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I do not know what I may appear to the world, but to myself
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and diverting myself in now and then
finding a smoother pebble or a prettier shell than ordinary,

whilst the great ocean of truth lay all undiscovered before me.
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Abstract

In this thesis we study theoretically a quantum degenerate ultracold dipolar
gas of bosons. In particular, we focus on a dipolar Bose-Einstein condensate
confined in an optical lattice and we demonstrate extensively how such ar-
rangement can be employed to investigate on novel phenomena that arise
as a consequence of both the long-range character and the anisotropy of the
dipole-dipole interactions.

We examine a stack of quasi-one-dimensional traps and we show that
the dipolar interactions support the formation of intersite soliton dimers and
trimers, which constitute a paradigm of soliton molecules. We investigate in
detail the stability of these two- and three-soliton bound states and we prove
their existence in a regime where their molecular counterparts are precluded.
Moreover, we find that in contrast to the dimers of polar molecules the soliton
dimers exhibit a nontrivial behavior of the elementary excitations that stems
from the competition between onsite and intersite dipole-dipole interactions.
We demonstrate that the soliton molecules that we report are well feasible
under realistic experimental conditions.

Furthermore, we show that the destabilization of a dipolar condensate
confined in such a stack of nonoverlapping quasi-one-dimensional tubes in-
duces an interesting dynamics characterized by the development of a corre-
lated modulational instability in the disjoint sites. Careful analysis of this
phenomenon reveals that for a sufficiently large dipole moment this corre-
lated instability may be followed by the spontaneous self-assembly of sta-
ble soliton filaments (comprised of the soliton dimers) or a two-dimensional
checkerboard soliton crystal (comprised of the soliton trimers), providing a
route for the first realization of self-sustained two-dimensional arrangements
of matter-wave solitons. Our numerical simulations show that these self-
assembled structures may be observed within current experimental feasibil-
ities.

In addition, we explore consequences of a parametric modulation of the
dipolar interactions in a quasi-one-dimensional dipolar condensate in the
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stack. Showing that the emerging Faraday patterns differ significantly with
respect to the two-dimensional case, we demonstrate the nontrivial role of the
confinement dimensionality in dipolar gases. Moreover, considering two sites
in the stack, we present nonlocal effects that originate in the dipolar coupling
between the patterns in the nonoverlapping tubes. Namely, we show that, for
a critical driving frequency, the unfolding of the excitations spectrum into
symmetric and antisymmetric modes gives rise to a transition between corre-
lated and anticorrelated Faraday patterns in the two condensates. Further-
more, we find that for the critical driving the emergent pattern differs from
one realization to another, resulting from a spontaneous symmetry-breaking
mechanism.

Finally, we focus on a two-dimensional geometry and we show that the
density dependence of the excitations spectrum in a trapped dipolar conden-
sate gives rise to an effective potential that traps elementary excitations in
the region of highest density of the condensate, leading to a roton confine-
ment. Moreover, we demonstrate that in a pancake dipolar condensate the
roton confinement is of a fundamental relevance for the dynamics of the roton
instability. In particular, we find that a roton-unstable condensate develops
a density pattern that is localized in the trap center. We show that this atyp-
ical modulational instability leads to local collapses, followed by an elaborate
atoms loss dynamics, which differs radically from both the usual global col-
lapse in a nonpolar gas and the d-wave collapse in a dipolar gas. Inducing
such roton instability dynamically and next arresting the collapse we illus-
trate the formation of a robust and long-living confined gas of rotons. Other
consequences of the roton confinement are also discussed, including the lo-
cal susceptibility of the condensate against density perturbation, which we
exemplify with a vortex lattice.

Keywords: Bose-Einstein condensate, dipole-dipole interactions, optical lattice
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Zusammenfassung

In der vorliegen den Arbeit wird die Theorie quantenmechanisch entarteter
ultrakalter dipolarer bosonischer Gase untersucht. Von besonderem Inter-
esse ist ein Bose-Einstein Kondensat, welches in einem optischen Gitter ein-
geschlossen ist. Es wird gezeigt, wie solch ein System dazu genutzt werden
kann, um neuartige Phänomene zu studieren, welche sowohl auf dem langre-
ichweitigen Charakter der Dipol-Dipol-Wechselwirkung basieren, als auch
deren anisotrope Natur miteinbeziehen.

Erforscht werden Systeme aus Blöcken quasi-eindimensionaler Fallen,
um zu zeigen, dass dipolare Wechselwirkungen die Bildung von ”inter-site“
Soliton-Dimeren und -Trimeren fördern, was als ein Beispiel für die Bildung
von Solitonenmolekülen dient. Im Detail wird die Stabilität der genannten
Zwei- und Drei-Solitonen-Bindungszustände untersucht und gezeigt, dass
diese in einem Bereich tatsächlich existieren, wo die Bildung der den soli-
tonischen Bindungszuständen entsprechenden Moleküle unterdrückt wird.
Des Weiteren ergibt sich, dass, anders als im Fall von Dimeren von polaren
Molekülen, die Solitondimere eine nichttriviale Art elementarer Anregun-
gen aufweisen, welche ihren Ursprung im Zusammenspiel von ”on-site“ und
”inter-site“ Dipol-Dipol Wechselwirkungen haben. Dabei wird auch auf die
experimentelle Realisierbarkeit der oben erwähnten solitonischen Moleküle
eingegangen.

Darüber hinaus wird aufgezeigt, dass eine Destabilisierung des dipolaren
Kondensates, welches in solchen Blöcken von nicht-überlappenden, quasi-
eindimensionalen Röhren gefangen ist, interessante dynamische Effekte her-
vorruft, welche durch korrelierte modulierte Instabilitäten zwischen disjunk-
ten ”sites“ charakterisiert werden. Eine detaillierte Analyse besagter Phäno-
mene lässt darauf schließen, dass für ausreichend große Dipolmomente die
korrelierten Instabilitäten abgelöst werden durch spontan geordnete stabile
Soliton-Filamente (bestehend aus Solitonendimeren), oder durch zweidimen-
sionale schachbrettartige Solitonenkristalle (bestehend aus Solitontrimeren),
was wiederum einen Weg zur Realisierung selbsterhaltender, zweidimen-
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sionaler Anordnungen von Materiewellen-Solitonen aufzeigt. Numerische
Simulationen geben einen Hinweis darauf, dass auch diese sich selbst or-
ganisierenden Strukturen in bestehenden Experimenten beobachtet werden
können.

Zusätzlich werden die Auswirkungen einer parametrischen Modulation
der dipolaren Wechselwirkung in einem quasi eindimensionalen dipolaren
Kondensat in der oben eingeführten Blockanordnung studiert. Dabei wird
gezeigt, dass die auftretenden Faraday-Muster sich signifikant von denen
im zweidimensionalen Fall unterscheiden. Daraus lässt sich eine nicht triv-
iale Rolle der Einschluss-Geometrie im Fall von dipolaren Gasen schlussfol-
gern. Ferner, im Fall von zwei ”sites“ im Fallenblock, werden nichtlokale Ef-
fekte vorgestellt, welche ihren Ursprung in der dipolaren Kopplung zwischen
den ausgebildeten Mustern in den nicht-überlappenden Fallenröhren haben.
Konkret wird gezeigt, dass für kritische Modulationsfrequenzen die Aufs-
paltung des Anregungsspektrums in symmetrische und antisymmetrische
Moden einen Übergang zwischen korrelierten und unkorrelierten Faraday
Mustern in den zwei Kondensaten ermöglicht. In diesem Rahmen variieren
die auftretenden Muster im Bereich der kritischen Modulation je nach Aus-
führung, was ein Resultat spontaner Symmetriebrechung ist.

Zum Schluss wird die zweidimensionale Geometrie genauer betrachtet
und gezeigt, dass die Dichteabhängigkeit des Anregungsspektrums in einem
eingeschlossenen dipolaren Kondensat ein effektives Potential hervorruft,
welches elementare Anregungen in Regionen hoher Dichte im Kondensat
einschliest, was in einem Roton-Confinement resultiert. Darüber hinaus
ist das Roton-Confinement in oblaten dipolaren Kondensaten von fundamen-
taler Bedeutung für die Dynamik der Rotoninstabilität. Im Detail wird ge-
zeigt, dass eine Roton-Instabilität ein Dichtemuster ausbildet, welches im
Fallenzentrum konzentriert ist. Es wird nachgewiesen, dass diese untypische
Modulationsinstabilität zu einem lokalen Kollaps führt, gefolgt von einem
plötzlichen Stoppen des Atomverluste. Dies unterscheidet sich grundlegend
sowohl von einem globalen Kollaps in einem un-polaren Gas, als auch vom
d-Wellen Kollaps in einem dipolaren Gas. Es wird gezeigt, dass das dy-
namische Erzeugen einer solchen Roton-Instabilität, gefolgt von einer Un-
terdeckung des Kollapses, zu der Ausbildung eines stabilen und langlebigen
eingeschlossenen Gases aus Rotonen führt. Auch weitere Konsequenzen des
Roton-Confinement werden diskutiert und untersucht, wie zum Beispiel die
lokale Suszeptibilität des Kondensats gegenüber Dichtefluktuationen, welche
an einem Vortexgitter veranschaulicht werden können.

Schlagworte: Bose-Einstein Kondensat, Dipol-Wechselwirkung, optisches Gitter



t

Contents

I Introduction and Overview 1

II Bose-Einstein condensation 3
II.A Cooling and trapping of neutral atoms . . . . . . . . . . . . . . 4

II.A.1 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
II.A.2 Atomic traps . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
II.A.3 Optical lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II.B An ideal Bose gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
II.C A weakly interacting Bose gas . . . . . . . . . . . . . . . . . . . 12

II.C.1 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . 12
II.C.2 Mean-field description . . . . . . . . . . . . . . . . . . . . . . 13
II.C.3 Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . . 14
II.C.4 Thomas-Fermi limit . . . . . . . . . . . . . . . . . . . . . . . 15
II.C.5 Stability of the condensate . . . . . . . . . . . . . . . . . . . 16
II.C.6 Quasi-low-dimensional Gross-Pitaevskii equation . . . . . 18
II.C.7 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
II.C.8 Elementary excitations . . . . . . . . . . . . . . . . . . . . . 22

III Dipolar Bose-Einstein condensates 27
III.A Dipole-dipole interaction in a polar gas . . . . . . . . . . . . . . 28
III.B Geometrical stabilization . . . . . . . . . . . . . . . . . . . . . . 32
III.C Collapse dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 34
III.D Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
III.E Roton-Maxon spectrum . . . . . . . . . . . . . . . . . . . . . . . 38
III.F Dipolar solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IV Soliton molecules in dipolar BECs 45
IV.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
IV.B Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
IV.C Dipolar soliton in a single quasi-1D trap . . . . . . . . . . . . . 48

XI



XII

IV.D Soliton dimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
IV.E Soliton trimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
IV.F Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V Spontaneous self-assemblies of solitons in dipolar BECs 59
V.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
V.B Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
V.C Linear regime: Bogoliubov modes . . . . . . . . . . . . . . . . . 62
V.D Filamentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
V.E Checkerboard soliton crystal . . . . . . . . . . . . . . . . . . . . 68
V.F Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

VI Faraday patterns in coupled quasi-1D dipolar BECs 73
VI.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
VI.B Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
VI.C Faraday Patterns in a single quasi-1D dipolar BEC . . . . . . 77
VI.D Faraday Patterns in two quasi-1D dipolar BECs . . . . . . . . 80
VI.E Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VII Roton confinement in trapped dipolar BECs 87
VII.A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
VII.B Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
VII.C Local modulational instability and collapse . . . . . . . . . . . 91
VII.D Confined roton gas . . . . . . . . . . . . . . . . . . . . . . . . . . 94
VII.E Spatially dependent susceptibility . . . . . . . . . . . . . . . . . 95
VII.F Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

VIII Conclusions and Outlook 97

A Dimensionally reduced GPE 101

B Analytical expressions for the energy functional 105

C Bogoliubov-de Gennes equations 109

D Derivation of the Mathieu equations 113

Bibliography 117

Curriculum Vitae 145

Publications 147

Acknowledgements 149



I

t

Introduction and Overview

The impact of ultracold atomic quantum gases on present-day physics is
linked to the extraordinary degree of control that such systems offer to in-
vestigate the fundamental behavior of quantum matter under various con-
ditions. This controllability extends also to the interatomic interactions that
acutely influence intrinsic properties of a gas. Until recently, only short-range
isotropic interactions had been investigated. Lately, however, theoretical and
experimental developments in ultracold gases have attracted a major focus of
the community on the frontier of long-range interactions, and soon new disci-
pline of polar gases emerged. Within this vast field the research has been pur-
sued in three branches: heteronuclear molecules, Rydberg gases and highly
magnetic atoms. In this thesis we focus on the last case, and specifically on a
quantum degenerate dipolar gas of bosons, which recently has been realized
in several experiments.

Remarkably, the long-range dipole-dipole interactions result in an inher-
ently nonlocal nature of dipolar gases, particularly striking in a deep opti-
cal lattice. For a nondipolar system, atoms trapped in different sites of a
deep lattice do not interact with each other. Hence, for a vanishing intersite
hopping, different lattice sites may be considered as mutually independent,
uncorrelated experiments. In contrast, even in the absence of hopping, the
dipole-dipole interactions couple the disjoint sites and play a decisive role in
the collective excitations spectrum, dynamics, and stability properties of the
condensate, as we will learn throughout.
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Dipolar effects are also particularly relevant to what concerns the non-
linear properties of dipolar Bose-Einstein condensates, the leitmotif of this
thesis. Crucially, whereas a nondipolar BEC presents a local Kerr-like type
of nonlinearity, the nonlinearity in a dipolar BEC exhibits a nonlocal charac-
ter. This, in turn, fundamentally modifies the physics of dipolar solitons and
density patterns, and becomes especially striking in a quasi-one-dimensional
condensate where, contrary to higher dimensions, an instability is not fol-
lowed with a collapse.

The long-range character and anisotropy of the interactions in a dipolar
condensate give rise to yet another phenomenon, which links this system di-
rectly to superfluid helium. Namely, the elementary excitations spectrum in
a dipolar gas is distinguished by the presence of the celebrated roton mini-
mum at intermediate momenta, a phenomenon absent in nonpolar gases. As
we will see, the occurrence of the roton has fundamental consequences for the
stability of a condensate, and for the understanding of its collapse dynamics.

In the following chapter we present the fundamental ideas in the physics
of ultracold degenerate Bose gases, for the cases of an ideal gas and a gas
with short-range, and isotropic interactions. In chapter III we introduce the
concept of a Bose-Einstein condensate with long-range and anisotropic dipole-
dipole interactions and we discuss the central novel phenomena that occur in
such systems. In chapter IV we discuss the physics of a dipolar condensate
in deep optical lattice that results effectively in a stack of disjoint quasi-one-
dimensional condensates and we show that the interplay between the onsite
and intersite dipolar interactions gives rise to soliton bound states. In chap-
ter V a destabilization of such stack is investigated and it is demonstrated
that the dipole-dipole interactions between the nonoverlapping condensates
results in a correlated modulational instability that evolves spontaneously
into soliton filaments or a soliton crystal, depending on the sign of interac-
tions. In chapter VI we study Faraday patterns formation in the stack and
we find, for the case of two sites, that the dipolar intersite interactions render
the patterns in the two condensates correlated or anticorrelated, depending
on the frequency with which the strength of the interactions is modulated.
Finally, in chapter VII we present the results of our study on the roton con-
finement in a trapped dipolar Bose-Einstein condensate and we discuss its
far-reaching consequences. We conclude in chapter VIII, providing an out-
look for the further research on the discussed subjects.
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Bose-Einstein condensation

Since the first theoretical works of Satyendra Nath Bose and Albert Ein-
stein [1, 2], the Bose-Einstein condensation remained merely an obscure idea
for seventy years, with the major experimental obstacle laying in ultracold
temperatures required to observe the condensate. Finally, this long quest
reached its goal in the year 1995, when the first BEC was observed in di-
lute alkali gases (rubidium, lithium and sodium) in JILA, Rice University
and MIT [3–5]. For this achievement Eric A. Cornell, Carl E. Wieman and
Wolfgang Ketterle were jointly awarded the Nobel prize in physics in 2001.
In this chapter we discuss briefly the fundamental concepts behind the ultra-
cold Bose gases. Comprehensive coverage of this vast discipline, along with
recent developments, can be found in a number of reviews and monographs
that ensued from the wide interest in this field [6–11].
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II.A

Cooling and trapping of neutral atoms

The genuine idea of cooling and trapping of neutral atoms is based on their
interactions with light. It was essentially the progress on novel experimental
techniques in these two fields in the second half of the 20th century that
paved the way to the observation of ultracold degenerate quantum gases.
The success in the development of methods to cool and trap atoms with laser
light was awarded with the Nobel prize in physics in 1997 for Steven Chu,
Claude Cohen-Tannoudji and William D. Phillips.

II.A.1 Cooling

The simplest form of cooling is Doppler cooling [12, 13], which can be under-
stood considering a semi-classical picture of interactions of a two-level atom
with the electric field of a laser. For sufficiently small intensity of the field,
the force F acting on the atom reads in general F=FD +FR, where FD is the
dipole force proportional to the gradient of the light intensity, and FR is the
radiation pressure force [14]. A two-level atom, with the transition frequency
ω0, moving at velocity v in a monochromatic light field E(r, t)= ε̂E cos(ωt−kr),
experiences the Doppler effect and hence the frequency detuning δ = ω−ω0
is modified, according to δd = δ−ωd, with ωd = kv as the Doppler frequency
shift. In consequence, while the dipole force vanishes, the radiation pressure
force reads [15]

FR(v)=FR(v = 0)−ηv, (II.1)

where the coefficient

η=−ħk2Γ

[
δΩ2/2(

δ2 +Γ2/4+Ω2/2
)2

]
(II.2)

depends on the detuning, spontaneous emission rate Γ and Rabi frequencyΩ.
Clearly, for δ< 0 (red-detuned light) η becomes positive and the second term
in Eq. II.2 plays the role of a friction force that slows the atoms down. In other
words, since photons in the field propagating towards the atom are now closer
to the resonance ω0 =ω, the atom will absorb them more likely than the ones
from the field propagating in the same direction and therefore will deceler-
ate. Cooling of a gas can therefore be readily achieved by combing two coun-
terpropagating red-detuned laser beams that will turn the gas into so-called
optical molasses. Nonetheless, the possibilities of the Doppler cooling are lim-
ited by the randomness of spontaneous emission and randomness of light ab-
sorption processes [15]. In consequence, the precise analysis of these effects
finds the so-called Doppler limit TDoppler, that is that the minimum temper-
ature achievable with the Doppler cooling technique, kBTDoppler ≈ ħΓ/2, ob-
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tained for the detuning δ = −Γ/2. For typical alkali atoms the Doppler limit
is of the order of 100−200µK and it was long believed to be the fundamental
limit of laser cooling.

However, the experimental results [16] found temperatures of the mo-
lasses well below the Doppler limit and soon the theoretical explanation fol-
lowed [17] proposing the idea of Sisyphus cooling. The key feature of this
model that distinguish it from the earlier picture is the inclusion of both the
multiplicity of sublevels that make up the atomic state and spatially depen-
dent optical potential, which can be produced, e.g., with two counterpropa-
gating lasers with orthogonal or oppositely circulating polarizations (polar-
ization gradient). For atoms moving in a light field that varies in space, op-
tical pumping acts to adjust populations of some of the Zeeman sublevels of
the ground state hyperfine levels to the changing conditions of the light field.
The central parameter that governs the populations is the light shift ∆Eg,
i.e., the shift of the energies of the ground magnetic substates induced by the
atom-light interaction [18],

∆Eg = 2ħδΩ2

Γ2 +4δ2 C 2
ge, (II.3)

with Cge as the Clebsch-Gordan coefficient that describes the coupling be-
tween the atom and the light field. Crucially, this parameter not only depends
on the magnetic quantum numbers but also on the polarization of the field.
Thus, for a field with nonzero polarization gradient, while traveling through
the wavelength of the field atoms are continuously pumped into most neg-
atively shifted state, readjusting their population completely from one Zee-
man sublevel to another, and back again. Under appropriate conditions, the
atom preferentially jumps from one ground state to another when it is near
the maxima of the initial optical potential (most positively shifted state) and
hence the minima of the final one (most negatively shifted state). As a re-
sult, the atom moves mostly uphill the potential and transfers its kinetic
energy to the potential energy that is subsequently radiated away due to the
spontaneous emission [15]. Therefore, the atom seems always to be climb-
ing potential hills and loosing energy in the process, which eventually can
lead to temperatures orders of magnitude smaller than the Doppler cooling.
Here again, the minimum attainable temperatures are however fundamen-
tally limited by the randomness of the recoil process. Indeed, more detailed
calculations show that the bottleneck of the Sisyphus cooling is few recoil
temperatures Trec =ħ2k2/2mkB [18]. For typical alkali atoms this translates
into 1−50µK.

Interestingly, even this limitation has been yet finally overcome with
the ideas of employing states insensitive to the light field, so called dark
states [19, 20]. In the context of optical cooling, a particularly gripping class
of these superposition states are those whose excitable component vanishes
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exactly when their de Broglie wave is characterized by a particular momen-
tum. Such velocity selective population trapping (VSCPT) allows arbitrarily
narrow momentum distributions and has been demonstrated to yield tem-
peratures orders of magnitude smaller than the recoil limit [21]. A detailed
theory of VSCPT can be found in Ref. [22]. Another technique that proved
itself successful in subrecoil cooling is referred to as Raman cooling [23]. In
Ref. [24] this method was used for cesium atoms and temperature below 3nK
was reached, i.e., less than 1/70 of the single photon recoil temperature.

Yet, the laser cooling methods by itself do not suffice to reach the regime of
Bose-Einstein condensation. The difficulty stems from the fact that the quan-
tum degeneracy limit calls not only for ultra-low temperatures but also for
sufficiently high densities of the atomic sample (see Sec. II.B) that have not
been achieved with laser cooling, mostly due to absorption of light, radiation
trapping and excited state collisions [25]. Crucially for the long sought goal
of attaining the condensate, all these problems have been surmounted with
evaporative cooling. First proposed and experimentally applied for atomic
hydrogen [26, 27], the method was finally extended to alkali atoms [28–30].
Evaporative cooling is based on the idea of energetic (hot) particles from the
Maxwell-Boltzmann distribution tail escaping a confined sample carrying en-
ergy larger than the average thermal energy, followed by a rethermalization
of the remaining gas through elastic collisions. The process results in cooling.
Due to the lower temperature, the cooling rate decreases, unless evaporation
is forced by modifying the system, e.g. with the radio frequency knife [31, 32],
in such a way that less energetic particles can still escape. A canonical exam-
ple of evaporative cooling is that of a cooling of a cup of coffee. In this case,
the liquid is converted to a gaseous state as the hottest molecules evaporate
escaping the cup and leaving the remaining molecules in the liquid cooler.
Furthermore, such cooling requires the evaporation of only a small fraction of
the coffee to cool it by a considerable amount. Thus, even though the method
results in the removal of some particles, those that remain have much lower
average energy and, occupying a smaller volume, increase the density. Com-
prehensive reviews on evaporative cooling can be found in Refs. [25, 33].

II.A.2 Atomic traps

The two main groups of atomic traps are dissipative traps and conservative
traps. The traps from the former group provide a trapping mechanism both
in position space and in velocity space (cooling). The ones that belong to the
latter group confine atoms in a restricted volume in space with no influence
on their velocity distribution (no cooling).

The basic example of a dissipative trap is the magneto-optical trap (MOT),
usually the step number one in an experimental sequence towards BEC. The
MOT consists of two counterpropagating laser beams with opposite circular
polarizations and a static magnetic field directed along the lasers axis, with
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magnitude proportional to the distance from the trap center z = 0 and revers-
ing its sign in that point [34, 35]. Such field may be created by a pair of anti-
Helmholtz coils [15]. Through combination of arguments related to both the
molasses technique and the radiative selection rules we find that the laser
detuning acquires now a spatially dependent character due to the Zeeman
effect, which shifts the atomic transitions in and out of the resonance with
the laser field. In result, the total radiation pressure force FR can be written
as [18]

FR =−βv−mω2
trapz, (II.4)

which is not only a cooling force but also a restoring force that brings the
atoms towards the center of the trap.

The actual condensation and the target measurements on the BEC typ-
ically take place in a conservative trap, such as a magnetic trap or a dipole
trap, where the precooled atoms are loaded from the MOT and cooled further
evaporatively. The design of various quasistatic magnetic traps is principally
based on the fact that a neutral atom with a permanent magnetic moment
µ can be confined in a minimum of an inhomogeneous field B by a force
F = ∇ (µ ·B), provided that the atomic state was prepared in the so-called
weak-field seeking state [15]. The general features of most common mag-
netic traps’ configurations, i.e. quadrupole traps, spherical hexapole traps
and Ioffe-Pritchard traps are discussed in Ref. [36].

In the case of a dipole trap, the oscillating electric field of a laser induces
an oscillating atomic electric dipole moment that interacts with the field. If
the laser intensity I(r) is spatially inhomogeneous, the coupling and the cor-
responding ac-Stark shifts of atomic energy levels vary in space, producing
a potential U(r) ∝ I(r) /δ [14] that gives rise to the dipole force FD =−∇U(r)
(see Fig. II.1.a). Clearly, for a red-detuned light (δ< 0), the sign of the interac-
tions is such that U(r) is attractive and the atoms are being pulled into a re-
gion with maximum laser intensity (strong-field seekers). For a blue-detuned
light (δ > 0) the potential U(r) is repulsive and the dipole force pushes the
atoms out to a region with minimum laser intensity (weak-field seekers). The
atoms can be thus trapped in minima or maxima of the laser field, depend-
ing on the frequency of the lasers. An all-optical formation of the condensate
was initially facing some major obstacles [37] and turned successful [38] only
some time after the Boulder, MIT and Rice groups employed magnetic traps
in the first observation of the BEC [3–5]. An extensive review on optical
dipole traps can be found in Ref. [37].

II.A.3 Optical lattices

A periodic lattice potential with tightly confining potential wells can be cre-
ated by realizing a dipole trap with superimposed counter propagating laser
beams. These beams interfere and the interference pattern results in a pe-
riodic potential landscape, which, depending on the lasers arrangement ac-
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quire one-, two- or three-dimensional character (see Fig. II.1). In the center
of the trap, for distances much smaller than the beam waist, the trapping
potential V (r) in three-dimensions can be approximated as the sum of a ho-
mogeneous periodic lattice potential

Vp(r)=Vp
(
sin2(kx)+Vy sin2(ky)+Vz sin2(kz)

)
, (II.5)

Figure II.1: (a) Laser light potential proportional to the gradient of the laser’s
intensity. The repulsive or attractive character of the potential depends on
the sign of the laser’s detuning from the atomic transition frequency. The
simplest imaginable trap of this type consists of a single, strongly focused
Gaussian laser beam [18]. (b) Two counterpropagating laser beams form a
standing wave through interference and hence, effectively, an array of 2D
disk-like trapping potentials. Ultracold atoms can be trapped in the poten-
tial minima (or maxima) that occur every half of the wavelength, separated
from the neighboring minima by potential walls. This is the basis of a one-
dimensional optical lattice. (c) Adding an additional pair of lasers we obtain
a two-dimensional optical lattice that gives rise to an array of tightly con-
fining 1D potential tubes. (d) A three-dimensional lattice can be created by
combining three standing waves. Reprinted from Nature 453, 736 (2008).
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and an additional external harmonic confinement due to the Gaussian laser
beam profiles [39]. In an experiment a supplementary confinement can be
accomplished with a magnetic trapping potential. For deep optical lattice po-
tentials, the confinement on a single lattice site is approximately harmonic.
Atoms are then tightly confined at a single lattice site, with trapping frequen-
cies ωl of up to 100 kHz. The energy ħωp = 2Er

(
Vp/ER

)1/2 of local oscillations
in the well is of the order of several recoil energies Er = ħ2k2/2m, which is a
natural measure of energy scales in optical lattice potentials [8].

Optical lattices are often referred to as artificial crystals of light and in-
deed the ultracold atoms in lattice sites play the part of electrons in a solid.
However, real solid materials are incredibly complex, mostly due to the in-
evitable effects of vibrations of the crystal lattice and defects, which render
both theoretical and experimental studies particularly troublesome. The opti-
cal lattices offer a way out becoming quantum simulators [40, 41] that realize
simplified models of condensed-matter physics, with all relevant parameters
such as the lattice potential depth, lattice geometry and interaction strength
between particles being easily tunable over a wide range [42]. Utilizing this
controllability, ultracold gases paved way to answers for fundamental ques-
tions in physics regarding, e.g., quantum magnetism, strongly correlated sys-
tems, effects of dimensionality or quantum information processing. Thorough
reviews on optical lattices are presented in Refs. [8, 42–44].

II.B

An ideal Bose gas

The thermodynamics of an ideal Bose gas has been widely studied and the
results are summarized in a number of works [45–48]. It is most commonly
the grand canonical ensemble, with temperature T and chemical potential µ
as the control parameters, that is employed to describe the phenomenon of
condensation. In this ensemble, in which external conditions determine only
the average total number of particles 〈N〉, the average occupation number of
the i-th energy level reads

〈ni〉 = 1
e(E i−µ)/kBT −1

. (II.6)

Naturally, Eq. (II.6) is consistent only if the chemical potential is smaller than
the energy of the ground state of the gas, µ < E0. However, crucially, when
µ→ E0 the occupation number of the ground state 〈n0〉 becomes macroscopic.
This phenomenon, which occurs at a finite temperature, is the trademark of
the Bose-Einstein condensation [1, 2].

Employing Eq. (II.6) and assuming that kBT is much larger than the
average energy difference between the energy levels of the single particle
Hamiltonian, the average total number of particles in an ideal Bose gas can
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be approximated by the integral

〈N〉 =
∞∫

0

g(E)E
e(E−µ)/kBT −1

, (II.7)

where g(E) is the energy density of states that essentially contains the entire
information about the system and hence determines its behavior. In the case
of a uniform Bose gas in a box potential of the volume V in d dimensions,
which in case of one- and two-dimensional systems can be well implemented
in experiments employing atom chips techniques [49], we find that g(E) ∝
Ed/2−1. In particular, when d = 3, we can evaluate the integral Eq. (II.7) to
obtain

λ3 〈n0〉
V

=λ3 〈N〉
V

−Li3/2(z) (II.8)

where λ = (2πħ2/mkBT)1/2 is the thermal wavelength, with m is the mass
of an atom, Lis(x) is the the polylogarithm function and z = eµ/kBT , which
in case of Bosons obeys the condition 0 ≤ z ≤ 1, is the fugacity of the gas.
Eq. (II.8) implies that when the temperature and the density of particles,
n = 〈N〉/V , are such that λ3n > Li3/2(z), a finite fraction of the particles occu-
pies the ground state of the system and the Bose-Einstein condensation oc-
curs. Evaluating the polylogarithm function we find that this condition reads
explicitly λ3n = ρ & 2.6, where ρ is commonly referred to as the phase space
density. Even more physically insightful is the observation that Eq. (II.8)
means also that the phase transitions begins when the average distance be-
tween the atoms becomes comparable to their de Broglie wavelength, i.e.,
n−1/3 .λ (quantum regime). In typical experiments with quantum gases the
temperature is ranging from 100 nK to 1 µK, and the density is in the range
from 1012cm−3 to 1015cm−3.

Interestingly, the occurrence of the condensation depends crucially on the
dimensionality of the system and properties of the trapping potential. In
particular, in a 1D box potential g(E)∝ E−1/2 and in a 2D box the g(E) is in-
dependent of the energy E. In consequence, analyzing Eq. (II.7), we come to
the conclusion that in these two cases the chemical potential increases mono-
tonically with decreasing temperature and remains negative at any T 6= 0,
which indicates that the population of the groundstate is microscopic. One
thus can say that there is no BEC in a finite temperature ideal uniform 1D
and 2D, respectively, Bose gas.

For harmonically trapped bosons, for which g(E) ∝ Ed−1, the situation
dramatically changes [50]. In a 3D harmonic trap, such as in the 3D box
potential, the atoms again condense. Strikingly, in contrast with the result
for a 2D box potential, in a 2D harmonic trap a macroscopic occupation of
the ground state of the system occurs for a finite critical temperature Tc and
one can speak of an ordinary BEC transition [51]. The 1D harmonic case
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Figure II.2: Observation of Bose-Einstein condensation by absorption imag-
ing of an expanding Bose gas in the position space. Here the snapshot of the
cloud was taken after 6 ms of the time of flight. The Bose-Einstein conden-
sate is characterized by its slow expansion. Left picture: an expanding cloud
cooled to temperature just above the transition point, T > Tc. Middle pic-
ture: just after the condensate appeared, T = Tc. Right picture: after further
evaporative cooling has left an almost pure condensate, T ¿ Tc. The total
number of atoms at the phase transition is about 7×105, the temperature at
the transition point is 2 µK. Reprinted from the W. Ketterle’s Nobel lecture,
Rev. Mod. Phys. 74, 1131 (2002).

is particularly interesting because the standard result is that BEC is not
possible, based on the use of the continuous spectrum. However, when the
discrete structure of the lowest energy levels is properly taken into account,
one finds that for a finite size 1D Bose gas in a harmonic potential that for
below certain finite temperature the population of the ground state rapidly
grows with decreasing T and becomes macroscopic [52].

The discussion of an ideal Bose gas is mostly academic and the fundamen-
tal question concerns the influence of interparticle interactions on the pres-
ence and character of BEC. These questions, particularly relevant in physics
of low-dimensional gases, have been widely addressed both theoretically and
experimentally in number of works [53–62]. In the next section we present
basic concepts of the well established theory.
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II.C

A weakly interacting Bose gas

II.C.1 Elastic scattering

Let us first consider a general problem of two atoms interacting via poten-
tial V (r1 −r2). In the center of mass reference frame the motion of atoms is
described by the Hamiltonian

H = p2

2mr
+V (r), (II.9)

with mr = m/2 the reduced mass. In a sufficiently dilute gas the mean inter-
atomic distance is much larger than the radius of interatomic interactions r0,
i.e., n−1/3 ¿ r0 (dilute regime), which means that the wave functions of par-
ticles at the mean interparticle separation are not influenced by the interac-
tions between them. Employing this assumption, equivalent to V (r > r0)= 0,
and solving the Schrödinger equation with the Hamiltonian (II.9), we find the
corresponding asymptotic (r→∞) form of the wave function

ψ(r)= eırk + fk(n)
eıkr

r
, (II.10)

where n is the direction of the scattering and f is called the scattering am-
plitude, whose form can be found in standard textbooks [63]. Note, that pro-
vided the condition nr3

0 ¿ 1 is satisfied, the shape of the potential at short
distances, i.e., V (r ' 0), is irrelevant and the asymptotic form of the wave
function in Eq. (II.10) is sufficient to characterize the atomic interactions,
which will be sensitive solely to fk(n). If the de Broglie wavelength greatly
exceeds r0, i.e., λÀ r0, which yields kr0 ¿ 1 (ultracold regime), further sim-
plifications of Eq. (II.10) can be made and in turn we find that

fk→0(n)=− m
4πħ2

∫
d3rV (r)ψ(r)=−asc, (II.11)

where asc is called the scattering length. Eq. (II.11) means that the scattered
wave function is spherically symmetric, even if V (r) itself is not, and that the
entire scattering process is characterized merely by a single atomic parame-
ter asc [64]. This type of scattering, commonly called the s-wave scattering,
occurs only when the momentum of the relative motion of atoms is equal
l = 0. For nonzero values of the angular momentum, the centrifugal barrier
inhibits collisions in the ultracold regime.

The most straightforward model of the potential V (r) working accordingly
with the assumptions above is the zero-range potential

V (r−r′)= gδ(r−r′), (II.12)
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which, together with Eq. (II.11) and the Born approximation [65], yields the
celebrated formula

g = 4πħ2asc

m
. (II.13)

Interestingly, the scattering length of atoms, and hence properties of BEC,
can be controllably manipulated through magnetic or optical Feshbach res-
onances [66–70] that are strong variations of the scattering length, induced
by an external field, which occur when a molecular state (closed channel) has
nearly zero energy and couples resonantly to the free states (open channel)
of the colliding atoms. The magnetic field governs the closed-open channels
coupling strength [71], shifting the energies of two free atoms relative to the
molecular state, and thereby controls the interatomic interaction strength. In
particular, a magnetically tuned Feshbach resonance can be described with
the expression for the s-wave scattering as a function of the magnetic field B

asc(B)= abg

(
1− ∆

B−B0

)
. (II.14)

Here, abg is the so-called background scattering length, summarizing the ef-
fect of the direct scattering processes in the open channel, B0 denotes the
resonance position, where the scattering length diverges (asc →±∞), and the
parameter ∆ is the resonance width [70]. Eq. (II.14) demonstrates clearly
vast capabilities of the Feshbach resonances that allow not only to control
the strength of interactions but also, by changing the sign of asc, to change
entirely their character. This versatility has been utilized in various experi-
ments, including formation of matter-wave bright solitons [72, 73], controlled
collapse of the condensate [74], BEC-BCS crossover [75] and formation of ul-
tracold molecules [76, 77].

II.C.2 Mean-field description

The many-body Hamiltonian of N bosons interacting through a two-body in-
teratomic potential V (r−r′) takes the standard form

H =
∫

d3rΨ̂†(r)
[
−ħ2∇2

2m
+U(r)

]
Ψ̂(r)

+ 1
2

∫
d3rd3r′ Ψ̂†(r)Ψ̂†(r′)V (r−r′)Ψ̂(r)Ψ̂(r′), (II.15)

with U(r) as an external potential and Ψ̂†(r), and Ψ̂(r) denoting the bosonic
creation and annihilation field operators, respectively, acting at the position
r. While the characteristics of the system can be calculated starting directly
from the Hamiltonian (II.15), employing, e.g., Monte Carlo methods, the full
many-body Schrödinger problem may become particularly impractical nu-
merically, especially for large N values. Mean-field methods are commonly
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developed to overcome this problem and to provide a clear physical insight
into a considered system. The experiments with the ultracold bosons have
proved these theoretical mean-field models particularly effective [6].

The cornerstone of the mean-field theory for bosons was laid by N. N. Bo-
golyubov in his work on superfluidity [78]. The key point consists in separat-
ing out the condensate contribution to the bosonic field operator. In general,
in a given basis of single-particle wave functions ϕν(r), the field operator can
be expressed as Ψ̂(r) = ∑

ϕν(r) âν, where âν are the corresponding annihi-
lation operators acting in the Fock space and obeying the standard commu-
tation relations, and nν is the eigenvalue of the operator n̂ν = â†

νâν. The
Bose-Einstein condensation occurs when the number of atoms n0 of a par-
ticular single-particle state becomes macroscopic and the ratio n0/N remains
finite in the thermodynamic limit N → ∞. In this limit the states with n0
and n0 ±1 ' n0 particles correspond to the same physical configuration and,
in consequence, the operators â0 and â†

0 can be treated like complex numbers
â0 = â†

0 =
p

n0. Hence, we can decompose the field operator into

Ψ̂(r)=Ψ(r)+Ψ̂′(r) (II.16)

where Ψ(r) is a complex valued classical field (condensate wave function) de-
fined as the expectation value of the field operator, i.e., Ψ(r) = 〈Ψ̂(r)〉, which
fixes the BEC density through n0(r) = |Ψ(r)|2. The operator Ψ̂′(r) represents
the noncondensed fraction of atoms that in the ultracold regime remains
small and can be treated perturbatively.

II.C.3 Gross-Pitaevskii equation

The time evolution of the field operator Ψ̂(r) is described by the Heisenberg
equation of motion ıħ∂tΨ̂(r, t) = [Ψ̂(r, t),H ]. At zero temperature all N par-
ticles are in the condensate [79] and we can restrict the perturbative treat-
ment of Eq. (II.16) to its zero order, plainly replacing the field operator in the
Heisenberg equation with the classical field Ψ(r). Employing Eq. (II.12) for
the interatomic potential we arrive at the Gross-Pitaevskii equation [80, 81],
often referred to as nonlinear Schrödinger equation, describing the dynamics
of the condensate wave function

ıħ∂tΨ(r, t)=
(
−ħ2∇2

2m
+U(r)+ g|Ψ(r, t)|2

)
Ψ(r, t). (II.17)

Clearly, the validity of the Gross-Pitaevskii equation (GPE) relies on the
assumptions that the number of atoms is macroscopic, i.e., that the gas is
in the quantum regime, and that the average interatomic distance is much
larger than the interatomic interactions range, i.e., that the gas is in the di-
lute regime. Recalling that, within the hitherto considerations, the effective
length scale of the interactions is set by asc, the latter condition can be writ-
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ten as na3
sc ¿ 1, with n as the average density of the gas. Note, however, that

a small value of the parameter na3
sc does not imply necessarily small effects

of interactions and that also a dilute gas can exhibit an important nonideal
behavior. The reason for that stems from the fact that in order to estimate
the significance of interactions one should rather compare the interactions
energy with the kinetic energy of the atoms in the trap U(r). This, in turn,
yields Nasc/lho, with lho the harmonic oscillator length, as the pertinent pa-
rameter [6]. Accordingly, one can find that at the same time na3

sc ¿ 1 and
Nasc/lho À 1, and hence the interactions in a dilute gas can be indeed rele-
vant.

The ground state of the condensate can be simply calculated assuming the
Hartree-Fock ansatz for the condensate wave function, Ψ(r) = p

N
∏
φ0(ri),

with φ0(ri) as a normalized to unity single-particle wave function, to be de-
termined. With this ansatz and Hamiltonian (II.15) the energy of the system,
i.e., 〈Ψ(r)|H |Ψ(r)〉, takes the form

E
[
φ0,φ∗

0
]= N

∫
d3r

( ħ2

2m
|∇φ0(r)|2 +U(r)|φ0(r)|2 + g

2
N|φ0(r)|4

)
. (II.18)

Introducing a Lagrange multiplier µ that governs the normalization of the
φ0(r) function, we minimize a new functional

X
[
φ0,φ∗

0
]= E

[
φ0,φ∗

0
]−µN

∫
d3r |φ0(r)|2, (II.19)

and we arrive at the time independent GPE

µφ0(r)=
(
−ħ2∇2

2m
+U(r)+ gN|φ0(r)|2

)
φ0(r). (II.20)

Furthermore, we calculate the chemical potential of the gas, by definition,
differentiating Eq. (II.18) with respect to the number of particles, i.e., ∂E/∂N.
Successively, multiplying Eq. (II.20) with φ∗

0 (r) and integrating with respect
to r, we find that µ = ∂E/∂N, and hence its interpretation. Note, that in the
particular case of a homogeneous gas in a box with volume V , µ= gN/V = gn.
With all these considerations it is clear now that a stationary solution of
Eq. (II.17) in general takes the form

Ψ(r, t)=φ0(r)e−ıµt/ħ. (II.21)

II.C.4 Thomas-Fermi limit

At this point it is worth to consider solutions of the Gross-Pitaevskii equation
in the afore mentioned limit Nasc/lho À 1, which is particularly interesting
since the condition behind it is well satisfied by most of the current experi-
ments. This so-called Thomas-Fermi (TF) regime assumes that the interac-
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tions energy of the condensate in a trap greatly exceeds its kinetic energy or,
in other words, that the size of the condensate wave function is much larger
than the harmonic oscillator length, i.e., R À pħ/mω, with R the radius of
the condensate. In consequence, this means that one can neglect the quan-
tum kinetic energy term (quantum pressure) in Eq. (II.20) and the solution
of the GPE takes form of the inverted potential

φ0(r)=
√√√√ µ

N g

(
1− r2

R2
TF

)
θ(RTF − r), (II.22)

with the Thomas-Fermi radius RTF =
√

2µ/mω2 and θ(r) the Heaviside func-
tion. In particular, normalizing Eq. (II.22) we find that due to the spatial in-
homogeneity, µ∼ N2/5 as opposed to µ∼ N for the homogeneous case. More-
over, we note that the balance between the quantum pressure and the in-
teractions energy of the condensate fixes a typical length scale, called the
healing length ξ. This is the minimum distance over which the condensate
wave function can heal or, in other words, adapt to boundary conditions, and
it is set by equating the quantum pressure ∼ħ2/mξ2 and the interactions en-
ergy ∼ ng, ξ=ħ/

p
mgn. Note that under normal BEC conditions (na3

sc ¿ 1) ξ
is large compared to asc but generally small with respect to typical trap sizes
lho. This quantity is particularly relevant for solitons physics (see Sec. II.C.7)
and for superfluid effects, such as, e.g., properties of vortices [10, 11].

II.C.5 Stability of the condensate

Another physically insightful class of solutions of the GPE is a Gaussian func-
tion, which becomes the exact solution in the limit of vanishing interactions.
Assuming a spherical trap and employing the variational ansatz

φ0(r)=
(

1
π1/2σ

)3/2
e−r2/2σ2

, (II.23)

into Eq. (II.18) we arrive at the

E(σ)
Nħωho

= 3
4

(
1
σ2 +σ2

)
+ χ

2σ3 , (II.24)

with χ = p
2/π(Nasc/lho). In Eq. (II.24) the first term corresponds to the ki-

netic energy, the second one to the potential energy of the trap and the last
one to the energy of interactions, which is proportional to the density ∼ N/σ3.
Finding the ground state solution amounts to solving dE/dσ= 0, which yields
σ5 −σ−χ= 0.

In case of a positive scattering length, for χ¿ 1 we find the solution of the
noninteracting gas, i.e., σ= 1, and for χÀ 1 we obtain σ≈ χ1/5 ∼ N1/5, which
means that the more atoms are in the trap the less localized is the condensate
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Figure II.3: Energy per particle (II.24), in units of ħωho, for atoms in a spher-
ical trap interacting with attractive forces, as a function of the width of the
Gaussian wave function (II.23). The curves are plotted for three different val-
ues of χ∼ Nasc/lho: χ=−0.3, with a local minimum in the energy functional,
χ = χc = −0.53, with a saddle point, and χ = −1, where it is only a collapsed
state σ= 0 that minimizes the energy.

wave function (II.23), i.e., the atoms repel each other. In this limit the kinetic
energy scales like ∼ 1/N2/5, the trap potential energy ∼ N2/5 and similarly the
interactions energy ∼ N2/5. This means that the kinetic energy is negligible
and the ground state configuration is attained through equilibration between
the atomic interactions energy and the trap potential. Hence, the condensate
is always stable.

For asc < 0, the interactions energy becomes negative and the global min-
imum E(σ) = −∞ exists for all χ values at σ = 0, i.e., in a state where the
BEC cloud collapses to a point [74, 82–86]. However, if |χ| is smaller than a
certain critical value |χc|, the negative interactions energy are compensated
by the trap potential energy, resulting in a local minimum in the energy func-
tional (see Fig. II.3), which supports a (meta)stable configuration. Calculat-
ing d2E/dσ2 = 0 we find that χc =−0.53, which refers to the critical number
of particles in the condensate Nc = −0.671lho/asc. More precise numerical
simulations of the GPE show that Nc = −0.575lho/asc, which is consistent
with recent experimental measurements [87, 88].

In the above discussed studies the critical number of particles Nc has
been found to depend very weakly on the trap aspect ratio [89]. In a dipolar
BEC the anisotropy of the dipole-dipole interactions thoroughly modifies the
situation, with stability properties strongly dependent on the geometry of
the condensate. We will learn the details of this effect in section III.B, which
remains inherently linked with chapter VII.
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II.C.6 Quasi-low-dimensional Gross-Pitaevskii equation

With the discussion presented in Sec. II.B and Sec. II.C.3, it is worth to con-
sider the description a quasi-low-dimensional condensate. Such systems have
been studied theoretically [53, 54, 57, 59, 90–93] and realized experimentally
in one and two dimensions, in magnetic traps [55, 56, 94], optical lattices
[60, 61] and atom chips [49, 95, 96].

In a three-dimensional BEC the radial extension of the cloud R⊥ and
its axial length Rz are determined by the interactions and (greatly) exceed
the healing length ξ, hence fulfilling the relation R⊥,Rz À ξ. The progress
in the trapping techniques allows however to tightly confine the motion of
the trapped atoms in one (two) direction and create quasi-two-dimensional
(quasi-one-dimensional) gas, in which the particles undergo only zero point
oscillations in the frozen direction. The effective dynamics of such gas can
be obtained by averaging the three-dimensional interactions over the radial
(axial) density profile.

For a quasi-two-dimensional (pancake) condensate Rz ¿ ξ¿ R⊥, which is
equivalent to ħωz À ng Àħω⊥, so that the interactions energy is smaller than
the energy difference between ground and first excited state of the harmonic
oscillator in the axial direction. Hence, we can assume the ground state of
a harmonic oscillator for the axial part of the wave function and factorize
Ψ(r, t) in Eq. (II.17) into

Ψ(r, t)=Ψ(x, y, t)Ψho(z)=Ψ(x, y, t)π−1/4l−1/2
z e−z2/2l2

z , (II.25)

where lz =
√ħ/mωz is the axial harmonic oscillator length. Employing this

factorization and integrating Eq. (II.17) wit respect to z, we arrive at the
two-dimensional Gross-Pitaevskii equation

ıħ∂tΨ(x, y, t)=
(
− ħ2

2m

(
∂2

x +∂2
y

)
+U(x, y)+ g2D|Ψ(x, y, t)|2

)
Ψ(x, y, t), (II.26)

with the effective coupling parameter g2D = g/
p

2πlz.

For a quasi-one-dimensional (cigar) condensate R⊥ ¿ ξ ¿ Rz, which is
equivalent to ħω⊥ À ng Àħωz, so that the interactions energy is smaller than
the energy difference between ground and first excited state of the harmonic
oscillator in the radial direction. Similarly to the previous case we can then
assume the ground state of the harmonic oscillator for the radial part of the
wave function and factorize as follows

Ψ(r, t)=Ψ(z, t)Ψho(x, y)=Ψz(z, t)π−1/2l−1
⊥ e−(x2+y2)/2l2

⊥ , (II.27)

where l⊥ is the radial harmonic oscillator length. Inserting this ansatz into
Eq. (II.17) and integrating the x, y dependence we obtain the effective one-
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dimensional Gross-Pitaevskii equation

ıħ∂tΨ(z, t)=
(
− ħ2

2m
∂2

z +U(z)+ g1D|Ψ(z, t)|2
)
Ψ(z, t), (II.28)

with g1D = g/2πl2
⊥.

We comment on the dimensional reduction of the GPE describing a dipo-
lar gas in section III.A.

In Sec. II.C.5 we considered stability properties of a three-dimensional
gas. Following the same procedures, together with the results of this section,
we can now examine the stability of a condensate with a negative scattering
length in lower dimensions. For a pancake condensate the energy functional
reads

E(σ⊥)
Nħω⊥

= 1
2

(
1
σ2

⊥
+σ2

⊥

)
− 1
σ2

⊥

(
N|asc|

l⊥

)
. (II.29)

Clearly, for N|asc|/l⊥ < 1/2, i.e., when the kinetic energy dominates over the
interactions energy, a global minimum σ⊥ 6= 0 exists. Otherwise, the conden-
sate collapses to a point. Interestingly, in a cigar-shaped condensate a finite
global minimum always exists, independently of the number of particles, and
the ∼ 1/σz scaling of the interactions energy

E(σz)
Nħωz

= 1
4

(
1
σ2

z
+σ2

z

)
− 1
σz

(p
2π

N|asc|
lz

)
, (II.30)

renders the condensate always stable against a collapse.

II.C.7 Solitons

In the quasi-two-dimensional case, see Eq. (II.29), it is the presence of the
trapping potential that sustains the local minimum, and switching off the
trap will cause the free expansion or the collapse of the gas, depending on
the value of N|asc|/l⊥. Crucially, in a quasi-one-dimensional condensate, see
Eq. (II.30), the minimum exists even in the absence of the trap. Such local-
ized states with the quantum pressure (dispersion of the wave packet) being
balanced by the nonlinearity are called solitons (solitary waves). These wave
packets maintain their shape while they travel at constant speed and can
interact with each other, and emerge from the collision unchanged, except
for a phase shift [97]. Several exactly integrable nonlinear equations, ad-
mitting an infinite number of conservation laws and exact solutions, emerge
as universal models of solitons. These include Kortweg-de Vries equation,
nonlinear Schrödinger equation, sine-Gordon equation and others [98]. To-
day, experimental and theoretical studies of solitons remain an active field
in several branches of science, including applied mathematics, astrophysics,
chemistry and molecular biology [99]. In physics a large part of work on soli-
tons is concentrated in the fields of nonlinear optics (light waves) and BECs
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(matter waves).
Optical solitons [100] may be naturally subdivided into three broad cate-

gories- temporal, spatial, and spatiotemporal (light bullets). They may ex-
ist in the form of one-dimensional or multidimensional objects [101]. One-
dimensional temporal solitons in optical fibers with a cubic (Kerr) nonlin-
earity were predicted [102] and observed experimentally [103], while sta-
ble self-trapping of light in the spatial domain was first observed in planar
waveguides [104]. Spatial two-dimensional solitary waves were first studied
and observed in photorefractive crystals [105, 106] and in optical media with
quadratic nonlinearity [107], where spatiotemporal self-trapping of light in
two-dimensional quasi-soliton objects was also observed [108]. Stable fully
three-dimensional optical solitons were predicted [109, 110] and only recently
observed in a discrete setting of waveguide arrays [111].

In ultracold gases the long sought solitons [90, 112–124] were first ob-
served experimentally for condensates with repulsive interactions (dark soli-
tons) in three dimensions [125] and in a quasi-one-dimensional BEC [126].
These solitons are characterized by a notch in the BEC density profile with
a phase step across the soliton center. Solitons in condensates with attrac-
tive interactions (bright solitons), with a peak in the BEC density profile,
were created shortly after in a quasi-one-dimensional gas [72, 73]. Also, a
mechanism based on temporal and spatial variation of the scattering length
has been proposed to stabilize bright solitons in higher dimensions [127–
129]. More recently, spontaneous formation of gray solitons in quasi-one-
dimensional condensates was predicted as a result of the Kibble-Zurek mech-
anism [130, 131] and rapid evaporative cooling [132].

Dark solitons

In three-dimensional geometry dark solitons (asc > 0) are inherently unstable
against the decay into vortex rings (snake instability), both in self-defocusing
media (optical dark solitons) [133, 134] and in Bose-Einstein condensates
(matter wave dark solitons) [135]. In order to suppress the decay the sys-
tem has to be effectively one-dimensional (cigar condensate). Then the one-
dimensional Gross-Pitaevskii equation, without the trapping potential, ad-
mits the nontrivial analytical solution [136]

Ψ(z, t)=p
n0

ı
v
c
+

√
1− v2

c2 tanh

 z−vt
ξ

√
1− v2

c2

 , (II.31)

where n0 is the BEC density far away from the density notch, µ = n0 g1D is
the chemical potential, c = √

n0 g1D/m is the sound velocity, and ξ = ħ/pmµ

is the healing length. Solution (II.31) describes a density distribution n(z−
vt) that has a minimum in the center of the soliton corresponding to n(0) =
n0v2/c2. For a soliton at rest this value is equal to zero and hence the name
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black soliton. For a soliton propagating with velocity 0 < v < c the density
in the center is finite and thus such solitons are called gray. When v → c,
the soliton disappears, as its width becomes infinitely large. The phase of the
wave function φ, defined through Ψ(z, t)=√

n(z, t)exp(ıϕ(z, t)), changes along
the soliton according to the formula

∆ϕ=ϕ(∞, t)−ϕ(−∞, t)= 2arctan
(

vp
c2 −v2

)
−π, (II.32)

hence the probability current flows in the direction opposite to the propaga-
tion of the soliton, i.e., the atoms seep through the density notch [48]. For a
black soliton the phase change is given by ∆ϕ=π and it was this finite phase
difference that gave rise to the idea of creating a dark soliton in an experi-
ment with phase imprinting technique [125, 126]. It is finally worth noticing
that the velocity of the soliton increases when its energy decreases. This im-
plies that dissipative effects will result in an acceleration of the soliton until
it will eventually disappear [10].

Bright solitons

As already noted, in a condensate with a (constant) negative scattering length,
i.e., with attractive interactions, the bright solitons can exist only if the sys-
tem is effectively one-dimensional. Then, the analytical solution of the one-
dimensional GPE, without the trapping potential, reads [112, 137]

Ψ(z, t)= l⊥
λ
p

2|asc|
sech

(
z−vt
λ

)
exp

[
ı
mv
ħ z− ı

ħ
(

mv2

2
− ħ2λ2

2m

)
t
]

, (II.33)

where the soliton width λ = l2
⊥/ascN and v is the soliton velocity. Notably, κ

is inversely proportional to N and thus, even though the tight radial confine-
ment stabilizes the condensate, for a large number of atoms the width of the
soliton will tend to zero, rendering the soliton prone to the collapse to a point.

Yet another intriguing type of stationary solutions of the nonlinear Schrö-
dinger equation are bright multisoliton states (soliton train) [112, 124]. In-
terestingly, such soliton trains have been observed in experiments of Strecker
et al. [73] (see Fig. II.4), and it has been found that, despite the attractive
inter-atomic interactions, the solitons in the train repel each other with a
force that depends on their separation. It was proposed that, similarly to the
mechanisms in optical fibers [138, 139], the trains originate in the modula-
tional instability of the condensate that is seeded by quantum mechanical
phase fluctuations, and that the source of the repulsive force is a phase dif-
ference of π between two neighboring solitons [140, 141]. Recently, however,
it has been suggested that quantum fluctuations cause the fragmentation of
a soliton train [142, 143] and may already be more important in experiments
than previously thought. The dipolar counterpart of soliton trains will be of



22

Figure II.4: Oscillations of a soliton train in a harmonic potential, observed in
the experiment of Strecker et al. [73]. The three images show a soliton train
near the two turning points and near the centre of oscillation. Noninteracting
solitons, simultaneously released from different points in a harmonic poten-
tial, would be expected to pass through one another. However, the figures
show that the spacing between solitons is compressed at the turning points,
and spread out at the centre of the oscillation. This is evidence of a short-
range repulsive force between the solitons. Reprinted from Nature 417, 150
(2002).

the major focus in chapter V.
Currently available experimental methods [144] together with various

theoretically sophisticated schemes [145–147] make bright solitons especially
interesting branch of research in the field of nonlinear matter-wave optics
[148–150], and in particular in the context of atom lasers [151–158] and
interferometry [159–162]. Furthermore, quantum effects in bright solitons
have been studied in the context of mesoscopic quantum superposition states
(Schrödinger cats) [163, 164] and entanglement [165–167].

In section III.F we will inquire into the field of solitons in dipolar gases
with long-range and anisotropic interactions. We will learn there how these
features alter the soliton physics and introduce new effects absent for the
case that we have discussed in this section.

II.C.8 Elementary excitations

The matter-wave solitons can be viewed as macroscopic nonlinear excitations
of a condensate. In this section we will consider small amplitude excitations
(elementary excitations), where the changes in space and time of the con-
densate wave function with respect to the stationary configuration are small.
In other words, where only a small fraction of particles is excited out of the
condensate. In many cases these solutions provide a deep insight into the
collective behavior of an interacting Bose gas [10, 11, 168–170].

Employing the idea of the mean-field description presented in Sec. II.C.2,
we now want to investigate phenomena arising in a Bose gas due to the pres-
ence of the quantum (noncondensed) correction Ψ̂′(r) in the field operator
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decomposition Ψ̂(r)=Ψ(r)+Ψ̂′(r). To this end, we consider the grand canon-
ical Hamiltonian K =H −µN̂, where H is the many-body Hamiltonian de-
fined in Eq. II.15, and N̂ = ∫

d3rΨ̂†(r)Ψ̂(r) is the particle number operator.
Substituting the field-operator Ψ̂(r) into the Hamiltonian K we find that the
terms which are linear in Ψ̂′(r) and Ψ̂′†(r) vanish due to the stationary Gross-
Pitaevskii equation (II.20), and thus, following the fundamental mean-field
restriction N −N0 ¿ N0, and hence omitting cubic and fourth-order terms in
Ψ̂′(r) and Ψ̂′†(r), we arrive at K = h0 +HB, where h0 is the c-number part
and the Bogoliubov Hamiltonian HB reads

HB =
∫

d3rΨ̂′†(r)
[
−ħ2∇2

2m
+U(r)+2g |Ψ(r)|2 −µ

]
Ψ̂′(r)

+ g
2

∫
d3r

(
Ψ2(r)Ψ̂′†(r)Ψ̂′†(r)+Ψ∗2(r)Ψ̂′(r)Ψ̂′(r)

)
. (II.34)

Substituting Hamiltonian HB into the Heisenberg equation of motion for the
noncondensed field Ψ̂′(r), ıħ∂tΨ̂

′(r, t)= [Ψ̂′(r, t),K ], we find

ıħ∂tΦ̂(r)=
(
−ħ2∇2

2m
+U(r)+2g |Ψ(r)|2 −µ

)
Φ̂(r)+ gΨ2(r)Φ̂†(r), (II.35)

where we have introduced Φ̂(r)= Ψ̂′(r)e−ıµt/ħ. We now employ the generalized
Bogoliubov transformation [171] to write Φ̂(r) as

Φ̂(r)=∑
ν

uν(r)b̂νe−ıεν t/ħ−v∗ν (r)b̂†
νeıεν t/ħ, (II.36)

where index ν labels quantum states of elementary excitations, b̂ν and b̂†
ν

are the annihilation and creation operators of the elementary excitations
(quasiparticles), respectively, εν are their energies, and uν (particles) and vν
(holes) are their eigenfunctions. Furthermore, the operators b̂ν and b̂†

ν obey
the canonical commutation relations, [b̂ν, b̂†

µ]= δν,µ and [b̂ν, b̂µ]= [b̂†
ν, b̂†

µ]= 0.
Calculating the commutators of b̂ν and b̂†

ν with both sides of Eq. (II.35) we
arrive [172] at the set of coupled equations

ενuν(r)=
(
−ħ2∇2

2m
+U(r)+2g |Ψ(r)|2 −µ

)
uν(r)− gΨ2(r)vν(r),

−ενvν(r)=
(
−ħ2∇2

2m
+U(r)+2g |Ψ(r)|2 −µ

)
vν(r)− gΨ∗2(r)uν(r),

(II.37)

(II.38)

that reduce the bilinear Bogoliubov Hamiltonian HB to the diagonal form

HB =∑
ν

ενb̂†
νb̂ν. (II.39)

Eqs. (II.37) and (II.38) are typically called Bogoliubov-de Gennes (BdG) equa-
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tions [78, 173].
Further progress depends on the properties of the normal modes uν(r)

and vν(r). In particular, we can derive the orthogonality conditions [171](
εν−ε∗µ

)∫
d3r

[
uν(r)u∗

µ(r)−vν(r)v∗µ(r)
]= 0. (II.40)

If the system has a complex eigenvalue, the assumed ground stateΨ(r) is not
stable and the system exhibits a dynamical instability, with the zero norm of
the corresponding elementary excitation. For real energies εν, the amplitudes
are normalized so that they satisfy the conditions∫

d3r
[
uν(r)u∗

µ(r)−vν(r)v∗µ(r)
]= δν,µ (II.41)

and, if εν+εµ 6= 0, the orthogonality condition reads∫
d3r

[
uν(r)vµ(r)−uν(r)vµ(r)

]= 0. (II.42)

Moreover, it can be seen from the Bogoliubov-de Gennes equations allow
a simple symmetry operation [171, 174]. Namely, if (uν,vν) is a solution with
eigenvalue εν and positive normalization, i.e.,

∫
d3r |uν(r)| − |vν(r)| = 1, then

there is always another solution (v∗ν ,u∗
ν) with eigenvalue −εν and negative

normalization,
∫

d3r |uν(r)|−|vν(r)| = −1. For uniform condensates with plane
wave solutions, the positive normalization always leads to positive eigen-
values. However, nonuniform condensates such as one with a vortex or a
dark soliton can have physical states with positive normalization and nega-
tive eigenvalues [175]. If a positive norm solution has a negative eigenvalue,
the system exhibits Landau instability because it can lower the energy by
exciting quasiparticles with negative eigenvalues [11].

Typically, the BdG equations (II.37)-(II.38) call for numerical methods in
order to obtain solutions for the eigenfrequencies and the normal modes of
the system. However, an insightful analytical solution is provided by the col-
lective oscillations around the ground state of a uniform gas. In this case the
excitations eigenfunctions are simply the plane waves uν(r)= ukeıkr/

p
V and

vν(r)= vkeıkr/
p

V , with V the volume of the system, whereas the ground state
Ψ(r) can be chosen to be real, Ψ(r)=p

n, and µ= gn. In turn, the BdG equa-
tions yield the famous Bogoliubov spectrum of the elementary excitations in
a homogeneous Bose gas

εk =
√

E2
k +2ngEk, (II.43)

with the kinetic energy Ek = ħ2k2/2m. The spectrum (II.43) is plotted in
Fig. II.5. For small momenta, k ¿ ξ−1, which correspond to energies εk ¿ µ,
the excitations acquire collective phonon character and the dispersion rela-
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Figure II.5: Elementary excitations spectrum (II.43) for a uniform degen-
erate Bose gas with contact interactions, in units of the chemical potential
µ = ng, as a function of the momentum k, in units of the healing length
ξ = ħ/

√
2mµ. For momenta smaller than the length scale set by the heal-

ing length, i.e., kξ¿ 1, the excitations acquire collective phonon-like form
εk ∼ k (straight dashed line). When the excitation energy exceeds signifi-
cantly the interactions per particle, i.e., εk À µ, the excitations behave like
free particles εk ∼ k2. Compare with the roton-maxon spectrum in a dipolar
condensate, e.g., in Fig. III.7.

tion can be written as εk = csħk, where cs = √
ng/m is the sound velocity.

Interestingly, the Bogoliubov phonon quasiparticles have been observed ex-
perimentally [176, 177]. For k À ξ−1, i.e., εk À µ, the excitations loose the
collective character and behave like free particles, since their energy greatly
exceeds the interactions per particle ng. In this case, Eq. (II.43) reduces to
εk = ħ2k2/2m+ ng, with the ng term indicating interactions between high-
energy particles and the condensate [172].

In section II.C.5 we saw that a three-dimensional uniform Bose gas with
attractive interactions is unstable against a collapse to a point. The attractive
interactions, g < 0, mean in terms of the elementary excitations (II.43) that
the speed of sound cs becomes imaginary and so do the energies of the phonon
excitations. It is then clear from the Bogoliubov transformation (II.36) that
the amplitudes of the phonon eigenfunctions, and hence the condensate wave
function, will grow exponentially. This phenomenon, which is an example of
dynamical instability, is called phonon instability.

In section III.E we will learn how the elementary excitations spectrum
changes in the presence of dipole-dipole interactions and how these modifi-
cations give rise to a wealth of new physical phenomena, which we will be
exploring throughout this thesis.

s



26



III

t

Dipolar Bose-Einstein condensates

In chapter II we have seen how essential are the interparticle interactions
for the properties of an ultracold gas. In particular, we concentrated hith-
erto on the short-range (contact) interactions. In the remainder of this thesis
we will address novel physical phenomena arising in an ultracold gas due to
the presence of long-range interactions. In general, the broad class of sys-
tems typified by such interactions, the so-called polar gases, consists of polar
molecules [178–190], Rydberg gases [191–200] and dipolar gases of atoms
with large magnetic moment. In this thesis we will inquire into the last
branch, and specifically into dipolar Bose-Einstein condensates.

27
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While the long-range interactions had been known for some time in other
systems, e.g., in classical ferrofluids [201, 202] and liquid crystals [203], it
was the theoretical proposal of K. Góral, K. Rza̧żewski and T. Pfau [204] to-
gether with experimental progress on trapping atoms with higher magnetic
moments [205, 206] that boosted the interest in the field of ultracold atomic
gases with dominant dipole-dipole interactions. Several seminal theoretical
works had been published [207–211], regarding the mean-field description,
possible ground state solutions, elementary excitations and stability proper-
ties of a dipolar condensate, until finally the experimental milestone has been
set by the condensation of chromium atoms (52Cr, dipole moment µ of 6 times
the Bohr magneton µB) in T. Pfau’s group [212]. Soon, another experiments
followed, demonstrating directly the anisotropic and long-range character of
dipolar interactions through studies of expansion [213, 214], stability proper-
ties [215] and unprecedented d-wave collapse dynamics [216] in a chromium
BEC.

Yet, the interest in the field has been still increasing on both experimental
and theoretical side. The major contributions on the former one are the very
recently successfully condensed gases of dysprosium (164Dy, µ = 10µB) in B.
Lev’s group [217] (followed with the first realization of quantum degenerate
dipolar Fermi gas of 161Dy [218]) and erbium (168Er, µ = 7µB) in the group
of F. Ferlaino [219]. The experimental group of B. Laburthe-Tolra has lent a
number of influential results [220–224]. On the theory side various proposals
have appeared for dipolar condensates, regarding, among others, phenomena
in rotating traps [225–227], dipolar effects in spinor condensates [228–235]
and in superfluidity [236, 237], dipole induced modifications of the Bogoli-
bov modes [238–241] and ground state structures [242–246], manifestation
of the dipolar interactions in the condensate stabilization and collapse [247–
251], collective intersite physics in deep optical lattices [252–254], dipolar
originating pattern formation [255–257], and atom optics, with particular
emphasis on dipolar solitons [258–261]. Some of the these predictions have
been investigated jointly with experimentalists who directly confirmed them.
A broader summary of hitherto studied subjects in the field of degenerate
dipolar Bose gases, together with further references and comprehensive cov-
erage of equally interesting and extensive domain of ultracold dipolar Fermi
gases, can be found in Refs. [262–264].

We continue this chapter presenting the basic physical principles of dipo-
lar Bose-Einstein condensates.

III.A

Dipole-dipole interaction in a polar gas

In general, two dipoles with the same dipole moment (electric d or magnetic
µ) oriented along r̂1 and r̂2, respectively, and joined by vector r, interact via
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Figure III.1: Two dipoles polarized by an external field interacting through
the dipolar potential (III.2). Clearly, for θ = 0 the two particles attract each
other, while for θ =π/2 they repel (see text).

the dipole-dipole potential

Vd (r)= gd
r̂1r̂2 −3(r̂1r̂) (r̂2r̂)

r3 , (III.1)

with gd = d2/4πε0 for electric dipoles (ε0 is the vacuum permittivity), or gd =
µ0µ

2/4π for magnetic dipoles (µ0 is the vacuum permeability). We note that
for the theory of electromagnetism to be consistent an additional term ∝ δ(r)
appears on the left hand side of Eq. (III.1), which can be easily understood
thinking in terms of the Laplace equation [265]. In the context of ultra-
cold gases, exclusion of the delta term from the dipole-dipole potential (III.1)
obviously does not affect the inherently long-range character of the dipolar
physics. It can, however, bear upon short range phenomena, such as the
dipole-dependent scattering length [247, 266], and thus should be on the
whole included in the pseudopotential describing particles interacting via the
dipolar forces [207, 208, 267]. We omit this term in Eq. (III.1) for the clarity.

If the dipoles are subjected to an external field that orients them along a
particular direction, the dipole-dipole potential simplifies to

Vd (r)= gd
1−3cos2θ

r3 , (III.2)

where θ is the angle between the direction of the dipole moments and the
vector joining two particles (see Fig. III.1). Obviously, as it has been men-
tioned already, expression (III.2) is long-ranged (for more detailed discus-
sion see Ref. [268]). Moreover, the presence of angle θ renders the poten-
tial anisotropic. Naturally, when dipoles are in the head-to-tail configuration
(θ = 0) they attract each other, for the so-called magic angle θm, such that
cosθm = 1/

p
3, the interaction vanishes, and in the side-by-side configuration

(θ =π/2) the dipoles repel each other. Heteronuclear polar molecules can have
permanent dipole moment along the internuclear axis with strength rang-
ing between one tenth and ten Debye (1D = 1/2.54au), for atomic species the
dipole moment ranges between one and ten Bohr magneton (1µB = 1/274au).
Similarly to the scattering length asc for the contact coupling strength g,
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Eq. (II.13), we can now introduce the characteristic length scale for the dipo-
lar interactions ad = mgd/ħ2. And so, for alkali rubidium aRb

d = 0.1nm, for
chromium aCr

d = 2.4nm, for erbium aEr
d = 10.6nm, and for dysprosium aD y

d =
21.0nm. For most polar molecules ad reaches up to 3500nm [263, 264]. Obvi-
ously, the larger the ratio ad/asc the more pronounced are the dipolar effects
in a system.

We have seen in section II.C.1 that the short-range interactions can be
modified by means of the Feshbach resonances. Interestingly, it is also possi-
ble to manipulate the dipolar interactions (DDI). Namely, in the case of polar
molecules it is possible to tailor the strength and the shape of the interaction
potentials by means of, e.g., an additional microwave field [269, 270]. Dipolar
atomic gases offer the possibility of engineering the strength and the sign of
DDI as well [271]. In this case, the idea is based on combination of static
magnetic field along the z-axis, Bz, and a field in the perpendicular xy-plane,
Bxy(t), that rotates with frequency Ω, (see Fig. III.2), such that Bz = Bcosϕẑ,
Bxy(t) = Bsinϕ

(
cos(Ωt)x̂+sin(Ωt)ŷ

)
, and the total field B(t) = Bz +Bxy(t). In

turn, over the period T = 2π/Ω the particles feel the time averaged potential

〈
Vd(r)

〉
T
= 3cos2ϕ−1

2
Vd(r), (III.3)

with Vd(r) as the original dipole-dipole introduced in Eq. (III.2). Clearly, the
ϕ-dependent term in Eq. (III.3) can be changed continuously from 1 to −1/2.
Hence, a variation of ϕ allows manipulation of the DDI, including the reversal
of the sign of the potential or even its complete cancellation for ϕ = θm. An
analogous technique can be applied also to the electric dipole moments [264].
We will see in chapters IV and V how the tunability of the dipolar interactions

Figure III.2: Tuning of the dipolar interactions by means of a transverse mag-
netic field rotating with frequency Ω. The time-averaged dipole-dipole poten-
tial acquires the form of Eq. (III.3), allowing not only to tune the strength
of the interaction but even to reverse its sign, depending on the value of the
parameter ϕ.
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gives rise to some unprecedented phenomena.

In the remainder of the thesis we will frequently use the Fourier rep-
resentation V̂d(k) of the dipole-dipole potential (III.2) for its analytical and
numerical convenience. Derivation of V̂d(k) is based on the expansion of a
plane wave in the basis of spherical harmonics and is rather straightforward.
The final result reads [204]

V̂d(k)= 4π
3

gd
(
3cos2θk −1

)
, (III.4)

with θk as the angle between the wave vector k and the direction of a dipole
moment.

As we have discussed in section II.C.2, the mean-field description of a
purely contact interacting Bose-Einstein condensate has been proven both
theoretically and experimentally to work exceptionally well [6, 10]. The in-
clusion of the dipolar interactions in this formalism is attributed to pioneer-
ing works by You and Yi [207, 208] who constructed a pseudo-potential for a
general case of anisotropic potentials. This result yields directly the nonlocal
version of the Gross-Pitaevskii equation (II.17),

ıħ∂tΨ(r, t)=
[
− ħ2∇2

2m
+U(r)+ g|Ψ(r, t)|2

+
∫

d3r′ |Ψ(r′, t)|2Vd(r−r′)
]
Ψ(r, t), (III.5)

which describes a dipolar Bose-Einstein condensate and becomes now an in-
volved integrodifferential equation. The validity of Eq. (III.5) has been addi-
tionally evaluated with many-body diffusion Monte-Carlo studies [247, 266,
272] and the results verified the applicability of the nonlocal GPE, provided
that the gas is dilute, na3

sc ¿ 1. In Eq. (III.5) we have ignored the contact
part of the dipole-dipole pseudo-potential that contributes to the regulariza-
tion of the short-range coupling parameter g. This is, however, legitimate
as the main contribution to the mean-field dipolar interactions integral in
Eq. (III.5) comes from large interparticle distances of the order of a spatial
size of the condensate [262].

Dimensional reduction of the nonlocal Gross-Pitaevskii equation (III.5) is
in general more elaborate than the same procedure in the nondipolar case
discussed in section II.C.6, with details of calculations relying strongly on
particular geometry that is considered. For the details of the nonlocal GPE
describing a quasi-one-dimensional dipolar gas, which we will be employing
in chapters IV, V and VI, reader is referred to appendix A.
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III.B

Geometrical stabilization

In section II.C.5 we have found that the instability of a condensate with at-
tractive contact interactions, i.e., asc < 0, can be suppressed in a trap, pro-
vided that the atoms number N is sufficiently small, N < Nc =−0.575lho/asc.
The stability of dipolar condensates in a trapping potential has been widely
investigated. In particular, for studies of the critical number of atoms and the
critical trap aspect ratio in a BEC with the interparticle interactions domi-
nated by the dipole-dipole forces (asc = 0) the reader is referred to Refs. [209,
239, 242] and the review [262]. Here, we would like to focus on the influence
of the trapping geometry on the BEC stability properties when both contact
and dipolar interactions are present. In particular, the above recalled criti-
cal number of particles Nc for a condensate with solely contact interactions
has been found to depend very weakly on the trap aspect ratio [89]. The
anisotropy of the DDI renders the situation radically different for a dipolar
BEC.

This can be intuitively understood considering a cylindrically symmetric
trap with the symmetry axis z coinciding with the orientation of the dipoles.
The axial and radial frequencies are denoted as ωz and ωρ, respectively. It
is then automatically clear that for a prolate trap (aspect ratio λ = ωz/ωρ <
1), the DDI is essentially attractive and in such a trap a dipolar BEC will
become unstable unless a large repulsive contact interactions will suppress
the collapse. Then again, for an oblate trap (λ > 1), the DDI is essentially

Figure III.3: Intuitive picture of the trap geometry dependence of the stability
of a trapped dipolar BEC. For large trap aspect ratios λ (pancake-shape) the
dipolar interactions are predominantly repulsive, stabilizing the condensate
against a collapse. For small values of λ the dipole-dipole interactions are es-
sentially attractive, rendering the BEC more prone to the collapse. Reprinted
from Nat. Phys. 4, 218 (2008)
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repulsive and unless the contact interactions are strongly attractive, the BEC
will remain stable. One can therefore expect that for a given trap aspect
ratio λ, there exists a critical value of scattering length, below which the
condensate becomes unstable.

These considerations can be expressed quantitatively employing the Gaus-
sian ansatz (for details see Ref. [273] and references therein),

Ψ(ρ, z)=
√

N
π3/2σ2

ρσzl3
ho

exp

[
− 1

2l2
ho

(
ρ2

σ2
ρ

+ z2

σ2
z

)]
, (III.6)

with the harmonic oscillator length lho = pħ/mω̄ and the average trap fre-
quency ω̄ = (ω2

ρωz)1/3. Inserting Eq. (III.6) into the energy functional corre-
sponding to the nonlocal GPE (III.5), one arrives at the expression for the

Figure III.4: Stability diagram of a dipolar BEC in the asc-λ plane. The
figure shows experimental (green squares) and theoretical (green line) values
of the critical scattering length acrit as a function of the trap aspect ratio. The
red curve (magnified in the inset) marks the stability threshold for a BEC
with pure contact interactions using the same parameters. The asymptotic
stability boundary (Nad/lho À 1) is plotted in grey. For sufficiently large
scattering lengths, (b), a global minimum of the energy E(σρ,σz) exists and
the BEC is always stable. In the intermediate range, (c), for nonzero σρ
only a local minimum occurs and a (meta)stable state is supported against
the collapse. For a critical value acrit, (d), the minimum disappears and the
BEC becomes unstable. For certain value of the scattering length, (e), the
condensate is always unstable as the dipolar interactions cannot suppress
the collapse even for a large value of the trap aspect ratio λ. Reprinted from
Nat. Phys. 4, 218 (2008)
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condensate energy E(σρ,σz), which depends on the widths of the conden-
sate [215]. Then, to determine the scattering length stability threshold acrit,
one needs to minimize E(σρ,σz) with respect to σρ and σz, keeping the pa-
rameters N, λ and ω̄ fixed (we will use an analogous method in chapter IV,
see also appendix B). The theoretical and experimental results are summa-
rized in Fig. III.4 showing the stability diagram. For sufficiently large scat-
tering lengths, asc À ad, Ref. [215] finds that E(σρ,σz) supports a global
minimum for finite σρ and σz independently of λ, and thus the BEC is stable.
Going below asc ∼ ad, the absolute ground state is a collapsed infinitely thin
cigar-shaped BEC (σρ → 0) and possible existence of a further local minimum
(corresponding to a metastable state; compare with Fig. II.3) is determined
by the trap aspect ratio. In particular, for a purely dipolar gas the criterion
λ > λc ≈ 5.2 for the stability has been found. Finally, below asc ∼ −6ad (this
corresponds to asc ∼ −2ad in the notation of Ref. [215]), the local minimum
vanishes for any λ and the condensate is always unstable.

We note at this point that the shape of a BEC cloud together with sta-
bility properties can be found analytically in the Thomas-Fermi limit that is
reached when the kinetic energy is small in comparison to both the poten-
tial energy due to the trap and the interaction energy between atoms, and
the term with derivatives in Eq. (III.5) can be neglected (see Sec. II.C.4).
Then, surprisingly, it has been found that the ground state solution of a dipo-
lar BEC in the cylindrically symmetric case has exactly the same form of
an inverted parabola as in the case of pure contact-interactions, i.e., n(r) =
n0

(
1−ρ2/σ2

ρ− z2/σ2
z

)
, with the only difference in the explicit form of the radii

[274, 275].

III.C

Collapse dynamics

In Sec. II.C.5 we have stated that an unstable nondipolar condensate col-
lapses to a point. In reality, the dynamics of a collapsing BEC is far more
complex, including the implosion of the cloud followed by inelastic losses and
the explosion of the remnant condensate together with energetic jets [74, 82–
86]. In the context of our developments that will be presented in chapter VII,
it is instructive to analyze the so-called d-wave collapse of a dipolar conden-
sate, which was reported in Ref. [216].

The experimental sequence was as follows. First, for a given number of
particles and trap aspect ratio, and an external magnetic field B oriented
along z direction, a stable chromium BEC was created with the scattering
length larger than the critical scattering length, acrit, that we commented on
in the previous section. Next, with the Feshbach resonance technique, the
scattering length was ramped down rapidly below the acrit. After the ramp
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the cloud evolved for an adjustable time thold and then the trap was switched
off. Subsequently, after the time of flight, the condensate was imaged by ab-
sorption of a resonant laser beam propagating along x direction. The results
are presented in Fig. III.5.

Initially, due to the ramp into the regime of strong attractive contact in-
teractions, the density of atoms in the center of the trap grows significantly.
However, a strong rise of density in the collapsing condensate enhances in-
trinsic inelastic processes, with the most crucial recombination through the
3-body interatomic collisions. This process occurs at interparticle distances
of the order of the characteristic radius of interaction between atoms and
has a local character [82], which allows the description ṅ(r, t) = −L3n3(r, t),
where L3 is the recombination rate constant. It is important that the recom-
bination simply leads to the loss of atoms (we stress that the recombination
in the course of the collapse does not burn the condensate completely, i.e.,
the number of atoms in a BEC always remains finite) and does not break
the coherence between the particles remaining in the condensate. Hence,
the three-body recombination can be explicitly included in the nonlocal GPE,
which now will read

ıħ∂tΨ(r, t)=
[
− ħ2∇2

2m
+U(r)+ g|Ψ(r, t)|2

+
∫

d3r′ |Ψ(r′, t)|2Vd(r−r′)− ıħL3

2
|Ψ(r, t)|4

]
Ψ(r, t). (III.7)

Kagan et al. show in Ref. [82] that the accumulation of particles in the
center is however limited and that the compression (implosion) of the con-
densate reaches a maximum and turns into expansion (explosion) when the
density of the collapsing condensate becomes so high that the recombination
losses dominate over attractive interparticle interaction. This argumenta-
tion has been confirmed with the experimental results in the case of purely
contact interacting gas [74], and is also applicable in the case of a dipolar
gas. In the former case the explosion is isotropic [86] which is intuitive, given
the s-wave character of the contact interactions. Strikingly, Lahaye et al.
found experimentally in Ref. [216] that for a dipolar condensate the explo-
sion recovers the d-wave symmetry (cloverleaf pattern) of the dipolar poten-
tial Vd(r) ∼ Y 0

2 (θ,φ) /r3, with Y 0
2 (θ,φ) as the spherical harmonic function. In

Fig. III.5, the collapse occurs mainly in the x− y plane due to the anisotropy
of the DDI (in the absence of the inelastic losses the condensate would indeed
become an infinitely thin cigar-shaped cloud along z direction), and therefore
the BEC explodes essentially radially, producing the anisotropic shape of the
cloud.

We stress that the physical origin of this collapse is the phonon instabil-
ity, related with small momenta, analogous to the one discussed in Sec. II.C.8
for nondipolar gases, and should not be mistaken with other possible collapse



36

Figure III.5: Collapse dynamics of a dipolar condensate. The figure shows
series of absorption images of the condensate for different values of thold (up-
per row) and the results of numerical simulations of the Eq. (III.7), with
L3 = 2× 10−40m6/s. Clearly, the d-wave angular symmetry of the dipolar
interactions is recovered. Compare with the Fig. VII.3a and Fig. VII.3b.
Reprinted from Phys. Rev. Lett. 101, 080401 (2008)

mechanisms (see Sec. III.D). In particular, in chapter VII we will investigate
the dynamics following the roton instability, related with dispersion mini-
mum occurring at intermediate momenta (see Sec. III.E), and we will discuss
what new physical consequences it bears.

We also note, that contrary to the three-dimensional case discussed in this
section, in a two-dimensional geometry the phonon instability does not neces-
sarily lead to a collapse of a dipolar condensate [248]. Furthermore, recently,
stability properties have been examined and a novel type of deconfinement-
induced collapse has been reported for an array of dipolar condensates formed
by a one-dimensional optical lattice [250, 251].

III.D

Excitations

We have claimed in the previous section that the origin of the d-wave col-
lapse of a dipolar gas is the phonon instability, which, as we have seen in
Sec. II.C.8, occurs when the Bogoliubov excitations have imaginary frequen-
cies at low momenta. Following the essential ideas of the stability analysis
for a nondipolar gas, we now employ the Bogoliubov ansatz (II.36) for the
wave function of a dipolar condensate,

Ψ(r, t)=Ψ(r)+u(r)e−ıωt +v∗(r)eıωt (III.8)

and linearizing the time dependent nonlocal Gross-Pitaevskii equation (III.5)
around the stationary solution Ψ(r), we arrive at corresponding Bogoliubov-
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de Gennes equations,

u(r)ħω=
[
−ħ2∇2

2m
−µ+U(r)+2

∫
d3r′V (r−r′)

∣∣Ψ(r′)
∣∣2 ]

u(r)

+
∫

d3r′V (r−r′)
∣∣Ψ(r′)

∣∣2 v(r),

−v(r)ħω=
[
−ħ2∇2

2m
−µ+U(r)+2

∫
d3r′V (r−r′)

∣∣Ψ(r′)
∣∣2 ]

v(r)

+
∫

d3r′V (r−r′)
∣∣Ψ(r′)

∣∣2 u(r),

(III.9)

(III.10)

where we have combined the contact potential (II.12) together with the dipole-
dipole potential (III.2) into V (r) = gδ(r)+Vd(r), for the sake of simplicity. It
is easy to see that for a homogeneous dipolar BEC (compare with Eq. (II.43)
for a nondipolar condensate) the solution of Eqs. (III.9)-(III.10) for the excita-
tions spectrum reads

εk =
√

E2
k +2n

(
g+ V̂d(k)

)
Ek (III.11)

= ħk
2m

√
ħ2k2 +4mng

[
1+εdd

(
3cos2θk −1

)]
, (III.12)

where εdd = 4πgd/3g = ad/3asc measures the strength of the dipole-dipole
interactions relative to the short-range interactions. It is then clear from
Eq. (III.12) that a dipolar uniform condensate is unstable against phonon
instability if εdd > 1, with the most unstable direction of the wavevector θk =
π/2. This is a direct consequence of the partially attractive nature of the DDI.

In general, due to the nonlocal character of the dipole-dipole interac-
tion, the Bogoliubov-de Gennes equations (III.9)-(III.10) belong to the class
of integrodifferential equations and are analytically, and numerically chal-
lenging. For a three-dimensional harmonic trap with cylindrical symme-
try the solutions of the BdG equations were computed by Ronen et al. in
Ref. [238]. Furthermore, for several low energy excitations modes it is pos-
sible to obtain analytic results by means of approximate methods such as
Thomas-Fermi approximation [211, 274] or time-dependent Gaussian varia-
tional ansatz [207, 208, 210]

Ψ(x, y, z, t)= A(t)
∏

η=x,y,z
e−η

2/2w2
η(t)−ıη2βη(t), (III.13)

with time-dependent variational Gaussian widths wη and phases βη, and
normalization coefficient A(t). Inserting Eq. (III.13) into the corresponding
Lagrangian and applying the standard Euler-Lagrange procedure one can
find the effective equations of motion for the variational parameters wη and
βη. Most interestingly, Góral and Santos found in Ref. [210] that contrary
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Figure III.6: Excitations frequencies of the oscillations modes in units of
the radial frequency ωρ as a function of the dipolar parameter ζ ∼ gd. In
case of the cigar geometry (right panel) the lowest lying excited mode is
the monopole breathing mode (2), which goes down, vanishing for a criti-
cal value of ζc at which the system becomes unstable. For pancake geometry,
it is the quadrupole mode (3) which becomes the lowest one. The solid lines
correspond to the variational results, based on the Eq. (III.13). The points
(squares, circles, triangles) represent the data obtained through direct nu-
merical simulation of the nonlocal GPE (III.5). The inset shows the graphical
representation of the oscillations modes of a dipolar BEC. Reprinted from
Phys. Rev. A 66, 023613 (2002).

to the case of contact interactions the properties of the most unstable mode
crucially depend on the geometry (trap aspect ratio). Namely, while for a
purely contact interacting BEC it is always the monopole breathing mode
(mode 2 in Fig. III.6) that becomes most unstable, for a dipolar BEC it is
either the quadrupole mode (mode 3 in Fig. III.6) for λ > 1, or the monopole
mode for λ< 1. These results are summarized in Fig. III.6.

III.E

Roton-Maxon spectrum

Since the appearance of the pioneering papers by Landau on the theory of
superfluidity [276–278], the notion of the roton minimum in the collective
modes dispersion of a system has played a pivotal role in explanation of
the behavior of the superfluid phase of 4He below the critical temperature
Tc = 2.17K. Crucially, the striking nonviscous flow and the frictionless mo-
tion of an impurity in the liquid break down above a critical flow velocity
vmax [279]. In the Landau’s theory, it is postulated that in order to explain
this breakdown, the εk dispersion of the collective excitations must be non-
monotonic, starting acoustically (phonon) εk = ħkcs, reaching a maximum
(maxon), which is then followed by a minimum (roton minimum) around
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Figure III.7: Roton-Maxon excitations spectrum of a dipolar condensate. Dis-
persion law εq is calculated for (a) β = 0.5 and µ/ħω = 343, and (b) β = 0.53
and µ/ħω = 46 (upper curve), and β = 0.47 and µ/ħω = 54 (lower curve). The
solid lines depict the numerically solved BdG equations (III.9)-(III.10), the
dotted lines show the results of Eq. (III.15). Reprinted from Phys. Rev. Lett.
90, 250403 (2003).

k = kmin, such that the line εk = ħkvmax becomes tangent to the dispersion
curve in the neighborhood of the minimum. Landau’s original suggestion was
that the development of the roton minimum had to be sought in the existence
of a rotation-like collective excitation (vortical motion) of the fluid, hence the
term by which the phenomenon has become to be known [280]. A milestone
in understanding the phenomenon was set by Feynman and Cohen [281–283]
who identified the relation between the static structure factor S(k), which is
related with the Fourier transform of the pair correlation function [284], and
the collective modes dispersion,

εk = Ek/S(k), (III.14)

supporting the argument that the physical origin of the roton appearance in
the spectrum are the strong correlations prevailing in the system [280, 285].
In the subsequent years a series of experiments based on neutron scatter-
ing [286–289] followed the theoretical considerations and the existence of the
roton at kmin = 1.93Å−1 has been confirmed. Furthermore, a number of phe-
nomena arising in helium due to the presence of the deep roton minimum,
such as density oscillations close to a defect or novel properties of vortices,
have been predicted [290–294].

Crucially, Santos et al. showed in his seminal work [211] that a dipolar
Bose-Einstein condensate can also exhibit the roton-maxon character of the
excitations spectrum (see Fig. III.7). In particular, in Ref. [211] the authors
consider an infinite pancake trap with dipoles perpendicular to the plane of
the trap. In this configuration the collective modes dispersion allows a trans-
parent physical interpretation. For in-plane momenta q much smaller than
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the inverse size L of the condensate in the confined direction, the excitations
have two-dimensional character. Hence, since the dipoles are in the side-by-
side configuration, particles effectively repel each other and the in-plane ex-
citations are phonons. For qL À 1, the excitations acquire three-dimensional
character and the interparticle repulsion is reduced. This decreases the ex-
citations energy under an increase of q. The energy reaches a minimum and
then starts to grow as the excitations continuously enter the free particle
regime.

These considerations can be expressed quantitatively solving numerically
the underlying Bogoliubov-de Gennes equations (III.9)-(III.10) (solid lines in
Fig. III.7). For qL ¿ 1, analytic results for the dispersion law εq can be found
in the Thomas-Fermi limit [295], with the lowest excitations branch repre-
senting phonons propagating in the plane of the pancake. Interestingly, for
the most involved three-dimensional regime, i.e., qL À 1, Santos et al. [211]
have obtained an insightful analytical result,

ε2
q = E2

q +
(2β−1)(5+2β)
3(1+β)(2+β)

Eqµ+ħ2ω2, (III.15)

with Eq = ħ2q2/2m, µ > 0 as the chemical potential, ω as the axial trapping
frequency, and β= 3g/8πgd. From Eq. (III.15) (dotted lines in Fig. III.7) two
possible types of behavior of the spectrum follow. For β> 1/2 the excitations
energy monotonously increases with q and the condensate is stable for any
momentum q and any density n. If β < 1/2, the dispersion law εq is charac-
terized by the presence of a minimum. Since in the limit qL À 1 the energy
εq is a growing function of q, the existence of this minimum indicates that
the spectrum εq as a whole acquires the roton-maxon character. Crucially,
with increasing density (chemical potential) of the BEC also the depth of the
roton minimum increases until finally it reaches εq = 0 at, approximately,
q =p

2/lz. This is the onset of the roton instability. Any further increase of n
(µ) renders εq imaginary and the condensate becomes dynamically unstable
against a collapse with regard to these intermediate momentum excitations.

The complexity of the excitations spectrum in a dipolar condensate, and
the existence of the roton minimum in particular, gives rise to a wealth of
new physical phenomena, unprecedented in a nondipolar BEC. In particular,
in the numerical study of the collective modes of a dipolar BEC in a three di-
mensional harmonic trap with cylindrical symmetry [238–240] two possible
types of solution for a stable condensate have been found: a pancake (normal)
shaped condensate with the maximum condensate density in the center of the
trap, and a biconcave (blood cell) shaped condensate (Dutta and Meystre pre-
dicted structured ground states also in anisotropic traps [242]). In the former
case, the mode with the frequency that goes to zero when approaching the in-
stability (compare with Sec. III.D) has zero projection of the angular momen-
tum on the z-axis, m = 0. This radial roton and its behavior are qualitatively
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similar to the roton mode in the infinite pancake that we analyzed above, in
particular, collapsing due to density modulations in the radial direction. In
contrast, for the biconcave condensate, the lowest excitation mode near the
instability has nonzero projection of the angular momentum on the z-axis,
m 6= 0. This is a kind of an angular roton in the trap. The appearance of the
angular roton when the ground state has the biconcave shape may be under-
stood in the light of the fact that the maximum density of such condensate
lies along a ring. Hence, the instability may be considered a density distortion
along this ring and indeed it has been found that a dipolar BEC may become
unstable against the density modulations in the angular coordinate, followed
with the characteristic angular collapse [249], which spontaneously breaks
the cylindrical symmetry (compare with Fig. VII.3a). In chapter VII we will
see how the confinement of the roton excitations in the center of a conden-
sate cloud gives rise to yet different, unconventional collapse dynamics that
originates in the roton instability.

The onset of the roton in a quasi-one-dimensional geometry was studied
in Refs. [296, 297].

Touching zero energy at a finite wave vector is suggestive of a possi-
ble phase transition to a supersolid, i.e., a self-assembled density modula-
tion [298, 299]. However, in Ref. [300] it has been found numerically that the
putative supersolid states of a dipolar BEC are unstable.

Furthermore, the observation of dipolar effects in atom interferometry ex-
periments [252] stimulated investigations on the collective excitations spec-
trum in a dipolar condensate in a one-dimensional optical lattice. For nondipo-
lar systems, gases trapped in different sites of a deep lattice do not interact
with each other. Hence, for a zero intersite hopping, different sites may be
considered as independent, uncorrelated experiments. Remarkably, even in
the absence of hopping, the long-range character of the dipolar interactions
plays a key role for the occurring phenomena. In particular, dipolar BECs in
nonoverlapping lattice sites share common excitations modes. This collective
character enhances roton-like features in the excitation spectrum [253] and
modifies the BEC stability, as recently demonstrated experimentally [250].
Similar intersite effects in a multilayer of dipolar BECs were examined also
in the context of the phonon instability [254]. The idea of collective character
of the excitations that are shared by all sites in the lattice will be the primal
scope of our studies in chapter V. See also appendix C.

Finally, recently, the effects originating in anisotropy of the Bogoliubov
spectrum with respect to the direction of the wave vector have received much
attention, in particular in what regards anisotropic superfluidity [237] (see
Ref. [236] as well), which has been also examined experimentally and the a-
nisotropy of the speed of sound has been observed [224] (see also Ref. [221]).
Moreover anisotropic coherence properties [301] and anisotropic density in-
stability [302] have been investigated in the context of tilting the dipoles po-
larization angle (see also Ref. [303]).
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III.F

Dipolar solitons

Dipolar effects are particularly relevant to what concerns the nonlinear prop-
erties of dipolar Bose-Einstein condensates (BECs). Crucially, whereas non-
dipolar BECs present a local Kerr-like type of nonlinearity (see Sec. II.C.7),
the nonlinearity in dipolar BECs exhibits a nonlocal character, similar to that
in plasmas [304], with the nonlocal response induced by heating and ioniza-
tion, nematic liquid crystals [305, 306], where the nonlocality stems from
long-range molecular interactions, and in photorefractive media [105, 106].

In particular, we have seen in section II.C.7 that the local nonlinearity
in a nondipolar condensate gives rise to the stable bright soliton solutions
but only in a one-dimensional geometry. Interestingly, however, it has been
observed experimentally that in the systems mentioned above, the nonlocal
nonlinearity stabilizes solitons also in two dimensions [307–310]. Strikingly,
in Refs. [258, 259] two-dimensional bright solitons (isotropic and anisotropic)
have been also predicted for a dipolar BEC.

The necessary conditions for the existence of the isotropic two-dimensional
bright soliton in a pancake dipolar BEC can be understood utilizing the Gaus-
sian ansatz (III.6) that we have employed in Sec.III.B when considering the
stability of a dipolar condensate,

Ψ(ρ, z)=
√

N
π3/2L2

ρLzl3
z

exp

[
− 1

2l2
z

(
x2 + y2

L2
ρ

+ z2

L2
z

)]
, (III.16)

where lz = √ħ/mωz is the axial harmonic oscillator length and Lρ, and Lz
are the variational parameters, related to the widths in the xy-plane (pan-
cake plane) and in the confined z-direction, which coincides with the direc-
tion of an external magnetic field, respectively. Inserting this ansatz into the
corresponding energy functional Pedri and Santos [258] derive the energy
of the system and they find that it admits a minimum, for a finite Lρ and
Lz, only if the dipole-dipole coupling strength gd is negative or, equivalently,
ad < 0. This condition can be achieved utilizing the technique of tuning of
the DDI that we discussed in section III.A. For Nasc/lz À 1, the explicit con-
dition for the existence of the two-dimensional isotropic dipolar soliton reads
|gd/g| > 3/8π or, equivalently, |ad/asc| > 1/2, which has been additionally ver-
ified with direct numerical simulations of the nonlocal GPE (III.5).

Furthermore, employing the time-dependent Gaussian variational ansatz,
such as the one in Eq. (III.13), the authors of Ref. [258] examined stability
properties of the two-dimensional isotropic dipolar soliton (see Fig. III.8) and
they found that for any value of β = gd/g it is the breathing mode which is
the lowest-lying mode (compare with Sec. III.D). For sufficiently small val-
ues of |β|, the frequency of the breathing mode tends to zero, and eventually
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Figure III.8: Energy of elementary excitation modes of a two-dimensional
isotropic dipolar soliton. The solid line corresponds to the breathing mode
while the dashed line depicts the result for the quadrupole modes (see
Fig. III.6) for g = 10ħωzl3

z, with κ = Lρ/Lz (see Eq. (III.16)). Clearly, for
small values of |β|, the dipolar interactions do not suffice to stabilize a soliton
and the breathing mode touches zero while the condensate wave packet ex-
pands. In contrast, when |β| becomes large, the three-dimensional character
of the dipole-dipole interactions becomes decisive and the attractive part of
the DDI renders the soliton eventually unstable against the collapse. Hence,
the dipole-dipole interactions support the stable soliton solutions only in a
certain range of the strength of the dipolar coupling. Inset: Energy of the sys-
tem E for g = 500ħωzl3

z and β = −0.1 (instability against expansion, dashed
line), and β=−0.2 (stable soliton, solid line). Reprinted from Phys. Rev. Lett.
95, 200404 (2005).

the systems becomes unstable against expansion. This corresponds to the
disappearance of the minimum in the energy of the system in the inset of
the Fig. III.8. In this regime, the two-dimensional picture provides a good
description of the physics of the problem. For sufficiently large values of |β|,
the three-dimensional character of the system becomes decisive, rendering
the soliton unstable against collapse. This is reflected in the decrease of the
frequency of the breathing mode. In chapter IV we will present an analogous
stability analysis of soliton molecules, i.e., compounds that consist of several
dipolar solitons.

Finally, Pedri and Santos [258] performed numerical analysis of a scatter-
ing process of two dipolar solitons and they observed that, in contrast to colli-
sions of nondipolar solitons in one dimension, the scattering was inelastic. In
particular, the dipolar solitons may transfer their center-of-mass kinetic en-
ergy into internal vibrational modes. This process, in turn, may result in soli-
ton fusion into a single localized oscillating structure or even in destruction
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of the solitons. Similar analysis of scattering properties of dipolar solitons in
a double-well potential with no hopping was performed in Ref. [260] and in-
teresting intersite effects have been observed. In particular, a new scattering
scenario has been found, in which inelastic spiraling occurs, scattering reso-
nances have been discussed and the molecular-like interlayer potential has
been investigated. In chapters IV and V we will see how a proper engineering
of such intersite interactions between disjoint one-dimensional dipolar BECs
can pave the way towards involved soliton structures.

Following the same formalism as the one employed by Pedri and San-
tos [258], Tikhonenkov et al. [259] considered a pancake dipolar BEC with
dipoles polarized perpendicularly to the confinement direction and they found
the necessary conditions for the existence of the bright anisotropic dipolar
solitons. In particular, they concluded that in such arrangement no sign re-
versal of the DDI is required in order to observe the solitons. In addition,
as for the case of the isotropic solitons, the anisotropic solitons in a three-
dimensional geometry have been proven unstable against collapse.

We note that recently a scheme for the creation of stable three-dimensional
bright solitons in a Rydberg-dressed Bose-Einstein condensate has been pro-
posed [311]. For a general discussion of collapse arrest and soliton stabiliza-
tion in nonlocal nonlinear media the reader is referred to Ref. [312].

As we discussed in section II.C.7, nondipolar dark solitons in a three-
dimensional geometry are inherently unstable against the snake instabil-
ity. Interestingly, the presence of dipole-dipole interactions may stabilize a
three-dimensional dark soliton, provided that the condensate is loaded into
a sufficiently deep two-dimensional optical lattice. This effect was studied in
Ref. [261].

s
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Soliton molecules in dipolar BECs

Dipolar interactions support the formation of intersite soliton molecules in
a stack of quasi-one-dimensional traps. In this chapter we show that the sta-
bility and properties of individual solitons and soliton molecules in such a ge-
ometry crucially depend on the interplay between contact and dipolar interac-
tions. In particular, two different quasi-one-dimensional soliton regimes are
possible: a one-dimensional soliton characterized by purely repulsive dipole-
dipole interactions and a three-dimensional soliton for which a sufficiently
large dipole moment renders the dipole-dipole interactions attractive. Fur-
thermore, we find that in contrast to the dimers of polar molecules the soliton
dimers exhibit a nontrivial behavior of the elementary excitations that stems
from the competition between onsite and intersite interactions. Finally, we
prove the existence of soliton trimers in a regime where molecular trimers do
not occur. We demonstrate that the soliton molecules that we report are well
feasible under realistic experimental conditions.
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IV.A

Introduction

As we have broadly discussed in Sec. III.F, dipole-dipole interactions are par-
ticularly relevant to what concerns the nonlinearity in dipolar Bose-Einstein
condensates. Namely, as opposed to nonpolar gases, the nonlinearity in dipo-
lar BECs exhibits a nonlocal character, which becomes clear from the nonlo-
cal Gross-Pitaevskii equation (III.5). This feature results in a range of novel
physical phenomena, being especially striking in the physics of dipolar soli-
tons.

We have also learned in sections III.C, III.E and III.F that the nonlocal
character of the DDI plays a substantial role in the physics of dipolar gases
in optical lattices, even in the absence of the intersite hopping. Namely, the
long-range dipole-dipole interactions couple the disjoint sites and thus fun-
damentally modify the excitations spectrum and the stability properties of a
dipolar BEC. Furthermore, as we will see in chapter V, the intersite dipolar
interactions between nonoverlapping condensates may also lead to a corre-
lated modulational instability. Interestingly, the intersite dipole-dipole cou-
pling is also of the prime importance in the field of polar molecules, lead-
ing to a variety of unprecedented few-body bound states such as intersite
dimers [313, 314], trimers [315, 316] and filaments [317, 318].

In this chapter we analyze in detail the physics of dipolar bright soli-
tons in a stack of quasi-1D condensates, created by means of an optical lat-
tice. We focus on the stability and properties of soliton dimers and trimers,
which constitute the building blocks of the soliton filaments and crystals, re-
spectively, created during the above-mentioned correlated modulational in-
stability. These two- and three-soliton bound states are an paradigms of
the so-called soliton molecules. Recently, an optical equivalent of such ob-
jects has been realized experimentally in optical fibers [319, 320] and a va-
riety of theoretical proposals to create atomic soliton molecules have been
presented [321–323]. Soliton dimers share some properties with molecular
dimers. However, as we discuss in detail below, intrasoliton interactions (of
course absent in the case of individual polar molecules) are decisive for their
stability and elementary excitations. Moreover, whereas molecular trimers
may be found (in the absence of any additional lattice [316]) only for a rather
narrow window of the dipole moment orientations [315], soliton trimers may
exist for the orientations for which trimers of individual polar molecules are
precluded.

The chapter is structured as follows. Sec. IV.B introduces the general for-
malism. In Sec. IV.C we compute the universal stability diagram for a single
dipolar soliton in a quasi-1D trap and we show that such geometry supports
two stable soliton regimes differing substantially in the character of the dipo-
lar interactions. Section IV.D is devoted to the study of properties of the soli-
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ton dimers. We discuss the intersoliton binding potential and the nontrivial
dependence of the dimer elementary excitations on the dipolar coupling. In
Sec. IV.E we analyze the trimer case, showing that soliton trimers may be
found in a regime where molecular trimers would be unstable.

IV.B

Model

In the following of this chapter we consider a dipolar BEC loaded in a stack
of M parallel quasi-1D traps (tubes), formed by a 2D optical lattice with sites
located at yj = j∆ (Fig. IV.1). The intertube potential barrier is considered
sufficiently large to suppress any hopping. In each tube we assume a strong
harmonic confinement of frequency ω⊥ in the xy plane and no confinement
along the z direction. The atoms possess a magnetic dipole moment µ (the re-
sults are equally valid for electric dipoles, such as polar molecules) oriented
along the y axis, in the side-by-side configuration, by a sufficiently large ex-
ternal field. Introducing a wavefunctionΨ j (r) that describes an atomic cloud
in a site j holding N atoms, the system of nonlocal coupled Gross-Pitaevskii
equations reads

ıħ∂tΨ j (r)=
[
− ħ2

2m
∇2 +U j (r)+ gN

∣∣Ψ j (r)
∣∣2

+
M−1∑
m=0

∫
dr′Vd

(
r−r′

)∣∣Ψm
(
r′

)∣∣2]
Ψ j (r, t) . (IV.1)

Figure IV.1: Scheme of a stack of quasi-1D tubes of dipolar Bose-Einstein
condensates.
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Here, U j (r) = 1
2 mω2

⊥[x2 + (
y− yj

)2] and Vd
(
r−r′

) = gd N
(
1−3cos2θ

)
/
∣∣r−r′

∣∣3
is the dipole-dipole potential where gd = µ0µ

2/4π with µ0 being the vacuum
permeability and θ the angle between the vectors joining two interacting
particles and the direction of the dipole moment. The short-range interac-
tions are characterized by g = 4πascħ2/m with asc being the s-wave scattering
length. In this chapter we consider only attractive short-range interactions
(asc < 0).

IV.C

Dipolar soliton in a single quasi-1D trap

We discuss first the conditions of existence of a stable bright soliton in a single
quasi-1D trap (M = 1). To this end we assume a 3D anisotropic Gaussian
ansatz

Ψ0 (r)= 1

π3/4
(
lxl ylz

)1/2 exp

(
− x2

2l2
x
− y2

2l2
y
− z2

2l2
z

)
, (IV.2)

where lx, l y, and lz are the variational widths along x, y and z directions,
respectively. Employing this ansatz into Eq. (IV.1) we obtain the energy of
the system

E
(
lx, l y, lz

)= ħ2

4m

∑
i=x,y,z

1
l2

i
+ ω2

⊥
4

∑
i=x,y

l2
i

+ N
4
p

2π3/2lxl ylz

(
g+ 2

3
gd K

(
lz

lx
,
lz

l y

))
, (IV.3)

with the function

K
(
rx, r y

)= 2π∫
0

dϕ
1∫

0

du

(
1−u2)[

2r2
y −

(
r2

x +2r2
y

)
cos2ϕ

]
−u2(

1−u2
)[

r2
y +

(
r2

x − r2
y
)
cos2ϕ

]+u2
. (IV.4)

The full derivation of Eq. (IV.3) and the detail study of an analytical form of
Eq. (IV.4) are presented in appendix B. A stable soliton solution corresponds
to a minimum in the energy functional E

(
lx, l y, lz

)
at finite nonzero values

of the soliton widths. In Fig. IV.2 we present the universal stability diagram
as a function of the dimensionless parameters g∗ = gN/2πħω⊥l3

⊥, and g∗
d =

gd N/2πħω⊥l3
⊥.

Interestingly, two different soliton regimes may be found, which differ re-
markably in their properties and stability for growing gd > 0. For sufficiently
small |g∗| < |g∗

c |, with |g∗
c | ' 1, a soliton may be considered as purely 1D, i.e.,

lx = l y ' l⊥ = √ħ/mω⊥, whereas lz À l⊥. For such soliton, the DDI remains
repulsive for any g∗

d. As a result, the soliton width lz increases monotoni-
cally for growing g∗

d, until diverging at a critical value at which the soliton
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Figure IV.2: Universal stability diagram for a dipolar bright soliton in a sin-
gle quasi-1D trap. Three regimes occur: stable soliton, instability against a
3D collapse and soliton expansion along the axis of the trap. The dashed line
represents the stability boundary for a soliton dimer with ∆= 6l⊥.

delocalizes. The condition for soliton stability against the expansion may be
then found analytically from Eq. (IV.3), |g∗|/g∗

d > 2π/3 (straight solid line in
Fig. IV.1). In contrast, for |g∗| > |g∗

c | the atomic cloud cannot be considered
any more as 1D, since lz becomes comparable with the transversal widths.
As a result, a stable soliton solution occurs that clearly displays a 3D charac-
ter. In this regime, the DDI interaction changes its character from repulsive
to attractive at a finite g∗

d > 0 value, and hence for further growing g∗
d the

soliton width decreases until the soliton becomes unstable against 3D col-
lapse. Furthermore, we note that in the vicinity of |g∗

c |, the stability diagram
presents an interesting reentrant character as a function of gd, first expand-
ing, then re-binding and finally collapsing (Fig. IV.3). Interestingly, contrary
to the soliton-expansion transition, at which the soliton width smoothly di-
verges, the re-binding transition is first-order-like, since the soliton abruptly
re-binds at a finite width.

IV.D

Soliton dimers

We assume in the following that a soliton in each tube is in the 1D regime
discussed in Sec. IV.C (this condition is self-consistently verified). At the end
of this section we briefly comment on the case of solitons in the 3D regime.
In the 1D regime, the wavefunctions factorize Ψ j (r) = φ⊥

j (x, y)ψ j (z), with
φ⊥

j (x, y) the ground state wave function of the transverse harmonic oscilla-
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Figure IV.3: Reentrant character of the soliton stability in a single quasi-1D
trap in the vicinity of g∗

c . Here, |g∗| = 0.95.

tor in a site j. Following the way presented in appendix A, we reduce the
dimensionality of Eq. (IV.1) to arrive at the system of equations

ıħ∂tψ j (z)=
[
− ħ2

2m
∂2

z +
gN

2πl2
⊥

n j(z)

+ gd N
3

M−1∑
m=0

∫
dkzeıkz z n̂m (kz)Fm− j (kz)

]
ψ j (z) , (IV.5)

with n̂m (kz) the Fourier transform of the axial wave function density nm(z)=∣∣ψm (z)
∣∣2 in a site m and

Fq (kz)=
∫ dkxdky

π

(
3k2

y

k2
x +k2

y +k2
z
−1

)
× e−

1
2

(
k2

x+k2
y
)
l2
⊥−ıkyq∆. (IV.6)

For stable individual solitons the intersite DDI may result for gd > 0 in
a binding of two solitons in different quasi-1D tubes into a soliton dimer
(Fig. IV.4). Such dimer resembles recently reported dimers of individual polar
molecules. However, as discussed below, in the physics of the soliton dimer
the interplay between intrasoliton interactions and intersoliton interactions
leads to nontrivial effects, which do not occur in the case of molecular dimers
due to the absence of onsite DDI.

Two solitons localized in neighboring quasi-1D tubes ( j = 0,1) and with a
relative displacement zr along the axis direction z (Fig. IV.4), experience an
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interaction potential

ED(zr)= gd N
3

∫
dz n1(z−zr)

∫
dkzeıkz z n̂0(kz)F1(kz). (IV.7)

We calculate ED(zr) evolving Eq. (IV.5) in imaginary time to obtain the ground
state of the dimer ψ0

j (z) and then shifting the solitons to the distance zr.
Due to the anisotropy of the DDI the intersoliton potential is maximally
attractive for zr = 0, and becomes repulsive for large zr (Fig. IV.4). Natu-
rally, the binding potential ED(zr) calculated for actual soliton wave-packets
is significantly weaker than that expected for point-like particles E0

D(zr) =
gd N(z2

r −2∆2)/(z2
r +∆2)5/2. Nevertheless, we note that even for the case of the

relatively small dipole moment of 52Cr, which we employed in our calcula-
tions for Fig. IV.4, the energy scale of the binding remains significant (∼ 100
Hz). Obviously, the binding would be stronger for condensates of atoms with
larger dipole moment, such as dysprosium [217] and erbium [219], or in the
case of polar molecules [179, 181, 183].

We now focus on the essential properties of the soliton dimer. First, fol-
lowing the imaginary time evolution of Eq. (IV.5), for a given ∆/l⊥, we com-
pute the width lz of the solitons forming the dimer as a function of g∗ and g∗

d
(see Fig. IV.5 (top)). Since we consider the 1D soliton regime, with an overall

Figure IV.4: Intersoliton binding potential for the case of the soliton dimer.
The red dashed line represents the potential calculated within the point-
like approximation E0

D . The blue solid line shows the actual potential com-
puted numerically with Eq. (IV.7). Here, we consider the case of 52Cr con-
densate (µ= 6µB, with µB the Bohr magneton), asc = −7.1a0 (with a0 the
Bohr radius), N = 100, ∆ = 6l⊥ = 512 nm, and the lattice potential depth
s = 13.3ER (recoil energy). These parameters refer to ω⊥ = 26.7 kHz and
(g∗, g∗

d) = (−0.88,0.45). The inset depicts schematically the soliton dimer ar-
rangement.
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repulsive intrasoliton DDI, an increase of gd results in a broadening of the
solitons, and eventually to the instability of the individual solitons against
expansion. Note, however, that the attractive intersoliton interactions, while
providing the binding mechanism itself, induces a trapping of each soliton
by its neighbor, which contributes to stabilization of each soliton against ex-
pansion. This increases the stability threshold found in Sec. IV.C for an in-
dividual soliton, as shown by the straight dashed line (at |g∗|/g∗

d = 1.78) in
Fig. IV.2, obtained from a similar 3D variational calculation as that of the
previous section.

The properties of the soliton dimer must be compared with those of in-
tersite dimers formed by individual polar molecules. In the latter case, the
localization of each molecular wave-packet is solely due to the attractive in-
tersite DDI, which induce a mutual trapping of both molecules. This means,
in particular, that for g∗

d = 0 each of the wave-packets delocalizes. Further-
more, owing to the absence of intrawave-packet repulsive DDI, an increase of
g∗

d can only amplify localization and so the molecular dimer width decreases
monotonically as a function of g∗

d, unlike the case of the soliton dimer. As a
result, molecular dimers become stiffer (i.e., present growing excitation ener-
gies) for growing DDI.

In contrast, the elementary excitations of the soliton dimer present a
more involved behavior that stems from the interplay between intra- and in-
tersoliton DDI. We study the lowest-lying excitations by monitoring the real-
time dynamics of the solitons following a small distortion of the ground state
solution in the form ψ j(x, t = 0) =ψ(0)

j e−i(k j x+β j x2), corresponding to a pertur-
bation of the soliton positions and their widths. Fig. IV.5 (bottom) shows
the result of the Fourier transform of the position 〈z(t)〉 of one of the two
oscillating solitons and hence the frequency of the dimer lowest-lying exci-
tation (this is verified additionally by inspecting the Fourier transforms of
soliton width and density oscillations). For sufficiently small DDI, and so
for a small solitons widths, the lowest-lying excited mode of the dimer is as-
sociated exclusively to the motion of the center-of-mass of each soliton. In
consequence, as g∗

d grows, so does the energy of dimer excitations, resem-
bling the case of molecular dimers. In contrast to the molecular dimers, how-
ever, after reaching a certain critical value of g∗

d the soliton dimer becomes
progressively softer (i.e., it exhibits decreasing excitation energies). This phe-
nomenon arises since the soliton widths increase due to the repulsive intra-
soliton DDI, and, as a result, the lowest-lying excitation becomes eventually
an admixture of both position and width distortions. As discussed before, for
a sufficiently large g∗

d the dimer becomes eventually unstable against expan-
sion.

Finally, we stress that soliton dimers may exist as well in the 3D regime
defined in Sec. IV.C, i.e., for |g∗| > |g∗

c |. As depicted in Fig. IV.2, the stability
threshold against the soliton dimer collapse is basically the same as that for
an individual soliton. Contrary to the 1D case, in the 3D regime the width
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of a soliton is relatively small lz ' l⊥ and so the binding potential between
the two solitons, such as the one depicted in Fig. IV.4, becomes comparably
deep as the point-like approximation E0

D . Moreover, for |g∗| > |g∗
c | the soliton

width never becomes large enough to cause the mixing of position and width
excitations. As a result, in the 3D regime, for growing gd values the soliton
dimer becomes only stiffer, up to the collapse threshold, similary to the case
of molecular dimers.

Figure IV.5: (top) Width of the soliton dimer as a function of g∗
d for |g∗| = 0.6

(blue dashed line) and |g∗| = 0.8 (green dot-dashed line), for the same param-
eters as in Fig. IV.4. The vertical dashed lines indicate the dimer expansion
threshold. (bottom) Frequency of elementary excitations of the soliton dimer
for the same parameters. The inset shows a scheme of the dimer elementary
excitation mode.
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IV.E

Soliton trimers

Interestingly, the DDI may lead to the formation of soliton molecules com-
prising of more than two solitons, in particular soliton trimers (Fig. IV.6). We
note that trimers (and even more involved complexes) have been predicted as
well for individual polar molecules [315, 316]. However, molecular trimers
have been found to exist only in a rather narrow window of dipole moment
orientations with respect to the trap axis, in the very vicinity of the magic
angle, such that intrasite repulsion is minimized and intersite attraction is
maximized. In particular, molecular trimers are precluded if the dipole ori-
entation is aligned along the trap axis. Furthermore, as noted in Sec. IV.D,
the formation of molecular bound states is handicapped by the fact that the
intersite interactions do not only provide a binding between the molecules
but are also indispensable for the localization of the individual molecular
wave-packets themselves. This contrasts with the soliton case, where the
existence of localized wavepackets is supported by intrasoliton interactions.
As a result, as we discuss in this section, the interplay between inter- and
intrasoliton interactions allows for stable soliton trimers for dipole moment
orientations in which molecular trimers are absent.

In the following we consider for theoretical simplicity the case of dipoles
oriented along the y axis (in the side-by-side configuration as that of the soli-

Figure IV.6: Scheme of the soliton trimer. The dipole moments are aligned
in the head-to-tail configuration providing attractive intrasite and repulsive
intersite dipolar interactions. In our work we mimick this scheme with qual-
itatively equivalent arrangement of dipoles aligned along the y axis (side-by-
side configuration) but with g∗

d < 0 (see discussion in text).
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ton dimer) but with gd < 0. This may be achieved by means of a rotating mag-
netic field [271], or microwave dressing for polar molecules [269]. The results
would be however qualitatively very similar to the case of dipoles oriented
along the tubes, since both cases are characterized by repulsive intersite DDI
and attractive intrasite DDI. Although the attractive intersite interactions
seem naively to involve soliton fusion in the bottom tube, and hence to pre-
clude the existence of the soliton trimer, such trimer results actually from
a nontrivial interplay between intertube repulsion and intratube attraction.
Namely, the single soliton in the upper tube provides a repulsive potential
barrier that prevents the fusion of the two mutually-attracting solitons in
the bottom tube, hence keeping the soliton trimer stable.

A major difference with respect to soliton dimers lies in the fact that now
g∗

d < 0, and hence the intrasoliton interaction is attractive. In consequence,
for growing |g∗

d| the individual solitons shrink, i.e., the trimer is not unsta-
ble against the expansion of the individual solitons but rather against their
collapse, as the solitons become eventually 3D for a sufficiently large |g∗

d|. As
it has been shown for the soliton dimer, the threshold for the collapse insta-
bility is basically given by the intrasoliton physics. We have thus analyzed
the stability of a soliton in a single quasi-1D trap for gd < 0 (see Fig. IV.7),
using the same 3D variational Gaussian ansatz discussed in Sec. IV.C. Natu-
rally, soliton trimers may exist only within the stability region of individual
solitons.

In the following we analyze the properties of trimers well within the 1D
regime, i.e., far from the 3D collapse threshold, for which we can safely em-

Figure IV.7: Universal stability diagram of a single dipolar bright soliton in a
quasi-1D trap for g∗

d < 0. Two regimes occur: stable soliton and 3D instability
against collapse. We indicate additionally the regime of the trimer instability
against fusion (see discussion in text).
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ploy the 1D GPEs (Eq. (IV.5)). In particular, after obtaining the ground
state of the trimer configuration by means of the imaginary time evolution
of these equations, we have computed the binding potential of the trimer
ET (r) (Fig. IV.8) as a function of the distance r between the solitons in the
bottom tube (Fig. IV.6). Crucially, at an intermediate distance rmin, ET (r)
shows a local minimum that offers the possibility of a soliton trimer. A point-
like approximation of the solitons would induce a binding

E0
T (r)= gd N

[
1
r3 + 16(r2 −8∆2)

(r2 +4∆2)5/2

]
, (IV.8)

resulting in an equilibrium position r0
min/∆' 3.73, independently of gd. This

approximation, however, differs significantly from the actual binding poten-
tial ET (r), proving again the relevance of the spatial extension of solitons.
Specifically, as shown in Fig. IV.9 (top), the trimer size, understood as the
actual equilibrium distance rmin, decreases with growing |g∗

d| (whereas the
binding energy increases). We also note that, as it may be expected, the soli-
ton trimer is more loosely bound than the soliton dimer. For typical param-
eters of 52Cr condensate, which we employed for the Fig. IV.8, the binding
energy is of the order of 10Hz. We stress, however, that the binding will
be certainly stronger in the case of more magnetic atoms (Dy, Er) or polar
molecules.

Note that unlike the soliton dimer, the soliton trimer is related to a local

Figure IV.8: Soliton trimer potential energy. The red dashed line represents
the potential E0

T obtained from the point-like approximation, whereas the
blue solid line depicts the actual binding potential ET calculated numerically
integrating Eqs. (IV.5). We consider 52Cr BEC (with gd < 0) with asc =−4.0a0
and N = 100 atoms in every soliton, i.e., (g∗, g∗

d) = (−0.50,−0.45). Here, ∆ =
512 nm, s = 13.3ER and ω⊥ = 26.7 kHz. The inset shows the potential energy
minimum which sustains the trimer bound state.
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minimum of the energy functional. In particular, the global energy minimum
results from the fusion of the solitons in the bottom tube into a single soliton,
which forms a tilted dimer with the top soliton. The trimer configuration of
Fig. IV.6 is hence strictly speaking a metastable solution, which is separated
from the fused solution by a potential barrier (Fig. IV.8). Macroscopic quan-
tum tunneling through this barrier is negligible, and hence the metastable
solution may be considered for all practical purposes as stable (as we have
checked in real-time evolution). The potential barrier dissappears at a suf-
ficiently small |g∗

d|, at which the soliton trimer becomes abruptly unstable
against soliton fusion (see Fig. IV.7 and Fig. IV.9).

Finally, as in the case of the soliton dimers, we have analyzed the lowest-
lying excitations of the soliton trimer. Since now gd < 0, the solitons are
always well localized. Hence, contrary to the dimer case, the lowest lying

Figure IV.9: (top) Size of the soliton trimer as a function of g∗
d for |g∗| = 0.25

and the remaining lattice parameters as that in the Fig. IV.8. The dashed line
indicates the result from the point-like approximation E0

T . (bottom) Trimer
elementary excitations for the same parameters. The insets show schemes of
the trimer elementary excitation modes.
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excitations are related solely to the solitons center of mass motion (with-
out an excitation of the width of the solitons). We may hence define two
different types of elementary excitations, characterized by an in-phase and
an out-of-phase motion of the soliton pair in the bottom tube, respectively
(Fig. IV.9 (bottom)). As in Sec. IV.D, we have probed these modes perturb-
ing the soliton widths and positions of the trimer ground state, and moni-
toring the subsequent real-time dynamics given by Eq. (IV.5). After Fourier
transforming the soliton positions, we obtain the lowest-lying excitations as
a function of |g∗

d|. The results of the two excitation frequencies are depicted
in Fig. IV.9 (bottom), which shows that for all |g∗

d| the out-of-phase mode is
always less energetic than the in-phase mode.

IV.F

Summary

In summary, intersite dipolar interactions support the formation of soliton
molecules in a stack of quasi-1D tubes. The stability properties of quasi-
1D solitons and intersite soliton molecules depend crucially on the interplay
between dipolar and contact interactions, and the competition between intra-
site and intersite effects. In particular, two different quasi-1D soliton regimes
are possible: 1D solitons for which the intrasoliton DDI is always repulsive
and that become eventually unstable against soliton delocalization, and 3D
solitons, for which the DDI changes its character from repulsive to attractive
for growing DDI, and that become eventually unstable against soliton col-
lapse. We have shown that, contrary to the case of dimers of individual polar
molecules, the interplay between intrasoliton interactions and intersoliton
DDI leads to a nontrivial behavior of the lowest-lying excitations of soliton
dimers. In the purely-1D regime a growing DDI render the dimer stiffer
up to a maximum beyond which an increasing DDI softens the dimer due
to the admixture between position and width excitations. Finally, we have
shown that soliton trimers may be constructed for attractive intrasite and
repulsive intersite DDI due to a subtle interplay between intratube attrac-
tion and intertube repulsion. Interestingly, these trimers occur in a regime
in which trimers of individual polar molecules are not possible. The reported
soliton molecules can be observed under realistic conditions within current
experimental feasibilities. Moreover, we emphasize that the soliton binding
mechanism described in this chapter can be straightforwardly generalized to
engineer even more intricate soliton complexes comprising a larger number
of solitons in more sites of an optical lattice.

s
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Spontaneous self-assemblies of solitons in
dipolar BECs

Intersite interactions play a crucial role in polar gases in optical lattices
even in the absence of hopping. In this chapter we show that due to these
long-range interactions a destabilized stack of quasi-one dimensional Bose-
Einstein condensates develops a correlated modulational instability in the
nonoverlapping sites. Interestingly, this density pattern may evolve sponta-
neously into soliton filaments or into a checkerboard soliton crystal that can
be so created for the first time in ultracold gases. These self-assembled struc-
tures may be observed under realistic conditions within current experimental
feasibilities.
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V.A

Introduction

We have learned in the previous chapters of this thesis that nonlocal intersite
dipolar interactions result in a rich variety of novel physical phenomena. In
particular, in chapter IV we have seen that dipole-dipole coupling between
nonoverlapping quasi-one-dimensional dipolar BECs give rise to dimers and
trimers of solitons. Earlier, in section III.E we have come to know that the
intersite interactions, even in the absence of hopping, crucially modify the
elmentary excitations modes that acquire a collective character, being shared
by all lattice sites.

As we discussed in Sec. II.C.7, quasi-one-dimensional geometries allow for
the existence of BEC solitons and hence modulational instability in these sys-
tems leads to the formation of 1D patterns, so-called soliton trains, depicted
in Fig. II.4. In contrast, according to discussion in Sec. II.C.5, dynamical in-
stability in a BEC in two- and three-dimensional geometries is typically fol-
lowed with a condensate collapse. In consequence, solitons patterns in higher
dimensions, such as a 2D crystal of solitons, are fundamentally prevented in
nonpolar BECs.

In this chapter we show that the destabilization of a dipolar BEC confined
in a stack of nonoverlapping quasi-1D tubes may be followed by the sponta-
neous self-assembly of stable soliton filaments or a 2D checkerboard crystal
of solitons, providing a route for the first realization of self-sustained 2D ar-
rangements of BEC solitons. This dynamical self-assembly stems from the
correlated character of the corresponding modulational instability. While for
nondipolar condensates the instability in each lattice site would develop inde-
pendently, the nonlocal dipolar interactions couple the nonoverlapping BECs
to form an orderly density pattern shared among all sites. As we show, corre-
lated modulational instability may be observable in current chromium [214],
dysprosium [217] and erbium [219] experiments.

The dynamically formed soliton filaments, comprising of soliton dimers
(see chapter IV), resemble dipolar chains of classical dipoles [324], as well as
chains predicted for polar molecules [317, 318]. However, compared to the
latter, soliton filamentation is expected to occur for smaller dipole moments
due to the many-body character of each soliton. Remarkably, inverting the
sign of the dipolar interactions results in the development of an anticorre-
lated density pattern which may be followed by the spontaneous formation
of a stable crystal of solitons, composed of soliton trimers (see chapter IV).
This 2D checkerboard crystal resembles the Wigner-like crystal predicted for
polar molecules [325, 326]. However, contrary to the latter, it is dynamically
formed and self-maintained by a nontrivial interplay between intratube at-
tractive and intertube repulsive dipolar interactions.

The chapter is structured as follows. In Sec. V.B we introduce the consid-
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ered model. In section V.C the spectrum of collective Bogoliubov excitations is
examined and the early stage (linear regime) of the correlated modulational
instability is considered. Section V.D is devoted to the phenomenon of spon-
taneous soliton filamentation and section V.E to the mechanism of dynamical
formation of a soliton crystal. We conclude in Sec. V.F.

V.B

Model

We study below a dipolar BEC confined in a stack of quasi-1D tubes formed
by an optical lattice (Fig. V.1). The lattice is assumed to be sufficiently deep to
suppress intersite hopping. In each of the Nm lattice sites the xy-confinement
is approximated by a harmonic potential with frequency ω⊥, whereas for sim-
plicity we assume no confinement along the z direction. We consider atoms
with a magnetic dipole moment µ (the results are equally valid for electric
dipoles, such as polar molecules) oriented along y direction by an external
magnetic field. The dipoles interact with each other via the dipole-dipole
potential Vd

(
r−r′

) = gd
(
1−3cos2θ

)
/
∣∣r−r′

∣∣3, where gd = µ0µ
2/4π, with µ0

being the vacuum permeability and θ the angle formed by the vector joining
the two interacting particles and the dipole moment direction.

We assume the chemical potential much smaller than ħω⊥ (this assump-
tion is self-consistently verified in our calculations). Hence, we can factorize
the BEC wave function at each site j, Ψ j (r)=φ j (x, y)ψ j (z), with φ j (x, y) the
ground-state wave function of the xy harmonic oscillator. Following the cal-
culations presented in appendix A, we arrive at a system of Nm coupled 1D

Figure V.1: Scheme of the stack of disjoint quasi-1D dipolar BECs.
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Gross-Pitaevskii equations describing the BEC stack:

ıħ∂tψ j (z)=
[
− ħ2

2m
∂2

z +
g

2πl2
⊥

∣∣ψ j (z)
∣∣2

+ gd

3

Nm−1∑
m=0

∫
dkz

2π
eıkz z n̂m (kz)Fm− j (kz)

]
ψ j (z) , (V.1)

where n̂m (kz) is the Fourier transform of the axial density nm(z) at site m,

Fq (kz)=
∫ dkxdky

π

(
3k2

y

k2
x +k2

y +k2
z
−1

)
× e−

1
2

(
k2

x+k2
y
)
l2
⊥−ıkyq∆, (V.2)

that we had already introduced in Eq. (IV.6) and l⊥ = √ħ/mω⊥ as the xy
oscillator length, ∆ as the lattice spacing, and g = 4πaħ2/m. Note that for a
fixed ratio ∆/l⊥ the physics of the system is governed by the values of g and
gd.

V.C

Linear regime: Bogoliubov modes

Starting from a homogeneous on-site linear density n0 we are interested
in the dynamics that follows the destabilization of the condensate after an
abrupt change of the scattering length a. A substantial insight into the first

Figure V.2: Bogoliubov spectrum for a 52Cr BEC (µ = 6µB, where µB is the
Bohr magneton) with a density 1014 cm−3 and a = −8.5a0 (a0 is the Bohr
radius), occupying Nm = 10 sites of a lattice with the intersite spacing ∆ =
512 nm and a lattice depth of 13.3ER (recoil energy), which results in the
ω⊥ = 2π ·26.7 kHz, and l⊥ = 85.3 nm. Here, qc = 0.07/l⊥.
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stages of the post-instability dynamics is provided by the analysis of the el-
ementary excitations of the condensate. To this end we introduce a pertur-
bation of the homogeneous solution, ψ j (z, t) = [p

n0 +χ j (z, t)
]

e−ıµ j t/ħ, with
χ j (z, t)= u j eı(zq−ωt)+v∗j e−ı(zq−ωt), where µ j is the chemical potential in a site
j, and q and ω are the z-momentum and the frequency of the elementary ex-
citations, respectively. In appendix C we employ this ansatz into Eq.(V.1) and
we derive the corresponding Bogoliubov-de Gennes equations yielding the
excitation spectrum and the Bogoliubov coefficients u j and v j. Interestingly,
even in absence of hopping, dipolar intersite interactions result in a collec-
tive character of the excitations that are shared by all sites. In consequence,
the excitation spectrum acquires a band-like character [253] as depicted in
Fig. V.2.

Modes with imaginary frequency are associated with dynamical instabil-
ity. For nondipolar gases, intersite interactions are negligible and hence all
transverse modes remain degenerated. As a result, modulational instability
develops independently in each site and no correlated density pattern occurs
during the post-instability dynamics. The situation dramatically changes for
sufficiently large dipole moment, as the intersite interactions lift the degen-
eracy between the transverse modes. In particular, the most unstable mode
becomes significantly more unstable than other modes, as shown in Fig. V.2,
governing the BEC dynamics within the linear regime. Crucially, this most
unstable mode is not only characterized by a z-momentum qc (associated
with the minimum of ω2 in Fig. V.2) setting the modulational instability in
each wire, but also by a transverse dependence along the y direction locking
the density pattern between sites. As a result, during the first stages of the
post-instability dynamics a correlated modulational instability develops. In-
terestingly, our numerical simulations predict that this phenomenon may be
observed in existing chromium experiments [216] or even more pronouncedly
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Figure V.3: (top) BEC wave function’s density distribution (arb. unit) after
200 ms of time evolution for the same parameters as in Fig. V.2. For plotting
purposes the y-width of the tubes has been magnified. (bottom) Dynamics
of the Fourier transform of the associated column density Σ(z, t) (arb. unit).
The dominating q = 0 peak has been removed for clarity and the remaining
distribution has been normalized to the maximum. The arrows indicate the
harmonics of qc.

with recently condensed dysprosium [217] and erbium [219] atoms.
Fig. V.3 (top) depicts the case of a 52Cr BEC destabilized by an abrupt

change of a > 0 into a sufficient a < 0 by means of a Feshbach resonance.
The numerical solution of Eq. (V.1) shows that despite the absence of inter-
site hopping a correlated density pattern develops. As presented in Fig. V.3
(top) this instability pattern survives well into the nonlinear regime where
the density modulation cannot be considered any more as a perturbation of
the original homogeneous on-site BECs. In typical experiments the density
alignements may be more easily monitored investigating the column density
Σ(z)=∑

nm(z). Contrary to the uncorrelated case, for which Σ(z) would show
no clear structure, the correlated instability results in periodically modulated
Σ(z). Fig. V.3 (bottom) shows the dynamics of the Fourier transform of Σ(z, t)
which is clearly characterized by the appearance of harmonics of qc (compare
Fig. V.2 and Fig. V.3 (bottom)).

V.D

Filamentation

The density modulation depicted in Fig. V.3 (top) evolves into a correlated
pattern of solitons. However, the solitons are created in an excited state,
with both internal breathing excitation and center-of-mass motion. As a re-
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Figure V.4: Filamentation of solitons. Here, a snapshot of time evolution
of the BEC density distribution (arb. unit) after 500 ms for, in particular,
Nm=20 lattice sites, µ=18µB and a=−41.7a0. The remaining parameters
are chosen as in the case of Fig. V.2.

sult, for insufficient dipolar interactions the correlated density modulation
is destroyed during the subsequent nonlinear time evolution. Consequently,
the positions of solitons at different sites become uncorrelated, not differing
qualitatively from the case of nonpolar gases. Strong intersite interactions
crucially change this picture as the correlated solitons in neighboring sites
experience an attractive intersite potential. Approximating the solitons by
Gaussians of width δ, such that l⊥ ¿ δ,∆, the binding energy for two solitons
acquires the form

Eb = (−2gd/∆3)G(δ/∆), (V.3)

which differs from the binding energy between point-like solitons (−2gd/∆3)
by the regularization function

G(x)' e1/4x2

4
p

2πx3

[
(x2+1)K0

(
1

4x2

)
+(x2−1)K1

(
1

4x2

)]
, (V.4)

with Kn the modified Bessel function of second kind [327]. As a result of this
intersite soliton attraction, and although the initial periodicity of the modu-
lation (as that of Fig. V.3 (top)) is generally lost, self-assembled soliton fila-
ments form spontaneously (Fig. V.4) when the center-of-mass kinetic energy
of the solitons acquired in the post-instability dynamics cannot overcome the
binding energy given by Eq. (V.3).

In order to analyze the dynamical filamentation quantitatively we intro-
duce at this point the time-dependent dimer correlation function for sites m
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and m′

Gm,m′(z, t)=
∫

dz′ nm(z′, t)nm′(z′+ z, t) (V.5)

and we define the normalized average dimer correlation

G n(z, t)=G(z, t) /
∫

dzG(z, t), (V.6)

Figure V.5: (top) Function χ(τ) for a typical case within the filamentation
regime (g = −0.019, gd = 0.0034, ∆ = 6 l⊥). In particular, for the parameters
that we employed in Fig. V.2 the time (t = τ/ω⊥) that we here consider equals
t = 700 ms. (inset) Time-averaged values of χ for long times, for different
values of gd and constant g =−0.019. (bottom) Phase diagram of the possible
regimes for g < 0, gd > 0.
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with

G(z, t)= 2
Nm(Nm −1)

∑
m

∑
m′>m

Gm,m′(z, t). (V.7)

A proper figure of merit describing the filamentation is provided by

χ(t)=G n(0, t)/Ḡ n(t), (V.8)

where Ḡ n(t) = ∫
dzG n(z, t)2 is the mean value of G n(z, t). Such defined func-

tion χ(t) characterizes the tendency of the solitons at different sites to align
into a filament.

In the following analysis we consider a simplified case of three lattice
sites. Fig. V.5 (top) shows χ(t) for a typical case within the filamentation
regime (see discussion below). The sharp initial peak indicates the forma-
tion of the correlated density pattern shared among all sites at the initial
stage of the time evolution, as discussed in section V.C. Similarly to Fig. V.3,
also here the pattern is quickly destroyed as the system enters the nonlinear
regime. However, provided sufficently strong dipolar interactions, the inter-
site soliton binding Eb supports the formation of soliton filaments and in
consequence χ(t) grows at larger times. Note that χ(t) eventually saturates
remaining constant for times typically much longer than the usual experi-
mental timescales.

In contrast, no filamentation occurs if the dipolar coupling is insufficient.
In this case, at long times χ(t) averages to χ = 1 indicating the absence of
intersite soliton-soliton correlation. Hence, driving the gd parameter from
small to large values results in a transition from a nonfilamented into a fila-
mented configuration (see the inset of Fig. V.5 (top)). Ultimately, for a suffi-
ciently large gd the repulsive on-site interactions compensate the attractive
short-range interactions and the system remains stable.

As a result, we distinguish three distinct regimes of dynamics in a stack
of 1D dipolar gases: (i) unstable uncorrelated (soliton liquid), (ii) unstable
filamented, and (iii) stable. As shown in Fig. V.5 (bottom), for a fixed value
of ∆/l⊥ these regimes are determined by the ratio gd/|g|. For the consid-
ered case of three sites and ∆/l⊥ = 6 the stability boundary line is given by
gd/|g| = 0.70, whereas the boundary line between the filamented and unsta-
ble nonfilamentated regimes occurs at gd/|g| = 0.09. For the case of 52Cr
(µ = 6µB) the filamentation occurs for 5.2 < |a|/a0 < 40.2, whereas for 164Dy
(µ= 10µB) it occurs for 47.3< |a|/a0 < 367.0.

We note that for a larger number of sites the system is more unstable
due to the intersite attractive interactions [253]. Also, the boundary between
filamented and unstable nonfilamented regimes is shifted towards larger gd
values due to the enhanced role of the string-like modes of the filaments.
Hence, even though the qualitative results will not be affected, increasing
the number of sites will in general reduce the filamentation regime.
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Figure V.6: Spontaneous crystallization of solitons in the case of negative gd.
Here, BEC density distribution (arb. unit) for a= 306a0, µ= 36µB and the
remaining parameters such as in Fig. V.2.

V.E

Checkerboard soliton crystal

Interestingly, the sign of gd may be inverted by means of transverse mag-
netic fields [271] or microwave dressing in the case of polar molecules [269].
Note that, although we consider this case for its theoretical simplicity, qual-
itatively the same results may be obtained orienting the dipoles along the
tubes. In both of these cases the emerging instability is characterized by the
most unstable Bogoliubov mode presenting a staggered y-dependence that re-
sults in an anticorrelated density pattern with maxima in a given site aligned
with minima in the neighboring ones. Strikingly, for a sufficiently strong
dipole moment, this anticorrelated structure formed at the initial stage of the
post-instability dynamics seeds the formation of a permanent checkerboard
soliton crystal in the nonlinear regime, as shown in Fig. V.6.

Remarkably, while purely repulsive interactions sustain 2D Wigner-like
crystals proposed for polar molecules [325, 326], the crystal of solitons is self-
maintained by a subtle interplay of dipolar intertube repulsion and intratube
attraction. Due to the anticorrelated character of the density modulation,
solitons in neighboring sites provide an effective potential barrier that pre-
vents mutually attracting solitons in the same tube to come together, hence
keeping the crystal stable.

In order to characterize quantitatively the dynamical formation of a soli-
ton crystal, we employ the notation introduced in section V.D, defining the
normalized averaged nearest-neighbor (NN) and next-to-nearest-neighbor (NNN)
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dimer correlations G n
α (z, t)=Gα(z, t) /

∫
dzGα(z, t), with α= NN, NNN and

GNN(z, t)= 1
Nm −1

∑
m

Gm,m+1(z, t), (V.9)

GNNN(z, t)=
Nm −2

∑
m

Gm,m+2(z, t), (V.10)

Figure V.7: (top) The inset shows a typical example of time evolution of χNN(τ)
and χNNN(τ) within the soliton crystal regime (g = 0.069, gd = −0.032 and
∆= 6 l⊥). We average χα(τ) within three different time intervals ∆τ1,2,3, and
we depict in the figure the corresponding averaged χα (l, n, s) for differ-
ent values of gd and constant g = 0.069. Note that for |gd|/g > 0.47, χNNN

decreases in time, indicating destruction of the checkerboard crystal. In par-
ticular, for the parameters we employed in Fig. V.2, the time (t = τ/ω⊥) that
we here consider equals t = 1200 ms. (bottom) Phase diagram of the possible
regimes for g > 0, gd < 0.
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and we introduce functions

χα(t)=G n
α (0, t)/Ḡ n

α (t), (V.11)

where Ḡ n
α (t) = ∫

dzG n
α (z, t)2 is the mean value of G n

α (z, t). The checkerboard
soliton arrangement is characterized by the NN anticorrelation (χNN(t) < 1)
and the NNN correlation (χNNN(t) > 1). In the following we consider a partic-
ular case of four lattice sites. A generic example of χNN(t) and χNNN(t) time
evolution within the crystalline regime (see discussion below) is depicted in
the inset of Fig. V.7 (top).

As in the case of filamentation, the emergence of the soliton crystal is
limited to a window of |gd|/g values. While for a weak dipolar coupling the
system remains stable, a sufficiently large dipole moment value renders the
attractive intratube interactions dominant and, in consequence, we observe
the formation of the staggered soliton pattern. Note that this configuration,
originating in the anticorrelated modulational instability emerging within
the linear regime, is indeed a highly metastable state, as it maximizes NNN
dipolar interactions. Crucially, however, our numerical simulations show that
such soliton crystal state characterized by χNN(t)< 1 coinciding with χNNN(t)>
1 remains stable well beyond typical experimental timescales, being hence
effectively permanent. Beyond a critical value of the dipolar coupling the
NNN repulsion destroys the NNN anticorrelation and hence the crystal.

The instability properties of the soliton crystal may be studied by consid-
ering the average χα for different time windows, as depicted in Fig. V.7 (top).
For all gd values within the unstable regime the NN anticorrelation function
χNN(t) < 1 remains constant at all times. In contrast, depending on the value
of the gd parameter, χNNN(t) function shows two distinctive types of time de-
pendence. Namely, while in the window of the crystallization regime χNNN(t)
saturates at a value indicating NNN anticorrelation and so the emergence
of a stable soliton crystal. Contrastingly, for large dipolar interactions the
initially anticorrelated χNNN , which originates in the linear regime, decreases
in time indicating destruction of the checkerboard pattern.

Hence, for negative gd values we identify three distinct regimes depicted
in Fig. V.7 (bottom): (i) a stable regime for small dipole values, (ii) an un-
stable regime intrinsically characterized by the dynamical formation of a
checkerboard soliton crystal, and (iii) a strong dipolar interactions regime
in which only nearest neighbor anticorrelation is preserved while the next-
to-nearest neighbor correlation is lost (soliton liquid). In analogy to the fila-
mentation phenomenon, for a fixed ∆/l⊥ value the regimes boundaries depend
solely on the |gd|/g ratio. For ∆/l⊥ = 6, the crystalliztion regime occurs for
0.40 < |gd|/g < 0.47, which for 52Cr (164Dy) requires 7.7 < a/a0 < 9.1 (70.0 <
a/a0 < 82.9).
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V.F

Summary

In conclusion, the dipolar intersite interactions in a destabilized dipolar BEC
confined in a stack of quasi-1D tubes induce an interesting dynamics charac-
terized by the development of a correlated modulational instability in the
nonoverlapping sites. For a sufficiently large dipole moment this density
modulation seeds the spontaneous self-assembly of soliton filaments or a
soliton checkerboard crystal, depending on the sign of the dipolar interac-
tions. Contrary to filaments and crystals of individual molecules, filaments
and crystals of solitons self-assemble spontaneously merely by simple desta-
bilization of the condensate. Moreover, we expect that due to the many-body
character of the constituent solitons the dipole moment necessary for observ-
ing these structures may be significantly reduced and that they may be at-
tainable with partially polarized polar molecules or highly magnetic atoms,
paving a promising route towards the first realization of 2D patterns of soli-
tons in ultracold gases and, to the best of our knowledge, in nonlinear optics
as well.

s
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VI

t

Faraday patterns in coupled quasi-1D dipolar
BECs

We study Faraday patterns in quasi-one-dimensional dipolar Bose-Einstein
condensates with parametrically driven dipolar interactions. We show that
in the presence of a roton minimum in the excitation spectrum, the emer-
gent Faraday waves differ substantially in two- and one-dimensional geome-
tries, providing a clear example of the key role of confinement dimensionality
in dipolar gases. Moreover, Faraday patterns constitute an excellent tool to
study nonlocal effects in polar gases, as we illustrate for two parallel quasi-
one-dimensional dipolar condensates. Nonlocal interactions between the con-
densates give rise to an excitation spectrum characterized by symmetric and
antisymmetric modes, even in the absence of hopping. We show that this
feature, absent in nondipolar gases, results in a critical driving frequency
at which a marked transition occurs between correlated and anticorrelated
Faraday patterns in the two condensates. Interestingly, at this critical fre-
quency, the emergent Faraday pattern stems from a spontaneous symmetry-
breaking mechanism.

73



74

VI.A

Introduction

In chapters IV and V we investigated the consequences of the anisotropy
and long-range character of the dipole-dipole interactions in the context of
soliton molecules and spontaneous formation of soliton self-assemblies, i.e.,
filaments and crystals. Yet, the wealth of phenomena originating in DDI
extends to the domain of the so-called Faraday patterns (waves).

Faraday patterns constitute a paradigmatic example of pattern formation
in periodically driven systems [328, 329] ranging from classical fluids [330]
(see Fig. VI.1), through multimode lasers [331] and superfluid helium [332].
Interestingly, Faraday patterns may be observed in BECs by modulating the
nonlinearity resulting from the interatomic interactions [333–338], as shown
in recent experiments [339]. Faraday patterns in Bose-Einstein condensates
may be directly linked to the spectrum of elementary excitations (see sec-

Figure VI.1: Faraday patterns on a surface of a classical fluid (here, silicon
oil), subjected to oscillations of the vertical acceleration. Different frequencies
of the oscillations result in different symmetries of the created density pat-
tern: (a) square symmetry, (b) hexagonal symmetry, (c) 8-fold quasi-periodic,
(d) 10-fold quasiperiodic. Reprinted from Phys. Rev. Lett. 78, 4043 (1997).



Faraday patterns in coupled quasi-1D dipolar BECs 75

tion II.C.8 and section III.E for the nondipolar and dipolar gases, respec-
tively), and in this sense provide an excellent insight into fundamental prop-
erties of the condensates. In nondipolar gases the Faraday pattern selection
is determined uniquely for each modulation frequency due to the monotoni-
cally growing character of the excitation energy [340]. Interestingly, this is no
longer the case for dipolar BECs with a roton-like minimum in the excitation
spectrum (see discussion in Sec. III.E). As a result, it has been shown that
Faraday patterns in two-dimensional dipolar condensates present remark-
able qualitative novel features [256]

In this chapter, we analyze quasi-one-dimensional dipolar condensates
with periodically driven dipolar interactions. We demonstrate that Faraday
patterns provide a clear example of the nontrivial role of confinement dimen-
sionality in dipolar gases, showing that in the presence of a roton-like mini-
mum in the excitation spectrum, Faraday patterns in a quasi-1D trap differ
fundamentally with respect to the 2D case [256]. Moreover, Faraday patterns
provide as well an excellent tool for a study of nonlocal effects in dipolar con-
densates, as we illustrate with two parallel quasi-1D BECs, in the absence
of tunneling. The nonlocal dipolar interactions between both BECs lead to
an unfolding of the excitation spectrum into symmetric and antisymmetric
modes with respect to the transposition of the two condensates. We show
that, as a consequence, at a critical driving frequency a transition between
correlated (symmetric) and anticorrelated (antisymmetric) Faraday patterns
in the two BECs occurs. For the critical driving the emergent Faraday pat-
tern differs from one realization to another, resulting from a spontaneous
symmetry-breaking mechanism.

The chapter is structured as follows. In Sec. VI.B we introduce the model
for periodically driven quasi-1D dipolar condensates. Section VI.C is devoted
to Faraday patterns in a single quasi-1D BEC, with a focus on the differences
as compared to 2D condensates. Section VI.D is dedicated to the effects of the
intercondensate dipolar interactions on the Faraday pattern selection in two
parallel disjoint quasi-1D dipolar condensates. We conclude in section VI.E.

VI.B

Model

In the following, we consider quasi-1D dipolar BECs, either in a single trap
(Sec. VI.C) or in two parallel traps (Sec. VI.D). Since the former case may be
considered as a particular realization of the latter, we present in this section
the general formalism for parallel quasi-1D BECs aligned along the z axis,
and separated along the y axis by a distance ∆, as presented already, e.g., in
Fig. IV.1. We assume the potential barrier separating both quasi-1D BECs
sufficiently large to suppress any hopping between them. Each condensate
experiences a strong harmonic confinement of frequency ω⊥ in the x-y plane
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and no confinement along the z direction. The atoms possess a magnetic
dipole moment µ (the results are equally valid for electric dipoles) oriented
by an external field along the y axis. In this chapter we employ dimensionless
expressions, using units of frequency ω⊥ and length l⊥ =

√ħ/Mω⊥, with M the
particle mass.

Due to the strong x-y confinement we assume that the system remains
in the ground state of the x-y harmonic oscillator (this condition is self-
consistently verified), and employ the nonlocal nonlinear Schrödinger formal-
ism developed in appendix A for a stack of quasi-1D dipolar BECs, to obtain
the coupled equations for the wave functions ψ j(z) in traps j = 1,2:

i∂tψ j (z)=
[
− 1

2
∂2

z + gn j(z)

+ 2π
3

gd
∑
m

∫
dkzeikz z n̂m (kz)Fm− j (kz)

]
ψ j (z) . (VI.1)

Short-range interactions are characterized by the coupling constant g = g3Dn0
/2πħω⊥l3

⊥, where n0 is the linear density, and g3D = 4πascħ2/M, with asc
the s-wave scattering length. The DDI are determined by the coupling con-
stant gd = g3D

d n0/2πħω⊥l3
⊥, where g3D

d =µ0µ
2/4π, with µ0 the vacuum perme-

ability. In Eq. (VI.1), n̂m (kz) is the Fourier transform of the linear density
nm(z)= ∣∣ψm (z)

∣∣2, and

Fq (kz)=
∞∫

0

dk
ke−

1
2 k2

k2 +k2
z

[(
k2 −2k2

z
)
J0 (kq∆)−3k2J2 (kq∆)

]
, (VI.2)

derived in Eq. (A.16), with Jn(x) as the Bessel functions of the first kind.

In the following we consider a parametric modulation of the dipole-dipole
interactions

gd(t)= gd(1+2αcos(2ωt)), (VI.3)

where α characterizes the modulation strength. Such modulation may be
implemented with intensity oscillations of the polarizing electric field for the
case of polar molecules, or with additional transverse magnetic fields, which
lead to a precession of the dipole moment orientation, for the case of magnetic
dipoles.

The modulation of gd induces Faraday waves. With the aim of examining
the growth of such patterns, we introduce the following ansatz for the wave
functions:

ψ j (z, t)=ψ jH

(
1+ A j(t)cos(qz)

)
, (VI.4)

which describes well the physics of the pattern in the linear regime, where the
modulation is weak and we may consider each momentum component q of the
pattern separately. In Eq. (VI.4), we introduce the complex amplitude A j(t)=
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Figure VI.2: Excitation spectrum ε(q) of a single quasi-1D dipolar BEC, with
g = −0.1007, gd = 0.0629. Note the roton minimum at ωr = ε(qr) and the
maxon maximum at ωm. For a driving frequency ωr <ω<ωm there are three
possible momenta q1,2,3 obeying the resonance condition ε(q)=ω.

u j(t)+iv j(t), which determines the perturbation from the initial homogeneous
solution ψ jH = exp{−iµ j[t+(Ω j/ω)sin(2ωt)]}, where Ω j =α(1− g/µ j), and µ j =
g+ 2π

3 gd
∑

Fm− j(0) is the chemical potential. Inserting Eqs. (VI.3) and (VI.4),
into Eq. (VI.1), and linearizing in A j we arrive at the system of equations
describing the modulation dynamics

d2u j

dt2 + q2

2

[(
q2

2
+2g

)
u j + 4π

3
gd(t)

∑
m

umF|m− j|(q)
]
= 0, (VI.5)

that we derive in detail in appendix D.

VI.C

Faraday Patterns in a single quasi-1D dipolar BEC

We consider in this section the case of a single condensate, being particu-
larly interested in the differences between the emergent Faraday patterns in
a quasi-1D trap and those predicted in Ref. [256] for a 2D condensate. By
applying a similar Bogoliubov analysis as the one presented in Chapter V,
and discussed in detail in appendix C, we obtain the spectrum of elementary
excitations in the considered case (see Fig. VI.2):

ε(q)=
√

q2

2

(
q2

2
+2g+ 4π

3
gdF0(q)

)
(VI.6)



78

where
F0(q)= 1+ 3

2
q2eq2/2Ei

(−q2/2
)
, (VI.7)

with Ei(x) the exponential integral function. Next, employing Eqs. (VI.5) and
(VI.6), in accordance with the appendix D, we arrive at the corresponding
Mathieu equation:

d2u
dt2 + [

ε2(q)+2ω2b(q,ω,α)cos(2ωt)
]
u = 0 (VI.8)

with
b(q,ω,α)= 2π

3ω2 gdαq2F0(q). (VI.9)

Following Floquet theorem [341], the solutions of Eq. (VI.8) are of the
form u(t) = eσ̃t f (t) where f (t) = f (t+π/ω) and σ̃(q,ω,α) is the Floquet char-
acteristic exponent, which can be found numerically. If the real part σ ≡
Re(σ̃) > 0, the homogeneous quasi-1D BEC becomes dynamically unstable
and Faraday patterns emerge. The typical wave length of the pattern will
be determined by the most unstable mode, i.e., that with the largest σ. In
the limit of small driving amplitude, α→ 0, the properties of the pattern are
governed by momenta q obeying parametric resonances εn(q)= nω.

Contrary to nondipolar BECs with a monotonic spectrum ε(q), dipolar
gases may offer a more complex roton-maxon spectrum [211] (Fig. VI.2). As a
consequence of this nonmonotonic character, for a specific range of ω, between
the roton and maxon frequencies (ωr and ωm, respectively) there are three
values q1 < q2 < q3 satisfying the resonance condition ε(q) = ω. Figure VI.3
shows the stability diagram for a driving frequency in this particular window.
As expected, for small amplitudes α, the three instability tongues (white re-
gions) correspond exactly to q1,2,3 (Fig. VI.2). This raises an interesting ques-
tion about which of the three modes dominates the pattern formation. For
a 2D geometry, Ref. [256] showed that when modulating dipole-dipole inter-
actions, the most unstable mode corresponds to the intermediate momentum
q2 < qr, with qr the roton momentum. Crucially, as we show below, this is
not the case in a quasi-1D dipolar condensate. This striking contrast between
quasi-1D and 2D predictions illustrates once more the key role played by the
trapping geometry in dipolar gases.

The problem of the most unstable mode is best understood employing
a series expansion of the Floquet exponent with small parameter b(q,ω,α)
[335, 342, 343], which, for the first parametric resonance ε(q) =ω, yields σ'
b(q,ω,α)/2 ∝ q2F0(q). Remarkably, in contrast to the 2D case, we find that
the most unstable mode corresponds to the largest momentum q3 > qr (solid
line in Fig. VI.3). Fig. VI.4 depicts a momentum of the most unstable mode
as a function of the driving frequency ω. The plot confirms that for all fre-
quencies within the window ωm < ω < ωr the momentum characterizing the
most unstable mode is larger than the roton momentum, contradicting the
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Figure VI.3: Stability diagram for the parameters of Fig. VI.2, as a function
of the perturbation strength α and momentum q. The unstable region is
depicted in white. The solid line indicates the most unstable mode, and the
dashed line the roton momentum.

prediction for a 2D pancake geometry [256]. For ω<ωr, alike in the 2D case,
the observed modulations are dominated by higher resonances with q in the

Figure VI.4: Most unstable momentum q as a function of the driving fre-
quency ω for the parameters of Fig. VI.2, with α = 0.01. The horizontal
dashed lines indicate the roton and maxon frequencies (ωr,m), and the ver-
tical line the roton momentum.
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vicinity of qr. However, unlike the 2D scenario, even in this regime the most
unstable mode in a quasi-1D BEC is characterized by q > qr. We emphasize
that the different nature of the Faraday pattern reported here stems solely
from the quasi-1D character of the condensate, which leads to a specific mo-
mentum dependence of b(q,ω,α) that differs from that in 2D.

We have simulated numerically the time evolution of the nonlocal nonlin-
ear Schrödinger equation (VI.1) with the parametrically driven nonlinearity,
according to Eq. (VI.3). The emergent pattern has been examined by means
of Fourier transform of the condensate density, which confirmed the results
for the most unstable mode that we obtained within the Mathieu analysis.

VI.D

Faraday Patterns in two quasi-1D dipolar BECs

We now turn to the study of Faraday patterns in two parallel quasi-1D dipo-
lar BECs. For nondipolar BECs, in the absence of hopping, each BEC behaves
independently, and hence an experiment with two BECs reduces to two un-
correlated experiments with a single condensate. The situation is radically
different in dipolar BECs, since, despite the absence of hopping, the nonlo-
cal character of the dipolar potential gives rise to a coupling between the
two BECs, with the strength of the intercondensate interactions governed by
F1(kz). These nonlocal interactions lead to a collective character of the el-
ementary excitations that are shared among the two quasi-1D condensates,

Figure VI.5: Elementary excitations of two parallel quasi-1D dipolar BECs,
for g = −0.0629, gd = 0.1749, and ∆/l⊥ = 6. Note the two branches of the
elementary excitations ε±(q), corresponding, respectively, to symmetric and
antisymmetric modes with respect to the transposition of traps j = 1↔ j = 2.
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alike the many tubes case discussed in Chapter V. Consequently, the excita-
tion spectrum unfolds into two branches (see appendix C)

ε±(q)=
√

q2

2

(
q2

2
+2g+ 4π

3
gd (F0(q)±F1(q))

)
, (VI.10)

which correspond, respectively, to symmetric and antisymmetric states with
respect to the transposition of traps j = 1↔ j = 2.

Interestingly, this implies that a periodic modulation of the dipolar in-
teractions yields two different parametric resonances for each driving fre-
quency ω= ε±(q±), even in the absence of the roton minimum (see Fig. VI.5).
Note, that the patterns are characterized not only by their momentum q±
but also by their symmetric (+) or antisymmetric (−) character. In analogy
to Sec. VI.C, the double solution raises a fundamental question about which
of these two modes is the most unstable, and hence provides the dominant
Faraday pattern. We stress that this nontrivial physics stems directly from
the intercondensate interactions, which lead to the splitting between the two
branches in the spectrum, being a qualitatively new feature of dipolar con-
densates.

Similarly to the previous section, we employ Eqs. (VI.5) for j = 1,2, and
the spectra (VI.10). In turn, we obtain (see appendix D) two decoupled Math-
ieu equations for the symmetric and antisymmetric combinations u± = u1 ±

Figure VI.6: Real part σ± of the Floquet exponent, corresponding to the the
first parametric resonance for the symmetric and antisymmetric excitation
branches ε±(q) = ω, as a function of the driving frequency ω. Note that at a
critical frequency ωc = 0.055, both exponents are equal, σ+ = σ−, indicating
a transition between the symmetric and the antisymmetric Faraday pattern.
In the figure we employ g =−0.0435, gd = 0.0437, ∆= 6l⊥, and α= 0.02.
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Figure VI.7: Analysis of the pattern selection as a function of the driving
frequency ω, in the neighborhood of the critical frequency ωc (for the same
parameters as in Fig. VI.6). The solid lines represent the excitation branches.
For each ω we indicate with a circle a momentum value where the numerical
Fourier transform n̂ j(kz) of the Faraday pattern shows a clear maximum.
For ω well below (above) ωc we observe a single peak at q+ (q−) indicating
that a symmetric (antisymmetric) Faraday pattern emerges (see insets). In
the vicinity of ωc (shaded region), both modes are equally unstable and we
observe the two corresponding peaks occurring simultaneously in the Fourier
transform (see text).

u2:
d2u±
dt2 + [

ε2
±(q)+2ω2b±(q,ω,α)cos(2ωt)

]
u± = 0 (VI.11)

with
b±(q,ω,α)= 2π

3ω2 gdαq2 (F0(q)±F1(q)) , (VI.12)

to which we apply the Floquet analysis employed in the study of Eq. (VI.8).
As in the case of a single BEC, the first parametric resonances ε±(q±)=ω are
characterized by the Floquet exponent σ± ' b±(q,ω,α)/2 ∝ q2(F0(q)±F1(q)),
and the emerging Faraday pattern is determined, for each driving frequency
separately, by the mode with the largest σ. Remarkably, the involved mo-
mentum dependence of F0(q)±F1(q) leads to an intricate relation between
the Floquet exponents and the driving frequency ω, as presented in Fig. VI.6.

Crucially, the curves σ±(ω) cross at a critical frequency ωc. In conse-
quence, we expect a distinct transition, as a function of the driving frequency
ω, between the symmetric Faraday pattern for ω < ωc and the antisymmet-
ric pattern for ω > ωc. Such transition is marked by an abrupt change of
the patterns from a maximum-maximum alignment (correlated patterns) to



Faraday patterns in coupled quasi-1D dipolar BECs 83

a maximum-minimum alignment (anticorrelated patterns), as depicted in the
corresponding insets of Figs. VI.7 and VI.8. Moreover, for ω=ωc the patterns
in both condensates exhibit a pronounced change of the wavelength of the
modulation, from l+ = 2π/q+(ωc) to l− = 2π/q−(ωc).

This transition has been confirmed by means of direct numerical simula-
tions of Eqs. (VI.1), with the parametric driving governed by Eq. (VI.3). As
for a single condensate, we Fourier transform the density of each condensate
to obtain the dominant momenta of the emergent Faraday patterns. The re-
sults, in the vicinity of the critical frequency ωc, are depicted in Fig. VI.7,
where, on top of the spectra ε±, for each driving frequency ω we indicate with
a circle the momentum value where the numerically evaluated n̂ j(kz) shows
a marked maximum. We find that, in agreement with the results for σ±(ω)
presented in Fig. VI.6, for ω well below ωc the pattern presents a single mo-
mentum component at q+, being characterized by a correlation between the
patterns in both quasi-1D BECs. In contrast, for ω well above ωc a single
momentum component q− is observed, and the patterns in the two quasi-1D
BECs are anticorrelated.

In order to quantify the transition between correlated and anticorrelated
patterns we introduce the correlation coefficient

r =
∫

dz Sn1(z) ·Sn2(z)√∫
dz S2

n1(z) ·
√∫

dz S2
n2(z)

, (VI.13)

where Sn j (z) = n j(z)− n j, with n j the average density in a trap j. Pattern
correlation is then characterized by r > 0, whereas anticorrelation leads to r <
0. Fig. VI.8 illustrates the radically different time evolution of the correlation
coefficient below and above the critical driving ωc. Clearly, for frequencies
sufficiently smaller (larger) than ωc the system arrives at perfectly correlated
(anticorrelated) pattern with r = 1 (r =−1).

An interesting scenario occurs for driving frequencies in the vicinity of the
critical ωc (shaded region in Figs. VI.6 and VI.7), where both the symmetric
pattern with wavelength l+ and the antisymmetric pattern with wavelength
l− are equally unstable. As a result, the Fourier transform of the density
in each quasi-1D BEC shows a simultaneous appearance of both momentum
peaks, q+ and q− (see Fig. VI.7).

Note that atω=ωc, not only ε+(q+)= ε−(q−) but also b+(q+,ω,α)= b−(q−,ω,α)
and thus the two Mathieu equations (VI.11) for u+ and u− become identi-
cal. This symmetry is however spontaneously broken in experiments due to
quantum and thermal fluctuations, which lead to different initial conditions
(populations) for both modes, that change randomly from one realization to
another. This spontaneous symmetry-breaking mechanism is best studied
quantitatively by considering the relative weight of the momentum peaks at
q+ and q− in the Fourier-transform of the density n̂(kz). To this end, we
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Figure VI.8: Correlation function r(t) for the same parameters as in
Fig. VI.7 (ωc = 0.055). The upper curve, which corresponds to ω= 0.025<ωc,
approaches r = 1 indicating a perfectly correlated pattern in both quasi-1D
traps. The lower curve, which corresponds to ω = 0.08 > ωc, reaches r = −1
proving a perfect anticorrelation between the Faraday patterns in the two
traps. The insets show the corresponding numerical results for the density
distribution n j(z) for t = 11000, with the bright (dark) colors indicating den-
sity maxima (minima). Naturally, for sufficiently long times, well beyond the
linear regime, the Faraday patterns and their correlations are eventually de-
stroyed.

define the imbalance parameter

χ(t)= n̂(q+, t)− n̂(q−, t)
n̂(q+, t)+ n̂(q−, t)

. (VI.14)

For ω well below or above ωc, once the pattern emerges, χ(t) = ±1. In the
vicinity of ωc, however, the imbalance parameter χ(t) shows a clear periodic-
ity with frequency 2ω (see Fig. VI.9). Note that these oscillations do not result
from nonlinear competition, as they occur well within the linear regime. In
fact, the 2ω oscillations of χ(t) originate in different, spontanously chosen, ini-
tial conditions for u+ and u−, which lead to their different time evolution that
can be well approximated by u±(t) = (uc

± cos(ωt)+us
± sin(ωt))exp(σωt), where

uc/s
± are the constants determined by the initial conditions. Furthermore,

spontaneous symmetry-breaking leads to a different result for the imbalance
χ(t) from one realization to another, what we have confirmed by considering
small random differences in the initial conditions for our numerical simula-
tions of Eqs. (VI.1).



Faraday patterns in coupled quasi-1D dipolar BECs 85

Figure VI.9: Population imbalance χ(t) between the two peaks at q±(ωc) for
the critical driving ω=ωc (for the same parameters as Fig. VI.7). Note the 2ω
periodicity (T = π/ω= 57.1) that stems from a spontaneous symmetry break-
ing mechanism (see text).

VI.E

Summary

Faraday patterns in dipolar BECs are crucially dependent on the unique
properties of the dipole-dipole interactions. In particular, due to the long-
range anisotropic nature of the dipolar interactions, the character of the
Faraday patterns depends strongly on the dimensionality of the condensates.
We have shown that for periodically modulated dipolar interactions, Faraday
patterns in 2D and 1D geometries differ substantially in the presence of a
roton minimum in the excitation spectrum. Moreover, for parallel quasi-1D
dipolar BECs, the intercondensate interactions lead, even in the absence of
hopping, to an excitation spectrum characterized by symmetric and antisym-
metric modes. This, in turn, gives rise at a critical driving frequency to a
marked transition between correlated and anticorrelated Faraday patterns
in the two condensates. Interestingly, at this transition point the Faraday
pattern selection stems from a spontaneous symmetry breaking mechanism.

s
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VII

t

Roton confinement in trapped dipolar BECs

Roton excitations constitute a key feature of dipolar gases, connecting these
systems with superfluid helium. We show that the density dependence of the
excitations spectrum results in a spatial roton confinement, which becomes
particularly relevant in pancake dipolar condensates with large aspect ratios.
We demonstrate that this confinement is crucial for the understanding of the
dynamics following roton instability. We also show that an arrest of the in-
stability can be employed to create a trapped roton gas, which is revealed by
confined density modulations. Roton confinement is expected to play a key
role in the ongoing experiments. In particular we discuss local susceptibil-
ity against density perturbations, which we illustrate for the case of a vortex
lattice.

87
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VII.A

Introduction

In the chapters IV, V and IV we have focused on a stack of quasi-one-di-
mensional dipolar condensates, which can be created with a two-dimensional
optical lattice. In the following we will study a single pancake dipolar conden-
sate. Such quasi-two-dimensional geometry can be considered as an example
of a single layer in a stack of pancake condensates, which can be created with
a one-dimensional optical lattice (see Fig. II.1, discussion in chapter III, and,
e.g., Refs. [250–254, 260]).

In particular, in section III.E we have broadly discussed the spectrum of
elementary excitations in a dipolar gas and we have strongly stressed the
peculiarity of its roton-maxon form, which contrast distinctively with the dis-
persion of the elementary excitations in a nonpolar gas (see section II.C.8).
As we have learned, when the dispersion minimum reaches zero energy, the
BEC becomes unstable against intermediate (finite) momentum excitations
and the roton instability develops [211, 239, 249]. Interestingly, this type
of instability features novel type of phenomena that are absent in the usual
phonon instability in nonpolar (see Sec. II.C.5 and Sec. II.C.8) and dipolar
(see Sec. III.C and Sec. III.D) gases.

In Sec. III.E we have also pointed out that the presence of the roton in
the dispersion relation establishes a direct link between dipolar gases and
physics of superfluid helium [276–278, 281–283]. Notably, a deep roton min-
imum in helium leads to intriguing effects related to density modulations
close to defects, boundaries, and vortex cores [290–294], a phenomenon whose
counterpart is also anticipated in a dipolar BEC [227, 240, 344].

In He the roton properties may be controlled by means of pressure [345–
347]. Similarly, the roton minimum in a dipolar BEC depends on contact and
dipolar interactions, being particularly sensitive to density. In this chap-
ter we demonstrate that this density dependence leads to a spatial roton
confinement in the trap center, due to the inhomogeneous density profile,
which is particularly relevant for pancake BECs with large aspect ratios.
This roton confinement, which has been hinted in recent numerical calcula-
tions [236, 241], resembles the one of rotons around a vortex line in He [348],
although in that case the confinement results from a spatially-dependent
Doppler shift. In Sec. VII.B we show that the roton confinement is well de-
scribed within the local-density approximation (LDA), which allows for a sim-
ple analytical derivation of the localized roton wave functions. Furthermore,
in Sec. VII.C we demonstrate that the roton confinement is crucial for the un-
derstanding of roton instability in a pancake trap after an abrupt quench of
the scattering length. Interestingly, the associated modulational instability,
post-collapse dynamics and atom losses present a nontrivial dependence on
the excitations prior to the destabilization. Moreover, in Sec. VII.D we show
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that arresting the roton instability allows for the creation of a trapped gas of
rotons, which is revealed by density modulations confined in the trap center.
Finally, in Sec. VII.E we discuss other consequences of roton localization, and
in particular we focus on local susceptibility against density perturbations,
which leads to vortex lattices with spatially-varying vortex-core profiles. We
conclude in Sec. VII.F.

VII.B

Analytical model

We consider in this chapter a dipolar BEC of N bosons of mass m and (elec-
tric or magnetic) dipole moment d oriented along z. The BEC is loaded in
a harmonic trap Vt(r) of frequencies ω in the xy plane and ωz = λω along z.
We assume a pancake-like confinement with λÀ 1. The BEC wave function
ψ(r, t) is determined by the time-dependent nonlocal Gross-Pitaevskii equa-
tion (III.5),

iħ ∂

∂t
ψ(r, t)=

[
−ħ2∇2

2m
+Vt(r)+ g|ψ(r, t)|2

]
ψ(r, t)

+
∫

d3r′Vdd(r−r′)|ψ(r′, t)|2ψ(r, t), (VII.1)

where g = 4πħ2aN/m characterizes the short-range interactions, a is the s-
wave scattering length, Vdd(r) = Nd2

r3 (1−3cos2θ) is the DDI potential intro-
duced in Eq. (III.1), θ is the angle between r and the z axis, and the wave
function satisfies the normalization condition

∫
d3r|ψ(r, t)|2 = 1.

We first consider ω = 0, briefly summarizing the results of Ref. [211]
that we discussed in Sec. III.E. There, the ground-state wave function is
ψ0(z)exp(−iµt/ħ), where µ is the chemical potential and ψ0(z) fulfills a 1D
local GPE with a regularized coupling constant g + gd, with gd = 8πd2/3.
Assuming a transverse Thomas-Fermi profile (see Sec. II.C.4) we obtain µ =
(g+gd)n0, with n0 as the peak density. The dispersion relation for excitations
with in-plane momentum q is obtained after linearizing around the ground-
state solution (see Sec.III.D). Interestingly, the dispersion may present a
roton-like minimum at intermediate q values. Under proper conditions the
spectrum is well approximated by:

ε2
h(q,µ)= E(q)2 −G(β)E(q)µ+ħ2ω2

z, (VII.2)

where E(q) ≡ ħ2q2/2m and G(β) ≡ (β−2)(5β+2)
3(1+β)(2β+1) , with β ≡ gd/g (compare with

Eq. (III.15)). The roton minimum results (for a certain regime of β and µ/ħωz)
from the term proportional to µ, which reduces the excitation energy if β> 2.

For ω > 0, the spectrum may be evaluated for each ρ =
√

x2 + y2 us-



90

ing LDA. We begin computing from Eq. (VII.1) the 3D ground-state pro-
file n0(r) = |ψ0(r)|2 and we extract for each ρ the corresponding z-profile,
n1D

0 (z) = n0(r)/n2D
0 (ρ), with n2D

0 (ρ) = ∫
dz n0(r). We then calculate the local

chemical potential µl(ρ). Solving the 1D Bogoliubov-de Gennes equations (see
Eqns. (III.9)-(III.10)) we obtain the local spectrum ε(q,ρ), which can be ap-
proximated with εh(q,µl(ρ)). Note that in nonpolar BECs interactions (and
hence density) play a crucial role for collective excitations with small mo-
menta (see Fig. II.5), for which LDA fails. This is because LDA may be legit-
imately employed only if qR À 1 (with R the Thomas-Fermi radius in the xy
plane [349]), but in this case the spectrum is only weakly density dependent.
The situation is crucially different for polar gases and the roton minimum,
which occurs at qr lz ' 1 [211], with l2

z = ħ/mωz. Hence, qrR À 1 for λÀ 1,
and LDA may be safely used to evaluate the roton minimum, which- crucially-
remains very sensitive to the local density.

In particular, since µl(ρ) decreases with ρ, in the trap center the roton
energy is lowest, E0/ħωz '

√
1− (Gµl(0))/2ħωz)2. For larger ρ the roton mini-

mum becomes shallower, and eventually disappears. The dispersion presents
thus a minimum both in momentum, at qr lz '

√
G(β)µl(0)/ħωz, and in space,

at ρ = 0 (Fig. VII.1). Hence, remarkably, an inhomogeneous density profile in

Figure VII.1: Elementary excitations spectrum ε(q,ρ) of a BEC, calculated
within the local density approximation (see see text). Here, we consider an
erbium BEC with N = 2×105 atoms, ωz = 2π×1 kHz and λ = 40. Note the
existence of a deep minimum (dark red region) in both position space and
momentum space that leads to the roton confinement.
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a dipolar BEC results in the spatial roton confinement.
Around the roton minimum

ε(q,ρ)' ħ2(q− qr)2

2m∗
+ 1

2
m∗ω2

∗ρ
2, (VII.3)

which, interestingly, resembles the Rashba model for a trapped BEC in the
presence of spin-orbit coupling [350, 351]. Rotons possess an effective mass

m∗ ≡ m
√

1/(qr lz)2 −1/4, and are confined by an effective harmonic potential

with frequency ω∗ ≡ ωz
mqr l2

z

m∗R
p

2
. Roton localization is hence characterized by

the harmonic length l∗ ≡
√

ħ/m∗ω∗ = 21/4(R/qr)1/2. Note that l∗/R ∼ √
lz/R.

Hence roton confinement is particularly significant for large λÀ 1. Moreover,
we find that if λÀ 1 then qr l∗ ∼

√
R/lz À 1, justifying the use of LDA.

To calculate the lowest-lying roton states we quantize Eq. (VII.3), and
move to momentum space, where the Rashba-like dispersion ∼ (q− qr)2 acts
as a ring-like potential [350]. The roton wave functions are of the form
φn,s(q)eisϕ/

pq, which obey[
En,s

ħω∗
− s2 − 1

4

2(ql∗)2

]
φn,s =

[
− 1

2l2∗

d2

dq2 + l2∗
2

(q− qr)2
]
φn,s. (VII.4)

For qr l∗ À 1, we may expand around q ' qr, obtaining the eigenenergies
En,s/ħω∗ = (s2 −1/4)/(2(qr l∗)2)+ n+1/2, which are characterized by the an-
gular momentum s around the Rashba-like ring, and the radial harmonic
excitations with frequency ω∗. The lowest roton states are given by n = 0,
being of the form ψs(ρ)∼ e−ρ

2/2l2
∗ Js(qrρ), with Js the Bessel function.

VII.C

Local modulational instability and collapse

The localized roton states are crucial in the BEC dynamics following roton
instability in pancake traps [352]. We consider a stable BEC prepared with
an initial scattering length ai > ac, with ac the critical value for the onset of
roton instability. We are interested in the dynamics after an abrupt quench
to a f < ac, where the roton energy becomes imaginary. Figs. VII.2 and VII.3
show the results of our simulations of Eq. (VII.1) for an erbium BEC.

Although the most unstable mode is ψ0(ρ), other modes with low s may
contribute to the modulational instability due to the small energy differences
between these levels. As a nontrivial consequence of that, the density pattern
that develops after the quench is crucially influenced by the initial (thermal
or quantum) population of those excitations which are exponentially ampli-
fied during the destabilization. This dependence is mimicked in our numer-
ics by considering small random deviations δψ(r) from the ground state ψ0
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Figure VII.2: Roton instability for 105 Erbium atoms, with ωz = 2π×450.0Hz
and λ = 30, ai = ac = 8.49a0 and a f = 0 (see text). We consider a small ini-
tial seeding ψ(r, t = 0) = ψ0(r)eiφ(r), with a random φ(r) homogeneously dis-
tributed with |φ(r)|/π < ξ. (a) Concentric rings (s = 0) formed after t = 19ms
for small initial fluctuations (ξ= 10−10). (b) Modulational instability after t =
15.5ms consisting of several s states for large initial fluctuations (ξ = 10−6).
(c) and (d) show the momentum distribution of (a) and (b), respectively (the
large peak at k = 0 is suppressed for clarity of the figures).

(which is calculated for a = ai) in the form: ψ(r, t = 0) = ψ0(r)+δψ(r), with
different amplitudes (see the caption of Fig. VII.2). Even though this allows
us to discuss the possible collapse scenarios, the actual amplitude of the ini-
tial fluctuations depends on ai and on temperature, T, and its analysis lies
beyond the scope of this thesis. If for ai the spectrum is weakly (or not) ro-
tonized, for kBT ¿ µl(0) (kB is the Boltzmann constant) the population of
the dominant unstable modes for a = a f is negligible (corresponding to our
simulations with small noise amplitude). In contrast, the initial population
of unstable modes may be significant for kBT ∼ E0, if for ai the roton depth,
E0, approaches zero (corresponding to our simulations with large noise am-
plitude).

For a small initial population of the unstable modes, the modulation in-
stability proceeds at a sufficiently slow pace such that the most unstable
mode ψ0(ρ) dominates. As a result, a localized pattern of concentric rings
develops (Fig. VII.2a), n(ρ, t)− n0(ρ) ∼ √

n0(ρ) ℜ(ψ0(ρ)), with a localization
length in excellent agreement with the expected l∗ (Fig. VII.3c). We note
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that similar concentric rings in a pancake dipolar BEC have been discussed
in Ref. [353]. In that case, however, the ring structure was not localized and
did not result from roton confinement but from dynamically unstable phonon
modes. The corresponding momentum distribution of the pattern that we ob-
serve is characterized by the appearance of a ring, given by the Rashba-like
dispersion (Fig. VII.2c). In contrast, for larger initial fluctuations the pat-
tern growth is too fast to select the most unstable mode only and the created
density pattern results from a (shot-to-shot dependent) linear combination of
modes with different s. As a consequence, the formed pattern is character-
ized by a superposition of eccentric collapse centers (Fig. VII.2b). In this case,
the corresponding momentum distribution presents a ring-like structure as
well, but with an azimuthal modulation arising from the linear combination
of various s states (Fig. VII.2d).

Similarly to other collapse scenarios in cold gases (see Sec. II.C.5 and
Sec. III.C, and references therein), three-body losses play here a crucial role

Figure VII.3: (a) and (b) depict the post-collapse dynamics after t = 23 ms
for Fig. VII.2a and after t = 19.5 ms for Fig. VII.2b, respectively. (c) Radial
density n2D

0 (ρ) (see text) (green crosses) and theoretical prediction assuming
ψ0(ρ) on top of the TF profile (black solid line). (d) Remnant BEC fraction
for the case in Fig. VII.2a (red solid line) and for the case in Fig. VII.2b (blue
dashed line). Compare with Fig. III.5 presenting the d-wave pattern.
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as well. We included the losses in our simulations of Eq. (VII.1) by adding
a term −iħL3

2 N2|ψ(r, t)|4ψ(r, t) (see discussion in Sec. III.C and Eq. (III.7)),
with a loss rate L3 = 10−28cm−6s−1. When the collapse proceeds, the three-
body losses become relevant at the density maxima, arresting the collapse
and preventing singularities of the wave function [354]. As a result, the parti-
cles are expelled from the collapse center(s) and the BEC explodes. The global
(phonon-like) collapse studied in dipolar chromium and erbium BECs [216,
219] results in a large decrease of the atom number and in a d-wave pat-
tern in TOF (see Fig. III.5). The pattern formation discussed above leads to
a a very different collapse dynamics. Concentric rings as those of Fig. VII.2a
are followed by a sequential collapse (and azimuthal instability) of the rings,
starting from the inner (denser) ones towards the outer ones (Fig. VII.3a).
As a result, the atom number decreases in time in a step-like manner (red
solid line in Fig. VII.3d). For the case of large initial fluctuations, the su-
perimposed eccentric collapse centers (Fig. VII.2b) lead to a complex post-
collapse behavior with characteristic mutually interfering jets expelled out
of each local collapse center (Fig. VII.3b). In this case the atom decrease is
smooth, lacking the step-like behavior of the previous case (blue dashed line
in Fig. VII.3d). In both scenarios the locality of the collapse has two main
consequences. First, TOF pictures lack the d-wave symmetry (post-collapse
TOF pictures are to a large extent dominated by the central q = 0 peak, with
the additional weak ring feature discussed above). Second, only a small num-
ber of atoms is lost during the collapse, compared to the large losses observed
in global collapses. Therefore, the roton local collapse may be distinguished
from the phonon global collapse by both the atom losses and the post-collapse
TOF images, even without accessing the in-situ dynamics.

VII.D

Confined roton gas

Interestingly, roton instability may be employed to create a confined roton
gas. As discussed above, an initially stable BEC may be driven into roton
instability by quenching a < ac. The pattern formation shown in Figs. VII.2a
and VII.2b, may be alternatively understood as the growth of roton popula-
tion. At this initial stage of the collapse, roton population is much lower than
N, and hence we may neglect condensate depletion or roton-roton interac-
tions. Once the roton gas is populated we return to the stable regime with
a quench up, a > ac [354]. Since both m∗ and ω∗ do not vary significantly
at the instability threshold, the created rotons are expected to remain con-
fined in the trap center also for the final stable configuration. As shown in
Fig. VII.4, the density pattern remains localized at the trap center, revealing
the confinement of the created roton gas [355]. We recall that the density
modulations remain confined due to the locality of the dispersion. Therefore,
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Figure VII.4: Evolution of a radial density cut for the case of Fig. VII.2a,
but arresting the collapse after t ' 16ms with a quench up to a = 8.55a0. A
trapped roton gas is revealed by a confined density modulation at the trap
center.

the rotons (density modulations) may be deconfined by further increasing a,
above the value where the roton minimum disappears.

VII.E

Spatially dependent susceptibility

A deep roton minimum induces in the vicinity of a perturbation a large sus-
ceptibility against the formation of density modulations with the roton wave-
length. This well-known effect in helium [290–294] is also relevant in dipolar
BECs [240]. The dependence of the roton depth on the BEC density leads to a
spatially dependent susceptibility, which we illustrate for the relevant case of
vortices [356]. Vortex cores present a crater-like shape for a deep roton min-
imum [227, 240], absent for a shallow or inexistent roton minimum. Hence,
vortices at different positions in a trapped BEC present a different core pro-
file. This is particularly evident in a vortex lattice (Fig. VII.5), where the
crater-like modulations of the cores at the trap center disappear for vortices
close to the BEC boundary. Note however that the vortex lattice still presents
a triangular Abrikosov geometry, since the energy scale resulting from the
density oscillations is overwhelmed by the Coulomb-like vortex-vortex repul-
sion. Note also, that contrary to He [294], density oscillations cannot exist
far from the vortex core, due to enhanced instability [227].
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Figure VII.5: Vortex lattice for a BEC of N = 1×105 Er atoms and the same
trap as in Fig. VII.1, at the threshold of the roton instability. The lattice is
generated by rotating the trap with a frequency 0.3ω.

VII.F

Summary

In summary, inhomogeneous trapping in pancake dipolar BECs with large
aspect ratios leads to spatial roton confinement, which is crucial for the un-
derstanding of roton instability. The roton-like dispersion has not yet been
observed experimentally, being currently a major goal pursued by several
groups. Roton confinement is expected to play a key role in these experi-
ments, since harmonic traps are typically employed and large aspect ratios
are required to study the roton dispersion. In addition to the local susceptibil-
ity discussed above [356], roton confinement should be carefully considered
when measuring the critical superfluid velocity, performing Bragg scatter-
ing [357] or analyzing finite temperature physics, which may be very inter-
esting since the thermal roton cloud is expected to localize in the trap center.

s



VIII

t

Conclusions and Outlook

In summary, in this thesis we have extensively studied novel phenomena
arising in a dipolar Bose-Einstein condensate in an optical lattice. We have
shown how the presence of the long-range and anisotropic dipole-dipole in-
teractions fundamentally modifies the physics of the considered systems.

In particular, in chapter IV, we have demonstrated that in a stack of non-
overlapping quasi-one-dimensional dipolar condensates the inherently non-
local dipolar interactions give rise to intertube bound states of solitons. A
detailed analysis of stability and properties of a soliton dimer and a soliton
trimer has been presented and it has been found that such soliton complexes
may be observed within current experimental feasibilities.

Next, in chapter V, we have considered a destabilization of the stack and
we have discovered that for a sufficiently large dipole moment it may be fol-
lowed by the development of a correlated modulational instability that stems
from the dipolar intertube coupling, even in the absence of intersite hopping.
Interestingly, in the considered quasi-one-dimensional condensates, this in-
stability can evolve into stable soliton filaments or soliton crystal, depending
on the sign of the dipole-dipole interactions. A thorough study of this phe-
nomenon has revealed that it is well feasible under realistic experimental
conditions.

Furthermore, in chapter VI, it has been shown that the physics of Faraday
patterns in a dipolar condensate crucially depends on the dimensionality of
the setup. We have also demonstrated that the intertube dipolar interactions
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lead to an unprecedented crossover between correlated and anticorrelated
patterns in the case of two lattice sites with a quasi-one-dimensional dipolar
condensate.

Finally, in chapter VII, we have investigated a trapped dipolar conden-
sate in a two-dimensional geometry and we have found that the density de-
pendence of the elementary excitations spectrum results in the confinement
of the excitations in the trap center. It has been found that this novel phe-
nomenon is of the utmost importance for the understanding of dynamics that
follows the roton instability. Moreover, we have demonstrated that an arrest
of this instability opens a realistic possibility of creation of confined roton gas
and we have discussed how the roton confinement gives rise to the spatially
dependent susceptibility against perturbations of the condensate density.

The findings of this thesis motivate further research. In particular, the
results of chapter IV allow to think about interesting scattering scenarios of
the soliton molecules. Furthermore, as recently suggested for nondipolar soli-
tons, such scattering process can be employed to create mesoscopic entangled
states of solitons. The role of dipole-dipole interactions in this method has not
yet been addressed and remains unclear. Another possible extension of the
presented work on dimers and trimers is a study on more exotic compounds
such as, e.g., soliton hexamers. Moreover, in the proceedings of chapter V we
have observed that a symmetry of the soliton crystal changes when varying
the strength of interactions. This intriguing transition (crossover), which we
have have not fully examined, offers an exciting possibility of studies on solid-
solid transition. In chapter VI we have addressed possible scenarios for the
Faraday patterns when the overall dipolar coupling is modulated. Interest-
ingly, the presence of the lattice brings about the idea when the dipolar cou-
pling is kept constant and intertube distance (the lattice spacing) is periodi-
cally modulated, which experimentally is perfectly feasible. In this case, con-
trary to the one considered in this thesis, the intratube dipolar interactions
are kept constant while only the intertube dipolar interactions vary. Based
on this premise we expect new interesting physics of the Faraday patterns.
Lastly, in chapter VII we have considered zero temperature situation and we
have shown that, under certain conditions, the condensate elementary ex-
citations are confined in the trap center. For finite temperatures we expect
that the thermally populated roton excitations (thermal cloud), in contrast
with the case of nondipolar condensate, should be also localized around the
condensate density maximum. Moreover, the locality of the condensate spec-
trum may be probed by a measurement of the response of the BEC against
an external perturbation, e.g., an additional lattice, which is characterized
by a certain length scale. We expect then that the response signal, which- as
it is clear from our results- will strongly depend on the position in the cloud,
should reach its maximum for the length scale corresponding to the roton
wavelength, providing a route for its experimental measurement. Finally,
the reported possibility of creation of a confined roton gas opens an interest-
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ing perspective towards the controlled study of fundamental roton properties,
such as, e.g., roton-roton interactions, which should be also addressed.

s
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Dimensionally reduced GPE

We begin with fully three-dimensional GPE describing a dipolar Bose-Einstein
condensate (BEC) confined in a two-dimensional optical lattice, forming a
stack of parallel, nonoverlapping lattice sites, as depicted in Fig. IV.1. A wave
function in a site j of the lattice is then described by

ıħ∂tΨ j(r, t)=
[
− ħ2

2M
∇2 +U(r)+ g|Ψ j(r, t)|2

+∑
m

∫
d3r′Vd(r−r′)|Ψm(r′, t)|2

]
Ψ j(r, t), (A.1)

where U(r) is an external potential and g = 4πascħ2/M, with asc as the scat-
tering length and M the particle mass. The dipole-dipole potential

Vd
(
r−r′

)= gd
(
1−3cos2θ

)
/
∣∣r−r′

∣∣3 (A.2)

is characterized by gd =µ0µ
2/4π, with µ as the particle dipole moment, µ0 as

the vacuum permeability, and θ being the angle formed by the vector joining
the two interacting particles and the dipole moment direction.

We now assume that the energy scale associated with the chemical poten-
tial µ j is much smaller than that of the confinement in each lattice site ħω⊥.
Hence, we can factorize the BEC wave function

Ψ j (r)=φ⊥
j (x, y)ψ j (z) , (A.3)
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with φ⊥
j (x, y) the ground-state wave function of the xy harmonic oscillator,

and in consequence

φ⊥
j (x, y)= 1p

πl⊥
exp

(
− x2

2l2
⊥

)
exp

(
− (y− j∆)2

2l2
⊥

)
, (A.4)

with l⊥ as the xy oscillator length and ∆ as the distance between the parallel
condensates. Employing Eqs. (A.3) and (A.4) to Eq. (A.1), and integrating it
with respect to x and y, we arrive at

ıħ∂tψ j (z, t)=
[
− ħ2

2M
∂2

z +U(z)+ g
2πl2

⊥

∣∣ψ j (z, t)
∣∣2 +Vd(z, t)

]
ψ j (z, t) , (A.5)

where we have introduced the dipolar mean-field potential

Vd(z, t)=
∫

dx
∫

d y
∑
m

∫
d3r′Vd(r−r′)|Ψm(r′, t)|2 |φ⊥

j (x, y) |2. (A.6)

Following the idea presented in Ref. [210], we now apply the convolution the-
orem, ∫

d3r′Vd(r−r′)|Ψm(r′, t)|2 =
∫

d3k
(2π)3 eıkr V̂d(k) á|Ψm(k, t)|2, (A.7)

and we rewrite Eq. (A.6) in the following form

Vd(z, t)=
∫

dx
∫

d y
∑
m

∫
d3k

(2π)3 eıkr V̂d(k)n̂m(k, t)n⊥
j (x, y), (A.8)

where V̂d(k) is the Fourier transform of the dipole-dipole potential Eq. (A.2),
n̂m(k, t) is the Fourier transform of the density nm(r, t) = |Ψm(r, t)|2, and
n⊥

j (x, y)= |φ⊥
j (x, y) |2. Performing the integration of Eq. (A.8) with respect to x

and y we arrive at

Vd(z, t)=∑
m

∫
d3k

(2π)3 eıkz z V̂d(k) n̂m(k, t) n̂⊥∗
j (kx,ky) (A.9)

=∑
m

∫
dkz

2π
eıkz z n̂m(kz, t)

∫ dkxky

(2π)2 V̂d(k) n̂⊥
m(kx,ky) n̂⊥∗

j (kx,ky). (A.10)

Next, we employ the ansatz (A.4) to calculate the density in Fourier space,

n̂⊥
m(kx,ky)= exp

(
− l2

⊥
4

(k2
x +k2

y)− ıkym∆
)
, (A.11)

and, by applying the expansion of a plane wave in the basis of spherical
waves, we derive the momentum representation of the dipole-dipole poten-
tial (for the particular geometry that we consider throughout this thesis, as
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depicted, e.g., in Fig. IV.1)

V̂d(k)= 4π
3

gd

(
3k2

y

k2 −1

)
. (A.12)

Inserting Eqs. (A.11) and (A.12) into Eq. (A.10), we obtain

Vd(z, t)= gd

3

∑
m

∫
dkz

2π
eıkz z n̂m(kz)Fm− j(kz), (A.13)

where

Fq (kz)=
∫ dkxdky

π

(
3k2

y

k2
x +k2

y +k2
z
−1

)

×exp
(
−1

2

(
k2

x +k2
y

)
l2
⊥− ıkyq∆

)
. (A.14)

Eq. (A.14) does not have an analytical form and hence solving Eq. (A.5)
requires numerical integration of Fq (kz). However, introducing polar coordi-
nates,

kx = kρ cosφ, ky = kρ sinφ, (A.15)

it is possible to simplify Eq. (A.14) and rewrite Fq (kz) in terms of the Bessel
functions of the first kind Jn(x):

Fq(kz)= 1
π

2π∫
0

dφ
∞∫

0

dkρkρ

(
2k2

ρ−3k2
ρ cos2φ−k2

z

k2
ρ+k2

z

)
exp

(
−1

2
k2
ρ l2

⊥− ıkρq∆sinφ
)

= 1
π

∞∫
0

dkρkρ

( 1
2 k2

ρ−k2
z

k2
ρ+k2

z

)
exp

(
−1

2
k2
ρ l2

⊥

) 2π∫
0

dφexp
(−ıkρq∆sinφ

)

− 3
2π

∞∫
0

dkρkρ
k2
ρ

k2
ρ+k2

z
exp

(
−1

2
k2
ρ l2

⊥

) 2π∫
0

dφcos(2φ)exp
(−ıkρq∆sinφ

)

=
∞∫

0

dkρkρ
exp

(
−1

2 k2
ρ l2

⊥

)
k2
ρ+k2

z

[(
k2
ρ−2k2

z

)
J0

(
kρq∆

)−3k2
ρJ2

(
kρq∆

)]
.

(A.16)
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Analytical expressions for the energy functional

We begin with the full three-dimensional GPE (A.1) introduced in appendix A,

ıħ∂tΨ j(r, t)=
[
− ħ2

2M
∇2 +U(r)+ g|Ψ j(r, t)|2

+∑
m

∫
d3r′Vd(r−r′)|Ψm(r′, t)|2

]
Ψ j(r, t), (B.1)

and we consider a single condensate described by the anisotropic gaussian
ansatz

Ψ(r, t)= 1
π3/4

1(
lxl ylz

)1/2 exp

(
− x2

2l2
x
− y2

2l2
y
− z2

2l2
z

)
, (B.2)

to compute the energy functional

E = Ekin +Etrap +Econtact +Ed. (B.3)

Employing Eqs. (B.1) and (B.2), a straightforward integration results in the
following expressions:

Ekin =− ħ2

2M

∫
d3rΨ∗(r, t)∇2Ψ(r, t)= ħ2

4M

∑
i=x,y,z

1
l2

i
, (B.4)
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Etrap =− ħ2

2M

∫
d3rΨ∗(r, t)U(r)Ψ(r, t)= M

4

∑
i=x,y,z

ω2
i l2

i , (B.5)

Econtact =− g
2

∫
d3rΨ∗(r, t)|Ψ(r, t)|2Ψ(r, t)= g

4
p

2π3/2lxl ylz
. (B.6)

The dipolar term Ed in the energy functional calls for more involved cal-
culations. In the following, we present the derivation of the full analytical
expression for Ed. Similarly to calculations presented in appendix A, we first
reexpress Ed in the momentum representation:

Ed =1
2

∫
d3rΨ∗(r, t)

∫
d3r′Vd

(
r−r′

) |Ψ(r′, t)|2Ψ(r, t)

=1
2

∫
d3k

(2π)3 n̂2(k)V̂d(k), (B.7)

where, employing Eq. (B.2),

n̂(k)=
∫

d3r e−ıkr|Ψ(r, t)|2 = exp

(
−k2

xl2
x

4
−

k2
yl2

y

4
− k2

z l2
z

4

)
. (B.8)

Writing Eq. (B.7) explicitly, i.e., together with Eq. (B.8) and V̂d(k) defined in
Eq. (A.12), and introducing new integration variables qi = ki l i/

p
2 we arrive

at:

Ed = gd
p

2
6π2lxl ylz

∫
d3q e−q2


2q2

y

l2
y
− q2

x
l2

x
− q2

z
l2

z

q2
x

l2
x
+ q2

y

l2
y
+ q2

z
l2

z

 . (B.9)

Next, introducing spherical coordinates,

qx = qsinθ cosφ, qy = qsinθsinφ, qz = qcosθ, (B.10)

and integrating out the q dependence we obtain:

Ed = gd

12
p

2π3/2lxl ylz

2π∫
0

dϕ
π∫

0

dθ sinθ

[
sin2θ

(−xcos2ϕ+2ysin2ϕ
)−cos2θ

sin2θ
(
xcos2ϕ+ ysin2ϕ

)+cos2θ

]

= gd

6
p

2π3/2lxl ylz

2π∫
0

dϕ
1∫

0

du

{(
1−u2)[

2y− (x+2y)cos2ϕ
]−u2(

1−u2
)[

y+ (x− y)cos2ϕ
]+u2

}
(B.11)

= gd

6
p

2π3/2lxl ylz
K

(p
x,
p

y
)
, (B.12)
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with x = (lz/lx)2 and y = (
lz/l y

)2, and function K
(p

x,
py

)
that we had intro-

duced in Eq. (IV.4), in Section IV.C. We now notice that the integral with
respect to ϕ, of the form present in Eq. (B.11), has the following analytical
form:

2π∫
0

dϕ
A+Bcos2ϕ

C+D cos2ϕ
= 2π

 A
C

√
C

C+D
− B

D

√
C

C+D
−1

 , (B.13)

and hence

Ed = gd

3
p

2πlxl ylz

{
− x+2y

x− y
− (1+2y)I1 +2yI2 + x+2y

x− y
I3

}
(B.14)

where:

I1 =
1∫

0

du
u2√[

u2(1− x)+ x
][

u2(1− y)+ y
] (B.15)

I2 =
1∫

0

du
1√[

u2(1− x)+ x
][

u2(1− y)+ y
] (B.16)

I3 =
1∫

0

du

√
u2(1− y)+ y
u2(1− x)+ x

. (B.17)

In order to integrate Eqs. (B.15)-(B.17), it is necessary to correctly specify the
mutual relations between lx, l y and lz. In Chapter IV we consider solitons
localized in an one-dimensional condensate aligned along the z axis, as de-
picted in Fig. IV.1, and thus it is justified to consider in the following lz > lx,y.
Furthermore, the positive sign of the dipolar coupling, i.e., gd > 0, leads effec-
tively to l y > lx. We refer to this case by denoting the corresponding integrals
with the plus sign, i.e, I (+)

1,2,3:

I (+)
1 = 1

y−1

√
y

x−1

[
F

(
a(+)(x);b(+)(x, y)

)
−E

(
a(+)(x);b(+)(x, y)

)]
, (B.18)

I (+)
2 = 1√

y(x−1)
F

(
a(+)(x);b(+)(x, y)

)
, (B.19)

I (+)
3 =

√
y

x−1
E

(
a(+)(x);b(+)(x, y)

)
, (B.20)
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where:

a(+)(x)= arcsin

√
1− 1

x
, b(+)(x, y)=

√
x(y−1)
y(x−1)

. (B.21)

In contrast, for negative dipolar coupling, i.e., gd < 0, the size of the con-
densate in the x direction is larger than in the y direction, and so lx > l y.
We refer to this case by denoting the corresponding integrals with the minus
sign, i.e, I (−)

1,2,3:

I (−)
1 = 1

x−1

√
x

y−1

[
F

(
a(−)(y);b(−)(x, y)

)
−E

(
a(−)(y);b(−)(x, y)

)]
, (B.22)

I (−)
2 = 1√

x(y−1)
F

(
a(−)(y);b(−)(x, y)

)
, (B.23)

I (−)
3 =

√
x(y−1)
x−1

[
E

(
a(−)(y);b(−)(x, y)

)
− y− x

x(y−1)
F

(
a(−)(y);b(−)(x, y)

)]
. (B.24)

where:

a(−)(y)= arcsin

√
1− 1

y
, b(−)(x, y)=

√
y(x−1)
x(y−1)

. (B.25)

In Eqs. (B.18)-(B.24), F(a;b) is the elliptic integral of the first kind [327],

F(a;b)=
a∫

0

dα
1√

1−b2 sin2α
, (B.26)

and E(a;b) is the elliptic integral of the second kind,

E(a;b)=
a∫

0

dα
√

1−b2 sin2α. (B.27)

Eqs. (B.4)-(B.6) and Eq. (B.14), together with the analytical form of Eqs.
(B.18)-(B.24), offer a convenient way of minimization of the energy functional
(B.3), which we employ to compute the stability diagrams in Figs. IV.2 and
IV.7, in Chapter IV.
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Bogoliubov-de Gennes equations

We begin with Eqs. (A.5) and (A.13) derived in appendix A

ıħ∂tψ j (z, t)=
[
− ħ2

2M
∂2

z +
g

2πl2
⊥

∣∣ψ j (z, t)
∣∣2

+ gd

3

∑
m

∫
dkz

2π
eıkz z n̂m(kz)Fm− j(kz)

]
ψ j (z, t) , (C.1)

where we have assumed no external potential U(z) = 0, and we employ the
Bogoliubov ansatz for the wave function of the condensate,

ψ j(z, t)= (p
n0 +χ j(z, t)

)
e−ıµ j t/ħ, (C.2)

where n0 is the axial density, µ j is the chemical potential in a site j, and

χ j(z, t)= u j eı(zq−ωt) +v∗j e−ı(zq−ωt) (C.3)

is a perturbation of the homogeneous solution, with q and ω as the z momen-
tum component and the frequency of the elementary excitations, respectively.
Inserting the ansatz (C.2) into Eq. (C.1) and linearizing in the perturbation
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amplitude we obtain the following terms:

ıħ∂tψ j (z, t)

=
[
µ j

p
n0 + eı(zq−ωt)u j

(
µ j +ħω)+ e−ı(zq−ωt)v∗j

(
µ j −ħω)]

e−ıµ j t/ħ, (C.4)

− ħ2

2M
∂2

zψ j (z, t)= ħ2q2

2M

[
u j eı(zq−ωt) +v∗j e−ı(zq−ωt)

]
e−ıµ j t/ħ, (C.5)

g
2πl2

⊥

∣∣ψ j (z, t)
∣∣2ψ j (z, t)

= gn0

2πl2
⊥

[p
n0 + eı(zq−ωt) (2u j +v j

)+ e−ı(zq−ωt)
(
2v∗j +u∗

j

)]
e−ıµ j t/ħ, (C.6)

gd

3

∑
m

∫
dkz

2π
eıkz z n̂m(kz)Fm− j(kz)ψ j (z, t)

= gdn0

3

{
eı(zq−ωt)

[
u j

∑
m

Fm− j(0)+∑
m

Fm− j(q) (um +vm)
]

+ e−ı(zq−ωt)
[
v∗j

∑
m

Fm− j(0)+∑
m

Fm− j(q)
(
u∗

m +v∗m
)]}

e−ıµ j t/ħ. (C.7)

Collecting Eqs. (C.4)-(C.7) and utilizing linear independence of eı(zq−ωt), and
e−ı(zq−ωt), we arrive at the system of equations

µ j = gn0

2πl2
⊥
+ gdn0

3

∑
m

Fm− j(0)

0=−u j
(
µ j +ħω)+ ħ2q2

2M
u j + gn0

2πl2
⊥

(
2u j +v j

)
+ gdn0

3

[
u j

∑
m

Fm− j(0)+∑
m

Fm− j(q) (um +vm)
]

0=−v∗j
(
µ j −ħω)+ ħ2q2

2M
v∗j +

gn0

2πl2
⊥

(
2v∗j +u∗

j

)
+ gdn0

3

[
v∗j

∑
m

Fm− j(0)+∑
m

Fm− j(q)
(
u∗

m +v∗m
)]

.

(C.8)

(C.9)

(C.10)
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Inserting Eq. (C.8) into Eqs. (C.9) and (C.10) we arrive at the final form of the
Bogoliubov-de Gennes equations describing the considered setup:

0=−u j

(
− gn0

2πl2
⊥
+ħω− ħ2q2

2M

)
+ gn0

2πl2
⊥

v j

+ gdn0

3

∑
m

Fm− j(q) (um +vm)

0=−v∗j

(
− gn0

2πl2
⊥
−ħω− ħ2q2

2M

)
+ gn0

2πl2
⊥

u∗
j

+ gdn0

3

∑
m

Fm− j(q)
(
u∗

m +v∗m
)

(C.11)

(C.12)

In general, i.e., for an arbitrary number of condensates, the system of
Eqs. (C.11) and (C.12) calls for numerical solutions, as those presented in
Fig. V.2. It is instructive, however, to calculate the spectrum analyticaly for a
small system, which amounts to rewriting Eqs. (C.11) and (C.12) in a matrix
form and demanding the determinant of the matrix to vanish. In particu-
lar, for a single condensate we obtain the following spectrum of elementary
excitations:

ħ2ω2 = ħ2q2

2M

[ħ2q2

2M
+ gn0

πl2
⊥
+ 2

3l2
⊥

F0(ql⊥)gdn0

]
(C.13)

where
F0(x)= 1+ 3

2
x2ex2/2Ei

(−x2/2
)
, (C.14)

is a particular case of Eq. (A.14), with Ei(x) the exponential integral func-
tion [327]. An example of the spectrum (C.13) is presented in Fig. VI.2. For
two condensates, proceeding like in the latter case, we arrive at the following
result:

ħ2ω2
± = ħ2q2

2M

[ħ2q2

2M
+ gn0

πl2
⊥
+ 2

3l2
⊥

(
F0(ql⊥)±F1(ql⊥)

)
gdn0

]
, (C.15)

with clearly unfolded branches of the Bogoliubov spectrum, depicted, e.g., in
Figs. V.2 and VI.5.

s
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Derivation of the Mathieu equations

We begin with Eqs. (A.5) and (A.13) derived in appendix A. Employing the
units of frequency ω⊥ and l⊥ = √ħ/Mω⊥, with M as the particle mass, and
assuming no external potential U(r)= 0, we arrive at:

i∂tψ j (z)=
[
−1

2
∂2

z + gn j(z)

+2π
3

gd
∑
m

∫
dkzeikz z n̂m (kz)F|m− j| (kz)

]
ψ j (z) , (D.1)

with g = g3Dn0/2πħω⊥l3
⊥ and gd = g3D

d n0/2πħω⊥l3
⊥, where n0 is the linear den-

sity and g3D = 4πascħ2/M, and g3D
d = µ0µ

2/4π, as defined in the full three-
dimensional case in appendix A. In the following we consider a parametric
modulation of the dipolar coupling,

gd j (t)= gd(1+2α j cos(2ω j t)), (D.2)

together with the ansatz for the wave function:

ψ j (z, t)=ψ jH

(
1+ A j(t)cos(qz)

)
, (D.3)

where the homogeneous solution is given by

ψ jH = exp{−iµ j[t+ (Ω j/ω j)sin(2ω j t)]}, (D.4)
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with µ j = g+ 2π
3 gd

∑
m

F|m− j|(0) determined by Eq. (C.8), and Ω j = α(1− g/µ j).

Inserting Eq. (D.3) into Eq. (D.1), and linearizing in A j we arrive at:

ıcos(qz)
d
dt

A j =− (
1+ A j cos(qz)

)(
1+2Ω j cos(2ω j t)

)
µ j

+ 1
2

q2 A j cos(qz)+ g
[
1+

(
2A j + A∗

j

)
cos(qz)

]
+ 2π

3
gd j (t)

[(
1+ A j cos(qz)

)∑
m

Fm− j(0)

+cos(qz)
∑
m

(
Am + A∗

m
)
Fm− j(q)

]
, (D.5)

and utilizing the explicit expression for µ j, we find:

ı
d
dt

A j =1
2

q2 A j + g
(
A j + A∗

j

)
+ 2π

3
gd

(
1+2α j cos(2ω j t)

)∑
m

(
Am + A∗

m
)
Fm− j(q). (D.6)

Next, decomposing the amplitude A j = u j+ ıv j and separating real and imag-
inary terms in Eq. (D.6) we obtain:

d
dt

u j = 1
2

q2v j,

d
dt

v j =−1
2

q2u j −2gu j − 4π
3

gd j (t)
∑
m

umFm− j(q),

(D.7)

(D.8)

and in consequence, combining Eqs. (D.7)-(D.8),

d2

dt2 u j +
(

q2

2

)[(
q2

2
+2g

)
u j + 4π

3
gd j (t)

∑
m

umFm− j(q)
]
= 0. (D.9)

In the case of a single dipolar BEC, Eq. (D.9) reads:

d2

dt2 u+
[
ω2

q +
4π
3

gdαq2F0(q)cos(2ωt)
]

u = 0, (D.10)

where we find the dimensionless form of Eq. (C.13) describing the Bogoliubov
elementary excitations spectrum in a single condensate:

ω2
q =

q2

2

(
q2

2
+2g+ 4π

3
gdF0(q)

)
. (D.11)

Eq. (D.10) acquires the form of the Mathieu equation [358]. For two dipolar
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condensates, with ω1 =ω2 and α1 =α2, Eq. (D.10) reads:

d2

dt2 u1 +ω2
qu1 + 2π

3
gd q2F1(q)u2

+ 4π
3

gdαq2 (F0u1 +F1u2)cos(2ωt)= 0

d2

dt2 u2 +ω2
qu2 + 2π

3
gd q2F1(q)u1

+ 4π
3

gdαq2 (F1u1 +F0u2)cos(2ωt)= 0.

(D.12)

(D.13)

We now notice that by introducing new variables u± = u1±u2 it is possible to
decouple the two Eqs. (D.12) and (D.13) to the following form:

d2

dt2 u++
[(
ω2

q+
2π
3

gd q2F1(q)
)

+ 4π
3

gdαq2
(
F0(q)+F1(q)

)
cos(2ωt)

]
u+ = 0, (D.14)

d2

dt2 u−+
[(
ω2

q−
2π
3

gd q2F1(q)
)

+ 4π
3

gdαq2
(
F0(q)−F1(q)

)
cos(2ωt)

]
u− = 0, (D.15)

to find again the dimensionless form of the Bogolibov spectrum (C.15) for two
condensates:

ω2
q± =ω2

q ±
2π
3

gd q2F1(q) (D.16)

= q2

2

[
q2

2
+2g+ 4π

3
gd

(
F0(q)±F1(q)

)]
. (D.17)

Finally, we can write the equations describing the pattern dynamics for two
condensates in a compact Mathieu-like form:

d2

dt2 u±+
[
ω2

q± + 4π
3

gdαq2
(
F0(q)±F1(q)

)
cos(2ωt)

]
u± = 0. (D.18)
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