
J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

Published for SISSA by Springer

Received: May 21, 2016

Accepted: July 15, 2016

Published: August 2, 2016

Coulomb branches for rank 2 gauge groups in 3d

N = 4 gauge theories

Amihay Hananya and Marcus Sperlingb

aTheoretical Physics Group, Imperial College London,

Prince Consort Road, London, SW7 2AZ, U.K.
bInstitut für Theoretische Physik, Leibniz Universität Hannover,

Appelstraße 2, 30167 Hannover, Germany

E-mail: a.hanany@imperial.ac.uk, marcus.sperling@itp.uni-hannover.de

Abstract: The Coulomb branch of 3-dimensional N = 4 gauge theories is the space of

bare and dressed BPS monopole operators. We utilise the conformal dimension to define a

fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a

collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups

are a sufficient, finite set of monopole operators which generate the entire chiral ring.

Moreover, the knowledge of the properties of the minimal generators is enough to compute

the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of

the Hilbert series for general rank gauge groups. As an application, we provide various

examples for all rank two gauge groups to demonstrate the novel interpretation.

Keywords: Field Theories in Lower Dimensions, Solitons Monopoles and Instantons,

Supersymmetric gauge theory

ArXiv ePrint: 1605.00010

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2016)016

mailto:a.hanany@imperial.ac.uk
mailto:marcus.sperling@itp.uni-hannover.de
http://arxiv.org/abs/1605.00010
http://dx.doi.org/10.1007/JHEP08(2016)016


J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

Contents

1 Introduction 1

2 Hilbert basis for monopole operators 4

2.1 Preliminaries 4

2.2 Effect of conformal dimension 6

2.3 Dressing of monopole operators 9

2.4 Consequences for unrefined Hilbert series 11

2.5 Consequences for refined Hilbert series 14

3 Case: U(1)×U(1) 15

3.1 Set-up 15

3.2 Two types of hypermultiplets 15

3.3 Reduced moduli space of one SO(5)-instanton 19

3.4 Reduced moduli space of one SU(3)-instanton 21

4 Case: U(2) 23

4.1 Set-up 23

4.2 N hypermultiplets in the fundamental representation of SU(2) 24

4.2.1 Case: a = 0, complete intersection 26

4.3 N hypermultiplets in the adjoint representation of SU(2) 27

4.3.1 Case: a = 1 mod 2 27

4.3.2 Case: a = 0 mod 2 29

4.4 Direct product of SU(2) and U(1) 31

5 Case: A1 ×A1 31

5.1 Set-up 31

5.2 Representation [2, 0] 34

5.2.1 Quotient Spin(4) 34

5.2.2 Quotient SO(4) 35

5.2.3 Quotient SO(3)× SU(2) 36

5.2.4 Quotient SU(2)× SO(3) 38

5.2.5 Quotient PSO(4) 39

5.3 Representation [2, 2] 41

5.3.1 Quotient Spin(4) 41

5.3.2 Quotient SO(4) 42

5.3.3 Quotient SO(3)× SU(2) 43

5.3.4 Quotient SU(2)× SO(3) 44

5.3.5 Quotient PSO(4) 46

5.4 Representation [4, 2] 47

5.4.1 Quotient Spin(4) 48

– i –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

5.4.2 Quotient SO(4) 49

5.4.3 Quotient SO(3)× SU(2) 50

5.4.4 Quotient SU(2)× SO(3) 52

5.4.5 Quotient PSO(4) 53

5.5 Comparison to O(4) 56

5.5.1 Representation [2, 0] 56

5.5.2 Representation [2, 2] 57

5.5.3 Representation [4, 2] 58

6 Case: USp(4) 59

6.1 Set-up 59

6.2 Hilbert basis 60

6.3 Dressings 61

6.4 Generic case 62

6.5 Category N3 = 0 63

6.5.1 Representation [1, 0] 63

6.5.2 Representation [0, 1] 64

6.5.3 Representation [2, 0] 64

6.5.4 Representation [0, 2] 64

6.6 Category N3 6= 0 65

6.6.1 Representation [1, 1] 65

6.6.2 Representation [3, 0] 66

7 Case: G2 67

7.1 Set-up 67

7.2 Category 1 67

7.2.1 Representation [1, 0] 68

7.2.2 Representation [0, 1] 69

7.2.3 Representation [2, 0] 70

7.3 Category 2 71

7.3.1 Representation [1, 1] 72

7.3.2 Representation [3, 0] 74

7.3.3 Representation [0, 2] 75

7.4 Category 3 76

7.4.1 Representation [4, 0] 77

7.4.2 Representation [2, 1] 79

8 Case: SU(3) 80

8.1 Set-up 80

8.2 Hilbert basis 82

8.2.1 Fan and cones for U(3) 82

8.2.2 Fan and cones for SU(3) 85

8.3 Casimir invariance 85

– ii –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

8.3.1 Dressings for U(3) 85

8.3.2 Dressings for SU(3) 87

8.4 Category NR = 0 88

8.4.1 NF hypermultiplets in [1, 0] and NA hypermultiplets in [1, 1] 88

8.4.2 N hypermultiplets in [1, 0] representation 90

8.4.3 N hypermultiplets in [1, 1] representation 90

8.4.4 N hypers in [3, 0] representation 91

8.5 Category NR 6= 0 92

8.5.1 NF hypers in [2, 1], NA hypers in [1, 1], NR hypers in [2, 1] represen-

tation 92

8.5.2 N hypers in [2, 1] representation 95

9 Conclusions 97

A Plethystic logarithm 99

1 Introduction

The moduli spaces of supersymmetric gauge theories with 8 supercharges have generically

two branches: the Higgs and the Coulomb branch. In this paper we focus on 3-dimensional

N = 4 gauge theories, for which both branches are hyper-Kähler spaces. Despite this fact,

the branches are fundamentally different.

The Higgs branch MH is understood as hyper-Kähler quotient

MH = R4N///G , (1.1)

in which the vanishing locus of the N = 4 F-terms is quotient by the complexified gauge

group. The F-term equations play the role of complex hyper-Kähler moment maps, while

the transition to the complexified gauge group eliminates the necessity to impose the D-

term constraints. Moreover, this classical description is sufficient as the Higgs branch is

protected from quantum corrections. The explicit quotient construction can be supple-

mented by the study of the Hilbert series, which allows to gain further understanding of

MH as a complex space.

Classically, the Coulomb branch MC is the hyper-Kähler space

MC ≈ (R3 × S1)rk(G)/WG , (1.2)

whereWG is the Weyl group of G and rk(G) denotes the rank of G. However, the geometry

and topology of MC are affected by quantum corrections. Recently, the understanding of

the Coulomb branch has been subject of active research from various viewpoints: the

authors of [1] aim to provide a description for the quantum-corrected Coulomb branch

of any 3d N = 4 gauge theory, with particular emphasis on the full Poisson algebra of
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the chiral ring C[MC ]. In contrast, a rigorous mathematical definition of the Coulomb

branch itself lies at the heart of the attempts presented in [2–4]. In this paper, we take the

perspective centred around the monopole formula proposed in [5]; that is, the computation

of the Hilbert series for the Coulomb branch allows to gain information on MC as a

complex space.

Let us briefly recall the set-up. Select an N = 2 subalgebra in the N = 4 algebra,

which implies a decomposition of the N = 4 vector multiplet into an N = 2 vector multiplet

(containing a gauge field A and a real adjoint scalar σ) and an N = 2 chiral multiplet

(containing a complex adjoint scalar Φ) which transforms in the adjoint representation of

the gauge group G. In addition, the selection of an N = 2 subalgebra is equivalent to the

choice of a complex structure on MC and MH , which is the reason why one studies the

branches only as complex and not as hyper-Kähler spaces.

The description of the Coulomb branch relies on ’t Hooft monopole operators [6], which

are local disorder operators [7] defined by specifying a Dirac monopole singularity

A± ∼
m

2
(±1− cos θ) dϕ (1.3)

for the gauge field, where m ∈ g = Lie(G) and (θ, ϕ) are coordinates on the 2-sphere around

the insertion point. An important consequence is that the generalised Dirac quantisation

condition [8]

exp (2πim) = 1G (1.4)

has to hold. As proven in [9], the set of solutions to (1.4) equals the weight lattice Λw(Ĝ) of

the GNO (or Langlands) dual group Ĝ, which is uniquely associated to the gauge group G.

For Coulomb branches of supersymmetric gauge theories, the monopole operators need

to be supersymmetric as well, see for instance [10]. In a pure N = 2 theory, the supersym-

metry condition amounts to the singular boundary condition

σ ∼ m

2r
for r →∞ , (1.5)

for the real adjoint scalar in the N = 2 vector multiplet. Moreover, an N = 4 theory also

allows for a non-vanishing vacuum expectation value of the complex adjoint scalar Φ of

the adjoint-valued chiral multiplet. Compatibility with supersymmetry requires Φ to take

values in the stabiliser Hm of the “magnetic weight” m in G. This phenomenon gives rise

to dressed monopole operators.

Dressed monopole operators and G-invariant functions of Φ are believed to generate the

entire chiral ring C[MC ]. The corresponding Hilbert series allows for two points of view:

seen via the monopole formula, each operator is precisely counted once in the Hilbert

series — no over-counting appears. Evaluating the Hilbert series as rational function,

however, provides an over-complete set of generators that, in general, satisfies relations. In

order to count polynomials in the chiral ring, a notion of degree or dimension is required.

Fortunately, in a CFT one employs the conformal dimension ∆, which for BPS states agrees

with the SU(2)R highest weight. Following [10–13], the conformal dimension of a BPS bare

– 2 –
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monopole operator of GNO-charge m is given by

∆(m) =
1

2

n∑
i=1

∑
ρ∈Ri

|ρ(m)| −
∑
α∈Φ+

|α(m)| , (1.6)

where Ri denotes the set of all weights ρ of the G-representation in which the i-th flavour

of N = 4 hypermultiplets transform. Moreover, Φ+ denotes the set of positive roots α of

the Lie algebra g and provides the contribution of the N = 4 vector multiplet. Bearing

in mind the proposed classification of 3d N = 4 theories by [11], we restrict ourselves to

“good” theories (i.e. ∆ > 1
2 for all BPS monopoles).

If the centre Z(Ĝ) is non-trivial, then the monopole operators can be charged under

this topological symmetry group and one can refine the counting on the chiral ring.

Putting all the pieces together, the by now well-established monopole formula

of [5] reads

HSG(t, z) =
∑

m∈Λw(Ĝ)/W
Ĝ

zJ(m)t∆(m)PG(t,m) . (1.7)

Here, the fugacity t counts the SU(2)R-spin, while the (multi-)fugacity z counts the quan-

tum numbers J(m) of the topological symmetry Z(Ĝ).

This paper serves three purposes: firstly, we provide a geometric derivation of a suf-

ficient set of monopole operators, called the Hilbert basis, that generates the entire chiral

ring. Secondly, employing the Hilbert basis allows an explicit summation of (1.7), which we

demonstrate for rk(G) = 2 explicitly. Thirdly, we provide various examples for all rank two

gauge groups and display how the knowledge of the Hilbert basis completely determines

the Hilbert series.

The remainder of this paper is organised as follows: section 2 is devoted to the ex-

position of our main points: after recapitulating basics on (root and weight) lattices and

rational polyhedral cones in subsection 2.1, we explain in subsection 2.2 how the conformal

dimension decomposes the Weyl chamber of Ĝ into a fan. Intersecting the fan with the

weight lattice Λw(Ĝ) introduces affine semi-groups, which are finitely generated by a unique

set of irreducible elements — called the Hilbert basis. Moving on to subsection 2.3, we

collect mathematical results that interpret the dressing factors PG(t,m) as Poincaré series

for the set of Hm-invariant polynomials on the Lie algebra hm. Finally, we explicitly sum

the unrefined Hilbert series in subsection 2.4 and the refined Hilbert series in 2.5 utilising

the knowledge about the Hilbert basis. After establishing the generic results, we provide a

comprehensive collection of examples for all rank two gauge groups in section 3–8. Lastly,

section 9 concludes.

Before proceeding to the details, we present our main result (2.35) already at this

stage: the refined Hilbert series for any rank two gauge group G.

HSG(t, z) =
PG(t, 0)∏L

p=0

(
1− zJ(xp)t∆(xp)

){ L∏
q=0

(
1− zJ(xq)t∆(xq)

)
(1.8)

+

L∑
q=0

PG(t, xq)

PG(t, 0)
zJ(xq)t∆(xq)

L∏
r=0
r 6=q

(
1− zJ(xr)t∆(xr)

)

– 3 –
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+

L∑
q=1

PG(t, C
(2)
q )

PG(t, 0)

[
zJ(xq−1)+J(xq)t∆(xq−1)+∆(xq)

+
∑

s∈Int(P(C
(2)
q ))

zJ(s)t∆(s)

]
L∏
r=0

r 6=q−1,q

(
1− zJ(xr)t∆(xr)

)}
,

where the ingredients can be summarised as follows:

• A fan F∆ = {C(2)
p , p = 1, . . . , L}, and each 2-dimensional cone satisfies ∂C

(2)
p =

C
(1)
p−1 ∪ C

(1)
p and C

(1)
p−1 ∩ C

(1)
p = {0}.

• The Hilbert basis for C
(2)
p comprises the ray generators xp−1, xp as well as other

minimal generators {upκ}.

• The xp−1, xp generate a fundamental parallelotope P(C
(2)
p ), where the discriminant

counts the number of lattice points in the interior Int(P(C
(2)
p )) via d(C

(2)
p ) − 1 =

#pts.
(

Int(P(C
(2)
p )
)

.

The form of (1.8) is chosen to emphasis that the terms within the curly bracket repre-

sent the numerator of the Hilbert series as rational function, i.e. the curly bracket is a

proper polynomial in t without poles. On the other hand, the first fraction represents the

denominator of the rational function, which is again a proper polynomial by construction.

2 Hilbert basis for monopole operators

2.1 Preliminaries

Let us recall some basic properties of Lie algebras, cf. [14], and combine them with the

description of strongly convex rational polyhedral cones and affine semi-groups, cf. [15].

Moreover, we recapitulate the definition and properties of the GNO-dual group, which can

be found in [9, 16].

Root and weight lattices of g. Let G be a Lie group with semi-simple Lie algebra

g and rk(G) = r. Moreover, G̃ is the universal covering group of G, i.e. the unique

simply connected Lie group with Lie algebra g. Choose a maximal torus T ⊂ G and the

corresponding Cartan subalgebra t ⊂ g. Denote by Φ the set of all roots α ∈ t∗. By the

choice of a hyperplane, one divides the root space into positive Φ+ and negative roots Φ−.

In the half-space of positive roots one introduces the simple positive roots as irreducible

basis elements and denotes their set by Φs. The roots span a lattice Λr(g) ⊂ t∗, the root

lattice, with basis Φs.

Besides roots, one can always choose a basis in the complexified Lie algebra that gives

rise to the notion of coroots α∨ ∈ t which satisfy α (β∨) ∈ Z for any α, β ∈ Φ. Define α∨

to be a simple coroot if and only if α is a simple root. Then the coroots span a lattice

Λ∨r (g) in t — called the coroot lattice of g.

– 4 –
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The dual lattice Λw(g) of the coroot lattice is the set of points µ ∈ t∗ for which

µ(α∨) ∈ Z for all α ∈ Φ. This lattice is called weight lattice of g. Choosing a basis B of

simple coroots

B :=
{
α∨ , α ∈ Φs

}
⊂ t , (2.1)

one readily defines a basis for the dual space via

B∗ := {λα , α ∈ Φs} ⊂ t∗ for λα
(
β∨
)

= δα,β , ∀α, β ∈ Φs . (2.2)

The basis elements λα are precisely the fundamental weights of g (or G̃) and they are a

basis for the weight lattice.

Analogous, the dual lattice Λmw(g) ⊂ t of the root lattice is the set of points m ∈ t

such that α(m) ∈ Z for all α ∈ Φ. In particular, the coroot lattice is a sublattice of Λmw(g).

As a remark, the lattices defined so far solely depend on the Lie algebra g, or equiva-

lently on G̃, but not on G. Because any group defined via G̃/Γ for Γ ⊂ Z(G) has the same

Lie algebra.

Weight and coweight lattice of G. The weight lattice of the group G is the lattice

of the infinitesimal characters, i.e. a character χ : T→ U(1) is a homomorphism, which is

then uniquely determined by the derivative at the identity. Let X ∈ t then χ(exp (X)) =

exp (iµ(X)), wherein µ ∈ t∗ is an infinitesimal character or weight of G. The weights

form then a lattice Λw(G) ⊂ t∗, because the exponential map translates the multiplicative

structure of the character group into an additive structure. Most importantly, the following

inclusion of lattices holds:

Λr(g) ⊂ Λw(G) ⊂ Λw(g) . (2.3)

Note that the weight lattice Λw of g equals the weight lattice of the universal cover G̃.

As before, the dual lattice for Λw(G) in t is readily defined

Λ∗w(G) := Hom (Λw(G),Z) = ker

{
t → T

X 7→ exp(2πiX)

}
. (2.4)

As we see, the coweight lattice Λ∗w(G) is precisely the set of solutions to the generalised

Dirac quantisation condition (1.4) for G. In addition, an inclusion of lattices holds

Λ∨r (g) ⊂ Λ∗w(G) ⊂ Λmw(g) , (2.5)

which follows from dualising (2.3).

GNO-dual group and algebra. Following [9, 16], a Lie algebra ĝ is the magnetic dual

of g if its roots coincide with the coroots of g. Hence, the Weyl groups of g and ĝ agree.

The magnetic dual group Ĝ is, by definition, the unique Lie group with Lie algebra ĝ and

weight lattice Λw(Ĝ) equal to Λ∗w(G). In physics, Ĝ is called the GNO-dual group; while

in mathematics, it is known under Langlands dual group.

– 5 –
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Polyhedral cones. A rational convex polyhedral cone in t is a set σB of the form

σB ≡ Cone(B) =

{ ∑
α∨∈B

fα∨ α
∨ | fα∨ ≥ 0

}
⊆ t (2.6)

where B ⊆ Λ∨r , the basis of simple coroots, is finite. Moreover, we note that σB is a strongly

convex cone, i.e. {0} is a face of the cone, and of maximal dimension, i.e. dim(σB) = r.

Following [15], such cones σB are generated by the ray generators of their edges, where the

ray generators in this case are precisely the simple coroots of g.

For a polyhedral cone σB ⊆ t one naturally defines the dual cone

σ∨B = {m ∈ t∗ | m(u) ≥ 0 for all u ∈ σB} ⊆ t∗ . (2.7)

One can prove that σ∨B equals the rational convex polyhedral cone generated by B∗, i.e.

σ∨B = σB∗ = Cone(B∗) =

{∑
λ∈B∗

gλ λ | gλ ≥ 0

}
⊆ t∗ , (2.8)

which is well-known under the name (closed) principal Weyl chamber. By the very same

arguments as above, the cone σB∗ is generated by its ray generators, which are the funda-

mental weights of g.

For any m ∈ t and d ≥ 0, let us define an affine hyperplane Hm,d and closed linear

half-spaces H±m,d in t∗ via

Hm,d := {µ ∈ t∗ | µ(m) = d} ⊆ t∗ , (2.9a)

H±m,d := {µ ∈ t∗ | µ(m) ≥ ±d} ⊆ t∗ . (2.9b)

If d = 0 then Hm,0 is hyperplane through the origin, sometimes denoted as central affine

hyperplane. A theorem [17] then states: a cone σ ⊂ Rn is finitely generated if and only if

it is the finite intersection of closed linear half spaces.

This result allows to make contact with the usual definition of the Weyl chamber.

Since we know that σB∗ is finitely generated by the fundamental weights {λα} and the

dual basis is {α∨}, one arrives at σB∗ = ∩α∈ΦsH
+
α∨,0; thus, the dominant Weyl chamber

is obtained by cutting the root space along the hyperplanes orthogonal to some root and

selecting the cone which has only positive entries.

Remark. Consider the group SU(2), then the fundamental weight is simply 1
2 such that

Λ
SU(2)
w = SpanZ(1

2) = Z∪ {Z + 1
2}. Moreover, the corresponding cone (Weyl chamber) will

be denoted by σ
SU(2)
B∗ = Cone(1

2).

2.2 Effect of conformal dimension

Next, while considering the conformal dimension ∆(m) as map between two Weyl chambers

we will stumble across the notion of affine semi-groups, which are known to constitute the

combinatorial background for toric varieties [15].

– 6 –
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Conformal dimensions — revisited. Recalling the conformal dimension ∆ to be in-

terpreted as the highest weight under SU(2)R, it can be understood as the following map

∆ :
σĜ
B∗ ∩ Λw(Ĝ) → σ

SU(2)
B∗ ∩ Λw(SU(2))

m 7→ ∆(m)
. (2.10)

Where σĜ
B∗ is the cone spanned by the fundamental weights of ĝ, i.e. the dual basis of the

simple roots Φs of g. Likewise, σ
SU(2)
B∗ is the Weyl chamber for SU(2)R. Upon continuation,

∆ becomes a map between the dominant Weyl chamber of Ĝ and SU(2)R

∆ :
σĜ
B∗ → σ

SU(2)
B∗

m 7→ ∆(m)
. (2.11)

By definition, the conformal dimension (1.6) has two types of contributions: firstly, a

positive contribution |ρ(m)| for a weight ρ ∈ Λw(G) ⊂ t∗ and a magnetic weight m ∈
Λw(Ĝ) ⊂ t̂∗. By definition Λw(Ĝ) = Λ∗w(G); thus, m is a coweight of G and ρ(m) is the

duality paring. Secondly, a negative contribution −|α(m)| for a positive root α ∈ Φ+ of g.

By the same arguments, α(m) is the duality pairing of weights and coweights. The paring

is also well-defined on the entire the cone.

Fan generated by conformal dimension. The individual absolute values in ∆ allow

for another interpretation; we use them to associate a collection of affine central hyperplanes

and closed linear half-spaces

H±µ,0 =
{
m ∈ t

∣∣ ± µ(m) ≥ 0
}
⊂ t and Hµ,0 =

{
m ∈ t

∣∣ µ(m) = 0
}
⊂ t . (2.12)

Here, µ ranges over all weights ρ and all positive roots α appearing in the theory. If two

weights µ1, µ2 are (integer) multiples of each other, then Hµ1,0 = Hµ2,0 and we can reduce

the number of relevant weights. From now on, denote by Γ the set of weights ρ and positive

roots α which are not multiples of one another. Then the conformal dimension contains

Q := |Γ| ∈ N distinct hyperplanes such that there exist 2Q different finitely generates cones

σε1,ε2,...,εQ := Hε1
µ1,0
∩Hε2

µ2,0
∩ · · · ∩HεQ

µQ,0
⊂ t with εi = ± for i = 1, . . . , Q .

(2.13)

By construction, each cone σε1,ε2,...,εQ is a strongly convex rational polyhedral cone of di-

mension r, for non-trivial cones, or 0, for trivial intersections. Consequently, each cone

is generated by its ray generators and these can be chosen to be lattice points of Λw(Ĝ).

Moreover, the restriction of ∆ to any σε1,ε2,...,εQ yields a linear function, because we effec-

tively resolved the absolute values by defining these cones.

It is, however, sufficient to restrict the considerations to the Weyl chamber of Ĝ; hence,

we simply intersect the cones with the hyperplanes defining σĜ
B∗ , i.e.

Cp ≡ Cε1,ε2,...,εQ := σε1,ε2,...,εQ ∩ σ
Ĝ
B∗ with p = (ε1, ε2, . . . , εQ) . (2.14)

– 7 –
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Naturally, we would like to know for which µ ∈ Λw(G) the hyperplane Hµ,0 intersects the

Weyl chamber σĜ
B∗ non-trivially, i.e. not only in the origin. Let us emphasis the differences

of the Weyl chamber (and their dual cones) of G and Ĝ:

σG
B∗ = Cone

(
λα | λα(β∨) = δα,β , ∀α, β ∈ Φs

)
⊂ t∗

∗←→ σG
B = Cone

(
α∨ | ∀α ∈ Φs

)
⊂ t ,

(2.15a)

σĜ
B∗ = Cone (mα | β(mα) = δα,β , ∀α, β ∈ Φs) ⊂ t

∗←→ σĜ
B = Cone (α | ∀α ∈ Φs) ⊂ t∗ .

(2.15b)

It is possible to prove the following statements:

1. If µ ∈ Int
(
σĜ
B ∪ (−σĜ

B)
)

, i.e. µ =
∑

α∈Φs
gαα where either all gα > 0 or all gα < 0 ,

then Hµ,0 ∩ σĜ
B∗ = {0}.

2. If µ ∈ ∂
(
σĜ
B ∪ (−σĜ

B)
)

and µ 6= 0, i.e. µ =
∑

α∈Φs
gαα where at least one gα = 0,

then Hµ,0 intersects σĜ
B∗ at one of its boundary faces.

3. If µ /∈ σĜ
B ∪ (−σĜ

B), i.e. µ =
∑

α∈Φs
gαα with at least one gα > 0 and at least one

gβ < 0, then
(
Hµ,0 ∩ σĜ

B∗

)
\ {0} 6= ∅.

Consequently, a weight µ ∈ Λw(G) appearing in ∆ leads to a hyperplane

intersecting the Weyl chamber of Ĝ non-trivially if and only if neither µ

nor −µ lies in the rational cone spanned by the simple roots Φs of G.

Therefore, the contributions −|α(m)|, for α ∈ Φ+, of the vector multiplet never yield

a relevant hyperplane. From now on, assume that trivial cones Cp are omitted in the index

set I for p. The appropriate geometric object to consider is then the fan F∆ ⊂ t defined

by the family F∆ = {Cp , p ∈ I} in t. A fan F is a family of non-empty polyhedral cones

such that (i) every non-empty face of a cone in F is a cone in F and (ii) the intersection

of any two cones in F is a face of both. In addition, the fan F∆ defined above is a pointed

fan, because {0} is a cone in F∆ (called the trivial cone).

Semi-groups. Although we already know the cone generators for the fan F∆, we have to

distinguish them from the generators of F∆ ∩Λw(Ĝ), i.e. we need to restrict to the weight

lattice of Ĝ. The first observation is that

Sp := Cp ∩ Λw(Ĝ) for p ∈ I (2.16)

are semi-groups, i.e. sets with an associative binary operation. This is because the addition

of elements is commutative, but there is no inverse defined as “subtraction” would lead out

of the cone. Moreover, the Sp satisfy further properties, which we now simply collect, see

for instance [17]. Firstly, the Sp are affine semi-groups, which are semi-groups that can be

embedded in Zn for some n. Secondly, every Sp possesses an identity element, here m = 0,

and such semi-groups are called monoids. Thirdly, the Sp are positive because the only

invertible element is m = 0.
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Now, according to Gordan’s Lemma [15, 17], we know that every Sp is finitely gen-

erated, because all Cp’s are finitely generated, rational polyhedral cones. Even more is

true, since the division into the Cp is realised via affine hyperplanes Hµi,0 passing through

the origin, the Cp are strongly convex rational cones of maximal dimension. Then [15,

Prop. 1.2.22.] holds and we know that there exist a unique minimal generating set for Sp,

which is called Hilbert basis.

The Hilbert basis H(Sp) is defined via

H(Sp) := {m ∈ Sp | m is irreducible} , (2.17)

where an element is called irreducible if and only if m = x+ y for x, y ∈ Sp implies x = 0

or y = 0. The importance of the Hilbert basis is that it is a unique, finite, minimal set of

irreducible elements that generate Sp. Moreover, H(Sp) always contains the ray generators

of the edges of Cp. The elements of H(Sp) are sometimes called minimal generators.

As a remark, there exist various algorithms for computing the Hilbert basis, which are,

for example, discussed in [18, 19]. For the computations presented in this paper, we used

the Sage module Toric varieties programmed by A. Novoseltsev and V. Braun as well as

the Macaulay2 package Polyhedra written by René Birkner.

After the exposition of the idea to employ the conformal dimension to define a fan in

the Weyl chamber of Ĝ, for which the intersection with the weight lattice leads to affine

semi-groups, we now state the main consequence:

The collection {H(Sp) , p ∈ I} of all Hilbert bases is the set of necessary

(bare) monopole operators for a theory with conformal dimension ∆.

At this stage we did not include the Casimir invariance described by the dressing

factors PG(t,m). For a generic situation, the bare and dressed monopole operators for a

GNO-charge m ∈ H(Sp) for some p are all necessary generators for the chiral ring C[MC ].

However, there will be scenarios for which there exists a further reduction of the number

of generators. For those cases, we will comment and explain the cancellations.

2.3 Dressing of monopole operators

One crucial ingredient of the monopole formula of [5] are the dressing factors PG(t,m) and

this section provides an algebraic understanding. We refer to [14, 20, 21] for the exposition

of the mathematical details used here.

It is known that in N = 4 the N = 2 BPS-monopole operator Vm is compatible

with a constant background of the N = 2 adjoint complex scalar Φ, provided Φ takes

values on the Lie algebra hm of the residual gauge group Hm ⊂ G, i.e. the stabiliser of

m in G. Consequently, each bare monopole operator Vm is compatible with any Hm-

invariant polynomial on hm. We will now argue that the dressing factors PG(t,m) are to

be understood as Hilbert (or Poincaré) series for this so-called Casimir-invariance.

Chevalley-Restriction Theorem. Let G be a Lie group of rank l with a semi-simple

Lie algebra g over C and G acts via the adjoint representation on g. Denote by P(g) the

algebra of all polynomial functions on g. The action of G extends to P(g) and I(g)G denotes
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the set of G-invariant polynomials in P(g). In addition, denote by P(h) the algebra of all

polynomial functions on h. The Weyl group WG, which acts naturally on h, acts also on

P(h) and I(h)WG denotes the Weyl-invariant polynomials on h. The Chevalley-Restriction

Theorem now states

I(g)G ∼= I(h)WG , (2.18)

where the isomorphism is given by the restriction map p 7→ p|h for p ∈ I(g)G.

Therefore, the study of Hm-invariant polynomials on hm is reduced to WHm-invariant

polynomials on a Cartan subalgebra tm ⊂ hm.

Finite reflection groups. It is due to a theorem by Chevalley [22], in the context of

finite reflection groups, that there exist l algebraically independent homogeneous elements

p1, . . . , pl of positive degrees di, for i = 1, . . . , l, such that

I(h)WG = C [p1, . . . , pl] . (2.19)

In addition, the degrees di satisfy

|WG| =
l∏

i=1

di and
d∑
i=1

(di − 1) = number of reflections in WG . (2.20)

The degrees di are unique [21] and tabulated for all Weyl groups, see for instance [21,

section 3.7]. However, the generators pi are themselves not uniquely determined.

Poincaré or Molien series. On the one hand, the Poincaré series for the I(h)WG is

simply given by

PI(h)WG (t) =

l∏
i=1

1

1− tdi
. (2.21)

On the other hand, since h is a l-dimensional complex vector space and WG a finite group,

the generating function for the invariant polynomials is known as Molien series [23]

PI(h)WG (t) =
1

|WG|
∑
g∈WG

1

det (1− t g)
. (2.22)

Therefore, the dressing factors PG(t,m) in the Hilbert series (1.7) for the Coulomb branch

are the Poincaré series for graded algebra of Hm-invariant polynomials on hm.

Harish-Chandra isomorphism. In [5], the construction of the PG(t,m) is based on

Casimir invariants of G and Hm; hence, we need to make contact with that idea. Casimir

invariants live in the centre Z(U(g)) of the universal enveloping algebra U(g) of g. Fortu-

nately, the Harish-Candra isomorphism [24] provides us with

Z(U(g)) ∼= I(h)WG . (2.23)

Consequently, Z(U(g)) is a polynomial algebra with l algebraically independent homoge-

neous elements that have the same positive degrees di as the generators of I(h)WG . It

is known that for semi-simple groups G these generators can be chosen to be the rk(G)

Casimir invariants; i.e. the space of Casimir-invariants is freely generated by l generators

(together with the unity).
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C
(2)
1

C
(2)
2

C
(2)
3

C
(2)
L−1

C
(2)
L

C
(1)
0 C

(1)
1

C
(1)
2

C
(1)
3

C
(1)
L−2

C
(1)
L−1

C
(1)
L

C(0)

(a)

m1

m2

(b)

Figure 1. A representative fan, which is spanned by the 2-dim. cones C
(2)
p for p = 1, . . . , L, is

displayed in 1a. In addition, 1b contains a 2-dim. cone with a Hilbert basis of the two ray generators

(black) and two additional minimal generators (blue). The ray generators span the fundamental

parallelotope (red region).

Conclusions. So far, G (and Hm) had been restricted to be semi-simple. However, in

most cases Hm is a direct product group of semi-simple Lie groups and U(1)-factors. We

proceed in two steps: firstly, U(1) acts trivially on its Lie-algebra ∼= R, thus all polynomials

are invariant and we obtain

I(R)U(1) = R[x] and PU(1)(t) =
1

1− t
. (2.24)

Secondly, each factor Gi of a direct product G1×· · ·×GM acts via the adjoint representation

on on its own Lie algebra gi and trivially on all other gj for j 6= i. Hence, the space of

G1 × · · · × GM -invariant polynomials on g1 ⊕ · · · ⊕ gM factorises into the product of the

I(gi)
Gi such that

I(⊕igi)
∏
i Gi =

∏
i

I(gi)
Gi and PI(⊕igi)

∏
i Gi (t) =

∏
i

PI(gi)Gi
(t) . (2.25)

For abelian groups G, the Hilbert series for the Coulomb branch factorises in the Poincaré

series G-invariant polynomials on g times the contribution of the (bare) monopole oper-

ators. In contrast, the Hilbert series does not factorise for non-abelian groups G as the

stabiliser Hm ⊂ G depends on m.

2.4 Consequences for unrefined Hilbert series

The aforementioned dissection of the Weyl chamber σĜ
B∗ into a fan, induced by the con-

formal dimension ∆, and the subsequent collection of semi-groups in Λw(Ĝ)/W
Ĝ

provides

an immediate consequence for the unrefined Hilbert series. For simplicity, we illustrate the

consequences for a rank two example. Assume that the Weyl chamber is divided into a

fan generated the 2-dimensional cones C
(2)
p for p = 1, . . . , L, as sketched in figure 1b. For

– 11 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

each cone, one has two 1-dimensional cones C
(1)
p−1, C

(1)
p and the trivial cone C(0) = {0} as

boundary, i.e. ∂C
(2)
p = C

(1)
p−1 ∪ C

(1)
p , where C

(1)
p−1 ∩ C

(1)
p = C(0).

The Hilbert basis H(S
(2)
p ) for S

(2)
p := C

(2)
p ∩ΛĜ

w contains the ray generators {xp−1, xp},
such that H(S

(1)
p ) = {xp}, and potentially other minimal generators upκ for κ in some

finite index set. Although any element s ∈ S(2)
p can be generated by {xp−1, xp, {upκ}κ}, the

representation s = a0xp−1 + a1xp +
∑

κ bκu
p
κ is not unique. Therefore, great care needs to

be taken if one would like to sum over all elements in S
(2)
p . A possible realisation employs

the fundamental parallelotope

P(C(2)
p ) := {a0xp−1 + a1xp | 0 ≥ a0, a1 ≥ 1} , (2.26)

see also figure 1b. The number of points contained in P(C
(2)
p ) is computed by the

discriminant

d(C(2)
p ) := |det(xp−1, xp)| . (2.27)

However, as known from solid state physics, the discriminant counts each of the four

boundary lattice points by 1
4 ; thus, there are d(C

(2)
p ) − 1 points in the interior. Remark-

ably, each point s ∈ Int(P(C
(2)
p )) is given by positive integer combinations of the {upκ}κ

alone. A translation of P(C
(2)
p ) by non-negative integer combinations of the ray-generators

{xp−1, xp} fills the entire semi-group S
(2)
p and each point is only realised once.

Now, we employ this fact to evaluate the un-refined Hilbert series explicitly.

HSG(t) =
∑

m∈Λw(Ĝ)/W
Ĝ

t∆(m)PG(t,m)

= PG(t, 0) +

L∑
p=0

PG(t, xp)
∑
np>0

tnp∆(xp)

+

L∑
p=1

∑
np−1,np>0

PG(t, xp−1 + xp)t
∆(np−1xp−1+npxp)

+

L∑
p=1

∑
s∈Int(P(C

(2)
p ))

∑
np−1,np≥0

PG(t, s)t∆(s+np−1xp−1+npxp)

= PG(t, 0) +

L∑
p=0

PG(t, xp)
t∆(xp)

1− t∆(xp)
+

L∑
p=1

PG(t, xp−1 + xp) t
∆(xp−1)+∆(xp)(

1− t∆(xp−1)
) (

1− t∆(xp)
)

+

L∑
p=1

∑
s∈Int(P(C

(2)
p ))

PG(t, s) t∆(s)(
1− t∆(xp−1)

) (
1− t∆(xp)

)
=

PG(t, 0)∏L
p=0

(
1− t∆(xp)

){ L∏
q=0

(
1− t∆(xq)

)
+

L∑
q=0

PG(t, xq)

PG(t, 0)
t∆(xq)

L∏
r=0
r 6=q

(
1− t∆(xr)

)

+
L∑
q=1

PG(t, C
(2)
q )

PG(t, 0)

[
t∆(xq−1)+∆(xq) +

∑
s∈Int(P(C

(2)
q ))

t∆(s)

]
L∏
r=0

r 6=q−1,q

(
1− t∆(xr)

)}
.

(2.28)
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Next, we utilise that the classical dressing factors, for rank two examples, only have three

different values: in the (2-dim.) interior of the Weyl chamber W , the residual gauge group

is the maximal torus T and PG(t, IntW ) ≡ P2(t) =
∏2
i=1

1
(1−t) . Along the 1-dimensional

boundaries, the residual gauge group is a non-abelian subgroup H such that T ⊂ H ⊂ G

and the PG(t, ∂W \ {0}) ≡ P1(t) =
∏2
i=1

1
(1−tbi ) , for the two degree bi Casimir invariants

of H. At the (0-dim.) boundary of the boundary, the group is unbroken and PG(t, 0) ≡
P0(t) =

∏2
i=1

1
(1−tdi ) contains the Casimir invariants of G of degree di. Thus, there are a

few observations to be addressed.

1. The numerator of (2.28), which is everything in the curly brackets {. . .}, starts with

a one and is a polynomial with integer coefficients, which is required for consistency.

2. The denominator of (2.28) is given by PG(t, 0)/
∏L
p=0(1 − t∆(xp)) and describes the

poles due to the Casimir invariants of G and the bare monopole (xp,∆(xp)) which

originate from ray generators xp.

3. The numerator has contributions ∼ t∆(xp) for the ray generators with pre-factors
P1(t)
P0(t) − 1 for the two outermost rays p = 0, p = L and pre-factors P2(t)

P0(t) − 1 for

the remaining ray generators. None of the two pre-factors has a constant term as

Pi(t → 0) = 1 for each i = 0, 1, 2. Also deg(1/P0(t)) ≥ deg(1/P1(t)) ≥ deg(1/

P2(t)) = 2 and

P2(t)

P0(t)
=

(1− td1)(1− td2)

(1− t)(1− t)
=

d1−1∑
i=0

d2−1∑
j=0

ti+j (2.29)

is a polynomial for any rank two group. For the examples considered here, we also

obtain

P1(t)

P0(t)
=

(1− td1)(1− td2)

(1− tb1)(1− tb2)
=

(1− tk1b1)(1− tk2b2)

(1− tb1)(1− tb2)
=

b1−1∑
i=0

b2−1∑
j=0

ti·k1+j·k2 (2.30)

for some k1, k2 ∈ N. In summary, (
PG(t,xp)
PG(t,0) − 1)t∆(xp) describes the dressed monopole

operators corresponding to the ray generators xp.

4. The finite sums
∑

s∈Int(P(C
(2)
p ))

t∆(s) are entirely determined by the conformal dimen-

sions of the minimal generators upκ.

5. The first contributions for the minimal generators upκ are of the form

P2(t)
P0(t) t

∆(upκ) =

d1−1∑
i=0

d2−1∑
j=0

ti+j+∆(upκ) , (2.31)

which then comprise the bare and the dressed monopole operators simultaneously.

6. If C
(2)
p is simplicial, i.e. H(S

(2)
p ) = {xp−1, xp}, then the sum over s ∈ Int(P(C

(2)
p ))

in (2.28) is zero, as the interior is empty. Also indicated by d(C
(2)
p ) = 1.
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In conclusion, the Hilbert series (2.28) suggests that ray generators are to be expected in

the denominator, while other minimal generators are manifest in the numerator. Moreover,

the entire Hilbert series is determined by a finite set of numbers: the conformal dimensions

of the minimal generators {∆(xp) | p = 0, 1, . . . , L} and {{∆(u
(p)
κ ) | κ = 1, . . . , d(C

(2)
p ) −

1} | p = 1, . . . , L} as well as the classical dressing factors.

Moreover, the dressing behaviour, i.e. number and degree, of a minimal generator m

is described by the quotient PG(t,m)/PG(t, 0). Consolidating evidence for this statement

comes from the analysis of the plethystic logarithm, which we present in appendix A.

Together, the Hilbert series and the plethystic logarithm allow a better understanding of

the chiral ring.

We illustrate the formula (2.28) for the two simplest cases in order to hint on the

differences that arise if d(C
(2)
p ) > 1 for cones within the fan.

Example: one simplicial cone Adapting the result (2.28) to one cone C
(2)
1 with

cone/Hilbert basis {x0, x1}, we find

HS =
1 +

(
P1(t)
P0(t) − 1

) (
t∆(x0) + t∆(x1)

)
+
(

1− 2P1(t)
P0(t) + P2(t)

P0(t)

)
t∆(x0)+∆(x1)∏2

i=1 (1− tdi)
∏1
p=0

(
1− t∆(xp)

) . (2.32)

Examples treated in this paper are as follows: firstly, the representation [2, 0] for the

quotients Spin(4), SO(3)× SU(2), SU(2)× SO(3), PSO(4) of section 5.2; secondly, USp(4)

for the case N3 = 0 of section 6.5; thirdly, G2 in the representations [1, 0], [0, 1] and [2, 0] of

section 7.2. The corresponding expression for the plethystic logarithm is provided in (A.14).

Example: one non-simplicial cone Adapting the result (2.28) to one cone C
(2)
1 with

Hilbert basis {x0, x1, {uκ}}, fundamental parallelotope P, and discriminant d > 1, we find

HS =
1 +

(
P1(t)
P0(t) − 1

) (
t∆(x0) + t∆(x1)

)
+
(

1− 2P1(t)
P0(t) + P2(t)

P0(t)

)
t∆(x0)+∆(x1) + P2(t)

P0(t)

∑
s∈Int(P) t

∆(s)∏2
i=1 (1− tdi)

∏1
p=0

(
1− t∆(xp)

) .

(2.33)

An example for this case is SO(4) with representation [2, 0] treated in section 5.2. For the

plethystic logarithm we refer to (A.15).

The difference between (2.32) and (2.33) lies in the finite sum added in the numerator

which accounts for the minimal generators that are not ray generators.

2.5 Consequences for refined Hilbert series

If the centre Z(Ĝ) of the GNO-dual group Ĝ is a non-trivial Lie-group of rank rk(Z(Ĝ)) =

ρ, one introduces additional fugacities ~z ≡ (zi) for i = 1, . . . , ρ such that the Hilbert series

counts operators according to SU(2)R-spin ∆(m) and topological charges ~J(m) ≡ (Ji(m))

for i = 1, . . . , ρ. Let us introduce the notation

~z
~J(m) :=

ρ∏
i=1

z
Ji(m)
i such that ~z

~J(m1+m2) = ~z
~J(m1)+ ~J(m2) = ~z

~J(m1) · ~z ~J(m2) , (2.34)
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where we assumed each component Ji(m) to be a linear function in m. By the very same

arguments as in (2.28), one can evaluate the refined Hilbert series explicitly and obtains

HSG(t, ~z) =
∑

m∈ΛĜ
w/WĜ

~z
~J(m)t∆(m)PG(t,m)

=
PG(t, 0)∏L

p=0

(
1− ~z ~J(xp)t∆(xp)

){ L∏
q=0

(
1− ~z ~J(xq)t∆(xq)

)
(2.35)

+
L∑
q=0

PG(t, xq)

PG(t, 0)
~z
~J(xq)t∆(xq)

L∏
r=0
r 6=q

(
1− ~z ~J(xr)t∆(xr)

)

+
L∑
q=1

PG(t, C
(2)
q )

PG(t, 0)

[
~z
~J(xq−1)+ ~J(xq)t∆(xq−1)+∆(xq)

+
∑

s∈Int(P(C
(2)
q ))

~z
~J(s)t∆(s)

]
L∏
r=0

r 6=q−1,q

(
1− ~z ~J(xr)t∆(xr)

)}
.

The interpretation of the refined Hilbert series (2.35) remains the same as before: the

minimal generators, i.e. their GNO-charge, SU(2)R-spin, topological charges ~J , and their

dressing factors, completely determine the Hilbert series. In principle, this data makes the

(sometimes cumbersome) explicit summation of (1.7) obsolete.

3 Case: U(1)×U(1)

In this section we analyse the abelian product U(1) × U(1). By construction, the Hilbert

series simplifies as the dressing factors are constant throughout the lattice of magnetic

weights. Consequently, abelian theories do not exhibit dressed monopole operators.

3.1 Set-up

The weight lattice of the GNO-dual of U(1) is simply Z and no Weyl-group exists due the

abelian character; thus, Λw( ̂U(1)×U(1)) = Z2. Moreover, since U(1)×U(1) is abelian the

classical dressing factors are the same for any magnetic weight (m1,m2), i.e.

PU(1)×U(1)(t,m1,m2) =
1

(1− t)2
, (3.1)

which reflects the two degree one Casimir invariants.

3.2 Two types of hypermultiplets

Set-up. To consider a rank 2 abelian gauge group of the form U(1) × U(1) requires

a delicate choice of matter content. If one considers N1 hypermultiplets with charges

(a1, b1) ∈ N2 under U(1)×U(1), then the conformal dimension reads

∆1h-plet(m1,m2) =
N1

2
|a1m1 + b1m2| for (m1,m2) ∈ Z2 . (3.2a)
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However, there exists an infinite number of points {m1 = b1k,m2 = −a1k, k ∈ Z} with

zero conformal dimension, i.e. the Hilbert series does not converge due to a decoupled U(1).

Fixing this symmetry would reduce the rank to one.

Fortunately, we can circumvent this problem by introducing a second set of N2 hyper-

multiplets with charges (a2, b2) ∈ N2, such that the matrix(
a1 b1
a2 b2

)
(3.2b)

has maximal rank. The relevant conformal dimension then reads

∆2h-plet(m1,m2) =
2∑
j=1

Nj

2
|ajm1 + bjm2| for (m1,m2) ∈ Z2 . (3.2c)

Nevertheless, this set-up would introduce four charges and the summation of the Hilbert

series becomes tricky. We evade the difficulties by the choice a2 = b1 and b2 = −a1.

Dealing with such a scenario leads to summation bounds such as

am1 ≥ bm2 ⇔ m1 ≥
b

a
m2 ⇔ m1 ≥

⌈
b

a
m2

⌉
, (3.2d)

am1 < bm2 ⇔ m1 <
b

a
m2 ⇔ m1 <

⌈
b

a
m2

⌉
− 1 . (3.2e)

Having the summation variable within a floor or ceiling function seems to be an elaborate

task with Mathematica. Therefore, we simplify the setting by assuming ∃ k ∈ N such that

b1 = ka1. Then we arrive at

∆2h-plet(m1,m2) =
a1

2
(N1 |m1 + km2|+N2 |km1 −m2|) for (m1,m2) ∈ Z2 . (3.2f)

For this conformal dimension, there exists exactly one point (m1,m2) with zero conformal

dimension — the trivial solution. Further, by a redefinition of N1 and N2 we can consider

a1 = 1.

Hilbert basis. Consider the conformal dimension (3.2f) for a1 = 1. By resolving the

absolute values, we divide Z2 into four semi-groups

S
(2)
1 =

{
(m1,m2) ∈ Z2| (km1 ≥ m2) ∧ (m1 ≥ −km2)

}
, (3.3a)

S
(2)
2 =

{
(m1,m2) ∈ Z2| (km1 ≥ m2) ∧ (m1 ≤ −km2)

}
, (3.3b)

S
(2)
3 =

{
(m1,m2) ∈ Z2| (km1 ≤ m2) ∧ (m1 ≥ −km2)

}
, (3.3c)

S
(2)
4 =

{
(m1,m2) ∈ Z2| (km1 ≤ m2) ∧ (m1 ≤ −km2)

}
, (3.3d)

which all descend from 2-dimensional rational polyhedral cones. The situation is depicted

in figure 2. Next, one needs to compute the Hilbert basis H(S) for each semi-group S. In

this example, it follows from the drawing that

H(S
(2)
1 ) =

{
(k,−1),

{
(1, l)

∣∣ l = 0, 1, . . . , k
}}

, (3.4a)

H(S
(2)
2 ) =

{
(−1,−k),

{
(l,−1)

∣∣ l = 0, 1, . . . , k
}}

, (3.4b)
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Figure 2. The dashed lines correspond the km1 = m2 and m1 = −km2 and divide the lattice

Z2 into four semi-groups S
(2)
j for j = 1, 2, 3, 4. The black circles denote the ray generators, while

the blue circles complete the Hilbert basis for S
(2)
1 , red circled points complete the basis for S

(2)
2 .

Green circles correspond to the remaining minimal generators of S
(2)
3 and orange circled points are

the analogue for S
(2)
4 . (Here, the example is k = 4.)

H(S
(2)
3 ) =

{
(−k, 1), {(−1,−l)

∣∣ l = 0, 1, . . . , k
}}

, (3.4c)

H(S
(2)
4 ) =

{
(1, k), {(−l, 1)

∣∣ l = 0, 1, . . . , k
}}

. (3.4d)

For a fixed k ≥ 1 we obtain 4(k + 1) basis elements.

Hilbert series. We then compute the following Hilbert series

HSkU(1)×U(1)(t, z1, z2) =
1

(1− t)2

∑
m1,m2∈Z

zm1
1 zm2

2 t∆2h-plet(m1,m2) , (3.5)

for which we obtain

HSkU(1)×U(1)(t, z1, z2) =
R(t, z1, z2)

P (t, z1, z2)
, (3.6a)
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(m1,m2) ∆(m1,m2) (m1,m2) ∆(m1,m2)

(1, 0), (−1, 0) 1
2 (N1 + kN2) (0, 1), (0,−1) 1

2 (kN1 +N2)

(1, k), (−1,−k) 1
2

(
1 + k2

)
N1 (−k, 1), (k,−1) 1

2

(
1 + k2

)
N2

(a) The minimal generators which are ray generators or poles of the Hilbert series.

(m1,m2) ∆(m1,m2) (m1,m2) ∆(m1,m2)

(1, l), (−1,−l) 1
2N1(kl + 1) + 1

2N2(k − l) (−l, 1), (l,−1) 1
2N1(k − l) + 1

2N2(kl + 1)

(b) The minimal generators, labelled by l = 1, 2, . . . , k − 1, which are not ray generators.

Table 1. The set of bare monopole operators for a U(1) × U(1) theory with conformal dimen-

sion (3.2f).

with denominator

P (t, z1, z2) = (1−t)2

(
1− 1

z1
t
kN2−N1

2

)(
1−z1t

kN2−N1
2

)(
1− 1

z2
t
kN1−N2

2

)(
1−z2t

kN1−N2
2

)
×
(

1− 1

z1
t
kN2+N1

2

)(
1− z1t

kN2+N1
2

)(
1− 1

z2
t
kN1+N2

2

)(
1− z2t

kN1+N2
2

)
×
(

1− 1

z1zk2
t
1
2(k2+1)N1

)(
1− z1z

k
2 t

1
2(k2+1)N1

)
(3.6b)

×
(

1− zk1
z2
t
1
2(k2+1)N2

)(
1− z2

zk1
t
1
2(k2+1)N2

)
,

while the numerator R(t, z1, z2) is too long to be displayed, as it contains 1936 monomials.

Nonetheless, one can explicitly verify a few properties of the Hilbert series. For example,

the Hilbert series (3.6) has a pole of order 4 at t → 1, because R(1, z1, z2) = 0 and the

derivatives dn

dtnR(t, z1, z2)|t=1 = 0 for n = 1, 2, . . . 9 (at least for z1 = z2 = 1). Moreover,

the degrees of numerator and denominator depend on the relations between N1, N2, and

k; however, one can show that the difference in degrees is precisely 2, i.e. it matches the

quaternionic dimension of the moduli space.

Discussion. Analysing the plethystic logarithm and the Hilbert series, the monopole

operators corresponding to the Hilbert basis can be identified as follows: Eight poles of

the Hilbert series (3.6) can be identified with monopole generators as shown in table 1a.

Studying the plethystic logarithm clearly displays the remaining set, which is displayed in

table 1b.

Remark. A rather special case of (3.2c) is a2 = 0 = b1, for which the theory becomes

the product of two U(1)-theories with N1 or N2 electrons of charge a or b, respectively. In

detail, the conformal dimension is simply

∆2h-plet(m1,m2)
a2=0=b1=

N1

2
|am1|+

N2

2
|bm2| for (m1,m2) ∈ Z2 , (3.7)
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Figure 3. Quiver gauge theory whose Coulomb branch is the reduced moduli space of one SO(5)-

instanton.

such that the Hilbert series becomes

HSa,b
U(1)2

(t, z1, z2) =
1− taN1

(1− t)
(

1− z1t
aN1

2

)(
1− 1

z1
t
aN1

2

)
× 1− tbN2

(1− t)
(

1− z2t
bN2

2

)(
1− 1

z2
t
bN2

2

)
= HSaU(1)(t, z1, N1)×HSbU(1)(t, z2, N2) . (3.8)

For the unrefined Hilbert series, that is z1 = 1 = z2, the rational function HSaU(1)(t,N)

equals the Hilbert series of the (abelian) ADE-orbifold C2/Za·N , see for instance [25]. Thus,

the U(1)×U(1) Coulomb branch is the product of two A-type singularities.

Quite intuitively, taking the corresponding limit k → 0 in (3.6) yields the product

lim
k→0

HSkU(1)×U(1)(t, z1, z2) = HSU(1)(t, z1, N1)×HSU(1)(t, z2, N2) , (3.9)

which are U(1) theories with N1 and N2 electrons of unit charge. The unrefined rational

functions are the Hilbert series of ZN1 and ZN2 singularities in the ADE-classification.

From figure 2 one observes that in the limit k → 0 the relevant rational cones coincide with

the four quadrants of R2 and the Hilbert basis reduces to the cone generators.

3.3 Reduced moduli space of one SO(5)-instanton

Consider the Coulomb branch of the quiver gauge theory depicted in figure 3 with conformal

dimension given by

∆(m1,m2) =
1

2
(|m1|+ |m1 − 2m2|) . (3.10)

Instead of associating (3.10) with the quiver of figure 3, one could equally well understand

it as a special case of a U(1)2 theory with two different hypermultiplets (3.2c).

Hilbert basis. Similar to the previous case, the conformal dimensions induces a fan

which, in this case, is generated by four 2-dimensional cones

C
(2)
1 = Cone ((2, 1), (0, 1)) , C

(2)
2 = Cone ((2, 1), (0,−1)) , (3.11a)

C
(2)
3 = Cone ((−2,−1), (0,−1)) , C

(2)
4 = Cone ((−2,−1), (0, 1)) . (3.11b)
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Figure 4. The dashed lines correspond the m1 = 2m2 and m1 = 0 and divide the lattice Z2 into

four semi-groups S
(2)
j for j = 1, 2, 3, 4. The black circles denote the ray generators, while the red

circles complete the Hilbert bases for S
(2)
1 and S

(2)
3 . Blue circled lattice points complete the bases

for S
(2)
2 and S

(2)
4 .

The intersection with the Z2 lattice defines the semi-groups S
(2)
p := C

(2)
p ∩Z2 for which we

need to compute the Hilbert bases. Figure 4 illustrates the situation and we obtain

H(S
(2)
1 ) = {(2, 1), (1, 1), (0, 1)} , H(S

(2)
2 ) = {(2, 1), (1, 0), (0,−1)} , (3.12a)

H(S
(2)
3 ) = {(−2,−1), (−1,−1), (0,−1)} , H(S

(2)
4 ) = {(−2,−1), (−1, 0), (0, 1)} . (3.12b)

Hilbert series. The Hilbert series is evaluated to

HS
SO(5)

U(1)2
(t, z1, z2) =

R(t, z1, z2)

(1− t)2
(

1− t
z2

)
(1− z2t)

(
1− t

z21z2

) (
1− z2

1z2t
) , (3.13a)

R(t, z1, z2) = 1 + t

(
z1 +

1

z1
+ z1z2 +

1

z1z2

)
(3.13b)

− 2t2
(

1 + z1 +
1

z1
+ z1z2 +

1

z1z2

)
+ t3

(
z1 +

1

z1
+ z1z2 +

1

z1z2

)
+ t4 .

The Hilbert series (3.13) has a pole of order 4 at t = 1, because one can explicitly verify that

R(t = 1, z1, z2) = 0, d
dtR(t, z1, z2)|t=1 = 0, but d2

dt2
R(t, z1, z2)|t=1 6= 0. Thus, the complex

dimension of the moduli space is 4. Moreover, the difference in degrees of numerator and

denominator is 2, which equals the quaternionic dimension of the Coulomb branch.

Plethystic logarithm. The plethystic logarithm for this scenario reads

PL(HS
SO(5)

U(1)2
) =

(
2 + z2

1z2 +
1

z2
1z2

+ z1z2 +
1

z1z2
+ z1 +

1

z1
+ z2 +

1

z2

)
t (3.14)

−
(

4 + z2
1 +

1

z2
1

+ z2 +
1

z2
+ z2

1z
2
2 +

1

z2
1z

2
2

+ z2
1z2 +

1

z2
1z2

+ 2z1 +
2

z1
+ 2z1z2 +

2

z1z2

)
t2 +O(t3) .

– 20 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

U(1) U(1)

U(1) U(1)

Figure 5. Quiver gauge theory whose Coulomb branch is the reduced moduli space of one SU(3)-

instanton.

Symmetry enhancement. The information conveyed by the Hilbert basis (3.12), the

Hilbert series (3.13), and the plethystic logarithm (3.14) is that there are eight minimal

generators of conformal dimension one which, together with the two Casimir invariants,

span the adjoint representation of SO(5). It is known [25, 26] that (3.13) is the Hilbert

series for the reduced moduli space of one SO(5)-instanton over C2.

3.4 Reduced moduli space of one SU(3)-instanton

The quiver gauge theories associated to the affine Dynkin diagram Ân have been studied

in [5]. Here, we consider the Coulomb branch of the Â2 quiver gauge theory as depicted in

figure (5) and with conformal dimension given by

∆(m1,m2) =
1

2
(|m1|+ |m2|+ |m1 −m2|) . (3.15)

Hilbert basis. Similar to the previous case, the conformal dimensions induces a fan

which, in this case, is generated by six 2-dimensional cones

C
(2)
1 = Cone ((0, 1), (1, 1)) , C

(2)
2 = Cone ((1, 1), (1, 0)) , (3.16a)

C
(2)
3 = Cone ((1, 0), (0,−1)) , C

(2)
4 = Cone ((0,−1), (−1,−1)) , (3.16b)

C
(2)
5 = Cone ((−1,−1), (−1, 0)) , C

(2)
6 = Cone ((−1, 0), (0, 1)) . (3.16c)

The intersection with the Z2 lattice defines the semi-groups S
(2)
p := C

(2)
p ∩ Z2 for which

we need to compute the Hilbert bases. Figure 6 illustrates the situation. We compute the

Hilbert bases to read

H(S
(2)
1 ) = {(0, 1), (1, 1)} H(S

(2)
2 ) = {(1, 1), (1, 0))} , (3.17a)

H(S
(2)
3 ) = {(1, 0), (0,−1)} H(S

(2)
4 ) = {(0,−1), (−1,−1)} , (3.17b)

H(S
(2)
5 ) = {(−1,−1), (−1, 0)} H(S

(2)
6 ) = {(−1, 0), (0, 1)} . (3.17c)

Hilbert series.

HS
SU(3)

U(1)2
(t, z1, z2) =

R(t, z1, z2)

(1− t)2
(

1− t
z1

)
(1− z1t)

(
1− t

z2

)
(1− z2t)

(
1− t

z1z2

)
(1− z1z2t)

(3.18a)
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Figure 6. The dashed lines correspond the m1 = m2, m1 = 0, and m2 = 0 and divide the lattice

Z2 into six semi-groups S
(2)
j for j = 1, . . . , 6. The black circled points denote the ray generators,

which coincide with the minimal generators.

R(t, z1, z2) = 1−
(

3 + z1 +
1

z1
+ z2 +

1

z2
+ z1z2 +

1

z1z2

)
t2 (3.18b)

+ 2

(
2 + z1 +

1

z1
+ z2 +

1

z2
+ z1z2 +

1

z1z2

)
t3

−
(

3 + z1 +
1

z1
+ z2 +

1

z2
+ z1z2 +

1

z1z2

)
t4 + t6

The Hilbert series (3.17) has a pole of order 4 as t → 1, because R(t = 1, z1, z2) = 0 and
dn

dtnR(t, z1, z2)|t=1,z1=z2=1 = 0 for n = 1, 2, 3. Thus, the Coulomb branch is of complex

dimension 4. In addition, the difference in degrees of numerator and denominator is 2,

which equals the quaternionic dimension.

Plethystic logarithm.

PL(HS
SU(3)

U(1)2
) =

(
2 + z1 +

1

z1
+ z2 +

1

z2
+ z1z2 +

1

z1z2

)
t (3.19)

−
(

3 + z1 +
1

z1
+ z2 +

1

z2
+ z1z2 +

1

z1z2

)
t2 +O(t3)

Symmetry enhancement. The information conveyed by the Hilbert basis (3.17), the

Hilbert series (3.18), and the plethystic logarithm (3.19) is that there are six minimal

generators of conformal dimension one which, together with the two Casimir invariants,

span the adjoint representation of SU(3). As proved in [5], the Hilbert series (3.18) can be

resumed as

HS
SU(3)

U(1)2
(t, z1, z2) =

∞∑
k=0

χ[k,k]t
k (3.20)

with χ[k,k] being the character of the SU(3)-representation [k, k]. Therefore, this theory

has an explicit SU(3)-enhancement in the Coulomb branch. It is known [27] that (3.20) is

the reduced instanton moduli space of one SU(3)-instanton over C2.
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4 Case: U(2)

In this section we aim to consider two classes of U(2) gauge theories wherein U(2) ∼=
SU(2)×U(1), i.e. this is effectively an SU(2) theory with varying U(1)-charge. As a unitary

group, U(2) is self-dual under GNO-duality.

4.1 Set-up

To start with, let consider the two view points and elucidate the relation between them.

U(2) view point. The GNO-dual of U(2) is U(2) itself; hence, the weight lattice is

Λw(U(2)) ∼= Z2. Moreover, the Weyl-group is S2 and acts via permuting the two Cartan

generators; consequently, Λw(U(2))/S2 = {(m1,m2) ∈ Z2 : m1 ≥ m2}.

U(1)× SU(2) view point. Considering U(1) × SU(2), we need to find the weight

lattice of the GNO-dual, i.e. find all solutions to the Dirac quantisation condition, see

for instance [9]. Since we consider the product, the exponential in (1.4) factorises in

exp(2πi n TU(1)) and exp(2πi m TSU(2)), where the T ’s are the Cartan generators. Besides

the solution

(n,m) ∈ H0 := Z2 = Z× Λw(SO(3)) = Z× Λr(SU(2)) (4.1a)

corresponding to the weight lattice of U(1) × SO(3), there exists also the solution

(n,m) ∈ H1 := Z2 + (1
2 ,

1
2) =

(
Z + 1

2

)
× (Λw(SU(2)) \ Λr(SU(2))) , (4.1b)

for which both factors are equal to −1. The action of the Weyl-group S2 restricts then to

non-negative m i.e. H+
0 = H0 ∩ {m ≥ 0} and H+

1 = H1 ∩ {m ≥ 0}.

Relation between both. To identify both views with one another, we select the U(1)

as diagonally embedded, i.e. identify the charges as follows:

n := m1+m2
2

m := m1−m2
2

}
⇔

{
m1 = n+m

m2 = n−m
. (4.2)

The two classes of U(2)-representations under consideration in this section are

[1, a] with χ
U(2)
[1,a] = ya+1

1 ya2 + ya1y
a+1
2 , (4.3a)

[2, a] with χ
U(2)
[2,a] = ya+2

1 ya2 + ya+1
1 ya+1

2 + ya1y
a+2
2 , (4.3b)

for a ∈ N0. Following (4.2), we define the fugacities

q :=
√
y1 y2 for U(1) and x :=

√
y1

y2
for SU(2), (4.4)

and consequently observe

χ
U(2)
[1,a] = q2a+1

(
x+

1

x

)
= χ

U(1)
2a+1 · χ

SU(2)
[1] , (4.5a)

χ
U(2)
[2,a] = q2a+2

(
x2 + 1 +

1

x2

)
= χ

U(1)
2a+2 · χ

SU(2)
[2] , (4.5b)
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where the SU(2)-characters are defined via

χ
SU(2)
[L] =

L
2∑

r=−L2

x2r . (4.5c)

Therefore, the family [1, a] corresponds to the fundamental representation of SU(2) with

odd U(1)-charge 2a + 1; while the family [2, a] represents the adjoint representation of

SU(2) with even U(1)-charge 2a+ 2.

Dressing factors. Lastly, the calculation employs the classical dressing function

PU(2)(t
2,m) :=


1

(1− t2)2
,m 6= 0

1

(1− t2)(1− t4)
,m = 0

, (4.6)

as presented in [5]. (Note that we rescaled t to be t2 for later convenience.) Following the

discussion of appendix A, monopoles with m 6= 0 have precisely one dressing by a U(1)

Casimir invariant due to PU(2)(t
2,m)/PU(2)(t

2, 0) = 1+t2. In contrast, there are no dressed

monopole operators for m = 0.

4.2 N hypermultiplets in the fundamental representation of SU(2)

The conformal dimension for a U(2) theory with N hypermultiplets transforming in [1, a]

is given as

∆(n,m) =
N

2

(
|(2a+ 1) · n+m|+ |(2a+ 1) · n−m|

)
− 2|m| (4.7)

such that the Hilbert series is computed via

HS
[1,a]
U(2)(t, z) =

∑
n,m

PU(2)(t
2,m) t2∆(n,m)z2n , (4.8)

where the ranges of n,m have been specified above. Here we use the fugacity t2 instead of

t to avoid half-integer powers.

Hilbert basis. The conformal dimension (4.7) divides Λw(U(2))/S2 into semi-groups

via the absolute values |m|, |(2a + 1)n + m|, and |(2a + 1)n −m|. Thus, there are three

semi-groups

S
(2)
+ =

{
(m,n) ∈ ΛU(2)

w /S2 | (n ≥ 0) ∧ (0 ≤ m ≤ (2a+ 1)n)
}
, (4.9a)

S
(2)
0 =

{
(m,n) ∈ ΛU(2)

w /S2 | − (2a+ 1)n ≤ m ≤ (2a+ 1)n
}
, (4.9b)

S
(2)
− =

{
(m,n) ∈ ΛU(2)

w /S2 | (n ≤ 0) ∧ (0 ≤ m ≤ −(2a+ 1)n)
}

(4.9c)
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Figure 7. The Weyl-chamber for the example a = 4. The black circled lattice points are the

ray generators. The blue circled lattice points complete the Hilbert basis (together with two ray

generators) for S
(2)
+ ; while the red circled points analogously complete the Hilbert basis for S

(2)
− .

The green circled point represents the missing minimal generator for S
(2)
0 .

originating from 2-dimensional cones, see figure 7. Since all these semi-groups S
(2)
± , S

(2)
0

are finitely generated, one can compute the Hilbert basis H(Sp) for each p and obtains

H(S
(2)
± ) =

{
(0,±1),

{(
l + 1

2 ,±
1
2

)
| l = 0, 1, . . . , a

}}
, (4.10a)

H(S
(2)
0 ) =

{(
a+ 1

2 ,
1
2

)
, (1, 0),

(
a+ 1

2 ,−
1
2

)}
. (4.10b)

Hilbert series. Computing the Hilbert series yields

HS
[1,a]
U(2)(t, z,N) =

R(t, z)

P (t, z)
, (4.11a)

P (t, z) =
(
1− t2

)2 (
1− t4

) (
1− t2N−4

) (
1− 1

z2
t(4a+2)N

)(
1− z2t(4a+2)N

)
(4.11b)

×
(

1− 1
z t

(2a+1)(N−2)
)(

1− zt(2a+1)(N−2)
)
,

R(t, z) = 1− t2 + t2N−2 − t2N + 2t4aN−4a+2N − t4aN−8a+2N−4 − t4aN−8a+2N−2

− 2t4aN−4a+4N−4 + t4aN−8a+4N−6 + t4aN−8a+4N−4 + t8aN+4N + t8aN+4N+2

− 2t8aN−4a+4N − t8aN+6N−2 − t8aN+6N + 2t8aN−4a+6N−4 − t12aN−8a+6N−4

+ t12aN−8a+6N−2 − t12aN−8a+8N−6 + t12aN−8a+8N−4

+
(
z + 1

z

) (
t2aN−4a+N − t2aN+N+2 + t2aN+3N−2 − t2aN−4a+3N−4 + t6aN+3N+2

− t6aN−8a+3N−2−t6aN+5N−2+t6aN−8a+5N−6−t10aN−4a+5N+t10aN−8a+5N−2

+ t10aN−4a+7N−4 − t10aN−8a+7N−6
)
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(m,n) (m1,m2) 2∆(m,n) H(m,n) dressings

(1, 0) (1,−1) 2N − 4 U(1)2 1 by U(1)

(l + 1
2 ,

1
2), for l = 0, 1, . . . , a (l + 1,−l) (2a+ 1)N − 2(2l + 1) U(1)2 1 by U(1)

(l + 1
2 ,−

1
2), for l = 0, 1, . . . , a (l,−(l + 1)) (2a+ 1)N − 2(2l + 1) U(1)2 1 by U(1)

(0,±1) ±(1, 1) (4a+ 2)N U(2) none

Table 2. Bare and dressed monopole operators for the family [1, a] of U(2)-representations.

+
(
z2 + 1

z2

) (
t4aN−4a+2N − t4aN+2N + t4aN+4N − t4aN−4a+4N−4 − t8aN−4a+4N

+ t8aN−8a+4N−4 + t8aN−4a+6N−4 − t8aN−8a+6N−4
)
. (4.11c)

The Hilbert series (4.11) has a pole of order 4 at t → 1, because R(t = 1, z) = 0 and
dn

dtnR(t, z)|t=1 = 0 for n = 1, 2, 3. Hence, the moduli space is of (complex) dimension 4.

As a comment, the additional (1 − t2)-term in the denominator can be cancelled with a

corresponding term in the numerator either explicitly for each a = fixed or for any a, but

the resulting expressions are not particularly insightful.

Discussion. The four poles of the Hilbert series (4.11), which are graded as z±2 and z±1,

can be identified with the four ray generators (0,±1) and (a+ 1
2 ,±

1
2), i.e. they correspond

to bare monopole operators. In addition, the bare monopole operator for the minimal

generator (1, 0) is present in the denominator (4.11b), too.

In contrast, the family of monopoles {(l + 1
2 ,±

1
2) , l = 0, 1, . . . , a − 1} is not directly

visible in the Hilbert series, but can be deduced unambiguously from the plethystic loga-

rithm. These monopole operators correspond the minimal generators of S
(2)
± which are not

ray generators. Table 2 provides as summary of the monopole generators and their prop-

erties. As a remark, the family of monopole operators (l+ 1
2 ,±

1
2) is not always completely

present in the plethystic logarithm. We observe that l-th bare operator is a generator if

N ≥ 2(a − l + 1), while the dressing of the l-th object is a generator if N > 2(a − l + 1).

The reason for the disappearance lies in a relation at degree ∆(1, 0) + ∆(a + 1
2 ,±

1
2) + 2,

which coincides with ∆(l + 1
2 ,±

1
2) for N − 1 = 2(a− l + 1), such that the terms cancel in

the PL. (See also appendix A.) Thus, for large N all above listed objects are generators.

4.2.1 Case: a = 0, complete intersection

For the choice a = 1, we obtain the Hilbert series for the 2-dimensional fundamental

representation [1, 0] of U(2) as

HS
[1,0]
U(2)(t, z,N) =

(
1− t2N

) (
1− t2N−2

)
(1− t2) (1− t4)

(
1− 1

z t
N
)

(1− ztN )
(
1− 1

z t
N−2

)
(1− ztN−2)

(4.12)

which agrees with the results of [5].

Let us comment on the reduction of generators compared to the Hilbert basis (4.10).

The minimal generators have conformal dimensions 2∆( 1
2 ,±

1
2) = N−2, 2∆(1, 0) = 2N−4,

and 2∆(0,±1) = 2N . Thus, (1, 0) is generated by ( 1
2 ,±

1
2) and (0,±1) are generated by

utilising the dressed monopoles of ( 1
2 ,±

1
2) and suitable elements in their Weyl-orbits.
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m

n

S
(2)
2,+

S
(2)
1,+

S
(2)
1,−

S
(2)
2,−

H+
0

H+
1

Figure 8. The Weyl-chamber for odd a, here with the example a = 3. The black circled lattice

points correspond to the ray generators originating from the fan. The blue/red circled points are

the remaining minimal generators for S
(2)
2,±, respectively. Similarly, the orange/green circled point

are the generators that complete the Hilbert basis for S
(2)
1,±.

4.3 N hypermultiplets in the adjoint representation of SU(2)

The conformal dimension for a U(2)-theory with N hypermultiplets transforming in the

adjoint representation of SU(2) and arbitrary even U(1)-charge is given by

∆(n,m) =
N

2

(
|(2a+ 2)n+ 2m|+ |(2a+ 2)n|+ |(2a+ 2)n− 2m|

)
− 2|m| . (4.13)

Already at this stage, one can define the four semi-groups induced by the conformal di-

mension, which originate from 2-dimensional cones

S
(2)
2,± =

{
(m,n) ∈ ΛU(2)

w /S2 | (m ≥ 0) ∧ (m ≤ ±(a+ 1)n) ∧ (±n ≥ 0)
}
, (4.14a)

S
(2)
1,± =

{
(m,n) ∈ ΛU(2)

w /S2 | (m ≥ 0) ∧ (m ≥ ±(a+ 1)n) ∧ (±n ≥ 0)
}
. (4.14b)

It turns out that the precise form of the Hilbert basis depends on the divisibility of a by

2; thus, we split the considerations in two cases: a = 2k − 1 and a = 2k.

4.3.1 Case: a = 1 mod 2

Hilbert basis. The collection of semi-groups (4.14) is depicted in figure 8. As before,

we compute the Hilbert basis H for each semi-group of the minimal generators.

H(S
(2)
2,±) =

{
(0,±1), (2k,±1),

{(
j + 1

2 ,±
1
2

)
| j = 0, . . . , k − 1

}}
, (4.15a)

H(S
(2)
1,±) =

{
(2k,±1),

(
k + 1

2 ,±
1
2

)
, (1, 0)

}
. (4.15b)
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Hilbert series. The computation of the Hilbert series yields

HS
[2,2k−1]
U(2) (t, z,N) =

R(t, z,N)

P (t, z,N)
, (4.16a)

P (t, z,N) =
(
1− t2

)2 (
1− t4

) (
1− t4N−4

) (
1− 1

z2
t12kN

)(
1− z2t12kN

)
×
(

1− 1
z2
t12kN−8k

)(
1− z2t12kN−8k

)
,

R(t, z,N) = 1− t2 + t4N−2 − t4N t24kN + t24kN+2 − t24kN−16k − t24kN−16k+2

− t24kN+4N−2 − t24kN+4N + t24kN−16k+4N + t24kN−16k+4N−2

− t48kN−16k + t48kN−16k+2 + t48kN−16k+4N − t48kN−16k+4N−2

+
(
z + 1

z

) (
− t6kN+2 + t6kN−4k+2 + t6kN−4k+2N−2 − t6kN−4k+2N+2

+ t6kN+4N−2 − t6kN−4k+4N−2 + t18kN+2 − t18kN−4k+2 + t18kN−8k+2

− t18kN−12k+2 − t18kN−4k+2N−2 + t18kN−4k+2N+2 − t18kN−12k+2N−2

+ t18kN−12k+2N+2 − t18kN+4N−2 + t18kN−4k+4N−2 − t18kN−8k+4N−2

+ t18kN−12k+4N−2 + t30kN−4k+2 − t30kN−8k+2 + t30kN−12k+2

− t30kN−16k+2 + t30kN−4k+2N−2 − t30kN−4k+2N+2 + t30kN−12k+2N−2

− t30kN−12k+2N+2 − t30kN−4k+4N−2 + t30kN−8k+4N−2 − t30kN−12k+4N−2

+ t30kN−16k+4N−2 − t42kN−12k+2 + t42kN−16k+2 − t42kN−12k+2N−2

+ t42kN−12k+2N+2 + t42kN−12k+4N−2 − t42kN−16k+4N−2
)

+
(
z2 + 1

z2

) (
− t12kN + t12kN−8k+2 + t12kN+4N − t12kN−8k+4N−2

+ t36kN−16k − t36kN−8k+2 − t36kN−16k+4N + t36kN−8k+4N−2
)

+
(
z3 + 1

z3

) (
− t18kN−4k+2 + t18kN−8k+2 − t18kN−4k+2N−2 + t18kN−4k+2N+2

+ t18kN−4k+4N−2 − t18kN−8k+4N−2 − t30kN−8k+2 + t30kN−12k+2

+t30kN−12k+2N−2−t30kN−12k+2N+2+t30kN−8k+4N−2−t30kN−12k+4N−2
)
.

(4.16b)

Inspection of the Hilbert series (4.16) reveals that it has a pole of order 4 as t→ 1 because

one explicitly verifies R(t = 1, z,N) = 0, d
dtR(t, z,N)|t=1 = 0, and dn

dtnR(t, z,N)|t=1,z=1 = 0

for n = 2, 3.

Discussion. The denominator of the Hilbert series (4.16) displays poles for the five bare

monopole operators (0,±1), (2k,±1), and (1, 0), which are ray generators and charged

under U(1)J as ±2, ±2, and 0, respectively. The remaining operators, corresponding to

the minimal generators which are not ray generators, are apparent in the analysis of the

plethystic logarithm. The relevant bare and dressed monopole operators are summarised

in table 3.

The plethystic logarithm, moreover, displays that not always all monopoles of the

family (j+ 1
2 ,±

1
2) are generators (in the sense of the PL). The observation is: if k− j < N
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(m,n) (m1,m2) 2∆(m,n) H(m,n) dressings

(1, 0) (1,−1) 4N − 4 U(1)2 1 by U(1)

(j + 1
2 ,

1
2), for j = 0, . . . , k − 1 (j + 1,−j) 6kN − 4j − 2 U(1)2 1 by U(1)

(j + 1
2 ,−

1
2), for j = 0, . . . , k − 1 (j,−(j + 1)) 6kN − 4j − 2 U(1)2 1 by U(1)

(k + 1
2 ,

1
2) (k + 1,−k) 6kN + 2N − 4k − 2 U(1)2 1 by U(1)

(k + 1
2 ,−

1
2) (k,−(k + 1)) 6kN + 2N − 4k − 2 U(1)2 1 by U(1)

(0,±1) ±(1, 1) 12kN U(2) none

(2k, 1) (2k + 1, 1− 2k) 12kN − 8k U(1)2 1 by U(1)

(2k,−1) (2k − 1,−(2k + 1)) 12kN − 8k U(1)2 1 by U(1)

Table 3. Summary of the monopole operators for odd a.

m

n

S
(2)
2,+

S
(2)
1,+

S
(2)
1,−

S
(2)
2,−

H+
0

H+
1

Figure 9. The Weyl-chamber for a = 0 mod 2, here with the example a = 4. The black circled

lattice points correspond to the ray generators originating from the fan. The blue/red circled points

are the remaining minimal generators for S
(2)
2,±, respectively.

then the j-th operator (bare as well as dressed) is truely a generator in the PL. The reason

behind lies in a relation at degree ∆(k− 1
2 ,±

1
2)+∆(1, 0), which coincides with ∆(j+ 1

2 ,±
1
2)

for k− j = N . (See also appendix A.) Hence, for large enough N all above listed operators

are generators.

4.3.2 Case: a = 0 mod 2

Hilbert basis. The diagram for the minimal generators is provided in figure 9. Again,

the appearing (bare) monopoles correspond to the Hilbert basis of the semi-groups.

H(S
(2)
2,±) =

{
(0,±1),

{(
j + 1

2 ,±
1
2

)
, j = 0, 1, . . . , k

}}
, (4.17a)

H(S
(2)
1,±) =

{(
k + 1

2 ,±
1
2

)
, (1, 0)

}
. (4.17b)
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(m,n) (m1,m2) 2∆(m,n) H(m,n) dressings

(1, 0) (1,−1) 4N − 4 U(1)2 1 by U(1)

(j + 1
2 ,

1
2), for j = 0, 1, . . . , k (j + 1,−j) 6kN + 3N − 4j − 2 U(1)2 1 by U(1)

(j + 1
2 ,−

1
2), for j = 0, 1, . . . , k (j,−(j + 1)) 6kN + 3N − 4j − 2 U(1)2 1 by U(1)

(0,±1) ±(1, 1) 12kN + 6N U(2) none

Table 4. Summary of the monopole operators for even a.

Hilbert series. The computation of the Hilbert series for this case yields

HS
[2,2k]
U(2) (t, z,N) =

R(t, z,N)

P (t, z,N)
, (4.18a)

P (t, z,N) =
(
1− t2

)2 (
1− t4

) (
1− t4N−4

) (
1− 1

z t
6kN−4k+3N−2

)(
1− zt6kN−4k+3N−2

)
×
(

1− 1
z2
t12kN+6N

)(
1− z2t12kN+6N

)
, (4.18b)

R(t, z,N) = 1− t2 + t4N−2 − t4N + 2t12kN−4k+6N − t12kN−8k+6N−4 − t12kN−8k+6N−2

− 2t12kN−4k+10N−4 + t12kN−8k+10N−6 + t12kN−8k+10N−4 + t24kN+12N

+ t24kN+12N+2 − 2t24kN−4k+12N − t24kN+16N−2 − t24kN+16N

+ 2t24kN−4k+16N−4 − t36kN−8k+18N−4 + t36kN−8k+18N−2

− t36kN−8k+22N−6 + t36kN−8k+22N−4

+
(
z + 1

z

) (
− t6kN+3N+2 + t6kN−4k+3N + t6kN+7N−2 − t6kN−4k+7N−4

+ t18kN+9N+2 − t18kN−8k+9N−2 − t18kN+13N−2 + t18kN−8k+13N−6

− t30kN−4k+15N+t30kN−8k+15N−2+t30kN−4k+19N−4−t30kN−8k+19N−6
)

+
(
z2 + 1

z2

) (
− t12kN+6N + t12kN−4k+6N + t12kN+10N − t12kN−4k+10N−4

− t24kN−4k+12N+t24kN−8k+12N−4+t24kN−4k+16N−4−t24kN−8k+16N−4
)
.

(4.18c)

The Hilbert series (4.18) has a pole of order 4 as t → 1 because one can explicitly verify

that R(t = 1, z,N) = 0, d
dtR(t, z,N)|t=1 = 0, and dn

dtnR(t, z,N)|t=1,z=1 = 0 for n = 2, 3.

Discussion. The five monopoles corresponding to the ray generators, i.e. (0,±1),

(k + 1
2 ,±

1
2), and (1, 0), appear as poles in the Hilbert series (4.18) and are charged under

U(1)J as ±2, ±1, and 0, respectively. The remaining minimal generator can be deduced

by inspecting the plethystic logarithm. We summarise the monopole generators in ta-

ble 4. Similarly to the case of odd a, the plethystic logarithm displays that not always all

monopoles of the family (j + 1
2 ,±

1
2) are generators. The observation is: if k − j + 1 ≥ N

then the j-th bare operator is a generator in the PL, while for k− j + 2 ≥ N then also the

dressing of the j-th monopole is a generator. The reason behind lies, again, in a relation at

degree ∆(k − 1
2 ,±

1
2) + ∆(1, 0) + 2, which coincides with ∆(j + 1

2 ,±
1
2) for k − j = N . (See

also appendix A.) Hence, for large enough N all above listed operators are generators.
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4.4 Direct product of SU(2) and U(1)

A rather simple example is obtained by considering the non-interacting product of an SU(2)

and a U(1) theory. Nonetheless, it illustrates how the rank two Coulomb branches contain

the product of rank one Coulomb branches as subclasses.

As first example, take N1 fundamentals of SU(2) and N2 hypermultiplets charged under

U(1) with charges a ∈ N. The conformal dimension is given by

∆(m,n) = (N1 − 2)|m|+ N2 · a
2
|n| for m ∈ N and n ∈ Z (4.19)

and the dressing factor splits as

PSU(2)(t,m, n) = PSU(2)(t,m)× PU(1)(t, n) , (4.20)

such that the Hilbert series factorises

HS
[1],a
SU(2)×U(1)(t,N1, N2) = HS

[1]
SU(2)(t,N1)×HSaU(1)(t,N2) . (4.21)

The rank one Hilbert series have been presented in [5]. Moreover, HSaU(1)(t,N2) equals the

Aa·N2−1 singularity C2/Za·N2 ; whereas HS
[1]
SU(2)(t,N1) is precisely the DN1 singularity.

The second, follow-up example is simply a theory comprise of N1 hypermultiplets in

the adjoint representation of SU(2) and N2 hypermultiplets charged under U(1) as above.

The conformal dimension is modified to

∆(m,n) = 2(N1 − 1)|m|+ N2 · a
2
|n| for m ∈ N and n ∈ Z (4.22)

and Hilbert series is obtained as

HS
[2],a
SU(2)×U(1)(t,N1, N2) = HS

[2]
SU(2)(t,N1)×HSaU(1)(t,N2) . (4.23)

Applying the results of [5], HS
[2]
SU(2)(t,N1) is the Hilbert series of the D2N1-singularity on C2.

Summarising, the direct product of these SU(2)-theories with U(1)-theories results

in moduli spaces that are products of A and D type singularities, which are complete

intersections. Moreover, any non-trivial interactions between these two gauge groups, as

discussed in subsection 4.2 and 4.3, leads to a very elaborate expression for the Hilbert

series as rational functions. Also, the Hilbert basis becomes an important concept for

understanding the moduli space.

5 Case: A1 ×A1

This section concerns all Lie groups with Lie algebra D2, which allows to study products

of the rank one gauge groups SO(3) and SU(2), but also the proper rank two group SO(4).

5.1 Set-up

Let us consider the Lie algebra D2
∼= A1×A1. Following [9], there are five different groups

with this Lie algebra. The reason is that the universal covering group S̃O(4) of SO(4) has a

non-trivial centre Z(S̃O(4)) = Z2×Z2 of order 4. The quotient of S̃O(4) by any of the five
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Quotient isomorphic group G GNO-dual Ĝ Z(Ĝ) GNO-charges (m1,m2)

S̃O(4)
{1} SU(2)× SU(2) SO(3)× SO(3) {1} K [0]

S̃O(4)
Z2×{1} SO(3)× SU(2) SU(2)× SO(3) Z2 × {1} K [0] ∪K [1]

S̃O(4)
diag(Z2) SO(4) SO(4) Z2 K [0] ∪K [2]

S̃O(4)
{1}×Z2

SU(2)× SO(3) SO(3)× SU(2) {1} × Z2 K [0] ∪K [3]

S̃O(4)
Z2×Z2

SO(3)× SO(3) SU(2)× SU(2) Z2 × Z2 K [0] ∪K [1] ∪K [2] ∪K [3]

Table 5. All the Lie groups that arise taking the quotient of S̃O(4) by a subgroup of its centre;

hence, their Lie algebra is D2.

different subgroups Z(S̃O(4)) yields a Lie group with the same Lie algebra. Fortunately,

working with SO(4) allows to use the isomorphism S̃O(4) = Spin(4) ∼= SU(2)× SU(2). We

can summarise the setting as displayed in table 5. Here, we employed ŜU(2) = SO(3) and

that for semi-simple groups G1, G2

Ĝ1 ×G2 = Ĝ1 × Ĝ2 (5.1)

holds [9]. Moreover, the GNO-charges are defined via the following sublattices of the weight

lattice of Spin(4) (see also figure 10)

K [0] =
{

(m1,m2) | mi = pi ∈ Z , p1 + p2 = even
}
, (5.2a)

K [1] =
{

(m1,m2) | mi = pi + 1
2 , pi ∈ Z , p1 + p2 = even

}
, (5.2b)

K [2] =
{

(m1,m2) | mi = pi ∈ Z , p1 + p2 = odd
}
, (5.2c)

K [3] =
{

(m1,m2) | mi = pi + 1
2 , pi ∈ Z , p1 + p2 = odd

}
. (5.2d)

The important consequence of this set-up is that the fan defined by the conformal

dimension will be the same for a given representation in each of the five quotients, but the

semi-groups will differ due to the different lattices Λw(Ĝ) used in the intersection. Hence,

we will find different Hilbert basis in each quotient group. Nevertheless, we are forced to

consider representations on the root lattice as we otherwise cannot compare all quotients.

Dressings. In addition, we have chosen to parametrise the principal Weyl chamber via

m1 ≥ |m2| such that the classical dressing factors are given by [5]

PA1×A1(t,m1,m2) =



1

(1− t2)2
, for m1 = m2 = 0 ,

1

(1− t)(1− t2)
, for m1 = |m2| > 0 ,

1

(1− t)2
, for m1 > |m2| ≥ 0 .

(5.3)
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m1

m2

K [0] lattice

K [1] lattice

K [2] lattice

K [3] lattice

Weyl chamber m1 ≥ |m2|

Figure 10. The four different sublattices of the covering group of SO(4). One recognises the root

lattice Λ
S̃O(4)
r = K [0] and the weight lattice Λ

S̃O(4)
w = K [0] ∪K [1] ∪K [2] ∪K [3].

Regardless of the quotient S̃O(4)/Γ, the space of Casimir invariance is 2-dimensional. We

choose a basis such that the two degree 2 Casimir invariants stem either from SU(2) or

SO(3), i.e.1

diag(Φ) = (φ1, φ2) −→ C(i)
2 = (φi)

2 . (5.4)

Next, we can clarify all relevant bare and dressed monopole operators for an (m1,m2) that

is a minimal generator. There are two cases: on the one hand, for m2 = ±m1, i.e. at

the boundary of the Weyl chamber, the residual gauge group is either U(1)i × SU(2)j or

U(1)i × SO(3)j (for i, j = 1, 2 and i 6= j), depending on the quotient under consideration.

Thus, only the degree 1 Casimir invariant of the U(1)i can be employed for a dressing, as

the Casimir invariant of SU(2)j or SO(3)j belongs to the quotient S̃O(4)/Γ itself. Hence,

we get

V dress,0
(m1,±m1) = (m1,±m1) and V dress,1

(m1,±m1) = φi (m1,±m1) . (5.5a)

Alternatively, we can apply the results of appendix A and deduce the dressing behaviour

at the boundary of the Weyl chamber to be PA1×A1(t,m1,±m1)/PA1×A1(t, 0, 0) = 1 + t,

i.e. only one dressed monopole arises.

On the other hand, for m1 > |m2| ≥ 0, i.e. in the interior of the Weyl chamber, the

residual gauge group is U(1)2. From the resulting two degree 1 Casimir invariants one

constructs the following monopole operators:

V dress,0
(m1,m2) = (m1,m2) −→


V dress,1,i

(m1,m2) = φi (m1,m2) , for i = 1, 2

V dress,2
(m1,m2) = φ1φ2 (m1,m2) .

(5.5b)

1In a different basis, the Casimir invariants for SO(4) are the quadratic Casimir and the Pfaffian.
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Figure 11. The semi-group S(2) and its ray-generators (black circled points) for the quotient

Spin(4) and the representation [2, 0].

Using appendix A, we obtain that monopole operator with GNO-charge in the interior

of the Weyl chamber exhibit the following dressings PA1×A1(t,m1,m2)/PA1×A1(t, 0, 0) =

1 + 2t+ t2, which agrees with our discussion above.

5.2 Representation [2, 0]

The conformal dimension for this case reads

∆(m1,m2) = (N − 1) (|m1 +m2|+ |m1 −m2|) . (5.6)

Following the ideas outlined earlier, the conformal dimension (5.6) defines a fan in the

dominant Weyl chamber. In this example, ∆ is already a linear function on the entire

dominant Weyl chamber; thus, we generate a fan which just consists of one 2-dimensional

rational cone

C(2) =
{

(m1 ≥ m2) ∧ (m1 ≥ −m2)
}
. (5.7)

5.2.1 Quotient Spin(4)

Hilbert basis. Starting from the fan (5.7) with the cone C(2), the Hilbert basis for the

semi-group S(2) := C(2) ∩K [0] is simply given by the ray generators

H(S(2)) =
{

(1, 1), (1,−1)
}
, (5.8)

see for instance figure 11. Both minimal generators exhibit a bare monopole operator and

one dressed operators, as explained in (5.5).

Hilbert series. We compute the Hilbert series to

HS
[2,0]
Spin(4)(t,N) =

(
1− t4N−2

)2
(1− t2)2 (1− t2N−2)2 (1− t2N−1)2 , (5.9)

which is a complete intersection with 6 generators and 2 relations. The generators are

given in table 6.
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object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1,±1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)

Table 6. Bare and dressed monopole generators for a Spin(4) gauge theory with matter trans-

forming in [2, 0].

Remark. The Hilbert series (5.9) can be compared to the case of SU(2) with n funda-

mentals and na adjoints such that 2N = n+ 2na, cf. [5]. One derives at

HS
[2,0]
Spin(4)(t,N) = HS

[1]+[2]
SU(2) (t, n, na)×HS

[1]+[2]
SU(2) (t, n, na) , (5.10)

which equals the product of two D2N singularities. As a consequence, the minimal generator

(1, 1) belongs to one SU(2) Hilbert series with adjoint matter content, while (1,−1) belongs

to the other.

5.2.2 Quotient SO(4)

The centre of the GNO-dual SO(4) is a Z2, which we choose to count if (m1,m2) belongs

to K [0] or K [2]. A realisation is given by

zm1+m2 =

{
zeven = 1 for (m1,m2) ∈ K [0] ,

zodd = z for (m1,m2) ∈ K [2] .
(5.11)

In other words, z is a Z2-fugacity.

Hilbert basis. The semi-group S(2) := C(2) ∩
(
K [0] ∪K [2].

)
has a Hilbert basis as dis-

played in figure 12 or explicitly

H(S(2)) =
{

(1,±1), (1, 0)
}
. (5.12)

Hilbert series. The Hilbert series for SO(4) is given by

HS
[2,0]
SO(4)(t, z,N) =

1 + t2N−2 + 2t2N−1 + zt2N + 2zt2N−1 + zt4N−2

(1− t2)2 (1− t2N−2) (1− zt2N−2)
, (5.13)

which is a rational function with a palindromic polynomial of degree 4N − 2 as numerator,

while the denominator is of degree 4N . Hence, the difference in degrees is 2, i.e. the

quaternionic dimension of the moduli space. In addition, the denominator (5.13) has a

pole of order 4 at t→ 1, which equals the complex dimension of the moduli space.

Plethystic logarithm. Analysing the PL yields for N ≥ 3

PL(HS
[2,0]
SO(4)) = 2t2 + zt∆(1,0)(1 + 2t2 + t2) + 2t∆(1,±1)(1 + t) (5.14)

− t2∆(1,0)(1 + 2(1 + z)t+ (6 + 4z)t2 + 2(1 + z)t3 + t4) + . . .
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Figure 12. The semi-group S(2) and its ray-generators (black circled points) for the quotient SO(4)

and the representation [2, 0]. The red circled lattice point completes the Hilbert basis for S(2).

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1, 0) K [2] 2N − 2 U(1)×U(1) 3 by U(1)2

monopole (1,±1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)

Table 7. Bare and dressed monopole generators for a SO(4) gauge theory with matter transforming

in [2, 0].

and for N = 2

PL(HS
[2,0]
SO(4)) = 2t2 + zt2(1 + 2t+ t2) + 2t2(1 + t)− t4(1 + 2(1 + z)t+ (6 + 4z)t2) + . . .

(5.15)

such that we have generators as summarised in table 7.

Gauging a Z2. Although the Hilbert series (5.13) is not a complete intersection, the

gauging of the topological Z2 reproduces the Spin(4) result (5.9), that is

HS
[2,0]
Spin(4)(t,N) =

1

2

(
HS

[2,0]
SO(4)(t, z=1, N) + HS

[2,0]
SO(4)(t, z=− 1, N)

)
. (5.16)

5.2.3 Quotient SO(3)× SU(2)

The dual group is SU(2)× SO(3) and the summation extends over (m1,m2) ∈ K [0] ∪K [1].

The non-trivial centre Z2 × {1} gives rise to a Z2-action, which we choose to distinguish

the two lattices K [0] and K [1] as follows:

zm1+m2
1 =


zp1+p2

1 = zeven
1 = 1 for (m1,m2) ∈ K [0] ,

z
p1+

1
2 +p2+

1
2

1 = zeven+1
1 = z1 for (m1,m2) ∈ K [1] .

(5.17)
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Figure 13. The semi-group S(2) for the quotient SO(3)×SU(2) and the representation [2, 0]. The

black circled points are the ray generators.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1
2 ,

1
2) K [1] N − 1 U(1)× SU(2) 1 by U(1)

monopole (1,−1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)

Table 8. Bare and dressed monopole generators for a SO(3) × SU(2) gauge theory with matter

transforming in [2, 0].

Hilbert basis. The semi-group S(2) := C(2) ∩
(
K [0] ∪K [1]

)
has a Hilbert basis com-

prised of the ray generators. We refer to figure 13 and provide the minimal generators for

completeness:

H(S(2)) =
{

(1
2 ,

1
2), (1,−1)

}
. (5.18)

Hilbert series. Computing the Hilbert series and using explicitly the Z2-properties of

z1 yields

HS
[2,0]
SO(3)×SU(2)(t, z1, N) =

(
1− t2N

) (
1− t4N−2

)
(1− t2)2 (1− t2N−2) (1− t2N−1) (1− z1tN−1) (1− z1tN )

,

(5.19)

which is a complete intersection with 6 generators and 2 relations. The generators are

displayed in table 8.

Remark. Comparing to the case of SU(2) with na adjoints and SO(3) with n fundamen-

tals presented in [5], we can re-express the Hilbert series (5.19) as the product

HS
[2,0]
SO(3)×SU(2)(t, z1, N) = HS

[1]
SO(3)(t, z1, n = N)×HS

[2]
SU(2)(t, na = N) , (5.20)
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Figure 14. The semi-group S(2) for the quotient SU(2)×SO(3) and the representation [2, 2]. The

black circled points are the ray generators.

where the z1-grading belongs to SO(3) with N fundamentals. The minimal generator ( 1
2 ,

1
2)

is the minimal generator for SO(3) with N fundamentals, while (1,−1) is the minimal

generator for SU(2) with N adjoints.

5.2.4 Quotient SU(2)× SO(3)

The dual group is SO(3)× SU(2) and the summation extends over (m1,m2) ∈ K [0] ∪K [3].

The non-trivial centre {1} × Z2 gives rise to a Z2-action, which we choose to distinguish

the two lattices K [0] and K [3] as follows:

zp1+p2
2 =

z
even
2 = 1 for (m1,m2) ∈ K [0] ,

zodd
2 = z2 for (m1,m2) ∈ K [3] .

(5.21)

Hilbert basis. The semi-group S(2) := C(2) ∩
(
K [0] ∪K [3]

)
has as Hilbert basis the set

of ray generators

H(S(2)) =
{

(1, 1), (1
2 ,−

1
2)
}
. (5.22)

Figure 14 depicts the situation. We observe that bases (5.18) and (5.22) are related by

reflection along the m2 = 0 axis, which in turn corresponds to the interchange of K [1]

and K [3].

Hilbert series. Similar to the previous case, employing the Z2-properties of z2 we obtain

the following Hilbert series:

HS
[2,0]
SU(2)×SO(3)(t, z2, N) =

(
1− t2N

) (
1− t4N−2

)
(1− t2)2 (1− t2N−2) (1− t2N−1) (1− z2tN−1) (1− z2tN )

,

(5.23)

which is a complete intersection with 6 generators and 2 relations. We summarise the

generators in table 9.

– 38 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1
2 ,−

1
2) K [3] N − 1 U(1)× SU(2) 1 by U(1)

monopole (1, 1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)

Table 9. Bare and dressed monopole generators for a SU(2) × SO(3) gauge theory with matter

transforming in [2, 0].

lattice Z2 × Z2 Z̃2 × Z̃2

K [0] (z1)0, (z2)0 (w1)0, (w2)0

K [1] (z1)1, (z2)0 (w1)1, (w2)1

K [2] (z1)0, (z2)1 (w1)0, (w2)1

K [3] (z1)1, (z2)1 (w1)1, (w2)0

Table 10. The Z2 × Z2 distinguishes the four different lattice K [j], j = 0, 1, 2, 3. The choice of

fugacities z1, z2 is used in the computation, while the second choice w1, w2 is convenient for gauging

PSO(4) to SU(2)× SO(3).

Remark. Also, the equivalence

HS
[2,0]
SO(3)×SU(2)(t, z1, N)

z1↔z2←−−−−−−→ HS
[2,0]
SU(2)×SO(3)(t, z2, N) (5.24)

holds, which then also implies

HS
[2,0]
SU(2)×SO(3)(t, z2, N) = HS

[1]
SO(3)(t, z2, n = N)×HS

[2]
SU(2)(t, na = N) . (5.25)

Thus, the moduli space is a product of two complete intersections.

5.2.5 Quotient PSO(4)

Taking the quotient with respect to the entire centre of S̃O(4) yields the projective group

PSO(4), which has as GNO-dual Spin(4) ∼= SU(2)× SU(2). Consequently, the summation

extends over the whole weight lattice K [0] ∪ K [1] ∪ K [2] ∪ K [3] and there is an action of

Z2 × Z2 on this lattice, which is chosen as displayed in table 10.

Hilbert basis. The semi-group S(2) := C(2) ∩
(
K [0] ∪K [1] ∪K [2] ∪K [3]

)
has a Hilbert

basis that is determined by the ray generators. Figure 15 depicts the situation and the

Hilbert basis reads

H(S(2)) =
{

(1
2 ,

1
2), (1

2 ,−
1
2)
}
. (5.26)

Hilbert series. An evaluation of the Hilbert series yields

HS
[2,0]
PSO(4)(t, z1, z2, N) =

(
1− t2N

)2
(1− t2)2 (1− z1tN−1) (1− z1tN ) (1− z1z2tN−1) (1− z1z2tN )

,

(5.27)

which is a complete intersection with 6 generators and 2 relations. Table 11 summarises

the generators with their properties.
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Figure 15. The semi-group S(2) and its ray-generators (black circled points) for the quotient

PSO(4) and the representation [2, 0].

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1
2 ,

1
2) K [1] N − 1 U(1)× SU(2) 1 by U(1)

monopole (1
2 ,−

1
2) K [3] N − 1 U(1)× SU(2) 1 by U(1)

Table 11. Bare and dressed monopole generators for a PSO(4) gauge theory with matter trans-

forming in [2, 0].

Gauging a Z2. Now, we utilise the Z2×Z2 global symmetry to recover the Hilbert series

for all five quotients solely from the PSO(4) result. Firstly, to obtain the SO(4) result, we

need to average out the contributions of K [1] and K [3], which is achieved for z1 → ±1 (we

also relabel z2 for consistence), see also table 10. This yields

HS
[2,0]
SO(4)(t, z,N) =

1

2

(
HS

[2,0]
PSO(4)(t, z1=1, z2=z,N) + HS

[2,0]
PSO(4)(t, z1=− 1, z2=z,N)

)
.

(5.28a)

Secondly, a subsequent gauging leads to the Spin(4) result as demonstrated in (5.16),

because one averages the K [2] contributions out. Thirdly, one can gauge the other Z2-

factor corresponding to z2 → ±1, which then eliminates the contributions of K [2] and K [3]

due to the choices of table 10. The result then reads

HS
[2,0]
SO(3)×SU(2)(t, z1, N) =

1

2

(
HS

[2,0]
PSO(4)(t, z1, z2=1, N) + HS

[2,0]
PSO(4)(t, z1, z2=− 1, N)

)
.

(5.28b)

Lastly, for obtaining the SU(2) × SO(3) Hilbert series one needs to eliminate the K [1]

and K [2] contributions. For that, we have to redefine the Z2-fugacities conveniently. One

choice is

z1 · z2 7→ w1 , z1 7→ w1 · w2 , and z2 7→ w2 , (5.28c)
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which is consistent in Z2×Z2. The effect on the lattices is summarised in table 10. Hence,

w2 → ±1 has the desired effect and leads to

HS
[2,0]
SU(2)×SO(3)(t, z2=w1, N)=

1

2

(
HS

[2,0]
PSO(4)(t, w1, w2=1, N)+HS

[2,0]
PSO(4)(t, w1, w2=−1, N)

)
.

(5.28d)

Consequently, the Hilbert series for all five quotients can be computed from the PSO(4)-

result by gauging Z2-factors.

Remark. As for most of the cases in this section, the Hilbert series (5.27) can be written

as a product of two complete intersections. Employing the results of [5] for SO(3) with n

fundamentals, we obtain

HS
[2,0]
PSO(4)(t, z1, z2, N) = HS

[1]
SO(3)(t, z1, n = N)×HS

[1]
SO(3)(t, z1z2, n = N) . (5.29)

5.3 Representation [2, 2]

Let us use the representation [2, 2] to further compare the results for the five different

quotient groups. The conformal dimension reads

∆(m1,m2) = N(|m1 −m2|+|m1 +m2|+2 |m1|+2 |m2|)−|m1 −m2|−|m1 +m2| . (5.30)

As described in the introduction, the conformal dimension (5.30) defines a fan in the

dominant Weyl chamber, which is spanned by two 2-dimensional rational cones

C
(2)
± =

{
(m1 ≥ ±m2) ∧ (m2 ≥ ±0)

}
. (5.31)

5.3.1 Quotient Spin(4)

Hilbert basis. Starting from the fan (5.31) with cones C
(2)
± , the Hilbert bases for the

semi-groups S
(2)
± := C

(2)
± ∩ K [0] are simply given by the ray generators, see for instance

figure 16.

H(S
(2)
± ) =

{
(1,±1), (2, 0)

}
. (5.32)

Hilbert series. The GNO-dual SO(3)×SO(3) has a trivial centre and the Hilbert series

reads

HS
[2,2]
Spin(4)(t,N) =

1 + t6N−2 + 2t6N−1 + 2t8N−3 + t8N−2 + t14N−4

(1− t2)2 (1− t6N−2) (1− t8N−4)
. (5.33)

The numerator of (5.33) is a palindromic polynomial of degree 14N − 4; while the denom-

inator is a polynomial of degree 14N − 2. Hence, the difference in degree is two, which

equals the quaternionic dimension of the moduli space. In addition, denominator of (5.33)

has a pole of order four at t = 1, which equals the complex dimension of the moduli space.

Plethystic logarithm. The plethystic logarithm takes the form

PL(HS
[2,2]
Spin(4)) = 2t2 + 2t∆(1,±1)(1 + t) + t∆(2,0)(1 + 2t+ t2) (5.34)

− t2∆(1,±1)(1 + 2t+ 3t2 + 2t3 + 4t4 + 2t5 + 3t6 + 2t7 + t8) + . . .
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Figure 16. The semi-groups and their ray-generators (black circled points) for the quotient Spin(4)

and the representation [2, 2].

The appearing terms agree with the minimal generators of the Hilbert bases (16). One has

two independent degree two Casimir invariants. Further, there are monopole operators of

GNO-charge (1, 1) and (1,−1) at conformal dimension 6N−2 with an independent dressed

monopole generator of conformal dimension 6N − 1 for both charges. Moreover, there is a

monopole operator of GNO-charge (2, 0) at dimension 8N − 4 with two dressing operators

at dimension 8N − 3 and one at 8N − 2.

5.3.2 Quotient SO(4)

Hilbert basis. The semi-groups S
(2)
± := C

(2)
± ∩

(
K [0] ∪K [2]

)
have Hilbert bases which

again equal (the now different) ray generators. The situation is depicted in figure 17 and

the Hilbert bases are as follows:

H(S
(2)
± ) =

{
(1,±1), (1, 0)

}
. (5.35)

Hilbert series. The Hilbert series reads

HS
[2,2]
SO(4)(t, z,N) =

1 + zt4N + 2zt4N−1 + t6N−2 + 2t6N−1 + zt10N−2

(1− t2)2 (1− zt4N−2) (1− t6N−2)
. (5.36)

The numerator of (5.36) is a palindromic polynomial of degree 10N − 2 (neglecting the

dependence on z); while the denominator is a polynomial of degree 10N . Hence, the

difference in degree is two equals the quaternionic dimension of the moduli space. Moreover,

the denominator has a pole of order four at t = 1, which equals the complex dimension of

the moduli space.

Plethystic logarithm. Studying the PL, we observe

PL(HS
[2,2]
SO(4)) = 2t2 + zt∆(1,0)(1 + 2t2 + t) + 2t∆(1,±1)(1 + t) (5.37)

− t2∆(1,0)+2(3 + 2t2 + t2 + 2t3 + 4t4 + 2t5 + t6 + 2t7 + 3t8) + . . .
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Figure 17. The semi-groups and their ray-generators (black circled points) for the quotient SO(4)

and the representation [2, 2].

such that we can associate the generators as follows: two degree two Casimir invariants of

SO(4), i.e. the quadratic Casimir and the Pfaffian; a monopole of GNO-charge (1, 0) ∈ K [2]

at conformal dimension 4N−2 with two dressings at dimension 4N−1 and another dressing

at 4N ; and two monopole operators of GNO-charges (1, 1), (1,−1) ∈ K [0] at dimension

6N − 2 one dressed monopoles at dimension 6N − 1 each.

Gauging the Z2. In addition, one can gauge the topological Z2 in (5.36) and obtains

HS
[2,2]
Spin(4)(t,N) =

1

2

(
HS

[2,2]
SO(4)(t, z=1, N) + HS

[2,2]
SO(4)(t, z=− 1, N)

)
. (5.38)

5.3.3 Quotient SO(3)× SU(2)

Hilbert basis. The semi-groups S
(2)
± := C

(2)
± ∩

(
K [0] ∪K [1]

)
have Hilbert bases that go

beyond the set of ray generators. We refer to figure 18 and the Hilbert bases are obtained

as follows:

H(S
(2)
+ ) =

{
(1

2 ,
1
2), (2, 0)

}
and H(S

(2)
− ) =

{
(1,−1), (3

2 ,−
1
2), (2, 0)

}
. (5.39)

Hilbert series. The Hilbert series is computed to be

HS
[2,2]
SO(3)×SU(2)(t, z1, N) =

R(t, z1, N)

(1− t2)2 (1− t6N−2) (1− t8N−4)
, (5.40a)

R(t, z1, N) = 1 + z1t
3N + z1t

3N−1 + t6N−2 + 2t6N−1 + z1t
7N−3

+ 2z1t
7N−2 + z1t

7N−1 + 2t8N−3 + t8N−2 + z1t
11N−4

+ z1t
11N−3 + t14N−4 . (5.40b)

Again, the numerator of (5.40) is a palindromic polynomial of degree 14N − 4; while the

denominator is a polynomial of degree 14N − 2. Hence, the difference in degree is two,
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Figure 18. The semi-groups for the quotient SO(3) × SU(2) and the representation [2, 2]. The

black circled points are the ray generators and the red circled point completes the Hilbert basis

for S
(2)
− .

(m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

(1
2 ,

1
2) K [1] 3N − 1 U(1)× SU(2) 1 by U(1)

(1,−1) K [0] 6N − 2 U(1)× SU(2) 1 by U(1)

(3
2 ,−

1
2) K [1] 7N − 3 U(1)×U(1) 3 by U(1)2

(2, 0) K [0] 8N − 4 U(1)×U(1) 3 by U(1)2

Table 12. The generators for the chiral ring of a SO(3)×SU(2) gauge theory with matter in [2, 2].

which matches the quaternionic dimension of the moduli space. Also, the denominator has

a pole of order four at t = 1, which equals the complex dimension of the moduli space.

Plethystic logarithm. The inspection of the PL for N ≥ 2 reveals

PL(HS
[2,2]
SO(3)×SU(2)) = 2t2 + z1t

∆( 1
2
, 1
2

)(1 + t) + t∆(1,±1)(1 + t− t2) (5.41)

+ z1t
∆(1+ 1

2
,−1+ 1

2
)(1 + 2t+ t2) + t∆(2,0)(1 + 2t+ t2)

− z1t
3∆( 1

2
, 1
2

)(1 + 2t+ t2) + . . . .

We summarise the generators in table 12.

5.3.4 Quotient SU(2)× SO(3)

Hilbert basis. The semi-groups S
(2)
± := C

(2)
± ∩

(
K [0] ∪K [3]

)
have Hilbert bases that go

beyond the set of ray generators. Figure 19 depicts the situation and the Hilbert bases are

computed to be

H(S
(2)
+ ) =

{
(1, 1), (3

2 ,
1
2), (2, 0)

}
and H(S

(2)
− ) =

{
(1

2 ,−
1
2), (2, 0)

}
. (5.42)
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Figure 19. The semi-groups for the quotient SU(2) × SO(3) and the representation [2, 2]. The

black circled points are the ray generators and the red circled point completes the Hilbert basis

for S
(2)
+ .

We observe that the bases (5.39) and (5.42) are related by reflection along the m2 = 0 axis,

which in turn corresponds to the interchange of K [1] and K [3].

Hilbert series. The Hilbert series reads

HS
[2,2]
SU(2)×SO(3)(t, z2, N) =

R(t, z2, N)

(1− t2)2 (1− t6N−2) (1− t8N−4)
, (5.43a)

R(t, z2, N) = 1 + z2t
3N + z2t

3N−1 + t6N−2 + 2t6N−1 + z2t
7N−3

+ 2z2t
7N−2 + z2t

7N−1 + 2t8N−3 + t8N−2 + z2t
11N−4

+ z2t
11N−3 + t14N−4 . (5.43b)

The numerator of (5.43) is palindromic polynomial of degree 14N − 4; while the denom-

inator is a polynomial of degree 14N − 2. Hence, the difference in degree is two, which

equals the quaternionic dimension of the moduli space. In addition, the denominator has

a pole of order four at t = 1, which matches the complex dimension of the moduli space.

As before, comparing the quotients SO(3) × SU(2) and SU(2) × SO(3) as well as the

symmetry of (5.30), it is natural to expect the relationship

HS
[2,2]
SO(3)×SU(2)(t, z1, N)

z1↔z2←−−−−−−→ HS
[2,2]
SU(2)×SO(3)(t, z2, N) , (5.44)

which is verified explicitly for (5.40) and (5.43).

Plethystic logarithm. The equivalence to SO(3) × SU(2) is further confirmed by the

inspection of the PL for N ≥ 2

PL(HS
[2,2]
SU(2)×SO(3)) = 2t2 + z2t

∆(
1
2 ,−

1
2 )(1 + t) + t∆(1,1)(1 + t− t2) (5.45)

+ z2t
∆(

3
2 ,

1
2 )(1 + 2t+ t2) + t∆(2,0)(1 + 2t+ t2) + . . .

– 45 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

(m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

(1
2 ,−

1
2) K [3] 3N − 1 U(1)× SU(2) 1 by U(1)

(1, 1) K [0] 6N − 2 U(1)× SU(2) 1 by U(1)

(3
2 ,

1
2) K [3] 7N − 3 U(1)×U(1) 3 by U(1)2

(2, 0) K [0] 8N − 4 U(1)×U(1) 3 by U(1)2

Table 13. The generators for the chiral ring of a SU(2)×SO(3) gauge theory with matter in [2, 2].

m1

m2
K [0] lattice

K [1] lattice

K [2] lattice

K [3] lattice

S
(2)
+

S
(2)
−

Figure 20. The semi-groups and their ray-generators (black circled points) for the quotient PSO(4)

and the representation [2, 2].

where we can summarise the monopole generators as in table 13. Note the change in

GNO-charges in accordance with the use of K [3] instead of K [1].

5.3.5 Quotient PSO(4)

Hilbert basis. The semi-groups S
(2)
± := C

(2)
± ∩

(
K [0] ∪K [1] ∪K [2] ∪K [3]

)
have Hilbert

bases that are determined by the ray generators. Figure 20 depicts the situation and the

Hilbert bases read

H(S
(2)
± ) =

{
(1

2 ,±
1
2), (1, 0)

}
. (5.46)

Hilbert series. The Hilbert series reads

HS
[2,2]
PSO(4)(t, z1, z2, N) =

R(t, z1, z2, N)

(1− t2)2 (1− t6N−2) (1− z2t4N−2)
, (5.47a)

R(t, z1, z2, N) = 1 + z1t
3N + z1t

3N−1 + z1z2t
3N + z1z2t

3N−1 + z2t
4N + 2z2t

4N−1

+ t6N−2 + 2t6N−1 + z1z2t
7N−2 + z1z2t

7N−1 + z1t
7N−2

+ z1t
7N−1 + z2t

10N−2 . (5.47b)

The numerator of (5.47) is palindromic polynomial of degree 10N−2; while the denomina-

tor is a polynomial of degree 10N . Hence, the difference in degree is two, which corresponds
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(m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

(1
2 ,

1
2) K [1] 3N − 1 U(1)× SU(2) 1 by U(1)

(1
2 ,−

1
2) K [3] 3N − 1 U(1)× SU(2) 1 by U(1)

(1, 0) K [2] 4N − 2 U(1)×U(1) 3 by U(1)2

Table 14. The generators for the chiral ring of a PSO(4) gauge theory with matter in [2, 2].

to the quaternionic dimension of the moduli space. Similarly to the previous cases, the de-

nominator of (5.47) has a pole of order four at t = 1, which equals the complex dimension

of the moduli space.

Gauging a Z2. As before, by gauging the Z2-factor corresponding to z1 we recover the

SO(4)-result

HS
[2,2]
SO(4)(t, z,N) =

1

2

(
HS

[2,2]
PSO(4)(t, z1=1, z2=z,N) + HS

[2,2]
PSO(4)(t, z1=− 1, z2=z,N)

)
,

(5.48a)

while gauging the Z2-factor with fugacity z2 provides the SO(3)× SU(2)-result

HS
[2,2]
SO(3)×SU(2)(t, z1, N) =

1

2

(
HS

[2,2]
PSO(4)(t, z1, z2=1, N) + HS

[2,2]
PSO(4)(t, z1, z2=−1, N)

)
.

(5.48b)

Furthermore, employing the redefined fugacities w1, w2 of (5.28c) one reproduces the

SU(2)× SO(3) Hilbert series as follows:

HS
[2,2]
SU(2)×SO(3)(t, z2=w1, N)=

1

2

(
HS

[2,2]
PSO(4)(t, w1, w2=1, N)+HS

[2,2]
PSO(4)(t, w1, w2=−1, N)

)
.

(5.48c)

Therefore, one can obtain the Hilbert series for all five quotients from the PSO(4)-

result (5.47) by employing the Z2-gaugings (5.38) and (5.48).

Plethystic logarithm. Inspecting the PL leads to

PL(HS
[2,2]
PSO(4)) = 2t2 + z1t

∆(
1
2 ,

1
2 )(1 + t) + z1z2t

∆(
1
2 ,−

1
2 )(1 + t) + z2t

∆(1,0)(1 + 2t+ t2) + . . .

(5.49)

such that we can summarise the monopole generators as in table 14.

5.4 Representation [4, 2]

The conformal dimension for this case reads

∆(m1,m2) = N
(
|3m1 −m2|+ |m1 − 3m2|+ |m1 +m2|+ 3 |m1 −m2|+ 2 |m1|+ 2 |m2|

)
− |m1 +m2| − |m1 −m2| . (5.50)

The interesting feature of this representation is its asymmetric behaviour under exchange

of m1 and m2.
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Figure 21. The semi-groups and their ray-generators (black circled points) for the quotient Spin(4)

and the representation [4, 2].

As before, the conformal dimension (5.50) defines a fan in the dominant Weyl chamber

of, which is spanned by three 2-dimensional cones

C
(2)
1 =

{
(m1 ≥ −m2) ∧ (m2 ≤ 0)

}
, (5.51a)

C
(2)
2 =

{
(m1 ≥ 3m2) ∧ (m2 ≥ 0)

}
, (5.51b)

C
(2)
3 =

{
(m1 ≥ m2) ∧ (m1 ≤ 3m2)

}
. (5.51c)

5.4.1 Quotient Spin(4)

Hilbert basis. Starting from the fan (5.51) with cones C
(2)
p (p = 1, 2, 3), the Hilbert

bases for the semi-groups S
(2)
p := C

(2)
p ∩ K [0] are simply given by the ray generators, see

for instance figure 21.

H(S
(2)
1 ) =

{
(2, 0), (1,−1)

}
, H(S

(2)
2 ) =

{
(3, 1), (2, 0)

}
, H(S

(2)
3 ) =

{
(1, 1), (3, 1)

}
.

(5.52)

Hilbert series. The Hilbert series reads

HS
[4,2]
Spin(4)(t,N) =

R(t,N)

(1− t2)2 (1− t18N−2) (1− t20N−4) (1− t26N−6)
, (5.53a)

R(t,N) = 1 + t10N−2(1 + t) + t18N−1 + t20N−4(1 + 3t+ t2) (5.53b)

+ t26N−5(2 + t)− t28N−4(1 + t) + t36N−7(1 + t)

− t38N−6(1 + 2t)− t44N−8(1 + 3t+ t2)− t46N−9

− t54N−9(1 + t)− t64N−10 .

The numerator of (5.53) is an anti-palindromic polynomial of degree 64N − 10, while the

denominator is of degree 64N −8. Consequently, the difference in degree is two. Moreover,

the rational function (5.53) has a pole of order four as t→ 1 because R(t=1, N) = 0, but
d
dtR(t,N)|t=1 6= 0.
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object (m1,m2) lattice ∆(m1,m2) H(m1,m2) # dressings

Casimirs — — 2 — —

monopole (1, 1) K [0] 10N − 2 U(1)× SU(2) 1 by U(1)

monopole (1,−1) K [0] 18N − 2 U(1)× SU(2) 1 by U(1)

monopole (2, 0) K [0] 20N − 4 U(1)×U(1) 2 by U(1)2

monopole (3, 1) K [0] 26N − 6 U(1)×U(1) 3 by U(1)2

Table 15. The chiral ring generators for a Spin(4) gauge theory with matter transforming in [4, 2].

Plethystic logarithm. Inspecting the PL yields for N ≥ 3

PL(HS
[4,2]
Spin(4)) = 2t2 + t∆(1,1)(1 + t) + t∆(1,−1)(1 + t) + t∆(2,0)(1 + 2t)

+ t∆(3,1)(1 + 2t+ t2)− t∆(1,1)+∆(1,−1)(1 + 2t+ t2)

− t∆(1,1)+∆(2,0)(1 + 3t+ 3t2 + t3) + . . . (5.54)

leads to an identification of generators as in table 15. We observe that (2, 0) has only 2

dressings, although we would expect 3. We know from other examples that there should

be a relation at 2∆(1, 1) + 2 = 20N − 2 which is precisely the dimension of the second

dressing of (2, 0).

5.4.2 Quotient SO(4)

Hilbert basis. The semi-groups S
(2)
p := C

(2)
p ∩

(
K [0] ∪K [2]

)
have Hilbert bases as shown

in figure 22 or explicitly:

H(S
(2)
1 ) =

{
(1, 0), (1,−1)

}
, H(S

(2)
2 ) =

{
(3, 1), (1, 0)

}
, (5.55a)

H(S
(2)
3 ) =

{
(1, 1), (2, 1), (3, 0)

}
. (5.55b)

Hilbert series.

HS
[4,2]
SO(4)(t, z,N) =

R(t, z,N)

(1−t2)2 (1−t10N−2) (1−t18N−2) (1−t26N−6) (1−zt10N−2)
, (5.56a)

R(t, z,N) = 1 + t10N−1 + zt10N−1(2 + t) + zt18N−4(1 + 2t+ t3) + t18N−1

− zt20N−4(1 + 3t+ t2) + 2t26N−5(2 + t)

− t28N−6(1 + 2t+ 2t2 + 2t3)− zt28N−3

− t36N−7 − zt36N−7(2 + 2t+ 2t2 + t3) + zt38N−6(1 + 2t)

− t44N−8(1 + 3t+ t2) + zt46N−9 + t46N−8(1 + 2t+ t2)

+ t54N−10(1 + 2t) + zt54N−9 + zt64N−10 . (5.56b)

The numerator (5.56b) is a palindromic polynomial of degree 64N − 10, while the denom-

inator is of degree 64N − 8. Consequently, the difference of the degree is two. Also, the

Hilbert series (5.56) has a pole of order four as t → 1, because R(t=1, z,N) = 0 and
d
dtR(t, z,N)|t=1 = 0, but d2

dt2
R(t, z,N)|t=1 6= 0.
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Figure 22. The semi-groups for the quotient SO(4) and the representation [4, 2]. The black circled

points are the ray generators and the red circled point completes the Hilbert basis for S
(2)
3 .

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1, 0) K [2] 10N − 2 U(1)×U(1) 3 by U(1)2

monopole (1, 1) K [0] 10N − 2 U(1)× SU(2) 1 by U(1)

monopole (2, 1) K [2] 18N − 4 U(1)×U(1) 3 by U(1)2

monopole (1,−1) K [0] 18N − 2 U(1)× SU(2) 1 by U(1)

monopole (3, 1) K [0] 26N − 6 U(1)×U(1) 3 by U(1)2

Table 16. The chiral ring generators for a SO(4) gauge theory with matter transforming in [4, 2].

Plethystic logarithm. Inspecting the PL reveals

PL(HS
[4,2]
SO(4)) = 2t2 + zt∆(1,0)(1 + 2t+ t2) + t∆(1,1)(1 + t) + zt∆(2,1)(1 + 2t+ t2) (5.57)

+ t∆(1,−1)(1 + t)− zt2∆(1,0)(1 + 3t+ 3t2 + t3)− t2∆(1,1)+2(4 + 2t+ t2)

+ t∆(3,1)(1 + 2t+ t2) + . . . ,

such that the monopole generators can be summarised as in table 16.

Gauging the Z2. Again, one can gauge the finite symmetry to recover the Spin(4)

Hilbert series

HS
[4,2]
Spin(4)(t,N) =

1

2

(
HS

[4,2]
SO(4)(t, z=1, N) + HS

[4,2]
SO(4)(t, z=− 1, N)

)
. (5.58)

5.4.3 Quotient SO(3)× SU(2)

Hilbert basis. The semi-groups S
(2)
p := C

(2)
p ∩

(
K [0] ∪K [1]

)
(p = 1, 2, 3) have Hilbert

bases that go beyond the set of ray generators. We refer to figure 23 and the Hilbert bases
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Figure 23. The semi-groups for the quotient SO(3) × SU(2) and the representation [4, 2]. The

black circled points are the ray generators, the red circled point completes the Hilbert basis for

S
(2)
2 , while the green circled point completes the Hilbert basis of S

(2)
1 .

are obtained as follows:

H(S
(2)
1 ) =

{
(2, 1), (3

2 ,−
1
2), (1,−1)

}
, H(S

(2)
2 ) =

{
(3, 1), (5

2 ,
1
2), (2, 0)

}
, (5.59a)

H(S
(2)
3 ) =

{
(1, 1), (3, 1)

}
. (5.59b)

Hilbert series. We compute the Hilbert series to

HS
[4,2]
SO(3)×SU(2)(t, z1, N) =

R(t, z1, N)

(1− t2)2 (1− t18N−2) (1− t20N−4) (1− t26N−6)
, (5.60a)

R(t, z1, N) = 1 + z1t
5N−1(1 + t) + t10N−2(1 + t) + z1t

15N−3(1 + t) (5.60b)

+ t18N−1 + z1t
19N−3(1 + 2t+ t3)

+ t20N−4(1 + 3t+ t2) + z1t
23N−5(1 + 2t− t3)

+ t26N−5(2 + t)− t28N−4(1 + t) + z1t
31N−6(1 + t)

− z1t
33N−5(1 + t) + t36N−7(1 + t)− t38N−6(1 + 2t)

+ z1t
41N−8(1− 2t2 − t3)− t44N−8(1 + 3t+ t2)

− z1t
45N−9(1 + 2t+ t2)− t46N−9 − z1t

49N−8(1 + t)

− t54N−9(1 + t)− z1t
59N−10(1 + t)− t64N−10 .

The numerator of (5.60) is an anti-palindromic polynomial of degree 64N − 10, while the

denominator is of degree 64N − 8. Thus, the difference in degrees is again 2. In addition,

the Hilbert series (5.60) has a pole of order 4 as t → 1, because R(t=1, z1, N) = 0, but
d
dtR(t, z1, N)|t=1 6= 0.
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object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1
2 ,

1
2) K [1] 5N − 1 U(1)× SU(2) 1 by U(1)

monopole (1,−1) K [0] 18N − 2 U(1)× SU(2) 1 by U(1)

monopole (3
2 ,−

1
2) K [1] 19N − 3 U(1)×U(1) 3 by U(1)2

monopole (2, 0) K [0] 20N − 4 U(1)×U(1) 3 by U(1)

monopole (5
2 ,

1
2) K [1] 23N − 5 U(1)×U(1) 3(2) by U(1)2

monopole (3, 1) K [0] 26N − 6 U(1)×U(1) 3 by U(1)2

Table 17. The chiral ring generators for a SO(3)× SU(2) gauge theory with matter transforming

in [4, 2].

Plethystic logarithm. Analysing the PL yields

PL = 2t2 + z1t
∆(

1
2 ,

1
2 )(1 + t)− t∆(

1
2 ,

1
2 )+2 + t∆(1,−1)(1 + t) (5.61)

+ z1t
∆(

3
2 ,−

1
2 )(1 + 2t+ t2) + t∆(2,0)(1 + 2t+ t2)

+ z1t
∆(

5
2 ,

1
2 )(1 + 2t+ 1)− z1t

∆(
1
2 ,

1
2 )+∆(1,−1)(1 + 2t+ t2)

− t∆(
1
2 ,

1
2 )+∆(

3
2 ,−

1
2 )(1 + 3t+ 3t2 + t3)

− z1t
∆(

1
2 ,

1
2 )+∆(2,0)(1 + 3t+ 3t2 + t3)

+ t∆(3,1)(1 + 2t+ t2) + . . . ,

verfies the set of generators as presented in table 17. The coloured term indicates that we

suspect a cancellation between one dressing of ( 5
2 ,

1
2) and one relation because ∆( 5

2 ,
5
2)+2 =

23N − 3 = ∆(1
2 ,

1
2) + ∆(1,−1) = 5N − 1 + 18N − 2.

5.4.4 Quotient SU(2)× SO(3)

Hilbert basis. The semi-groups S
(2)
p := C

(2)
p ∩

(
K [0] ∪K [3]

)
(for p = 1, 2, 3) have Hilbert

bases consist of the ray generators as shown in figure 24 and we obtain explicitly

H(S
(2)
1 ) =

{
(2, 0), (1

2 ,−
1
2)
}
, H(S

(2)
2 ) =

{
(3

2 ,
1
2), (2, 0)

}
, H(S

(2)
3 ) =

{
(1, 1), (3

2 ,
1
2)
}
.

(5.62)

Hilbert series. We compute the Hilbert series to

HS
[4,2]
SU(2)×SO(3)(t, z2, N) =

R(t, z2, N)

(1− t2)2 (1− t18N−2) (1− t20N−4) (1− t26N−6)
, (5.63a)

R(t, z2, N) = 1 + z2t
9N−1(1 + t) + t10N−2(1 + t) + z2t

13N−3(1 + 2t+ t2)

+ t18N−1 + t20N−4(1 + 3t+ t2) + z2t
23N−5(1 + 2t+ t2)

+ t26N−5(2 + t)− t28N−4(1 + t) + z2t
29N−4(1 + t) (5.63b)

− z2t
31N−5(1 + 2t+ t2) + z2t

33N−7(1 + 2t+ t2)
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Figure 24. The semi-groups for the quotient SU(2) × SO(3) and the representation [4, 2]. The

black circled points are the ray generators.

− z2t
35N−7(1 + t) + t36N−7(1 + t)− t38N−6(1 + 2t)

− z2t
41N−7(1 + 2t+ t2)− t44N−8(1 + 3t+ t2)

− t46N−9 − z2t
51N−9(1 + 2t+ t2)− t54N−9(1 + t)

− z2t
55N−10(1 + t)− t64N−10 .

As before, we can try to compare the quotients SO(3)×SU(2) and SU(2)×SO(3). However,

due to the asymmetry in m1, m2 or the asymmetry of the fan in the Weyl chamber, the

Hilbert series for the two quotients are not related by an exchange of z1 and z2.

Plethystic logarithm. Upon analysing the PL we find

PL(HS
[4,2]
SU(2)×SO(3)) = 2t2 + z2t

∆(
1
2 ,−

1
2 )(1 + t) + t∆(1,1)(1 + t) + z2t

∆(
3
2 ,

1
2 )(1 + 2t+ t2)

− t2∆(
1
2 ,−

1
2 )+2 − z2t

∆(
1
2 ,−

1
2 )+∆(1,1)(1 + 2t+ t2)

+ t∆(2,0)(1 + 2t)− t∆(
1
2 ,−

1
2 )+∆(

3
2 ,

1
2 )(1 + 3t+ 3t2 + t3) + . . . ,

(5.64)

through which one identifies the generators as given in table 18. The terms in the denom-

inator of the Hilbert series can be seen to reproduce these generators

(1− t18N−2) = (1− z2t
9N−1)(1 + z2t

9N−1) , (5.65a)

(1− t26N−6) = (1− z2t
13N−3)(1 + z2t

13N−3) . (5.65b)

Unfortunately, we are unable to reduce the numerator accordingly.

5.4.5 Quotient PSO(4)

Hilbert basis. The semi-groups S
(2)
p := C

(2)
p ∩

(
K [0] ∪K [1] ∪K [2] ∪K [3]

)
(for p = 1, 2, 3)

have Hilbert bases that are determined by the ray generators. Figure 25 depicts the situ-
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object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1
2 ,−

1
2) K [3] 9N − 1 U(1)× SU(2) 1 by U(1)

monopole (1, 1) K [0] 10N − 2 U(1)× SU(2) 1 by U(1)

monopole (3
2 ,

1
2) K [3] 13N − 3 U(1)×U(1) 3 by U(1)2

monopole (2, 0) K [0] 20N − 4 U(1)×U(1) 3 by U(1)2

Table 18. The chiral ring generators for a SU(2)× SO(3) gauge theory with matter transforming

in [4, 2].

m1

m2
K [0] lattice

K [1] lattice

K [2] lattice

K [3] lattice

S
(2)
3

S
(2)
2

S
(2)
1

Figure 25. The semi-groups and their ray-generators (black circled points) for the quotient PSO(4)

and the representation [4, 2].

ation and the Hilbert bases read:

H(S
(2)
1 ) =

{
(1, 0), (1

2 ,−
1
2)
}
, H(S

(2)
2 ) =

{
(3

2 ,
1
2), (1, 0)

}
, H(S

(2)
3 ) =

{
(1

2 ,
1
2), (3

2 ,
1
2)
}
.

(5.66)

Hilbert series. We obtain the following Hilbert series

HS
[4,2]
PSO(4)(t, z1, z2, N) =

R(t, z1, z2, N)

(1− t2)2 (1− t10N−2) (1−t18N−2) (1−t26N−6) (1−t10N−2z2)
,

(5.67a)

R(t, z1, z2, N) = 1 + z1t
5N−1(1 + t) + z1z2t

9N−1(1 + t) + z1z2t
9N + t10N−1

+ z2t
10N−1(2 + t)+z1z2t

13N−3(1+2t+t2)−z1z2t
15N−3(1+t)

+ z2t
18N−4(1 + 2t+ t2) + t18N−1 − z1z2t

19N−3(1 + t)

+ z1t
19N−2(1 + t)− z2t

20N−4(1 + 3t+ t2)− z1t
23N−3(1 + t)

+ t26N−5(2 + t)− t28N−6(1 + 2t+ 2t2 + 2t3)− z2t
28N−3
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object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —

monopole (1
2 ,

1
2) K [1] 5N − 1 U(1)× SU(2) 1 by U(1)

monopole (1
2 ,−

1
2) K [3] 9N − 1 U(1)× SU(2) 1 by U(1)

monopole (1, 0) K [2] 10N − 2 U(1)×U(1) 3 by U(1)2

monopole (3
2 ,

1
2) K [3] 13N − 3 U(1)×U(1) 3 by U(1)2

Table 19. The chiral ring generators for a PSO(4) gauge theory with matter transforming in [4, 2].

− z1t
29N−4(1 + t) + z1t

31N−6(1 + t)− z1z2t
31N−5(1 + 2t+ t)

− z1t
33N−7(1 + 2t+ t2) + z1z2t

33N−5(1 + t)

− z1z2t
35N−7(1 + t)− z2t

36N−7(2 + 2t+ 2t2 + t3)− t36N−7

+ z2t
38N−6(1 + 2t)− z1z2t

41N−8(1 + t)− t44N−8(1 + 3t+ t2)

+ z1z2t
45N−9(1 + t)− z1t

45N−8(1 + t)

+ z2t
46N−9 + t46N−8(1 + 2t+ t2)− z1t

49N−8(1 + t)

+ z1t
51N−9(1 + 2t+ t2) + t54N−10(1 + 2t) + z2t

54N−9

+ z1t
55N−10(1 + t) + z1z2t

59N−10(1 + t) + z2t
64N−10 . (5.67b)

The numerator of (5.67) is a palindromic polynomial of degree 64N − 10, while the de-

nominator is of degree 64N − 8. Hence, the difference in degrees is again 2. Moreover,

the Hilbert series (5.67) has a pole of order 4 as t → 1 because R(1, z1, z2, N) = 0 and
d
dtR(t, z1, z2, N)|t→1 = 0, while d2

dt2
R(t, z1, z2, N)|t→1 6= 0.

Plethystic logarithm. Working with the PL instead reveals further insights

PL(HS
[4,2]
PSO(4)) = 2t2 + z1t

∆(
1
2 ,

1
2 )(1 + t) + z1z2t

∆(
1
2 ,−

1
2 )(1 + t) + z2t

∆(1,0)(1 + 2t+ t2)

− t2∆(
1
2 ,

1
2 )+2 + z1z2t

∆(
3
2 ,

1
2 )(1+2t+t2)− z2t

∆(
1
2 ,

1
2 )+∆(

1
2 ,

1
2 )(1+2t+t2)

− z1z2t
∆(

1
2 ,

1
2 )+∆(1,0)(1 + 3t+ 3t2 + t3) + . . . . (5.68)

The list of generators, together with their properties, is provided in table 19.

Gauging a Z2. The global Z2×Z2 symmetry allows us to compute the Hilbert series for

all five quotients from the PSO(4) result. We start by gauging the Z2-factor with fugacity

z1 (and relabel z2 as z) and recover the SO(4)-result

HS
[4,2]
SO(4)(t, z,N)=

1

2

(
HS

[4,2]
PSO(4)(t, z1=1, z2=z,N)+HS

[4,2]
PSO(4)(t, z1=− 1, z2=z,N)

)
.

(5.69a)

In contrast, gauging the other Z2-factor with fugacity z1 provides the SO(3)×SU(2)-result

HS
[4,2]
SO(3)×SU(2)(t, z1, N) =

1

2

(
HS

[4,2]
PSO(4)(t, z1, z2=1, N) + HS

[4,2]
PSO(4)(t, z1, z2=−1, N)

)
.

(5.69b)
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Lastly, switching to w1, w2 fugacities as in (5.28c) allows to recover the Hilbert series for

SU(2)× SO(3) as follows:

HS
[4,2]
SU(2)×SO(3)(t, z2=w1, N)=

1

2

(
HS

[4,2]
PSO(4)(t, w1, w2=1, N)+HS

[4,2]
PSO(4)(t, w1, w2=−1, N)

)
.

(5.69c)

In conclusion, the PSO(4) result is sufficient to obtain the remaining four quotients by

gauging of various Z2 global symmetries as in (5.69) and (5.58).

5.5 Comparison to O(4)

In this subsection we explore the orthogonal group O(4), related to SO(4) by Z2. To begin

with, we summarise the set-up as presented in [28, appendix A]. The dressing factor PO(4)(t)

and the GNO lattice of O(4) equal those of SO(5). Moreover, the dominant Weyl chamber

is parametrised by (m1,m2) subject to m1 ≥ m2 ≥ 0. Graphically, the Weyl chamber is

the upper half of the yellow-shaded region in figure 10 with the lattices K [0]∪K [2] present.

Consequently, the dressing function is given as

PO(4)(t,m1,m2) =



1

(1− t2) (1− t4)
, m1 = m2 = 0 ,

1

(1− t) (1− t2)
, m1 = m2 > 0 ,

1

(1− t) (1− t2)
, m1 > 0, m2 = 0 ,

1

(1− t)2 , m1 > m2 > 0 .

(5.70)

It is apparent that O(4) has a different Casimir invariant as SO(4), which comes about as

the Levi-Civita tensor ε is not an invariant tensor under O(4). In other words, the Pfaffian

of SO(4) is not an invariant of O(4).

Now, we provide the Hilbert series for the three different representations studied above.

5.5.1 Representation [2, 0]

The conformal dimension is the same as in (5.6) and the rational cone of the Weyl chamber

is simply

C(2) = Cone ((1, 0), (1, 1)) , (5.71)

such that the cone generators and the Hilbert basis for S(2) := C(2)∩
(
K [0] ∪K [2]

)
coincide.

The upper half-space of figure 12 depicts the situation.

The Hilbert series is then computed to read

HS
[2,0]
O(4)(t,N) =

1 + 2t2N−1 + 2t2N + 2t2N+1 + t4N

(1− t2) (1− t4) (1− t2N−2)2 , (5.72)

which clearly displays the palindromic numerator, the order four pole for t → 1, and the

order two pole for t → ∞, i.e. the difference in degrees of denominator and numerator is

two. By inspection of (5.72) and use of the plethystic logarithm

PL(HS
[2,0]
O(4)) = t2 +t4 +t∆(1,0)(1+t+t2 +t3)+t∆(1,1)(1+t+t2 +t3)−O(t2∆(1,0)+2) , (5.73)
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object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2, 4 — —

monopole (1, 0) K [2] 2N − 2 U(2) 3

monopole (1, 1) K [0] 2N − 2 U(1)×O(2) 3

Table 20. Bare and dressed monopole generators for a O(4) gauge theory with matter transforming

in [2, 0].

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2, 4 — —

monopole (1, 0) K [2] 4N − 2 U(2) 3

monopole (1, 1) K [0] 6N − 2 U(1)×O(2) 3

Table 21. Bare and dressed monopole generators for a O(4) gauge theory with matter transforming

in [2, 2].

for N ≥ 2, we can summarise the generators as in table 20. The different dressing behaviour

of the O(4) monopole generators (1, 0) and (1, 1) compared to their SO(4) counterparts can

be deduced from dividing the relevant dressing factor by the trivial one. In detail

PO(4)(t, {(1, 0) or (1, 1)})
PO(4)(t, 0, 0)

=
(1− t2)(1− t4)

(1− t)(1− t2)
= 1 + t+ t2 + t3 . (5.74)

5.5.2 Representation [2, 2]

The conformal dimension is the same as in (5.30) and the rational cone of the Weyl chamber

is still

C(2) = Cone ((1, 0), (1, 1)) , (5.75)

such that the cone generators and the Hilbert basis for S(2) := C(2)∩
(
K [0] ∪K [2]

)
coincide.

The upper half-space of figure 17 depicts the situation. We note that the Weyl chamber

for SO(4) is already divided into a fan by two rational cones, while the Weyl chamber for

O(4) is not.

The computation of the Hilbert series then yields

HS
[2,2]
O(4)(t,N) =

1 + t4N−1 + t4N + t4N+1 + t6N−1 + t6N + t6N+1 + t10N

(1− t2) (1− t4) (1− t4N−2) (1− t6N−2)
. (5.76)

Again, the rational function clearly displays a palindromic numerator, an order four pole

for t → 1, and an order two pole for t → ∞, i.e. the difference in degrees of denominator

and numerator is two. By inspection of (5.76) and use of the plethystic logarithm

PL(HS
[2,2]
O(4)) = t2 +t4 +t∆(1,0)(1+t+t2 +t3)+t∆(1,1)(1+t+t2 +t3)−O(t2∆(1,0)+2) , (5.77)

for N ≥ 2, we can summarise the generators as in table 21. The dressings behave as

discussed earlier.
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object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2, 4 — —

monopole (1, 0) K [2] 10N − 2 U(2) 3

monopole (1, 1) K [0] 10N − 2 U(1)×O(2) 3

monopole (2, 1) K [2] 18N − 4 U(1)2 7

monopole (3, 1) K [0] 26N − 6 U(1)2 7

Table 22. Bare and dressed monopole generators for a O(4) gauge theory with matter transforming

in [4, 2].

5.5.3 Representation [4, 2]

The conformal dimension is given in (5.50) and the Weyl chamber is split into a fan gen-

erated by two rational cones

C
(2)
2 = Cone ((1, 0), (3, 1)) and C

(2)
3 = Cone ((3, 1), (1, 1)) , (5.78)

where we use the notation of the SO(4) setting, see the upper half plan of figure 22.

The Hilbert bases for S
(2)
p := C

(2)
p ∩

(
K [0] ∪K [2]

)
differ from the cone generators and are

obtained as

H(S
(2)
2 ) = {(1, 0), (3, 1)} and H(S

(2)
3 ) = {(3, 1), (2, 1), (1, 1)} . (5.79)

The computation of the Hilbert series then yields

HS
[4,2]
O(4)(t,N) =

R(t,N)

(1− t2) (1− t4) (1− t10N−2) (1− t26N−6)
, (5.80a)

R(t,N) = 1 + t10N−2 + 2t10N−1 + 2t10N + 2t10N+1 (5.80b)

+ t18N−4 + 2t18N−3 + 2t18N−2 + 2t18N−1 + t18N

+ 2t26N−5 + 2t26N−4 + 2t26N−3 + t26N−2 + t36N−4

As before, the rational function (5.80) clearly displays a palindromic numerator, an order

four pole for t → 1, and an order two pole for t → ∞, i.e. the difference in degrees of

denominator and numerator is two. By inspection of (5.80) and use of the plethystic

logarithm

PL(HS
[4,2]
O(4)) = t2 + t4 + t∆(1,0)(1 + t+ t2 + t3) + t∆(1,1)(1 + t+ t2 + t3) (5.81)

+ t∆(2,1)(1 + 2(t+ t2 + t3) + t4)

− t∆(1,0)+∆(1,1)(1 + 2t+ 5t2 + 6t3 + 7t4 + 4t5 + 3t6)

+ t∆(3,1)(1 + 2(t+ t2 + t3) + t4)−O(t∆(1,0)+∆(2,1)) ,

for N ≥ 2, we can summarise the generators as in table 22. The dressing behaviour of

(1, 0), (1, 1) is as discussed earlier; however, we need to describe the dressings of (2, 1) and
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(3, 1) as it differs from the SO(4) counterparts. Again, we compute the quotient of the

dressing factor of the maximal torus divided by the trivial one, i.e.

PO(4)(t,m1 > m2 > 0)

PO(4)(t, 0, 0)
=

(1− t2)(1− t4)

(1− t)2
= 1 + 2(t+ t2 + t3) + t4 . (5.82)

Consequently, each bare monopole (2, 1), (3, 1) is accompanied by seven dressings, which

is in agreement with (5.81).

6 Case: USp(4)

This section is devoted to the study of the compact symplectic group USp(4) with cor-

responding Lie algebra C2. GNO-duality relates them with the special orthogonal group

SO(5) and the Lie algebra B2.

6.1 Set-up

For studying the non-abelian group USp(4), we start by providing the contributions of Na,b

hypermultiplets in various representations [a, b] of USp(4) to the conformal dimensions

∆
[1,0]
h−plet = N1,0

∑
i

|mi| , (6.1a)

∆
[0,1]
h−plet = N0,1

(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |

)
, (6.1b)

∆
[2,0]
h−plet = 2N2,0

∑
i

|mi|+N2,0

(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |

)
, (6.1c)

∆
[0,2]
h−plet = 2N0,2

∑
i

|mi|+ 3N0,2

(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |

)
, (6.1d)

∆
[1,1]
h−plet = 2N1,1

∑
i

|mi|+N1,1

(∑
i<j

(|2mi −mj |+ |mi − 2mj |) (6.1e)

+
∑
i<j

(|2mi +mj |+ |mi + 2mj |)

)
,

∆
[3,0]
h−plet = 5N3,0

∑
i

|mi|+N3,0

(∑
i<j

(|2mi −mj |+ |mi − 2mj |) (6.1f)

+
∑
i<j

(|2mi +mj |+ |mi + 2mj |)

)
,

wherein i, j = 1, 2, and the contribution of the vector multiplet is given by

∆V−plet = −2
∑
i

|mi| −

(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |

)
. (6.1g)

Such that we will consider the following conformal dimension

∆(m1,m2) = (N1 − 2)(|m1|+ |m2|) + (N2 − 1) (|m1 −m2|+ |m1 +m2|) (6.2a)
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+N3 (|2m1 −m2|+ |m1 − 2m2|+ |2m1 +m2|+ |m1 + 2m2|)

and we can vary the representation content via

N1 = N1,0 + 2N2,0 + 2N0,2 + 2N1,1 + 5N3,0 , (6.2b)

N2 = N0,1 +N2,0 + 3N0,2 , (6.2c)

N3 = N1,1 +N3,0 . (6.2d)

The Hilbert series is computed as usual

HSUSp(4)(t,N) =
∑

m1≥m2≥0

t∆(m1,m2)PUSp(4)(t,m1,m2) , (6.3)

where the summation for m1,m2 has been restricted to the principal Weyl chamber of the

GNO-dual group SO(5), whose Weyl group is S2 n (Z2)2. Thus, we use the reflections to

restrict to non-negative mi ≥ 0 and the permutations to restrict to a ordering m1 ≥ m2.

The classical dressing factor takes the following form [5]:

PUSp(4)(t,m1,m2) =



1

(1− t)2
, m1 > m2 > 0 ,

1

(1− t)(1− t2)
, (m1 > m2 = 0) ∨ (m1 = m2 > 0) ,

1

(1− t2)(1− t4)
, m1 = m2 = 0 .

(6.4)

6.2 Hilbert basis

The conformal dimension (6.2a) divides the dominant Weyl chamber of SO(5) into a fan.

The intersection with the corresponding weight lattice Λw(SO(5)) introduces semi-groups

Sp, which are sketched in figure 26. As displayed, the set of semi-groups (and rational

cones that constitute the fan) differ if N3 6= 0. The Hilbert bases for both case are readily

computed, because they coincide with the set of ray generators.

• For N3 6= 0, which is displayed in figure 26a, there exists one hyperplane |m1 −
2m2| = 0 which intersects the Weyl chamber non-trivially. Therefore, Λw(SO(5))/

WSO(5) becomes a fan generated by two 2-dimensional cones. The Hilbert bases of

the corresponding semi-groups are computed to

H(S
(2)
+ ) =

{
(1, 1), (2, 1)

}
, H(S

(2)
− ) =

{
(2, 1), (1, 0)

}
. (6.5)

• For N3 = 0, as shown in figure 26b, there exists no hyperplane that intersects the

dominant Weyl chamber non-trivially. As a consequence, the Λw(SO(5))/WSO(5) is

described by one rational polyhedral cone of dimension 2. The Hilbert basis for the

semi-group is given by

H(S(2)) =
{

(1, 1), (1, 0)
}
. (6.6)
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m1

m2

S
(2)
+

S
(2)
−

(a) N3 6= 0

m1

m2

S(2)

(b) N3 = 0

Figure 26. The various semi-groups for USp(4) depending on whether N3 6= 0 or N3 = 0. For

both cases the black circled points are the ray generators.

6.3 Dressings

Before evaluating the Hilbert series, let us analyse the classical dressing factors for the

minimal generators (6.5) or (6.6). Firstly, the classical Lie group USp(4) has two Casimir

invariants of degree 2 and 4 and can they can be written as Tr(Φ2) =
∑2

i=1(φi)
2 and

Tr(Φ4) =
∑2

i=1(φi)
4, respectively. Again, we employ the diagonal form of the adjoint

valued scalar field Φ.

Secondly, the bare monopole operator corresponding to GNO-charge (1, 0) has confor-

mal dimension N1 + 2N2 + 6N3− 4 and the residual gauge group is H(1,0) = U(1)× SU(2),

i.e. allowing for dressings by degree 1 and 2 Casimirs. The resulting set of bare and dressed

monopoles is

V dress,0
(1,0) = (1, 0) + (−1, 0) + (0, 1) + (0,−1) , (6.7a)

V dress,2
(1,0) = ((1, 0) + (−1, 0)) (φ2)2 + ((0, 1) + (0,−1)) (φ1)2 , (6.7b)

V dress,1
(1,0) = ((1, 0)− (−1, 0))φ1 + ((0, 1)− (0,−1))φ2 , (6.7c)

V dress,3
(1,0) = ((1, 0)− (−1, 0)) (φ1)3 + ((0, 1)− (0,−1)) (φ2)3 . (6.7d)

Thirdly, the bare monopole operators of GNO-charge (1, 1) has conformal dimension

2N1 +2N2 +8N3−6 and residual gauge group H(1,1) = U(1)×SU(2). The bare and dressed

monopole operators can be written as

V dress,0
(1,1) = (1, 1) + (1,−1) + (−1, 1) + (−1,−1) , (6.8a)

V dress,2
(1,1) = ((1, 1) + (−1,−1))((φ1)2 + (φ2)2) + (1,−1)(φ2)2 + (−1, 1)(φ1)2 , (6.8b)

V dress,1
(1,1) = (1, 1)(φ1 + φ2) + (−1,−1)(−φ1 − φ2) + (1,−1)(−φ2) + (−1, 1)(−φ1) , (6.8c)

V dress,3
(1,1) = (1, 1)((φ1)3 + (φ2)3) + (−1,−1)(−(φ1)3 − (φ2)3) (6.8d)

+ (1,−1)(−(φ2)3) + (−1, 1)(−(φ1)3) .

– 61 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

The two magnetic weights (1, 0), (1, 1) lie at the boundary of the dominant Weyl chamber

such that the dressing behaviour can be predicted by PUSp(4)(t,m1,m2)/PUSp(4)(t, 0, 0) =

1+t+t2+t3, following appendix A. The above description of the bare and dressed monopole

operators is therefore a valid choice of generating elements for the chiral ring.

Lastly, the bare monopole for (2, 1) has conformal dimension 3N1 + 4N2 + 12N3 − 10

and residual gauge group H(2,1) = U(1)2. Thus, the dressing proceeds by two independent

degree 1 Casimir invariants.

V dress,0
(2,1) = (2, 1)+(2,−1)+(−2, 1)+(1, 2)+(1,−2)+(−1, 2)+(−1,−2)+(−2,−1)

≡ (2, 1) + (2,−1) + (−2, 1) + (−2,−1) + permutations , (6.9a)

V dress,2j−1,1
(2,1) = (2, 1)(φ1)2j−1 + (2,−1)(φ1)2j−1 + (−2, 1)(−φ1)2j−1 (6.9b)

+ (−2,−1)(−φ1)2j−1 + permutations for j = 1, 2 ,

V dress,2j−1,2
(2,1) = (2, 1)(φ2)2j−1 + (2,−1)(−φ2)2j−1 + (−2, 1)(φ2)2j−1 (6.9c)

+ (−2,−1)(−φ2)2j−1 + permutations for j = 1, 2 ,

V dress,2,1
(2,1) = (2, 1)(φ1)2 + (2,−1)(−(φ1)2) + (−2, 1)(−(φ1)2) (6.9d)

+ (−2,−1)(φ1)2 + permutations ,

V dress,2,2
(2,1) = (2, 1)(φ1φ2) + (2,−1)(−φ1φ2) + (−2, 1)(−φ1φ2) (6.9e)

+ (−2,−1)(φ1φ2) + permutations ,

V dress,4
(2,1) = (2, 1)(φ3

1φ2) + (2,−1)(−(φ1)3φ2) + (−2, 1)(−(φ1)3φ2) (6.9f)

+ (−2,−1)((φ1)3φ2) + permutations .

The number and the degrees of dressed monopole operators of charge (2, 1) are consistent

with the quotient PUSp(4)(t,m1 > m2 > 0)/PUSp(4)(t, 0, 0) = 1 + 2t + 2t2 + 2t3 + t4 of the

dressing factors.

For “generic” values of N1, N2 and N3 the Coulomb branch will be generated by the two

Casimir invariants together with the bare and dressed monopole operators corresponding

to the minimal generators of the Hilbert bases. However, we will encounter choices of the

three parameters such that the set of monopole generators can be further reduced; for

example, in the case of complete intersections.

6.4 Generic case

The computation for arbitrary N1, N2, and N3 yields

HSUSp(4)(t,N1, N2, N3) =
R(t,N1, N2, N3)

P (t,N1, N2, N3)
, (6.10a)

with

P (t,N1, N2, N3) =
(
1− t2

) (
1− t4

) (
1− tN1+2N2+6N3−4

) (
1− t2N1+2N2+8N3−6

)
(6.10b)

×
(
1− t3N1+4N2+12N3−10

)
,
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R(t,N1, N2, N3) =1 + tN1+2N2+6N3−3(1 + t+ t2) + t2N1+2N2+8N3−5(1 + t+ t2) (6.10c)

+ t3N1+4N2+12N3−9(2+2t+2t2+t3)− t3N1+4N2+14N3−10(1+2t+2t2+2t3)

− t4N1+6N2+18N3−13(1 + t+ t2)− t5N1+6N2+20N3−15(1 + t+ t2)

− t6N1+8N2+26N3−16 .

The numerator (6.10c) is an anti-palindromic polynomial of degree 6N1 +8N2 +26N3−16;

while the denominator is of degree 6N1 + 8N2 + 26N3 − 14. The difference in degrees is

2, which equals the quaternionic dimension of the moduli space. In addition, the pole

of (6.10) at t→ 1 is of order 4, which matches the complex dimension of the moduli space.

For that, one verifies explicitly R(t = 1, N1, N2, N3) = 0, but d
dtR(t,N1, N2, N3)|t=1 6= 0.

Consequently, the above interpretation of bare and dressed monopoles from the Hilbert

series (6.10) is correct for “generic” choices of N1, N2, and N3. In particular, N3 6= 0 for this

arguments to hold. Moreover, we will now exemplify the effects of the Casimir invariance

in various special case of (6.10) explicitly. There are cases for which the inclusion of

the Casimir invariance, i.e. dressed monopole operators, leads to a reduction of basis of

monopole generators.

6.5 Category N3 = 0

6.5.1 Representation [1, 0]

Hilbert series. This choice is realised for N1 = N , N2 = N3 = 0 and the Hilbert series

simplifies drastically to a complete intersection

HS
[1,0]
USp(4)(t,N) =

(1− t2N−4)(1− t2N−2)

(1− t2)(1− t4)(1− tN−4)(1− tN−3)(1− tN−2)(1− tN−1)
, (6.11)

which was first obtained in [5]. Due to the complete intersection property, the plethystic

logarithm terminates and for N > 4 we obtain

PL(HS
[1,0]
USp(4)) = t2 + t4 + tN−4(1 + t+ t2 + t3)− t2N−4 − t2N−2 . (6.12)

Hilbert basis. Naively, the Hilbert series (6.11) should be generated by the Hilbert

basis (6.6) plus their dressings. However, due to the particular form (6.2a) in repre-

sentation [1, 0] and the Casimir invariance, the bare monopole operator of GNO-charge

(1, 1) can be generated by the dressings of (1, 0). To see this, consider the Weyl-orbit

OW(1, 0) =
{

(1, 0), (0, 1), (−1, 0), (0,−1)
}

and note the conformal dimensions align suit-

ably, i.e. ∆(V dress,1
(1,0) ) = N −3, while ∆(V dress,0

(1,1) ) = 2N −6. Thus, we can symbolically write

V dress,0
(1,1) = V dress,1

(1,0) + V dress,1
(0,1) . (6.13)

The moduli space is then generated by the Casimir invariants and the bare and dressed

monopole operators corresponding to (1, 0), but this is to be understood as a rather “non-

generic” situation.
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6.5.2 Representation [0, 1]

This choice is realised for N2 = N , and N1 = N3 = 0 and the Hilbert series simplifies to

HS
[0,1]
USp(4)(t,N) =

1 + t2N−5 + t2N−4 + 2t2N−3 + t2N−2 + t2N−1 + t4N−6

(1− t2) (1− t4) (1− t2N−6) (1− t2N−4)
. (6.14)

The Hilbert series (6.14) has a pole of order 4 at t = 1 as well as a palindromic polynomial

as numerator. Moreover, the result (6.14) reflects the expected basis of monopole operators

as given in the Hilbert basis (6.6).

6.5.3 Representation [2, 0]

This choice is realised for N1 = 2N , N2 = N , and N3 = 0 and the Hilbert series reduces to

HS
[2,0]
USp(4)(t,N) =

1 + t4N−3 + t4N−2 + t4N−1 + t6N−5 + t6N−4 + t6N−3 + t10N−6

(1− t2) (1− t4) (1− t4N−4) (1− t6N−6)
. (6.15)

Also, the rational function (6.15) has a pole of order 4 for t → 1 and a palindromic

numerator. Evaluating the plethystic logarithm yields for all N > 1

PL(HS
[2,0]
USp(4)) = t2 + t4 + t4N−4(1 + t+ t2 + t3) (6.16)

+ t6N−6(1 + t+ t2 + t3)− t8N−6 +O(t8N−5) .

This proves that bare monopole operators, corresponding to the the minimal generators

of (6.6), together with their dressing generate all other monopole operators.

6.5.4 Representation [0, 2]

For N1 = 2N , N2 = 3N , and N3 = 0 and the Hilbert series is given by

HS
[0,2]
USp(4)(t,N) =

1 + t8N−3 + t8N−2 + t8N−1 + t10N−5 + t10N−4 + t10N−3 + t18N−6

(1− t2) (1− t4) (1− t8N−4) (1− t10N−6)
.

(6.17)

Evaluating the plethystic logarithm yields for all N > 1

PL(HS
[0,2]
USp(4)) = t2 + t4 + t8N−4(1 + t+ t2 + t3) (6.18a)

+ t10N−6(1 + t+ t2 + t3)− t16N−6 +O(t16N−5) ,

and for N = 1

PL(HS
[0,2]
USp(4)) = t2 + t4 + t4(1 + t+ t2 + t3) (6.18b)

+ t4(1 + t+ t2 + t3)− 3t10 +O(t11) .

The inspection of the Hilbert series (6.17), together with the PL, proves that Hilbert

basis (6.6), alongside all their dressings, are a sufficient set for all monopole operators.
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6.6 Category N3 6= 0

6.6.1 Representation [1, 1]

This choice corresponds to N1 = 2N , N2 = 0, and N3 = N and we obtain the Hilbert

series to be

HS
[1,1]
USp(4)(t,N) =

R(t,N)

(1− t2) (1− t4) (1− t8N−4) (1− t12N−6) (1− t18N−10)
, (6.19a)

R(t,N) = 1 + t8N−3(1 + t+ t2) + t12N−5(1 + t+ t2) (6.19b)

+ t18N−9(2 + 2t+ 2t2 + t3)− t20N−10(1 + 2t+ 2t2 + 2t3)

− t26N−13(1 + t+ t2)− t30N−15(1 + t+ t2)− t38N−16 .

Considering the plethystic logarithm, we observe the following behaviour:

• For N ≥ 5

PL(HS
[1,1]
USp(4)) = t2 + t4 + t8N−4(1 + t+ t2 + t3) + t12N−6(1 + t+ t2 + t3) (6.20a)

− t2(8N−4)+2(1 + t+ 2t2 + t3 + t4)

+ t18N−10(1 + 2t+ 2t2 + 2t3 + t4)

− t20N−10(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

• For N = 4

PL(HS
[1,1]
USp(4)) = t2 + t4 + t28(1 + t+ t2 + t3) + t42(1 + t+ t2 + t3) (6.20b)

− t58(1 + t+ 2t2 + t3 + t4)

+ t62(1 + 2t+ 2t2 + 2t3 + t4)

− t70(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

We see, employing the previous results for N > 4, that the bare monopole (2, 1) and

the last relation at t62 coincide. Hence, the term ∼ t62 disappears from the PL.

• For N = 3

PL(HS
[1,1]
USp(4)) = t2 + t4 + t20(1 + t+ t2 + t3) + t30(1 + t+ t2 + t3) (6.20c)

− t42(1 + t+ 2t2 + t3 + t4)

+ t44(1 + 2t+ 2t2 + 2t3 + t4)

− t70(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

We see, employing again the previous results for N > 4, that the some monopole

contributions of (2, 1) and the some of the relations coincide, cf. the coloured terms.

Hence, there are, presumably, cancellations between generators and relations.

• For N = 2

PL(HS
[1,1]
USp(4)) = t2 + t4 + t12(1 + t+ t2 + t3) + t18(1 + t+ t2 + t3) (6.20d)

− t26(1 + t+ 2t2 + t3 + t4)
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+ t26(1 + 2t+ 2t2 + 2t3 + t4)

− t30(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

= t2 + t4 + t12(1 + t+ t2 + t3) + t18(1 + t+ t2 + t3) (6.20e)

+ t26(0 + t+ 0 + t3 + 0)

− t30(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

• For N = 1

PL(HS
[1,1]
USp(4)) = t2 + 2t4 + t5 + 2t6 + 2t7 + 2t8 + 3t9 − t11 + . . . (6.20f)

Summarising, the Hilbert series (6.19) and its plethystic logarithm display that the min-

imal generators of (6.5) are indeed the basis for the bare monopole operators, and the

corresponding dressings generate the remaining operators.

6.6.2 Representation [3, 0]

For the choice N1 = 5N , N2 = 0, and N3 = N the Hilbert series is given by

HS
[3,0]
USp(4)(t,N) =

R(t,N)

(1− t2) (1− t4) (1− t11N−4) (1− t18N−6) (1− t27N−10)
, (6.21a)

R(t,N) = 1 + t11N−3(1 + t+ t2) + t18N−5(1 + t+ t2) (6.21b)

+ t27N−9(2 + 2t+ 2t2 + t3)− t29N−10(1 + 2t+ 2t2 + 2t3)

− t38N−13(1 + t+ t2)− t45N−15(1 + t+ t2)− t56N−16 .

The inspection of the plethystic logarithm provides further insights:

• For N ≥ 3

PL(HS
[3,0]
USp(4)) = t2 + t4 + t11N−4(1 + t+ t2 + t3) + t18N−6(1 + t+ t2 + t3) (6.22a)

− t2(11N−4)+2(1 + t+ 2t2 + t3 + t4)

+ t27N−10(1 + 2t+ 2t2 + 2t3 + t4)

− t(11N−4)+(18N−6)(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

• For N = 2

PL(HS
[3,0]
USp(4)) = t2 + t4 + t18(1 + t+ t2 + t3) + t30(1 + t+ t2 + t3) (6.22b)

− t38(1 + t+ 2t2 + t3 + t4)

+ t44(1 + 2t+ 2t2 + 2t3 + t4)

− t48(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

We see that, presumably, one generator and one relation cancel at t48.

• For N = 1

PL(HS
[3,0]
USp(4)) = t2 + t4 + t7(1 + t+ t2 + t3) + t12(1 + t+ t2 + t3)− t16 − t20 + . . .

(6.22c)

Again, we confirm that the minimal generators of the Hilbert basis (6.5) are the relevant

generators (together with their dressings) for the moduli space.
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Dynkin label [1, 0] [0, 1] [2, 0] [1, 1] [0, 2] [3, 0] [4, 0] [2, 1]

Dim. 7 14 27 64 77 77 182 189

category 1 category 2 category 3

Table 23. An overview of the G2-representations considered in this paper.

7 Case: G2

Here, we study the Coulomb branch for the only exceptional simple Lie group of rank two.

7.1 Set-up

The group G2 has irreducible representations labelled by two Dynkin labels and the di-

mension formula reads

dim[a, b] =
1

120
(a+ 1)(b+ 1)(a+ b+ 2)(a+ 2b+ 3)(a+ 3b+ 4)(2a+ 3b+ 5) . (7.1)

In the following, we study the representations given in table 23. The three categories

defined are due to the similar form of the conformal dimensions.

The Weyl group of G2 is D6 and the GNO-dual group is another G2. Any element in

the Cartan subalgebra h = span(H1, H2) can be written as H = n1H1 +n2H2. Restriction

to the principal Weyl chamber is realised via n1, n2 ≥ 0.

The group G2 has two Casimir invariants of degree 2 and 6. Therefore, the classical

dressing function is [5]

PG2(t, n1, n2) =



1

(1− t2)(1− t6)
, n1 = n2 = 0 ,

1

(1− t)(1− t2)
, n1 > 0, n2 = 0 or n1 = 0, n2 > 0 ,

1

(1− t)2
, n1, n2 > 0 .

(7.2)

7.2 Category 1

Hilbert basis. The representations [1, 0], [0, 1], and [2, 0] have schematically conformal

dimensions of the form

∆(n1, n2) =
∑
j

Aj |ajn1 + bjn2|+B1|n1|+B2|n2| (7.3)

for aj , bj ∈ N and Aj , B1, B2 ∈ Z. As a consequence, the usual fan within the Weyl chamber

is simply one 2-dimensional rational polyhedral cone

C(2) = Cone((1, 0), (0, 1)) . (7.4)

The intersection with the weight lattice Λw(G2) yields the relevant semi-group S(2), as

depicted in figure 27. The Hilbert bases are trivially given by the ray generators

H(S(2)) =
{

(1, 0), (0, 1)
}
. (7.5)
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n1

n2

S(2)

Figure 27. The semi-group S(2) for the representations [1, 0], [0, 1], and [2, 0] obtained from the

G2 Weyl chamber (considered as rational cone) and its ray generators (black circled points).

Dressings. The two minimal generators lie at the boundary of the Weyl chamber and,

therefore, have residual gauge group H(1,0) = H(0,1) = U(2). Recalling that G2 has two

Casimir invariants C2, C6 at degree 2 and 6, one can analyse the dressed monopole operators

associated to (1, 0) and (0, 1).

The residual gauge group U(2) ⊂ G2 has a degree one Casimir C1 := φ1 + φ2 and a

degree two Casimir C2 := φ2
1 + φ2

2. Again, we employed the diagonal form of the adjoint-

valued scalar Φ. Consequently, the bare monopole V dress,0
(0,1) exhibits five dressed monopoles

V dress,i
(0,1) (i = 1, . . . , 5) of degrees ∆(0, 1) + 1, . . . ,∆(0, 1) + 5. Since the highest degree

Casimir invariant is of order 6 and the degree 2 Casimir invariant of G2 differs from the

pure sum of squares [29], one can build all dressings as follows:

C1(0, 1) , C2(0, 1) , C1C2(0, 1) , C2
1C2(0, 1) , (C1C

2
2 + C2

1C2)(0, 1) . (7.6)

The very same arguments applies for the bare and dressed monopole generators associated

to (1, 0). Thus, we expect six monopole operators: one bare V dress,0
(1,0) and five dressed V dress,i

(1,0)

(i = 1, . . . , 5).

Comparing with appendix A, we find that a magnetic weight at the boundary of the

dominant Weyl chamber has dressings given by PG2(t, {n1 = 0 or n2 = 0})/PG2(t, 0, 0) =

1 + t+ t2 + t3 + t4 + t5, which is then consistent with the exposition above.

We will now exemplify the three different representations.

7.2.1 Representation [1, 0]

The relevant computation has been presented in [5] and the conformal dimension reads

∆(n1, n2) =N(|n1 + n2|+ |2n1 + n2|+ |n1|) (7.7)

− (|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|) .

Evaluating the Hilbert series for N > 3 yields

HS
[1,0]
G2

(t,N) =
1 + t2N−4 + t2N−3 + t2N−2 + t2N−1 + t4N−5

(1− t2) (1− t6) (1− t2N−6) (1− t2N−5)
. (7.8)
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —

C6 6 —

bare monopole V dress,0
(0,1) 6(N − 1) U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 6(N − 1) + i —

bare monopole V dress,0
(1,0) 10(N − 1) U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 10(N − 1) + i —

Table 24. The chiral ring generators for a G2 gauge theory and matter transforming in [0, 1].

We observe that the numerator of (7.8) is a palindromic polynomial of degree 4N−5; while,

the denominator has degree 4N − 3. Hence, the difference in degree between denominator

and numerator is 2, which equals the quaternionic dimension of moduli space. In addition,

the Hilbert series (7.8) has a pole of order 4 as t→ 1, which matches the complex dimension

of the moduli space.

As discussed in [5], the plethystic logarithm has the following behaviour:

PL(HS
[1,0]
G2

(t,N)) = t2 + t6 + t2N−6(1 + t+ t2 + t3 + t4 + t5)− t4N−8 + . . . . (7.9)

Hilbert basis. According to [5], the monopole corresponding to GNO-charge (1, 0),

which has ∆(1, 0) = 4N−10, can be generated. Again, this is due to the specific form (7.7).

7.2.2 Representation [0, 1]

Hilbert series. For this representation, the conformal dimension is given as

∆(n1, n2) = (N − 1)(|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|) ,
(7.10)

and the computation of the Hilbert series for N > 1 yields

HS
[0,1]
G2

(t,N) =
1 + t6N−5(1 + t+ t2 + t3 + t4) + t10N−9(1 + t+ t2 + t3 + t4) + t16N−10

(1− t2) (1− t6)
(
1− t6(N−1)

) (
1− t10(N−1)

) .

(7.11)

The numerator of (7.11) is a palindromic polynomial of degree 16N − 10; while, the de-

nominator is of degree 16N − 8. Hence, the difference in degree between denominator and

numerator is 2, which matches the quaternionic dimension of moduli space. Moreover, the

Hilbert series has a pole of order 4 as t→ 1, i.e. it equals complex dimension of the moduli

space. Employing the knowledge of the Hilbert basis (7.5), the appearing objects in (7.11)

can be interpreted as in table 24.

Plethystic logarithm. For N ≥ 3 the PL takes the form

PL(HS
[0,1]
G2

(t,N)) = t2 + t6 + t6(N−1)(1 + t+ t2 + t3 + t4 + t5) (7.12)

+ t10(N−1)(1 + t+ t2 + t3 + t4 + t5)− t12N−10 + . . .
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —

C6 6 —

bare monopole V dress,0
(0,1) 12N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 12N − 6 + i —

bare monopole V dress,0
(1,0) 22N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 22N − 10 + i —

Table 25. The chiral ring generators for a G2 gauge theory and matter transforming in [2, 0].

while for N = 2 the PL is

PL(HS
[0,1]
G2

(t, 2)) = t2 + t6 + t6(1 + t+ t2 + t3 + t4 + t5) + t10(1 + t+ t2 + t3)− 2t16 + . . .

(7.13)

In other words, the 4th and 5th dressing of (1, 0) are absent, because they can be generated.

7.2.3 Representation [2, 0]

Hilbert series. For this representation, the conformal dimensions is given by

∆(n1, n2) =N
(

2 |n1 + n2|+ 2 |2n1 + n2|+ |3n1 + n2|+ |2n1 + 2n2|+ |3n1 + 2n2| (7.14)

+ |4n1 + 2n2|+ 2 |n1|+ |2n1|+ |n2|
)

− (|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|) .

The calculation for the Hilbert series is analogous to the previous cases and we obtain

HS
[2,0]
G2

(t,N) =
1 + t12N−5(1 + t+ t2 + t3 + t4) + t22N−9(1 + t+ t2 + t3 + t4) + t34N−10

(1− t2) (1− t6) (1− t12N−6) (1− t22N−10)
.

(7.15)

One readily observes, the numerator of (7.15) is a palindromic polynomial of degree 34N−
10 and the denominator is of degree 34N − 8. Hence, the difference in degree between

denominator and numerator is 2, which is precisely the quaternionic dimension of moduli

space. Also, the Hilbert series has a pole of order 4 as t → 1, which equals the complex

dimension of the moduli space. Having in mind the minimal generators (7.5), the appearing

objects in (7.15) can be summarised as in table 25.

Plethystic logarithm.

• For N ≥ 3 the PL takes the form

PL(HS
[2,0]
G2

(t,N)) = t2 + t6 + t12N−6(1 + t+ t2 + t3 + t4 + t5) (7.16)

+ t22N−10(1 + t+ t2 + t3 + t4 + t5)− t12N−10 + . . .
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• While for N = 2 the PL is

PL(HS
[2,0]
G2

(t, 2)) = t2 + t6 + t18(1 + t+ t2 + t3 + t4 + t5) (7.17)

+ t34(1 + t+ t2 + t3)− 2t40 + . . .

By the very same reasoning as before, V dress,4
(1,0) and V dress,5

(1,0) can be generated by

monopoles associated to (0, 1).

• Moreover, for N = 1 the PL looks as follows

PL(HS
[2,0]
G2

(t, 1)) = t2 + t6 + t6(1 + t+ t2 + t3 + t4 + t5) + t12(1 + t)− t16 + . . . (7.18)

Looking at the conformal dimensions reveals that the missing dressed monopoles of

GNO-charge (1, 0) can be generated.

7.3 Category 2

Hilbert basis. The representations [1, 1], [0, 2], and [3, 0] have schematically conformal

dimensions of the form

∆(n1, n2) =
∑
j

Aj |ajn1 + bjn2|+B1|n1|+B2|n2|+ C|n1 − n2| (7.19)

for aj , bj ∈ N and Aj , B1, B2, C ∈ Z. The novelty of this conformal dimension, compared

to (7.3), is the difference |n1 − n2|, i.e. a hyperplane that intersects the Weyl chamber

non-trivially. As a consequence, there is a fan generated by two 2-dimensional rational

polyhedral cones

C
(2)
1 = Cone((1, 0), (1, 1)) and C

(2)
2 = Cone((1, 1), (0, 1)) . (7.20)

The intersection with the weight lattice Λw(G2) yields the relevant semi-groups Sp (p =

1, 2), as depicted in figure 28. The Hilbert bases are again given by the ray generators

H(S
(2)
1 ) =

{
(1, 0), (1, 1)

}
and H(S

(2)
2 ) =

{
(1, 1), (0, 1)

}
. (7.21)

Dressings. The three minimal generators have different residual gauge groups, as two

lie on the boundary and one in the interior of the Weyl chamber. The GNO-charges (1, 0)

and (0, 1) are to be treated as in subsection 7.2.

The novelty is the magnetic weight (1, 1) with H(1,1) = U(1)2. Thus, the dressing can

be constructed with two independent U(1)-Casimir invariants, proportional to φ1 and φ2.

We choose a basis of dressed monopoles

V dress,j,α
(1,1) = (1, 1)(φα)j , for j = 1, . . . 5 , α = 1, 2 , (7.22a)

V dress,6
(1,1) = (1, 1)

(
(φ1)6 + (φ2)6

)
. (7.22b)

The reason behind the large number of dressings of the bare monopole (1, 1) lies in the

delicate G2 structure [29], i.e. the degree two Casimir C2 is not just the sum of the squares
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Figure 28. The semi-groups S
(2)
p (p = 1, 2) for the representations [1, 1], [0, 2], and [3, 0] ob-

tained from the G2 Weyl chamber (considered as rational cone) and their ray generators (black

circled points).

of φi and the next G2-Casimir C6 is by four higher in degree and has a complicated structure

as well.

The number and degrees of the dressed monopole operators associated to (1, 1) can

be confirmed by PG2(t, n1 > 0, n2 > 0)/PG2(t, 0, 0) = 1 + 2t + 2t2 + 2t3 + 2t4 + 2t5 + t6,

following appendix A.

We will now exemplify the three different representations.

7.3.1 Representation [1, 1]

Hilbert series. The conformal dimension of the 64-dimensional representation is

given by

∆(n1, n2) = N
(
|n1 − n2|+8 |n1 + n2|+8 |2n1 + n2|+2 |3n1 + n2|+|4n1 + n2| (7.23)

+ |n1 + 2n2|+2 |3n1 + 2n2|+|5n1 + 2n2|+|4n1 + 3n2|+|5n1 + 3n2|

+ 8 |n1|+ 2 |n2|
)

−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
.

Computing the Hilbert series provides the following expression

HS
[1,1]
G2

(t,N) =
R(t,N)

(1− t2) (1− t6) (1− t36N−6) (1− t64N−10) (1− t98N−16)
, (7.24a)

R(t,N) = 1 + t36N−5(1 + t+ t2 + t3 + t4) + t64N−9(1 + t+ t2 + t3 + t4) (7.24b)

+ t98N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

− t100N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

− t134N−21(1+t+t2+t3+t4)− t162N−25(1+t+t2+t3+t4)− t198N−26 .

The numerator (7.24b) is a anti-palindromic polynomial of degree 198N − 26; whereas the

denominator is of degree 198N − 24. Hence, the difference in degree between denominator

and numerator is 2, which coincides with the quaternionic dimension of moduli space.
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —

C6 6 —

bare monopole V dress,0
(0,1) 134N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 134N − 6 + i —

bare monopole V dress,0
(1,0) 238N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 238N − 10 + i —

bare monopole V dress,0
(1,1) 364N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 364N − 16 + i —

dressing V dress,6
(1,1) 364N − 16 + 6 —

Table 26. The chiral ring generators for a G2 gauge theory and matter transforming in [1, 1].

The Hilbert series (7.24) has a pole of order 4 as t → 1, which agrees with the complex

dimension of the moduli space. (One can explicitly show that R(t = 1, N) = 0, but
d
dtR(t,N)|t=1 6= 0.) The appearing operators agree with the general setting outlined above

and we summarise them in table 26. The new monopole corresponds to GNO-charge (1, 1)

and displays a different dressing behaviour than (1, 0) and (0, 1). The reason behind lies

in the residual gauge group being U(1)2.

Plethystic logarithm. Although the bare monopole V dress,0
(1,1) is generically a necessary

generator due to its origin as an ray generators of (7.21), not all dressings V dress
(1,1) might be

independent.

• For N ≥ 4 the PL takes the form

PL(HS
[1,1]
G2

(t,N)) = t2 + t6 + t36N−6(1 + t+ t2 + t3 + t4 + t5) (7.25)

+ t64N−10(1 + t+ t2 + t3 + t4 + t5)

− t2(36N−6)+2(1+t+2t2+2t3+3t4+2t5+2t6+t7+t8)

+ t98N−16(1+2t+2t2+2t3+2t4+2t5+t6)−t100N−16 + . . .

• For N = 3 the PL is

PL(HS
[1,1]
G2

(t,N = 3)) = t2 + t6 + t102(1 + t+ t2 + t3 + t4 + t5) (7.26)

+ t182(1 + t+ t2 + t3 + t4 + t5)

− t206(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)

+ t278(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)− 2t285 + . . .

Here, ∆(1, 0) + ∆(0, 1) = 284 is precisely the conformal dimension of V dress,6
(1,1) ; i.e. it

is generated and absent from the PL.
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• For N = 2 the PL is

PL(HS
[1,1]
G2

(t,N = 2)) = t2 + t6 + t66(1 + t+ t2 + t3 + t4 + t5) (7.27)

+ t118(1 + t+ t2 + t3 + t4 + t5)

− t134(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)

+ t180(1 + 2t+ 2t2 + 2t3 + t4)− 2t186 + . . .

Here, ∆(1, 0) + ∆(0, 1) = 184 is precisely the conformal dimension of V dress,4,α
(1,1) ; i.e.

only one of the dressings by the 4th power of U(1)-Casimir is a generator. Conse-

quently, the other one is absent from the PL.

• For N = 1 the PL is

PL(HS
[1,1]
G2

(t,N = 1)) = t2 + t6 + t30(1 + t+ t2 + t3 + t4 + t5) (7.28)

+ t54(1 + t+ t2 + t3 + t4 + t5)

− t62(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)

+ t82(1 + 2t+ t2)− t62 + . . .

Here, ∆(1, 0)+∆(0, 1) = 64 is precisely the conformal dimension of V dress,2,α
(1,1) ; i.e. only

one of the dressings by the 2th power of U(1)-Casimir is a generator. Consequently,

the other one is absent from the PL.

7.3.2 Representation [3, 0]

Hilbert series. The conformal dimension in this representation is given by

∆(n1, n2) = N
(
|5n1+3n2|+|5n1+2n2|+|4n1+3n2|+|4n1+n2|+|n1+2n2|+|n1−n2|

+ 10
(
|2n1 + n2|+|n1 + n2|+|n1|

)
+3
(
|3n1 + 2n2|+|3n1 + n2|+|n2|

))
−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
, (7.29)

such that we obtain for the Hilbert series

HSG2 [3, 0](t,N) =
R(t,N)

(1− t2) (1− t6) (1− t46N−6) (1− t82N−10) (1− t126N−16)
, (7.30a)

R(t,N) = 1 + t46N−5(1 + t+ t2 + t3 + t4) + t82N−9(1 + t+ t2 + t3 + t4) (7.30b)

+ t126N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

− t128N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

− t172N−21(1+t+t2+t3+t4)− t208N−25(1+t+t2+t3+t4)− t254N−26 .

The numerator (7.30b) is a anti-palindromic polynomial of degree 254N − 26; while the

denominator is of degree 254N − 24. Hence, the difference in degree between denominator

and numerator is 2, which coincides with the quaternionic dimension of moduli space. The

Hilbert series (7.30) has a pole of order 4 as t→ 1, which equals the complex dimension of

the moduli space. (One can explicitly show that R(t = 1, N) = 0, but d
dtR(t,N)|t=1 6= 0.)
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —

C6 6 —

bare monopole V dress,0
(0,1) 46N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 46N − 6 + i —

bare monopole V dress,0
(1,0) 82N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 82N − 10 + i —

bare monopole V dress,0
(1,1) 126N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 126N − 16 + i —

dressing V dress,6
(1,1) 126N − 16 + 6 —

Table 27. The chiral ring generators for a G2 gauge theory and matter transforming in [3, 0].

Interpreting the appearing operators leads to a list of chiral ring generators as presented

in table 27. The behaviour of the Hilbert series is absolutely identical to the case [1, 1],

because the conformal dimension is structurally identical. Therefore, we do not provide

further details.

7.3.3 Representation [0, 2]

Hilbert series. The following conformal dimension reads

∆(n1, n2) = N
(
|5n1 + 3n2|+|5n1+2n2|+|4n1+3n2|+|4n1+n2|+|n1+2n2|+|n1−n2|

+ 10
(
|2n1+n2|+|n1+n2|+|n1|

)
+5
(
|3n1+2n2|+|3n1+n2|+|n2|

))
−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
. (7.31)

The computation of the Hilbert series results in

HS
[0,2]
G2

(t,N) =
R(t,N)

(1− t2) (1− t6) (1− t52N−6) (1− t90N−10) (1− t140N−16)
, (7.32a)

R(t,N) = 1 + t52N−5(1 + t+ t2 + t3 + t4) + t90N−9(1 + t+ t2 + t3 + t4) (7.32b)

+ t140N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

− t142N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

− t192N−21(1+t+t2+t3+t4)− t230N−25(1+t+t2+t3+t4)− t282N−26 .

The numerator (7.32b) is a anti-palindromic polynomial of degree 282N − 26; while, the

denominator is of degree 282N − 24. Hence, the difference in degree between denominator

and numerator is 2, which agrees with the quaternionic dimension of moduli space. The

Hilbert series (7.32) has a pole of order 4 as t → 1, which equals complex dimension of
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —

C6 6 —

bare monopole V dress,0
(0,1) 52N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 52N − 6 + i —

bare monopole V dress,0
(1,0) 90N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 90N − 10 + i —

bare monopole V dress,0
(1,1) 140N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 140N − 16 + i —

dressing V dress,6
(1,1) 140N − 16 + 6 —

Table 28. The chiral ring generators for a G2 gauge theory and matter transforming in [0, 2].

the moduli space. (One can explicitly show that R(t = 1, N) = 0, but d
dtR(t,N)|t=1 6= 0.)

Table 28 summarises the appearing operators. The behaviour of the Hilbert series is

identical to the cases [1, 1] and [3, 0], because the conformal dimension is structurally

identical. Again, we do not provide further details.

7.4 Category 3

Hilbert basis. Investigating the representations [2, 1] and [4, 0], one recognises the com-

mon structural form of the conformal dimensions

∆(n1, n2) =
∑
j

Aj |ajn1 + bjn2|+B1|n1|+B2|n2|+ C|n1 − n2|+D|2n1 − n2| (7.33)

for aj , bj ∈ N and Aj , B1, B2, C,D ∈ Z. The novelty of this conformal dimension, compared

to (7.3) and (7.19), is the difference |2n1−n2|, i.e. a second hyperplane that intersects the

Weyl chamber non-trivially. As a consequence, the Weyl chamber is decomposed into a

fan generated by three rational polyhedral cones of dimension 2. These are

C
(2)
1 = Cone((1, 0), (1, 1)) , C

(2)
2 = Cone((1, 1), (1, 2)) and C

(2)
3 = Cone((1, 2), (0, 1)) .

(7.34)

The intersection with the weight lattice Λw(G2) yields the relevant semi-groups Sp (for

p = 1, 2, 3), as depicted in figure 29. The Hilbert bases are again given by the ray generators

H(S
(2)
1 ) =

{
(1, 0), (1, 1)

}
, H(S

(2)
2 ) =

{
(1, 1), (1, 2)

}
and H(S

(2)
3 ) =

{
(1, 2), (0, 1)

}
.

(7.35)

Dressings. Compared to subsection 7.2 and 7.3, the additional magnetic weight (1, 2)

has the same dressing behaviour as (1, 1), because the residual gauge groups is U(1)2, too.
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Figure 29. The semi-groups S
(2)
p (p=1,2,3) for the representations [2, 1] and [4, 0] obtained from

the G2 Weyl chamber (considered as rational cone) and their ray generators (black circled points).

Thus, the additional necessary monopole operators are the bare operator V dress,0
(1,2) and the

dressed monopoles V dress,i,α
(1,2) for i = 1, . . . , 5, α = 1, 2 as well as V dress,6

(1,2) .

We will now exemplify the three different representations.

7.4.1 Representation [4, 0]

Hilbert series. The conformal dimension reads

∆(n1, n2) = N
(

3 |n1 − n2|+ |2n1 − n2|+ 27 |n1 + n2|+ 30 |2n1 + n2|+ 7 |3n1 + n2|

+ 3 |4n1+n2|+|5n1+n2|+3 |n1+2n2|+7 |3n1+2n2|+3 |5n1+2n2|
+ |2n1+3n2|+3 |4n1+3n2|+3 |5n1+3n2|+|7n1+3n2|+|5n1+4n2|

+ |7n1 + 4n2|+ 27 |n1|+ 7 |n2|
)

−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
, (7.36)

from which we compute the Hilbert series to be

HS
[4,0]
G2

(t,N) =
R(t,N)

(1− t2) (1− t6) (1− t134N−6) (1− t238N−10) (1− t364N−16) (1− t496N−22)
,

(7.37a)

R(t,N) = 1 + t134N−5(1 + t+ t2 + t3 + t4) + t238N−9(1 + t+ t2 + t3 + t4) (7.37b)

+ t364N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

− t372N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

+ t496N−21(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

− t498N−22(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)

− t602N−25(1 + t+ t2 + t3 + t4)− t630N−27(1 + t+ t2 + t3 + t4)

− t734N−32(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)

+ t736N−32(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

− t860N−37(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —

C6 6 —

bare monopole V dress,0
(0,1) 134N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 134N − 6 + i —

bare monopole V dress,0
(1,0) 238N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 238N − 10 + i —

bare monopole V dress,0
(1,1) 364N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 364N − 16 + i —

dressing V dress,6
(1,1) 364N − 16 + 6 —

bare monopole V dress,0
(1,2) 496N − 22 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,2) 496N − 22 + i —

dressing V dress,6
(1,2) 496N − 22 + 6 —

Table 29. The chiral ring generators for a G2 gauge theory and matter transforming in [4, 0].

+ t868N−38(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

+ t994N−43(1+t+t2+t3+t4) + t1098N−47(1+t+t2+t3+t4) + t1232N−48 .

The numerator (7.37b) is a palindromic polynomial of degree 1232N − 48; while, the

denominator is of degree 1232N−46. Hence, the difference in degree between denominator

and numerator is 2, which equals the quaternionic dimension of moduli space. The Hilbert

series (7.37) has a pole of order 4 as t→ 1, which coincides with the complex dimension of

the moduli space. (One can explicitly show that R(t = 1, N) = 0 and d
dtR(t,N)|t=1 = 0,

but d2

dt2
R(t,N)|t=1 6= 0.) The appearing operators can be summarised as in table 29. The

new monopole corresponds to GNO-charge (1, 2) and displays the same dressing behaviour

as (1, 1). Contrary to the cases [1, 1], [3, 0], and [0, 2], the bare and dressed monopoles of

GNO-charge (1, 1) are always independent generators as

∆(1, 1) = 364N − 16 < 372N − 16 = 134N − 6 + 238N − 10 = ∆(0, 1) + ∆(1, 0) (7.38)

holds for all N ≥ 1.

Plethystic logarithm. By means of the minimal generators (7.35), the bare monopole

V dress,0
(1,2) is a necessary generator. Nevertheless, not all dressings V dress

(1,2) need to be indepen-

dent. For N ≥ 1 the PL takes the form

PL(HS
[0,2]
G2

(t,N)) = t2 + t6 + t134N−6(1 + t+ t2 + t3 + t4 + t5) (7.39)

+ t238N−10(1 + t+ t2 + t3 + t4 + t5)
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− t2(134N−6)+2(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)

+ t364N−16(1+2t+2t2+2t3+2t4+2t5+t6)− t372N−16 + . . .

Based purely in conformal dimension and GNO-charge, we can argue the following:

• For N = 3, ∆(1, 1) + ∆(0, 1) = 1472 is precisely the conformal dimension of V dress,6
(1,2) ,

i.e. it is generated.

• For N = 2, ∆(1, 1) + ∆(0, 1) = 974 is precisely the conformal dimension of V dress,4,α
(1,2) ,

i.e. only one of the dressings by the 4th power of U(1)-Casimir is a generator.

• For N = 1, ∆(1, 1) + ∆(0, 1) = 476 is precisely the conformal dimension of V dress,2,α
(1,2) ,

i.e. only one of the dressings by the 2th power of U(1)-Casimir is a generator.

7.4.2 Representation [2, 1]

Hilbert series. The conformal dimension reads

∆(n1, n2) = N
(

3 |n1 − n2|+ |2n1 − n2|+ 24 |n1 + n2|+ 24 |2n1 + n2|+ 8 |3n1 + n2|

+ 3 |4n1 + n2|+|5n1+n2|+3 |n1+2n2|+8 |3n1+2n2|+3 |5n1+2n2|
+ |2n1+3n2|+3 |4n1+3n2|+3 |5n1+3n2|+|7n1+3n2|+|5n1+4n2|

+ |7n1 + 4n2|+ 24 |n1|+ 8 |n2|
)

−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
,

(7.40)

from which we compute the Hilbert series to be

HS
[2,1]
G2

(t,N) =
R(t,N)

(1− t2) (1− t6) (1− t132N−6) (1− t232N−10) (1− t356N−16) (1− t486N−22)
,

(7.41a)

R(t,N) = 1 + t132N−5(1 + t+ t2 + t3 + t4) + t232N−9(1 + t+ t2 + t3 + t4) (7.41b)

+ t356N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

− t364N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

+ t486N−21(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

− t488N−22(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)

− t588N−25(1 + t+ t2 + t3 + t4)− t618N−27(1 + t+ t2 + t3 + t4)

− t718N−32(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)

+ t720N−32(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

− t842N−37(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)

+ t850N−38(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)

+ t974N−43(1+t+t2+t3+t4) + t1074N−47(1+t+t2+t3+t4) + t1206N−48.
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —

C6 6 —

bare monopole V dress,0
(0,1) 132N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 132N − 6 + i —

bare monopole V dress,0
(1,0) 232N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 232N − 10 + i —

bare monopole V dress,0
(1,1) 356N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 356N − 16 + i —

dressing V dress,6
(1,1) 356N − 16 + 6 —

bare monopole V dress,0
(1,2) 486N − 22 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,2) 486N − 22 + i —

dressing V dress,6
(1,2) 486N − 22 + 6 —

Table 30. The chiral ring generators for a G2 gauge theory and matter transforming in [2, 1].

The numerator (7.41b) is a palindromic polynomial of degree 1206N − 48; whereas, the

denominator is of degree 1206N−46. Hence, the difference in degree between denominator

and numerator is 2, which agrees with the quaternionic dimension of moduli space. The

Hilbert series (7.41) has a pole of order 4 as t→ 1, which equals the complex dimension of

the moduli space. (One can explicitly show that R(t = 1, N) = 0 and d
dtR(t,N)|t=1 = 0,

but d2

dt2
R(t,N)|t=1 6= 0.) The list of appearing operators is presented in table 30. Due

to the structure of the conformal dimension the behaviour of the [2, 1] representation is

identical to that of [4, 0]. Consequently, we do not discuss further details.

8 Case: SU(3)

The last rank two example we would like to cover is SU(3), for which the computation

takes a detour over the corresponding U(3) theory, similar to [5]. The advantage is that

we can simultaneously investigate the rank three example U(3) and demonstrate that the

method of Hilbert bases for semi-groups works equally well in higher rank cases.

8.1 Set-up

In the following, we systematically study a number of SU(3) representation, where we

understand a SU(3)-representation [a, b] as an U(3)-representation with a fixed U(1)-charge.

Preliminaries for U(3). The GNO-dual group of U(3), which is again a U(3), has a

weight lattice characterised by m1,m2,m3 ∈ Z and the dominant Weyl chamber is given
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by the restriction m1 ≥ m2 ≥ m3, cf. [5]. The classical dressing factors associated to the

interior and boundaries of the dominant Weyl chamber are the following:

PU(3)(t
2,m1,m2,m3) =



1
(1−t2)3

, m1 > m2 > m3 ,

1

(1− t2)2(1− t4)
, (m1 = m2 > m3) ∨ (m1 > m2 = m3) ,

1

(1− t2)(1− t4)(1− t6)
, m1 = m2 = m3 .

(8.1)

Note that we already introduced the fugacity t2 instead of t. Moreover, the GNO-dual

U(3) has a non-trivial centre, i.e. Z(U(3)) = U(1)J ; thus, the topological symmetry is a

U(1)J counted by zm1+m2+m3 .

The contributions of N(a,b) hypermultiplets transforming in [a, b] to the conformal

dimension are as follows:

∆
[1,0]
h−plet =

N(1,0)

2

∑
i

|mi| , (8.2a)

∆
[2,0]
h−plet =

3N(2,0)

2

∑
i

|mi| , (8.2b)

∆
[1,1]
h−plet = N(1,1)

∑
i<j

|mi −mj | , (8.2c)

∆
[3,0]
h−plet =

3N(3,0)

2

∑
i

|mi|+N[3,0]

∑
i<j

|mi −mj | , (8.2d)

∆
[2,2]
h−plet = 3N(2,2)

∑
i

|mi|+ 4N(2,2)

∑
i<j

|mi −mj | , (8.2e)

∆
[2,1]
h−plet = 4N(2,1)

∑
i

|mi|+
N(2,1)

2

∑
i<j

(|2mi −mj |+ |mi − 2mj |) , (8.2f)

where i, j = 1, 2, 3. In addition, the contribution of the vector-multiplets reads as

∆v−plet = −
∑
i<j

|mi −mj | . (8.3)

Consequently, one can study a pretty wild matter content if one considers the conformal

dimension to be of the form

∆(m1,m2,m3) =
NF

2

∑
i

|mi|+ (NA − 1)
∑
i<j

|mi −mj |

+
NR

2

∑
i<j

(|2mi −mj |+ |mi − 2mj |) (8.4)

and the relation to the various representations (8.2) is established via

NF = N(1,0) + 3N(2,0) + 3N(3,0) + 6N(2,2) + 4N(2,1) , (8.5a)

NA = N(1,1) +N(3,0) + 4N(2,2) , (8.5b)

NR = N(2,1) . (8.5c)
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Preliminaries for SU(3). As noted in [5], the reduction from U(3) to SU(3) (with

the same matter content) is realised by averaging over U(1)J , for the purpose of setting

m1 +m2 +m3 = 0, and multiplying by (1− t2), such that Tr(Φ) = 0 for the adjoint scalar

Φ. In other words

HS
[a,b]
SU(3)(t

2) = (1− t2)

∮
|z|=1

dz

2πiz
HS

[a,b]
U(3)(t

2, z) . (8.6)

As a consequence, the conformal dimension for SU(3) itself is obtained from (8.4) via

∆(m1,m2) := ∆(m1,m2,m3)
∣∣
m3=−m1−m2

. (8.7)

The Weyl chamber is now characterised by m1 ≥ max{m2,−2m2}. Multiplying (8.1) by

(1− t2) and employing m3 = −m1 −m2 results in the classical dressing factors for SU(3)

PSU(3)(t
2,m1,m2) =



1

(1− t2)2
, m1 > max{m2,−2m2} ,

1

(1− t2)(1− t4)
, (m1 = m2) ∨ (m1 = −2m2) ,

1

(1− t4)(1− t6)
, m1 = m2 = 0 .

(8.8)

8.2 Hilbert basis

8.2.1 Fan and cones for U(3)

Following the ideas outline previously, Λw(Û(3))/WU(3) can be described as a collection

of semi-groups that originate from a fan. Since this is our first 3-dimensional example,

we provide a detail description on how to obtain the fan. Consider the absolute values

|am1 + bm2 + cm2| in (8.7) as Hesse normal form for the hyperplanes

~n · ~m ≡

ab
c

 ·
m1

m2

m3

 = 0 (8.9)

which pass through the origin. Take all normal vectors ~nj , define the matrices Mi,j =

(~ni, ~nj)
T (for i < j) and compute the null spaces (or kernel) Ki,j := ker(Mi,j). Linear

algebra tell us that dim(Ki,j) ≥ 1, but by the specific form2 of ∆ we have the stronger

condition rk(Mi,j) = 2 for all i < j; thus, we always have dim(Ki,j) = 1. Next, we select

a basis vector ei,j of Ki,j and check if ei,j or −ei,j intersect the Weyl-chamber. If it does,

then it is going to be an edge for the fan and, more importantly, will turn out to be a

ray generator (provided one defines ei,j via the intersection with the corresponding weight

lattice). Now, one has to define all 3-dimensional cones, merge them into a fan, and, lastly,

compute the Hilbert bases. The programs Macaulay2 and Sage are convenient tools for

such tasks.

As two examples, we consider the conformal dimension (8.7) for NR = 0 and NR 6= 0

and preform the entire procedure. That is: firstly, compute the edges of the fan; secondly,

define the all 3-dimensional cones and; thirdly, compute the Hilbert bases.

2∆ is homogeneous and all hyperplanes pass through the origin; hence, no two hyperplanes can be

parallel. This implies that no two normal vectors can be multiplies of each other.
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Case NR = 0: in this circumstance, we deduce the following edges(
1
0
0

)
,

(
1
1
0

)
,

(
1
1
1

)
,

(
0
0
−1

)
,

(
0
−1
−1

)
,

(−1
−1
−1

)
. (8.10)

All these vectors are on the boundaries of the Weyl chamber. The set of 3-dimensional

cones that generate the corresponding fan is given by

C
(3)
1 = Cone

{(
1
0
0

)
,

(
1
1
0

)
,

(
1
1
1

)}
, C

(3)
2 = Cone

{(
1
0
0

)
,

(
1
1
0

)
,

(
0
0
−1

)}
, (8.11a)

C
(3)
3 = Cone

{(
1
0
0

)
,

(
0
−1
−1

)
,

(
0
0
−1

)}
, C

(3)
4 = Cone

{(−1
−1
−1

)
,

(
0
−1
−1

)
,

(
0
0
−1

)}
. (8.11b)

A computation shows that all four cones are strictly convex, smooth, and simplicial. The

Hilbert bases for the resulting semi-groups comprise solely the ray generators

H(S
(3)
1 ) =

{(
1
0
0

)
,

(
1
1
0

)
,

(
1
1
1

)}
, H(S

(3)
2 ) =

{(
1
0
0

)
,

(
1
1
0

)
,

(
0
0
−1

)}
, (8.12a)

H(S
(3)
3 ) =

{(
1
0
0

)
,

(
0
−1
−1

)
,

(
0
0
−1

)}
, H(S

(3)
4 ) =

{(−1
−1
−1

)
,

(
0
−1
−1

)
,

(
0
0
−1

)}
. (8.12b)

From the above, we expect 6 bare monopole operators plus their dressings for a generic

theory with NR = 0. Since all ray generators lie at the boundary of the Weyl chamber,

the residual gauge groups are U(3) for ±(1, 1, 1) and U(2)×U(1) for the other four GNO-

charges.

Case NR 6= 0: here, we compute the following edges:(
1
0
0

)
,

(
1
1
0

)
,

(
1
1
1

)
,

(
2
1
0

)
,

(
2
1
1

)
,

(
2
2
1

)
,

(
4
2
1

)
, (8.13a)

(
0
0
−1

)
,

(
0
−1
−1

)
,

(−1
−1
−1

)
,

(
0
−1
−2

)
,

(−1
−1
−2

)
,

(−1
−2
−2

)
,

(−1
−2
−4

)
. (8.13b)

Now, we need to proceed and define all 3-dimensional cones that constitute the fan and,

in turn, will lead to the semi-groups that we wish to study.

C
(3)
1 = Cone

{(
1
0
0

)
,

(
2
1
0

)
,

(
4
2
1

)}
, C

(3)
2 = Cone

{(
4
2
1

)
,

(
1
0
0

)
,

(
2
1
1

)}
, (8.14a)

C
(3)
3 = Cone

{(
2
2
1

)
,

(
1
1
0

)
,

(
2
1
0

)}
, C

(3)
4 = Cone

{(
2
2
1

)
,

(
2
1
0

)
,

(
4
2
1

)}
, (8.14b)

C
(3)
5 = Cone

{(
2
2
1

)
,

(
4
2
1

)
,

(
2
1
1

)}
, C

(3)
6 = Cone

{(
2
2
1

)
,

(
2
1
1

)
,

(
1
1
1

)}
, (8.14c)

C
(3)
7 = Cone

{(
0
0
−1

)
,

(
1
0
0

)
,

(
2
1
0

)}
, C

(3)
8 = Cone

{(
0
0
−1

)
,

(
1
1
0

)
,

(
2
1
0

)}
, (8.14d)
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C
(3)
9 = Cone

{(
0
0
−1

)
,

(
0
−1
−2

)
,

(
1
0
0

)}
, C

(3)
10 = Cone

{(
0
−1
−2

)
,

(
0
−1
−1

)
,

(
1
0
0

)}
, (8.14e)

C
(3)
11 = Cone

{(
0
0
−1

)
,

(
0
−1
−2

)
,

(−1
−2
−4

)}
, C

(3)
12 = Cone

{(
0
0
−1

)
,

(−1
−2
−4

)
,

(−1
−1
−2

)}
, (8.14f)

C
(3)
13 = Cone

{(
0
−1
−2

)
,

(−1
−2
−4

)
,

(
0
−1
−1

)}
, C

(3)
14 = Cone

{(
0
−1
−1

)
,

(−1
−2
−4

)
,

(−1
−2
−2

)}
, (8.14g)

C
(3)
15 = Cone

{(−1
−2
−4

)
,

(−1
−2
−2

)
,

(−1
−1
−2

)}
, C

(3)
16 = Cone

{(−1
−2
−2

)
,

(−1
−1
−2

)
,

(−1
−1
−1

)}
. (8.14h)

All of the cones are strictly convex and simplicial, but only the cones Cp for p =

1, 2, 3, 6, . . . , 13, 16 are smooth. Now, we compute the Hilbert bases for semi-groups S
(3)
p

for p = 1, 2, . . . , 16 and obtain

H(S
(3)
1 ) =

{(
1
0
0

)
,

(
2
1
0

)
,

(
4
2
1

)}
, H(S

(3)
2 ) =

{(
4
2
1

)
,

(
1
0
0

)
,

(
2
1
1

)}
, (8.15a)

H(S
(3)
3 ) =

{(
2
2
1

)
,

(
1
1
0

)
,

(
2
1
0

)}
, H(S

(3)
4 ) =

{(
2
2
1

)
,

(
2
1
0

)
,

(
4
2
1

)
,

(
3
2
1

)}
, (8.15b)

H(S
(3)
5 ) =

{(
2
2
1

)
,

(
4
2
1

)
,

(
2
1
1

)
,

(
3
2
1

)}
, H(S

(3)
6 ) =

{(
2
2
1

)
,

(
2
1
1

)
,

(
1
1
1

)}
, (8.15c)

H(S
(3)
7 ) =

{(
0
0
−1

)
,

(
1
0
0

)
,

(
2
1
0

)}
, H(S

(3)
8 ) =

{(
0
0
−1

)
,

(
1
1
0

)
,

(
2
1
0

)}
, (8.15d)

H(S
(3)
9 ) =

{(
0
0
−1

)
,

(
0
−1
−2

)
,

(
1
0
0

)}
, H(S

(3)
10 ) =

{(
0
−1
−2

)
,

(
0
−1
−1

)
,

(
1
0
0

)}
, (8.15e)

H(S
(3)
11 ) =

{(
0
0
−1

)
,

(
0
−1
−2

)
,

(−1
−2
−4

)}
, H(S

(3)
12 ) =

{(
0
0
−1

)
,

(−1
−2
−4

)
,

(−1
−1
−2

)}
, (8.15f)

H(S
(3)
13 ) =

{(
0
−1
−2

)
,

(−1
−2
−4

)
,

(
0
−1
−1

)}
, H(S

(3)
14 ) =

{(
0
−1
−1

)
,

(−1
−2
−4

)
,

(−1
−2
−2

)
,

(−1
−2
−3

)}
, (8.15g)

H(S
(3)
15 ) =

{(−1
−2
−4

)
,

(−1
−2
−2

)
,

(−1
−1
−2

)
,

(−1
−2
−3

)}
, H(S

(3)
16 ) =

{(−1
−2
−2

)
,

(−1
−1
−2

)
,

(−1
−1
−1

)}
. (8.15h)

We observe that there are four semi-groups Sp for p = 4, 5, 14, 15 for which the Hilbert bases

exceeds the set of ray generators by an additional element. Consequently, we expect 16 bare

monopoles plus their dressings for a generic theory with NR 6= 0. However, the dressings

exhibit a much richer structure compared to NR = 0, because some minimal generators

lie in the interior of the Weyl chamber. The residual gauge groups are U(3) for ±(1, 1, 1);

U(2) × U(1) for (1, 0, 0), (0, 0,−1), (1, 1, 0), (0,−1,−1), (2, 1, 1), (−1,−1,−2), (2, 2, 1),

and (−1,−2,−2); and U(1)3 for (2, 1, 0), (0,−1,−2),(4, 2, 1), (−1,−2,−4), (3, 2, 1), and

(−1,−2,−3).
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8.2.2 Fan and cones for SU(3)

The conformal dimension (8.7) divides the Weyl chamber of the GNO-dual into two different

fans, depending on NR = 0 or NR 6= 0.

Case NR = 0: for this situation, which is depicted in figure 30a, there are three rays

∼ |m1|, |m1 −m2|, |m1 + 2m2| present that intersect the Weyl chamber non-trivially. The

corresponding fan is generated by two 2-dimensional cones

C
(2)
1 = Cone((2,−1), (1, 0)) and C

(2)
2 = Cone((1, 0), (1, 1)) . (8.16)

The Hilbert bases for the semi-groups, obtained by intersecting the cones with the weight

lattice, are solely given by the ray generators, i.e.

H(S
(2)
1 ) =

{
(2,−1), (1, 0)

}
and H(S

(2)
2 ) =

{
(1, 0), (1, 1)

}
. (8.17)

As a consequence, we expect three bare monopole operators (plus dressings) for a generic

NR = 0 theory. The residual gauge group is SU(2) × U(1) for (2,−1) and (1, 1), because

these GNO-charges are at the boundary of the Weyl-chamber. In contrast, (1, 0) has

residual gauge group U(1)2 as it lies in the interior of the dominant Weyl chamber.

Case NR 6= 0: for this circumstance, which is depicted in figure 30b, there are two addi-

tional rays ∼ |m1−2m2|, |m1+3m2| present, compared to NR = 0, that intersect the Weyl

chamber non-trivially. The corresponding fan is now generated by four 2-dimensional cones

C
(2)
1− = Cone((2,−1), (3,−1)) , C

(2)
1+ = Cone((3,−1), (1, 0)) , (8.18a)

C
(2)
2− = Cone((1, 0), (2, 1)) , C

(2)
2+ = Cone((2, 1), (1, 1)) . (8.18b)

The Hilbert bases for the resulting semi-groups are given by the ray generators, i.e.

H(S
(2)
1−) =

{
(2,−1), (3,−1)

}
, H(S

(2)
1+) =

{
(3,−1), (1, 0)

}
, (8.19a)

H(S
(2)
2−) =

{
(1, 0), (2, 1)

}
, H(S

(2)
2+) =

{
(2, 1), (1, 1)

}
. (8.19b)

Judging from the Hilbert bases, there are five bare monopole operators present in the

generic case. The residual gauge group for (1, 0), (3,−1), and (2, 1) is U(1)2, as they lie in

the interior. For (1, 1) and (2,−1) the residual gauge group is SU(2)×U(1), because these

points lie at the boundary of the Weyl chamber.

8.3 Casimir invariance

8.3.1 Dressings for U(3)

Following the description of dressed monopole operators as in [5], we diagonalise the adjoint-

valued scalar Φ along the moduli space, i.e.

diagΦ = (φ1, φ2, φ3) . (8.20)

– 85 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

m1

m2

(a) NR = 0

m1

m2

(b) NR 6= 0

Figure 30. The semi-groups for SU(3) and the corresponding ray generators (black circled points).

Moreover, the Casimir invariants of U(3) can then be written as Cj = Tr(Φj) =
∑3

l=1(φl)
j

for j = 1, 2, 3. We will now elaborate on the possible dressed monopole operators by means

of the insights gained in section 2.3 and appendix A.

To start with, for a monopole with GNO-charge such that H(m1,m2,m3) = U(3) the

dressings are described by

PU(3)(t,m1,m1,m1)

PU(3)(t, 0)
− 1 = 0 , (8.21)

i.e. there are no dressings, because the Casimir invariants of the centraliser H(m1,m2,m3)

are identical to those of G, since the groups coincide. Prominent examples are the (bare)

monopoles of GNO-charge ±(1, 1, 1).

Next, a monopole of GNO-charge such that H(m1,m2,m3) = U(1)×U(2) exhibit dressings

governed by

PU(3)(t,m1,m2,m3)

PU(3)(t, 0)
− 1 =

(1− t2)(1− t4)(1− t6)

(1− t2)2(1− t4)
− 1 = t2 + t4 , (8.22)

implying there to be exactly one dressing by a degree 2 Casimir and one dressing by a

degree 4 Casimir. The two degree 2 Casimir invariants of H(m1,m2,m3), one by U(1) and

one by U(2), are not both independent because there is the overall Casimir C1 of U(3).

Therefore, only one of them leads to an independent dressed monopole generator. The

second dressing is then due to the second Casimir of U(2). For example, the monopole of

GNO-charge (1, 1, 0), (0,−1,−1), (2, 1, 1), (−1,−2,−2), (2, 2, 1), and (−1,−2,−2) exhibit

these two dressings options.

Lastly, if the residual gauge group is H(m1,m2,m3) = U(1)3 then the dressings are

determined via

PU(3)(t,m1,m2,m3)

PU(3)(t, 0)
− 1 =

(1− t2)(1− t4)(1− t6)

(1− t2)3
− 1 = 2t2 + 2t4 + t6 . (8.23)

– 86 –



J
H
E
P
0
8
(
2
0
1
6
)
0
1
6

Consequently, there are generically five dressings for each such bare monopole opera-

tor. Examples for this instance are (2, 1, 0), (0,−1,−2), (3, 2, 1), (−1,−2,−3), (4, 2, 1),

(−1,−2,−4).

8.3.2 Dressings for SU(3)

To determine the dressings, we take the adjoint scalar Φ and diagonalise it, keeping in

mind that it now belongs to SU(3), that is

diagΦ = (φ1, φ2,−(φ1 + φ2)) . (8.24)

While keeping in mind that each φi has dimension one, we can write down the dressings

(in the dominant Weyl chamber): (1, 0) can be dressed by two independent U(1)-Casimir

invariants, i.e. directly by φ1 and φ2

V
dress,(0,0)

(1,0) ≡ (1, 0) −→


V

dress,(1,0)
(1,0) ≡ φ1 (1, 0) ,

V
dress,(0,1)

(1,0) ≡ φ2 (1, 0) ,

(8.25)

such that the dressings have conformal dimension ∆(1, 0)+1. Next, out of the three degree

2 combinations of φi, only two of them are independent and we choose them to be

V
dress,(0,0)

(1,0) ≡ (1, 0) −→


V

dress,(2,0)
(1,0) ≡ φ2

1 (1, 0) ,

V
dress,(0,2)

(1,0) ≡ φ2
2 (1, 0) ,

(8.26)

and these second order dressings have conformal dimension ∆(1, 0) + 2. Finally, one last

dressing is possible

V
dress,(0,0)

(1,0) ≡ (1, 0) −→ V
dress,(3,0)+(0,3)

(1,0) ≡ (φ3
1 + φ3

2) (1, 0) , (8.27)

having dimension ∆(1, 0)+3. Alternatively, we utilise appendix A and compute the number

and degrees of the dressed monopole operators of magnetic charge (1, 0) via the quotient

PSU(3)(t
2, 1, 0)/PSU(3)(t

2, 0, 0) = 1 + 2t2 + 2t4 + t6.

For the two monopoles of GNO-charge (1, 1) and (2,−1), the residual gauge group is

SU(2) × U(1), i.e. the monopoles can be dressed by a degree one Casmir invariant of the

U(1) and by a degree two Casimir invariant of the SU(2). These increase the dimensions

by one and two, respectively. Consequently, we obtain

V dress,0
(1,1) ≡ (1, 1) −→


V

dress,U(1)
(1,1) ≡ (φ1 + φ2) (1, 1) ,

V
dress,SU(2)

(1,1) ≡ (φ2
1 + φ2

2) (1, 1) ,

(8.28)

and similarly

V dress,0
(2,−1) ≡ (2,−1) −→


V

dress,U(1)
(2,−1) ≡ (φ1 + φ2) (2,−1) ,

V
dress,SU(2)

(2,−1) ≡ (φ2
1 + φ2

2) (2,−1) .

(8.29)
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Since the magnetic weights (1, 1), (2,−1) lie at the boundary of the dominant Weyl cham-

ber, we can derive the dressing behaviour via PSU(3)(t
2, (1, 1) or (2,−1))/PSU(3)(t

2, 0, 0) =

1 + t2 + t4 and obtain agreement with our choice of generators.

The remaining monopoles of GNO-charge (2, 1) and (3,−1) can be treated analogously

to (1, 0) and we obtain

V
dress,(0,0)

(2,1) ≡ (2, 1) −→



V
dress,(1,0)

(2,1) ≡ φ1 (2, 1) ,

V
dress,(0,1)

(2,1) ≡ φ2 (2, 1) ,

V
dress,(2,0)

(2,1) ≡ φ2
1 (2, 1) ,

V
dress,(0,2)

(2,1) ≡ φ2
2 (2, 1) ,

V
dress,(3,0)+(0,3)

(2,1) ≡ (φ3
1 + φ3

2) (2, 1) ,

(8.30)

V
dress,(0,0)

(3,−1) ≡ (3,−1) −→



V
dress,(1,0)

(3,−1) ≡ φ1 (3,−1) ,

V
dress,(0,1)

(3,−1) ≡ φ2 (3,−1) ,

V
dress,(2,0)

(3,−1) ≡ φ2
1 (3,−1) ,

V
dress,(0,2)

(3,−1) ≡ φ2
2 (3,−1) ,

V
dress,(3,0)+(0,3)

(3,−1) ≡ (φ3
1 + φ3

2) (3,−1) .

(8.31)

There can be circumstances in which not all dressings for the minimal generators deter-

mined by the Hilbert bases (8.19) are truly independent. However, this will only occur for

special configurations of (NF , NA, FR) and, therefore, is considered as “non-generic” case.

8.4 Category NR = 0

8.4.1 NF hypermultiplets in [1, 0] and NA hypermultiplets in [1, 1]

Intermediate step at U(3). The conformal dimension (8.4) reduces for NR = 0 to the

following:

∆(m1,m2,m3) =
NF

2

∑
i

|mi|+ (NA − 1)
∑
i<j

|mi −mj | . (8.32)

The Hilbert series is then readily computed

HS
[1,0]+[1,1]
U(3) (NF , NA, t, z) =

R(NF , NA, t, z)

P (NF , NA, t, z)
, (8.33a)

P (NF , NA, t, z) =

3∏
j=1

(
1− t2j

) (
1− 1

z t
4NA+NF−4

) (
1− zt4NA+NF−4

)
(8.33b)

×
(
1− 1

z2
t4NA+2NF−4

) (
1−z2t4NA+2NF−4

) (
1− 1

z3
t3NF

) (
1−z3t3NF

)
,

R(NF , NA, t, z) = 1 + t8NA+2NF−2 − t8NA+4NF−8(1 + 2t2 + 2t4) + 2t8NA+6NF−8(1− t6)

+ t8NA+8NF−6(2 + 2t2 + t4)− t8NA+10NF−8 + t16NA+6NF−10

− t16NA+12NF−10 − t6NF
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(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) NF + 4NA − 4 U(1)×U(2)

(1, 1, 0) (0,−1,−1) 2NF + 4NA − 4 U(1)×U(2)

(1, 1, 1) (−1,−1,−1) 3NF U(3)

Table 31. The monopole generators for a U(3) gauge theory with NR = 0 that together with the

Casimir invariants generate the chiral ring.

+
(
z + 1

z

) (
t4NA+NF−2(1 + t2) + t4NA+7NF−4 − t4NA+5NF−4(1+t2+t4)

− t8NA+3NF−6(1 + t2) + t8NA+9NF−6(1 + t2)− t12NA+5NF−6

+ t12NA+7NF−10(1 + t2 + t4)− t12NA+11NF−10(1 + t2)
)

+
(
z2 + 1

z2

) (
t4NA+2NF−2 + t4NA+2NF − t4NA+4NF−4(1 + t2 + t4)

+ t4NA+8NF−4 − t12NA+4NF−6 + t12NA+8NF−10(1 + t2 + t4)

− t12NA+10NF−10(1 + t2)
)

+
(
z3 + 1

z3

) (
t8NA+3NF−2 − t8NA+5NF−6(1 + t2 + t4)

+ t8NA+7NF−8(1 + t2 + t4)− t8NA+9NF−8
)
. (8.33c)

One can check that R(NF , NA, t = 1, z) = 0 and dn

dtnR(NF , NA, t, z)|t=1,z=1 = 0 for

n = 1, 2. Thus, the Hilbert series (8.33) has a pole of order 6, which matches the dimension

of the moduli space. Moreover, one computes the degree of the numerator (8.33c) to be

12NF + 16NA − 10 and the degree of the denominator (8.33b) to be 12NF + 16NA − 4,

such that their difference equals the dimension of the moduli space. The interpretation

follows the results (8.12) obtained from the Hilbert bases and we summarise the minimal

generators in table 31.

Reduction to SU(3). Following the prescription (8.6), we derive the following

Hilbert series:

HS
[1,0]+[1,1]
SU(3) (NF , NA, t) =

R(NF , NA, t)

(1− t4) (1− t6) (1− t8NA+2NF−8) (1− t12NA+4NF−12)
, (8.34a)

R(NF , NA, t) = 1 + t8NA+2NF−6(2 + 2t2 + t4) (8.34b)

+ t12NA+4NF−12(1 + 2t2 + 2t4) + t20NA+6NF−14 .

An inspection yields that the numerator (8.34b) is a palindromic polynomial of degree

20NA + 6NF − 14; while the degree of the denominator is 20NA + 6NF − 10. Thus, the

difference in the degrees is 4, which equals the complex dimension of the moduli space. In

addition, the Hilbert series (8.34) has a pole of order four at t→ 1, which agrees with the

dimension of Coulomb branch as well.

The minimal generators of (8.17) are given by V
dress,(0,0)

(1,0) with 2∆(1, 0)=8NA+2NF−8,

and V dress,0
(1,1) and V dress,0

(2,−1) with 2∆(2,−1) = 2∆(1, 1) = 12NA + 4NF − 12. The dressed

monopole operators are as described in subsection 8.3.2.
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8.4.2 N hypermultiplets in [1, 0] representation

Considering N hypermultiplets in the fundamental representation is on extreme case

of (8.4), as NA = 0 = NR. We recall the results of [5] and discuss them in the context of

Hilbert bases for semi-groups.

Intermediate step at U(3). The Hilbert series has been computed to read

HS
[1,0]
U(3)(N, t, z) =

3∏
j=1

1− t2N+2−2j

(1− t2j)(1− ztN+2−2j)(1− tN+2−2j

z )
. (8.35)

Notably, it is a complete intersection in which the (bare and dressed) monopole opera-

tors of GNO-charge (1, 0, 0) and (0, 0,−1) generate all other monopole operators. The to

be expected minimal generators (1, 1, 0), (0,−1,−1), (1, 1, 1), and (−1,−1,−1) are now

generated because

V dress,0
(1,1,0) = V dress,1

(1,0,0) + V dress,1
(0,1,0) , (8.36a)

V dress,0
(1,1,0) = V dress,2

(1,0,0) + V dress,2
(0,1,0) + V dress,2

(0,0,1) . (8.36b)

Reduction to SU(3). The reduction leads to

HS
[1,0]
SU(3)(N, t) =

1 + t2N−6 + 2t2N−4 + t2N−2 + t4N−8

(1− t4)(1− t6)(1− t2N−6)(1− t2N−8)
. (8.37)

Although the form of the Hilbert series (8.37) is suggestive: it has a pole of order 4 for

t→ 1 and the numerator is palindromic, there is one drawback: no monopole operator of

conformal dimension (2N − 6) exists. Therefore, we provide a equivalent rational function

to emphasis the minimal generators:

HS
[1,0]
SU(3)(N, t) =

1 + t2N−6(2 + 2t2 + t4) + t4N−12(1 + 2t2 + 2t4) + t6N−14

(1− t4)(1− t6)(1− t2N−8)(1− t4N−12)
. (8.38)

The equivalent form (8.38) still has a pole of order 4 and a palindromic numerator.

Moreover, the monopole generators are clearly visible, as we know the set of minimal

generators (8.17), and can be summarise for completeness: 2∆(1, 0) = 2N − 8 and

2∆(1, 1) = 2∆(2,−1) = 4N − 12.

8.4.3 N hypermultiplets in [1, 1] representation

Investigating N hypermultiplets in the adjoint representation is another extreme case

of (8.4) as NF = 0 = NR. The conformal dimension in this circumstance reduces to

∆(m1,m2,m3) = (N − 1)
∑
i<j

|mi −mj | , (8.39)

and we notice that there is the shift symmetry mi → mi+a present. Due to this, the naive

calculation of the U(3) Hilbert series is divergent, which we understand as follows: define

overall U(1)-charge M := m1 +m2 +m3, then the Hilbert series becomes

HS
(1,1)
U(3) =

∑
M∈Z

∑
m1,m2

m1≥max (m2,M−2m2)

t2(N−1)(3m1+3m2−2M+|m1−m2|) zM PU(3)(t,m1,m2,m3) .

(8.40)
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Since we want to use the U(3)-calculation as an intermediate step to derive the SU(3)-case,

the only meaningful choice to fix the shift-symmetry is m1 +m2 +m3 = 0. But then

HS
(1,1)
U(3),fixed =

∑
m1,m2

m1≥max (m2,−2m2)

t2(N−1)(3m1+3m2+|m1−m2|) PU(3)(t,m1,m2,−m1 −m2)

(8.41)

and the transition to SU(3) is simply

HS
(1,1)
SU(3) = (1− t2)

∫
|z|=1

dz

2πz

×
∑
m1,m2

m1≥max (m2,−2m2)

t2(N−1)(3m1+3m2+|m1−m2|) PU(3)(t,m1,m2,−m1−m2)

=
∑
m1,m2

m1≥max (m2,−2m2)

t2(N−1)(3m1+3m2+|m1−m2|) PSU(3)(t,m1,m2) . (8.42)

The computation then yields

HS
(1,1)
SU(3) =

1 + t8N−6(2 + 2t2 + t4) + t12N−12(1 + 2t2 + 2t4) + t20N−14

(1− t4) (1− t6) (1− t8N−8) (1− t12N−12)
. (8.43)

We see that numerator of (8.43) is a palindromic polynomial of degree 20N −14; while the

degree of the denominator is 20N − 10. Hence, the difference in the degrees is 4, which

coincides with the complex dimension of the moduli space. The same holds for the order

of the pole of (8.43) at t→ 1.

The interpretation of the appearing monopole operators, and their dressings, is

completely analogous to (8.34) and reproduces the picture concluded from the Hilbert

bases (8.12). To be specific, 2∆(1, 0) = 8N − 8 and 2∆(1, 1) = 2∆(2,−1) = 12N − 12.

8.4.4 N hypers in [3, 0] representation

Intermediate step at U(3). The conformal dimension reads

∆(m1,m2,m3) =
3

2
N
∑
i

|mi|+ (N − 1)
∑
i<j

|mi −mj | . (8.44)

We then obtain for N > 2 the Hilbert series:

HS
[3,0]
U(3)(t, z) =

R(N, t, z)

P (N, t, z)
, (8.45a)

P (N, t, z) =

3∏
j=1

(
1− t2j

) (
1− 1

z t
7N−4

) (
1− zt7N−4

) (
1− 1

z2
t10N−4

)
×
(
1− z2t10N−4

) (
1− 1

z3
t9N
) (

1− z3t9N
)
, (8.45b)

R(N, t, z) = 1 + t14N−2 − t18N − t20N−8 − 2t20N−6 − 2t20N−4 + 2t26N−8 − 2t26N−2

+ 2t32N−6 + 2t32N−4 + t32N−2 + t34N−10 − t38N−8 − t52N−10
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(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) 7N − 4 U(1)×U(2)

(1, 1, 0) (0,−1,−1) 10N − 4 U(1)×U(2)

(1, 1, 1) (−1,−1,−1) 9N U(3)

Table 32. The monopole generators for a U(3) gauge theory with matter transforming in [3, 0]

that together with the Casimir invariants generate the chiral ring.

+ (z + 1
z )
(
t7N−2 + t7N − t17N−6 − t17N−4 − t19N−4 − t19N−2 − t19N

+ t25N−4 − t27N−6 + t33N−10 + t33N−8 + t33N−6 + t35N−6

+ t35N−4 − t45N−10 − t45N−8
)

+ (z2 + 1
z2

)
(
t10N−2 + t10N − t16N−4 − t16N−2 − t16N − t24N−6

+ t28N−4 + t36N−10 + t36N−8 + t36N−6 − t42N−10 − t42N−8
)

+ (z3 + 1
z3

)
(
t17N−2 − t23N−6 − t23N−4 − t23N−2

+ t29N−8 + t29N−6 + t29N−4 − t35N−8
)
. (8.45c)

The Hilbert series (8.45) has a pole of order 6 as t → 1, because R(N, t = 1, z) = 0 and
dn

dtnR(N, t, z)|t=1 = 0 for n = 1, 2. Therefore, the moduli space is 6-dimensional. Also, the

degree of (8.45c) is 52N − 10, while the degree of (8.45b) us 52N − 4; thus, the difference

in degrees equals the dimension of the moduli space.

As this example is merely a special case of (8.33), we just summarise the minimal

generators in table 32.

Reduction to SU(3). The Hilbert series reads

HS
[3,0]
SU(3)(t) =

1 + t14N−6(2 + 2t2 + t4) + t24N−12(1 + 2t2 + 2t4) + t38N−14

(1− t4) (1− t6) (1− t14N−8) (1− t24N−12)
. (8.46)

It is apparent that the numerator of (8.46) is a palindromic polynomial of degree 38N−14;

while the degree of the denominator is 38N − 10; hence, the difference in the degrees is 4,

which equals the complex dimension of the moduli space.

The structure of (8.46) is merely a special case of (8.34), and the conformal dimensions

of the minimal generators are 2∆(1, 0) = 14N − 8 and 2∆(1, 1) = 2∆(2,−1) = 24N − 12.

8.5 Category NR 6= 0

8.5.1 NF hypers in [2, 1], NA hypers in [1, 1], NR hypers in [2, 1] representation

Intermediate step at U(3). The conformal dimension reads

2∆(m1,m2,m3) = (4NR +NA)

3∑
i=1

|mi|+NR

∑
i<j

(|2mi −mj |+ |mi − 2mj |) (8.47)

+ 2(NA − 1)
∑
i<j

|mi −mj | .
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The Hilbert series reads

HS
[1,0]+[1,1]+[2,1]
U(3) (t, z) =

R(NF , NA, NR, t, z)

P (NF , NA, NR, t, z)
, (8.48a)

with

P (NF , NA, NR, t, z) =

3∏
j=1

(
1− t2j

)(
1− tNF+4NA+10NR−4

z

)(
1− ztNF+4NA+10NR−4

)
×
(

1− t2NF+4NA+16NR−4

z2

)(
1− z2t2NF+4NA+16NR−4

)
×
(

1− t3NF+18NR

z3

)(
1− z3t3NF+18NR

)
×
(

1− t3NF+8NA+24NR−8

z3

)(
1− z3t3NF+8NA+24NR−8

)
×
(

1− t4NF+4NA+24NR−4

z4

)(
1− z4t4NF+4NA+24NR−4

)
×
(

1− t5NF+4NA+30NR−4

z5

)(
1− z5t5NF+4NA+30NR−4

)
×
(

1− t7NF+12NA+46NR−12

z7

)(
1− z7t7NF+12NA+46NR−12

)
,

(8.48b)

and the numerator R(NF , NA, NR, t, z) is too long to be displayed, because it con-

tains 28650 monomials. We checked explicitly that R(NF , NA, NR, t = 1, z) = 0 and
dn

dtnR(NF , NA, NR, t, z)|t=1,z=1 = 0 for all n = 1, 2 . . . , 10. Therefore, the Hilbert se-

ries (8.48) has a pole of order 6 at t = 1, which equals the dimension of the moduli space.

In addition, R(NF , NA, NR, t, z) is a polynomial of degree 50NF + 72NA + 336NR − 66,

while the denominator (8.48b) is of degree 50NF + 72NA + 336NR − 60. The difference in

degrees reflects the dimension of the moduli space as well.

Following the analysis of the Hilbert bases (8.19), we identify the bare monopole op-

erators and provide their conformal dimensions in table 33. The result (8.48) has been

tested against the independent calculations of the cases: N hypermultiplets in [1, 0]; NF

hypermultiplets in [1, 0] together with NA hypermultiplets in [1, 1]; and N hypermultiplets

in [2, 1]. All the calculations agree.

Reduction to SU(3). The Hilbert series for the SU(3) theory reads

HS
[1,0]+[1,1]+[2,1]
SU(3) (NF , NA, NR, t) =

R(NF , NA, NR, t)

P (NF , NA, NR, t)
, (8.49a)

P (NF , NA, NR, t) =
(
1− t4

) (
1− t6

) (
1− t2NF+8NA+20NR−8

)
(8.49b)

×
(
1− t4NF+12NA+36NR−12

) (
1− t6NF+20NA+54NR−20

)
,

R(NF , NA, NR, t) = 1 + t2NF+8NA+20NR−6(2 + 2t2 + t4) (8.49c)

+ t4NF+12NA+36NR−12(1 + 2t2 + 2t4)
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(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) NF + 4NA + 10NR − 4 U(1)×U(2)

(1, 1, 0) (0,−1,−1) 2NF + 4NA + 16NR − 4 U(1)×U(2)

(1, 1, 1) (−1,−1,−1) 3NF + 18NR U(3)

(2, 1, 0) (0,−1,−2) 3NF + 8NA + 24NR − 8 U(1)3

(2, 1, 1) (−1,−1,−2) 4NF + 4NA + 24NR − 4 U(1)×U(2)

(2, 2, 1) (−1,−2,−2) 5NF + 4NA + 30NR − 4 U(1)×U(2)

(3, 2, 1) (−1,−2,−3) 6NF + 8NA + 38NR − 8 U(1)3

(4, 2, 1) (−1,−2,−4) 7NF + 12NA + 46NR − 12 U(1)3

Table 33. The monopole generators for a U(3) gauge theory with a mixture of matter transforming

in [1, 0], [1, 1], and [2, 1].

+ t6NF+20NA+54NR−20(1 + 4t2 + 4t4 + 2t6)

− t6NF+20NA+56NR−20(2 + 4t2 + 4t4 + t6)

− t8NF+28NA+74NR−26(2 + 2t2 + t4)

− t10NF+32NA+90NR−32(1 + 2t2 + 2t4)− t12NF+40NA+110NR−34 .

Again, the numerator (8.49c) is an anti-palindromic polynomial of degree 12NF + 40NA +

110NR − 34; while the denominator (8.49b) is of degree 12NF + 40NA + 110NR − 30, such

that the difference is again 4.

The minimal generators from (8.19) are now realised with the following conformal

dimensions: 2∆(1, 0) = 2NF + 8NA + 20NR − 8, 2∆(1, 1) = 2∆(2,−1) = 4NF + 12NA +

36NR−12 , and 2∆(2, 1) = 2∆(3,−1) = 6NF +20NA+54NR−20. Moreover, the appearing

dressed monopoles are as described in subsection 8.3.2.

Remark. The SU(3) result (8.49) has been tested against the independent calculations

of the cases: N hypermultiplets in [1, 0]; N hypermultiplets in [1, 1]; NF hypermultiplets

in [1, 0] together with NA hypermultiplets in [1, 1]; and N hypermultiplets in [2, 1]. All the

calculations agree.

Dressings of (2, 1) and (3,−1). From the generic analysis (8.19) the bare monopoles

of GNO-charges (3,−1) and (2, 1) are necessary generators. However, not all of their

dressings need to be independent generators, cf. appendix A.

• NR = 0: (2, 1) and (3,−1) are generated by (1, 0), (1, 1), and (2,−1), which is the

generic result of (8.17).

• NR = 1: here, (2, 1) and (3,−1) are independent, but not all of their dressings, as

we see

(2, 1) = (1, 1) + (1, 0) and ∆(2, 1) + 1 = ∆(1, 1) + ∆(1, 0) . (8.50)
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Hence, only one of the degree one dressings V
dress,(1,0)

(2,1) , V
dress,(0,1)

(2,1) is independent,

while the other can be generated. (Same holds for (3,−1).)

• NR = 2: here, (2, 1) and (3,−1) are independent, but not all of their dressings, as

we see

(2, 1) = (1, 1) + (1, 0) and ∆(2, 1) + 2 = ∆(1, 1) + ∆(1, 0) . (8.51)

Hence, only one of the degree two dressings V
dress,(2,0)

(2,1) , V
dress,(0,2)

(2,1) is independent,

while the other can be generated. However, both degree one dressings V
dress,(1,0)

(2,1) ,

V
dress,(0,1)

(2,1) are independent. (Same holds for (3,−1).)

• NR = 3: here, (2, 1) and (3,−1) are independent, but still not all of their dressings,

as we see

(2, 1) = (1, 1) + (1, 0) and ∆(2, 1) + 3 = ∆(1, 1) + ∆(1, 0) . (8.52)

Hence, the degree three dressing V
dress,(3,0)+(0,3)

(2,1) is not independent. However, both

degree one dressings V
dress,(1,0)

(2,1) , V
dress,(0,1)

(2,1) and both degree two dressings V
dress,(2,0)

(2,1) ,

V
dress,(0,2)

(2,1) are independent. (Same holds for (3,−1).)

• NR ≥ 4: the bare and the all dressed monopoles corresponding to (2, 1) and (3,−1)

are independent.

8.5.2 N hypers in [2, 1] representation

Intermediate step at U(3). The conformal dimension reads

2∆(m1,m2,m3) = 4N
3∑
i=1

|mi|+N
∑
i<j

(|2mi −mj |+ |mi − 2mj |)− 2
∑
i<j

|mi −mj | .

(8.53)

From the calculations we obtain the Hilbert series

HS
[2,1]
U(3)(N, t, z) =

R(N, t, z)

P (N, t, z)
, (8.54a)

P (N, t, z) =

3∏
j=1

(
1− t2j

)(
1− t10N−4

z

)(
1− zt10N−4

)(
1− t16N−4

z2

)(
1− z2t16N−4

)
×
(

1− t18N

z3

)(
1− z3t18N

)(
1− t24N−8

z3

)(
1− z3t24N−8

)
×
(

1− t24N−4

z4

)(
1− z4t24N−4

)(
1− t30N−4

z5

)(
1− z5t30N−4

)
×
(

1− t46N−12

z7

)(
1− z7t46N−12

)
, (8.54b)
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(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) 10N − 4 U(1)×U(2)

(1, 1, 0) (0,−1,−1) 16N − 4 U(1)×U(2)

(1, 1, 1) (−1,−1,−1) 18N U(3)

(2, 1, 0) (0,−1,−2) 24N − 8 U(1)3

(2, 1, 1) (−1,−1,−2) 24N − 4 U(1)×U(2)

(2, 2, 1) (−1,−2,−2) 30N − 4 U(1)×U(2)

(3, 2, 1) (−1,−2,−3) 38N − 8 U(1)3

(4, 2, 1) (−1,−2,−4) 46N − 12 U(1)3

Table 34. The monopole generators for a U(3) gauge theory with matter transforming in [2, 1]

that generate the chiral ring (together with the Casimir invariants).

and the numerator R(N, t, z) is with 13492 monomials too long to be displayed. Never-

theless, we checked explicitly that R(N, t = 1, z) = 0 and dn

dtnR(N, t, z)|t=1,z=1 = 0 for all

n = 1, 2 . . . , 10. Therefore, the Hilbert series (8.54) has a pole of order 6 at t = 1, which

equals the dimension of the moduli space. In addition, the degree of R(N, t, z) is 296N−62,

while the denominator (8.54b) is of degree 296N − 56; therefore, the difference in degrees

is again equal to the dimension of the moduli space.

The Hilbert series (8.54) appears as special case of (8.48) and as such the appearing

monopole operators are the same. For completeness, we provide in table 34 the conformal

dimensions of all minimal (bare) generators (8.15). The GNO-charge (3, 2, 1) is not appar-

ent in the Hilbert series, but we know it to be present due to the analysis of the Hilbert

bases (8.15).

Reduction to SU(3). After reduction (8.6) of (8.54) to SU(3) we obtain the following

Hilbert series:

HS
(2,1)
SU(3) =

R(N, t)

(1− t4) (1− t6) (1− t20N−8) (1− t36N−12) (1− t54N−20)
, (8.55a)

R(N, t) = 1 + t20N−6(2 + 2t2 + t4) + t36N−12(1 + 2t2 + 2t4) (8.55b)

+ t54N−20(1 + 4t2 + 4t4 + 2t6)− t56N−20(2 + 4t2 + 4t4 + t6)

− t74N−26(2 + 2t2 + t4)− t90N−32(1 + 2t2 + 2t4)− t110N−34 .

The numerator of (8.55b) is an anti-palindromic polynomial of degree 110N − 34; while

the numerator is of degree 110N − 30. Consequently, the difference in degree reflects the

complex dimension of the moduli space.

The Hilbert series (8.55) is merely a special case of (8.49) and, thus, the appear-

ing (bare and dressed) monopole operators are the same. For completeness we provide

their conformal dimensions: 2∆(1, 0) = 20N − 8, 2∆(1, 1) = 2∆(2,−1) = 36N − 12, and

2∆(2, 1) = 2∆(3,−1) = 54N − 20.
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9 Conclusions

In this paper we introduced a geometric concept to identify and compute the set of bare

and dressed monopole operators that are sufficient to describe the entire chiral ring C[MC ]

of any 3-dimensional N = 4 gauge theory. The methods can be summarised as follows:

1. The matter content together with the positive roots of the gauge group G define

the conformal dimension, which in turn defines an arrangement of hyperplanes that

divide the dominant Weyl chamber of Ĝ into a fan.

2. The intersection of the fan with the weight lattice of the GNO-dual group leads to

a collection of affine semi-groups. All semi-groups are finitely generated and the

unique, finite basis is called Hilbert basis.

3. The knowledge of the minimal generators, together with their properties SU(2)R-spin,

residual gauge group Hm, and topological charges J(m), is sufficient to explicitly sum

and determine the Hilbert series as rational function.

Utilising the fan and the Hilbert bases for each semi-group also allows to deduce the

dressing behaviour of monopole operators. The number of dressed operators is determined

by a ratio of orders of Weyl groups, while the degrees are determined by the ratio of the

dressing factors associated to the GNO-charge m divided by the dressing factor of the

trivial monopole m = 0.

Most importantly, the entire procedure works for any rank of the gauge group, as

indicated in section 8 for U(3). For the main part of the paper, we, however, have chosen

to provide a comprehensive collection of rank two examples.

Before closing, let us outline and comment on the approach to higher rank cases.

(a) The gauge group G determines the GNO-dual group Ĝ and the corresponding dom-

inant Weyl chamber (or the product of several Weyl chambers). The Weyl chamber

is understood as finite intersection of positive half-spaces H+
α ⊂ t, where α ranges

over all simple roots of G. (If G is a product, then the roots of one factor have to be

embedded in a higher dimensional vector space.)

(b) The relevant weights µi, as identified in section 2.2, define a finite set of cones via

the intersection of all possible upper and lower half-spaces with the Weyl chamber.

This step can, for instance, be implemented by means of the package Polyhedra of

Macaulay2.

(c) Having defined all cones in Macaulay2, one computes the dimension and the Hilbert

basis for each cone. Identifying all cones C
(rk(G))
p of the maximal dimension rk(G)

can typically reduce the number of cones one needs to consider.

(d) Define the fan F = {C(rk(G))
p |p = 1, . . . , L} generated by all top-dimensional cones in

Macaulay2. This step is the computationally most demanding process so far.
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(e) Next, one employs the inclusion-exclusion principle for each cone in the fan: that is

the number of points in the (relative) interior Int(S(p)) := Relint(C(p)) ∩ Λw(Ĝ) is

given by

#|Int(S(p))| = |S(p)| −

( κp∑
j=1

|S(p−1)
j | −

∑
1≤i<j≤κp

|S(p−1)
i ∩ S(p−1)

j | (9.1a)

+
∑

1≤i<j<k≤κp

|S(p−1)
i ∩ S(p−1)

j ∩ S(p−1)
k | − . . .

+ (−1)κp−1

∣∣∣∣∣
κp⋂
i=1

S
(p−1)
i

∣∣∣∣∣
)

≡ |S(p)| − |∂S(p)| , (9.1b)

where the S
(p−1)
j for j = 1, . . . , κp are the semi-groups resulting from the facets of

C(p). Note that the last term
⋂κp
i=1 S

(p−1)
i equals the trivial semi-group, while the

intermediate intersections give rise to all lower dimensional semi-groups contained in

the boundary of S(p). Then, the contribution for Int(S(p)) to the monopole formula

is computed as follows:

HS(S(p); t) := PG(t;S(p)) · [HS(p)(t)−H∂S(p)(t)] , (9.2a)

HS(p)(t) :=
∑

m∈S(p)

zJ(m) t∆(m) , (9.2b)

H∂S(p)(t) :=

κp∑
j=1

H
S
(p−1)
j

(t)−
∑

1≤i<j≤κp

H
S
(p−1)
i ∩S(p−1)

j

(t) (9.2c)

+
∑

1≤i<j<k≤κp

H
S
(p−1)
i ∩S(p−1)

j ∩S(p−1)
k

(t)− . . .+ (−1)κp−1H⋂κp
i=1 S

(p−1)
i

(t) .

Each contribution HS(p)(t) is evaluated as discussed in section 2.4 and 2.5. Although

this step is algorithmically simple, it can be computationally demanding. It is, how-

ever, crucial that the fan F has been defined, in order to work with the correct faces

of each cone and to sum over each cone in the fan only once.

(f) Finally, one has to add all contributions

HS(F ; t) =
∑
C∈F

HS(S) . (9.3)

This last step is a simple sum, but to obtain the Hilbert series as a rational function

in a desirable form can be cumbersome.

Equipped with this procedure, we hope to report on Coulomb branches for higher rank

gauge groups and quiver gauge theories in the future.
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A Plethystic logarithm

In this appendix we summarise the main properties of the plethystic logarithm. Starting

with the definition, for a mulit-valued function f(t1, . . . , tm) with f(0, . . . , 0) = 1, one de-

fines

PL[f ] :=

∞∑
k=1

µ(k)

k
log
(
f(tk1, . . . , t

k
m)
)
, (A.1)

where µ(k) denote the Möbius function [30]. Some basic properties include

PL[f · g] = PL[f ] + PL[g] and PL

[
1∏

n(1− tn)an

]
=
∑
n

an t
n . (A.2)

Now, we wish to compute the plethystic logarithm. Given a Hilbert series as rational

function, i.e. of the form (2.28) or (2.35), the denominator can be taken care of by means

of (A.2), while the numerator is a polynomial with integer coefficients. In order to obtain

an approximation of the PL, we employ the following two equivalent transformations for

the numerator:

PL
[
1 + atn +O(tn+1)

]
= PL

[
(1− tn)a

(
1 + atn +O(tn+1)

)
(1− tn)a

]
= atn + PL

[
1 +O(tn+1)

]
, (A.3a)

PL
[
1− atn +O(tn+1)

]
= PL

[
(1− tn)a (1 + tn)a

(
1− atn +O(tn+1)

)
(1− t2n)a

]
= −atn + at2n + PL

[
1 +O(tn+1)

]
. (A.3b)

Now, we derive an approximation of the PL for a generic rank two gauge group in terms

of t∆. More precisely, consider the Hilbert basis {Xi} then we provide an approximation

of the PL up to second order, i.e.

PL = Casimir inv. +
{
t∆(Xi)-terms

}
+
{
t∆(Xi)+∆(Xj)-terms

}
+O

(
t∆(Xi)+∆(Xj)+∆(Xk)

)
(A.4)

Considering (2.28), the numerator is denoted by R(t), while the denominator Q(t) is

given by

Q(t) =

2∏
i=1

(1− tdi)
L∏
p=0

(
1− t∆(xp)

)
, (A.5)
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with di the degrees of the Casimir invariants. Then expand the numerator as follows:

R(t) = 1 +
L∑
q=0

(
PG(t, xq)

PG(t, 0)
− 1

)
t∆(xq) +

L∑
q=0

∑
s∈Int(P(C

(2)
q ))

PG(t, s)

PG(t, 0)
t∆(s) (A.6)

−
L∑

q,p=0
q 6=p

(
PG(t, xq)

PG(t, 0)
− 1

2

)
t∆(xp)+∆(xq) +

L∑
q=1

PG(t, C
(2)
q )

PG(t, 0)
t∆(xq−1)+∆(xq)

−
L∑
q=1

∑
s∈Int(P(C

(2)
q ))

L∑
r=0

r 6=q−1,q

PG(t, s)

PG(t, 0)
t∆(s)+∆(xr) .

Note that the appearing factor 1
2 avoids double counting when changing summation

∑
q<p

to
∑

q 6=p. Still, the numerator is a polynomial with integer coefficients. The PL then reads

PL [HSG(t)] =

2∑
i=1

tdi +

L∑
p=0

t∆(xp) + PL [R(t)] . (A.7)

By step (A.3a) we factor out the order t∆(xq) and t∆(s) terms. However, this introduces

further terms at order t∆(xq)+∆(s) and so forth, which are given by

−

 L∑
q=0

(
PG(t, xq)

PG(t, 0)
− 1

)
t∆(xq) +

L∑
q=1

∑
s∈Int(P(C

(2)
q ))

PG(t, s)

PG(t, 0)
t∆(s)


2

. (A.8)

Subsequently factoring the terms of this order by means of (A.3b), one derives at the

following expressing of the PL

PL [HSG(t)] =

2∑
i=1

tdi +

L∑
q=0

PG(t, xq)

PG(t, 0)
t∆(xq) +

L∑
q=1

∑
s∈Int(P(C

(2)
q ))

PG(t, s)

PG(t, 0)
t∆(s) (A.9)

−
L∑

q,p=0
q 6=p

(
PG(t, xq)

PG(t, 0)
− 1

2

)
t∆(xp)+∆(xq) +

L∑
q=1

PG(t, C
(2)
q )

PG(t, 0)
t∆(xq−1)+∆(xq)

−
L∑
q=1

∑
s∈Int(P(C

(2)
q ))

L∑
r=0

r 6=q−1,q

PG(t, s)

PG(t, 0)
t∆(s)+∆xr

−
L∑

q,p=0

(
PG(t, xq)

PG(t, 0)
− 1

)(
PG(t, xp)

PG(t, 0)
− 1

)
t∆(xq)+∆(xp)

− 2

L∑
p=0

L∑
q=1

(
PG(t, xp)

PG(t, 0)
− 1

) ∑
s∈Int(P(C

(2)
q ))

PG(t, s)

PG(t, 0)
t∆(xp)+∆(s)

−
L∑

q,p=1

∑
s∈Int(P(C

(2)
p ))

∑
s′∈Int(P(C

(2)
q ))

PG(t, s)

PG(t, 0)

PG(t, s′)

PG(t, 0)
t∆(s)+∆(s′)

+ PL
[
1 +O

(
t∆(Xi)+∆(Xj)+∆(Xj)

)]
.
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Strictly speaking, the truncation (A.9) is only meaningful if

max{∆(X)}+ max{di|i = 1, 2} < min{∆(X) + ∆(Y )} = 2 ·min{∆(X)}

for X,Y = xq or s , s ∈ Int(P(C(2)
p )), q = 0, 1, . . . , l

(A.10)

holds. Only in this case do the positive contributions, i.e. the generators, of the

first line in (A.9) not mix with the negative contributions, i.e. first syzygies or rela-

tions, of the remaining lines. Moreover, the condition (A.10) ensures that the remained

O
(
t∆(Xi)+∆(Xj)+∆(Xk)

)
does not spoil the truncation.

From the examples of section 3–8, we see that (A.10) is at most satisfied for scenarios

with just a few generators, but not for elaborate cases. Nevertheless, there are some

observations we summarise as follows:

• The bare and dressed monopole operators associated to the GNO-charge m are de-

scribed by PG(t,m)
PG(t,0) t

∆(m). In particular, we emphasis that the quotient of dressing

factors provides information on the number and degrees of the dressed monopole

operators.

• The previous observation provides an upper bound on the number of dressed

monopole operators associated to a magnetic weight m. In detail, the value of PG(t,m)
PG(t,0)

at t = 1 equals the number of bare and dressed monopole operators associated to m.

Let {di} and {bi}, for i = 1, . . . , rk(G) denote the degree of the Casimir invariants

for G and Hm, respectively. Then

# dressed monopoles

+1 bare monopole
= lim

t→1

PG(t,m)

PG(t, 0)
= lim
t→1

∏rk(G)
i=1

(
1− tdi

)∏rk(G)
j=1

(
1− tbj

)=

∏rk(G)
i=1 di∏rk(G)
j=1 bj

=
|WG|
|WHm |

,

(A.11)

where the last equality holds because the order of the Weyl group equals the product

of the degrees of the Casimir invariants. Since WHm ⊂ WG is a subgroup of the finite

group WG, Lagrange’s theorem implies that |WG|
|WHm |

∈ N holds.

The situation becomes obvious whenever m belongs to the interior of the Weyl cham-

ber, because Hm = T and thus

# dressed monopoles

+1 bare monopole

∣∣∣∣∣
interior of

Weyl chamber

= |WG| and
PG(t,m)

PG(t, 0)
=

rk(G)∏
i=1

di−1∑
li=0

tli . (A.12)

• The significance of the PL is limited, as, for instance, a positive contribution ∼
t∆(X1) can coincide with a negative contribution ∼ t∆(X2)+∆(X3), but this does not

necessarily imply that the object of degree ∆(X1) can be generated by others. The

situation becomes clearer if there exists an additional global symmetry Z(Ĝ) on the

moduli space. The truncated PL for (2.35) is obtained from (A.9) by the replacement

t∆(X) 7→ ~z
~J(X) t∆(X) . (A.13)

Then the “syzygy” ~z
~J(X2+X3)t∆(X2)+∆(X3) can cancel the “generator” ~z

~J(X1)t∆(X1)

only if the symmetry charges agree ~z
~J(X1) = ~z

~J(X2+X3), in addition to the

SU(2)R iso-spin.

Lastly, we illustrate the truncation with the two simplest examples:
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Example: one simplicial cone. For the Hilbert series (2.32) we obtain

PL =
2∑
i=1

tdi +
P1(t)

P0(t)

(
t∆(x0) + t∆(x1)

)
−
(

2
P1(t)

P0(t)
− 1− P2(t)

P0(t)

)
t∆(x0)+∆(x1) (A.14)

−
(
P1(t)

P0(t)

)2 (
t2∆(x0) + t2∆(x1) + 2t∆(x0)+∆(x1)

)
+ . . . .

Example: one non-simplicial cone. In contrast, for the Hilbert series (2.33) we ar-

rive at

PL =

2∑
i=1

tdi +
P1(t)

P0(t)

(
t∆(x0) + t∆(x1)

)
+
∑

s∈IntP

P2(t)

P0(t)
t∆(s) (A.15)

−
(

2
P1(t)

P0(t)
− 1− P2(t)

P0(t)

)
t∆(x0)+∆(x1)

−
(
P1(t)

P0(t)

)2 (
t2∆(x0) + t2∆(x1) + 2t∆(x0)+∆(x1)

)
− 2

(
P1(t)

P0(t)
− 1

)
P2(t)

P0(t)

∑
s∈IntP

(
t∆(s)+∆(x0) + t∆(s)+∆(x1)

)
−
∑

s∈IntP

∑
s′∈IntP

(
P2(t)

P0(t)

)2

t∆(s)+∆(s′) + . . . .
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