only [ = 0 solution and the corresponding charges
are mass and dual mass. The remaining solutions €2/, are all [ = 1 and a rough power
counting shows that a spin-2 field has to fall-off ~ »~2-% to have a non-vanishing charge
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Table 4.3.: Solutions to the Killing spinor equation on Minkowski spacetime in spheroidal

coordinates.
components
Féo/ \/§ K1 K2 / \/§
% Vi T cosCG—ia @ Vi
0 P 0
S R s T
SBy2 Yy, tesbday g YRg2 Y,

from €2 . For this reason, the charges of Q0 are called ofam. We remark the following
correspondence to the solutions (4.5) in Cartesian coordinates

Q?nHUAB, QI,Q}nHVﬁ, Q?nHWAIBI.

In the limit M — 0,a # 0, the Kerr metric becomes the flat Minkowski metric in
spheroidal coordinates. In these coordinates, the full set of solutions to the Killing spinor
equation is given in table 4.3. Here we use the abbreviation A = 72 + a2 and the null
coordinates

uy =t+r—iacosh, u_=t—-r+iacosf. (4.9)

Remark 4.2.1 (Twistors on Minkowski spacetime). The twistor equation (2.41) can be
solved explicitly along the same lines. Using the component form (2.54), we find the
complete set of solutions,

Am = 7%Y%m014+ %Y%mLA, XAmZ(t+7’)7%Y%mOA+(t—?“)%Y%mLA, (4.10)
with Y, spin-weighted spherical harmonics, given for | = % in (A.9). Since m = :l:% in
this case, the space is complex 4-dimensional. All solutions of the Killing spinor equation,
listed in table 4.2, can be written as symmetric products of these twistors. It should be
noted, that also all conformal Killing vectors can be written as products of twistors and
their complex conjugated versions. On a background of Petrov type D a solution to the
twistor equation cannot exist, because of the integrability condition (2.46).

We also remark that, locally, a metric can be reconstructed from the linearized curvature
via,

1
hoy = 22¢21 fo Rucrat M)A = NYAA + 26 0 @.11)

with ¢ Cartesian coordinates. This was derived originally in [99]°!. Globally, this is not
true anymore for non-singular metrics. This follows from (4.7), which holds under the
assumption of an existing, non-singular metric. In that case ten charges vanish identically
because the divergence £ vanishes, see also [90, p. 364],[91, Section 6.5] for further
discussion. For that reason, we introduce the name singular charges and discuss the

21 A metric reconstruction on a curved background is much more involved, see [122] for details.
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effects on the angular momentum charges in section 4.3.3. It would be nice to characterize
such a vanishing condition for the singular charges analogous to magnetic monopoles in
the Maxwell theory by showing that the spin-lowered curvature is exact. We tried the
following ansatz. Suppose ~ 45 1s one of the Killing spinors with vanishing divergence

Valkag =0, (4.12)

which means that it is one-to-one to two Killing-Yano tensors and that these 2-forms are
closed (it is in fact simply the spin-1 equation). It leads to vanishing charges, if a metric is
present. The analogy to electromagnetism is plainest, if we switch to bivector formalism.
Spin lowering the linearized curvature ;7 then corresponds to the closed 2-form

F = li[z.][.

Here «! are the components of the Killing spinor in a bivector triad (2.8) and X; are the
linearized bivector curvature 2-forms. Using the second equations of structure (2.23) (this
means, assuming that a connection as potential exists) in linearized form, we find

leil(dé']-i—E[JK(j'J/\O'K)

=d(k'o7) - (dkr + £l eqro™) n ot (4.13)

The first term integrates to zero (assuming, that x/&; is non-singular) and the second term
looks similar to the component form of (4.12),

0= d(FLIZI)
=dkr A Z! - 26180 A Zk
= (drr + Kk esa™) n 21 (4.14)

However, we cannot conclude the disappearance of the second term in (4.13), because of
the summation over /. It remains to be seen, whether this can be made into an argument.
It might be possible to use (2.25), which introduces a "second order potential" analogous
to a metric.

4.2.2. Conserved charges for type D spacetimes

Next, we consider a curved vacuum background and the curvature itself as the spin-2 field
(because of the Bianchi identity (3.22)). For spin lowering (3.27) to apply, a valence-2
Killing spinor is needed and this restricts the spacetime to be at least of Petrov type D
(type N or O is also possible), see (2.48). Using the type D Killing spinor (2.66), we
consider the complex 2-form

Map = =2V spepkPeap (4.15)
satisfying the Maxwell equations dM = 0. It may be represented as

My =W 2%, (4.16)
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if a principal tetrad (2.56) is chosen. For an explicit calculation of the charge, we re-
strict to the Kerr solution. The coordinate form of (4.16) (the ingredients to are given in
section 2.5) yields,

L/;/\/l = —L[S(L(—i)(r%rcﬂ)sin&ded(p: M. 4.17)

4ri Ari r—iacosf)?

Here M is the ADM mass [12] of the Kerr spacetime??, see also [76] for a purely tensorial
version of the argument. The relation between the mass and charge for the spin-lowered
curvature M is natural in view of the fact that the divergence (2.68) is given by £ = (0;)®
and the discussion of the preceding section.

We note that the charge (4.17) is in general complex. The imaginary part corresponds
to the NUT parameter, which is the gravitational analog of a magnetic charge. Details
are not discussed in this thesis, see [96] for the construction of charge integrals in NUT
spacetime.

An expression very similar to (4.16) has been derived already in 1961 by Jordan, Ehlers
and Sachs [77]. By investigating the Bianchi identities in bivector form, they found

d(w;z")=0. (4.18)

Because of (2.57), this is in fact equivalent to the exterior derivative of (4.16). However,
integrating (4.18) results in C'M?/3, with some constant C' and only the Killing spinor
construction explains the discrepancy in the exponent of the mass parameter. We will
repeat the derivation of (4.18) from the Bianchi identities here, because this formulation
can be generalized most easily to linearized gravity as we will see in section 4.3.2. On a
type D background, the curvature and connection forms simplify to

EOZ\IJQZQ, 21:\11221, 22:\11220’ F:Tl—pm, (419)
so the middle Bianchi identity (2.31b) becomes

2d% =20y [(p'm—7n) Alam+ (pm —7l) AT AR]
=2Us(p'l + pn—7'm - Tm) A Z*
:h/\z)17

where h = 2(p'l + pn — 7'm — 7m) is used. Because of (2.60), one obtains
1 1 1 1
d(\PQZ )Zd21=§h/\21:§d\112/\2 ,

which yields the Jordan-Ehlers-Sachs conservation law (4.18). An interesting generaliza-
tion of this result to vacuum spacetimes of Petrov type Il is given in [71].

Now, one might ask whether a quasi-local angular momentum charge can be con-
structed by spin lowering the curvature. This of course cannot work out directly, because
a corresponding Killing spinor does not exist, see (2.63). However, we believe that the
approach needs to be modified to also cover this situation. This belief stems on the one
hand from the well known quasi-local angular momentum charge due to Komar, discussed

22Equivalently, the mass parameter in the Boyer-Lindquist form of the Kerr line element.
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in the next section, and on the other hand from the structure of the non-radiating modes
for a Minkowski background, as further discussed in section 4.3.3.

Let us first try to follow the derivation of (4.18) also for the other curvature components
>y and X, to derive further closed 2-forms. We have from (2.62) together with (2.60) the
weighted "conservation laws"

49 (WP Z% =0, d® (WA z%) =0. (4.20)

To make the first equation (the second one is its GHP prime (2.15a)) into a proper closed
2-form, a multiplication by a function f of opposite weight,
Ad(fyP20) = WP Z0 A O f + £aO (WP 20) 2 0, (4.21)

is needed. For the (2,0) weighted scalar f, one has to solve Z° A d®f = 0, which is
equivalent to p'f = 0 = &' f. An expansion in the Carter tetrad (2.107) yields the (¢, )-
independent solution

¢
=A , (4.22)
/ VAsin 6
for some constant A. The corresponding charge integral for A = 2 results in,
1
— fC*0,2° = Ma. (4.23)
2m Js2

However, the solution (4.22) is singular at the poles and the horizon. Also the choice of
just one component for an angular momentum integral looks unnatural. So we allow all
three components to be non-trivial, which results in the requirement that the spin lowered
curvature, (3.27),

®ap = Wakotatp + 4Vak100atpy + Vak20405,

is a solution to the vacuum Maxwell equations*. The integrand in (4.23) corresponds to
the special case ko = f(?, k1 = 0 = ko. We know already other (stationary, axi-symmetric)
solutions, namely Komar forms. These will be discussed in detail in the next section.

Before we proceed, we note two further interesting references. Another generaliza-
tion of the conformal Killing-Yano equation is discussed in [16]. A further interesting
approach due to Bergqvist and Ludvigsen [17] introduces a modified connection for the
Kerr solution, which ensures solutions to the twistor equation to exist. The corresponding
Nester-Witten form yields an angular momentum charge.

4.2.3. Komar integrals for Kerr spacetime

On a Kerr background in Boyer-Lindquist coordinates (2.92) with Killing vectors £ = 0,
and = = 0, the mass M and angular momentum M« can be calculated via the Komar
integrals

1 1
M=——f>ed§, Ma=—f>edE, (4.24)
8m Js 167 Js

B This is equivalent to the condition \IJABCDVA’A/-@BC =0. Since Y apcp = 6¥Y20(40BLcLD), the com-
ponents 040 BOch’AKB Cand tap chA,A/ﬁB © are not assumed to vanish anymore. In components,
this equation reduces to the subset (2.53b) of the Killing spinor equation, so it weakens the conditions

to allow for more solutions.
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with S a 2-sphere as in the above discussion. The integrands itself are solutions to the
vacuum Maxwell equations. In [114] they were interpreted as stationary, axisymmetric
test electromagnetic fields without magnetic charge. The first one, generated by &, van-
ishes asymptotically, while the second one, generated by =, asymptotically approaches a
uniform magnetic field.

Note that we now have two seemingly different ways to calculate the mass quasi-locally,
namely (4.24) in terms of connection coefficients and (4.17) in terms of curvature. How-
ever, the following calculation shows that not only the integrals coincide but also the
integrands itself,

~2¢hap = Map (4.25)

with ¢h,;, defined in (4.27). Let us first have a look at the form of the integrands in (4.24).
We start with an arbitrary real 1-form w. The exterior derivative can be expanded into

%(dw)ab = V[AA’WBB’] = whABEA’B’ + wBA’B’GAB , (426)
with a symmetric 2-spinor ,h 4. It is convenient to work with the complex 2-form

whab = whapeap =3 (dw+ixdw),, , (4.27)

instead. We note that its imaginary part is of the same form as the integrand in the Komar
integral (4.24) and that its real part integrates to zero. Therefore one can use (4.27) as a
complex Komar form. Contracting (4.26) with 45" yields

whap = 2 (Vanws® - Vptwan) = 3V aawn? . (4.28)

This proves the assertion made after (2.81). The first Killing vector £* is expressed as a
divergence of the type D Killing spinor in (2.68). We find with (2.49) and the footnote on
p. 14 that

= 10 pepkCP . (4.29)

The result (4.25) follows now from (4.15) and holds for the whole Kerr-NUT class. Can
we do a similar analysis for the second isometry? This is not obvious, because a Killing
spinor potential, as needed in the above calculation, does not exist for =. However, using
the "almost potential" form (2.79) for 7 we proof in section A.3 the following result,

who = ~C*Cp, (4.302)
nh1 = 5C(C+ )Wy = 10T, + 500'CP(C =) + 577'C(C+ (), (4.30b)
ohe = =C*(T'p’ (4.30c)

On a Kerr background, 7 = a?{ +aZ as discussed in (2.116). We now have a representation
of the Komar integral for =, which is partly in terms of curvature and partly in terms of
products of connection coefficients. An expansion in coordinates shows that these parts
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contribute equally to the integral. Since we do not have a geometric characterization of
this splitting, we cannot express this Komar integral purely in terms of curvature.
Let us finally give an explicit form of the integrand in a Carter tetrad

M isin 0vVA
shy=———F—-=

M _MasinQH_a+ir0089
202 20 '

2¢? 2¢
This is most simply extracted from (2.112) together with (2.91). Here, the coefficient =

r —ia cos @ is used. The formal similarity with the solution of the Killing spinor equation
on Minkowski spacetime in spheriodal coordinates, given in table 4.3, is remarkable.

_Eh2 ’ Ehl =

ehy 4.31)

4.3. Linearized gravity

So far we constructed charges for spin-2 fields by Penrose’s concept of spin lowering.
This included linearized gravity on a flat background. However, the theory differs from
the spin-2 theory on a curved background, as discussed in chapter 3, and it is not clear
whether the concept can be generalized to this situation.

On the other hand, quasi-local charge integrals for linearized gravity are known e.g.
from the Hamiltonian approach where a charge for each isometry can be calculated, see
section 4.3.4. A translation into linearized curvature is intricate and we only succeeded for
an angular momentum charge on a Schwarzschild background. So it would be interesting
to derive quasi-local charges directly from the linearized Bianchi identities.

We will start by linearizing the Kerr solution in its parameters M, a around itself to con-
struct prototypes for charge integrals, based on linearized curvature, in the next section.
In section 4.3.2 we show that Penrose’s concept generalizes and present a suitable formu-
lation for linearized mass on type D backgrounds in terms of curvature. For the angular
momentum charge we explain the obstructions to derive a curvature conservation law and
possible ways to proceed in section 4.3.3. In section 4.3.4, charges from a Hamiltonian
approach are discussed. Finally the lowest modes for the wave equation with curvature
potential, as they occur in Maxwell and linearized gravity theory, are investigated.

4.3.1. Non-radiating modes on a Kerr background

We have explicit representations of the gauge-invariant non-radiating modes by lineariz-
ing the Kerr solution around itself. This does not directly lead to gauge-invariant charge
integrals, but it is a helpful test case and gives some hints to their construction.

Let us take a Kerr solution with mass M and angular momentum M A and linearize it
(tetrad, spin coefficients and Weyl scalars) around a solution with mass m and angular
momentum ma. With perturbation parameter €, we write

M =m + ern, A=a+ea. (4.32)

Everything can be calculated explicitly and a choice of gauge is inherent.
We start with the linearized mass charge. With M = m+erm+O(€?), A = a, we calculate
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the deviation from (m, a)-Carter tetrad to first order in e,

d ~ mr  [(r?+a?) a
— (M, )0 = " = [ -1 —], 4.
d€l( 70’) 0 l \/m A ) 7O7A ( 333.)
b _ mr |:(7“2 + CL2) 1.0 g:l 4 33b)
VAl A ral “
mb=0. (4.33c)

Note that the spherical m,m part is not affected to first order in this canonical gauge.
To calculate the linearized spin coefficients, we can either use the perturbed tetrad and
linearize again, or linearize the already known (M, A)-spin coefficients by hand. The
result is

. m r (r- m)r) .
6:—6’:—(——1+— , =p"=0, (4.34a)
2V2A% \p A =y
mr
.:—.,: s 7._=7.J:0. (4.34b)
p=r V2XAp
The linearized Weyl scalars are given by
Ug=———r—— = Uy —, U0 =0. 4.35
7 (r—iacosf)? “m 2 (4.35)

So with the type D Killing spinor coefficient ¢ = r —ia cos 6 we find

1 - .
= /52(7"2 + @)Wy dp = 1, (4.36)

where dp = sin 6 df dp. The integrand can be interpreted as the linearization of the Jordan-
Ehlers-Sachs conservation law (4.18), because the middle bivector (2.111) has component
Zelgp ~ (r?+a?) sin . However, this combination does in general not fulfill the requirement
of gauge-invariance. We will derive the correct generalization in section 4.3.2.

Next, we look at the linearized angular momentum mode. With A = a + ea + O(€?),
M =m, we calculate the deviation from (m, a)-Carter tetrad to first order in e:

d - aa cos 6 aa (r? + a?) 1 1
—1(m, A)eeg = 1" = - I [2— 10———] 4.37
de (m7 ) =0 > + \/m A s Ly Yy a A ; ( a)
., aacosf® aa [ (r?2+a?) 1 1 ]
= - - -1,0,- - — 4.37b
n > n’+ ,—2EA A ) 707 a A ) ( )
., aacos® I ...
m’ = - m’ + iasind,0,0,0] . (4.37¢)
> o [ ]

The linearized tetrad is more involved in this case and the spin coefficients look quite
complicated. We have for example

y a ( a avAcost i Acos@)‘ 4.38)

)=—p = - +
p=r V25p \ VA by p
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The linearized Weyl scalars still have a simple structure,

i, - _omiacost . Sidcosh U0 = 0. (4.39)
(r—iacosf)* r—iacos®

Here we find for a Schwarzschild background

1 :
-—— / r?cosf Py dpu = ima. (4.40)
A Js2
The cos@ is interpreted as [ = 1 spherical harmonic (Y;o and we indeed find this con-
servation law for the imaginray part of W5 from a Hamiltonian analysis in section 4.3.4.
The problems in deriving the non-radiating mode directly from the Bianchi identities are

discussed in section 4.3.3.

4.3.2. Mass

One can of course linearize the 2-form (4.15), which would provide a charge for pertur-
bations within the class of type D spacetimes. But more generally a closed 2-form for
arbitrary linear perturbations around a type D background?* can be derived.

In this section we shall show that the natural linearization of the spin-lowered Weyl
tensor M 1is the 2-form

M =020+ (U2t + (U322 + 3¢W, 20

As will be demonstrated below, M is closed and hence the integral

fs M (4.41)

defines a conserved charge. A charge vanishing condition for the linearized mass, analo-
gous to the one discussed above for the charges of the Maxwell field, may be introduced
by requiring that this integral vanishes. The coordinate form of this charge vanishing
condition is

fs o (2(7"2 + a2)¢2 + ia\/ZsinH\ildiff)('r —iacosf)du =0, (4.42)
2(t,r

which should be compared to the corresponding condition for the Maxwell case, cf.

(4.4). Here, @2 and \i/di ¢ are suitable combinations of the linearized curvature scalars
\ill, \PQ, \113 and linearized tetrad, see (4.52).

The closed 2-form, with M in the form (4.45), was first calculated by Fackerell. To-
gether with Crossmann he used it to derive field equations for perturbations of Kerr-
Newman spacetime, see [49]. However, the corresponding charge was not investigated. In
this section we give a short and simple proof of the identity (4.43), from which Fackerell’s
conservation law for the vacuum case can be deduced. We also calculate the explicit gauge
transformation behavior of M, from which gauge-invariance of linearized mass follows.
The interpretation of (4.46) as the linearized ADM mass M, and also its relation to Pen-
rose’s idea of spin lowering are given in [3] for the first time.

240ne can expect that such a structure for perturbations of algebraically special solutions exists also for
other signatures and a result in that direction is given in remark 4.3.3 on p. 56. A classification of the
Weyl tensor for arbitrary signature is given in [14].
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Lemma 4.3.1. A series expansion of the middle Bianchi identity (2.31b) around a vacuum
spacetime of Petrov type D yields

(d-1hA)E =0(e?), (4.43)
with h =2(p'l + pn — 7'm — 7).
Proof. We expand the the right hand side of the middle Bianchi identity (2.31b),
d¥ =-T"AXg-T A%y, (4.44)
in some parameter e, using the explicit form of the curvature forms (2.30),

20 = \I’()ZO + \Ilel + \IIQZQ,
El = \1le0 + \Ijgzl + \1’322 s
22 = \IJQZO + \I[3Z1 + \I/4Z2,

and the 2-forms (2.8), which in exterior notation read
Z°=mnAn, Zt=nal-mam, Z%=1Am.
Due to the type-D conditions (2.56) the first term becomes

I"AYg=(T'n+kl-p'im—om) A (Ve Z° + W, 2 + Uy Z?)
=Uo(klAmAN—0omAMAN)
—Ui(pmannl+omannl+t'nAmAam+ sl AmAmM)
+Us(t'nAlAm=—p'mAalAm)
=-U(pmAanAl+TnAamam)+Uy(t'nAlAam—p'malAm)+O(e?)
=W (—pl+7'm) A Z° + Uy (7'm - p'l) A Z1 + O(?)
=(T'"m - p' 1) AS; +O(€%).

The last equality holds, because W3(7/m — p'l) A Z2 = 0. A calculation along the same
lines (or using the GHP prime operation (2.15a)) yields

LAYy =(-mm+pn) AX; +O0(€?),
and therefore

le = %h A 21 + 0(62) .

This enables us to present a conserved quasi-local charge in

Theorem 4.3.2. For linearized gravity on a vacuum type D background in a principal
tetrad, there exists a closed 2-form

M =020+ (U2t + (U322 + 3CW, 21 (4.45)
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which can be used to calculate the “linearized mass”. Here ( is the coefficient of the
Killing spinor (2.66).

The 2-form M is tetrad gauge-invariant and changes only with an exact term x = df,
under coordinate gauge transformations. Hence, the integral

= f M. (4.46)
41 Js2

is conserved and gauge-invariant.

Proof. For linearized gravity, making use of (4.43) and 32 ¥, = 2d Vs, we find the identity

0= C(d - %h/\)gl - %Ch AN 21
SN ZVARNS TYARNS 2VARNE PYANEE 14 2V WA (4.47)
X (S IVARYS ZVARNS 2VAREIa 2VA N

were the linearized version of dZ' = —h A Z! is used in the last step. Note, that also
0=d(CP, 2% + (U 2" + CW32%) - 3¢Wsh A 21 (4.48)

holds, which looks similar to Maxwell equations with a source.
Now consider the coordinate gauge transformations, (3.54) and use Cartan’s identity
Lew = d(§-w) + {=dw, which holds for arbitrary forms w. It follows for M,

OM = ~CE(U2) 2 = 3CW,[d(E-21) + €-d 27
= —3¢Wy(d + ha)(E-21) (4.49)
= —2d[¢Wy(s-2")],

where {~h = 2U51¢(W,) and =(h A Z1) = (§=h)Z' = h A (§=Z") was used. The 2-form
(4.49) is exact and hence integrates to zero.

The tetrad gauge dependence of the curvature scalars and Z1 is calculated in (3.52) and
(3.53). It follows that the second term in (4.45) is tetrad gauge invariant, because W is.
The non-trivial transformations of \111, U5 and 21 exactly cancel each other. This shows
the tetrad gauge-invariance of M and therefore gauge-invariance of (4.46). [

Equation (4.43) is to zeroth order the Jordan-Ehlers-Sachs conservation law (4.18) and
to first order Fackerell’s conservation law, dM = 0. In the Minkowski limit, M,a — 0, it
reduces to the [ = 0 Penrose charge with Killing spinor (2!, see table 4.2 on p. 45.

Finally, to express the charge integral in a form similar to the Maxwell case (4.4), we
need the 6¢ components of the bivectors (2.111),

A
Zh, = =i(r*+a?)sinf, Zoy = ~Zys = a{ sin” 6. (4.50)

The charge integral becomes

2i [52(t,r) M = o (2(7“2 + a2)@2 +ia ASine\deiff) (r—iacosf)du, (4.51)
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with dy = sin dfdp and

;\172 = \PQ—\pQ(M3+M3), (4523.)
Wyips =Wy - Wy - 3Ws[Re (My - M) - ilm (Ls + N3)]. (4.52b)

Here, M;, L3, N3 are the c‘oefﬁqients pf 71, see (3.50b). The test-case (4.36) is compatible
with this result, because W, = W3 = Z! = 0 holds in that (induced) gauge.

Remark 4.3.3 (Riemannian signature). A Newman-Penrose formalism for 4-dimensional
Manifolds of Riemannian signature can be found in [4]. For linearized fields, assuming
Vo =V, =0 = Kk = 0 in the background, we find the conservation law

d[¢Oy" - (W,L°] =0, (4.53)

where ¢ ~ WU, Y ® 0 is a curvature form and L is one component of the self-dual bivector
triad, see [4]. In components, this reads

d [gELol Q1L - 2005 Le° ~ 302 L0°] = 0. (4.54)

It seems reasonable, that a similar conservation law for the anti-self-dual part exists.

4.3.3. Angular momentum

After we learned that spin-lowering also works in the derivation of a linearized mass
charge, we might look for a similar structure for an angular momentum charge. The ob-
struction to calculate such a charge for the Kerr solution itself due to the integrability
condition (2.48) was already discussed in section 4.2.2. A possible conclusion is that this
approach simply does not work. On the other hand we know that such quasi-local charge
integrals do exist from e.g. the canonical or Hamiltonian approach, see section 4.3.4. A
possible reason for this discrepancy is, that linearized gravity, formulated via the lin-
earized spin-2 equations, admits more solutions than the theory formulated in terms of
a metric®®. These additional spurious solutions, carrying the singular charges of the lin-
earized spin-2 equations, discussed on p. 46, prevent the direct derivation of an angular
momentum charge in terms of linearized curvature.

To better understand this idea, we again review the charges on Minkowski spacetime.
Integrating the spin-lowered spin-2 field (3.27) and using the fact that only the middle
bivector has non-vanishing 6, ¢ component in spherical coordinates, (2.111), we find the
simplified integral

C:;L = —i?”Q _/;(\PIKQ - 2\1121'431 + \1131'{0)(1,[1, (455)

for a charge C", corresponding to a Killing spinor solution x4 5, labeled by €27 in table 4.2.
Here dp = sinfdfde is the volume form of the unit sphere. More explicitly, for the
quadratic Killing spinor 2, singling out the angular momentum of interest, we have

Cg = —iT’2 /; I:\/é(t + 7’)2\1’1 ,1}/10 - 2(t2 - 7”2)\1/2 05/10 + \/i(t - 7")2‘1]3 1Y10]d,u . (456)

2More precisely, this depends on regularity and fall-off conditions.
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The t-dependence can be expanded out and rewritten in the following two steps. Firstly,
the charge for 2 reads

Cg = —ir? fs [\/5\111 Y10 - Q\Pz Y10 + \/5‘1’3 1}/10](1/%
so the charge linear in ¢, r takes the form

C& = —17"2 [9 [\/ﬁ(t + T)\Pl _1}/10 - Qt\IJQ 0Y10 + \/§(t - T’)\Pg 1}/10](1#

= tCY - iV/2r? fs [\111 Yo - Uy 1Y10]d,u
=tCy + Dy,

where D] is defined as the second term in the second line. Note that in the case of van-
ishing charges C{, the part D} with time independent coefficients is conserved. Secondly,
the same holds for (4.56), namely

Cg = t208 + 2tDé - 17”4 f [\/5\111 _1}/10 + 2\];;2 0}/10 + \/5\1]3 1Y10:|d[1,
S
2004 %D} + 2

with E? defined to be the third term on the right hand side. Note that it is ¢-dependent in
general and can be rewritten

Eg = 7"208 —-4i /T4\ij2 oYlod,u,
S

so in case of vanishing charges CJ, C}, we have the conserved (and therefore ¢-indepen-
dent) quantity

02 = _9i fs Py Yiodyt. 4.57)

However, the condition C{ = 0 = C{ is not satisfied a priori. If the existence of a linearized
metric with the above curvature is assumed, the singular charges vanish identically, C{ =
0 = ReC}, and it follows that the linearized angular momentum charge is given by the real
part of (4.57). The situation is similar to magnetic monopole solutions in Maxwell theory.
If one assumes that a global vector potential A exists, ' = dA, then the magnetic charge
has to vanish identically because of (4.1). We will derive a charge of the form (4.57) in
section 4.3.4 from a Hamiltonian analysis.

Spatial Killing spinors and instant charges

We have seen in the last section that only the ¢-independent part of the angular momentum
Killing spinor contributes to the charge (4.57), if C{ = 0 = C}. So one might try to restrict
to a spatial slice, calculate quasi-local charges there, eliminate the ones with too slow
fall-off and with these conditions prove conservation in the direction of evolution.

On a Schwarzschild background in a Carter tetrad (2.107), we have the time-like vector

field [@ + n® = W(@t)“. The Killing spinor equation (2.47) can be decomposed
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into 3 evolution equations and 5 constraints. We refer to the set of constraint equations,

drp =0, (4.58a)

0'ky =0, (4.58b)

(b-D" +2p)ra +2(0" +7")k1 =0, (4.58¢)

(b'—b+2p") ko +2(8+7)k1 =0, (4.58d)

(0" +27")ko — (0 +27) ko +2(p—p" = p' + p)r1 = 0, (4.58¢)

as spatial Killing spinor equation. For a 2-spinor x4 with the ansatz
Ko = f(t,7)1Y10, k1 =9g(t7)oY10, Ko = h(t, ) 1Yo, (4.59)
for an [ = 1 mode, we look for solutions to (4.58) and find,

f(t,r)=[—r2 f+r(r—M)]A(t) —[r2 f+T(T—M)]B(t) +1rC(t), (4.60a)
g(t,r) = [/ Far(r=M)|A@) +[r2/F+r(r-M)|B(), (4.60b)
B(t,r) = [ Far(r = M) A®) = [r2/Far(r-M)|B@#)  -rC(t), (4.600)

where f = 1-2M /r. Note the limit

3/ f+r(r—-M)=M?*[2+O(M?), (4.61)
2\ f+r(r—M)=2r"+O(M), (4.62)

so we recover all solutions in the Minkowski limit M/ — 0. The first solution (A) gives
the constant coefficient Killing spinor €29 , the second one gives the quadratic 22, and the
third one (C) is the Killing spinor €2} , linear in ¢,r. The application of this to a spatial
version of spin lowering has not yet been worked out.

Bianchi identities on Schwarzschild spacetime

On a Schwarzschild background Im W, is gauge-invariant and describes the even par-
ity perturbations, see section 3.4. Rewriting the Bianchi identities for this variable, one
should find other gauge-invariant variables. For a null derivative of Im ¥, we find from
the linearized (2.39b) and its complex conjugated version

(b-3p)(Ws - Ty) = 31 - 0%, , (4.63)

with x; = \ifl - 3W,yMs. The coefficient M, defined in (3.48) arises from an expansion
of (p - 3p)W,. The right hand side is in fact gauge-invariant because a coordinate gauge
transformation My = 3! gives the vanishing commutator [8',3]¢! = 0, as follows from
(2.38) using the realness of p, p’ and Ws. For the right hand side of (4.63) we find from
the Bianchi identity (2.39a) after commuting derivatives,

(p-5p)(8'x1 —8%,) =00y —33T,. (4.64)
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Projecting this equation into the [ = 1 mode and using properties (A.4) of d for partial
integration, we find

(b-50) [ (3~ 3%) iodn =0, (4.65)

with dp = sin #dfde. Inserting (4.63) and doing the same for the GHP primed equations
yields

(b-5p)(b—3p) fs (\1’2 - @) WYiodp =0, (4.66a)
(b= 5p") (b - 3p") fs (¥ - @) Viodp =0, (4.66b)

So both second null derivatives of the [ = 1 mode of Im \112 vanish. However, this is not
enough to conclude, that the integral is conserved.

4.3.4. Hamiltonian and canonical charges

There are several approaches to derive quasi-local charge integrals for linearized gravity
in the metric formulation. They automatically deliver a charge for each isometry of the
background. Let us review some of them.

Superpotential One way is to expand the linearized vacuum Einstein equations in
a parameter €, writing everything linear in € on the left hand side and the leftover as an
energy momentum tensor on the right hand side. Due to the Bianchi identities, this tensor
is divergence free and, after introducing a superpotential, leads to a divergence free 2-form

Fy = chC[b;a] + fc;[bHa]c + f[bZa] . (467)

Here Hy, = hyp, — % gaph, Z, = VPHy, and £° is a Killing vector, see [1] for more details.
This is also discussed in [61] in terms of so called Taub numbers.

Noether charge The canonical analysis following [72] shows the following. Given
an asymptotically flat vacuum spacetime (N, g,5), a solution of the linearized Einstein
equations h,;, (satisfying suitable asymptotic conditions) and a Killing field £, the varia-
tion of the Hamiltonian current is an exact form, which yields the relation

755;oo=fSQ[§]—§-®- (4.68)

Here, P, is the Hamiltonian charge at infinity, generating the action of £, Q[¢] is the
Noether charge 2-form for &, and © is the symplectic current three-form, defined with
respect to the variation h,,. We use a * to denote variations along h,;, thus 755;00 and Q[§ ]
denote the variation of the Hamiltonian and the Noether 2-form, respectively. The integral
on the right hand side of (4.68) is evaluated over an arbitrary sphere, which generates the
second homology class.

For the case of £ = 0;, and considering solutions of the linearized Einstein equations on
the Kerr background it follows that

M =Pyc0,
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gives the linearized ADM mass. The same is true for the charge integral (4.46) and thus
we have the relation

fSQ[at]—at-@zifsM, (4.69)

4

for any surface S in the Kerr exterior. We remark that the left hand side of (4.69) can be
evaluated in terms of the metric perturbation using the expressions for (Q and ® given in
[72, Section V]. On the other hand, the right hand side has been calculated in terms of
linearized curvature. It would be of interest to have a direct derivation of the resulting
identity.

In addition to the conserved charge corresponding to M, equation (4.68) with £ = 0,
the angular Killing field, gives a conserved charge integral for linearized angular momen-
tum a. If Oy is tangent to .S, then the term J,, - © does not contribute in (4.68).

Hamiltonian charge Inthe ADM formulation of General Relativity, the field equa-
tions split into constraints and evolution equations with respect to some time-like vector
field. Denoting the metric and momentum on the slice by (g;;, 7;;), the hamiltonian and
momentum constraints read

H = pg(nm; — 2(7)?) - ue R, H' =21 (4.70)
The linearized form leads to the quasi-local charge integrals,

Ce = fs (g (~Ch™, + ORI — Oy 4+ Gy = 2X 57, + Xarlihy I,

Here, (h;;, 7;;) are the linearized metric and momentum on a spatial slice and £ = (C, X?)
is a Killing field of the background spacetime.

Now, we relate this charge for { = J,, to the linearized curvature on a Schwarzschild
background. With f =1 - 2m the metric reads

T

g = fdt? - f1dr? — r2(d6? + sin 0dp?) . 4.71)

The charge expression simplifies to

Co, = -2 fs i (4.72)

This angular momentum charge is also given in [74, Section 3]. Introducing a potential
2-form for d, on the sphere, it can be rewritten into

fﬁrw = firTA(rzeAB cosf)p = —fﬁTA||BT25AB cosf. (4.73)
s S s

Here || denotes the covariant derivative on the 2-sphere S with metric n = r2(d6? +
sin? @ de?) has det(n) = r2sinf and connection I'),, = —sin 6 cos#, Iy = cot. For
the first equality e#? = —(r2sin#)~! is used and the second step is partial integration.

Let €qpes = fta€abes be the volume element, where €,p0¢ = 0,1 and 14 = \/det4g. The
left dual of the Weyl tensor #Cj.q Was introduced on p. 31. With a timelike unit vector
T'*, normal to some spacelike hypersurface 3., define the magnetic part of the Weyl tensor
by

Byj = CiapTT". (4.74)
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The induced volume element on X is €5, = €44511*. Using the Gauss equation for the
second fundamental form £;;,

Dikjm - Djkim = €z’lelm ) (4.75)
and contract with £¥,, which gives

26, Dikim = Bum - (4.76)

With 7 = pu3 (kg — k) and inverse k% = —puz'7 + (3uz)~'mg¥ we find
. 1
B, = 25”n,u§1 (—ﬂ'jmi + §7T|Z~gjm) . “4.77)

We choose T' = f~1/29, and n = f1/20, as unit normal to the ¢, 7 = const. spheres. In this
slicing B,,,, = 0 = k,,,,, holds in the background and therefore linearization is simple. We
find for the 7 component of the magnetic part of the Weyl tensor

nknlBkl = f‘lB” = ,ugleiﬂnknﬁrki‘j i (4.78)
The second term vanishes, because g, = 0 = g,,. We find

%BTT — ’uglgzjrﬁ.rilj
_ -1 _Ggr(r r -1l I r l -r
S———
.Eijr:()

_,~1,1/2_AB/( 1 Lo
= 3 0 PP (77 4+ Tyl 4 = Ty )

= 13" 0 PP (77 4 p + Do 794+ T, 774 = TG a)

~— ~——
«<¥pc =0
— M§1U1/2€AB(7:(.TA7B _ FgA’]‘TTC’ _Fgcﬁ_rA)
—
eAB=Q
_ M§1U1/25AB7.TTA||B
v .
= —€AB7T Al|B -
M2
We used that p2 = det % = fdet 3y = fu2 = r?sinf. On the other hand,
. 2f . .
B = ——Cip, = - fIm ¥, . (4.79)
Mg

The charge integral (4.72) then reads

Co,=-2 | 7',=-2 f B2 cos H&dédcp =2 [ rIm U, cos O sin 0ddy . (4.80)
52 52 v 52

So the angular momentum around the # = 0, 7 axis on a Schwarzschild background can be

calculated by projecting Im ¥, into the [ = 1 mode. Comparison with the charge (4.57) on

Minkowski spacetime shows that the singular charges are excluded by construction. This

is not the case for the linearized Bianchi identities alone and therefore, we were not able

to extract the charge (4.80) from (4.66).
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4.3.5. Gauge modes

We reviewed in section 4.2.1 that linearized gravity in terms of a spin-2 field admits a
priori 20 real charges. Ten singular charges vanish identically, if the existence of a metric
(with its curvature the spin-2 field) is assumed. The remaining ten charges can be as-
sociated with Poincaré symmetries. But what happens to this structure on a black hole
background? Let us review the Schwarzschild case. The charges for mass and angular
momentum were calculated quasi-locally in terms of the [ = 0 and [ = 1 modes of U, see
(4.41) and (4.80), respectively. Because of the spherical symmetry, this extends to a set
of four charges corresponding to the four remaining isometries. The angular momentum
charge was derived from a Hamiltonian analysis, so the assumption of a metric potential
is implicit in (4.80). Comparison to the Minkowski charge (4.57) suggests the absence
of singular charges. Because only four of the ten Poincaré symmetries remain valid, six
non-radiating modes can be eliminated by a gauge transformation. We call those gauge
modes to contrast them from the modes leading to conserved charges.

On metric level, the [ = 0 and [ = 1 modes were analyzed in the original papers [97]
and [123]. For an alternative formulation see also [74]. In the first two references, the
perturbed metric is expanded in tensor spherical harmonics as represented in (3.31) and
(3.32).

I=0 For the lowest mode Y, = C' = const. we find

fHy, H; 0 0
H, f'H, 0 0
0 0 r2K 0
0 0 0 r2sin?6K

hodd — 0’ hZ\Z/)en =C

ab —

There is no [ = 0 odd parity perturbation in accordance with the vanishing singular charges

(here the NUT parameter). For the even parity part, Zerilli chose a gauge K = H; = 0

in which one finds Hy = —557, Hy = Hy + g(t) and g(t) can be gauged away. This is

linearized mass, which we expressed in (4.46) without any gauge ambiguities.
Calculating the wave operator for this [ = 0 metric to first order leads to

2rttr ™ = r(r - 2M)0,(Hy + Hy - 2K ) — 4AM Hy - 2r?0,H, . (4.81)

This is non-vanishing in the Zerilli gauge and therefore not compatible with the gauge
condition (3.61).

I=1 For this mode, we have 3 spherical harmonics, Y19 = C cosf, Y;,; = FD sin fe*¥,
with some constants C, D. We write s = sin#, ¢ = cos 6 and find for odd parity,

0 0 0 —hps? 0 0 ihy TFhysc
0 0 0 —hs? .10 0 ihy Fhysc
07,0dd _ 1 +7 0dd _ +i 1 1
ha'=Clo 00 o | har =D 0
+ % 0 0 + + 0 0

It describes the angular momentum charges. For all 3 cases, m = 0, +1, we find or~! = 0,
so this mode is by construction compatible with the gauge condition (3.61). For even
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parity, we find

fHoC ch —h08 O
Oz,even _ * f_lHQC _hls 0
hay” = C * * r2e(K - G) 0 ’

0 0 0 r2s2c(K - G)
JHos Hs hoc +ihgs
+peven _ +ip * f_lHQS hic +ihys
hoy™ = #De . ) r25(K - G) 0
* * 0 r2s3(K - Q)

Zerilli chose a gauge in which K = 0 and he then used the linearized field equations R, =
0 to show that the whole [ = 1 even parity perturbation can be removed by the remaining
gauge freedom. The explicit form of the gauge vector is singular for m — 0. This is
consistent with the picture of conserved charges on Minkowski spacetime. Furthermore,
the gauge transformation was interpreted for large r as a "transformation to the center-of-
momentum system". The linearized wave operator in this case reads

2r°cr = r2(r - 2M)0,(Hy + Hy - 2K + 2G) + 4MrHy — 4r(r — 2M)hy — 2r30,H, .

This is compatible with he gauge condition (3.61), if we restrict the Zerilli gauge on the
initial data.

A generalization of "gauge modes" to a Kerr background is still lacking. An alternative
would be to consider only data with sufficiently fast fall-off.

4.4. Lowest modes for the wave equation with
potential

We presented in section 3.4 wave equations with potential for the middle components of
a Maxwell field and linearized gravity (in a particular gauge), see (3.43b) and (3.39¢),
respectively. Do those equations alone contain non-radiating modes without referring to
the whole tensor equation? To analyze this, we look at

(O+nPy) =0, (4.82)
with the background curvature potential V5. It contains the following three cases:

‘ scalar field Maxwell field linearized gravity
n 0 2 8

¢ P Cor 2w,

Assuming a decomposition into spherical harmonics on a Schwarzschild background,
(4.82) simplifies to

[o - a2+ 1 - =DM gy <0 4.8
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Here the coordinate expression (2.101) and tortoise coordinates 0,. = f0, with f =1 -
2M [r have been used. For [ = 0, we have the following time independent solutions:2¢

[=0
p(n=0) A+ Bln(-f)
d1(n=2) Alr?2 =B (r+2MIn(2M -r)) [r?
\1,2(71 _ 8) A(BM-r) + B8M(3M—r) In(2M—r)+3Mr—r2+27M?
- rd o

Here A and B are complex constants. The first solution for n = 2 is the Coulomb mode
(4.2) and the first solution for n = 8 contributes to the linearized mass mode (4.45). All
the other solutions (thought of in terms of ¢) have slower fall off. We note the difference
between this mass mode and (4.35), which is given by a gauge transformation (3.54) with
& =—M.

For [ = 2, we find:

=1
o(n=0) AM-r)+B@2M +(r-M)In(-f))
$1(n=2) A+ B(In(f)+2M/[r+2M?[r?)

; A 12M2r+3Mr2 473 +24 M3 (2M —r)
\Ifg(n = 8) o +B pov

Here, the first solution for n = 8 is the angular momentum mode (4.39) and all the other
solutions have slower fall-off. The equivalence of the angular momentum modes is not
a coincidence, but follows from the gauge-invariance of odd parity perturbations (Im W)
on a Schwarzschild background.

Using the wave operator on a Kerr background, (2.100), we find (4.82) in the form

(0,00, + —— 0y sin 00y - XV (r,0) = 0, (4.84)
sin
with
A=r-2Mr+a®, V=-nM(3, ¢ =r—iacosb, ¥ =(C. (4.85)

This equation is not known to be separable for n # 0 and therefore difficult to analyze. A
coordinate independent approach shows

(O+nWs)¢=2C[(p' - p' = p")(b-2p) = (3"~ 7' = 7)(3-27) + (n/2- 1) V2] (C'9) -

For n = 0, the solution ¢ = A = const. follows from (2.58¢) and for the Maxwell case
n = 2, the solution ¢ = C ¢1 = AC! follows from (2.65). For linearized gravity, n = 8, we
make the ansatz ¢ = (?W, = (~! — ¢(~2 for some constant ¢ and find

(0+8Ws) ¢ =20 [3Us¢ = (b = p/ = ') (pC ) +¢(0' =7 = T)(7¢ %) = 3eWa( ]
= 2( [3Wa( 2 = 2¢C 3 (pp' - 7T+ Us)] .

2During the calculation we found that the time independent equation can be solved for arbitrary n in terms
of hyper-geometric functions, but only n = 0,2,8,18,32,50, ... could be expressed elementary.
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Here, we used (2.65) and (2.58e) in the second step. Expansion in a Carter tetrad in
Boyer-Lindquist coordinates yields

A —a%sin®6 +2M¢

;o 'y = — -
pp —TT 2 2003
1 Miacosf
= __2C2 - —EC3 . (4.86)

Because Uy = —M (3, the potential term cancels, iff ¢ = 3M and in that case we are left
with

(O+8Ws) ¢ =2C[3Wa(? +c(p' —p' = ) (p() = (0 = 7' = 7)(7C %) + 3cWa(
ia cosf
¢¢P

This term vanishes in the Schwarzschild spacetime and gives the result discussed above.
For a Kerr solution, we were not able to derive solutions for n = 8.

The choice ¢ = 3M has a geometric interpretation. The massless geodesic equation
admits bounded solutions at the photon sphere r = 3M. On Kerr spacetime the set of
bounded solution is not a sphere anymore, but an open photon region, see (2.96). Whether

the stationary solutions of (4.82) for n = 8 on a Kerr background can be expressed in
closed form is not clear at the moment and needs further research.

= —12M?






5. Symmetries

In the context of General Relativity, important applications of symmetries are exact so-
lutions, integrability of the geodesic equation or separability of field equations. In this
chapter, we investigate symmetry properties of the spin-s field equations (3.1). This is of
interest not only for the construction of symmetry operators, which are essential ingredi-
ents for the vector field method of section 6.1, but also to rederive well known results from
a geometric point of view. For motivation, we review constants of motion for geodesics
in

Example 5.0.1. Let K,, . 4, be a solution to the Killing tensor equation V oK, . 4, = 0.
Given the four-momentum p® of a geodesic, p*Vyp® = 0, the scalar

C=p"...p"Kq,. a,, (5.1)
is conserved along the geodesic, since
p°v,C = nKay . a0, 0™ . P pbt Lt + pt .p“"prbKal__a" =0. (5.2)

In the class of vacuum Kerr-NUT spacetimes, there exist two isometries (¢, =% and besides

* %
the metric g, a second irreducible rank two Killing tensor K o, given in (2.76¢), so the
geodesic equation is completely integrable with four constants of motion. The fourth
conserved quantity,

C =Ka pp” =Im (¢)*p"p' + Re (¢)*p™p™, (5.3)

is the Carter constant. On a Schwarzschild background, because of Im ( = 0 and therefore
C= %(pg + Sile 5 p?o), it reduces to the squared total angular momentum. The interpretation
on Kerr spacetime is more subtle. It can be related to the velocity of a null geodesic in 0-
direction, passing through the equatorial plane, see [108]. For null geodesics, 0 = p*p, =
ppt —pmp™, the integrability holds for all Petrov type D spacetimes, because a conformal
Killing tensor is sufficient to build constants of motion in that case. The Carter constant

simplifies to

C(null = Cc_pmpfn 9 (54)
in accordance with (2.78).

The existence of an irreducible Killing tensor (other than the metric) is sometimes
called a hidden symmetry, because it does not correspond to an isometry of the back-
ground.

For a field theory, the role of constants of motion is played by symmetry operators,
which are defined in the next section. Results for the Maxwell equations on vacuum type
D backgrounds are reviewed.

67
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In section 5.2 we discuss a constructive method to find such operators using Wald’s
approach [115] based on adjoint operators. The method is applied to the spin-1 equations
and compared to previous results. Then components of covariant spin-1 symmetry opera-
tors are investigated for the Fackerell-Ipser and the Teukolsky equation in sections 5.3 and
5.4, respectively. In particular, a second order anti-symmetry operator for the Fackerell-
Ipser equation is given in (5.49) and a second order symmetry operator for the spin-s
equation is proposed in section 5.4.1.

5.1. Symmetry operators

Given a field equation O f = 0 for some field f, a symmetry operator .S is a differential
operator which maps solutions to solutions, OSf = 0*’. In particular, operators which
commute with O are symmetry operators. Let us first have a look at the scalar wave
equation

0¢p=VeVep=0. (5.5)
With ¢ a solution and {* an isometry, the Lie derivative L¢¢ is also a solution because
[O0,L¢]=0. (5.6)

Compared to example 5.0.1, these first order symmetry operators correspond to the con-
stants of motion which are linear in p®. The field equation (5.5) itself corresponds to the
norm of the four momentum. In [27], Carter calculated the most general second order
operator which commutes with (5.5). In particular, he found in the vacuum case that, with
K a Killing tensor, the Carter operator

Q=V'KyV’ (5.7)

commutes with the scalar wave operator. So with the Killing tensors mentioned in exam-
ple 5.0.1, four mutually commuting operators exist and a full separation of variables of
(5.5) in Kerr-NUT spacetime is possible, see also section 5.4.1.

For spin s greater than zero, another interesting structure occurs. Besides a map

DAy Aoy ™ WAL A, 5 (5.8)

from solutions to solutions, a helicity flipping map

DAy Ass P XALAL, 5 (5.9)

from solutions to solutions of the complex conjugated equation exists under certain con-
ditions. In [78], Kalnins, McLenaghan and Williams refer to these maps as symmetry
operators of first and second type, respectively. In many cases the symmetry operator
of first type can be related to a separation of variables. The spin-1/2 (massless Dirac or
Weyl) equation admits a symmetry operator built from a Killing-Yano tensor, see [28].

2"Regularity and fall-off conditions of the operators will not be discussed in this section. We also exclude
discrete operators corresponding to (2.117)
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Also the spin-1 equation admits such a symmetry operator of first type, if a valence-2
Killing spinor does exist. It is first published in [79] for a Kerr background under the
condition that the spin-1 field is generated by a Debye potential. The separation constants
can be interpreted as eigenvalues of the symmetry operator. A recent exploration of the
conditions for existence and explicit forms of spin 0,1/2 and 1 symmetry operators of
second order can be found in [7].

Symmetry operators of second type have been derived several times from different
points of view in the literature. For example in the Kerr-NUT class, the extremal helicity
components of such an operator can be shown to decouple and are known as Teukolsky-
Starobinski identities. After a separation of variables is performed, the "eigenvalues" of
this symmetry operator correspond to the Starobinski constants, see [79]. The Debye
potential approach, developed in [33], also leads to this symmetry operator?s. Another
powerful method to calculate such operators was invented by Wald in [115] and is dis-
cussed in the next section.

The spin s = 0, %, 1, %, 2 Teukolsky equations are also known to be separable in the
Kerr-NUT class. However, a geometric formulation of this fact is lacking, even though
the s = %, 1 cases are investigated in some detail as mentioned above. An obstruction to
continue this program to higher spin, beside the complexity of the equations, are alge-
braic constraints (3.4) and deviations of the linearized gravity equations from the spin-2
equations.

For a Kerr background, two symmetry operators (one of each type) were given ex-
plicitly in [79]. Very recently, conditions for the existence of symmetry operators and
simplified expressions for the Kerr-NUT case in terms of potentials were derived in [7].
The symmetry operators of first and second type were expressed in the form

Xap =V Anar, (5.10a)
wap =VP B, (5.10b)
with potentials
Oup =-26"Pn)0, (5.11a)
Apnr =RaP'Vpp04® - 10,45VppRa” (5.11b)
Baa = 64PVeoaOp° + 104PVoakp” . (5.11¢)

Here k 4p is the Killing spinor and the resulting fields solve the spin-1 equation and its
complex conjugated version,

VAuxap =0, Vatwap =0. (5.12)

The components of (5.10) will be analyzed in more detail in the next sections.

5.2. The method of adjoint operators

To decouple the field equations for the ¢;,¢ = 0, 1,2 components of a Maxwell test field
or the ¥;,7 = 0,...,4 components for linearized gravity, a first order operator acting on

ZMore precisely, a Debye potential has additional gauge freedom and in the commonly chosen gauge it
gives the symmetry operator. Otherwise the Debye potential equation differs from the original field
equation.
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the Maxwell or linearized Bianchi equations is needed, see section (3.4). This fact has
been used in a systematic way by Wald in [115], to connect various results about Hertz
potentials [33], symmetry operators [103] and Teukolsky-Starobinski identities [29, p.
436]. In this section, we will review this method of adjoint operators using bivector
formalism. The symmetry operator (5.10b) of second type for spin-1 is rederived and
a conserved current for the Teukolsky equation is presented. In particular, a symmetry
operator of second type for the Fackerell-Ipser equation is extracted in the next section.

We now restrict to the Maxwell case and comment on the linearized gravity case in
section 5.2.1. Let A be a real vector potential for a source-free Maxwell field F' = dA.
While for a regular potential, dF' = 0 is identically satisfied, d = F' = 0 yields the wave
equation

E(A)y = VOV A = VeV A = VFy = 0. (5.13)
To decouple these equations, decoupling operators
S1(5) = Z7*0u(C3s) (5.14)

are introduced, which yield the operators O; of Teukolsky (I = 0,2) and Fackerell-Ipser
(I = 1) acting on the (rescaled) Maxwell scalars ¢;?°, according to (5.16). Here the Z;
are the index-lowered self-dual bivectors (2.8). The scalars ¢; are components of the field
strength and can be written in terms of the potential as

¢r=Ti(A) = 230, A, . (5.15)
The resulting identity
S:€=0,T; (no sum), (5.16)

is a set of three decoupled (in terms of ¢;) third order partial differential equations for
the vector potential A. It should be noted that one has to use commutation relations to
decouple the field equations into O;7;, so the identity (5.16) is true only after using the
GHP commutator

(b-ap-p)(@-ar) = (d-ar = 7')(p-ap) = 0, (5.17)

for any constant a. The (p,q) weights (2.11) of the operators £ and O are zero, while
the projection operators 7y, 71,72 (and the decoupling operators Sy, S1,S») have weights
(2,0),(0,0),(-2,0), respectively.

The formal adjoint L of an operator £ is defined by

V(L) = (LTY)p = Vaj®, (5.18)
from which

(AB)" = BT AT (5.19)

20One should note that the decoupling operators are not unique. For example, the middle component
can be decoupled using ¢(j) = (nulp — Mmamy)(~202(¢24°) or its GHP primed version ¢’. Because
Z1ab = l[anp) — M[q"Mp), One finds Sy = ¢ ¢
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follows. In coordinates, with o a multi-index, we find for an operator of order m,
L =Y)0)ema“On (5.20)
the formal adjoint (acting on a function ¢)
L7 = Y em(-1)1°10, (a%0) . (5.21)
In particular, the adjoint of the operator identity (5.16) reads
'S =T,0]  (nosum). (5.22)

So for a self-adjoint operator £ = £ (e.g. (5.13) of the wave operator for a linearized
metric), the results of [115] can be summarized in the following

Theorem 5.2.1.

1. For a field 1 solving O;w =0, B = 81777/) is a (complex) solution to Maxwell’s
equation, £(B) = 0.

2. Applying the operator S; to (5.22) and using (5.16) gives
SJSS; = OJT]S; = Sﬂ?@;, (5.23)
so with 1) as above, x = 7,']8[% solves O;x = 0.

Remark 5.2.2. In the above definition of adjoint, no complex conjugation is involved and
the current j° in (5.18) is in general complex.

From (2.34) we find the covariant divergence of the Newman-Penrose tetrad,

Val®=€+é-p-p, Van® =€ +é-p' -p,
e nomerempmr (5.24)
Vam®=0p+p0"-17-7", Ve =p"+p8-7"-7,
and from (5.21) follows a weighted version for the adjoint GHP operators,
t — I / ;o=
=-b+p+p, =p' +p+p,
b b+p+p lDT b +p +p (5.25)
O =—d+r+7, 8 =-0+7"+7,
which is equivalent to the skew-adjointness property of the GHP connection,
0l =-0,. (5.26)

The generalized wave operator (3.37) is not self-adjoint because the additional connection
B, is not GHP-prime invariant. However, with the choice of decoupling operators (5.14)
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made above, we find the following form of the operators Oy,
(0o = [(b-2p - p)(b' = p') = (8-27 = 7')(8' = 7")] ¢
=[(b"=p")(b-3p) = (8" - 7)(d-37) - 6W2] by

1
=3 (B2 —4Vs] ¢ , (5.27a)

(2011 =[(b-p-p) (b -2p") - (-7 -7)(3'-27") ]
=[(b" =0 =0 (b-20) - (' - 7' = 7)(8-27)]

S 2] (), (5.27b)

(2022 = [(b' =20 = ") (b= p) = (0" =27 =7)(3-7)] b2
=[(b-p)(b'=3p") = (0-7)(0"=37") - 6¥2] ¢

= 0 [ - 405 (). (5.27¢)

The operators differ from the Teukolsky and Fackerell-Ipser wave operators (3.43) only
by a prefactor 5 , but have the following nice property.

Proposition 5.2.3. The adjoints of the wave-like operators O, [ =0,1,2 are
Og = 02 y OI = 01 5 O; = (90 . (528)

Proof. To calculate the adjoint and re-express it in terms of O, we use (5.19), the adjoint
GHP operators (5.25) and the Killing spinor (2.66) to rescale with ¢ according to (2.65),

0 = [C(b-20-p)(B' - ') - (@ -27 - 7) (&' - )]
= (b =) (b-2p-p) (>~ (& - 7)) (3-2r - )¢
= (p' = ) (p+p)C> — (' = 7) (3 +7)¢
=L - 20" - ) -p) - (@ -27 - 7)(3-7)]
-0,

O} =[C(b-p-p) b -20) - C(@-7-7)(0 -2
=(p' - 20) (b-p-p)' (2 (& -27) ' (@7 - 7)I(?
= (P +p - PP - (8 +7 - 7)BC
=L -0 - ) (p-2p) - (8 -7~ 7)(8-27)]
=0,

0} = [C(b -2 - 7) (b - p) - C2(8' =27 = 7)(3-7)]'
= (b-p) (W - 20 - P) (P~ (3-7)1(0 - 27— 7)
= (b-p)(P + )2~ (3-7)(8 +7)C2
=C[(b-2p- )P — ')~ (3-27 — 7)(3' ~ 7]
=0,
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Because to the self-adjointness of Oy, the map 7181T ¢ is a symmetry operator. Details
will be discussed in section 5.3. We also note the simple relation between the decoupling
and projection operators, (5.14), (5.15),

Si(3%) = Ti(¢%5), Sh =T (5.29)
Furthermore, the Maxwell equation (5.13) can be rewritten in the following form,
E(A)y = O°Fy = 0°(ZLor) = ~C 28] T (A) = =T, " T1(A). (5.30)

Here, the real field strength F'is replaced by its self-dual version since the Maxwell equa-
tion dF' = 0 is satisfied identically for F' = d A. It follows the simple representation

O =-8;(328" = -T;8" = ~T; 3T (nosum), (5.31)

for the Teukolsky and Fackerell-Ipser operators.

The current j¢ in (5.18) has many useful applications, see e.g. [112]. Another appli-
cation of conserved currents constructed from adjoint operators is the classification of all
local conserved currents of the Maxwell equations on Minkowski space in [6]. For the
Teukolsky equation, we also find

Proposition 5.2.4. Let ¢y and ¢5 be solutions of the Teukolsky equations Oypg = 0 =
Os¢. Then the current

J* = D0 — D*(d2) b0, (5.32)
With ¢ = (2¢s, is conserved.

Proof. This is a direct consequence of (5.18) and (5.28). Using (5.27a) and the represen-
tation (3.37), it follows from Leibniz rule,

2020000 = (2pa[ D" Dy = 4¥5] g
= V[ haDatbo] — D*((*h2) Datho — 42 Waihahy
= V[¢(*p2Datbo = Da(CP¢2) 0] + [D* Do = 4W5](Ch2) o
= Vaj" +200020s. (5.33)

O
Now, we make the first point of theorem 5.2.1 more explicit in

Proposition 5.2.5. Suppose 1; are solutions to Oy = 0. Then the vector fields

By = S&,(%) = —C2@a(Z0ab¢2) = ~(Zoa©" (C¥2) (5.34a)
By = 8], (1) = (PO Ziapth1) = = Z1ap©0" (1) (5.34b)
By, := S5, (100) = 20 Zaaptho) = —C Zaap©*((ibo) (5.34¢)

are (complex) solutions to the Maxwell equations (5.13). For a solution F = 11 Z" of the
Maxwell equations, all three vector fields By, generate the same Maxwell field strength,
F=dB;, I=0,12.
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Proof. 1t follows directly from the method of adjoint operators that £ (S;w) =0if O}?ﬁ =
0. With (5.28), £(Bp,) = 0 follows. Next, we show that the three resulting vector po-
tentials By, generate the same field strength. This is mentioned already in [103], but not
proved. On type D backgrounds, apart from (2.60) we also have

1 1
@aZOab = _ihaZOaby ®azlab = _hazlab7 @aZZab = _§haZ2ab . (535)

On the complex field strength F = ¢; Z7, the equations dF = 0 and 6.F = 0 are equiva-
lent. Expanding the latter in a bivector triad gives

(6F )y = O"Fap (5.36)
= O (Yo Zgy + U124, + 102 Z3,)
= ijb@“wo + Zib@“wl + Zfb@awz + 10O Zoap = 20010 Z1ap + 120" Zoap
= Zgp$ 1O (Cto) + Zy (2O (CPan ) + 27,0710 (Cada).
In the last step, (5.35) was used. Next, define
Gab = Nalp — MMy, Qop = laTip = MMM . (5.37)

Then Z}, = ga, — ¢/, and gap = qap + ¢, Since

O(qav9) = @O ¢ + (By - By) 9, (5.38)

we find a partial decoupling of (5.36) into
0= @a(wong —1qy) + (By+ By) o1, (5.39a)
0=O0%(Y2Z2, + Y1qav) — (By + By ) b1 . (5.39b)

Here, the first equation only involves 1)y, 11, while the second involves )y, 1. From this
form of the Maxwell equations we find

By, = _CQGG(Zgbqu?)
= —C2[©%(Z%h0) — Optr + hytr |
_ _C2®a(Z2b1/;0) + @b(C2¢1)

= By, + gradient . (5.40)

Using this and
Boy — 2By + By, = 0, (5.41)
which is a consequence of (5.36), the equivalence up to a gradient follows. ]

It should be noted that the vector potentials By, and By, are by construction in radiation
gauge, Byl = 0 = Byyn®. For linearized gravity, the analogous potentials solving the
Teukolsky equation also generate metrics in radiation gauge, see e.g. [32]. This is not
the case for the middle potential B;;,. However, none of the potentials is in Lorenz gauge,
since V’By, = h*Bp,. This in turn follows from the divergence-freeness of (~2By;, as
seen from (ﬁ)ﬁ and the fact that any 2-form Z, in vacuum satisfies V*V*Z,, = 0.
The potentials By, will be compared to the symmetry operator (5.10b) of second type in
section 5.4.2.

30The potentials By, are of GHP weight {0,0} and therefore we can use O, = V,,.
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5.2.1. Linearized gravity
For linearized gravity, Wald [115] used the self-adjoint operator
E(R)ab = =0 hap = VaVphe + 2V°V (ol + Gap(Th e = VEVTheq) - (5.42)

He then continued the program for the linearized curvature components Wy, 0, which
solve the decoupled Teukolsky equations (3.39a) and (3.39e), respectively. The projection
operators

T: hab —> \II’L s (5.43)

mapping from linearized metric to curvature, are of second order in this case. Also the
decoupling operators S are of second order so that the analog to the simple relation (5.13),
saying that £ corresponds to the linearized Bianchi identities, does not hold. However,
Wald used (B.11), (B.12) of [32] as projection operators for the extreme components
and reinterpreted equation (6.13) of that reference as the map S'. So applying 2. of
theorem 5.2.1 together with the fact that the operators in (3.39a) and (3.39¢) are adjoint
to each other’! allowed him to write the maps

o= D', U, =L +T0, (5.44)

with D, L, T first order differential operators, see [83] for details, and W a solution of the
Teukolsky equation (3.39¢) for W4, A new feature, compared to spin-1, is the term 7'V,
which can be shown to reduce to a multiple of 0; on Kerr spacetime in Boyer-Lindquist
coordinates, see [83] and also [119] for the Schwarzschild case. In terms of symmetry
operators, this map mixes first and second type.

Whether the method of adjoint operators can be applied to all curvature components
is not obvious. The form of the operators might heavily depend on gauge conditions for
the components 0, Uy, U5, For a discussion of the gauge issues in the method of adjoint
operators, we refer to [116]. Chandrasekhar [29] even chose a gauge in which these
components vanish identically. Nevertheless, we know from (4.45) that gauge-invariant
information is contained once the right linear combination with lower order terms is used.
We conclude this section with a form of the linearized Bianchi identities which most
closely resembles the structure of Maxwell’s equations,

(d° = hA) So = (km - ol) A Sy + O(e?), (5.45a)
(d@ - %m) Y1 =0(€?), (5.45b)
(d® = hn) Xy = (K'm—0'n) A S+ O(e?). (5.45¢)

On a flat background, the RHS of all equations is O(€?), since the curvature ¥; and the
connection coefficients x, k', 0, o’ vanish. The middle equation was used in section 4.3.2
to calculate the linearized mass.

It might also be worth thinking about this approach in terms of the linearized connection
(potentially the bivector valued 1-forms o, introduced in (2.17)) instead of the metric.
Whether the Bianchi identities can in this case be reinterpreted as a self-adjoint operator
on oy, is not known to the author.

3'More precisely, this is true after a rescaling by some power of ¢, analogous to (5.27a).
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5.3. Fackerell-Ipser equation

The components ¢; = F,, 2 f}” of F' = dB; given in (5.34) are again solutions to O;. In
particular 7;S’7 (no sum) maps solutions of O; into solutions of @;. In [115], only the
I = 0,2 components were considered. The symmetry operator for the Fackerell-Ipser
equation is the / = 1 component. We found (’)I = (0,, from which it follows that 7;S'*
maps solutions of the Fackerell-Ipser equation into solutions.

Wald also pointed out that for real Maxwell fields one has to take the real part of (5.34).
However, it follows from (5.31) that ST(¢)) is always in the kernel of 77, so it is only
the complex conjugate vector potential B; which contributes to the new solution ¢; =
TiS" ().

The decoupling operator (5.14) for the middle component reads

§17) = =50 = ' = )G - (b5 - D))

(5.46)
- (0" =7 =7)(Gym") + (0-7 = F) (Gun") ],
and its adjoint (as can be read off from (5.34)) is
Si,(¢r) = %[lab’ ~ N p-mad +m, 8 ](¢Per). (5.47)
We then find
TiS{Un = - 2§09, (Z1.0° (1))
= [0+ = )b+ (047 7)) (). (5.48)

which can be checked to be equivalent to the middle component of the symmetry operator
of second type, (5.10b). Since it decouples from the other components, we have

Proposition 5.3.1. Let i1 be a solution of the Fackerell-Ipser equation, 0111 = 0. The
anti-linear operator Q, defined by

Qv =-[(p' =) p+30'] (%), (5.49)

maps into the space of solutions of the Fackerell-Ipser equation,
0,9, =0. (5.50)

Proof. Since 1) solves the Fackerell-Ipser equation, we add 0 = %01% to (5.48),

- 11—
QY = 7151'% + 501%

=—%[(p’+p’—ﬁ'>p+<a+f—f'>6'—<p’—p'+ﬁ'>p+<a+f—7>a' @)

= —[(o' - 7) b+ ().
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The Coulomb solution (4.2) is given by 11 o< (=2 and is therefore in the kernel of Q.
On a Schwarzschild background in a Carter tetrad in Boyer-Lindquist coordinates, p’ and
( are real. Since the Fackerell-Ipser operator (; is also real in that case, Q reduces to the
spherical Laplacian and a complex conjugation.

The middle component of the symmetry operator (5.10a) of first type reads

X1 =2C[=20'7'Co = 2p7Cha + (8" = 7)(8-7)(Cr) + (B-7) (8 = 7')(Cn)] . (5.51)

Here, we note the coupling to ¢y and ¢, in the first two terms, which have the same
f-dependence as the Coulomb mode (4.4). The Coulomb solution (4.2) is again in the
kernel. On a Schwarzschild background, 7 = 0 = 7" and the couplings vanish. The sym-
metry operator reduces to the spherical Laplacian and leads to a separation of variables.
In [79], a symmetry operator of first type for the middle component is derived for the re-
stricted solution space generated by Debye potentials (this excludes at least the Coulomb
mode).

5.4. Teukolsky master equation

In this section, we investigate the extreme components of the symmetry operators (5.10).
For both types, these components decouple. The operator of first type leads us to a gen-
eralized Carter operator, as we will see in the next section. The operator of second type
yields the Teukolsky-Starobinski identities and will be discussed further in section 5.4.2.

5.4.1. Generalized Carter operator and separation of variables

Due to the GHP prime operation (2.15a) it is sufficient to look at the x, component of
(5.10a). An expansion in GHP formalism yields

Xo=| = 5(C+ W2+ p0C-Cbs) - 57(C+ DO +7(C - O
#8040 + 2 (¢~ Ob50(C - O [(Con)
- (-7 - 7)(¥ -~ 27)d + 5(C - OLed. (5.5

Here, we used (2.58e) and the notion of a Lie derivative of a weighted scalar, given in
(2.88a). This discussion is restricted to the Kerr-NUT class (2.72), where a Killing spinor
(2.66) with real divergence (2.68) exists. On a Kerr background in Boyer-Lindquist co-
ordinates L¢¢ = O,¢ holds. Since both scalars, ¢y and x, are solutions of the s = 1
Teukolsky equation, (5.52) defines a second order symmetry operator. Comparison of
(5.52) with (3.37) leads to a generalization to other spin weights, as we will now show.
Writing the vacuum spin s = 0, 1, 2 Teukolsky equation in the form

Top=[(b-2sp-p)(p' = p') - (8-2s7 - 7)(& - 7') - (25* =35+ 1) U2 | ¢ = 0, (5.53)

we state
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Theorem 5.4.1 (Spin-s Carter operator). In the vacuum Kerr-NUT class, the operators

2s-1

2
2s

Re=CC(p—p-p)(p' =2sp") + (C+Q)Le, (5.54a)

Se=CC(d-T-7)(0' -2s7") +

2_ . (€= 0L, (5.54b)

are symmetry operators for the spin-s Teukolsky equation Ts¢ = 0.

Corollary 5.4.2. The Teukolsky operator (5.53) can be cast into the simple form
CETS =Rs - Ss ) (555)
with the symmetry operators R and S, given in (5.54).

Proof. A calculation shows

2s—1
¢

C%(RS 8 = (b-p- )b - 250) - (@7 )@ ~257) + 2L

=(b-p-p)(b'-p") - (0-7-7)(8'-7')

= (2s=D[(b-p-p)p' = (0-T =)'+ (pb' = p'p-70" + 7' 0 +5V3) |
=(b-p-p)(b'-p") - (0-7-7)(8'-7')

—(2s=1)[—pp/ + 77" +pp' -7 + (5 - 1)U, ]
= (b2 P)(B'— ) — (0257~ )@ ~7') ~ (25~ 1)(s 1)

Here, (2.88a) with ¢ = 0 is used in the second step and the GHP primed version of the
Ricci identity (2.58e) is used in the third step. L

Proof of theorem 5.4.1. (incomplete). In the s = 0 case for the scalar wave equation, we
find

Ro = (O (,ny O, So = (O “m(,My)©" (5.56)

as follows from (2.34). On solutions ¢, we have Rg¢ = Sp¢. On the other hand, the Carter
operator (5.7) with [ = Im ¢, R = Re ( on solutions can be rewritten

Q¢ = 0" I°l(a1)©"¢ + O R4y ©°¢
= [0 41y O + RO,y O%¢
= []2 + RQ]@al(anb)@b¢
= Rod, (5.57)

because of (2.72). The spin-1 operator was identified to be the O-component (5.52) of the
covariant symmetry operator (5.10a) at the beginning of this section.

For s = 2 linearized gravity on a Kerr background, the explicit form of the operators
in a Kinnersley tetrad is given below, see (5.58). The commutation property [R, Ss] =0
in coordinates follows immediately. It seems reasonable that these properties also hold in
the Kerr-NUT class, but this has not been checked yet. L
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A covariant second order symmetry operator of first type for linearized gravity is not
known in the literature and the author does not expect such an operator to exist, because
of the gauge dependence of the middle curvature components. From this point of view,
the coordinate independent symmetry operators R, and S, are the most geometric char-
acterizations of separability one can hope for.

It would be interesting to check a commutation property directly in GHP formalism,
which might be possible (in finite time) with GHPtools developed by L. Price, see [94].

The half integer spin case is not investigated in this thesis, but it is plausible that the
same splitting (5.55) holds, see [28] for the spin—% case.

Using the Kinnersley tetrad (2.103), we find the coordinate form of the operators,

IR. =— A0 As+la 4 [(TQ + a2)at + aaSO]Q
s ' T A
2s(r— M
- %[(r2 +0a®)0; +ad,| +4srd; - 2s, (5.58a)
) [a sin® 00; + 9, + is cos 8]2 )
28, =——0psin 0y + — —4sia cos00; - s. (5.58b)
sin sin“#

A simplification can be made for R, after rescaling ¢ - A~5/2¢, which gives??
[(r2+a?)0; + ad, —s(r— M)]?
A
The Teukolsky equation written in this form was used in [121] to prove mode stability of
Kerr spacetime. Note that in other tetrads (and coordinates), the commutation property

is less obvious, because r, f-dependent transformations change also the variables (e.g. in
the Carter tetrad).

IR, =—0,AD, + +4srd, — s. (5.59)

Remark 5.4.3. To avoid clutter in the notation, we wrote both operators S, R s with spin
weight s dependence. It does not matter for explicit calculations, because s = p[2 = b for
spin-s field components, but the more natural choice would be to write

0=[Ry-Ss] (Rp(t,r,0)Ss(t,0,0)) (5.60)

for the separated ansatz. The operator Ry, would then be unaffected by complex conju-
gation (2.15b), which changes p <> q,s - —s,b — b. We also note that the Sachs star
operation (2.15c) maps R, < S..

Remark 5.4.4. In [18] a symmetry operator for the scalar wave equation with only first
order time derivatives is derived. Let us briefly review and generalize the result. Define
p=(r2+a2)2A ! and o = a®sin® 0 for the coefficients of the second time derivatives in
(5.58). It follows that Og := A(p~'Rs — 071Ss) has only first order time derivatives for
any function A. With ¥ = p — o we find for the choice A = po|%,

[0, 2T, =S [L(0Rs - p8,), £ (R, - S,) ]
={o(RL) - p(8:L) - R(Z) + S.(2)} R,
+{-0(R) + p(S:2) + Ra(L) - Su(2)} S,
= {-5(8.2) + £(8.0)} R + {E(R.2) + 2(Rap) } S,
= ()’

32This is part of the transformation to the Carter tetrad, see (2.107).
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because R,o =0 = S,p, RS% = —%, by Leibniz rule S % = % and [Rs,Ss] = 0. The
result of [18] is the special case s = 0 for the function spaces with ™% dependence of the
azimutal coordinate .

5.4.2. Teukolsky-Starobinski identities

In the last sections, we investigated the middle components of both types of symmetry
operators and the extreme component of the symmetry operator of first type. The remain-
ing components of the second type operator are well known in the literature and will be
discussed in this section.

Expansion of the potential B4/ given in (5.11c) and comparison with the potentials
By, given in (5.34) yields the simple relation

Baar = Bog + Baa (5.61)

which shows the equivalence of the symmetry operators (5.10b) and 7}5]T given in theo-
rem 5.2.1. We learned in proposition 5.2.5 that each scalar ¢;, solving O;¢; = 0, can be
used to generate a whole Maxwell field and that the resulting fields are equivalent. This
is also known as the Debye potential approach, see [33]. Expanding the operators 7;S”7,
we find

wo = —(8-7")(8+7) (o) = -33(C2h) (5.62a)
= [(0-7") b +(p-p) 0)(C%1) = 2(0-7") p(¢%¢1) (5.62b)
= —(b-p) (b +p)((?¢2) = —bb((3¢2) (5.62¢)
wy = [P’ (3+7) = (7= 7)(b' + 7)]((3o) = [-p'3-7b'1(¢?¢o) (5.62d)
=[(p'+p - P)p+(d+7 = 7)0'1((¢n) (5.62e)
= [-b(d' +7) - (7' = 7)(b+p)](C?2) = [-pd’ - 7'p]((¢2),  (5.62)
wy = =(p' =) (" + 1) (o) = —p'p' (o) (5.62g)
= [(p' =70 + (8" - T)P'1(Pn) = 2(8' - 7)P'(C%1) (5.62h)
==(0' - 7)(0' +7)((°h2) = -3 (). (5.62i)

After a separation of variables ¢; = R;(r)S;(0)e “te™? [ = 0,2 in Boyer-Lindquist
coordinates, e.g. (5.62a) leads to the Teukolsky-Starobinski identity

So(B)e '™ = — 03[ Fx(0)e e ] (5.63)

relating Sy and S5 via a second order differential operator. Another Teukolsky-Starobinski
identity relating R, and R, follows from (5.62c¢). Such identities exist for all spins s
and the operators are of order 2s. In particular the Teukolsky-Starobinski identities for
linearized gravity are of order four and thus difficult to analyze covariantly.

The Sasaki-Nakamura transformation, see [101], maps the separated radial Teukolsky
equation for spin-2 into a "Regge-Wheeler like" equation with short range potential. It
would be interesting to see how it relates to (5.62a) in the spin-1 case, see [68], and
whether this transformation can be generalized to the full Teukolsky variable.
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Summarizing this chapter, we have the following picture. For the spin-1 equation in the
vacuum Kerr-NUT class a non-trivial second order symmetry operator of each type does
exist. Non-trivial here means that it is not the product of Lie derivatives along isometries.
The symmetry operator of first kind leads (together with the isometries) to a separation
of variables for the Teukolsky equations and generalizes the spin-O Carter operator. The
middle component does not decouple, which is consistent with the non-separability of the
Fackerell-Ipser equation. The symmetry operator of second kind does decouple for all
three components. It leads to the (anti-linear) symmetry operator (5.49) for the middle
component and to the Teukolsky-Starobinski identities for the extreme components. In
section 5.4.1 we were able to generalize the extreme components of the symmetry operator
of first type to spin-2. We do not expect this result to generalize to a covariant operator for
linearized gravity, because the linearized Bianchi identities couple to lower order terms.
It is only the Teukolsky system, defined in terms of the extreme components, which is
mostly unaffected.







6. Stability analysis

This chapter is intended to review some results about black hole perturbations. In sec-
tion 6.1 we review the vector field method, present basic examples and explain how the
results of the preceding chapters may be integrated into this scheme.

Let us first review the situation for a Schwarzschild background. As described in sec-
tion 3.4, the linearized metric can be characterized by the two functions ()*. With the sep-
arated ansatz Q*(t,7) = et R*(r), the Regge-Wheeler and Zerilli equations (3.33) be-
come second order ordinary differential equations. Stability in the sense of non-existence
of exponential growing modes (with negative imaginary part in w) was shown e.g. by
Moncrief in [84]. In [117], Wald proofed the stronger result that Q*(¢,r) is pointwise
bounded in terms of initial data. The proof relies on a conserved energy for the field.

This shows some ambiguity in the usage of the word "stability". However, the ultimate
notion, considering the full Einstein equations, is non-linear stability. From the physi-
cal point of view, a small disturbance of some equilibrium state should "decay". More
precisely, we quote from a recent talk®® presented by Dafermos:

Conjecture 1 (Stability of Kerr). Let (X, g, K) be a vacuum initial data set sufficiently
close to the initial data on a Cauchy hypersurface ¥ in the Kerr solution (M, gy, o,) for
some parameters 0 < |a;| < M;. Then the maximal Cauchy development (M, g) possesses
a complete null infinity T+ such that the metric restricted to J~(I*) approaches a Kerr
solution (M, 9M;.a f) in a uniform way with quantitative decay rates, where My, ay are
near M;, a; respectively.

Here M;,a; and My, a; are the initial and final parameters of the Kerr solutions, re-
spectively. Furthermore, Y is a Cauchy hypersurface, g the induced metric, K the second
fundamental form and J~(Z*) the causal past of future null infinity.

An important analytical tool based on energy estimates was developed in the monumen-
tal proof of non-linear stability of Minkowski spacetime by Christodoulou and Klainer-
man in [31]. Several groups are working towards a solution of the Kerr stability problem
by generalizing and extending this tool. It is nevertheless essential to understand linear
fields first.

Linear gravitational perturbations of Kerr spacetime are most commonly described by
the Teukolsky equations (3.39a), (3.39¢) for the linearized, gauge invariant curvature
scalars W, and W,. In fact it is enough to control one of the scalars, as shown by Wald in
[113]. Due to the separability property (5.55), the ansatz

(bs = e_theimpRs(r)Ss(e) (61)

is usually made. The second order radial ordinary differential equation for R,(r) has
eigenvalues depending on w and m. In [93], Teukolsky analyzed the stability numerically
up to the [ = 4 spheroidal mode and concluded ”good evidence of stability*.

3 Notes from the Kerr conference, 4th — 5th July 2013 at the Albert Einstein Institute, Golm.

83
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A rigorous result is the proof of mode stability for the Kerr black hole by Whiting,
[121]. In this reference, the Teukolsky equation (5.53) for s = 2 with the separated ansatz
(6.1) is analyzed. It is noted that no conserved energy exists, because of the ergo-region,
and that the radial differential equation cannot be related to a scalar wave equation as
in the Schwarzschild case. After a differential transformation of Ss(#) and an integral
transformation of R(r) is applied, a conserved energy for the new field is found, from
which the existence of exponentially growing modes of the original variable can be ex-
cluded. The method was recently extended in [102] to show instabilities of solutions to
the Klein-Gordon equation on Kerr spacetime.

6.1. The vector field method

In this section, we review some basics about energy estimates. First the idea of using
conformal isometries on Minkowski spacetime to control solutions of spin-s equations is
presented in section 6.1.1 and afterwards the achievements and obstructions on curved
spacetimes are reviewed in section 6.1.2. The first part is based on [30], [5] and [98].

Classically, asymptotic behavior of solutions of differential equations were analyzed
from its fundamental solution. The vector field method is able to extract information
about boundedness and decay without referring to explicit solutions. It enables the anal-
yses of late time behavior in terms of the initial data. We need the following setup. The
globally hyperbolic spacetime is topologically R x 3> and admits a time-function ¢, pa-
rameterizing the family of spatial hypersurfaces ¥; = 3(¢). Let u be a real solution to a
well-posed initial value problem (6.2a) with given data wo = ug, G- = U on Xy. Sup-
pose further that it admits a symmetric, trace-free and divergence-free energy-momentum
tensor (6.2b), which satisfies the dominant energy condition 7,,Y*Z® > 0 for any time-
like, future directed vector fields Y, Z¢. We define the momentum?* with respect to a
vector field X¢ by (6.2¢) and its energy at time ¢ by (6.2d). Here, du® = n*d3u with
d3u the induced volume element on ¥; and n® the future directed unit normal, see [118,
Appendix B.2]. Fundamental properties for the following discussion are positivity and
monotonicity of such energies.

Evolution equation Eu=0, (6.2a)

Energy-momentum tensor of u Tap =T[u]ap (6.2b)

Momentum of « in X direction P, =TuX°, (6.2¢)

Energy E(t) = f Poduc (6.2d)
¢

Divergence VP, = Tpm®, (6.2¢)

Deformation tensor of X*“ 7% =y x (6.21)

Integrating (6.2e) over a region [, ¢ ] x ¥ yields by the Gauss theorem F(t1) — E(ty) on
the left hand side, if sufficient fall-off guarantees vanishing integrals in the asymptotic re-
gions. The bulk integral on the right hand side is the energy-momentum tensor contracted

3*In this simplified notation we suppress the dependence of the energy momentum tensor on u and the
momentum on X° and u etc.. When several different solutions to (6.2a) and different vector fields X
are discussed below, the additional dependencies will be added.
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into the deformation tensor (6.2f). This contraction vanishes if X* is conformal Killing
(2.42), so the energy (6.2d) is conserved in this case. Other vector fields X of crucial
importance are dispersive (or Morawetz) vector fields discussed below. In that case the
bulk term does not vanish, but the goal is to control it via other (conserved) energies.

Let us have a look at the important case of the scalar wave equation Ou = 0 with energy-
momentum tensor

Tub = VauVptt = 3Gap VUV 0. (6.3)

It satisfies the above requirements except for trace-freeness. This means in particular that
pure-trace deformation tensors (6.2f) lead to non-vanishing divergences (6.2¢). However,
if the momentum is modified according to

Z5a =P, +quV,u— %uQVaq, (6.4)
for some function ¢, we find
VeP, = Tym® + qVouv u — su*0gq
- (%NT - %w + q) VUVt + 7V uV pu — %uQ Ogq, (6.5)

with 7 = w%g,;, and the decomposition into trace and trace-free part, 7% = }L gom + Tab.

So if X is conformal Killing, 7 = Z¢ is pure-trace and with ¢ = § the momentum
is divergence free (O0g = 0 follows from the conformal Killing equation (2.42)). The
alternative choice ¢ = 0 leads to —%|Vu|? in the bulk, which is a multiple of the usual
energy. Examples will be discussed in section 6.1.1 below.

Remark 6.1.1 (Method of multipliers). An alternative way of constructing momenta
(6.2¢) is the method of multipliers. For a vector field X, introduce the multiplier Xu =
XoV,u = Lxu such that (Xu)(Eu) = V2P, + p. It should be noted that multipliers can
also be understood in terms of adjoint operators as discussed in section 5.2. Since for
solutions u,v of Eu =0 and E™v = 0, we have the conserved momentum

0=vEu-uElv=v,P", (6.6)

the multiplier Xu = v yields the above result with p = u€"(Xu). For self-adjoint opera-
tors ET = € and symmetry operators X, p vanishes.
For the (self-adjoint) scalar wave operator O, the momentum reads

P = (Xu)Viu - uv®(Xu). (6.7)

Because the Lie derivative along conformal Killing vectors is a symmetry operator in the
sense of section 5.1, p = 0 and the momentum is conserved. So it has similar properties to

(6.4).

If symmetry operators S; for (6.2a) exist, we have £(S;u) = 0 and the higher order
energies

E[Su](t), (6.8)

can be constructed from momenta (6.2¢) for the energy-momentum tensor 7'[S;u]p. In
case of the scalar wave equation, examples of symmetry operators are Lie derivatives
along isometries. This additional information (energy-strengthening property) can in
some cases be used to control the field pointwise.
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6.1.1. Linear fields on Minkowski spacetime

On Minkowski spacetime, we use global cartesian coordinates z¢ and a slicing with re-
spect to the time function z° = ¢. %7 = 1,2,3 are the coordinates of the spatial hyper-
surface and we set r = Vz'z?. The space of conformal Killing vectors on Minkowski
spacetime in 3+1 dimensions is 15-dimensional. It consists of four translations and six
Lorentz transformations,

0 0 0
Ta—%, £a5‘xaw_xﬁ%; (6.9)

which form the 10-dimensional space of Poincaré isometries, a scaling vector field and
four conformal accelerations given by

S =2T,, Ko = 22,8 + 2257, . (6.10)

In this set, the only time-like, future-directed vectors are 7y and Ky with the squared norms
L and (¢ +r)%(t - r)?, respectively. We find in the null tetrad

"= Z5(9+0,) = V20u,, n"=25(0-0,) =V20,., m" == (9s+ 550,), 6.11)
that 7p = 9, + 0,_ and Ko = u20,, +u20,_.

The method outlined above is applied to the spin-s = 0,1,2 equations in [30]. We
discussed the modified momentum (6.4) for the scalar wave equation Ou = (0, which can
be made divergence free for conformal Killing vectors X . With the vector fields X = 7,
and X = ICy, the conserved and positive energy and conformal energy of the scalar wave
equation are

Er(t) =3 fz Ol + |0yuPd?a = 1 fz Vul® dz, (6.122)
By, (t) = f (2 + ) [Vul® + 4rt(8,u) (Byu) + Mudyu — 20> . (6.12b)
P

Here, we added the vector field as a subscript to the energy (6.2d). The form of the
conformal energy follows from (6.4) and K = (2 +¢2)0, + 2rt0, in spherical coordinates.
It leads to the weak decay result

1/2
( [ <1+t/2|Vu|2d3:c) =0(t™), (6.13)

inside the light-cone, as shown in [85]. The result can be improved by using other vector
fields, e.g. the Morawetz vector field X = r0,, see [85, 86] for applications in obstacle
problems and higher order energies (6.8). For more general equations, vector fields dif-
ferent from the conformal isometries or curved backgrounds, conserved energies (6.2d)
cannot be constructed a priori. The task is to estimate the bulk in terms of initial data,
which leads to energy inequalities.

The next step is to control the field pointwise. A powerful tool for this is the Klainerman-
Sobolev inequality,

(L+t+7r)2(1+|r—tDu(t,z)? < C Z ||Zku(t,x)||%% ) (6.14)

k<2
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Here Z € {7,,Lap,S} are symmetry operators and u € C*°([0, 00) x R3) with suitably
fast fall-off for » — co. The Sobolev inequality can be understood as the special case with
Z € {T.}. This gives pointwise control over u in terms of higher order energies (6.8). If
the right hand side can be controlled in terms of energies on the initial slice, this means in
particular that the field is controlled pointwise.

For a spin-1 field ¢ 45, an energy-momentum tensor is given by

Tup = Papdars
= o name + 211 [* (L) + maiMiny) + [d2]?laly + dadomamy, + Godarnaii,
= 20100m (aN) = 20102l (M) = 20100 (M) — 201 P2l (0T - (6.15)

It is symmetric, trace-free and divergence-free by construction. It also satisfies the dom-
inant energy condition, as follows from ¢apdPc = (dod2 — ¢?)eac. In the null tetrad
(6.11) we find the components

21 (To, ufOu, +u0y) = ullldol* + (ull +u?)|1[* +u”|af*.

These are the integrands for the 7y-energy (n = 0) and Ky-energy (n = 2) and decay rates
for the components can be extracted as for the scalar wave equation above.
For the spin-2 field ¥ 43¢ p, the Bel-Robinson tensor

Tuvea = Y apcpVargicrpr (6.16)

is the appropriate generalization of an energy-momentum tensor. It is totally symmetric,
trace-free on all index pairs and divergence free by construction. Also a dominant energy
condition of the form T,;,.;W*XtY<Z4 > O for time-like vectors We, X? Y Zd can be
derived. This implies that the energy densities

T(76776776776)7 T(%7%7%7K0)7 T(’]B7767’C07IC0)7 T(%7K07ICO7IC0)7

lead to positive, conserved energies and decay rates for the components can be calcu-
lated. We also want to point out that Maxwell-like energy-momentum tensors for the
spin-lowered curvature (3.27) with the full set of Minkowski Killing spinors can be con-
structed. These include in particular the above energy densities. The detailed relations to
the Bel-Robinson energies are investigated in [75].

An alternative approach to prove decay rates of spin-s fields on Minkowski spacetime
based on Hertz potentials can be found in [8]. It is based on decay results for the scalar
wave equation and uses the Hertz potential map to deduce decay results for higher spin
fields.

6.1.2. Challenges on Kerr spacetime

Several aspects of the Kerr background prevent the direct application of the vector field
method as introduced in the last section. Let us first review the additional difficulties
for the scalar wave equation along the lines of [9] and afterwards add a list of additional
difficulties for higher spin fields.

The first immediate obstruction is a lack of symmetries in the background. Only the
isometries 0, and J,, corresponding to the stationarity and axial symmetry are left. In [9]
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the hidden symmetry of the Kerr background, characterized by the Killing tensor (2.76c),
is added to the list and used to prove boundedness and decay for the scalar wave equation
for small a. A similar result based on Fourier methods can be found in [38]. Recently the
results were proven for the whole range a < M in [41].

The Killing vector 0, changes sign at the boundary of the ergo-region (2.95) outside
the horizon. So the usual energy, built from 7}, contracted into J, and integrated, is not
positive definite anymore. However, a vector field 7' = 0; + xwp0,, with wy = a/(r2 +
a?), a sufficiently small and x(r) a compactly supported smooth function is time-like
everywhere and Killing outside the set {0,y # 0}. The non-vanishing bulk in that region
can be controlled by a Morawetz estimate. The absence of a positive, conserved energy is
strongly related to the effect of super-radiance.

The third obstruction is trapping. On a Schwarzschild background, null geodesics have
stationary orbits at the photon-sphere r,;, = 3. For fields this corresponds to arbitrarily
slow dispersing wave packets, which are "trapped". The Morawetz vector field has to
change sign at this photon sphere, to always point into the direction of dispersion. The
trapping on Kerr spacetime is more complicated. There is an open set of r = const. null
geodesics described in (2.96). In the equatorial plane, there are exactly two orbits, one
direct orbit at r,,, and one retrograde orbit at 7,,_ given by (2.97). The Carter constant
is zero in both cases and positive inside this interval with a maximum at » = 3M. A
non-zero Carter constant implies non-vanishing momentum orthogonal to the equatorial
plane. We note that even though the r = const. null geodesics are radially unstable, there
is a (r,0)-dependent direction, which points to another member of this family. It would
be interesting to investigate a spatial orthogonal direction of maximal dispersion for a
generalized Morawetz vector field.

The next step is to investigate more complicated fields. As mentioned in the introduc-
tion, recent results for the Maxwell field can be found in [10]. There, it was essential to
control the middle component of the field-strength via an energy for the Fackerell-Ipser
equation (3.43b). This, together with a charge-vanishing condition (4.4), results in a proof
of boundedness and decay of solutions to the Maxwell equations on slowly rotating Kerr
backgrounds. A major problem is the complex potential in the Fackerell-Ipser equation
(3.43b) in connection with trapping. A uniform bound on the energy is proved in [11]
using a Fourier transformation in ¢. The idea of controlling the field energy via an energy
for the middle component is generalized from an earlier result [21] on the Schwarzschild
background.

The linearized Bel-Robinson tensor is not conserved anymore on a curved background,
because of linearized connection terms coupling to the background curvature. The con-
struction of conserved energies in this setup is quite subtle and still under investigation.



7. Conclusions

7.1. Summary

In this thesis, we developed certain aspects of Maxwell and linearized gravitational fields
on vacuum spacetimes of Petrov type D. The main motivation was a generalization of
the vector field method towards a proof of Kerr stability. Properties of the scalar wave
equation on this background are by now quite well understood. This motivated us to treat
higher spin fields starting with the scalar wave equation (with potential) for their middle
components. These are the Fackerell-Ipser equation (3.43b) for spin-1 and the generalized
Regge-Wheeler equation (3.39c¢) for linearized gravity presented in chapter 3. The gauge
freedom of the tetrad based formulation is discussed and the concept of gauge-source-
function for the linearized gravitational field is used. The choice of gauge (3.61) for the
generalized Regge-Wheeler equation (0 + 8W,)(¢2W,) = 0 is natural in the sense that the
gauge-source-function does not depend on the linearized curvature and that the [ = 0,1
modes are non-radiating.

These non-radiating modes, which we analyzed in chapter 4, are obstructions to decay.
Non-radiating modes on Minkowski spacetime were reviewed and the spin-2 field on type
D backgrounds was discussed. Working in terms of linearized curvature, we derived the
linearized mass charge (4.41) corresponding to the time translation isometry for Petrov
type D backgrounds by using Penrose’s idea of spin-lowering with a Killing spinor. A
quasi-local angular momentum charge in terms of linearized curvature has not yet been
found and obstructions for the construction were discussed. It seems that an assumption
about the existence of a regular potential (metric) has to be used implicitly. Assuming
the existence of such a potential on a Schwarzschild background, a partial integration
on the sphere yields the charge (4.80) in terms of linearized curvature. We also ana-
lyzed the Komar integrals for Kerr spacetime as an alternative to spin-lowering, because
a Killing spinor for the axial isometry does not exist. This led to the quite complicated
integrand (4.30), which has not yet been generalized to the linearized setting. Another ad-
ditional difficulty, compared to the Minkwoski case, is the gauge dependence of W,. For
a Schwarzschild background, gauge conditions are known which eliminate the gauge de-
pendent non-radiating modes [123, 74]. A generalization to Kerr spacetime needs further
work.

To generate higher order energies (6.8), a good understanding of the symmetry opera-
tors for the equation of interest is important. The two isometries of Kerr spacetime yield
first order symmetry operators. That this also works for weighted scalars by taking the
Lie derivative followed from (2.88b). We reviewed in chapter 5 the complete set of sec-
ond order symmetry operators for the spin-1 equations on a vacuum type D spacetime.
The component forms of the operators (5.10) of first and second type are related to cer-
tain well known aspects of the equations. So do the extreme components of the operator
of first kind lead to separation of variables. The middle component does not decouple
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and the Fackerell-Ipser equation is not separable (as far as we know). The zeroth order
coupling looks quite similar to the integrand of the Coulomb charge integral (4.4). For
Schwarzschild spacetime, the coupling vanishes and the operator reduces to the spherical
Laplacian. The operator of second kind decouples in all components and is equivalent
to the results of the method of adjoint operators. It leads to the Teukolsky-Starobinski
identities for the extreme components (after a separation of variables is performed) and
the anti-linear symmetry operator (5.49) for the middle component. This operator for the
middle equation has not yet been analyzed in detail. In the Schwarzschild case, it reduces
to the spherical Laplacian (so there is a certain degeneracy of the symmetry operators in
spherical symmetry) and a complex conjugation. We also point out that there are no fur-
ther (non-trivial) symmetry operators of first and second order. In particular, we showed
that a linear combination of the above results leads to the result of Beyer [18] (and its
higher spin generalization).

For linearized gravity the situation seems to be similar. We generalized the Carter
operator in GHP form for the extreme components in (5.54). It is responsible for the
separation in Boyer-Lindquist 7, # variables. The existence of a covariant second order
symmetry operator behind this result seems rather unlikely to us, because of the gauge
ambiguities of the other components. The analog of the spin-1 second type symmetry
operator are the fourth order Teukolsky-Starobinski identities for Wy and ¥y, An analysis
of the other components in terms of the adjoint operator method of section 5.2 has not yet
been done.

To summarize, the main results of the thesis are:

1. An analysis of the Lie derivative of weighted fields along isometries on vacuum
Kerr-Nut spacetimes, which yield
* algebraic identities (2.74) between curvature and connection.
* simplifications (2.88b), (2.89) of the Lie derivative on weighted scalars.
* a reformulation of the Komar integrals (4.29), (4.30) (partly) in terms of cur-
vature.
2. The formulation (4.46) of linearized mass on type D backgrounds.

3. An anti-linear symmetry operator (5.49) for the Fackerell-Ipser equation.

4. A coordinate independent second order symmetry operator (5.54) for the Teukolsky
equations, responsible for separation of variables.

Certain minor results are:

1. A construction of geometric coordinates (2.124) directly from the Killing spinor in
section 2.5.2.

2. A generalization of the GHP-formalism to tensorial fields, in particular bivectors in
section 2.2.

3. Identification of obstructions to a quasi-local angular momentum charge in terms of
linearized curvature in section 4.3.3.
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4. The second order symmetry operator of [18] is rederived in a simplified way and
generalized to spin-s fields in section 5.4.1.

5. Wald’s method of adjoint operators has been cast into a more systematic compo-
nent form in section 5.2, which might have interesting applications in the linearized
gravity case.

7.2. Outlook

There are still various problems that need to be solved for a stability proof along the
lines outlined in this thesis. To derive a Morawetz estimate for the generalized Regge-
Wheeler equation along the lines of [10, Section 6.3] a characterization of the linearized
angular momentum charge and a gauge condition ensuring the vanishing of gauge modes
(initially) is needed. Because the linearized mass charge (4.41) already couples to the
linearized tetrad, it seems that the whole system of linearized tetrad, connection and cur-
vature has to be treated simultaneously. The linearization of the system given in [54]
including the gauge-source-functions is currently investigated.

During the course of this thesis further (independent) ideas emerged, which might also
be worth pursuing. The reader is warned that some of them are quite speculative.

The first point is about Killing spinors. Many of the exceptional features of Petrov type
D spacetimes can be traced back to the irreducible (2,0) Killing spinor. This was noted
many times in the literature from different points of view and is also reflected in this the-
sis. We remarked on p. 15 that conformal Killing vectors, conformal Killing-Yano tensors
and trace-free conformal Killing tensors can be handled in a uniform way. The metric it-
self is a Killing tensor and so is a conformal metric a conformal Killing tensor. To include
also this case into the Killing spinor equation, the symmetry assumption on the spinor has
to be dropped. It then immediately follows that any k45 = feap is a Killing spinor and
so the conformal metric is included as the product kapk arp.. (1) It would be interesting
to further analyze this generalization. If we use the algebra of Killing spinors to describe
symmetries, the unnatural splitting into conformal Killing vectors and "hidden symme-
tries" vanishes. It connects the 20-dimensional space of conformal Killing-Yano tensors
and the 15-dimensional space of conformal Killing vectors on Minkowski spacetime via
products of twistors as we show in section A.4.1 below. The twistors as basic ingredients
explain the relation between the numbers 20 and 15 — this was asked for on p. 1 of [75].
Because of this structure, one can build conformal Killing tensors of arbitrarily high rank,
but they will certainly be reducible. We conjecture the existence of a highest irreducible
order in section A.4.2, which states that nothing new exists beyond a certain valence.
This would in particular say that higher rank Killing tensors on type D spacetimes are
reducible. (2) Can the idea of a proof given below made rigorous? There is more struc-
ture to be explored. The fact that the divergence of a conformal Killing-Yano tensor is a
Killing vector is included in (2.45) for n = 2. (3) Does a similar result exist for mixed va-
lence? (4) Can one also understand the construction of the second isometry (2.79) on Kerr
spacetime in this way? Since symmetrized products of Killing spinors are again Killing
spinors, they form a symmetric tensor-algebra. (5) It would be very interesting to check if
it forms a Lie-algebra with a spinorial version of the Schouten-Nijenhuis bracket. Partial
results are that this is true for conformal Killing vectors and conformal Killing tensors,
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see e.g. [45]. There is also a counterexample for pure Killing-Yano tensors in [80], but
this subspace might be too restrictive.

Below, we list further ideas, which are not directly related to the original problem, but
emerged along the way.

The geometric background of GHP formalism described in [48], [64] might be
worth a look. We understand o4, as a connection on weighted line bundles and
do; as its curvature. Can the modified covariant derivative (3.36) be used to con-
struct a Lagrangian for the Teukolsky equations, once one interprets the geometry
in the right way?

The Chandrasekhar-Sasaki-Nakamura transformation [101] makes the long range
potential of the radial Teukolsky equation into short range. Is this related to the
component (5.62d) of the Teukolsky-Starobinski identities for the separated form
of the Teukolsky variable? Does it lead to another kind of "generalized Regge-
Wheeler equation” for the linearized gravity case?

Does the geometric coordinates approach of section 2.5.2 generalize to all type D
space times? In general, the second Killing vector comes from the imaginary part of
the Killing spinor divergence. The canonical coordinates introduced in [535, p. 424]
might then generalize to the Plebanski-Demianski form [92]. This is in particular
interesting concerning the structure of duality transformations. More concretely,
where does the "c-metric charge" occur in table 4.2 on p. 45 and is it in any reason-
able sense dual to the Kerr parameter a?

Because the conformal Killing vectors of Minkwoski spacetime can be traced back
to products of twistors, it would be natural to reformulate the results of [30] from
that point of view. This would also incorporate the hidden symmetry naturally in
generalizations to type D spacetimes. Together with the spin-s equation, it naturally
includes half-integer spin fields, e.g. the massless Dirac equation and it may even
lead to a twistorial form of the Klainermann-Sobolev inequality.

The orbiting null geodesics on Kerr spacetime form a 1-parameter family as fol-
lows from [108, eq. (11b)]. This means in particular that there is a r, # dependent
direction of stable perturbations of these null geodesics. Can the Morawetz vector
field f(r.)0,, be modified to be orthogonal to the 1-parameter family of orbiting
null geodesics on Kerr spacetime?



A. Appendix

A.1l. Spin-weighted spherical harmonics

The spin weighted spherical harmonics are the eigenfunctions of the Laplace operator
on the complex line bundle of spin-weighted fields over the 2-sphere S2. Introducing
coordinates (6, ¢), we read off the weighted derivatives along the sphere from (2.107) for
a=0,
d=

—scot@) , d = —0, +scot9) (A.1)

1
E(a sinf ¥

The first operator is of spin-weight 1 and the second one of weight -1 so they raise and
lower the spin weight of a field. The weighted Laplace operator reads

1 1
T (39 e

: 2
Dy 5100, - (i0, + s cos b)) '

7’2 sin 0 r2sin? 6

A;=00"+0'0=

(A.2)

Here, we note that the zeroth order term cancels out, because [3,8'] = —sr~2, cf. (2.33).
Integer s harmonics can be calculated from the usual spherical harmonics Y, = Y}, as
follows,

Y, = (§+g:( \/_7’6) Yim, 0<s<U, A
stim — (l+5)l s ( . )
(\/_Té) lm —ZSSSO.

Applying (A.1) yields

O Yim = —%\/(z ) +5+1) 311Yim, (A.4a)

& Vi = \/_7‘ (I+8)(I=5+1) s 1Yim, (A.4b)

and in particular

0Y,,=0, ifs=lors=-(l+1), (A.5a)
Y,,=0, ifs=-lors=10+1. (A.5b)

Remark A.1.1. The eigenfunctions of (5.58b), after a Fourier transformation in t and o,
are the spin-weighted spheroidal harmonics. But the 2-surface spanned by m® and m® is
not closed and such a nice geometric interpretation as above cannot be given in this case,

see [24].
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Integration by parts yields

f52(6 Fgdu=- [S f(og)dp = - fs F(0g)du, (A.62)
fs (@h)kdyi = - fs (@)=~ fs h(dg)du, (A.6b)

where dy = sinfdfdy and f,g,h and k are of spin weights s — 1,-s,s and —(s - 1)
respectively. From properties of the spherical harmonics together with (A.3) we find

—SYZm = (_1)m+s s}_/z—m s (A7)
which is used to calculate the normalization Normalize such that

[gQ sYZm SY/m,d,u‘ = 5ll’5mm’ . (AS)

For [ = 0 there is only Yy = 1/v/4m. The more general case of half-integer spin can be
extracted from [90, eq. (4.15.95)]. We give the explicit form of the s = % harmonics for
further use in (4.10),

_ i - —ig/2 _ i iip/2
_%Y%_%_\/E\/(l cosf)e , N —\/E\/(1+cosﬁ)e ,

i . i .
= ——\/(1+cosh)e ¥/, Y, 1 —cosf)e¥?.
( ) 11 \/EV( )

Also the [ = 1 harmonics will be useful for the solutions of the Killing spinor equation in
Minkowski spacetime on p. 45. With C' = \/3/(4) they read

(A9)

=

1
2

C . c . C :
Wi = —5(1 —cosf)e ¥, WY = _ﬁ sinf, 1Y = —5(1 +cosf)e'?
C . C .
Y11 = —=sinfe™, Y10 =C'cosf, Y11 = ——=sinfe¥, (A.10
0Y1-1 NG 010 011 NG ( )
C . c . C .
Y= —5(1 +cosf)e?, Yo = E sinf, Y = —5(1 —cosf)e'?.

A.2. Despinning

In the classical work [95], Richard Price introduced the notion of despun quantities. This
refers to applying as many 8,8 operators to weighted fields on a Schwarzschild back-
ground as needed for the resulting field to be of spin-weight zero. We only note here that
a certain natural generalization for the Kerr spacetime exists, due to the form of the spin
coefficients in the Carter tetrad (2.107). For a {p, ¢}-weighted field  we find,

(6 +g7‘ - %7”) n=

1 .

m(iasin96t+09+ﬁ@w—scow)n, (A.11a)

(a’-2'+€—) —L(-i 000, + 0y - —— 0, + te) (A.11b)
STt TN = o5 as e+ 0p = 0, +scotf ). .
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This might be of interest for the generalized Regge-Wheeler gauge as proposed in [94,
Section 3.2.1]. We also note the similarity to the conformally weighted GHP operators in
[90, p. 360]. Because of the formal symmetry characterized by the Sachs star operation
(2.15c¢), the operators

P q _) 1 (r?2+a? M)
+oprZpln=— 8, +VAD, + —— (A.12a)
(b 30)- 7 (7 f f
r Py QI) 1 r’ +CL2 \/_6 4+ — )
_gy_ 1 - A.12b
(b 2! ) ( \/Z f \/— ( )
follow. Here b denotes the boost weight.
A.3. Algebraic identities on Kerr-NUT
In this section, we prove the algebraic identities (2.74). Define the 1-forms
L=C(p'l-pn), M=C((rm-7"m), (A.13)

with [, n, m,m being the 1-forms corresponding to the NP tetrad (2.5). In the Kerr-NUT
class, they satisfy L = L and M = M, because of (2.72). The 1-forms corresponding to
the isometries (2.68) and (2.79) take the simple form

£=L+M, n=1°L-R*M. (A.14)

Here R = 3(¢ + (), I = (¢ - () are real and imaginary parts of the Killing spinor
coefficient in (2.66), respectively.

Proposition A.3.1. The exterior derivatives of (A.13) read,
AL =C[ian(2r(F =)+ Wy + $0y) + mam2p (o~ )] (A.152)
M = [l An2r(r' =7) +mam (20 (5= p) = Uz + $T5 )| . (A.15b)

Proof. Since the forms (A.13) are unweighted we can use Leibniz rule and the weighted
exterior derivative introduced below (2.62), which yields
AL =d¢ A (p'l-pn) + ¢ (A9 AL+ p'd®l-d®p An - pd®n) . (A.16)

We find d¢ = —%h{ with h given in (2.27), as follows from (2.60). The weighted exterior
derivative of the connection coefficients,

d®p = (Ip' + np-md —mad)p

=1 (pp’ +7(7 = T) - 50y - %@2) +np*-m2t'p-m(p-p)T,

follows from (2.58) and (2.73). The weighted exterior derivative of the tetrad follows
from anti-symmetrizing (2.34) and yields after using (2.56),

d®l=—Flam+pmAam-—TIAT+pmAm.

For d®n and d®p’, one can do the same calculation or alternatively use the GHP prime
(2.15a). Adding terms up according to (A.16) yields (A.15a). The derivation of (A.15b)
follows along the same lines or alternatively by applying the GHP star (2.15¢) to (A.15a).
However, the GHP star is subtle in this case, because ({)* = —(. [l
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The relation between the complex Komar form for £ and the curvature we calculated
covariantly in (4.29) can also be deduced from (A.15). For completeness, we formulate
this in
Corollary A.3.2. The exterior derivative of the Killing spinor divergence reads

dé = (U, 24 - (U, 2t (A.17)
Proof. In exterior notation, the middle component of (2.8) reads Z! =n Al —m Am. We
find for given functions f, g the decomposition
fZ '+ gZ = (f+g)nnal-(f-g)mAm. (A.18)
Adding the equations (A.15) yields
dé=d(L+ M)
=1An(CUs+ (W) +mam (—CUy +(Wy)
= —C‘I’2zl - 5‘11221 )
by setting f = (¥, and g = —( s, O
Because the complex Komar form (4.27) is naturally expressed in terms of connection

coefficients and we have for tetrads which are invariant under L, the identity (2.91), (A.17)
yields

chi=C(ep +ep-T'B-703") = _%C‘I’2-

This proves (2.74a). For the second Killing vector in (A.14), the Komar form is calculated
in

Proposition A.3.3. The exterior derivative of the second Killing vector reads

dn=AZ°+BZ'+CZ*+ AZ° + BZ' + CZ?, (A.19)
with the coefficients A, B, C given by

A=-2Crp, (A.20a)
B =30(C+ )Wy~ 3¢+ pp'C(C- ) +77'C(C+ ), (A.20b)
C =-20%T"p". (A.20c)

Proof. The exterior derivative decomposes into
dnp=dI* A L+I*dL -dR* A M - R*dM . (A.21)
We find dI2 = ~((¢ - ¢)(7'm + tm) and dR? = ~C(¢ + ¢)(p'l + pn). Using this together
with (A.15) and reordering terms yields the result. Ol

We can now directly relate this result to the coefficients of the Komar form. Because of
the numerical factor in (4.27), we find

oo = 3A, 2h1 =3B, oha = 5C'. (A.22)

The extreme components give nothing new as can be checked by expanding (2.91), but
the middle component yields the second algebraic identity for the connection coefficients,

21%(ep' +€'p) +2R*(T'B+78') = %(@ + (U, - %C_Q\IJQ
+pp'C(C=C)+77'¢((+ ().
This proves (2.74b).
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A.4. Notes on Killing spinors

In this section, we collect some properties of the Killing spinor equation. In particular
we show that all conformal Killing vectors and all Killing 2-spinors on Minkowski space-
time are reducible and can be constructed from solutions of the twistor equation (2.41).
Section A.4.2 deals with more speculative ideas about Killing spinors.

A.4.1. Killing spinors from twistors on Minkowski spacetime

Introducing affine coordinates z* with respect to some chosen origin on Minkowski space-
time, the general solution of the twistor equation (2.41) is of the form

kA =CA =iz Dy, (A.23)

with constant spinors C4 and D 4. Following [91, eq. (6.1.10)], solutions of V4" (4x5) = ()
do have the property V4,VE,x¢ = 0 (it is skew in BC, skew in AC, symmetric in AB
and hence vanishes). So V5,x¢ must be constant and proportional to ¢, e.g. V& xk¢ =
-ieBCDpr. An integration yields (A.23). It has four complex degrees of freedom and
therefore the space of solutions is complex four dimensional. We now show that the
complete real 15 dimensional space of conformal Killing vectors is reducible and can be
expressed in terms of products of the form

KRV = CACY —i (2P Dp CY — 2PV DpCA) + 2P oP Dy Dy (A24)

The first term yields the four translations (6.9)(a). With an abuse of (index) notation, this
reads CAC4" = TA4' for some choice of constant C 4. With an irreducible decomposition
of the last term,

! I ! I ! 4

pAB BA' _ B/(A B)A _ %GABxB C oA
_ .B'(A_ B)A" 1 _AB(,.C(B,. A  1-A'B' CC'
=x ( Zz ) —5€ (I’ ( To )+§€ T ZECC/)

! ! ! A _ I ’ !
_ %xAB 2BA | %xBB 2AA %lEABEA B ,.CC Toor
we can rewrite it into
I ! = / ’ _AI R i —
a8 2B D D = -3 (-2285 22 + 2BV B 2% 100) Dp D . (A.25)

So it yields the four conformal accelerations (6.10)(b) for some choice of constant D 4.
For the middle term in (A.24) we define the constant spinor E4p = C4Dp. It has the
irreducible decomposition E g = Sap + %EABS with Syp = Eap),S = E 44 and we find
for the middle term (up to the prefactor —i to make it real),

I = = ! ! — AU _A' R/
#B D O~ pPA DpCA =~ e EAD 4 gy B AP
AT — AT ’ —
=Tpp (SABEAB - S4B EAB) + %a:AA (S-5).
The first term corresponds via S = —i(SABgA'B’ — GA'B'¢AB) (o a real, anti-symmetric

two tensor and describes the Lorentz transformations (6.9)(b). The second term is the
scaling transformation (6.10)(a). We note, that only the imaginary part of .S contributes.
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This is the origin of the discrepancy between the naively expected dimension 16 for (A.24)
and the dimension 15 for conformal Killing vectors.

The general solution of the Killing 2-spinor equation given in (4.5) is also reducible
and can be decomposed into x4 x5 with the constants being related via

UAB = CACE | VE=—iDyC?, W =DuDp . (A.26)

Here the expected real dimension 20 for symmetric products k4«2 coincides with the
dimension of the solution space of the Killing 2-spinor equation (2.47). This result gives
a (representation theoretic) relation between the space of conformal Killing-Yano tensors
and the conformal group in dimension four based on twistors. This was asked for in
[75]. The formulation used in this thesis is not able to analyze such relations in other
dimensions.

A.4.2. Further relations

The results on Minkowski spacetime suggest to use the solutions of the twistor equation
as the fundamental characterizations of symmetries. We have seen in the previous section,
that all valence (1, 1) and (2,0) solutions are reducible. A natural question is, whether all
higher valence Killing spinors are reducible. More general, one might ask if there is an
upper bound, also for Petrov type D spacetimes. For a conjecture, we need the following
definitions.

Definition A.4.1 (Killing spinor representative). With a Killing spinor of valence (n,m)
and n > m, the complex conjugated spinor is also Killing and of valence (m,n). In this
case, we call the order (n, m) Killing spinor a representative for both solutions.

Definition A.4.2. For a given spacetime, the highest irreducible order (HIO) is defined
as the pair (n,m) of integers, such that:

1. Irreducible representatives of valence (n, k), with k < m and of valence (1, m), with
[ < n to the Killing spinor equation do exist.

2. All solutions of valence (k,l), with k > n or | > m are reducible.

Conjecture 2. On a 4 dimensional vacuum spacetime of Lorentzian signature, the HIO
of Petrov type

* Ois(1,0).
* Dis(2,1).

For the conformally flat case, a representational theoretic argument might generalize the
results of section A.4.1 to general valence. For Petrov type D, we found a partial result
in [111], where it is proven that all valence (2n,0) Killing spinors with integer n > 1 are
reducible and that valence (2n+1) Killing spinors do not exist. The calculation is based on
the integrability condition (2.46). A decomposition of the Killing spinor equation (or any
other first order equation) in a principal dyad shows that only neighboring components
are coupled, see e.g. (2.39) or (2.53). It is reasonable that the integrability condition
restricts the extreme components in such a way that the remaining components can be
associated to a Killing spinor of lower valence. The general integrability condition is
quite complicated, see [7, Section 2.3], and has not been analyzed in components, as far
as the author is aware.
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