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Lorentz-symmetry breakdown in weak-interaction physics is studied. In particular, the CPT-even Lorentz-
violating contributions to the Z boson in the minimal Standard-Model Extension are considered, and in 
this context polarized electron–electron scattering is investigated. Corrections to the usual parity-violating 
asymmetry are determined at tree level. Together with available data, this result can be used to improve 
existing estimates for the Lorentz-violating kW coefficient by two orders of magnitude. Some implications 
for past and future experiments are mentioned.
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1. Introduction

A key concept in our present understanding of classical space-
time is Lorentz symmetry. For over a century, this symmetry has 
been scrutinized experimentally with ever increasing sensitivity, 
and no compelling evidence for deviations from Lorentz invariance 
has been found to date. However, the fate of Lorentz symmetry be-
comes less clear when the effects of quantum physics on spacetime 
are considered. In fact, various theoretical approaches to this prob-
lem can accommodate departures from Lorentz invariance [1–8]
with a size that is expected to be governed by the Planck scale.

For the description of the ensuing Lorentz-breaking effects at 
presently attainable energies, the Standard-Model Extension (SME) 
framework has been developed [9,10]. The SME is based on effec-
tive field theory, incorporates the usual Standard Model and Gen-
eral Relativity as limiting cases, and contains general Lorentz- and 
CPT-violating operators of arbitrary mass dimension. This frame-
work is therefore expected to provide an adequate characteriza-
tion of low-energy departures from Lorentz symmetry regardless 
of their Planck-scale origin. For about two decades, the SME has 
served as the basis for both experimental [11–17] and theoreti-
cal [18–23] analyses of Lorentz violation. The SME has also been 
employed to study certain phenomenological effects of spacetime 
torsion [24].

For practical reasons, the overwhelming majority of past
Lorentz-symmetry tests has involved stable or quasistable parti-
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cles. Only comparatively few analyses have involved, e.g., weak-
interaction physics [25–27], and only some of these have placed 
actual constraints on the SME coefficients for the heavy vector 
bosons [26,27]. The present work is aimed at analyzing a dif-
ferent set of phenomenological effects in this context that could 
potentially be used for alternative measurements of SME coeffi-
cients associated with the massive gauge bosons. More specifically, 
we consider the tree-level corrections to electron–electron scat-
tering arising from Lorentz-symmetry violations that involve in-
ternal Z -boson lines. The leading effects in this context depend 
on the Lorentz-breaking kφφ and kW coefficients, which are both 
CPT even. Throughout, we work within the minimal SME (mSME), 
which is a subset of the full SME that restricts attention to power-
counting renormalizable Lorentz-violating operators.

The structure of our analysis is as follows. Section 2 provides 
a brief review of the relevant aspects of electroweak symmetry 
breaking within the mSME. In Sec. 3, we present the calculation 
of the cross section for electron–electron scattering. A discussion 
of experimental signatures and possible measurements is given in 
Sec. 4. A summary and outlook is contained in Sec. 5. Throughout, 
we work in natural units h̄ = c = 1, and our convention for the 
Minkowski metric is ημν = diag (+, −, −, −).

2. Basics

The flat-spacetime mSME is constructed to contain all Lorentz-
violating power-counting renormalizable operators that are com-
patible with various key principles of physics. For example, 
spacetime-translation symmetry ensuring 4-momentum conserva-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tion, unitarity, and the usual SU(3) × SU(2) × U(1) gauge structure 
are typically taken as properties of the mSME. In the present weak-
interaction context, the latter requirement of gauge symmetry is 
best displayed before electroweak symmetry breaking. For this rea-
son, we begin by reviewing the Lorentz-violating pieces of the 
unbroken Higgs and gauge-boson sectors in the mSME.

In the Higgs sector, the above conditions permit the following 
Lorentz-violating lagrangian contributions [9]:

LCPT−even
Higgs = 1

2 (kφφ)μν(Dμφ)† Dνφ + h.c.

− 1
2 (kφB)μνφ†φBμν − 1

2 (kφW )μνφ†Wμνφ , (1)

LCPT−odd
Higgs = i(kφ)μφ† Dμφ + h.c. (2)

Here, Dμ is the ordinary gauge-covariant derivative. As usual, 
φ denotes the Higgs doublet, and Bμν and W μν are the respective 
UY(1) and SU(2) gauge-field strengths. The dimensionless Lorentz-
breaking coefficient kφφ is CPT even and can have symmetric real 
and antisymmetric imaginary parts. This coefficient is usually cho-
sen to be traceless

Re (kφφ)
μ
μ = 0 , (3)

so as to avoid introducing unwanted Lorentz-invariant contribu-
tions. The coefficients kφB and kφW are also CPT conserving and 
dimensionless, and they must be real and antisymmetric. The co-
efficient kφ is CPT odd, has dimensions of mass, and must be real.

The gauge-field sector also possesses both CPT-even and CPT-
odd Lorentz-violating operators. The CPT-even ones are given 
by [9]

LCPT−even
gauge = − 1

4 (kB)κλμν BκλBμν

− 1
2 (kW )κλμνTr(W κλW μν) . (4)

The coefficients kB and kW are real and dimensionless. Moreover, 
they possess the symmetries of the Riemann tensor and a vanish-
ing double trace, so each has 19 independent components.

The CPT-odd Lorentz-breaking contributions take the following 
form [9]:

LCPT−odd
gauge = (k1)κεκλμν BλBμν + (k0)κ Bκ

+ (k2)κεκλμνTr
(

WλWμν + 2
3 igWλWμWν

)
. (5)

Here, the couplings k1 and k2 are real and have dimensions of 
mass, while k0 is also real and has dimensions of mass cubed. In 
what follows, we will disregard these terms:1 they are undesirable 
from a theoretical perspective because they are all associated with 
negative contributions to the energy [9].

In principle, the matter sector of mSME also contains a num-
ber of Lorentz-violating operators. In the present context of Møller 
scattering, the mSME coefficients for the electron field might be 
expected to be of relevance. However, we can safely disregard 
them on phenomenological grounds because they are constrained 
many orders of magnitude beyond the reach of present-day and 
near-future Møller-scattering experiments [11].

To determine the low-energy phenomenology associated with 
the above lagrangian contributions (1), (2), and (4), we need to 
consider the issue of spontaneous electroweak SU(2) × U(1) sym-
metry breakdown. To this end, we employ the usual approach of 
implementing unitary gauge and representing the Higgs doublet 
as

1 This may not require setting to zero coefficients with the same symmetries in 
other SME sectors [21].
φ = 1√
2

(
0
rφ

)
. (6)

Note that this is justified, as the corrections (1), (2), and (4) have 
been constructed such that the gauge structure of the theory is 
left unaffected. Paralleling the conventional case, we also define 
the fields

W ±
μ = 1√

2
(W 1

μ ∓ iW 2
μ) , (7)

Z 0
μ = W 3

μ cos θW − Bμ sin θW , (8)

Aμ = Bμ cos θW + W 3
μ sin θW , (9)

where θW denotes the ordinary weak angle.
The next step is the extraction of the static potential V (rφ, Aμ,

Z 0
μ, W ±

μ ) for the gauge and Higgs fields. It has the general form

V (rφ, Aμ, Z 0
μ, W ±

μ) = V 0(rφ) + δV (rφ, Aμ, Z 0
μ, W ±

μ) . (10)

Here, V 0(rφ) denotes the ordinary Lorentz-invariant contribution 
given by

V 0(rφ) = −1

2
μ2r2

φ + λ

4! r4
φ , (11)

where μ and λ are the conventional Higgs-potential parameters. 
The covariant derivatives contained in Eqs. (1) and (2) lead to the 
following Lorentz-violating corrections δV (rφ, Aμ, Z 0

μ, W ±
μ) to the 

static potential:

δV (rφ, Aμ, Z 0
μ, W ±

μ) =
1
2

√
g2 + g′ 2 kμ

φ Z 0
μ r2

φ

− 1
8 (g2 + g′ 2)

(
ημν + Re k{μν}

φφ

)
Z 0
μ Z 0

ν r2
φ

− 1
4 g2

(
ημν + Re k{μν}

φφ + i Im k[μν]
φφ

)
W −

μ W +
ν r2

φ , (12)

where g and g′ are the usual SU(2) and UY(1) couplings, respec-
tively. Curly (square) brackets denote (anti)symmetrization, e.g., 
k[μν]
φφ ≡ 1

2 (kμν
φφ − kνμ

φφ ).
Extremizing the static potential requires

∂V

∂rφ

= 0 ,
∂V

∂ Aμ
= 0 , (13)

∂V

∂ Z 0
μ

= 0 ,
∂V

∂W ±
μ

= 0 . (14)

The second one of Eqs. (13) is trivial since V is independent of Aμ , 
which can therefore be chosen freely. This feature is compatible 
with the surviving Uγ (1) gauge symmetry. The remaining set of 
simultaneous equations is solved by [9]

〈rφ〉 = a

(
1 − 1

μ2
(Re k̂φφ)−1

μν kμ
φ kν

φ

)1/2

, (15)

〈Z 0
μ〉 = 1

q
sin 2θW (Re k̂φφ)−1

μν kν
φ , (16)

〈W ±
μ 〉 = 0 , (17)

where we have defined k̂μν
φφ ≡ ημν +kμν

φφ and a ≡ √
6μ2/λ. We note 

that the quantity Re (k̂φφ)−1
μν always exists for perturbative mSME 

coefficients |(kφφ)μν | 	 1.
An interesting questions concerns the identification of experi-

mental signatures for such Lorentz-violating effects. One avenue to 
pursue in this context is discussed in the next section.
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Fig. 1. Leading Lorentz-invariant tree-level contributions to electron–electron scat-
tering. A solid line represents an electron. It is labeled by one of the four external 
4-momenta kμ, k′ μ, pμ, p′ μ as well as by one of the helicity observables r, r′, s, s′ . 
A single wavy line denotes the ordinary Lorentz-invariant photon propagator, and a 
double wavy line the usual Z -boson propagator. The vertices are conventional.

3. Electron–electron scattering

Electron–electron scattering, also known as Møller scattering, is 
dominated by the electromagnetic interaction. However, Z -boson 
exchange can also contribute to the amplitude for this process via 
the bottom two Feynman diagrams in Fig. 1. The corresponding 
effects are small but measurable, they have in the past been used 
to investigate the weak charge

Q e
W = 4 sin2 θW − 1 (18)

of the electron [28], and future measurements with improved sen-
sitivity are planned [29]. Electron–electron scattering might there-
fore provide a window for an independent study of Lorentz break-
down in the Z boson.

To determine the Lorentz-violating Z -boson effects in electron–
electron scattering within the mSME, we assume that mSME co-
efficients are small and hence can be treated perturbatively. This 
assumption is a natural one in light of the expected Planck sup-
pression of Lorentz-breaking effects. The first step is therefore to 
represent the mSME coefficients diagrammatically, so they can be 
added to the usual set of electroweak Feynman rules.

We begin by expanding the corrections (1), (2), and (4) about 
the electroweak vacuum expectation values (15) and (16):

rφ = 〈rφ〉 + h , (19)

Z 0
μ = 〈Z 0

μ〉 + Zμ . (20)

The resulting lagrangian expression contains various constant 
terms that can be dropped, as they fail to contribute to the equa-
tions of motion. Terms linear in the fields are absent, which is a 
direct consequence of expanding around an extremum of the static 
potential. The leading-order Lorentz-violating corrections are thus 
quadratic in the physical fields. Third- or higher-order terms also 
appear, but we may disregard them: their contribution to electron–
electron scattering would be associated with further suppression 
factors arising from additional powers of the electromagnetic or 
weak coupling constants. Among the set of the quadratic terms 
itself, we can further narrow down relevant contributions. In par-
ticular, we will ignore effects resulting from internal Higgs lines 
due their expected further suppression relative to Z -boson lines. 
For these reasons, the dominant Lorentz-violating effects are con-
trolled by the following quadratic lagrangian terms involving Aμ

and Zμ:
Fig. 2. Feynman rules for Lorentz-violating corrections to the Z boson. The correc-
tions relevant in the present context take the form of propagator insertions. The 
single and double wavy lines represent the conventional Lorentz-invariant photon 
and Z -boson propagators, respectively.

δL(2)
A,Z = − 1

4 (kB cos2 θW + kW sin2 θW )κλμν F κλ F μν

− 1
4 (kW cos2 θW + kB sin2 θW )κλμν Zκλ Zμν

− 1
4 sin 2θW (kW − kB)κλμν F κλ Zμν

+ 1
2 M2

Z Re (kφφ)μν Zμ Zν , (21)

where F μν = ∂μ Aν − ∂ν Aμ and Zμν = ∂μ Zν − ∂ν Zμ . We also re-
mind the reader that we have set to zero the mSME coefficients 
of the external-leg electrons because of existing tight experimental 
constraints.

Before inferring the diagrammatic representation of the mSME 
coefficients relevant for the present context of electron–electron 
scattering from Eq. (21) above, a further simplification can be 
made. Numerous previous measurements and observations in the 
mSME’s photon sector have constrained the quantity

(kF )κλμν ≡ (kB cos2 θW + kW sin2 θW )κλμν (22)

appearing in Eq. (21) to precisions well beyond those that can be 
achieved in electron–electron scattering [11]. For our present pur-
poses, we can therefore effectively set (kF )κλμν = 0, so that kB can 
be expressed in terms of kW :

(kB)κλμν = − tan2 θW (kW )κλμν . (23)

This phenomenological simplification together with Eq. (21) yield 
the Feynman rules displayed in Fig. 2. These rules govern the dom-
inant Lorentz-violating effects in Møller scattering. They may also 
give rise to certain effects in the photon sector, but a thorough 
study of these lies outside our present scope.

With these Lorentz-violating Feynman rules, the leading mSME 
corrections to the Lorentz-invariant amplitude can be determined 
and are shown as Feynman graphs in Fig. 3. The corresponding 
measurements typically involve incoming longitudinally polarized, 
relativistic electrons incident on a fixed unpolarized target. Subse-
quently, the outgoing Møller electrons are counted for a limited 
range of scattering angles [28,29]. We therefore need to consider 
incoming states of definite helicity, average of the spin states of 
the fixed-target electrons, and sum over outgoing electron spins. 
This yields two squared matrix elements |MR |2 and |ML |2 for in-
coming right-handed and left-handed beam electrons, respectively. 
The general structure of these is given by

|MR |2 = |M0
R |2 + δ|MR |2 ,

|ML |2 = |M0
L |2 + δ|ML |2 , (24)

where |M0
R |2 and |M0

L |2 are the conventional Lorentz-invariant 
contributions, which can be inferred from the literature [30]. The 
Lorentz-violating effects of the physical system under considera-
tion are encoded in the corrections δ|MR |2 and δ|ML |2. The next 
step is therefore the determination of explicit expressions for these 
in terms of the relevant kinematical quantities and the kW and kφφ

coefficients.
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Fig. 3. Dominant Lorentz-violating corrections to the processes shown in Fig. 1. The 
notation is as before. In particular, the 3-point vertices are the conventional Lorentz-
symmetric ones, and the insertions are those from Fig. 2.

As an aside before embarking on the calculation of δ|MR |2 and 
δ|ML |2, we consider the limit

Re (kφφ)μν → ημν (25)

for the first insertion in Fig. 2 This limit is incompatible with our 
earlier assumptions, such as the trace-free condition (3) and is 
therefore not useful for phenomenological purposes. However, it 
may be of mathematical interest in the evaluation of Møller ma-
trix elements for the following reason. In this limit, the kφφ term 
of the insertion becomes Lorentz invariant, and the corresponding 
pieces of the top two mSME diagrams in Fig. 3 cancel the bottom 
two conventional Lorentz-invariant diagrams in Fig. 1. The usual 
Lorentz-symmetric contributions arising from Z -boson exchange 
should then be absent from the expressions for our Møller matrix 
elements. Solely for the purpose of making explicit these cancella-
tions in our final result, we will carry the trace piece of kφφ along 
in what follows. But again, for actual phenomenological purposes 
in the present context, kφφ must be small and traceless.

The calculation of δ|MR |2 and δ|ML |2 is somewhat tedious, 
but essentially proceeds in the usual way and includes the dia-
grams in Fig. 3 with the Lorentz-breaking insertions. The four ex-
ternal momenta kμ , k′ μ , pμ , and p′ μ are constrained by energy–
momentum conservation, leaving three independent momenta. To 
cast the results in a relatively compact form, we choose the follow-
ing three combinations of 4-momenta as our kinematical variables

Sμ = kμ + pμ , (26)

Tμ = k′
μ − kμ , (27)

Uμ = pμ − k′
μ , (28)

with a notation inspired by the ordinary Mandelstam variables. We 
then obtain

δ|MR |2 = 2e4(kW )κμλν

s M2
Z y2(1 − y)2 cos2 θW

×
{
(y − 1)

[
(2 − 4y + y2)Q e

W + 1 − 2y
]

Sκ TμSλTν
+ y
[
(1 − 2y − y2)Q e

W + 1 − 2y
]

Sκ UμSλUν

+
[
(2 − y + y2)Q e

W + 1
]

Tκ UμTλUν

− s y (1 − y)
[

y (2 − y)Q e
W + 1

]
ημν Tκ Tλ

− s y (1 − y)
[
(1 − y2)Q e

W + 1
]
ημν Uκ Uλ

}

− e4(Q e
W + 1)Re (kφφ)μν

2M2
Z y (1 − y) sin2 2θW

×
{
(Q e

W − 1)
[
(1 − 2y + 2y2) SμSν − TμTν − UμUν

]

+ s
[
(1 − y + y2)Q e

W + 1 + y − y2
]
ημν

}
, (29)

and

δ|ML |2 = 2e4(kW )κμλν

s M2
Z y2(1 − y)2 cos2 θW

×
{
(y − 1)

[
(2 − 4y + y2) Q e

W − 1 + 2y
]

Sκ TμSλTν

+ y
[
(1 − 2y − y2)Q e

W − 1 + 2y
]

Sκ UμSλUν

+
[
(2 − y + y2)Q e

W − 1
]

Tκ UμTλUν

− s y (1 − y)
[

y (2 − y)Q e
W − 1

]
ημν Tκ Tλ

− s y (1 − y)
[
(1 − y2)Q e

W − 1
]
ημν Uκ Uλ

}

− e4(Q e
W − 1)Re (kφφ)μν

2M2
Z y (1 − y) sin2 2θW

×
{
(Q e

W + 1)
[
(1 − 2y + 2y2) SμSν − TμTν − UμUν

]

+ s
[
(1 − y + y2)Q e

W − 1 − y + y2
]
ημν

}
. (30)

Here, s = S2 = (k + p)2 is the usual Mandelstam variable that pro-
vides a measure for the center-of-mass energy of the system. Fol-
lowing Ref. [30], we have set y = −s−1T 2 = −s−1(k′ − k)2, which 
governs the scattering angle. The above expressions are correct 
to order M−2

Z , and the ultrarelativistic approximation of dropping 
all explicitly appearing m has been implemented. Equations (29)
and (30) represent the main theoretical result of this work. As per 
our above discussion, the last lines of both Eqs. (29) and (30) con-
tain the Lorentz-invariant trace part of kφφ and should be omitted 
in phenomenological applications.

With the results (29) and (30) at hand, essentially all Lorentz-
violating observables for typical electron–electron scattering mea-
surements can now be determined in a straightforward way. For 
example, the conventional relation between the squared matrix 
element and the cross section [31] remains valid because the ex-
ternal electron legs have been taken as the usual Lorentz-invariant 
ones:

dσh = 1

(4π)2

|Mh|2
|k0 �p − p0�k|

d3k′

2k′ 0

d3 p′

2p′ 0
δ(4)(k + p − k′ − p′) . (31)

Here, we have abbreviated the helicity h ∈ {R, L}, and we have as-
sumed the incoming 3-momenta �k and �p to be directed along the 
same line.

An observable that is particularly interesting for both theoreti-
cal and experimental purposes is the asymmetry
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A ≡ dσR − dσL

dσR + dσL
= |MR |2 − |ML |2

|MR |2 + |ML |2
. (32)

In the present context, this asymmetry consists of two contribu-
tions A = A0 + δA, where A0 is the usual Lorentz-invariant piece 
given by [30]

A0 = G F

2
√

2πα

y (1 − y)

(y2 − y + 1)2
s Q e

W . (33)

Our results (29) and (30) yield the first-order Lorentz-violating 
piece δA:

δA = G F√
2πα

(kW )κμλν

(y2 − y + 1)2

sin2 θW

s

[
(1 − 2y) y Sκ UμSλUν

− (2y2 − 3y + 1) Sκ TμSλTν + Tκ UμTλUν

− s (1 − y) y ημν (Tκ Tλ + Uκ Uλ)
]

− G F

2
√

2πα

y (1 − y)

(y2 − y + 1)2
s Q e

W

Re (kφφ)
μ
μ

4
. (34)

As before, we have worked to order M−2
Z and in the ultrarelativistic 

limit by neglecting explicit occurrences of m. In the above expres-
sion, we have also eliminated M Z in favor of the fine-structure 
constant α and Fermi constant G F .

We mention that we again kept the trace part of kφφ for 
the purely theoretical purpose of studying the Lorentz-symmetric 
limit (25). In this limit, Re (kφφ)

μ
μ → 4, so that the last term in 

Eq. (34) precisely offsets the Lorentz-symmetric contribution A0, 
as expected from the aforementioned cancellation of Z -exchange 
diagrams. As discussed above, Re (kφφ)

μ
μ is largely irrelevant for 

Lorentz-violation searches because it is a scalar. In any case, this 
term is eliminated by the trace-free condition (3). Since there are 
no other kφφ terms in Eq. (34), the asymmetry (32) is insensitive 
to this mSME coefficient at leading order. However, other potential 
observables, such as

Bh ≡ dσh

dσR + dσL
= |Mh|2

|MR |2 + |ML |2
, (35)

where again h ∈ {R, L}, do contain nontrivial kφφ contributions 
and are perhaps better suited for measurements of this particu-
lar mSME coefficient.

The above expressions for the asymmetry A hold at tree level. 
In general, these results are modified by radiative corrections. 
The conventional Lorentz-invariant asymmetry A0 is constructed 
such that parity-conserving effects cancel, which makes A0 much 
smaller than the corresponding generic tree-level effects of this 
type, such as Bh . Numerically, A0 turns out to be of the same order 
as radiative corrections predominantly arising from γ –Z mixing 
diagrams and the anapole-moment diagram [32]. This compara-
tively large radiative effect is therefore of paramount importance 
for the interpretation of any measurement of the conventional 
Lorentz-invariant asymmetry A0. An analogous tree-level cancel-
lation is absent from the Lorentz-violating contribution δA, as can 
be inferred from Eqs. (29) and (30). It is therefore expected that 
Lorentz-breaking loop effects represent only small corrections to 
our tree-level δA and can be disregarded.

4. Experimental tests

With the theoretical prediction (34) for the effects of a Lorentz-
violating Z boson on electron–electron scattering, a comparison to 
experimental data, and thus measurements of kW become possible. 
For a comprehensive experimental investigation of kW , all of its 19 
independent components should be considered. However, the pur-
pose of this section is merely to outline a particular experimental 
signature of kW in polarized Møller scattering and to estimate the 
potential sensitivity of such measurements to kW . It is therefore 
sufficient to employ a simplified form of kW . Our choice

(kW )μνρσ = 1
2

[
ημρζ {νξσ } − ημσ ζ {νξρ}

+ ηνσ ζ {μξρ} − ηνρζ {μξσ }] (36)

is parametrized by

ζ {μξν} ≡ 1
2 (ζμξν + ζ νξμ) , ζμ = (1, �0) , ξμ = (0, �ξ) , (37)

which essentially reduces the number of Lorentz-violating coeffi-
cients to the three components of �ξ . We remark in passing that 
the analogous three coefficients in the photon sector obey the 
weakest experimental bounds and have therefore also been stud-
ied separately as a special case [33,16]. With this simplification, 
the asymmetry correction (34) takes the form

δA = G F

2
√

2πα

ζμξν + ζ νξμ

(y2 − y + 1)2
sin2 θW

[
k′
μk′

ν + y pμpν

+ (1 − y)kμkν − 2(1 − y)kμk′
ν − 2y pμk′

ν

]
, (38)

where we have reinstated the original momentum variables with 
p′
μ eliminated by energy–momentum conservation, and where we 

have taken the ultrarelativistic limit m → 0, as before.
In the flat-spacetime SME, the Lorentz-violating kW , and thus 

ζ and ξ , are taken as xμ independent, so that their components 
in cartesian inertial coordinates are constant as well. However, be-
ing components of a tensor, the individual ζμ and ξμ do depend 
on the coordinate system, in which ζ and ξ are expressed. This 
shows that a meaningful comparison of ξμ measurements between 
different experiments requires a common standardized coordinate 
system. Sun-centered celestial equatorial coordinates are usually 
selected as this standard frame [11], and these coordinates are also 
employed in what follows. In particular, the components of ζ and 
ξ specified in Eq. (37) are understood to refer to this Sun-centered 
frame.

The electron momenta kμ , pμ , and k′
μ are usually measured 

in an Earth-based laboratory frame. As result of the rotation and 
orbital motion of the Earth, the transformation between the Sun-
centered coordinates and the laboratory frame is in general time 
dependent. This transformation is dominated by the change of ori-
entation (i.e., the rotation transformation) arising from the Earth 
spinning about its axis. This spinning motion also leads to a boost 
transformation due to the rotational velocity of laboratories located 
off the Earth’s axis. A second, larger boost transformation results 
from the Earth’s orbital motion around the Sun. In some circum-
stances, these two boost effects need to be taken into account. 
Nonetheless, both boosts involve nonrelativistic speeds, so that the 
corresponding effects are subdominant and are therefore neglected 
here. We also mention that strictly speaking an Earth-based labo-
ratory frame fails to be inertial. However, for our present purposes 
the rotation is adiabatically slow, so that we can disregard non-
inertial effects.

To set up the explicit transformation between laboratory and 
Sun-centered coordinates, the laboratory frame needs to be spec-
ified. A typical choice for a location at colatitude χ has the 
xy-plane parallel to the local surface of the Earth, such that the 
x-axis is pointing South and the y-axis East. A right-handed system 
then has the z-axis pointing vertically upward. The corresponding 
rotation matrix is [13]
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R J j(t) =
⎛
⎝ cosχ cos�⊕t − sin �⊕t sinχ cos�⊕t

cosχ sin�⊕t cos �⊕t sinχ sin�⊕t
− sinχ 0 cosχ

⎞
⎠ . (39)

Here, �⊕ = 2π/(23 h 56 min) denotes the Earth’s sidereal angu-
lar frequency, J = X, Y , Z are the spatial Sun-frame components, 
and j = x, y, z the spatial laboratory-frame components. With this 
matrix the components of the laboratory momenta for the beam 
electrons, the target electrons, and the collected Møller electrons 
can be transformed into the Sun-centered frame, which yields ex-
plicit expressions for kμ = (Ek, �k), pμ = (m, �0), and k′ μ = (Ek′ , �k′), 
respectively. Note in particular the time dependence of R J j(t): 
3-momenta perceived as constant in the laboratory will gener-
ally change direction when viewed in the Sun-centered frame, i.e., 
�k = �k(t) and �k′ = �k′(t).

With these considerations, the Lorentz-violating asymmetry 
correction (38) becomes

δA(t) = G F√
2πα

sin2 θW

(y2 − y + 1)2

[
c1 �k(t) + c2 �k′(t)

]
· �ξ , (40)

where the coefficients c1 and c2 are given by

c1 = (1 − y)(Ek − Ek′) , (41)

c2 = Ek′ − (1 − y)Ek − y m . (42)

The result (40) illustrates two general features of Lorentz viola-
tion characterized by the anisotropic SME coefficient �ξ . First, the 
rotation of the laboratory with respect to �ξ will typically gener-
ate a time-dependent asymmetry correction δA = δA(t). Second, 
the usual azimuthal symmetry of the experimental set-up may 
not necessarily translate into azimuthal symmetry in the scatter-
ing process: for c2 �= 0, the azimuth dependence of the scattered-
electron momentum �k′ can contribute to δA due to the presence 
of �ξ .

Our next step is to express c1 and c2 in terms of the beam 
energy Ek and the previously introduced variable y, which essen-
tially provides a measure for the scattering angle. These quantities 
are unaffected by the transformation (39), so we may proceed in 
the laboratory frame. With the help of

Ek′ =
(

1 − Ek + m

Ek
y

)
Ek � (1 − y)Ek , (43)

where the second step applies in the ultrarelativistic limit, we find

c1 = y (1 − y) Ek , (44)

c2 = −y m . (45)

It is apparent that c2 � O(m) can be neglected in comparison to 
c1 � O(Ek). We remark that for this reason the aforementioned 
Lorentz-violating azimuthal dependence, although present in gen-
eral, fails to generate leading-order effects in the specific situation 
at hand. For an incoming-beam direction that is parallel to the lo-
cal surface of the Earth and points in a direction α East of South, 
these considerations lead to

δA(t) = G F√
2πα

Ek y (1 − y) sin2 θW

(y2 − y + 1)2
�k(t) · �ξ

= G F√
2πα

E2
k y (1 − y) sin2 θW

(y2 − y + 1)2
×

[√
ξ2

X + ξ2
Y

√
1 − cos2 α sin2 χ cos�⊕t + c0

]
. (46)

We have again implemented the ultrarelativistic approximation. 
In the second step, we have absorbed an irrelevant phase into 
the definition of the time t . The constant c0 ≡ ξZ cosα sinχ is of 
less interest in the present context; it represents a constant shift 
in the asymmetry, which is difficult to disentangle from Lorentz-
symmetric effects. The key result is the square-root term, which 
predicts sidereal variations of the asymmetry δA with an ampli-
tude depending on the Lorentz-violating coefficients ξX and ξY .

The E158 experiment at the Stanford Linear Accelerator Cen-
ter (SLAC), located at a colatitude of χ = 53◦ , has performed a 
measurement of this type [28]. The orientation of SLAC’s End Sta-
tion A, which determined the incoming-beam direction, points 
α = 123◦ East of South. Beam electrons with either Ek = 45.0 GeV
or Ek = 48.3 GeV were incident on atomic electrons of a stationary 
liquid-hydrogen target, where the two beam energies correspond 
to opposite longitudinal polarizations of the incoming electrons. 
The resulting scattered Møller electrons were counted in the range 
1
2 < y < 3

4 . For this experimental input, the asymmetry A was 
measured with a statistical uncertainty of 1.4 × 10−8.

This measurement permits an estimate of the sensitivity of the 
E158 experiment to the Lorentz-violating coefficients ξX and ξY . 
An integration of the scattering data on time scales of a day or 
longer would have washed out the predicted sidereal effects. How-
ever, if large enough, these variations would have likely been inter-
preted as part of the statistical uncertainty. We therefore presume 
that the amplitude

a⊕ ≡
√

1 − cos2 α sin2 χ E2
k y (1 − y)

2 M2
Z (y2 − y + 1)2 cos2 θW

√
ξ2

X + ξ2
Y (47)

of the sidereal variations must be in the order of or less than the 
statistical uncertainty of the measurement a⊕ � 1.4 × 10−8. This 
gives√

ξ2
X + ξ2

Y � 3.4 × 10−7 . (48)

To arrive at this result, we have made two assumptions. First, we 
have conservatively taken the smaller of the above two beam ener-
gies Ek . Second, the scattered Møller electrons were collected over 
the aforementioned range 1

2 < y < 3
4 . As this corresponds only to 

a ±22% variation of a⊕ about its average value, we have used our 
differential cross-section result (47) with the fixed, conservative 
value of y = 3

4 , at which a⊕ is smallest [28].
We are only aware of a single previous study that has at-

tempted to estimate the size of the components (kW )α
μαν , which 

are related to the present �ξ coefficient by 2(kW )α
Jα0 = ξ J . That 

study was based on astrophysical observations and involved the 
W boson. More specifically, certain values of the components 
(kW )α

μαν may lead to photon decay γ → W + + W − at high ener-
gies. The observed survival of ultrahigh-energy photons from cos-
mological sources then leads to a one-sided estimate at the 10−5

level [27]. The present result, based on laboratory physics involving 
the Z boson, represents an improvement by two orders of magni-
tude with different methods in a different system. For this reason, 
dedicated analyses in the context of previous and future polarized-
electron scattering experiments taking the full data sample and all 
19 components of kW into consideration would be competitive and 
of definite interest.

5. Summary and outlook

This work has considered power-counting renormalizable
Lorentz-violating contributions to Z -boson physics. We have de-
termined the dominant Feynman rules that govern these effects 
and employed them to calculate the tree-level Lorentz-violating 
corrections to electron–electron scattering. These general results, 
contained in Eqs. (29) and (30), form the theoretical basis for 
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experimental investigations of the leading-order Lorentz-breaking 
effects arising from the Z boson in polarized Møller scattering of 
electrons.

We have applied our results in the case of a simplified kW , 
given by Eqs. (36) and (37), which has the number of independent 
coefficients reduced from 19 to the three components of �ξ . This 
sample case has shown that the differential cross-section asymme-
try can in principle depend on the azimuth, even if the system is 
set up with azimuthal symmetry, as expected when Lorentz invari-
ance is broken. Moreover, in a terrestrial laboratory, the rotation of 
the Earth will typically lead to sidereal oscillations in the asymme-
try.

For the specific experimental conditions of the E158 experiment 
at SLAC, the published measurement yields an estimated constraint 
at the level of 10−7 on the components (kW )α

Jα0 for J = X, Y . 
This result improves existing astrophysical estimates by two or-
ders of magnitude and encourages a dedicated analysis of the full 
E158 data that includes all 19 components of kW . The proposed 
MOLLER experiment at Jefferson Lab offers the potential for an in-
creased sensitivity of 0.7 × 10−9 to the asymmetry, albeit at the 
lower electron energy of 12 GeV. With this input, the MOLLER ex-
periment may be able to provide a further overall improvement 
by a factor of about 1.4. Moreover, the different beam directions 
and colatitudes for E158 and MOLLER are likely to provide ex-
perimental access to different component combinations of the full 
(kW )μνρσ .
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