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1 Introduction

Soliton solutions to nonlinear integrable wave equations play an important role in nonlinear

optics [1]. The first successful experiments to detect them have been carried out more than

forty years ago [2]. A particularly important and structurally rich class of solutions are

multi-soliton solution which asymptotically behave as individual one-soliton waves. This

feature allows to view N -soliton solutions as the scattering of N single one-solitons with

different energies.

In analogy to von Neumann’s avoided level crossing mechanism in quantum mechan-

ics [3], it is in general not possible to construct multi-soliton solutions possessing asymp-

totically several one-solitons at the same energy. The simple direct limit that equates two

energies in the expressions for the multi-solitons diverges in general. Some attempts have

been made in the past to overcome this problem. One may for instance construct slightly

modified multi-soliton solutions that allow for the execution of a limiting process towards

the same energy of some of the multi-particle constituents [4, 5]. However, even though the

solutions found are mathematically permissible, they always possess undesired singularities

at certain points in space-time and have infinite amounts of energy. These features make

them non-physical objects.

Inspired by the success of PT -symmetric quantum mechanics [6–8], many experi-

ments have been carried out in optical settings, exploiting the formal analogy between

the Schrödinger and the Helmholtz equation. In particular, the existence of complex soli-

ton solutions in such a framework has recently been experimentally [9–11] verified and

it was shown [12] that such type of solutions may posses real energies and lead to regu-

lar solutions despite being complex. Here we will employ a similar idea and demonstrate

that they can be used to overcome the above mentioned infinite energy problem related

to degenerate multi-soliton solutions. Starting from a quantum mechanical setting we
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show that the degeneracy is naturally implemented by so-called Jordan states [13] when

Darboux-Crum (DC) transforming [14–17] degenerate states of the Schrödinger equation.

Finiteness in the energy is achieved by carefully selected complex PT -symmetric shifts in

the dispersion terms.

Subsequently we show how such type of solutions are also obtainable from other stan-

dard techniques of integrable systems. For Hirota’s direct method [18] this can be achieved

by reparameterizing known solutions such that they will become suitable for a direct limit-

ing process that leads to degeneracy together with a fitting complexification that achieves

the regularization. For the other prominent scheme, the Bäcklund transformations we also

demonstrate how the limit can be carried out on a superposition of three solutions in a

convergent manner.

Here we consider in detail one of the prototype nonlinear wave equations, the Korteweg-

de Vries (KdV) equation [19], for the complex field u(x, t)

ut + 6uux + uxxx = 0, (1.1)

depending on time t and space x. When taking the complex field to be of the form

u(x, t) = p(x, t) + iq(x, t) with p(x, t), q(x, t) ∈ R and subsequently separating it into its

real and imaginary part one may view it as set of coupled equations for the real fields p(x, t)

and q(x, t). Those equation reduce to some well studied systems, the Hirota-Satsuma [20]

and Ito equations [21] in the limits (pq)x → pqx and qxxx → 0, respectively. The KdV

equation is known to arise from standard functional variation from the Hamiltonian density

H(u, ux) = −u3 +
1

2
u2
x. (1.2)

In general, for PT -symmetric models the energy

E =

∫ ∞
−∞
H[u(x, t)]dx =

∮
Γ
H[u(x, t)]

du

ux
, (1.3)

remains real despite the fact that the Hamiltonian density is complex [22]. The PT -

symmetry is realized as PT : x→ −x, t→ −t, i→ −i, u→ u, leaving (1.1) invariant. As

we will demonstrate below it is essential to have complex contributions to u in order to

render the energy finite.

Our manuscript is organized as follows: in section 2 we discuss the general mechanism

that allows to implement degeneracies into Darboux-Crum transformations. We show that

degenerate states in the Schrödinger equation need to be replaced by Jordan states in order

to obtain nonvanishing and finite, up to singularities, solutions. Subsequently we elaborate

in detail on the novel features of degenerate two and three soliton solutions and explain how

the regularizing shifts need to be implemented. In section 3 and 4 we explain how Hirota’s

direct method and nonlinear superpositions obtained from four Bäcklund transformations

need to be altered in order to allow for the construction of degenerate complex multi-soliton

solutions with finite energy. We state our conclusions in section 5.

– 2 –
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2 Degenerate complex multi-soliton solutions from DC transformations

2.1 Darboux-Crum transformations, generalities

The Darboux-Crum transformations [14–17] are well-known to generate covariantly an

entire hierarchy of Schrödinger equations to the same eigenvalue E = −λ2 in a recurrence

procedure. It allows to solve the hierarchy of equations

− ∂2
xψ

(n)
λ + V (n)ψ

(n)
λ = −λ2ψ

(n)
λ , n = 0, 1, 2, . . . (2.1)

with potentials

V (n)(λ1, . . . , λn) = V (n−1) − 2
(

lnψ
(n−1)
λ

)
xx

= V − 2 ln [W (ψλ1 , . . . , ψλn)]xx , (2.2)

by the wave functions

ψ
(n)
λ (λ1, . . . , λn) = D

ψ
(n−1)
λn

(
ψ

(n−1)
λ

)
=

n∏
k=1

D
ψ
(k−1)
λk

ψ
(0)
λ =

W
(
ψλ1 , . . . , ψλn , ψ

(0)
λ

)
W (ψλ1 , . . . , ψλn)

, (2.3)

for all λi 6= λj , i, j = 1, 2, 3, . . . with V (0) = V and ψ
(0)
λ = ψλ.

Here we will be dealing the degenerate when λi = λj for some i and j. Let us explain

this in detail: following [17] we recall here that in case of degeneracy one has to replace the

eigenstates of the Schrödinger equation by so-called Jordan states Ξ
(k)
λ defined as solutions

of the iterated Schrödinger equation

Ĥk+1Ξ
(k)
λ =

[
−∂2

x + V − E(λ)
]k+1

Ξ
(k)
λ = 0, (2.4)

with potential V and eigenvalue E(λ) depending on the spectral parameter λ. Thus for k =

0 the corresponding Jordan state simply becomes the eigenfunction of the Schrödinger equa-

tion, that is Ξ
(0)
λ = ψλ or Ξ

(0)
λ = φλ with φλ denoting the second fundamental solution to

the same eigenvalue E(λ) obtainable via Liouville’s formula φλ(x) = ψλ(x)
∫ x

[ψλ(s)]−2 ds

from the first solution ψλ. The general solution to (2.4) is easily seen to be

Ξ
(k)
λ =

k∑
l=0

clχ
(l)
λ +

k∑
l=0

dlΩ
(l)
λ , cl, dl ∈ R, (2.5)

with χ
(k)
λ := ∂kψλ/∂E

k and Ω
(k)
λ := ∂kφλ/∂E

k. Some identities that will be useful be-

low immediately arise from this. Differentiating the Schrödinger equation with respect to

E yields

Ĥ
[
χ

(1)
λ

]
= ψλ, and Ĥ

[
Ω

(1)
λ

]
= φλ, (2.6)

which can be employed to derive

Wx

(
ψλ, χ

(1)
λ

)
= −ψ2

λ, and Wx

(
φλ,Ω

(1)
λ

)
= −φ2

λ. (2.7)

Here W (·) denotes the Wronskians W (f, g) = fgx − gfx.

– 3 –
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Let us see how these states emerge naturally in degenerate DC-transformations. With

E(λ) = −λ2, the first iterative step in this procedure is simply to note that the equation

− ∂2
xψ

(1)
λ + V (1)ψ

(1)
λ = −λ2ψ

(1)
λ , (2.8)

with same eigenvalue as in (2.4) for k = 0, but new potential1

V (1) = V − 2 (lnψλ)xx (2.9)

is solved by

ψ
(1)
λ =

{
Dψλ(ψλ1) = W (ψλ, ψλ1)ψ−1

λ for λ 6= λ1

Dψλ(φλ) = ψ−1
λ for λ = λ1

, (2.10)

where Dψ(φ) := φx − (ψx/ψ)φ is the Darboux operator. The hierarchy of Schrödinger

equations is then obtained by repeated application of these transformations. It is clear

that a subsequent iteration of the degenerate solution in (2.10) will simply produce again

the potential V and hence nothing novel. However, using the second fundamental solution

φ
(1)
λ = ψ

(1)
λ (x)

∫ x [
ψ

(1)
λ (s)

]−2
ds to the level one equation yields something novel. In this

case the new potential becomes

V (2) = V (1) − 2
(

lnφ
(1)
λ

)
xx

= V (1) − 2

[
ln

(
1

ψλ(x)

∫ x

[ψλ(s)]2 ds

)]
xx

, (2.11)

= V − 2

[
ln

(∫ x

[ψλ(s)]2 ds

)]
xx

= V − 2

[
ln

(∫ x

Ws

(
ψλ, χ

(1)
λ

)
ds

)]
xx

,

= V − 2
[
ln
[
W
(
ψλ, χ

(1)
λ

)]]
xx
,

where we used identity (2.7) through which the Jordan states enter the iteration procedure.

The corresponding wave function to this potential is

ψ
(2)
λ = D

φ
(1)
λ

[Dψλ(φλ)] . (2.12)

Proceeding in this way, the solutions to the hierachy of equations (2.1) with potentials (2.2)

and wavefunctions (2.3) have to be replaced by

V (n)(λ) = V (n−1) − 2
(

lnφ
(n−1)
λ

)
xx

= V − 2 ln
[
W
(
ψλ, χ

(1)
λ , χ

(2)
λ , . . . , χ

(n−1)
λ

)]
xx
, (2.13)

ψ
(n)
λ =

n∏
k=1

D
φ
(k−1)
λ

(Dψλ(φλ)) =
W
(
ψλ, χ

(1)
λ , χ

(2)
λ , . . . , χ

(n−1)
λ , φλ

)
W
(
ψλ, χ

(1)
λ , χ

(2)
λ , . . . , χ

(n−1)
λ

) .

Evidently we may also chose to have a partial degeneracy keeping some of the λis different

from each other, in which case we simply have to replace consecutive ψλi by Jordan states.

For instance, taking λ1 6= λ2 and λ3 = λ4 = λ5 = λ we obtain the potential

V (5)(λ1, λ2, λ, λ, λ) = V − 2 ln
[
W
(
ψλ1 , ψλ2 , χ

(1)
λ , χ

(2)
λ , χ

(3)
λ

)]
xx
, (2.14)

with either λ = λ1 or λ = λ2. Notice from (2.11) the sequence of Jordan states always has

to accompanied by a χ
(0)
λ = ψλ. Let us now see how this procedure can be employed in

finding degenerate multi-soliton solutions by means of inverse scattering.

1Here and in what follows we always understand (ln f)x as a short hand notation for fx/f .
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2.2 Degenerate complex KdV multi-soliton solutions

The different methods in integrable systems take various equivalent forms of the KdV

equation as their starting point. The Darboux-Crum transformation exploits the fact

that the central operator equation underlying all integrable systems, the Lax equation

Lt = [M,L], may be written as a compatibility equation between the two linear equations

Lψ = λψ, and ψt = Mψ, with ψ = ψ(x, t, λ), λ ∈ R. (2.15)

For the KdV equation (1.1) the operators are well-known to take on the form

L = −∂2
x − u, and M = −4∂3

x − 6u∂x − 3ux. (2.16)

Thus L becomes a Sturm-Liouville operator, such that the first equation in (2.15) may be

viewed as the Schrödinger equation (2.1) with L ≡ H being interpreted as a Hamiltonian

operator. Considering now the free theory with u = 0 and taking the wave function in

the form ψ(kx + ωt), the second equation in (2.15) is solved by assuming the nonlinear

dispersion relation 4k3 + ω = 0. For λ = −α2/4 the two linear independent solutions

to (2.15) are simply

ψµ,α(x, t) = cosh

[
1

2
(αx− α3t+ µ)

]
, φµ,α(x, t) = sinh

[
1

2
(αx− α3t+ µ)

]
. (2.17)

We allowed here for a constant µ ∈ C in the argument and normalized the Wronskian as

W (ψ, φ) = ψφx − ψxφ = α/2. Suitably normalized, i.e. dropping overall factors, the first

Jordan states resulting from (2.17) are computed to

χ(1)
µ,α = 2

∂ψµ,α
∂α

=
(
x− 3α2t

)
φµ,α, (2.18)

χ(2)
µ,α = α

(
x− 3α2t

)2
ψµ,α − 2

(
x+ 3α2t

)
φµ,α, (2.19)

Ω(1)
µ,α = 2

∂φµ,α
∂α

=
(
x− 3α2t

)
ψµ,α, (2.20)

Ω(2)
µ,α = α

(
x− 3α2t

)2
φµ,α − 2

(
x+ 3α2t

)
ψµ,α. (2.21)

Using these explicit expressions the crucial identities (2.7) in the above argument

Wx

(
ψµ,α, χ

(1)
µ,α

)
= αψ2

µ,α, and Wx

(
φµ,α,Ω

(1)
µ,α

)
= αφ2

µ,α, (2.22)

are easily confirmed. We also verify

Ĥ
[
χ(1)
µ,α

]
= −αψµ,α, Ĥ

[
Ω(1)
µ,α

]
= −αφµ,α, Ĥ2

[
χ(2)
µ,α

]
= 2α3ψµ,α, Ĥ2

[
Ω(2)
µ,α

]
= 2α3φµ,α,

(2.23)

which yield the defining relations for the Jordan states upon a subsequent application of

the energy shifted Hamiltonian Ĥ as defined in (2.4).

– 5 –
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2.3 Degenerate two-solitons

To compute the degenerated two-soliton solution we use the above expressions to evaluate

the Wronskian W (ψµ,α, χ
(1)
µ,α) involving one Jordan state. As indicated in (2.5) we may

take the constants cl, dl different from zero, which we exploit here to generate suitable

regularizing shifts. First we compute

W
[
ψµ,α, χ

(1)
µ,α

]
= W

[
ψµ,α,

(
x− 3α2t

)
φµ,α

]
=
(
x− 3α2t

)
W [ψµ,α, φµ,α] + ψµ,αφµ,α

=
1

2

[
αx− 3α3t+ sinh

(
αx− α3t+ µ

)]
, (2.24)

where we used the identity (2.18) and the property of the Wronskian W (f, gh) = W (f, g)h+

fghx. We note that one of the dispersion terms already includes a shift µ. Next we demand

that also the dispersion term αx − 3α3t is shifted by a constant ν, which is uniquely

obtained from

W
[
ψµ,α, χ

(1)
µ,α +

ν

α
φµ,α

]
=

1

2

[
αx− 3α3t+ ν + sinh

(
αx− α3t+ µ

)]
. (2.25)

The degenerate two-soliton solution u = 2(lnW )xx resulting from (2.2) and (2.25) reads

uµ,ν;α,α(x, t) =
2α2

[(
αx− 3α3t+ ν

)
sinh

(
αx− α3t+ µ

)
− 2 cosh

(
αx− α3t+ µ

)
− 2
]

[αx− 3α3t+ ν + sinh (αx− α3t+ µ)]2
.

(2.26)

This solution becomes singular when the Wronskian vanishes, which is always the case

for some specific x and t when ν, µ ∈ R. However, for the PT -symmetric choice ν = iν̂,

µ = iµ̂, ν̂, µ̂ ∈ R this solution becomes regularized for a large range of choices for ν̂ and µ̂.

From

W =
1

2

[
cos µ̂ sinh

(
αx− α3t

)
+ αx− 3α3t

]
+ i
[
ν̂ + sin µ̂ cosh(αx− α3t)

]
, (2.27)

we observe that whenever ν̂/ sin µ̂ > −1 the imaginary part of W can not vanish and

therefore uµ,ν;α,α will be regular in that regime of the shift parameters. Furthermore, we

observe that uµ,ν;α,α involves two different dispersion term αx−α3t+µ and αx−3α3t+ν,

each with a separate shift. In the numerator the latter becomes negligible in the asymptotic

regimes where the degenerate two-soliton behaves as two single solitons traveling at the

same speed with one slightly decreasing and the other with slightly increasing amplitude

due to the time-dependent pre-factor. In the intermediate regime, when the linear term

αx − 3α3t term in the numerator contributes, it produces a scattering between the two

one-solitons with the same energy. We depict this behaviour in figure 1. In addition to the

regularization, this entire qualitative behaviour is due to the fact that our solutions are

complex. For a more detailed analytical discussion of the asymptotic behaviour we refer

the reader to [26].

We observe that the larger and smaller amplitudes have exchanged their relative po-

sition in the two asymptotic regimes with their mutual distance kept constant. This is

of course different from the standard nondegenerate case where the solitons continuously

approach each other before the scattering event and separate afterwards. Again this is

– 6 –
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Figure 1. Degenerated KdV two-soliton compound solution with α = β = 2, µ = iπ3/5 and

ν = iπ/5 at different times.

Figure 2. Degenerated KdV two-soliton compound solution with α = β = 2, µ = iπ/5 at fixed

moment in time t = −1 and varying shift parameter ν = νr + iπ3/5.

achieved through the complexification of our solution. Here the scattering is governed by

some internal breatherlike structure as in confined to a certain region.

As demonstrated in figure 2 this internal structure can be manipulated by varying the

shift ν.

For a fixed instance in time we can employ ν to increase or decrease the distance

between the single soliton amplitudes and even find a value such that the distance becomes

zero. However, this value is in the intermediate regime and as time evolves the two solitons

will separate again to some finite distance in the asymptotic regime.

Our interpretation is supported by the computation of the energies resulting from (1.3)

with Hamiltonian density (1.2) for the solution uµ,ν;α,α. Numerically we find the finite

real energies

Eµ,ν;α,α =

∫ ∞
−∞
H[uµ,ν;α,α, (uµ,ν;α,α)x]dx = −2

α5

5
= 2Eµ;α, (2.28)

i.e. precisely twice the energy of the one-soliton uµ;α, reported for instance in [12].

In order to compare with various other methods it is useful to note that the degenerate

Wronskians may be obtained in several alternative ways. We conclude this subsection

– 7 –
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by reporting how the expression for the Wronskian (2.25) can be derived by mean of a

limiting process directly from the two-soliton solution. This is seen from by starting from

the defining relation for the Jordan state χ(1)

W
[
ψµ,α, χ

(1)
µ,α

]
= 2 lim

β→α

∂

∂β
W [ψµ,α, ψµ,β ] (2.29)

= 2 lim
β→α

lim
h→0

W

[
ψµ,α,

ψµ,β+h − ψµ,β
h

]
(2.30)

= 2 lim
h→0

W

[
ψµ,α,

ψµ,α+h − ψµ,α
h

]
(2.31)

= 2 lim
h→0

1

h
W [ψµ,α, ψµ,α+h] (2.32)

= 2 lim
β→α

1

β − α
W [ψµ,α, ψµ,β ] , (2.33)

where in the last step we chose h = β−α. The shift can now be implemented by determining

λ from the limit of the expression

W [ψµ+λν,α, ψµ−λν,β ] = W [ψµ,α, ψµ,β ] cosh2

(
λν

2

)
−W [φµ,α, φµ,β ] sinh2

(
λν

2

)
(2.34)

+
1

2
sinh (λν) [W [φµ,α, ψµ,β ]−W [ψµ,α, φµ,β ]] .

It it is obvious that for the limit (2.33) of the shifted expression to be finite we require

λ ∼ (α − β) with constant of proportionality chosen in such a way that it yields 1/2α in

the limit. Hence we obtain

W
[
ψµ,α, χ

(1)
µ,α +

ν

α
φµ,α

]
= 2 lim

β→α

1

β − α
W

[
ψ
µ+α−β

α+β
ν,α
, ψ

µ−α−β
α+β

ν,β

]
, (2.35)

= 2 lim
β→α

Wβ

[
ψ
µ+α−β

α+β
ν,α
, ψ

µ−α−β
α+β

ν,β

]
. (2.36)

These identities will be useful below when we relate this approach to Hirota’s direct method.

2.4 Degenerate three-solitons

To find the degenerate three-soliton solution we may once again compute the Wronskian,

albeit now involving two Jordan states. As discussed in the previous section, the expression

for W (ψµ,α, χ
(1)
µ,α, χ

(2)
µ,α) will inevitably lead to solutions with infinite energy. Thus we will

again exploit (2.5) with nonvanishing constants cl, dl to generate the regularizing PT -

symmetric shifts. Demanding regularized shifts, the coefficients in the generically expanded

Jordan states are uniquely fixed as

W

[
ψµ,α, χ

(1)
µ,α +

ρ

α
φµ,α, χ

(2)
µ,α + 2ρ Ω(1)

µ,α +
2ν − 4ρ

α
φµ,α

]
= α

[
1 +

(
η(3)
ρ;α

)2
+ cosh

(
η(1)
µ;α

)]
sinh

(
η

(1)
µ;α

2

)
− αη(9)

ν;α cosh

(
η

(1)
µ;α

2

)
, (2.37)

– 8 –
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Figure 3. Degenerated KdV three-soliton compound solution with α = β = γ = 2, µ = iπ3/5,

ν = iπ3/10 and ρ = iπ/10.

where we abbreviated the different dispersion terms as

η(λ)
µ;α := αx− λα3t+ µ, (2.38)

Notice that we have now three different shifted dispersion terms η
(1)
µ;α, η

(3)
ρ;α and η

(9)
ν;α, where

the first governs the asymptotic behaviour and the remaining ones the additional structure

in the intermediate regime. The solution uµ,ν,ρ;α,α,α = 2(lnW )xx is depicted in figure 3.

We observe that asymptotically we have three single one-solitons moving at the same

speed. They exchange their positions in the intermediate region near the origin, when the

linear terms in (2.37) contribute.

For the general three-soliton solution we have also additional options available, namely

to produce the degeneracy only in two of the one-solitons while keeping the remaining one

at a different velocity. A suitable choice that produces the desired shifts is

W
[
ψµ,α, χ

(1)
µ,α +

ν

α
φµ,α, ψρ,γ

]
=

[
α2 + γ2

8
sinh

(
η(1)
µ;α

)
− α2 − γ2

8
η(3)
ν;α

]
cosh

(
η

(1)
ρ;γ

2

)

−αγ
2

cosh2

(
η

(1)
µ;α

2

)
sinh

(
η

(1)
ρ;γ

2

)
. (2.39)

We depict the corresponding KdV solution uµ,ν,ρ;α,α,γ = 2(lnW )xx in figure 4.

We clearly observe that asymptotically we have a degenerated two-soliton and a one-

soliton solution with the faster two-soliton overtaking the slower one-soliton.

Let us finish this section by reporting an alternative form of the degenerate three-

soliton solution suitable for a comparison with other methods. We find

W

[
ψµ,α, χ

(1)
µ,α +

ρ

α
φµ,α, χ

(2)
µ,α + 2ρΩ(1)

µ,α +
2ν − 4ρ

α
φµ,α

]
= 16α lim

γ,β→α

1

(α− β)(α− γ)(γ − β)
W
[
ψµ+f(α,β,γ),α, ψµ+f(β,γ,α),β , ψµ+f(γ,α,β),γ

]
(2.40)

= 8α lim
γ,β→α

Wβγγ

[
ψµ+f(α,β,γ),α, ψµ+f(β,γ,α),β , ψµ+f(γ,α,β),γ

]
, (2.41)

– 9 –



J
H
E
P
0
9
(
2
0
1
6
)
0
0
8

Figure 4. Degenerated KdV two-soliton compound solution scattering with a one-soliton with

α = β = 2, γ = 1.7, µ = iπ3/5, ν = iπ3/10 and ρ = iπ/10.

where we introduced the shift function

f(x, y, z) :=
4

9

[
x2 + yz

(x+ y)(x+ z)
− 2

x(y2 + z2)

(x+ y)(x+ z)(y + z)

]
ν +

4

3

x2 − yz
(x+ y)(x+ z)

ρ. (2.42)

It will be important below to note that the sum of all shifts adds up to zero, f(α, β, γ) +

f(β, γ, α) + f(γ, α, β) = 0.

Once again our interpretation is supported by the computation of the corresponding

energies. Numerically we find

Eµ,ν,ρ;α,α,α =

∫ ∞
−∞
H[uµ,ν,ρ;α,α,α, (uµ,ν,ρ;α,α,α)x]dx = −3

α5

5
= 3Eµ;α, (2.43)

Eµ,ν,ρ;α,α,γ =

∫ ∞
−∞
H[uµ,ν,ρ;α,α,γ , (uµ,ν,ρ;α,α,γ)x]dx = −2

α5

5
− γ5

5
= 2Eµ;α + Eµ;γ , (2.44)

which are again finite and real energies irrespective of whether the shifts are taken to be

complex or real.

3 Degenerate complex multi-soliton solutions from Hirota’s direct

method

Hirota’s direct method [18] takes a different equivalent form for nonlinear wave equations

as starting point. The system at hand, the KdV equation (1.1), can be converted into

Hirota’s bilinear form (
D4
x +DxDt

)
τ · τ = 0, (3.1)

by means of the variable transformation u = 2(ln τ)xx. The required combination of Hirota

derivatives in terms of ordinary derivatives are

D4
xτ · τ = 2τxxxxτ − 4τxxxτx + 6τxxτxx, (3.2)

DxDtτ · τ = 2τxtτ − 2τxτt. (3.3)

– 10 –
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The τ -function can be identified with the Wronskian in the previous section, up to the

ambiguity of an overall factor exp [c1x+ c2 + f(t)] with arbitrary constants c1, c2 and

function f(t). Remarkably equation (3.1) can be solved with a perturbative Ansatz τ =∑∞
k=0 ε

kτk in an exact manner, meaning that this series terminates at N -th order in ε for

the corresponding N -soliton solution. Order by order one needs to solve the following set

of linear equations (
D4
x +DxDt

) (
1 · τ1 + τ1 · 1

)
= 2(τ1)xt + 2(τ1)xxxx = 0, (3.4)(

D4
x +DxDt

) (
1 · τ2 + τ1 · τ1 + τ2 · 1

)
= 0, (3.5)(

D4
x +DxDt

) (
1 · τ3 + τ1 · τ2 + τ2 · τ1 + τ3 · 1

)
= 0. (3.6)

Let us first see how the Hirota equations are solved using Wronskians involving Jor-

dan states. We start with the two-soliton solution and take τ1 = Wx

[
ψ, χ(1)

]
. Using

identity (2.7) in the form Wx

[
ψ, χ(1)

]
= cψ2, the first order Hirota equation (3.4) reads

(τ1)xt + (τ1)xxxx = (Wx)t + (Wx)xxx = c(ψ2)t + c(ψ2)xxx = 2cψ
(
ψt + α2ψx

)
= 0. (3.7)

This equation is solved using the above mentioned nonlinear dispersion relation, i.e. by

taking ψ(x, t) = ψ(x− α2t).

Next we show how one may carry out the limit to our degenerate solutions directly on

the Hirota multi-soliton solutions. The two-soliton τ -function is known to be of the form

τα,β(x, t) = 1 + c1e
ηα + c2e

ηβ + c1c2κ(α, β)eηα+ηβ (3.8)

with ηα := αx−α3t and κ(α, β) := (α−β)2/(α+β)2. Usually the constants c1 and c2 are

set to one. Evidently carrying out the limit α → β in this variant will simply produce a

one-soliton solution. However, when making use of the freedom to multiply the τ -function

with an overall factor we define

τµ,ν;α,β(x, t) =
8

(α− β)
e
ηα+ηβ

2
+µW

[
ψ
µ+α−β

α+β
ν,α
, ψ

µ−α−β
α+β

ν,β

]
, (3.9)

which produces the series expansion form (3.8) of the τ -function with coefficients

c1 = −α+ β

α− β
e
µ+α−β

α+β
ν
, and c2 =

α+ β

α− β
e
µ−α−β

α+β
ν
. (3.10)

In this form the limit is easily performed

τµ,ν;α,α(x, t) = lim
β→α

τµ,ν;α,β(x, t) = 1− 2(αx− 3α3t+ ν)eηα+µ − e2ηα+2µ. (3.11)

Since the factor in (3.9) has the form of the general ambiguity, the expression 2 (ln τµ,ν;α,α)xx
produces the same two-soliton solution (2.26) as previously obtained.

Similarly, using the identity

τµ,ν,ρ;α,β,γ(x, t) =
64 exp

(
ηα+ηβ+ηγ+3µ

2

)
(α− β)(α− γ)(β − γ)

W
[
ψµ+f(α,β,γ),α, ψµ+f(β,γ,α),β , ψµ+f(γ,α,β),γ

]
(3.12)
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we obtain the series expansion form (3.8) of the τ -function for the 3-soliton solution

τµ,ν,ρ;α,β,γ(x, t) = 1 + c1e
ηα + c2e

ηβ + c3e
ηγ + c1c2κ(α, β)eηα+ηβ + c1c3κ(α, γ)eηα+ηγ

+c2c3κ(β, γ)eηβ+ηγ + c1c2c3κ(α, β)κ(α, γ)κ(β, γ)eηα+ηβ+ηγ (3.13)

with coefficients

c1 = c(α, β, γ), c2 = c(β, γ, α), c3 = c(γ, α, β), (3.14)

where

c(x, y, z) =
(x+ y)(x+ z)

(x− y)(x− z)
eµ+f(x,y,z). (3.15)

Clearly without the information from the previous section it is not obvious at this stage

how to determine the coefficients ci in general, especially the regularizing shifts.

4 Degenerate complex multi-soliton solutions from superposition

It is well-known that the combination of four Bäcklund transformations combined in a

Bianchi-Lamb [23, 24] commutative fashion gives rise to a “nonlinear superposition prin-

ciple”, e.g. [12]. Introducing the quantity u = wx, it takes on the form

w12 = w0 + 2
κ1 − κ2

w1 − w2
, (4.1)

for the KdV equation where w0, w1, w2 and w12 correspond to different solutions. Relating

w1 and w2 to the standard one-soliton solution and setting w0 to the trivial solution w0 = 0,

the general formula (4.1) becomes

wµ,µ̂;α,β =
α2 − β2

wµ;α − wµ̂;β
, (4.2)

with wµ;α(x, t) = α tanh
[

1
2(αx− α3t+ µ)

]
, κ1 = α2/2 and κ2 = β2/2, see [12]. Remark-

ably in this form the limit limβ→αwµ,µ̂;α,β can be performed directly

lim
β→α

wµ,µ̂;α,β =


0 for µ 6= µ̂

2α
1+cosh

(
η
(1)
µ;α

)
η
(3)
0;α+sinh

(
η
(1)
µ;α

) for µ = µ̂
. (4.3)

The corresponding solution the KdV equation will still be singular, but when implementing

the same shifts as in (2.35) we compute(
lim
β→α

w
µ+α−β

α+β
ν,µ−α−β

α+β
ν;α,β

)
x

= lim
β→α

(
w
µ+α−β

α+β
ν,µ−α−β

α+β
ν;α,β

)
x

= uµ,ν;α,α, (4.4)

and thus recover precisely the solution (2.26). The relation to the treatment in section 2

involving DC-transformations is achieved by considering (2.2) for n = 0 with V (0) = 0.

Then we read off the identification wµ;α = 2 (lnψµ,α)x, which is confirmed by the explicit

expression (2.17).
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Similarly we may carry out the limit on higher soliton solutions. For instance, itera-

ting (4.1) once more we obtain the three-soliton solution

wµ,ν,ρ;α,β,γ = wµ;α +
β2 − γ2

wµ,ν;α,β − wµ,ρ;α,γ
, (4.5)

which yields the non-trivial limit

lim
β,γ→α

wµ,µ,µ;α,β,γ =

2

[[
1 +

(
η

(3)
0;α

)2
+ cosh

(
η

(1)
µ;α

)]
sinh

(
η
(1)
µ;α

2

)
− η(9)

0;α cosh

(
η
(1)
µ;α

2

)]
x[

1 +
(
η

(3)
0;α

)2
+ cosh

(
η

(1)
µ;α

)]
sinh

(
η
(1)
µ;α

2

)
− η(9)

0;α cosh

(
η
(1)
µ;α

2

) .

(4.6)

When implementing the appropriate shifts and differentiating once more this produces

precisely the same three-soliton solution as previously constructed in section 2.4.

5 Conclusions

We have constructed a novel type of compound soliton solution composed of a fixed number

degenerate one-soliton constituents with the same energy. Asymptotically, that is for large

and small time, the individual one-solitons travel at the same velocity with almost constant

amplitudes. In the intermediate regime they scatter and exchange their relative position.

Thus the entire collection of one solitons may be viewed as a single compound object with

an internal structure only visible in a certain regime of time. As we have shown, one may

construct solutions in which these compounds scatter with other (degenerate) multi-solitons

at different velocities.

Technically these compound structures arose from carefully designed limiting processes

of multi-soliton solutions. We have demonstrated how these limits can be performed within

the context of standard techniques of integrable systems, employing Darboux-Crum trans-

formations involving Jordan states, Hirota’s direct method with specially selected coeffi-

cients and on the nonlinear superposition obtained from Bäcklund transformations. While

the limits led to mathematically admissible nonlinear wave solutions, they always possess

singularities such that their energy becomes infinite. In order to convert them into physical

objects it was crucial to implement in addition some complex regularizing shifts.

When comparing the different methods, the DC-transformations require the most sub-

stantial modification by the introduction of Jordan states. This approach is very systematic

and the modified transformations always constitute degenerate soliton solutions. To carry

out the limit within the context of Hirota’s direct method requires some guesswork in re-

gards to the appropriate choice of coefficients, which we overcame here by relying on the

information from the DC-transformations. The nonlinear superposition of three solutions

appears to be the most conductive form for taking the limit directly. The disadvantage in

this approach is that expressions for higher multi-soliton solutions are rather cumbersome

when expressed iteratively. So far in all approaches the regularizing shift were introduced

in a somewhat ad hoc fashion.
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There are various open issues left to be resolved and not reported here. Evidently

the suggested procedure is entirely generic and not limited to the KdV equations or the

particular type of solutions and boundary conditions considered here [25]. It would be

interesting to apply them to other types of integrable systems as that might help to unravel

some further universal features. For instance, one expects that the regularizing shifts

can be cast into a more universal form that might be valid for any arbitrary number

of degeneracies when exploiting further their ambiguities. Furthermore it is desirable to

complete the argument on why the energies of these complex solutions are real. This

follows immediately when they and the corresponding Hamiltonians are PT -symmetric.

As demonstrated in [12], this can be achieved with suitable real shifts in time or space,

but in addition one also requires the model to be integrable. We report on these issues in

more detail elsewhere [26].
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