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Abstract

Gravitational waves are now observed routinely. Therefore, data analysis has to keep
up with ever improving detectors. One relatively new tool to search for gravitational
wave signals in detector data are machine learning algorithms that utilize deep neural
networks. The first successful application was able to differentiate time series strain
data that contains a gravitational wave from a binary black hole merger from data that
consists purely of noise. This work expands the analysis to signals from binary neutron
star mergers, where a rapid detection is most valuable, as electromagnetic counterparts
might otherwise be missed or not observed for long enough. We showcase many different
architecture, discuss what choices improved the sensitivity of our search and introduce
a new multi-rate approach. We find that the final algorithm gives state of the art
performance in comparison to other search pipelines that use deep neural networks. On
the other hand we also conclude that our analysis is not yet able to achieve sensitivities
that are on par with template based searches. We report our results at false alarm rates
down to ~30 anrgfl)tlﬁs which has not been tested by other neural network algorithms. We
hope to provide information about useful architectural choices and improve our algorithm
in the future to achieve sensitivities and false alarm rates that rival matched filtering
based approaches on.
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1 Introduction

With the first direct detection of a gravitational wave (GW) on September the 14th 2015
[1], the age of gravitational wave astronomy began. It opened up the possibilities to test
Einstein’s theory of gravity in highly relativistic systems [2], sample the population of
compact binary systems consisting of objects like neutron stars or black holes [3], define
new astronomical standard candles [4] and many more for the first time. The first and
second observation runs of the advanced LIGO and Virgo detectors [5, 6] led to 11 detec-
tions of GWs from different systems [7]. The third observation run, which is currently
ongoing, promises to greatly expand this catalog and has already found multiple GW
candidates [8].

The most promising source of GWs that can be detected are binary systems consisting
of two black holes, neutron stars or a mix of these two. So far, all confirmed detections of
GWs were caused by such compact binary systems. Most of them were generated by two
coalescing black holes. The only exception is GW170817 [7], which, instead was emitted
by a binary neutron star (BNS) system [9]. As such, it is one of the most interesting
signals detected so far. It is not only the first and only signal of its kind observed yet,
but it was also possible to detect the electromagnetic (EM) counterpart. This allowed
to localize the source very precisely and get a detailed frequency evolution of the EM
radiation emitted, thus helping to understand the internal dynamics and structure of
neutron stars [10]. As detectors become more sensitive with each technological improve-
ment, BNS signals are expected to be detected more frequently in the future.

In order to detect the associated EM counterparts, astronomers need to be alerted quickly
when the detector registers a possible BNS signal. To put the time scales involved into
perspective, the «-ray burst detected by Fermi-GBM arrived only 1.7s after the GW
[9]. The source was then visible for another 48h [10]. While it is unlikely that a fast
GW detection will enable astronomers to catch the associated ~-ray burst, it will help
to maximize observation time in the optical- and x-ray regime. It is therefore vital to
reduce latency as much as possible and find detection candidates reliably, as telescope
time is expensive. To reduce costs even further an estimate of the sky position needs to
be provided as well. Some EM counterparts would also be missed if telescopes are not
provided with a rough location as their field of view is often very narrow.

Most of the current pipelines that try to identify GWs within the detector data use
the concept of matched filtering where a fixed number of pre-calculated GW templates
are used to search for similar patterns in the detector data [11]. These templates cover
the area of the parameter space of binary systems that are expected to exist and be
detectable. The sensitivity of this search to GWs, however, is directly dependent on the
spacing of templates in this high dimensional parameter space. This is due to the fact
that if a signal lies between two templates it gets assigned a lower detection statistic. As
the knowledge about binary systems and their dynamics improves and as more accurate
waveform models are developed, the template bank will grow in size. The downside of
an increased size of the template bank is the computational cost associated with it: The
CPU time scales directly with the number of waveforms that need to be compared with



the data.

One of the possible contenders to aid matched filtering in the first data analysis stage
is machine learning. It is a field of computer science with the goal to create computer
programs which adapt to a problem without direct human interference, i.e. learning
from a set of experiences. Most of today’s state of the art machine learning algorithms
are implementations of neural networks (NNs). They have application in many fields,
like computer vision [12], sound generation [13] or natural language processing [14]. The
advantages of NNs are manifold, the most important one in the context of this thesis
being computational efficiency once the network is optimized. This efficiency and their
general success in almost any area make NNs a promising tool for GW data-analysis.
Daniel George and E.A. Huerta were the first to apply a deep NN to whitened time
series strain data to try to recover GW signals. They were able to reach performances
comparable to those of matched filtering at a fraction of the computational cost [15].
Their network, however, was only optimized for signals from binary black hole (BBH)
mergers, thus not covering the cases of BNS signals where quick notifications are most
valuable.

This thesis builds on the work of [15] and tries to expand it to BNS signals. Detecting
GWs from two coalescing neutron stars using a NN is more challenging as these signals
tend to have a lower strain amplitude, contain higher frequencies and are within the
sensitive frequency-region of the detectors for longer time periods. Thus, we introduce
a novel approach to handle longer time series by using multiple rates at which the data
is sampled. To get a first hold of the problem, we are ignoring spins and tidal deforma-
bilities of the neutron stars. We expect the effects of this approximation to be small, as
spins are thought to be close to zero and the impact of deformation due to tidal effects
minimal. The algorithm takes a continuous stretch of whitened strain amplitude time
series data and generates two output time series from it; a signal-to-noise ratio (SNR)
time series and a p-score! time-series. To both of these a threshold at fixed false-alarm
rate is applied to generate detection candidates.

This thesis is structured as follows: Section 2 and section 3 give a summary of the re-
quired background knowledge. Specifically, section 2 gives a brief overview of the theory
involved with modeling and detecting GWs, whereas section 3 describes how NNs work
and introduces the concepts needed to understand the final algorithm. Section 4 gives
a deeper motivation to the problem we are trying to analyze and puts this thesis into
greater context of related works. Section 5 contains the results of our research and goes
into detail about the design decisions that went into our final network.

To design and train our networks, we use version 2.2.4 of the software library Keras
[16]. The former is a wrapper for the deep learning library Tensorflow [17], of which
we use the GPU optimized version 1.13.1 for training. To evaluate our networks,
we use version 2.2.5 of Keras and version 1.14.0 of the CPU based implementation

!The p-score must not be confused with a p-value. Both have in common that they are normalized
to 1 and as such the p-score gives values in the range [0,1]. It does, however, not fulfill any other
requirements and is thus not a probability.



of Tensorflow. To generate fake data, we use version 1.13.5 of the software pack-
age PyCBC [18]. All code related to this thesis is open source and can be found at
https://github.com/MarlinSchaefer/master_project.


https://github.com/MarlinSchaefer/master_project




2 Gravitational-Wave Signals from Binary Neutron Star
Mergers

Gravitational waves from two inspiraling neutron stars are among the most interesting
signals gravitational wave detectors can detect. They convey information about the
highly relativistic regimes of gravity, about the structure of the component stars and
about the formation channels of black holes or heavy neutron stars [2, 19, 20]. They are
however also very hard to detect, as binary neutron star systems are very light, when
compared to inspiraling binary black holes.

Part 1 of this section will discuss how gravitational waves are modeled and what influ-
ences the structure of the resulting waveforms. Part 2 will go over the current method
of detecting GW and discuss the advantages and drawbacks.

Notationally, we use the Einstein sum convention, denote 4-dimensional space time in-
dices by greek and spatial indices by latin letters. By convention we choose n*¥ =
diag(—, 4, +, +) for the flat space time metric.

2.1 The Waveform

A gravitational wave generally consists of three stages, an inspiral, a merger and a
ringdown phase. In the first phase, the two bodies spiral slowly towards each other
following quasi-circular orbits. Once they are close enough though, they will not be
able to stay on these circular paths and plunge towards each other. This plunge results
in the two bodies merging. Therefore, this phase is commonly referred to as "merger”.
After they collided the remnant will radiate off some more energy. This is the so-called
ringdown phase.

We will see that frequencies of GWs coming from a BNS system are very high due to
their low total mass. As such even the inspiral phase will contain frequencies higher
than the ones the detectors are sensitive to. For this reason we only model the inspiral
phase in the following subsections.

2.1.1 Linearized Gravity

Most calculations of this section are layed out in detail in [21].
Gravitational waves are a prediction of the Einstein-equation

81G
g,uzz = CTT/.U/’ (2'1)

if a weak field is assumed. Here G,,,, is the Einstein-tensor, 7),, is the energy-momentum
tensor, G is the gravitational constant and c is the speed of light in vacuum. The weak
field limit is given by

Guv = NMuv + h/},l/, (22)

where g,,, is the metric of curved space time, 7, = diag(—,+,+,+) is the metric of
flat space time and hj,, is a small perturbation, with |h,,| < 1 and [0y, ... 05, hu| €



O(lhuw|) =t O(h). With this approximation the Einstein-equation (2.1) simplifies to

1 81G
g,w = 5(804”}7/3 + 83}7/“& - 3,Wh — Dhuu — T]M,/':Ih) = CTTMV7 (23)
where h == n*"h,,, and O := n*"0,,.
This equation has 10 independent components of which only 2 are physical. To reduce
the number of independent components, one can choose gauge conditions through the
coordinate transformation x'* = x# + &¢#, which leaves the Einstein equation invariant.

One of these gauge conditions is the DeDonder gauge

0oy =0, (2.4)

where BW = huw — %nuyh. It can be realized by choosing [1§,, = 0aﬁau. In this gauge
the linearized Einstein equation (2.3) reduces to

- 167G
Ohy = ——a

Ty (2.5)
This gauge however doesn’t fix h,,, completely, as another transformation z’ Ho= gt 4¢P
could be applied when [J§, = 0. This can be used in a way that h = —h = 0 and
hoy = 0 = hg, are also satisfied. The gauge is named transverse-traceless-gauge (TT)
and results in the metric to be of the form

00 0 0

T __ 0 h+ h>< 0

P =10 he —he 0 (2.6)
00 0 0

Equation (2.6) now has only the two independent components h; and hy left, which are
called the "plus-” and ”cross-polarization” of a GW [22].

Evaluating (2.5) in vacuum reveals the wave-like character of h,,, as
Ol =0 (2.7)

is a wave equation. Its solutions travel at the speed of light. Therefore, gravitational
waves travel through space-time at the speed of light. The effect that a solution of this
equation has on a ring of resting test masses is shown in Figure 2.1.

Equation (2.7) shows that GW exist and can travel through space. It does, however,
not specify how these waves are produced. To do so the energy-momentum tensor cannot
be set to 0. Instead the full equation (2.5) needs to be solved. The solution is known to

be o,
_ =2 f/)

_ Tl/ t e
h(t,f)—w/d?’m’ o

4 |Z — 2|

(2.8)



Figure 2.1: This image is taken from [21]. It shows the effect of a GW passing orthogonally through a
ring of test masses.

For simplification, it is assumed that the observer is far away from the source when
compared to the size of the support of T, such that | — 2’| = r = |Z|. Therefore we

need to solve 4G )
h(t, ) /d%/ Tw( L ) (2.9)

This equation can be evaluated to yleld

I (4, 7) = Ell Tt~ r/fe), (2.10)

where I(E,T is the transverse-traceless-projection of the second time derivative of the
second mass moment

jab _ CQag/df}x/ CC/a:L‘/bTOO — 2/d3$/ Tab' (211)

As the quadrupole moment Q) is simply the traceless second mass moment and we
project it to its traceless part anyways, (2.11) can be rewritten as

W (0,8) = 25 G (¢ /o) (2.12)

with Qup = Iy — %5(11)[ ¢. This is the famous quadrupole formula [23].

To calculate the GW a binary system emits, I, or Q4 needs to be specified. Further-
more, the TT-projection needs to be calculated. The projection turns out to be ((3.64)
in [22])

(fn - f22)/2 I1o 0
I;I;)T = f21 _(fll —fgg)/Q 0 : (2'13)
0 0 0/ .
Therefore, the waveforms are given by
1G
hy = - (111 - 122) (2.14)
2G .
hy = ——1I1o. 2.15
X r C4 12 ( )



The approximations that led to equation (2.3) restrict the validity of the results above
to cases where there are only slight perturbations to flat space-time. Equation (2.2)
actually assumes the background to be flat. Therefore, the dynamics of the two bodies
orbiting each other are dictated by Newtonian gravity. With this in mind, the binary
system we are trying to model is a system of two point-particles with masses my, ma.
For simplicity? assume circular motion. In Newtonian mechanics, this problem reduces

to an effective one body problem with the reduced mass u = % The motion in
these relative coordinates is given by
— sin (wst)
7(t)=R- | cos(wst) |, (2.16)
0

where R is the orbital separation of the two point masses and ws the orbital frequency.
As a result one gets

1

sin? (wst)  —gsin(2wst) 0
[Iab} = puR? | —1sin(2wst)  cos? (wst) O (2.17)
0 0 0
and subsequently
) cos (2wst)  sin (2wst) 0
1] = 2pR%2 | sin (2w,t)  —cos (2wit) 0. (2.18)
0 0 0
Therefore, the amplitudes are given by
4G
hy = ;guRQwE cos (2wst)
4G .
hy = ;guR%Jg sin (2wst). (2.19)

Interestingly, the frequency of the GW is twice the frequency of the orbital period.

The equations (2.19) are written in the source frame, i.e. they are the GW-polarizations
emitted in the z-direction, where the z-axis is the one orthogonal to the orbital plane
and at the center of mass. When measuring these waves we are not assured that the
system emits face-on to our detectors. Therefore, we need to change coordinates to get
the emission in a general direction 7. To do so, one simply has to transform the second
mass moment into the new frame. These calculations can be found on p.111 in [22]

2Tt turns out that this simplification is very accurate. This is due to two reasone. First of all a
possibile ellipticity is radiated away before the GW reaches currently detectable frequencies (4.1.3 in
[22]). Secondly the rate of change of the orbital radius is small in the regime, where the approximation
of linear gravity is meaningful. (4.1.1 in [22])



which finally yield

4 1 2
hy = fg,uRZw2 <+COS(L)> cos (2wst + 2®)

rct s 2
4G 5 o .

hx = —— R wy cos (1) sin (2wst + 2@), (2.20)
rc

where ¢ is the inclination and @ is the phase of the wave at ¢t = 0.

To be measured these waves need to hit a detector. The LIGO and Virgo detectors are
advanced Michelson interferometers with an angle of 7/2 between the two arms. If the
GW hits such a detector, it will cause a deviation d/ in arm lengths given by the detector
response functions

Ol = F1(0,¢)(cos (2¢p)hy — sin (2¢0)hy ) + Fx (6, @) (sin (2¢)hy + cos (2¢)hy), (2.21)

with hy and hy as given in (2.20) and

Fi(0,¢) = %(1 + cos? (9)) cos (2¢)

F (0, ) :== cos () sin (2¢p). (2.22)

These response functions ignore the relative motion between the earth and the emitting
system, as signals from binary systems spend only a couple seconds within the sensitive
frequency band. [9]

The angle 6 is taken between the propagation direction of the GW to the (outwards
facing, relative to earth) normal of the detector. ¢ is the angle between one arm of the
detector? to the projection of the propagation direction of the GW into the detector-
plane. Therefore, the angles 6 and ¢, or rather their projection onto a global coordinate
system, are the declination and right ascension respectively. The angle v is known as the
polarization angle and is not detectable for a single detector. This is due to the reason
that rotating the wave around its propagation axis has the same effect as choosing a
certain polarization angle.

All the calculations above disregarded the energy carried away by the GW. To include
it one needs to calculate the luminosity of a GW-source, which in turn requires the
computation of an effective energy-momentum tensor of the GW itself.

To get this energy-momentum tensor, second order corrections in h of R,, need to be
computed and averaged over time. The result is (equation (2.37) in [22])

4
c
tuy = %(8uh‘m‘8yhm>. (2.23)
The luminosity is the energy flux at spatial infinity and thus given by
Lew = lim dii S, (2.24)

7—00 SQ ('I‘)

3If the arms were labeled with x and ¥ in such a way that they form a right handed coordinate system
with the outwards facing normal vector, the arm the angle ¢ is taken to is the one labeled x.



where S° = —c - t% and S%(r) denotes the spherical shell of radius . When solving this
integral and using (2.12) one gets

G
LGW—T

(Q"C ). (2.25)

This equation can now be applied to the binary system specified by (2.17). To simplify
notation and to give measurable parameters, notice that the dynamics of the system
under consideration are governed by Newtonian physics and thus Kepler’s laws apply.
Especially Kepler’s third law

w? = (2.26)

will be of use, where M = mj + my is the total mass of the system. Using (2.26) to
eliminate R in (2.17) and inserting this equation into (2.25) yields

32/ Gus M, 10/3
Low = 5G< 3 ) ; (2.27)
where 3/
M, = 3525 — mma)T (2.28)
c - (m1+m2>1/5. .

M, is called the chirp mass and is the only mass-combination a GW depends on in
linearized gravity.

According to equation (2.27), a binary system looses energy when emitting GW. The

energy that is carried away is taken from the orbital energy FE,pit of the binary system.

Therefore, disregarding any other effects? that might cause Eompi; to vary, we get
dEorbit 1 Gmlng |

@ 2 m few (229)

One can again utilize (2.26) to eliminate R and R in favor of ws and &,. Furthermore,

ws = T faw, and thus
o = 22 -
This equation describes a runaway process, as for a positive value fgw the change in
frequency is positive, leading to a larger value of fow and so on. This in turn by equation
(2.26) means that the two masses will come closer and closer together until they touch.
The point in time at which this happens and the waveform shuts off will be denoted by

teoal- With this, one can define the time until coalescence ™ = tcoa1 — t and solve the
differential equation (2.30). (p.170 [22])

fowtr) = L2 1) (6 o

4These effects could for instance be tidal deformation, mass acquisition or other sources of gravity in
the proximity of the binary system.

10



Now that the frequency evolution of a GW is known, the amplitudes h4 and hy can also
be modeled. To do so, revisit the initial assumption (2.16). In this equation R will now
be time dependent and wst will be replaced by ®(t), where

¢

O(t)=2m | dt’ faw(t). (2.32)

to

In principle, all time derivatives in (2.18) would need to be recomputed, taking into
account the time dependence of ws; and R. However, the approximations that have led
to these waveforms are quite strong. The rates of change w, and R will only have non-
negligible contributions when frequencies are pretty high and the orbital separation R is
small. In these regimes the linear approximation (2.2) will be invalid. Therefore, we can
neglect the contributions of ws and R and still get a qualitative look into the dynamics
of the system. Hence, replace ws in the prefactor of (2.20) by 7 faw(t), 2wst + 2P by
®(t) and R by (2.26).
With (2.31), equation (2.32) can be solved to yield ((4.30) in [22])

—5/8
O(7) = _2<5Gé\4¢) /8 + @y, (2.33)

C

where ®g is the phase at 7 = 0, i.e. at coalescence. Therefore, this value is called the
coalescence phase. Combining these results, one gets the time dependent waveforms

hy(t) = 1<GMC>5/4( > )1/4 <1 * C;SQ (L)> cos (D(7))

c? cT

B (£) = i(GfCYM(fT) Y s (1) cos (). (2.34)

Inserting equation (2.34) into equation (2.21) shows that in linearized theory the output
of a detector depends on 8 parameters. These are the luminosity distance r, the chirp
mass M., the coalescence time t.,1, the coalescence phase ®(, the inclination ¢, the
declination 6, the right ascension ¢ and the polarization angle 1 (section 4.1.1 in [22]).
The first four parameters are source intrinsic parameters, where M, is a combination of
the component masses m; and ms. In that sense the parameter space can be extended
to be 9-dimensional. Figure 2.2 shows an example of the time evolution of a waveform
described by (2.34).
Alongside energy, GWs also carry away angular momentum from the source. Using the
quadrupole radiation (2.12), the change in angular momentum evaluates to ((3.97) in
2 dJt  2G
o = 2 Qi) (2.3)
The angular momentum that is carried away comes from the total angular momentum
of the source. This in turn is comprised of the orbital angular momentum as well as the
individual spins of the two component masses of the binary system. Therefore it is at
least qualitatively understandable that the spins of the two bodies has an effect on the

11



Strain

Figure 2.2: This figure is derived from Figure 4.1 in [22]. Shown is an example of a waveform as it could
be observed by a detector if the linear waveforms describe the source accurately. Note the frequency and
amplitude evolution, they both rise simultaneously. This behavior is called ”“chirping”.

evolution of the waveform. Thus the 9 parameters of a waveform can be extended to
15, if both objects are allowed to rotate. The 6 additional parameters are the individual
angular momenta of the two masses. Two further parameters influence the waveform if
the objects are not rigid and allowed to deform. This is true for binary neutron stars,
as neutron stars are not singularities.

Even though this work deals with BNS-signals, we neglect spin effects and tidal deforma-
bility as they are expected to be small and will thus not go into further detail here.

2.1.2 Post-Newtonian Expansion

This part closely follows chapter 5 in [22], mainly stating results and concepts.

As we will see in subsection 2.2, accurate models for the waveforms are necessary to
detect GW using traditional methods. This does not change for an approach utilizing
machine learning algorithms, as they can only detect waveforms from distributions they
have sampled before. Though the waveform derived in (2.34) gives a good qualitative
overview of the rough amplitude evolution of inspiraling binary systems, it is hardly an
accurate model. The main drawback of this model are the dynamics used to describe
the motion of the system. It assumes equation (2.2) which in turn means that GWs
and source-dynamics can be separated. Therefore, in linearized gravity the motion of
a binary system is dictated by Newtonian dynamics, while the GWs are a relativistic
effect.
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This issue is overcome by taking an approach called post-Newtonian expansion (PN-
expansion). To approximate the solution of the full Einstein equation (2.1), g, is
expanded in powers of the small parameter ¢ ~ v/c ~ (Rs /d)l/ 2 instead of using
v = N + hyy. Here v is the typical speed inside the source, R, is the Schwarzschild
radius attributed to the system’s total mass and d is the diameter of a world-tube
containing the support of the energy-momentum tensor of the source. Therefore, € is
small if the source is not too compact and speeds are low compared to the speed of light.
Specifically the metric expands to ((5.3) in [22])

900 =-1 +9® 00 +9%o0 +9900 ..
905 — +9®y; +9%y, +... (2.36)
9ij = dij +9®); +gW,; +...

where g™ denotes a term ~ €. The energy-momentum tensor can be expanded in an
equivalent way

2)00

700 — 7% | p@%

70— % @)% (2.37)
T — 7O @Y

These expressions than need to be inserted into (2.1) and terms of the same order in e
need to be equated. To get the equations of motion to the n-th PN-order terms up to
order €2" need to be kept and computed. Therefore it is possible to have the correction
of some quantity to PN-order 2.5.

To get the 1-PN order corrections to the metric, one can once again impose a gauge
condition. The gauge condition most commonly used is still called deDonder gauge,
which in the PN-case reads

9 (V=399") =0, (2.38)

where g is the determinant of g,,. In this gauge the Einstein equation yields (to 1-PN
order)

rG 00
Ag(2)00 - _ = 7(0)
8rG 00
Ag?. =275 .70
g 17 C4 J
167G 02
A9(3)0i _ : 71) (2.39)

AgWog :839(2)00 + g(Q)ijaiajg(2)00 - az’g(i)ooajg@)oo

_ 8: 4G {T@)OO L@ 29 06T 00},

with A = §99,0;. Observe that higher order terms in (2.39) depend on the lower order
terms of the expansion. Therefore the PN-expansion is an iterative process.
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The equations (2.39) do in principle have many solutions. A particular solution, how-
ever, is specified by the boundary condition. A typical boundary condition is the "no
incoming radiation” condition, where it is required that the metric approaches the flat
space time metric 77 as one goes to spatial infinity. The PN-expansion, however, is only
valid in the near region of the source, as it approximates the retarded solutions by a se-
ries of instantaneous potentials. To use a correct boundary condition one approximates
the far-field solution and matches it with the near-field PN-solution.

The approximation for the far-field is called Post-Minkowskian-expansion (PM-expansion).
For simplified notation the Einstein equation will be recast into its relaxed form

Ok = 166L4G7-’“’. (2.40)
To get this result, the deDonder gauge
o k" =0 (2.41)
was again required. The metric k is given by
kM = \/—gg" — nM". (2.42)
Furthermore,
T = (—g)T" + 16;(}'AW’ (2.43)

with A" being a tensor that depends highly nonlinearly on k and g. The expression is
given in (5.74) of [22]. To simplify the relaxed Einstein equation (2.40) in the far field,
we denote that the energy-momentum tensor of matter T vanishes outside the source.
Therefore the task is solving

Ok =AM, (2.44)

To do so, we expand k in powers of Rg/r, which is equivalent to expanding in powers of
G. We also expand A* in powers of k. Therefore

kM =" G R (2.45)
n=1
A = NH [k, k] + M* [k, k, k] + ..., (2.46)

where N* [k, k] denotes a tensor of quadratic order in G. Equating terms of the same
order in G and iteratively using the results for k yields

Ok =0 (2.47)
OkEY = N [ky, ki) (2.48)
OkL” = M™ [k, k1, k] + N* [k, ko] + N™ [ko, k1] (2.49)
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or in short
OkRY = ARV k1, ...y kn—1] - (2.50)

The most general solution to k1 can be written in terms of retarded multipolar waves.
The solutions under consideration of the deDonder gauge can be found in (5.95) and
the following equations of [22]. They consist of multiple retarded potentials and form a
multipole expansion of k;. To find the solution to any order n equation (2.50) needs to
be solved, inserting all previous solution ki, ..., k,_1. Therefore, a general solution to
(2.50) would be convenient.
Traditionally such a solution is known and given by the retarded Green’s function. The
problem, however, is that the solution to (2.50) is only valid outside the source but
solving it by the retarded Green’s function requires knowledge over the entire region. To
get around this issue, we observe the fact that we only want the solution of k£ to some
finite order in G. This has the benefit that only a finite number of multipole terms of
ALY have to be used. The finite number of terms enables us to find some constant B,
such that 7B A is defined for all r and thus its solution is given by the retarded Green’s
function. For B — 0 the original divergence is recovered and the multipole expansion
has poles. Therefore, near B = 0 the solution I}”(B) = Dret( B A“") can be expanded
in a Laurent-series. Taking only the zeroth order term yields a particular solution u#”
with

Oub” = ALY, (2.51)

From this particular solution the general solution can be constructed by adding the
homogeneous solution.

As a final step, the PN-expansion can be recast in the form of k, where we expand

> 1 dn

kuy = E ‘ Cfnmkuy(u) (252)
> 1 4"

- ™ ( 2.53

2: dzdun >’ ( )

with u = t—r/c and 7 given in (2.43). Doing so and inserting it into the relaxed Einstein
equations results in the recursive relation

dr dn—4
Ak | =1
{ } 67TGdu”*4

- Ry

dun72

dn—2
k“”} : (2.54)

Taking the solution for the 1PN case discussed above as a starting point the equation
(2.54) can be solved in a similar fashion to (2.50) using only a finite number of terms in
a multipole expansion of the potentials.

With this setup we mention once more that the regions of validity for the PN- and PM
expansion overlap but neither are completely solved. To obtain the full solution the PN-
equations need a boundary condition, whereas the PM-equations need a source of some
form. Therefore the PM-equations can be viewed as the limiting case of the PN-case

15



and thus provide a boundary condition. The PN-equations on the other hand have fixed
multipole potentials that depend on the energy-momentum tensor of matter. These can
in turn be used to fix the multipole potentials in the PM-equations and one obtains a
full solution.

At this point we will not go into further details of the formalism itself but rather look
at its influence on the waveforms.

Surprisingly, to 1PN order the results are identical to the ones obtained using linearized
gravity in subsubsection 2.1.1. For convenience one defines the dimensionless quantity

M s 2/3
= <GC3“ > , (2.55)

where M is the total mass and wg the orbital frequency. Note that x ~ Z—; and thus the

PN-expansion can be given in terms of powers in x. For further notational simplicity
define the symmetric mass ratio

vi= &22, (2.56)
(m1 + Tng)
and the post-Newtonian parameter
GM
= . 2.57
L (2.57)

Using the metrics acquired from the PN-expansion one can solve the equations of motion
for the two inspiraling bodies and obtain corrections to ws, v, the energy E and the
radiated power Lgw. Combining these results one can than find the phase evolution
and emitted waveforms. The computations are extremely long. For this reason we only
state the results for the energy and luminosity at 3.5PN order here. (u in this case is
the reduced mass) (equation (5.256) in [22])

2
_ uctx 3 1 27 19 1 2) 9
E= 5 {1+< 1 12y>x+< 8+8V i

675 /34445 205 155 , 35 3} 3} (1)
20 (222 2 By B o= 2.58
+ [ 64 +< 576 96 " )” 06" “mwa’ [T TO\E (2.58)
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In the equation below C' is the Euler-Mascheroni constant. (equation (5.257) in [22])

32¢° 1247 35
L — 2.5 {1 (_ Y > 4 3/2
awW 5GV$ + 336 121/ xr +4rx

. <44711 L0 65112)9:2
9072 " 504 " " 18
8191 583 \ .
+ <_ 672 24 ”)m
6643739519 16 , 1712 . 856
D230 | Bra 202 n 80 (16
+ [ 69854400 3" 105 105 o8 (162)

N <_ 134543 417r2)y _ 94403 5 775%’} 3
7776 48 3024 324

16258 214745 193385 ,\ . (1)}
_ o=~ 2.59
504 1m2s VT 3021 Y )m TOl & (2.59)

_|_

2.1.3 TaylorF2

This section closely follows section 2.4.2 and 2.4.4 of [24].
The previous section outlines how the energy and luminosity can be obtained to some
finite PN order. To actually get a waveform from these results, we need to solve

dE dv Low
I — = 2.60
at GW T T T dE/ dv (2:60)
and from there obtain the phase using
P = /dt w, Mw = v®. (2.61)

There are many ways to approximate solutions to these equations, but we will focus
only on the TaylorF2 approximation, as it is the one we use in this work. It starts by
inverting equation (2.60) to get t(v). It therefore tries to solve

At dE/dv
dv N LGW '

(2.62)

To do so, the right hand side of this equation is re-expanded in terms of v/c ~ € to 3.5
PN order. This inverted equation can then be analytically integrated and the result can
be found in (2.73) of [24].

Similarly @ can be computed from the equations (2.61), using

Ao Pat  dE/dv
dv Mdv  Lgw |

(2.63)
The integral can once more be performed analytically and the result can be found in

(2.75) of [24].
The time domain phase can then be constructed from equations (2.62) and (2.63) and
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is called TaylorT2. In subsection 2.2 we will find, however, that the analysis will be
done in the frequency domain. One can construct the frequency representation of the
orbital phase and in extension the entire waveform from the results of TaylorT2. These
waveforms are hence called TaylorF2.

To do so we have to calculate

- 1 oo . 1 00 . .
h(f) = —/ dt h(t)e2™ift — —/ dt A(t) - e~ 221 | g2mift, 2.64
(f) Vol (t)e Vol (t)-e e (2.64)

To analytically solve this equation, we expand ®(t) around the time ¢; where the deriva-
tive of the phase is equal to the Fourier frequency, i.e.

20 (t;) = 2 f. (2.65)

Assuming a slowly varying amplitude A/A < 2® and expanding ® to second order the
integral in equation (2.64) can be solved to yield

) = Ay gy, (2.66)

In this derivation the spherical harmonic decomposition was disregarded and we only
quoted results for the 2-2-mode. An explicit expression for the amplitude can be found
in (2.84) of [24].

2.2 Searching for Gravitational Waves

The LIGO Scientific Collaboration and the VIRGO collaboration use a wide range of
different online pipelines that aim to rapidly generate triggers if a GW event is present
within the data [11]. Most of them are modeled searches and based on the concept of
matched filtering, i.e. they need a pre-generated model to find a signal that is similar
to this model. As we are using PyCBC to generate our waveforms, backgrounds and
results we will be going into detail only about the PyCBC Live pipeline [25]. In the
first part of this section we will briefly recapitulate the basics of matched filtering before
summarizing the PyCBC Live pipeline in the second part.

2.2.1 Matched Filtering

Section 2.1 discussed how GW are generated. The detectors register them as a differential
arm length of their two interferometer arms. However, the amplitude of this change in
distance is on the order (’)(10*18) m and as such is highly contaminated with noise
originating from thermal motion of atoms, quantum shot noise and others [24]. In fact
the amplitude output of the detector is dominated by noise (7.3 in [22]). For this section
we will assume that the data s contains a signal A submerged in noise n. Therefore,

s(t) = n(t) + h(t) (2.67)
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in the time domain. To still be able to detect GWs a filtering technique names matched
filtering is applied to the data. It is a modeled filter, thus requiring knowledge of the
signal it is trying to find. The basic concept goes as follows. Assume we use the exact
waveform that is present within the data as a filter. Then, to decide whether or not
the template is contained in the data, we can multiply the template with the data and
integrate this product over some time 7T, averaging the output by dividing by 7.

T T T
;/O dt s(t) - h(t) = ;,/O dt h2(t)+;,/0 dt n(t) - h(t) (2.68)

For T' — oo the first term will approach some finite value h3, where hq is the characteristic
amplitude of the GW. The second term, though, will approach 0 as n(t) and h(t) are
uncorrelated (7.3 in [22]). Therefore, if we have a long signal h and integrate for the
entire duration of this signal, the value equation (2.68) will give is very close to 0 if the
filter h is not contained in the data and some finite value otherwise. This enables us to
test wether or not some template signal is submerged within the noisy background. If
we have multiple templates, the template that matches the actual signal best will most
likely produce the largest value.

Equation (2.68) can further be optimized to maximize the value it returns when the
perfect template is chosen. To do so, we need to introduce the power spectral density
(PSD). The PSD characterizes the power contained within the noise at a given frequency
bin. As n(t) is real valued the fourier transform n(f) fulfills n(—f) = n*(f), where *
denotes the complex conjugate. The power in each frequency bin is given by

(A1) =61 = F) 3500, (2.69)

where S, (f) denotes the one sided PSD. It is called one sided as the factor 1/2 in
equation (2.69) results in

UﬂWZA%ﬂ&U) (2.70)

Without the factor the integral would have boundaries £oo.
The PSD can be estimated from data by integration over some period of time 7" and is

given by
_ 2

Snlf) = —F" (2.71)

and has the unit Hz~!. If we refer to a PSD in this work, it will always be the one sided
variant. The amplitude spectral density (ASD) is the square root of the PSD and used
to color noise. Especially it is used to whiten data, i.e. divide the data by the ASD
associated to the PSD of the underlying noise. Whitening is used to create data where
every frequency contains the same power and thus frequencies that are very noisy are
suppressed.

The matched filter can be derived using the PSD and is proven to be optimal for gaussian
noise. Optimal meaning that the value the process obtains when the template and the

19



waveform within the data are the same is maximized. We use this matched filter to
create a statistic called signal-to-noise ratio p, which is given by [25]

2 (sImPP
o= (2.72)
e ()5 (f)
(alb) :4/0 R (2.73)

This SNR informs us of how likely the it is that the template h is contained within the
data s. The higher the value, the more likely it is that a GW was found. To use this
method to detect GWs, the SNR of multiple templates has to be calculated. Then a
threshold can be applied such that detection is only claimed if a minimal value of the
SNR is exceeded. In a realistic search some more criteria have to be fulfilled before a
detection is reported. For some more details see subsubsection 2.2.2.

2.2.2 Detection Pipeline (PyCBC Live)

This section summarizes the results of [25].

PyCBC Live is the online detection pipeline based on the PyCBC library optimized
for low latency trigger generation. It utilizes a template bank of (’)(105) pre-calculated
waveforms in a matched filter search. For multiple detectors this analysis is done indi-
vidually for all detectors and only afterwards combined into a single statistic. Therefore,
the goal is to calculate a SNR time series for every detector and template. To do so the
expression

(1) = <lf|‘h> /0 Ty W&ﬂﬂ (2.74)

has to be computed for every template h and all detector data s. In order to keep up
with the constant data-stream the input is downsampled to 2048 Hz and high-passed.
The latter allows for computations to be executed in single precision. Furthermore, the
workload can be easily parallelized over multiple compute notes to speed up the process.
This process is repeated every 8s on a chunk of data that contains between 32s and
256's of time series strain data. The PSD S,,(f) is estimated from the data by dividing
the minute prior to the analysis segment into overlapping intervals, each of duration 4s,
and computing equation (2.71) from it. The frequency bins are finally averaged over all
intervals.

After computing the SNR time series, the peak SNR of each one is thresholded. For the
observation run 2 this value was chosen to be ~ 5.5. No peak SNRs below the threshold
value are kept and all but the loudest O(10%) are discarded. Sometimes these triggers are
then discarded altogether. This happens if the PSD estimate shows drifts in detector
noise, sensitivity estimates report poor data quality or the SNR values are unusually
high. If non of these conditions apply, some more consistency tests are applied and
the SNR is reweighed based on a y? signal consistency test. Until now this procedure
was done for all detectors individually. The resulting single detector triggers are then
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combined to report a detector network SNR. To do so, the templates that generated a
trigger need to have generated a trigger in all other detectors. The time difference at
which the peak was found in each detector is furthermore not allowed to be greater than
the time of flight difference, which is ~10ms. The maximum separation is therefore set
to 15 ms.

For the two detectors Hanford and Livingston all remaining trigger pairs are combined
to a network SNR given by

pe = it + Pt + 21og (p(9)), (2.75)

where p(0) is the astrophysical probability of a trigger observed with parameters 6.

To estimate the significance of the trigger, the false alarm rate of the procedure producing
the reported trigger is calculated. In order to get enough data that does not contain a
physical signal but captures the current detector performance, the data of one detector
is shifted in time. The length of time to shift is determined by the time of flight between
the two observatories. If a trigger was found in such time shifted data, we would know
that it could not be a real trigger as it violates causality. To do this efficiently only the
triggers for each detector are shifted in time. This procedure allows to get false alarm
rate estimates of down to 1 per 100 years. The threshold of notifying other astronomers
of a trigger is chosen to be 1 per 2 month.

The described procedure produces reliable triggers. It is able to keep up with the detector
output but introduces on average 16s of latency, i.e. a trigger is reported 16s after the
event occurred on average. An estimate of the sky position is provided by a follow up
called BAYESTAR [26].
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3 Neural Networks

Neural networks are machine learning algorithms inspired by research on the structure
and inner workings of brains. [27] Though in the beginning NNs were not used in
computer sciences due to early limitations [28] they are now a major source of innovation
across multiple disciplines. Their capability of pattern recognition and classification has
already been successfully applied to a wide range of problems not only in commercial
applications but also many scientific fields. Major use cases in the realm of gravitational
wave analysis have been classification of glitches in the strain data of GW-detectors [29]
and classification of strain data containing a GW versus pure noise [15, 30].

In this section the basic principles of NNs will be introduced and notation will be set.
The concept of backpropagation will be introduced. It will be shown that learning in
NNs is simply a mathematical minimization of errors that can largely be understood
analytically.

Large portions of this section are inspired and guided by [28, 31].

3.1 Neurons, Layers and Networks

The basic building block of a NN is - as the name suggests - a neuron. This neuron is a
function mapping inputs to a single output.

In general there are two different kinds of inputs to the neuron. Those that are specific
to the neuron itself and those that the neuron receives as an outside stimulus. We write
the neuron as

n:RExRxRF 5 R, (@,b,2) — n(,b, 7) = a(@ - T +b), (3.1)

where W are called weights, b is a bias value, Z is the outside stimulus and a is a function
known as the activation function. The weights and biases are what is tweaked to control
the behavior of the neuron, whereas the outside stimulus is not controllable in that sense.
A usual depiction of a neuron and its structure is shown in Figure 3.1.

The activation function is a usually nonlinear scalar function

a: R—>R (3.2)

determining the scale of the output of the neuron. The importance of this activation
function and its nonlinearity will be touched upon a little later.
To understand the role of each part of the neuron, consider the following activation

function:
1, y>0
a = . 3.3
) {07 ' (33)

With this activation function, the neuron will only send out a signal (or "fire”) if the
input y is greater than 0. Therefore, in order for the neuron to fire, the weighted sum of
the inputs w - & has to be larger than the negative bias b. This means that the weights
and biases control the behavior of the neuron and can be optimized to get a specific
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Table 3.1: Neuron activation with activation function given in equation (3.3), weights @ = (w1, wa)” =

(1,1), bias b = —1.5 and inputs (z1,z2) € {0,1}>. Choosing the weights and biases in this way replicates
an "and”-gate.

r1

T3

Figure 3.1: Depiction of a neuron with inputs & = (ml,zz,xg)T, weights @, bias b and activation
function a.

output.

The effects of changing the weights makes individual inputs more or less important. The
closer a weight w; is to zero, the less impact the corresponding input value x; will have.
Choosing a negative weight w; results in the corresponding input x; being inverted, i.e.
the smaller the value of x; the more likely the neuron is to activate and vice versa.
Changing the bias to a more negative value will result in the neuron having fewer inputs
it will fire upon, i.e. the neuron is more difficult to activate. The opposite is true for
larger bias values. So increasing it will result in the neuron firing for a larger set of
inputs.

As an example consider a neuron with activation function (3.3), weights @ = (wy, ws)’ =
(1,1), bias b = —1.5 and inputs (z1,22) € {0,1}*. Choosing the weights and biases in
this way results in the outputs shown in Table 3.1. This goes to show that neurons
can replicate the behavior of an "and”-gate. Other logical gates can be replicated by
choosing the weights and biases in a similar fashion.

Since all basic logic gates can be replicated by a neuron, it is a straight forward idea
to connect them into more complicated structures, like a binary full-adder (see Ap-
pendix A). These structures are then called neural networks, as they are a network of
neurons. The example of the full-adder demonstrates the principle of a NN perfectly.
Its premise is to connect multiple simple functions, the neurons, to form a network, that
can solve tasks the individual building blocks can’t.

In other words, a network aims to calculate some general function by connecting multiple
easier functions together. This highlights the importance of the activation function, as
it introduces nonlinearities into the network. Without these a neural network would not
be able to approximate a nonlinear function such as the XOR-Gate used in Appendix A
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Figure 3.2: Depiction of how a layer (Lmiq) consisting of neurons with different activation functions
(n1 and ng) can be split into two separate layers (L, and Ln,).

(section 6.1 in [28]), which caused the loss of interest in NNs around 1940 (section 6.6

in [28]).
One of the most popular activation functions is the rectified linear unit (ReLU). It is
given by
Yy, y>0
a(ly) = . 3.4
) { v (3.4

It has been empirically shown that this simple nonlinear activation improves the perfor-
mance of NNs [32].

Since NNs are the main subject of subsection 3.2 and since it will be a bit more mathe-
matical, some notation and nomenclature is introduced to structure the networks.
Specifically each network can be structured into multiple layers. Each layer consists of
one or multiple neurons and each neuron has inputs only from previous layers. Formally
we write

ni (W%, by, @

( )
: , (3.5)

ny l , 01, T

()", 7)

where n; is neuron ¢ on the layer and W; is the i-th row of a k x [-matrix. In principle
this definition can be extended to tensors of arbitrary dimensions. This would however
only complicate the upcoming sections notationally and the principle should be clear
from this minimal case, as dot products, sums and other operations have their according
counterparts in tensor calculus. As a further step of formal simplification we will assume
that all neurons n; share the same activation function a. This does not limit the ability
of networks that can be written down, since if two neurons have different activation
functions, they can be viewed as two different layers connected to the same previous
layer. Their output will than be merged afterwards (see Figure 3.2).

LR xR RF 5 RY (W, 6, %) — L(W, b, ) =

With this simplification one can write a layer simply as

LOW,b,%) = a(W - Z+b), (3.6)
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where it is understood, that the activation function a acts component wise on the re-
sulting /-dimensional vector.

In this fashion a network consisting of a chain of layers Lin, Lmid, Lout can be written
as

N(Win, 53117 Wmid, l_)'mid7 Wout’ l_)’out’ i,»)
= Lout (Wout, gout’ Lonid (Wmid, B’mid’ Lin (Win7 [_;m’ f) ))
= agu (B 4+ WUt @™ (5 Wi - ai (B + Win - 7)) ). (3.7)

Hence a network can be understood as a set of nested functions.

An important point with the definitions above is that the layers get their input only
from their preceding layers. Especially no loops are allowed, i.e. getting input from
some subsequent layer is not permitted. A network of the first kind is called a feed
forward neural network (FFN), as the input to the network is propagated from front
to back, layer by layer and each layer gets invoked only once. There are also other
architectures called recurrent neural networks (RNN), which allow for loops and work
by propagating the activations in discrete time steps. These kinds of networks are in
principle closer to the inner workings of the human brain, but in practice show worse
performance and are therefore not used or discussed further in this work.

A FFEN can in general be grouped into three different parts called the input-, output- and
hidden layer /layers. The role of the input- and output-layers is self explanatory; they are
the layers where data is fed into the network or where data is read out. Therefore their
shape is determined by the data the network is being fed and the expected output. The
hidden-layers on the contrary are called "hidden”, as their shape and size is not defined
by the data. Furthermore the hidden layers do not see the input or labels directly, which
means that the network itself has to ”decide” on how to use them (page 165 in [28]).
Figure 3.3 shows an example of a simple network with a single hidden layer. In principle
there could be any number of hidden layers with different sizes. In this example the
input is n-dimensional and the output 2-dimensional. If the input was changed to be
(n-1)-dimensional, the same hidden-layer could be used, as its size does not depend on
the data or output. Therefore, when designing a network architecture, one designs the
shape and functionality of the hidden layers. How well it performs is mainly governed
by theses layers. Two networks with different hidden layers are also called different
architectures. The architecture of a neural network hence describes how all layers of the
network behave and are connected.

A NN is called deep, if it has multiple hidden layers. The depth of a network, analogously,
is the number of layers used in the longest path from some input to an output layer.

3.2 Backpropagation

In subsection 3.1 the basics of a NN where discussed and the example of a network
replicating a binary full-adder showed the potential of these networks, if the weights and
biases are chosen correctly. The example actually proofs that a sufficiently complicated
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Input Layer Hidden Layer Output Layer

Output 1

Output 2

Figure 3.3: A depiction of a simple network with a single input-, hidden- and output-layer. The input-
data is a n-dimensional vector (x1, ... ,xn)T and the output is a 2-dimensional vector. In this picture it
looks like the hidden layer has the same number of neurons as the input layer. This does not necessarily
have to be the case. Lines between two neurons indicate, that the output of the left neuron serves as
input for the right one.

network can - in principle - calculate any function a computer can, as a computer is just
a combination of logic gates, especially binary full-adders.?[31]

Therefore, the question is how to choose the weights in a network for it to approximate
some function optimally. For the binary full-adder the weights and biases were chosen by
hand, as the problem the network was trying to solve was rather simple. A more general
approach, however, would be beneficial, as not all problems are this simple. Therefore,
the goal is to design a network which learns/optimizes the weights and biases such that
the error between the actual function and the estimate of the network is minimal.

To do this, some known and labeled data is necessary®, in order for the network to be
able to compare its output to some ground truth and adjust its weights and biases to
minimize an error function. This way of optimizing the weights and biases is called
training. The data used during training is hence called training data or training set. To
be a bit more specific, the analyzed data in this work is some time series. The output of
this analysis will be a scalar number; the SNR 7. Therefore the network receives some

5There is an even stronger statement called the universal approximation theorem, which states that
any Borel measurable function on a finite-dimensional space can be approximated to any degree with a
NN with at least one single hidden layer of sufficient size. (p. 194 [28])

5This statement is strictly only true in the context of supervised learning, which we will be focusing
on. There is, however, also a field called unsupervised learning, where the machine learning algorithm
picks up on general concepts within the data itself and clusters it accordingly.

"In actuality we will also train for a second value called the p-score. For simplicity we will however
stick with just the SNR for this section.
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data as input, of which the true SNR-value is known. This true value will be called label®
from here on out. The network will produce a value from this input data and compare it
to what SNR was provided as label. From there it will try to optimize the weights and
biases to best fit the function that maps data — SNR. This process of optimizing the
weights and biases in the way described below is efficiently enabled by a process called
backpropagation, as the error propagates from the last to the first layer. The meaning
of this will become clearer in the upcoming paragraphs. Backpropagation alone is not
an optimization algorithm, it is used to calculate gradients and as such is the basis on
which the optimization algorithm works.

So far only the abstract term ”error” was used. This error, in machine learning language,
is called the loss function and in general is defined by

L: Rle X Rle — R; (ynetyylabel) = L(yneta ylabel)7 (38)

where [ is the number of training samples used to estimate the error and k is the dimen-
sion of the network output.

When doing a regressive fit, one of the standard error functions is the mean squared
error (MSE), which is the loss function mainly used in this work and that is defined by

!
L:RXF  RIXF R; (yneta ylabel) = L(yneh ylabel) = %Z (gnet,i - glabel,i)2- (3-9)
i=1

A more thorough discussion and justification for using MSE as loss can be found in
section 5.5 and 6.2.1.1 of [28].
To minimize this loss, the weights and biases of the different layers are changed, usually
using an algorithm called gradient descent. It works by calculating the gradient of
one layer with respect to its weights and biases and changing their values by following
the negative gradient. For notational simplicity we will denote the weights and biases
of a network by 6 and call them collectively parameters. It is understood that 8 =
(Wb, W2 b2, ). Gradient descent is then given by

0/ =0—c VGL(ynet(e)v ylabel)a (310)

where € is called learning rate and controls how large of a step is taken on each iteration.
This formula assumes that all samples from the training set are used to calculate the
gradient. In practice this would be too cost intensive from a computational perspective.
Therefore, the training set is split into multiple parts, called mini-batches. A step of
the gradient descent is then made using only the samples from one mini-batch. This
alteration of gradient descent goes by the name of stochastic gradient descent (SGD).
The larger the mini-batch, the more accurate the estimate of the gradient becomes and
therefore the fewer steps are needed to get to lower values of the loss. Each step however
takes longer to calculate. This means one has to balance the benefits and drawbacks of

8For regression problems this value is often also called target value. We will however stick to calling
it the label for our training data.
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the mini-batch size.

The real work of training a network lies in calculating the gradient VgL (Ynet(0), Yiabel),
which is a challenge, as 6 usually consists of at least a few hundred thousand weights
and biases. The algorithm that is used to calculate this gradient is backpropagation and
is based on an iterative application of the chain rule.

For simplicity we assume a network N(6, Z) consisting of n consecutive layers £!,--- , "
with weights W1, ... W™, biases 51, ‘e ,l;" and activation functions aq,---,a,. The
network will be trained by minimizing the loss given in (3.9). Calculating the gradient

Vo L(Ynet (6), Y1abel) requires to calculate VL, --- VoL and Vi L, - -+, Vi, L, where

Owi b O L
Vil = : : , (3.11)
Owi oo O L
for W# € R¥*! and
ObliL
Vul = : , (3.12)
for b' € R¥.
To calculate Oy: L and Oy L, define
Jk J
= W ay (z"_1>
2=+ w!.z, (3.13)
such that
N(0,Z) = an(zn). (3.14)

To save another index, we will assume a mini-batch size of 1. For a larger mini-batch
size one simply has to average over the individual gradients, as sums and derivatives
comimute.

With this in mind, the loss is given by

L(ynet7 ylabel) = L(N(H, f), ylabel) = L(an(zn)a ylabel) = (an(zn) - f‘jlabel)Q- (315)

To start off we derive this loss by the parameter 0;

0o, (@n(2n) = Ghaver)” = (90, @n(2n) ) (2(@n(20) = Faver)) (3.16)
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From there calculate 89j an(zn), remembering, that a, and z, are both vectors.

(%J.an(zn) = 89j Z aﬁl(zn,l(Hj), ey Zn,k(gj))é‘i

k
=33 (0,20 (0) (0-0 @l (0 (0, 20 0(6)))

i m=1

=3 ((20,2n) - (Vi) )i (3.17)

Since all activation functions a!, on a layer are the same, the gradient (V,af) simplifies
to 0.a(z)| . With this one gets

Z=Zni

(3.18)

z2=2zn’

Oo,0n(20) = (0,2n) © Dz (2)|

where ® denotes the Hadamard product. The final step to understanding backpropaga-
tion is to evaluate Jp, 2,,. For now assume that 6; is some weight on a layer that is not
the last layer.

Op; 2 = Op, (5" +wn. an—l(Zn—1)>
= a@j (W™ an—1(2n-1))
=wm. 89jan_1(zn_1) (3.19)

Inserting (3.19) into (3.18) yields the recursive relation

8o, an(2n) = (W” : agjan_l(zn_l)) © Ozan(2)|,_, - (3.20)

The recursion stops, when it reaches the layer that the weight 6; is located on and
evaluates to (assuming 6; is part of layer k)

O, ax(21) = (00, W") - a1 (251). (3.21)

The derivative can also be expressed in an analytical form by utilizing that the Hadamard
product is commutative and can be expressed in terms of matrix multiplications. To do
so we define

[Z(f)]ij - {?)3,“ :)the]rwise ' (8:22)
With this definition, equation (3.20) can be written as
o, an(20) = E(@Zan(z)|zzzn) W™ B, an—1(zn-1) (3.23)
and the recursion can be solved to yield
n—k+1
Op;an(zn) = [ H Z(ﬁzan,l(zﬂz:zn_l) -W”_l] -Z(ﬁzak(z)}z:zk) . (89j Wk)ak,l(zk,l).
= (3.24)
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The same computation can be done if 6; is a bias instead of a weight. When this
computation is done, equation (3.20) still holds, but the stopping condition (3.21) is
simplified to B

(%jak(zk) = 89].bk. (3.25)

From this the analytic form can be computed to be

n—k+1
89jan(zn):[ I 2(:ana(2)l,_, ) -W"‘l] S(0.ak(2)|,_,, ) - 9,55 (3.26)
=0

The recursive formula (3.20) now justifies the term ”backpropagation”. When a sample
is evaluated, it is passed from layer to layer starting at the front. Therefore this is called
a forward pass. The output the network gives for a single forward pass will probably
differ from the label and hence has an error (quantified by the loss function). This error
is used to calculate the gradient and adjusts the parameters of the network. The way
this is done is given by equation (3.20). It starts at the last layer and propagates back
through the network until it reaches the layer of the weight that should be adjusted.
The parameters are then changed by SGD as given in equation (3.10).

With these formulae one could in principle calculate the gradient of the loss with respect
to all parameters 6 and use this gradient to optimize and train a network. In reality
this would still be too slow and computationally costly. Instead, each layer (or rather
each operation) has a backpropagation method associated to it that returns the gradient
based on a derivative to one of its inputs and the gradient from the previous layer.

For clarification, consider an operation that multiplies two matrices A and B and say
the gradient calculated by the backpropagation method of the previous layer returned GG
as its gradient. The backpropagation method for the matrix multiplication now needs to
implement the derivative with respect to A and the derivative with respect to B. Thus
it will return G - BT when asked for the derivative by A and G - AT when aked for the
derivative by B. (section 6.5.6 [28])

The full backpropagation algorithm than only has to call the backpropagation methods
of each layer/operation. (For a more thorough discussion see section 6.5 of [28].)

3.3 Training and Terminology

In the previous subsection 3.2 the backpropagation algorithm was introduced as the
method used for the network to learn. It used some labeled data to compare its output
to and adjust the parameters accordingly. This labeled data was called the training set.
The full training set is then used multiple times to train the network. Each entire pass
of this set is called one epoch. In theory, this should lead to the network continuously
improving. The only thing that could stop this improvement would be a vanishing
gradient. This could be due to either finding the global minimum of the loss with respect
to the network parameters, which would be great, or due to the optimizer finding a local
minimum, which is in general not ideal.

In practice training the network for many epochs on the same data set can lead to
problems. At some point the network will start "memorizing” the samples it has seen
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in the training set. When a network shows this behavior during training it is called
overfitting. It is a problem not only known in machine learning but also with regressive
fits and has the same reason; too many free parameters. Consider a parabola sampled
at n points. If a regressive fit is done, the best choice for the model would be a parabola
f(x) = ax?® + bx + c with the three free parameters a, b and c. In the case of n > 3 a
regressive fit minimizing the MSE would recover the original parabola that was sampled
by the n points. However one could also use a polynomial of degree m > n as a model
to find a function that runs exactly through all n points and thus minimizes the MSE
to the same value of zero. (see Figure 3.4)

There are however two differences between the two cases. The most obvious one is the
number of free parameters. The parabola has three parameters, whereas the polynomial
of degree m has m + 1 free parameters. As m > n was required, there is at least
one parameter that cannot be fixed by the data and is therefore still free. The second
difference is the behavior of the MSE when the fitted model is evaluated on a point, that
is not part of the set of points which were used to generate the fit. For the parabola
the MSE will stay zero, for the polynomial of degree m however the MSE will most
likely be greater than zero, as the true parabola isn’t matched. (Compare lower right of
Figure 3.4) The first difference explains why overfitting takes place, there are too many
parameters that can be varied, the second difference gives a way to detect it. If the MSE
rises on samples that were not used for the regression, overfitting takes place.

The same concept can then be applied to NNs; if the loss of a network is bigger on
different data than that used during training, the network is said to overfit. This second
set of samples is called the validation set, as it validates the training. Usually the data in
the validation set stems from the same underlying procedure that generated the training
set. In the context of this work this means the waveforms of the training and validation
set must share the same parameter-space.

Contrary to overfitting, there is also a phenomenon called underfitting. This occurs,
when the number of free, i.e. trainable, parameters of a network is too low. It manifests
usually in an occasionally lower loss value of the validation set when compared to the
training set and overall bad performance. To overcome this issue one can simply increase
the number of trainable parameters the network has. Increasing the number of trainable
parameters is also called increasing the capacity of the network.

Though underfitting is possible, overfitting is usually a lot more common. There are
multiple ways to deal with a network that overfits during training. The first one would
be to reduce the capacity of the network. If that is not possible or worsens the results,
the second most easy way is to increase the number of samples in the training set. In the
realm of this work this is a possibility, as we use simulated data that can be generated
on demand. For a lot of other applications however this is not feasible and other means
are necessary. One way is to use a technique called regularization, which is explained
in subsection 3.5 and applied to our networks as well. Another one, which will not be
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discussed in detail here, is data augmentation®. (See section 7.4 of [28])

To tune out the generalization error, which is the loss value of the validation set, one
adjusts the architecture. If there are multiple different architectures, the best one is
chosen by the performance on the validation set. In this way, the validation set is also
used to fit the model, as in the end the human who trains the models selects the best
performing network. Therefore all given results, that did not occur during training!'?,
come from a third independent set. This set is then called the test set.

One general approach to increase the performance of a network is to increase its depth.
This is due to two reasons. First of all it has been shown that a deep network can separate
the underlying function it is trying to learn into piecewise linear regions. The number
of these regions is exponential in the depth of the network. Secondly each layer can be
viewed as a filter, that looks for certain features in the data. Having multiple stacked
layers will enable the network to learn low level features on early layers and combine
them into more difficult features on lower layers. (Section 6.4.1 [28]) This idea will be
expanded upon in the following subsection 3.4. The depth is not the only parameter of
a simple network, that can be scaled to increase performance. A systematic study can
be found for instance in [33].

A common problem that arises when training very deep NNs is the vanishing gradient
problem; the gradient calculated by equations (3.24) or (3.26) is close to zero on early
layers, which results in these layers not changing their weights enough. The reason for
this behavior can also be understood from equations (3.24) and (3.26). If the factors
satisfy |9.a;(z) - W*| < 1 the gradient is exponentially diminished by the depth of the
network.

The opposite can also happen. If |9,a;(z) - W*| > 1 for most of the layers, the gradient
will grow exponentially. This behavior is therefore called the exploding gradient problem.
(Chapter 5 [31])

To overcome these problems, one can simply train for longer periods in the case of the
vanishing gradient problem (Chapter 5 [31]), use multiple points at which the loss is
calculated [34] or adjust the initialization of the weights. Another solution introduced
by [35] are residual connections. These are connections of a layers input to its output.
Specifically, the input of the layer is added back onto its output. The idea behind this
connection is to make it easier for the network to learn an identity mapping by simply
setting the weights of the layer to zero. Residual connections showed improvements in
accuracy and enabled the use of even deeper networks [35].

9Data augmentation is the process of applying transformations to the input samples to artificially
create more data. The transformations have to act in such a way that the resulting data is similar in its
properties to the original data.

10An example of a result that comes from training the network would be the loss history.

33



Figure 3.4: Depiction of overfitting in the classical regression. On the left the originally sampled
function f(x) = 32* 422 + 1 is shown in dashed and black. The red dots are the samples that are being
used for the regression on the right. The top right shows the regression, where g(x) = az® + bz + ¢ was
used as a basis and recovered the correct parameters a = 3, b = 2 and ¢ = 1. All free parameters are
fixed by the data. The lower right plot shows a case of overfitting. The same three points are now used
to fit the four free parameters a, b, ¢ and d of the function h(z) = az® + bz + cx + d. The analytic
solution returns b = 3, ¢ = 2 — a and d = 1 with a being free. Therefore a possible regression could use
a = 5, which is used in the lower right plot. The points used for regression are all hit, hence the MSE
is zero. However if another point on the black dashed line would be used, the fitted model would be off
and the MSE would be non-zero.

3.4 Convolutional Neural Networks

In the previous sections only fully connected layers were used to build networks. These
are layers, where each neuron is connected to every neuron on the previous layer. (See
left side of Figure 3.5) These fully connected layers are called dense layers. In this section
a different kind of layer and variants of it will be motivated and introduced. It is the
main driving force of modern neural networks and is called convolutional layer.

3.4.1 Convolutional Layer

Dense layers have been the starting point for deep NNs and are used to derive a lot of
the theory. In subsection 3.3 it was stated, that deeper networks usually perform better.
This is however a problem for NNs that consist only of dense layers, as the number of
trainable parameters grows linearly with the number of neurons on each layer. This
causes computational limits if the number of neurons per layer should stay at a reason-
able number, thus limiting the depth.

Another problem of fully connected layers is that they are rather static. Being static
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means that it is hard for the network to adapt to slight changes in the data. To under-
stand this, consider a network that learns to distinguish between cats and dogs. Say,
that for the training set all animals are in the lower left hand corner of the image. The
validation set than might have the animals not in the lower left, but the upper right
corner. A NN consisting purely of dense layers might not be able to adapt to this new
position. Even if there are animals in the top right corner for the training set, the net-
work might need a lot of layers and trainable parameters to learn all possible positions.!!
These restrictions led to the invention of the convolutional layer in 1989. [36] Though it
was originally conceived in its 2 dimensional variant, only the 1 dimensional convolutional
layer will be explained here.'? Contrary to dense layers, the neurons of convolutional
layers are only connected to a few neurons on the previous layer. Furthermore these
connections all share the same weight. Thus one can view a convolutional layer as a
filter of learnable weights that slides across the input, in a way convolving the the filter
with the input data. (see right side of Figure 3.5)

The size of the filter, i.e. how many entries it spans, is called the kernel size. If multiple
convolutional layers with the same kernel size are stacked, the number of trainable pa-
rameters increases only linearly with the depth, which is a huge improvement over dense
layers.

The capacity of a convolutional layer however is not only governed by the kernel size,
but also by how many filters are run over the same data in parallel. If a convolutional
layer runs only a single filter over the data, it might learn to detect a single feature,
like a vertical line. Therefore multiple filters, that have different weights, are usually
run over the same input data. Each of these different filters will than be able to detect
different features. The output these layers produce are called feature maps.

Having multiple filters however changes the shape of the output from being 1 dimen-
sional, with just a single filter, to being 2 dimensional with multiple filters. The data
each filter outputs is still 1 dimensional and called a channel of the final output. To be
able to stack convolutional layers, they take in a 2 dimensional input and are specified
by the number of filters and the kernel size of all these filters'®. Each filter, that is
convolved with the data, spans all channels. The kernel size only specifies how many
entries in each channel are used. (see Figure 3.6)

As an example say we specify a convolutional layer by having 32 filters and a kernel size
of 3. Now we use this convolutional layer on two different inputs. Input 1 has a shape
of 4096 x 1 and input 2 has a shape of 4096 x 2. Notice that input 1 in principle is still
1 dimensional, as it only has one channel. The data still has to be reshaped though to
work with the general concept. For input 1, the filter would be of shape 3 x 1 and the
output shape of the convolutional layer would be 4094 x 32. Therefore the convolutional
layer would have 3 -1 -32 = 96 trainable parameters. For input 2, the filter would need
to span both channels and thus has the shape 3 x 2, the output shape however is still

"This is true only to some degree, as a sufficiently large dense layer could emulate a convolutional
layer by setting a lot of weights to 0. Compare equation (3.29).

12The core concepts are the same, thus the concept can easily be adapted to any number of dimensions.

13Usually all filters have the same kernel size.
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4094 x 32. The number of trainable parameters however also doubles to 3-2-32 = 192.
All of the above disregarded possible bias-values.

Another advantage of the convolutional layer are the shared weights. Shared weights
means that the value of two output neurons in the same channel only depends on the
different input values, as the weights of the filter are the same for both of them. This
being an advantage becomes clear, when considering the example from above, where a
NN tried to distinguish between cats and dogs. For a convolutional layer the position of
the animals is not of importance. If it developed a filter that can recognize cats or dogs,
it will be able to find them regardless of where in the image they are positioned.

This behavior of the convolutional layer is of special importance to our work, as it gives
us time invariance. If the network learns to categorize the signals correctly, it does not
really matter where in the data that signal is.

In principle convolutional networks can even work on data without a predefined length,
as the filters are simply shifted across the data. This behavior is however lost, when
dense layers are introduced into a convolutional network.

Having sparse connections in the convolutional layers also leads to stacked convolutional
layers having a receptive field. The receptive field of one output of a convolutional layer
is the number neurons on the input layer that have, through some path, an influence on
its value. (see Figure 3.7)

Though convolutional layers are quite different to dense layers, their training can still
be easily described by the formalism developed in subsection 3.2. The operations for a
single filter can be expressed by using a sparse matrix and multiplying it by the input.
For multiple filters, i.e. more output channels, this formalism just has to be extended
to tensors.

A single filter F' of size n has weights @ = (wq, ... ,wn)T. When applied to an input &
of length m > n, the output has the length m —n + 1. Denote the convolution operation
by *. The output is thus given by

n—1
[+ FY; —a((Z wk+1-aﬁj+k> —i—b), (3.27)
k=0
where b is the bias and a is the activation function of the layer. This can be rewritten
as a matrix product
m
S [ExFly -6 =a(W-7+0),
j=1

(3.28)

where € is the j-th standard basis vector and the filter (m —n + 1) x m-matrix W is
given by
wp ... Wp 0

W = ) (3.29)
0 wp ... Wy

The backpropagation algorithm then only needs to know about the gradient of W with
respect to the weights .
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Figure 3.5: Left: Two layers with dense connections. In this case the right layer is the dense layer.
Each of the 3 outputs 01 - 03 is connected to every input di - ds. Therefore, the dense layer has
15 trainable weights. For a dense layer the number of output neurons is not fixed but can be freely
chosen. We could in principle have used any number of neurons on the right layer. Right: An example
of a convolutional layer with kernel size 3. The two layers have the same number of neurons as the
dense example on the left, but only 3 trainable parameters, as the weights in each of the three colored
connections are shared. Contrary to the dense layer the number of output neurons for the convolutional
layer is fixed by the kernel size. To get more or less output neurons we would need to adjust the number
of neurons we combine to form an output.
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Figure 3.6: Depiction of a convolutional layer with two filters that have a kernel size of 3. The input
data di1 to dg3 has three channels and is the same for both the blue and the red filter. The first channel
of the output (011 to 041) is produced by sliding the blue filter over the data, the second channel (012 to
042) is produced by sliding the red filter over the data. Notice that the filters span all channels of the

input data and only slide in 1 dimension.

O
O

Figure 3.7: Three stacked convolutional layers. Although all layers have a kernel size of 3, the final
layer is influenced by 5 of the input values. Therefore the receptive field of the final layer is 5.
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3.4.2 Pooling Layers

Pooling layers are another special kind of layers, often used to increase performance of
convolutional neutral networks (CNNs). Though there are many variations of the spe-
cific implementation, the core concept is grouping multiple activations of a single feature
map into one activation. The most common pooling layer is the maximum pooling layer,
as it puts greater emphasis on strong activations [37]. It works by grouping a certain
number of input activations of the previous layer and assigning this group the maximum
values of all the grouped neurons. (see Figure 3.8)

Though it does seems counter intuitive that throwing away information helps the net-
works performance, the reasons are manifold. First of all pooling in general downsamples
the data'?. The lower number of datapoints results in fewer calculations per forward
pass, fewer trainable parameters being used and thus less overfitting. Secondly, maxi-
mum pooling increases the impact of strong activations. These strong activations usually
come from the parts of the data that resonate strongly with a convolutional filter. If this
resonance only applies for a small region in the data, there will only be few values on the
feature map that correspond to this resonance. Therefore, pooling (in general) leads to
greater spatial invariance. The downside of pooling is the loss of positional information.
As a rule of thumb, pooling is useful for a decision ”is a feature present”, but falls short
if the question "where in the data is the feature present” is also relevant. Due to its
improvement in spatial invariance, pooling also leads to the next layer having a greater
receptive field.

All the actions described above act only on a single feature map, channel by channel. A
similar approach can however also be taken for the channels themselves. Such a proce-
dure is called dimensional reduction and usually done through a convolutional layer with
a kernel size of 1. This way all channels are being connected through a weighted sum,
where the weights are learned [39]. Additionally an activation function can be used to
introduce non-linear combinations of the channels. In this way, dimensional reduction
can not only be seen as a reduction in learnable parameters, but also as means to com-
bine features of different channels. [40] As the different feature maps are added together,
this operation combines low level features into higher level ones.

The number of outgoing channels is given by the number of filters used in the convolu-
tional layer with kernel size 1.

3.4.3 Inception Module

Networks consisting of stacked convolutional layers as introduced in subsubsection 3.4.1
have had great success in image classification. [28, 41, 12] As the field of computer vi-
sion is one of the most prominent in machine learning and shows great advances, we use
networks successfully applied there as a guideline for new architectures. Accordingly the
module showcased in this section was developed for image classification and introduced

Y There have been studies suggesting that pooling works better than simply sub sampling the data
[38].
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Figure 3.8: An example of a Max pooling layer. It groups together two entries of its input and returns
the maximum, thus halving the number of samples per feature map. This process is applied for all
channels individually.

in [34].

The advantages of convolutional layers over classical dense layers are manifold and dis-
cussed in further detail in subsubsection 3.4.1. One of the key advantages however is the
comparatively low number of trainable parameters, as the connections are a lot more
sparse. The number of these trainable parameters however is still quite large and limits
the depth of a Deep-CNN. This becomes especially obvious, when one scales the num-
ber of filters used in the convolutional layers throughout the network. If the number
of filters of two consecutive convolutional layers is scaled by a factor ¢, the number of
trainable parameters increases by a factor of ¢?. Scaling the number of filters is one way
to increase the capacity of a network and reduce underfitting, if trained optimally [34].
Another way to increase the capactity is to scale the convolution-kernel size. Larger
kernels furthermore provide the capabiltiy to detect larger features within a certain part
of the image. If they are too large however, the filter might be close to zero for a lot
of the learnable parameters, which in turn wastes a lot of computational resources. In
this situation an approach that utilizes sparse matrices or tensors would be quite benefi-
cial, if the computational infrastructure supports it efficiently. The advantage gained by
the lowered number of computations is however mostly outweight by the computational
overhead created. Therefore sparse matrix operations are not feasible at the moment.
34

A workaround for this problem is grouping multiple sparse operations together into ma-
trices that are mostly sparse but contain dense submatrices. The matrix-operations can
than be performed efficiently on the sparse matrices, by utilizing the efficient dense op-
erations on the dense submatrices. This is the approach the inception modules try to
take. They build a single module, that can be viewed as a layer from the outside. It
contains multiple small convolutional layers, that build up a larger, sparse filter. Using
this new architecture, the GoogLeNet won the 2014 ImageNet Large Scale Visual Recog-
nition Competition (ILSVRC)!® image recognition competition in the category "image
classification and localization”, setting a new record for the top 5 error rate, thus proving
the effectiveness of the new module. [34, 12]

15The ILSVRC is a yearly competition for computer vision algorithms. It is widely used as a benchmark
to judge how well a network (or any other computer vision software) does. It is always the same set
of images, where each image belongs to one of about 1000 classes. The top 5 error rate is the relative
number of times, the algorithm in use did not return the correct category within its top 5 choices.
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As the original work was used to handle 2 dimensional images and thus used 2D-
convolutions, the module had to be slightly adjusted to fit the 1 dimensional requirements
of the time series data in this work. This was a simple task however, as the difference
between the two is simply the shape of the kernel and the way it is moved across the
data. With Keras, there are predefined functions to handle 1D and 2D convolutions.
The downside of converting the 2 dimensional inception module to a 1 dimensional one
however is, that many of the incremental improvements to the module are not applica-
ble, as they rely heavily on the 2D-structure. [42, 43|

The following paragraphs will describe the module used in this work in greater detail.
The module consists of 4 independent parallel lanes, each consisting of different layers.
The full module is depicted in Figure 3.9.

The module consists of three parallel convolutional layers, i.e. each of the three layers
share the same input. The difference between them is the kernel size. The convolutional
layers with a larger kernel are preceded by a convolutional layer with 16 filters and a
kernel size of 1. The purpose of this step is to reduce the number of channels used and
is called dimensional reduction. This leads to a fixed input size for the larger kernels,
regardless of the depth of the input. In the original architecture filters of size 1 x 1, 3 x 3
and 5 x 5 were used. Translating them directly to 1 dimensional equivalents, the module
should use kernel sizes of 1, 3 and 5. However, we empirically found that the smallest
kernel sizes 1, 2 and 3 performed best.

Finally a pooling layer as introduced in subsubsection 3.4.2 is added as a fourth path.
The reasoning behind this step is that pooling layers have shown great improvements in
traditional CNNs and thus the network should be provided with the option to choose
this route as well. For this layer the dimensional reduction takes place only after the
pooling procedure.

The output of each of these paths is then concatenated along the last axis of the tensor,
i.e. along the different channels. For this reason all input to each of the layers is padded
with zeros in such a way, that the shape (except for the channels) does not change.

3.4.4 Temporal Convolutional Networks

Temporal convolutional networks (TCN), as used in this work, were proposed by [44].
Their research suggests that this specialized CNN-architecture outperforms RNNs, which
were previously the norm for analyzing and processing sequence data.

A TCN basically consists of multiple stacked convolutional layers, that are slightly
adapted in two different ways. For once, the filters are dilated, meaning, that the
weighted sum of the convolution is not taken over successive input points. Instead the
weighted sum uses points, skipping a set number of inputs in between. Secondly the
connections are causal. This means that output y; of the filter depends at most only on
points x;,...,z;. Finally the input of each such layer is padded with zeros such, that
the output matches the size of the input. (see (a) of Figure 3.10)

The advantage of the dilated convolutional layers is that the receptive field of the net-
work grows exponentially with the depth if the dilation is scaled exponentially, whereas

41



input

Conv1D(96,1)

ConvlD(16,1)

ConvlD(16,1)

MaxPooling(4)

Conv1D(64,2)

Conv1D(32,3)

ConvlD(32,1)

Concatenate Channels

Figure 3.9: Shown are the contents and connections of the inception module as used in this work. The
layer ConvlD(z,y) is a 1 dimensional convolutional layer with z filters and a kernel size of y. Most of
the convolutional layers with a kernel size of 1 are used for dimensional reduction. The only exception is
the leftmost one, that consists of 96 filters. The different filter sizes correspond to the ability of detecting
features at different scales. The pooling layer is a 1 dimensional pooling layer, that only passes on the
maximum value in a bin of size 4. The final layer concatenates the channels of the different towers.
This also means that each tower needs to have the same output-shape, excluding the channels. For this
reason all inputs are automatically padded with zeros in such a way, that the output-shapes are correct.

without the dilation this growth is only linear. The goal of the TCN is to have a recep-
tive field that spans the entire input length. This still requires a decently deep network
for inputs of considerable length. To combat the problem of the vanishing gradient,
residual connections are also introduced. The dimensional reduction layer that is part
of the residual connection is simply used to adjust the number of channels to be able to
add the input and the output of the residual block together. The full structure of the
residual block is shown in (b) of Figure 3.10. The only adaption to the implementation
that this work makes is the the replacement of the WeightNorm layer with a traditional
BatchNormalization layer, as it is described in subsubsection 3.5.1. This is done for
convenience, as there is a pre-implemented version of batch normalization in the soft-
ware library used. This replacement is valid, as weight normalization is described by the
authors to be largely a fast approximation to full batch normalization. [45]

3.5 Regularization

As [28] put it: "Regularization is any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error.”. There are many
ways to achieve this goal, like reducing the number of trainable parameters, adjusting
the loss function to prefer specific weights, using batch normalization or using dropout.
This section will only cover the last two methods.
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Figure 3.10: Architectural elements in a TCN. Graphic taken from [44]. (a) Exponential increase of
the receptive field in dilated convolutional layers. Here the dilation factor d scales as 2° and the kernel
size k is set to 3. The causal structure propagates through the layers, as no output is connected to a
later input. (b) Multiple different layers are utilized for an entire module of the TCN. Also a residual
connection is used to help earlier levels learn. Multiple of these units are stacked to form a TCN. (¢) An
example of how the residual block from (b) could look like.

3.5.1 Batch Normalization Layer

Batch normalization was introduced in [46] and is used to normalize the inputs of each
layer. This helps the network learn faster and generalize more easily [46].
The normalization tries to fix the distribution of the inputs between different samples,
as the layers would need to adapt their parameters otherwise for different input distri-
butions. Specifically the goal is to transform the data in a way that the mean is 0 and
the variance is 1. Normalizing data in such a way is in principle not problematic and a
standard procedure only for the input layer. The problem of normalizing the input of
each individual layer is the backpropagation step, as it can lead to exploding biases. [46]
To solve this issue, gradients of the normalization with respect to multiple inputs need
to be computed. Batch normalization uses the samples of each mini-batch to compute
the mean, variance and gradients. To reduce computational cost, the normalization is
computed only over one dimension of the input. In this work, the mean and variance will
be calculated for every channel and thus applied to each channel individually. Finally a
linear transformation

Yi =& + (3.30)
is applied to the normalized data

o T; — UB
£.=

N \/0324—8.

Here z; is the i-th sample of the mini-batch, yp is the mean and o2 is the variance of the
activations calculated over the mini-batch. The factors 8 and ~y are learned parameters
and e is a constant added for numerical stability.

The linear transformation is applied so that the batch normalization layer can learn to be
the identity transformation. Otherwise the network could loose the ability to represent
some function it previously could have represented.

(3.31)
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The implementation in Keras differs from this approach in the sense that the mean ug
and variance op? are only calculated for each individual batch during training. When
the network is used to evaluate some data, it will use a fixed mean and variance, that
was approximated over all batches during training. They call this the moving average
fmov and moving variance o2, respectively and adjust them after every batch by

lulmov =M [lmov + (1 - m):U’B

Ulmov2 =m: Umov2 + (1 - m)UBQ, (332)

where m is the momentum used and usually set to a high value around 0.99. Using
this has the advantage that only a finite number of samples have a non negligible effect
on the mean- and variance value used during inference. Therefore drifts in the input
distribution, which might occur during training, can be counteracted.

3.5.2 Dropout Layer

Dropout layers were introduced in 2014 by [47] and showed great improvements to low-
ering the generalization error. They work by dropping a random percentage of neurons
from the network during training. Though this approach sounds counter intuitive, it has
multiple benefits.

One viewpoint is that the dropout layer acts as a noise source for the network. By drop-
ping some activations during training, the network can’t be too strongly dependent on
a single connection and has to learn multiple ways of detecting some feature. Therefore
the network becomes less sensitive to small alterations of the input. Furthermore the
dropout layer can be used as a first layer in a network and act as data augmentation,
where it introduces further noise to the data, as the same sample may experience dif-
ferent dropped connections. Therefore the effective number of samples the network sees
during training is enlarged.

Another viewpoint is that training a network with dropout layers does not only tryout
the full architecture, but also all sub-networks that can be created from the full architec-
ture by dropping some connections. The number of sub-networks grows exponentially
with the number of dropout layers. This viewpoint is the main selling point promoted
by [28] and [47], as it allows to efficiently sample many networks and combine them.

Although dropout layers have many advantages, they come at the cost of less stable
learning. This is especially evident in the loss that is a lot less consistent. Furthermore,
if the dropout rate is chosen too high, the network will stop learning altogether as it can
not adapt to too many dropped connections.

During the evaluation process, the original paper [47] suggests reweighing the weights
by the dropout probability to get an averaging effect. This step is however not done in
the software library Keras used in this work. Therefore, the dropout layer has no effect
when a network that utilizes this form of regularization is used.
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4 Searching for Gravitational Waves using Neural Net-
works

Detecting GWs from noisy detector data is a difficult problem as the potential signals are
very faint. Current matched filtering based pipelines, as outlined in subsection 2.2, are
very sensitive but also have two major drawbacks. First of all, they are only proven to be
optimal for Gaussian noise. The detector data on the other hand contains non-Gaussian
noise transients and thus is not entirely Gaussian or stationary [48]. For this reason fur-
ther measures than just using matched filtering have to be taken. Secondly, even though
current detection pipelines are able to keep up with the constant data-stream from the
detectors, they introduce latency on the order O(10s). This means that astronomers are
alerted of an event about 10s after the GW has passed the detector [25]. If the signal
came from a binary system containing at least one neutron star an EM counterpart
might be detectable. This counterpart contains a lot of information about the neutron
star itself and the evolution of the system [10]. Maximizing the observation time is thus
very important. Furthermore, the computational cost for matched filter searches grows
as detectors get more sensitive since more templates will be needed to cover the entire
parameter space. This will either lead to even higher latency or necessitate more pow-
erful hardware.

To reduce the latency and computational cost more efficient searches are required. Very
promising contenders are neural networks which are known for their computational effi-
ciency once trained. They are furthermore capable of generalizing well to unseen data.
As such they might be able to exceed sensitivities of matched filtering based approaches
on non-Gaussian noise.

For these reasons using NNs to analyze data for GWs has grown in popularity and mul-
tiple very promising results have been found. This section therefore gives an overview
of the state of the art machine learning techniques that aim to classify GW strain data
and puts the thesis at hand into context of these works.

The use of deep neural networks as a filter to detect GW-signals in noisy detector data
was pioneered by Daniel George and E.A. Huerta [15]. They used a CNN to classify
time series data into the two categories ”"noise + signal” and "pure noise” as well as
estimate some source parameters for BBH signals. The network was able to reproduce
the sensitivity a classical matched filter search could achieve and even showed potential
to adapt to eccentric signals which were not used during the training stage. They did,
however, calculate their sensitivity at a false alarm probability of 0.6%, which equates
to a false alarm rate of 155000 S;rgrﬁ’tlfls. The followup paper [49] used real detector noise,
demonstrating that CNNs can be used for real time classification and parameter esti-
mation. The algorithm was furthermore accurate even in the presence of non-Gaussian
transients.

A similar concept has been applied to the search for continuous GWs in [50]. The au-
thors show that for a relatively short observation time the performance of their network
on low frequency data rivals that of matched filtering, while for higher frequencies or
longer observation times their approach falls off. The key advantage of this search is the
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computational efficiency. Using CNNs reduces the pure search time by several orders of
magnitude. Even including the time spent during training and for a necessary followup
search seems to reduce the total computational cost. However the authors do not get
more specific in that regard.

The recently published paper [30] tries to classify time series strain data into the three
categories "pure noise”, "BBH signal” and "BNS signal”. As such it is the first publica-
tion that tries to classify BNS signals using a deep NN. In that regard it is very similar
to our work. This enables us to compare our results to their findings.

Both networks are able to consistently recover BNS signals with a low false positive
probability. We do, however, suggest to use not the false positive probability but rather
a false alarm rate. Doing so produces results that are more easily comparable to realistic
searches. We therefore estimate the false alarm rate at which the authors of [30] gener-
ated their results. To do so we use the fact that the GWs are shifted by 4+0.1s within
the data. Therefore, the network would need to be slid across the data using a step size
of 0.1s. Their testing set contained only 5000 samples, of which ~ 1667 were pure noise
samples. With so few samples the false alarm rate can only be estimated very roughly
and down to ~15500 % (for details on how to do so see subsubsection 5.2.2).
Furthermore, the results in [30] are solely given in terms of peak signal-to-noise ratio
(pPSNR). The authors quote a conversion factor of ~ 13 between the SNR matched
filtering would return and pSNR. The source they used calculated this factor only
for BBH signals. We found that for BNS signals this factor is roughly'® 39.225, i.e.
SNR ~ 39.225 pSNR.

Finally, to compare our results to the findings of [30] we note that our algorithm uses
the data of 2 detectors. Therefore, signals that are injected at SNR z in [30] would on
average be assigned a label value of SNR ~ /2 for our analysis.

A detailed comparison can be found in subsubsection 5.4.2.

[51] aims to reduce the confusion that occurs when mixing terms of computer science
with those of gravitational data analysis. It criticizes the way statistical significance is
claimed by different machine learning approaches. It especially claims that no statisti-
cally meaningful false alarm rate can be derived from NNs using only training, validation
and testing set, if these sets contained individual samples of pure noise and signals. They
base their criticism on the fact that a sliding window approach will not always contain
the signals in the way the training set suggests. The waveform will not be positioned in
just the way it was positioned during the training stage but at some uncontrollable point.
Due to this limitation they suggest that NNs can only be used as quick and reliable trig-
ger generators that need a followup matched filter search. We try to address most of
their points by generating all results and statistics empirically from a long continuous

We report these values based on the following calculation: We define the peak SNR, following [30],
as max (waveform)/4/Var(noise). The matched filter SNR is calculated as described in subsection 5.1
using a single detector. We than divide the matched filter SNR by the peak SNR to get the conversion
factor. We use a sample rate of 4096 Hz to generate both noise and signal. Further tests show that this
is only beneficial for the claims of [30] as the PSD increases strongly for large frequencies, thus increasing
the conversion factor. At a sample rate of 16 kHz we found a conversion factor of ~ 75.
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time series. Further measures and precautions will be explained in subsubsection 5.4.2.
A major contribution relating our final architecture came from [52], the authors of which
compared the performance of multiple different general architectures in the field of gravi-
tational wave data analysis. Their findings indicated that a TCN was the best algorithm
for this task. They were also able to compare current feed forward neural networks
against recurrent neural networks in the scope of GW data analysis and concluded that
they in some cases outperform CNN architectures but can’t match their TCN.

[53] takes a similar approach to their network architecture as [52] does but uses it to
denoise the input data, i.e. recover the waveform from the noisy detector data. They
show that the network is able to recover BBH signals to incredible accuracy and thus
can learn the characteristics of the noise background. We use their idea as part of our
final network.
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5 Network Topologies

This section summarizes the results of our research, trying to find a deep learning al-
gorithm that succeeds in detecting and classifying BNS-signals in noisy data. The goal
was to not only classify the signals into the two categories ”"pure noise” and ”signal” but
also to give an estimate of the signals SNR.

5.1 The Data Generating Process

Training a NN to detect and classify BNS signals requires a large set of mock data.
Using the data without some processing, however, is not possible. This is due to the
fact that BNS signals are more difficult to train for than BBH signals, as their strain
amplitude is a lot lower and the signal lasts for a longer duration!”. Training a NN on
data of such duration sampled at a frequency high enough to resolve the final cycles of
the binary system is not feasible, as the required network would need too many trainable
parameters. However, to retain most of the SNR in the data, it is not possible to crop
it to only contain a small portion of the waveform. To overcome this issue note that
even though BNS signals spend a long time in the sensitive region of the detectors, their
frequency evolves rather slowly and starts at low values.

For the early inspiral phase of the signal, frequencies are around 30 Hz to 100 Hz. To
resolve these frequencies, a sample rate of 60 Hz to 200 Hz is necessary. The higher
sample rates are only required for the final few seconds. For these reasons we propose to
represent the data using a new multi-rate approach. Using this method, the network does
not receive the data at a fixed sample rate, but rather multiple inputs, each sampling
parts of the signal at different rates.

We choose the largest window to encompass 64 s of data, where a signal is aligned such
that the high frequency cutoff is roughly 0.5s from the end. Afterwards we chop the
data into parts of duration 2's and re-sample each of these parts to have a sample rate
of 21271 Hz, with i = 0, ...,6. This way each sample rate contains exactly 4096 samples.
The 7 re-sampled data segments, however, have overlaps. This is due to the fact, that
the lower sample rates contain the data of the higher sample rates, e.g. the 2s interval
sampled at 2048 Hz also includes the 1s interval sampled at 4096 Hz. For this reason
and to reduce the number of input samples even further, we only use the first 2048
samples for each rate, except the highest one. To keep things simple, however, the
highest sample rate is split into two parts, each containing 2048 samples. Therefore
each 64s input interval is split and re-sampled to yield 8 inputs, each containing 2048
samples. A depiction of this multi-rate sampling can be found in Figure 5.1.

A common drawback of training deep NNs is the need for large training sets. Luckily we
are in a position where we can simulate our training samples and thus can generate an

"BBH signals spend about 1s within the sensitive frequency range of our detectors, whereas BNS
signals can be visible in the whitened detector data for multiple tens of seconds [9] and when generated
even last multiple hundred seconds.
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Figure 5.1: The plot shows how each BNS signal is sampled at multiple rates. Only the last 68s of the
entire waveform are shown. Each sample rate and interval has its own color attributed. Specifically they
are given by: black=(0.5s, 4096 Hz), purple=(0.5s, 4096 Hz), blue=(1s, 2048 Hz), cyan=(2s, 4096 Hz),
green=(4s, 1024 Hz), yellow=(8s, 512 Hz), magenta=(16s, 256 Hz) and red=(32s, 64 Hz), where each
tuple gives (segment duration, sample rate).

arbitrary amount. To do so we use the PyCBC software package [18]. The final training
set contained 56250 different signals and 161250 different noise realizations. All of the
noise samples were simulated using the analytic PSD aLIG0ZeroDetHighPower provided
by LalSuite [54]. Therefore all results obtained using this data only hold for stationary
gaussian noise. All waveforms were generated using the approximant "TaylorF2” as
implemented by LalSuite [54]. Out of the 17 parameters that could have been varied,
we fixed the spins to 0 and neglected tidal effects for simplicity. Both of these effects
are expected to have a very minor effect on actual physical waveforms. Furthermore the
coalescence time t.q, is set to 0 as well. The remaining 8 parameters were chosen to
represent a realistic distribution in order to estimate the potential of our approach in
a real search. As such, both component masses m; and meo are uniformly distributed
in the range 1.2My to 1.6 M. Specifically we do not explicitly require m; > ma
when generating the waveform. The coalescence phase ®y and the polarization angle v
are uniformly distributed on the interval [0, 27| and the inclination ¢ is distributed like
arccos (uniform(—1,1)). Finally the sky-position is isotropic, i.e. 6 is distributed like
arccos (uniform(—1,1)) and ¢ uniform in [—7, 7].

The luminsoity distance r is chosen indirectly by fixing the SNR to some value. This is
valid, as the SNR scales inversely with the distance. In this work, the SNR is uniformly
distributed on the interval [8,15]. One has to avoid one major pitfall when fixing or
calculating the SNR and comparing it to other results. If one compares the SNR of two
signals with the same parameters, the value will depend on the length of the segment
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used. According to subsection 2.2, cutting off the waveform early might result in a lower
or at least inaccurate value of the SNR, as parts of the signal are unused. We therefore
specify very precisely how we calculated the SNR. The waveforms are generated with
a lower frequency cutoff of 20 Hz, which results in waveforms with a duration of about
500s. Afterwards the waveforms are projected onto the two detectors Livingston and
Hanford and cropped in such a way that they span 96s. We vary the exact position of the
highest amplitude between 0.25s to 0.75s from the end of the data stream and choose
the signal that arrives at the latest point in time as reference. Only after the waveforms
are cropped, we calculate the SNR of the pure signal (while assuming the PSD of the
detector) using the waveform itself as a template. Since we are using multiple detectors,
the SNR p; is calculated for each detector. The total SNR in the absence of noise is

given by
Ptotal = /ZP? (51)

Each waveform is than rescaled by multiplying with the factor SNR/piotal, where SNR
is the target value. Each noise sample is labeled with SNR 4 by convention. This value
can in principle be picked freely but we chose it to resemble the average output of a
matched filter search on pure noise for short signals. As a last step, before re-sampling
the data as described above, the samples are whitened. To do so, we divide each of
them by the amplitude spectral density given by +/PSD. The PSD again is given by the
analytic version aLIG0ZeroDetHighPower provided by LalSuite [54]. Ideally one would
use an estimate of the PSD to whiten the data. This is, however, not possible in our
case, as we are storing signals and noise separately and only add them together at run
time. Estimating the PSD would have the advantage of being more robust in a real
search, as it would counteract drifts in the PSD.

The reason for storing noise and signals separately are resource constraints. To cover the
entire parameter-space densely enough and avoid overfitting, a large number of samples
is necessary. Initially we generated and stored the sum of signal and noise, instead of
storing each category separately. This has multiple disadvantages, but also one key ad-
vantage; we can use the pure signal as a filter for the matched filter (compare equation
(2.72)), thus giving us an upper limit on the SNR a matched filter search could return.
In that sense, we could monitor the performance and compare it to matched filtering
directly during training. The disadvantages however at some point outweighed this ad-
vantage. The core one being the restricted number of samples. A file containing 500, 000
samples has a size of ~200 GB. To train the networks on the data, we completely load
it into system memory and need some overhead for formatting. To reduce these costs,
we decided to split the signal- and noise-samples and only at runtime add together one
instance of each category on the first layer of the network. The second advantage of
this approach is less obvious. It enables us to easily feed the network the same signal
submerged in multiple different noise realizations, which resulted in performance im-
provements for tasks similar to ours (Christoph Dreifligacker, personal communication,
June 2019).

The split between training and validation set is treated with great care, assuring that not
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a single noise or signal sample from the training set is used during validation. Therefore,
the reported loss and accuracy values are representative of a real search. Though they
are not the final statistic we report, they are tightly linked to those and give clues about
the network and its efficiency.

The data used for training and validating the final network contained 75,000 different
GW-signals and 215, 000 noise realizations'®. We then generate a set number of unique
index pairs (s;,n;), where s; corresponds to a signal and n; to a noise sample. For the
training set these indices may be selected from s; € [0,3/4s;) and n; € [0,3/4n;), where
s; and ny are the total number of signals and noise samples respectively. If 3/4s, ¢ N
or 3/4n; ¢ N, the upper index is rounded to the nearest natural number. The to-
tal number of pairs generated is equal to the number of usable noise samples 3/4n;.
These index pairs represent all samples of the training/validation set that contain a
GW. In order to also supply pure noise samples to the learning algorithm, all noise re-
alizations are also used during training. This is achieved by appending all index pairs
(—=1,0),(—=1,1),...,(—1,3/4n;) to the list of index pairs generated before. Afterwards
this list is shuffled. The NN finally is fed with these 2-3/4n; samples through a function!®
that interprets the indices and reshapes the data. Overall the training set therefore con-
sists of 322,500 samples with a 1 : 1-split between noise and signals. The validation set
does have a 3 : 1 split in favor of signals and contains the remaining n;/4 noise samples.
Therefore, the validation set consists of 215,000 samples.

The shape of the data depends on the network in use. Our final network expects a list
of 16 arrays, as we have 8 different sample rates and a signal and noise input for each of
them. The arrays are of shape (mini-batch size, 2048, 2). The last axis is the number
of detectors used, whereas the second axis is the number of samples in the time series
strain data.

Above we have only discussed the training and validation set in detail. The final results,
however, are evaluated on the testing set. To eliminate most possible error sources, the
testing set is generated completely independently from training and validation set, shar-
ing only the distribution of parameters as discussed above. The testing set, furthermore,
does not consist of individual samples, where each sample either contains a GW aligned
correctly or not, but is a set of continuous time series data. These large chunks are
then handed to a generator function that chops each time series into overlapping blocks,
i.e. sliding a window across the data. Each of these windows has a length of 96s. The
resulting chunk is whitened by dividing out the amplitude spectral density associated
to the analytic PSD aLIGOZeroDetHighPower and re-sampled to match the criteria of
the network input. The window is than shifted by 0.25s and the process repeated. The
temporal resolution of 0.25 s was chosen because the waveforms are shifted around in the
training set by £0.25s. With the step chosen this way, we are guaranteed to have the
maximum amplitude of the signal in the sensitive window of the network at some point.

8The numbers stated above were the number of samples in the training set. Here we are stating the
numbers for the training and validation set combined, as they are stored in the same file. The numbers
for the training set are a results of the split described below.

19Keras calls this function a generator.
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The result of sliding the network across the input data in the way described results in
a SNR and p-score time series with time resolution 0.25s. From these triggers can be
generated by choosing some threshold based on the findings on the validation set.

The testing data was generated by Dr. Alexander Harvey Nitz using PyCBC but utiliz-
ing different functions.

5.2 Network Metrics

This section describes the different metrics we use to evaluate the performance of different
networks. Not all of them were used throughout the entire time of testing architectures.
For the final results we will only quote sensitivities at a given false alarm rate, which
were also used to optimize the final networks. Early versions, however, were adjusted to
optimize the variance and accuracy of the given predictions.

For the following it is important to note that we train all networks for two different
output values. The first one is trained to estimate the SNR of a signal, the second one
is trained to give the binary decision of whether or not a GW signal is present. We will
refer to these outputs by SNR and p-score respectively.

5.2.1 Variance and Mean Squared Error

The two metrics used to judge the performance of networks early on in the design process
were the variance of the data and the MSE compared to the target value. Both of them
were only applied to the SNR output. The reason for using these two was the simplicity
of implementation and the fact that MSE is used as the loss function to optimize the
network. As metric, the MSE gives an estimate of the average error for a prediction and
thus is an estimator for the quality of predictions. The variance is an estimate of how far
the recovered values spread and is hence a measure for the reliability of the prediction.
The assumption was that these two metrics are strongly correlated with the sensitivity,
which is the metric we want to report in the end.

Calculating these metrics is rather simple. We define the label values of our data by
Yabel and the predictions by ypred. If Yiabel and ypred contain n samples, the MSE is
defined by

n

1
MSE = E Z (yprod,i - ylabcl,i)2- (52)
i=1
The variance is given by
) 1 & 2
Variance = - > (Ypred,i — Yiabeli — mean(Ypred — Ylabel))” (5.3)
i=1
with
1 n

= — 2 5.4
mean () - ;xz (5.4)

We aim to minimize both these metrics.
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5.2.2 False Alarm Rate

The false alarm rate is a measure of significance for any reported value. If we recover
some value of SNR for given data, we need to know how reliable this value is and how
likely it is to originate from pure noise. The false alarm rate therefore gives the number of
noise samples per month?° that produce a higher ranking statistic than a given threshold.
To estimate this function we need to sample

f(z) = number of noise samples estimated louder than  per month. (5.5)

As we have two different ranking statics with our two outputs SNR and p-score, we also
need to calculate two different false alarm rates. We furthermore need to differentiate
between the discrete training/validation set and the continuous testing set. We will start
by describing the process of estimating the false alarm rates for the training/validation
set and afterwards go into detail about the differences for the testing set.

To sample f, we use the prediction values z; of our network for either of the two ranking
statistics on pure noise samples. Let m be the number of noise samples we have in the
set and denote any specific noise sample by n;. To estimate f; :== f(z;), we define

fli= oy > milj € [1,m]}]. (5.6)

A month for this work is defined to be 30 days.

f/ is the number of noise samples n; that got assigned a ranking statistic x; larger than
z;. It can therefore be understood as a cumulative sum. To convert this number to
samples per time, we need to know how much time the m samples span. To do so,
we observe that for each signal the waveform is allowed to move around in the noise
background by #+0.25s. Therefore, when we evaluate a continuous time series, we need
to shift the network across the data with a step-size of 0.25s. With this information the

observation time m samples cover is m - 0.25s. Therefore, ﬁ is in units ”"samples
!
per second”. From this we find f; = m_{f 5= - 2,592,000 S;fgtlis as an estimate for f, where

2,592,000 is the number of seconds per month.

For a continuous stretch of data the notion of a noise sample is not as strictly defined.
If we shift the window across the data, it might at some point contain only parts of a
waveform. To resolve this issue, we set a threshold for the ranking statistic. If for any
position of the window this threshold is exceeded we take this as a signal candidate. We
then shift the network across the entire data with a step size of 0.25s and take note of
every position where the threshold is exceeded. In a next step these positions in time
are clustered as a signal usually exceeds the threshold for multiple successive window
positions. We do so by requiring two signal candidates to be within 1s of each other to
belong to the same cluster. Each cluster of signal candidates is then reduced to a single
point in time by choosing the time where the ranking statistic is maximal. The signal
candidate is finally assumed to be a false positive, i.e. originate from noise, if there is

20We define a month as 30 days.
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no injection within a time span of +3s of it. The injection times are the times in the
data where the waveform of an injection shuts off.

The false positive rate for continuous data is therefore a function of the threshold and
gives the number of false positives per month at threshold x. To convert the number of
false positives to samples per month, we again divide by the observation time, which in
this case is given by the duration of analyzed data, i.e. 4927488 s for the final testing
set. Finally we multiply it by 2,592,000 to get it in units samples per month.

5.2.3 Sensitivity

The sensitivity is the metric we are mostly trying to optimize. It gives the ratio of
detected signals over total signals. To claim a detection we need to set a threshold for
the detection statistic. Choosing this value in turn fixes the false alarm rate. So we can
only claim statistical significance of the sensitivity if it is quoted alongside the associated
false alarm rate.

As for the false alarm rate, we evaluate the sensitivity for both outputs individually.
There are also slight differences between calculating it for the discrete training/valida-
tion set and the continuous testing set. Finally we can compute a volume from the found
and missed signals in which our analysis is sensitive enough to find GW-sources. We
give these volumes in terms of a radius of a corresponding sphere. We will again start
off by describing the process for the training/validation set.

The first step to calculating the sensitivity is fixing a threshold above which the network
is thought of to have found a signal. As the training/validation set usually contain com-
paratively few samples, the false alarm rate can’t be resolved at high thresholds or in
other words we are not able to sample low false alarm rates. For this reason we choose
the maximum value of the detection statistic of any noise sample as threshold. This
usually corresponds to a false alarm rate of 0(103)%.

We then bin the training samples that contain a signal by their injected SNR and com-
pute the ratio of how many samples in a bin get marked as signal over the total number
of samples in that bin. For the training/validation set we do not compute the sensitive
volume, as that would add another layer of complication and isn’t useful for optimizing
the performance, as the sensitive volume scales with the sensitivity.

For the testing set we plot the sensitivity against the false alarm rate rather than plot-
ting it against SNR at fixed false alarm rate. We choose to plot against false alarm rate
in order to have results that are comparable to matched filter results.

To obtain the sensitivity we need to figure out which injections have been found by the
network and which have been missed. Therefore, the network is shifted across the con-
tinuous test set with a step size of 0.25s. This creates a time series of detection statistic
values. We then apply a threshold to this time series and flag every time that exceeds
it as possible detection. These possible detections are then clustered as explained in
subsubsection 5.2.2 and declared a true detection if an injection is within a time span of
+3s. This generates a list of found injections as well as a list of missed injections. We
furthermore know the parameters of each injection and can therefore infer an estimate
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of the sensitive volume using the PyCBC function volume_montecarlo.
Fixing the threshold to some value also fixes the false alarm rate. We can therefore plot
the sensitive volume against false alarm rate.

5.3 Evolution of the Architecture

This section gives an overview of the steps that were taken to arrive at the final architec-
ture. It chronologically highlights the pivotal points along the way and showcases some
ideas that did not work out.

5.3.1 Convolutional Network

To start out we decided to test how well an architecture that is known to work for BBH
signals holds up when it is trained on BNS signals. We therefore used an adaptation of
the convolutional architecture introduced in [49].

As we only wanted to test how well the network could adapt to the new and different
challenge, we decided to start with signals that are easy to find with traditional meth-
ods. Therefore, the SNR was uniformly distributed between 10 and 50, with all other
parameters fixed. The neutron stars were modeled with m; = my = 1.4 Mg. The data
modeled the output of the two detectors Hanford and Livingston, using simulated noise
and the waveform approximant TaylorF2. It contained samples of signals and pure noise
realizations with a split of 1/2 between the two. This data was further used until sub-
subsection 5.3.4.

The neural network consisted of 3 stacked convolutional layers, doubling the number of
filters with every layer. The kernel size on the other hand was kept fixed at 16. We
also introduced batch normalization layers in between each convolutional layer and the
corresponding ReLLU activation, as doing so had shown slight improvements when testing
the network with BBH data. As suggested by the original work, a maximum pooling
layer was used after every convolution stack. Since the input data to our network is
sampled at multiple rates, this network has 14 input channels instead of the 1 used in
[49]. (7 input channels per detector, where each of the 7 channels corresponds to a single
sample rate) We also introduce a second output to the network and therefore use the
output of the final convolutional stack as input for two different stacks of dense layers.
The first reduced the number of neurons down to a single one, which has the SNR as
training goal, the second one condenses the output down to 2 values, which correspond
to a binary decision. We will refer to these two outputs by the SNR output and p-score
output respectively. The two outputs use different loss functions to optimize the net-
work. The SNR output is trained to match the injected SNR using MSE whereas the
p-score output gives two numbers that add up to 1. The first of these two numbers is
trained to be 1 if the data contains a GW and to be 0 if it is a noise sample, the other
is simply the inverse of the first. For this output we use a categorical crossentropy as
loss. The total loss of the network is a weighted sum of these two outputs. We apply a
weight of 1 to the SNR output and a weight of 0.5 to the p-score output, emphasizing
the importance of recovering the SNR.
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To rate the performance of this network we used only the MSE and variance of the SNR
output and the false positive ratio of the p-score output with a threshold of 0.5. From
these the sensitivity and false alarm rate can only be eyeballed. We will therefore also
include crude estimates of these statistics here to put the performance of these networks
into context of later improvements.

With a MSE of ~ 6.5 the network was able to recover the SNR rather well. The variance
was on the same scale, also evaluating to ~ 6.5. The spread in recovered values is mostly
down to the large SNR range attributed to pure noise samples, reaching from 0 up to 20.
Using SNR 20 as a threshold to claim detection, the sensitivity can be eyeballed to reach
100% only above SNR ~ 25 and dropping close to 0% below SNR ~ 20. Furthermore,
evaluating the second output on 3000 signals from the validation set gives an accuracy
of about 95% and a false positive rate of about 6%. These numbers don’t sound terrible
but are in context. First of all, we try to optimize our network for the SNR-range of
5-15. At these values the false positive rate seems to be a lot higher than the 6% over
the entire validation set. Secondly, a false positive rate of 6% equates to a false alarm
rate of about 6 x 10° %21. Ideally the false alarm rate should not exceed 1 per 2
months above an SNR of about 8, as that false alarm rate is the threshold used to alert
astronomers [25].

From this we concluded that it is possible for a NN to learn to classify BNS data but
further improvements to the architecture are necessary to reach desirable sensitivities at
acceptable false alarm rates.

5.3.2 Inception Network

The first major improvement to the original architecture was the introduction of the
inception module [34]. This new module had shown strong improvements for the image
recognition challenge ILSVRC in 2014, replacing traditional convolutional layers. As
image recognition is one of the most active fields for the development of new NN archi-
tectures, we decided to test if their findings are applicable to time series data as well.
We applied the same data and used the same output data as in subsubsection 5.3.1.
The inception modules were a direct adaptation of the 2 dimensional variant presented
in [34]. Details can be found in subsubsection 3.4.3. To get the best comparison of
performance to the pure convolutional architecture of subsubsection 5.3.1, we used basi-
cally the same architecture. The three convolutional layers of the old architecture were
simply replaced by inception modules. The number of filters, however was kept con-
stant and the kernel size was adjusted. The original work suggests to use kernel sizes
of (1,3,5) within the inception module. We found that using slightly larger kernel sizes
(4,8,16) improved our statistics significantly. Another adaptation to the architecture
used in subsubsection 5.3.1 is the use of two further convolutional layers before the first
inception module. These again improved performance and were inspired by [34]. Overall
the network consisted of two convolution layers, followed by three inception modules and

21This crude calculation uses 0.5 as a threshold value. Therefore, one gets 6 x 10° samples with the
output being larger than 0.5 per month.
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funneled down to the final outputs using two dense layers.

With these alterations to the architecture the MSE dropped to ~ 4.5 and the variance
to ~ 3.9. These are significant improvements over subsubsection 5.3.1. As reference, the
goal was to reach values of MSE and variance around 2 in order to use more difficult
to detect data. Furthermore, the false positive rate dropped to ~ 0.015% which corre-
sponds to a false alarm rate of only ~10 x 103 %. This is already pretty good for
first tests. The sensitivity at this false alarm rate went up to 100% around SNR 20 and
only dropped to 0% below SNR ~ 12. This improvement is down to the loudest false
positive only being estimated to have SNR ~ 15.

Though this is still not an impressive performance, it is a considerable improvement over
the simple convolutional approach and shows the potential the inception architecture has
for time series data.

We also tried to evaluate the necessity of all the different sample rates for the network,
as it can be beneficial in multiple ways to reduce the number of input samples. We
therefore trained the same network using different sample rates. Adding sample rates
one by one, the first network was trained using only the 2048 Hz data, the second used
both the 2048 Hz and the 1024 Hz data and so on. We also tried to use only the three
sample rates 2048 Hz, 512 Hz and 128 Hz, as we expected them to contain the bulk of
the information. We found however that each sample rate, except for 64 Hz, improved
the performance of the network. Using only the three sample rates that we expected to
work best, however, was also very close in performance to using all sample rates in this
test. The 64 Hz sample rate on the contrary seemed to hurt performance.

We also tested different depths of inception architectures and found that shallower net-
works usually perform a bit better than deeper ones. This probably points to a vanishing
gradient problem. We however did not verify this hypothesis.

5.3.3 Collect-Inception Network

As we are using multi-rate sampling for our input data, we wanted to test if it would be
beneficial to the performance to have the network analyze each sample rate separately
and and only combine the results in the end. Considering the findings of subsubsec-
tion 5.3.2 only the three sample rates 2048 Hz, 512Hz and 128 Hz were used in the
beginning. The data was split for the three inputs, each containing the data for 2 de-
tectors.

The architecture consisted of three inception networks side by side, the results of which
were concatenated and put through some final dense layers. Each inception network
consisted of multiple stacked inception modules. In the beginning these did not all have
the same depth, but we empirically found the network would perform best if each stack
contained the same number of inception layers. With further testing we found that
shallower networks for each sample rate and a small inception network after concatenat-
ing the stacks improved results even further. The final iteration of improvement found
that using all sample rates improved the performance of this architecture even further.
Therefore the final network, for which we will give the metrics below, consisted of 7
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parallel stacks of three inception modules each. The results of these stacks are then con-
catenated and used as input for two further inception modules. Their output is finally
passed to two further dense layers for each output.

This architecture managed to bring down the MSE to ~ 2.5 and the variance to ~ 2.4.
With this we had just about reached our goals for the simple data. The false positive
rate, however, was higher by about 20 times for this network when compared to the
architecture presented in subsubsection 5.3.2. Furthermore, the false alarm rate for the
loudest noise sample is about twice that of the previous network. The sensitivity at this
higher false alarm rate on the other hand also improved slightly. It didn’t drop to 0%
even at SNR 10 and reaching 100% at SNR ~ 18. However, we did not consider the
latter metrics at the time of testing the networks and only looked at MSE and variance.
For this reason, the new collect-inception architecture was the clear choice to move on.
Later findings will back this conclusion up, even though we should not have drawn it for
this architecture.

Having a worse estimate of the false alarm rate is due to the a lower number of noise
samples used in the validation set. At the time we were testing many different archi-
tectures and data setups. For that reason not all validation sets were similar enough
to draw good conclusions. For others who try to compare different architectures we
therefore want to point out that using a single validation set for all networks is vital for
the efficient improvement of architectures.

As we had reached our goal of MSE and variance for the easy data with this network
we changed to use more difficult data from here on out. For details see the following
section. We will refer to a network consisting of multiple parallel stacks of inception
layers as ”collect-inception network” from here on out.

5.3.4 Temporal Convolutional Denoiser

After the success of the collect-inception network introduced in subsubsection 5.3.3 we
were inspired by [52] to try a new kind of network, called temporal convolutional network
(TCN). Their results suggested that a stack of dilated convolutional layers outperforms
normal stacked convolutional layers when classifying data containing GW signals. Their
idea was backed up by findings of [44], who showed that TCN are better suited for
sequence data than other architectures.

Since the collect-inception network achieved our metric goals for the simple data, we
started to use more difficult data from this point on. We still kept all parameters but
the SNR fixed, but varied the latter one between 8 and 15 instead. We furthermore feed
the network noise and signals separately now and add them together on the first layer
of the network. Doing so has many advantages. First of all it gives us more effective
samples (see subsection 5.1 for details). The second reason comes from the properties of
the TCN. As we are training for SNR and p-score, one immediate problem of a pure TCN
would be the output shape. This kind of network was originally designed to generate
and alter sequence data and thus returns a tensor of the same length per channel as
its input. This would be great, if we could generate a SNR time series for all inputs as
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training goal. We would then simply get an estimate of the SNR time series as output
from our network (compare [51]). It is, however, not trivial to do so and for our purposes
impractical??. The first intuitive solution to the problem of reshaping would simply be
to use dense layers to scale down the output to the desired dimensions. We did try this
approach but had no success. Instead, inspired by [53], we used the TCN as a denoising
stage in front of every input of the collect-inception network. To train the TCN to be a
denoiser, we need the pure waveform as training goal. It is therefore convenient to store
waveform and noise separated.

The TCN consisted of 12 stacked dilated convolutional layers, where the dilation factor
was set to 2¢ with ¢ being the number of convolutional layers that came before. The
number of convolutional layers was chosen such that the receptive field of the network
spanned the entire 4096 input samples. For details of the exact implementation of the
TCN see subsubsection 3.4.4. We used one TCN in front of every input to a collect-
inception network. To train the TCNs to be denoisers, each of them was trained to
recover the pure waveform from noisy data. Therefore an auxiliary output was added
after every TCN that got the pure input waveform as training goal. The used loss was
MSE and assigned a weight of 1. Its output is then added back onto the sum of noise and
signal and collectively used as input for a collect-inception network with an architecture
that was discussed in subsubsection 5.3.3. The idea behind adding the TCN-output back
onto the input was to amplify signals, whilst not throwing away information, if the TCN
was not able to recover a signal.

This new architecture and data was also the point in time where we started to use the
false alarm rate and sensitivity as metrics to judge the performance. The false alarm rate
can be estimated to be ~250 S;rggtlis at SNR ~ 9.5. Fixing the false alarm rate to this
value allows us to calculate the sensitivity, which outperformed any previous architecture.
It did not drop below 20% in any SNR bin even down to SNR 8. Furthermore the
sensitivity stayed above 80% for SNRs < 12. All these values are achieved at lower
false alarm rates than those of subsubsection 5.3.2 and subsubsection 5.3.3. To still
compare the MSE and variance to earlier architectures, the MSE reached a value of
2.7 and the variance 2.3. These are slightly worse values than recorded before but
achieved using more difficult data. We also tested to use the architecture presented in
subsubsection 5.3.3 on this more difficult data set and found that even though the MSE
and variance at 2.6 and 1.9 are lower, the sensitivity is worse. This is especially true for
the lower SNR bins. However, the false alarm rate used to determine the sensitivity again
was different to that used to estimate the sensitivity of the collect-inception network
using a TCN as a denoiser. For the pure collect-inception network the false alarm rate
was set to be ~100 Sﬁ‘gﬂﬁs. We did, however, not consider this offset in false alarm rate
at the time. A collect-inception network using a TCN as a denoiser will be called a
TCN-collect-inception network or short TCIN from here on out.

Even though the TCIN architecture was considered to work a lot better than previous

22Defining a SNR. time series for data that is sampled at multiple rates is the technical difficulty.
The impracticality does only come in, when we store noise and signals separately, as we would need to
generate the SNR time series on the fly, which is computationally expensive.
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attempts it had the major downside of complexity. Using an individual TCN for each
sample rate and following it up with a collect-inception network required about 30 GB
of memory with a mini-batch size of only 24 samples. The only graphics card that can
has enough video memory is the NVIDIA GV100. The availability of this hardware is
very limited and thus does not allow for rapid development. A smaller alternative would
therefore be highly beneficial.

We also conducted a test, trying to determine if the TCN is able to reconstruct the
original waveform from a noisy time series. These tests showed that it is not consistently
able to do so. Using mean average percentage error as a loss function and setting the
noise free signal as the training goal for a pure TCN, the loss did not fall below 70, 000.
Trying to train the TCIN without the use of an auxiliary loss function, however, proved
to deteriorate performance. Therefore, other TCINs use the auxiliary outputs as well.

5.3.5 Evolution using Bad Data

After the success of TCINs, we searched for simpler architectures to reduce memory
constrains. For that reason we tried using an old record holder, a simple inception net-
work that was very memory efficient. To improve its performance, residual connections
were added to every inception layer where it was possible to do so without needing to
use dimensional reduction layers. This choice was motivated by a conversation with
Christoph Dreifligacker and the results of [35]. The residual connections are meant to
help the network learn as it is more easily able to recover the identity mapping between
the input of an inception module and its output. The total network consisted of 8 stacked
inception modules with one intermediate pooling layer and 6 residual connections. Net-
works using mainly inception modules and combining them with residual connections
will be called inception-res networks from here on out. The inception modules were pre-
ceded by two convolutional layers. The different sample rates were fed to the network
as different channels of the same input layer. It also only used the three sample rates
(2048 Hz, 512 Hz, 128 Hz). By accident, the kernel sizes in the inception modules were
set to (1,2,3). This did, however, prove to be beneficial to the network.

The results this network produced were incredible and outperformed anything we had
seen so far. Sensitivities stayed close to or above 60% for all SNR bins and the loudest
noise sample was estimated at an SNR of ~ 7.8. One thing that seemed strange though,
was the plot of recovered SNRs against the label values. For some specific SNR, values,
the predictions were scattered but lower by a significant margin. This can be seen as
streaks when plotting the recovered against the label values, as done in Figure 5.2.

The observed behavior and the incredible performance was due to a bug in how the
network was fed with data. The generator combines a pure waveform with one noise
realization to create a signal sample and is supposed to combine an array of zeros with
a noise realization for a pure noise sample. A missing ”if”-statement led to the array of
zeros always being replaced with the waveform that was the last in the list of available
waveforms. Therefore, instead of pure noise, the network always saw noise plus one
specific waveform. The same error with the exact same waveform was present in both
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Figure 5.2: Shown are the recovered SNR values on the y-axis and the label values on the x-axis. Each
SNR label has multiple y-values assigned to it, as the same waveform is submerged in multiple different
noise realizations. The red line indicates where the dots should lie if the network recovered them without
error. The dots roughly follow this line with the exception of a few streaks going down to 0. These are
the waveforms that resonate strongly with the signal that was mistakenly added to every pure noise
sample. Later iterations of the architecture reduced the number of streaks down to a single one.

the training and the validation set which made this error hard to catch. In fact the error
was only discovered about two weeks after it first occurred. Finding the bug this late
led to the optimization of the architecture for this flawed data. The best performing
network had a sensitivity of more than 95% over the entire SNR range for this flawed
data, even once we used more difficult data, i.e. varying more parameters than just the
SNR.

Though this mistake might at first seem like a waste of time, it actually helped in two
aspects. Firstly, it showed the possibility for a network to consistently recover a single
sample from different noise realizations and being able to model it well enough. The
hurdle for a general search isn’t trivial from this point, as in an optimal case we would
expect the network to generalize the structure of the waveforms it was trained on and
interpolate a template bank, but it is a starting point. Secondly, the optimization led to
architectures with improved performance over for instance the TCINs, when evaluated
on non-flawed data. For this reason, we will list a few of the notable improvement here.

The first observation was that the mistake of using filter sizes (1,2,3) was actually an
improvement over using (4,8, 16), which was previously used and found to be benefi-
cial. Another feature introduced was the reduced number of input samples. Before the
different sample rates had some overlap in the time domain, i.e. the last second of the
data was sampled by all 7 rates, the last 2 seconds were sampled by all but the highest
sample rate and so on. As the higher sample rates also contain all the information the
lower sample rates do, this overlap was thrown away. For a detailed description of how
this non overlapping multi-rate sampling works see subsection 5.1. A study, testing the
two different approaches to sampling the data and reducing the number of input samples
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by simply using less sample rates, showed that using all sample rates is beneficial, while
cropping the overlapping part of the data has no considerable negative effect.

With the performance these architectures suggested, we moved to more difficult data,
altering not only the SNR but also component masses my, mo, coalescence phase @,
sky-position 0, ¢ and inclination ¢. As expected, the performance decreased a bit using
more difficult data. Trying to recover the old performance led to one of the final im-
provements to the architecture. Instead of using a single inception stack, we introduced
an architecture that is a mixture of the collect-inception networks and the pure incep-
tion networks. It uses the same inputs as the collect-inception networks, but cascades
down concatenating two stacks after two inception layers, reducing the initial 8 stacks
to 4. These 4 stacks each are fed through two further inception layers before being
concatenated again. This procedure is repeated a third time, which results in a single
stack of inception layers which is than fed to dense layers, in order to get the outputs.
See Figure 5.3 for an overview of the architecture. We will still refer to networks with a
similar structure as collect-inception-res networks.

It again improved results a by a little. The sensitivity now didn’t drop below 97% for any
of the bins, with the loudest noise sample being assigned an SNR ~ 8. This is the last
and best performing iteration of the network we found before the bug in the generating
process was discovered and fixed. It therefore is still one of the core structures of the
final architecture.

After the error in the data generator from subsubsection 5.3.5 was caught, we tried to
evaluate how large of an impact it made. We therefore tested the different architectures
we had found to be working well for the flawed data on the corrected data, which still
varied component masses, coalescence phase, sky position and inclination.

The inception-res network experienced a drop in sensitivity to below 20% in the loudest
SNR bin. The collect-inception-res network held up a bit better, with its sensitivity
dropping only to 40% in the loudest SNR bin.

We then tied some minor alterations of the collect-inception-res network architecture
like changing the number of inception modules or training only for p-score, but nothing
helped to improve the performance.

5.3.6 Testing Alternative Loss Functions and Layers

After the performance of our networks on the difficult data could not be recovered by
simple alterations of the architecture, we decided to try and optimize our algorithm to
the specific problem of GW detection.

One of the prominent problems the network has is that estimating pure noise with a
large SNR value significantly decreases sensitivity. An overestimated noise sample is a
lot worse than an underestimated signal, as the former has an effect on all SNR bins.
Therefore we tried to implement a loss function that mimics this behavior, by grow-
ing exponentially for overestimating noise and only linearly for underestimating it. For
signals this behavior is swapped, i.e. the loss grows exponentially for underestimating
signals and linearly for overestimating them. The details on how this loss looks like
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and how it was derived can be found in Appendix B. It turned out that this approach
also didn’t help but rather decreased the sensitivity of the network. It even seemed to
push the two categories closer together. Further research in this area might prove useful
though.

We also briefly tried to use a mean average percentage error as loss function for the SNR
output to penalize errors at low values more strongly. The results of this different loss
function were mixed but mostly resulted in worse performance.

Another approach we took was close in nature to that of SincNet [55]. SincNet convolves
the input data with a parameterized filter, that is used in standard signal processing.
This has two main advantages. Firstly, the filters the network applies become more
interpretable and thus reveal more insight into what the network is actually trying to
accomplish. Secondly, the number of trainable parameters is reduced as we don’t need to
train a large convolution kernel but rather some parameters of a known function. Their
implementation used the parametrized layer only as the first layer of the architecture
and showed improvements over other purely convolutional approaches when trying to
recognize speakers [56]. Based on this work we used our adaptation only as a first layer,
too. Instead of using Sinc-functions, we tried to use sums of sine waves. The convolution
kernel is thus given by Y i | A; - sin (fit + ¢;), where A4;, f; and ¢; are learned parame-
ters and t is used to sample the function. The general idea behind this approach is to
enable the network to construct a crude template of a general waveform by combining
multiple sine waves. To restrict the available frequencies, the layer is given a low and
high frequency cutoff. This restriction is necessary to determine the shape of the con-
volution kernel. To sample a sine wave of frequency f, according to Nyquist, one needs
to sample at least with a rate of 2f. Therefore the sample rate is given by dt = 2f+1gh
As we want to fit at least one complete cycle of the lowest frequency into our kernel, the
number of samples in the kernel is given by N = 2]}11012}1 . By default the convolution kernel
will always be filled with samples, e.g. a sine wave of frequency f = 2 fiow Will manage
two full cycles in the convolution kernel. We called this layer ”Wave-Convolution” or
"WConv1D” in short and will from here on out refer to it by this name.

To get a quick estimate of how well this new approach does we devised a simple network
consisting of only two convolution-type layers and two dense layers to get the correct
output. We than compare two iterations of this network, one trained with the new
Wave-Convolution layer and one using a usual convolutional layer. All other parameters
are kept constant. For the convolutional layer, we choose the kernel size in such a way
that the number of trainable parameters is on a comparable scale.

First tests of this new layer did apply some false windowing and used a skewed method-
ology. The results produced by these early tests lost out to pure convolutional quite
strongly and thus this approach was not further pursued. Revisiting the idea close to
finishing this project and fixing the errors previous runs made paints a different but not
clear picture. Now the WConv1D layer significantly outperforms the traditional con-
volutional layer, almost doubling the sensitivity in every bin. The results are however
questionable in multiple ways. Firstly, both networks experienced strong overfitting,
thus rendering the training almost meaningless. Therefore, the difference in perfor-
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mance may be down to pure chance. Secondly, the networks were only followed by a
single convolutional layer before being fed into the final dense layers. The test setup
therefore doesn’t consider the impact on deep networks. Furthermore, the convolution
kernel used for the convolutional network was of size 288, which is well beyond the usual
kernel sizes of 16 used in CNNs designed for filtering GW data. It is thus questionable
if the extra effort required would justify the use of a WConv1D layer. Finally, the layer
was not compared in state of the art networks derived in subsubsection 5.3.1 to subsub-
section 5.3.5. Therefore, a lot more research would be necessary to determine the use of
this new approach.

As no architectural alteration proved to be highly beneficial to the performance of the
network for the difficult data where a lot of parameters are varied, we went back to using
the data that only varies the SNR. We then combined the general approach of the TCIN
with the new cascading architecture and found that it outperforms the traditional TCIN.
This combination is the final architecture we tried and will be explained in further detail
in subsubsection 5.4.1. We then used this final architecture and trained it on the data
described in subsection 5.1 to finally evaluate it.

5.3.7 Miscellaneous Findings

We conclude this section with a few statements about general findings of our research.

Using dropout layers in the initial layers after normalizing the input generally had a
positive effect on the achievable sensitivities, even when the number of input samples
was chosen large enough to avoid overfitting. On the other hand it generally comes with
the disadvantage of the loss being a lot more jumpy throughout the training and trends
in the loss being washed out.

We used the SGD variant "Adam” as an optimizer for most of our runs and did not
see improvements when trying different ones like ”AdaDelta” or standard SGD. We also
briefly tried modifying the learning rate but could not improve results, thus staying with
the default learning rate of 1073,

Finally, when training a network and monitoring the sensitivity throughout the training
process, we noticed drops to zero sensitivity at some point. These got more frequent as
training went on. We hypothesize that this drop is due to the network trying to split
noise and signals rather strongly. If one of the noise samples resonates strongly with
the network and it ”thinks” to have seen a signal, it will push the value for this sample
higher and higher. The p-score additionally will saturate at 1. We therefore recommend
to stop training the network after a few of these dips to 0 sensitivity occurred.

5.4 Final Network

Trying to optimize a NN to a specific task is a problem that has no specified end.
Therefore, the architecture discussed in this section is only the best of our current
efforts. We will start off by discussing it and the underlying design decisions in detail
and afterwards evaluate the performance on a long set of continuous strain data.
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5.4.1 Architecture

All illustrations for this section can be found in Appendix C.

The final architecture is a collect-inception-res network with TCNs as denoisers for
every stack. Fach stack is attributed its own sample rate and they cascade down to two
outputs. The first output is supposed to give an estimate of the SNR of the input data
whereas the second one gives a p-score, a value that is used for binary classification, i.e.
gives information about whether or not a GW is present in the data. To stress again,
the p-score is not a probability but just a value that is bounded by 0 and 1 that, when
a threshold is applied, gives a binary answer. A high-level overview of the network is
shown in Figure C.1.

We will now give a detailed description of each module depicted in Figure C.1, working
our way down from the input. We will only discuss each module once, as all of them
share the same parameters.

The inputs are labeled 1 to 8, each consisting of an individual input for signal and noise.
The order of these inputs is the reversed order of the chopped up time series, i.e. input
1 corresponds to the last 0.5s of data sampled at 4096 Hz, input 2 is the interval from
0.5s to 1s sampled at 4096 Hz and so on. The final input thus is the last 32s sampled
at 64 Hz (for details see subsection 5.1). The first layer in each stack simply adds the
two stack-inputs for signal and noise together. This sum is then fed to a TCN.

The TCN stacks 11 blocks of dilated convolutional layers with causal connections on
top of each other. Every block has a total kernel size of three and the dilation is
set to 2¢, where i is the depth of the TCN. Furthermore, each block consists of two
stacked convolutional layers with dilation rate 2¢, each followed by a batch normalization,
ReLU activation and dropout layer. The latter has a dropout rate of 0.1. Finally, the
entire block is preceeded by a dimensional reduction layer and wrapped with a residual
connection. (see Figure C.2) The implementation follows [44], replacing their weight
normalization by batch normalization, as Keras does not provide a weight normalization
layer. The depth was chosen such that the receptive field of the TCN encapsulates all
2048 input samples.

Each of the TCN has their own training goal, which is given by the corresponding signal
input. The loss for this part is chosen to be MSE and added to the total loss with a
weight factor of 0.1. The weight is set so low as the TCN is not able to reliably recover
the waveform from the input data and we don’t want the network to try and optimize
just the TCNs without optimizing the final outputs we care about. With this training
goal, the TCN is meant to act as a denoiser to the input data. Its output is then added
back onto the input, to amplify any signal it found. To avoid throwing away information
the TCN could not recover, we only amplify the signal and don’t just feed the output
itself to the following layers.

As a next step we do some preprocessing for the following collect-inception-res network.
The authors of [34] found that using a few simple convolutional layers before a stack of
inception modules helps the network learn. We could verify these findings when testing
different inception networks and thus included this preprocessing step. It starts of with
a batch normalization layer, followed by a dropout layer with a dropout rate of 0.25.
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They are followed by two stacked blocks of convolution, batch normalization and ReLLU
activation, separated by a max pooling layer with pool size 4. See Figure C.3 for a visual
aid.

The main workhorse for the collect-inception-res network are the inception blocks. Each
of them contain two stacked inception modules, separated by a batch normalization
layer. The second inception module also utilizes a residual connection. The first one
could be equipped with a residual connection as well if it was preceded by a dimensional
reduction layer, adjusting the number of channels to 224. Within the inception modules,
we empirically chose the number of filters to be descending for an increasing kernel size.
We furthermore found that kernel sizes (1,2,3) work best in these modules. These
parameters could probably be optimized even further, but we could not do so in a
feasible amount of time. The inception block is depicted in Figure C.4.

All concatenation layers except the final one are furthermore equipped with another
auxiliary output that use the SNR label as a training goal. To reduce each of these
layers down to a single value we use a stack of one average pooling layer with pool size
8, one dimensional reduction layer with 16 filters and one final dense layer with a single
neuron and a ReLU activation function. The output of the dimensional reduction is
flattened to be usable for a dense layer. This action was taken to help against vanishing
gradients and was inspired by the architecture of [34]. The loss used is MSE and is also
weighted by 0.1.

The post-processing consists of a max pooling layer with pool size 4, a dimensional
reduction layer with 32 filters and, depending on the output, two dense layers with
neuron numbers (2,1) for the SNR output and (3,2) for the p-score output. For the
SNR output we use a ReLU activation function and for the p-score output a softmax
activation function. The loss for the SNR output is MSE and has a weight of 1 whereas
the p-score output uses a categorical crossentropy as loss and a weight of 0.5 to have more
of an emphasis on the SNR. The postprocessing step is shown in detail in Figure C.5.

This architecture was derived empirically by the process described in subsection 5.3
as it showed the best performance in regards to the sensitivity on the validation set.
The specifics of the performance are discussed in the next section. It does, however,
come with multiple drawbacks. The general problem of this architecture is its size and
complicated structure. The first obvious complication is the amount of necessary video
memory. The model takes about 18 GB to train with a mini-batch size of 24. The GPU
with the largest memory we could use for a full training run was a NVIDIA Titan V
with a capacity ~12GB. To train this network on such limited memory required us
to decrease the mini-batch size to 16. The network just barely fit into memory and
Tensorflow stated that additional performance might be gained if more memory was
available. This is backed by the GPU utilization that constantly jumped between 20%
and 100%. Overall each epoch training on the stated 322,500 sample plus the validation
step took ~6h to finish.

As each epoch takes such a long time, it is very difficult to optimize the hyper parameters,
like number of inception modules, kernel sizes within these modules, number of filters in
these modules, dropout rate, etc.
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Finally, a network of this depth is always vulnerable to the vanishing gradient problem.
We try to combat this with the auxiliary outputs and their loss functions but cannot
rule it out.

5.4.2 Network Performance

To evaluate the performance of the final architecture we use a testing set that contains
4927488s = ~57d of continuous data. This data was created independently of the
training and validation set and split into 1203 parts of length 4096 s. Each of these parts
is evaluated by the trained network, which was described in detail in subsubsection 5.4.1,
using a moving window with step size 0.25s to generate the correct input data format.
Therefore, each window is whitened by the analytic PSD aLIG0ZeroDetHighPower which
is provided by the software library LalSuite [54] and re-sampled. The details on how
these processing steps take place are discussed in subsection 5.1. The output of this
procedure are two time series of duration 4024s and time resolution 0.25s. These two
time series contain the predicted SNR and p-score values at each point where a window
was evaluated. The difference of 72s between the input and the output is due to the
time span of the window that is used.

The testing set contained 37758 injections. They are spaced out to appear every 200s
with the exact position varying by +20s, but are not placed within the first or final
256 s of any of the 1203 parts. The source parameters are distributed in the following
way: Both component masses are drawn from a uniform distribution between 1.2 Mg to
1.6 M, the coalescence phase and polarization angle are uniformly distributed within
the interval [0,27] and the inclination is drawn from arccos(z), where x is uniformly
distributed between —1 and 1. We still neglect spins and tidal deformabilities, as both
of these effects are expected to be small for astrophysical events. The sky position is
distributed volumetrically, meaning that the right ascension is uniformly distributed be-
tween 0 and 27, the declination is drawn from arccos(xz)—m /2, where z again is uniformly
distributed between —1 and 1, and the distance goes as r? between 0 Mpc to 400 Mpc.
The waveforms are generated using the model TaylorF2. All noise is generated using
the PSD aLIGOZeroDetHighPower of LalSuite.

To evaluate the performance of our analysis, we calculate the sensitivity of the search
at given false alarm rates. At this point we want to address the comments of [51]. They
suggest that no statistically meaningful false alarm rate can be derived from a NN-based
approach that classifies data into the two categories "noise” and ”signal”. They hinge
their argument on multiple points. Firstly, the network is trained with a certain ratio of
examples for signals and for pure noise. False alarm rates derived from the false positive
rate on the training/validation set are therefore only applicable if the final distribution
of signals within the data is similar to that within the training set. This is however a
problem as signals in real data are comparatively rare, whereas for efficient training the
ratio of signals to noise should be close to 1 : 1. We address this issue by using different
ratios in all three sets used for the network. Specifically the training set has a ratio of
roughly 1 : 1, the validation set has a ratio of roughly 3 : 1 and the testing set has on
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average a ratio of 6 : 194.

The second issue the authors of [51] point out is the significance assigned to each detec-
tion candidate. In the case of binary classification the output would always be thresh-
olded to yield either 1 or 0. Therefore, the false alarm rate assigned to every event would
be the same. As we are training for SNR and p-score, we do have the means of assigning
different false alarm rates to different events, as we can determine the false alarm rate at
the recovered SNR. This could however also be done by using the p-score as a ranking
statistic.

The third point of critique of [51] is the use of a sliding window approach and how to
treat parts of the output, where the network jumps between claiming a detection and
claiming no detection at successive points in time. To get around this issue, we cluster
detection candidates into blocks, where the network is confident to have found a signal.
If any detection candidates are within +1 s of another detection candidate they are clus-
tered together and thus believed to belong to the same event. Any times in between
are also believed to belong to the event regardless of whether or not they exceed the
threshold value that is set to claim detection. To give a single point in time where we
believe the event to have taken place, the time that is associated to each cluster is the
maximum of either the SNR, or the p-score output. As such we get two sets of detection
candidates. We get another one if we only allow detection candidates that exceed the
threshold in both ranking statistics.

The final issue the authors of [51] address is the fact that during training all waveforms
are provided to the network at within a very specific time interval. They say that NNs
are known to pick up on such subtle details and thus might not be able to handle wave-
forms that are not correctly aligned. Therefore a sliding window approach might not
be suitable. We think that using a sliding window on continuous data to generate false
alarm rates and sensitivities addresses this problem.

We start the discussion of the new architecture by examining both outputs and their
statistics separately. The results are compared to matched filtering based searches and
to the findings of [30]. We then consider the combination of both outputs to form a
single statistic and discuss the differences to using a single ranking statistic. Finally,
we finish this section by comparing the computational efficiency of our algorithm to a
matched filtering based approach.

The false alarm rate of the SNR output is shown in the top row of Figure 5.4. To use our
algorithm to alert astronomers of a GW event, we would need to reach false alarm rates
of about 1 per 2 month. Evaluating the false alarm rate to SNR 20 yields a false alarm
rate of 38.4 false alarms per month. It is even questionable if the network is capable
to reach lower false alarm rates, as some false positives were attributed very high SNR
values. The loudest false positive was assigned a value of 123672.85. One could possibly
introduce a high cutoff above which detection candidates are vetoed. Choosing such a
cutoff, however, would need to be done with great care to not veto a lot of loud physical
events.

We trained the network using waveforms with injection SNR down to values of 8. Using
this value as a threshold gives a false alarm rate of 107.8. The upper limit for training
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waveforms was given by SNR 15. At this value we have a false alarm rate of 44.7. Even
though the false alarm rate does improve throughout the range of provided training ex-
amples, it is not by much if we use the total change as reference. Most of the false alarm
are given below the training range, i.e. most noise samples are assigned a SNR value < 8.
As the high value for the loudest false positive and the overall flatness of the false alarm
rate at high SNRs suggests, the greatest contribution to the false alarm rate comes from
very loud glitches. Early tests suggested that these glitches usually exceed the threshold
value only for 1 or 2 samples. Therefore, vetoing detection candidates that have high
values and exceed the threshold only briefly might improve overall performance. Further
careful analysis would be necessary to give a final conclusion.

Pure noise samples were attributed a label of SNR 4. We therefore expect very high false
alarm rates at that value. Indeed we get a false alarm rate of 14704.6 at that threshold.
Finally we want to compare the false alarm rate of the loudest noise sample from the
validation set with its corresponding false alarm rate on the testing set. The highest
value a pure noise sample from the validation set was assigned was 6.7 with a false alarm
rate of 192.9. The corresponding false alarm rate on the testing set is 366.6, which is
about double the estimate from the validation set. These findings agree with [51] in that
it does not seem to be possible to translate a false positive rate on the validation set to
a false alarm rate on continuous data.

The false alarm rate of the p-score is shown in the bottom row of Figure 5.4. The left
of the two plots shows the false alarm rate against the p-score directly. The right one
re-scales the x-axis to give a better overview of the evolution at high p-scores. Overall
the false alarm rate drops quite significantly above p-score ~ 0.9. This is caused by a
behavior we found for all architectures. The p-score gets pushed to the extreme values
0 and 1 for all cases, i.e. there are only few samples evaluated to a p-score in the range
[0.2,0.8]. Therefore, also pure noise samples occasionally get attributed a high p-score,
which in turn causes a sudden drop of the false alarm rate only at high values.

At p-score 1 the false alarm rate evaluates to 0, as no sample is allowed to receive a
p-score larger 1 by the design of the network. The closest p-score to 1 we evaluated the
false alarm rate at is 1 — 1075 and has a value of 31.6. This value is again too high to
consider using this network to alert astronomers. Based on the findings of the testing
set, the smallest false alarm rate this network can achieve is 23.7. This is due to the fact
that 45 false positives were assigned a p-score of 1. The smallest p-score we evaluated
the false alarm rate for was 0.05 with a false alarm rate of 14717.2.

The highest p-score assigned to any noise sample of the validation set was 0.408 and
also had the false alarm rate of 192.9 attributed to it as an estimate. Evaluating the
false alarm rate at this threshold on the testing set gives a value of 631.2 which is, again,
a lot larger than the one recovered from the validation set. This is further proof that
the false alarm rate may not be derived from the validation set but should be estimated
from a long continuous stretch of data.

The false alarm rate alone is not useful to us. Instead we want to know how many signals
we can reliably recover. For this reason we calculate the volume our search is sensitive to
and give the result in terms of the radius of a corresponding sphere. The result is plotted
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Figure 5.4: The black dotted line in each of the three plots gives the upper limit of the false alarm rate
used in [30]. Top: The blue curve shows the false alarm rate of the SNR output as a function of the
threshold value used to determine detection candidates. Bottom left: The blue curve gives the false
alarm rate of the p-score output as a function of the threshold used to determine detection candidates.
Bottom right: This plot rescales the x-axis of the bottom left plot to give a better overview of the
evolution of the false alarm rate as the threshold approaches 1.
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on the left side of Figure 5.5. Using the SNR output as detection statistic, the search

reaches a sensitive radius of 179.2 Mpc at a false alarm rate of 14 704.6 anmples and drops

onth
to 69.2 Mpc at a false alarm rate of 38.4 S;Igrlftl}els. Using the p-score as detection statistic
yields very similar results for high false alarm rates but is advantageous at low values.
Here the radius of the sphere to which our search is sensitive drops only to 84.3 Mpc.
This behavior of the sensitivity translates well to the general notion we got from testing
multiple different architectures: Using the p-score to binary classify data usually yields
better sensitivities at low false alarm rates than using the SNR to predict the strength
of the signal.

We can compare these sensitivities to the sensitivity of a matched filter search. As a
rule of thumb, a matched filter search comparable to our approach is roughly sensitive to
sources that emit GWs which are assigned a SNR of 8 by the search. To get an estimate
of the average distance, we calculate the SNR of a BNS system with equal component
masses of 1.4 Mg that is oriented face on to our detector at distance 1 Mpc. The distance
in Mpc the source would need to be away in order to be detected at SNR 8 is then given
by

SNRdistance:l
—8 .

As the system we modeled is face on and perfectly positioned, this is the furthest dis-
tance the source may be away from the detector to be assigned a SNR of 8. To get the
average distance, this distance needs to be divided by a factor of 2.26 (Alexander Harvey
Nitz, personal communication, September 17, 2019). With this the sensitive radius of a
matched filter search can be estimated to be ~194.8 Mpc.

Our NN based approach can’t achieve this sensitivity even at very high false alarm rates.
At somewhat sensible false alarm rates (false alarm rates < 100 s;x;ﬂ?) we are sensitive
to sources out to about half the distance and therefore have roughly 1/8 of the sensitive
volume of a matched filter search. Our algorithm is therefore not able to rival matched
filtering in its current state.

We can also compare our results to the findings of [30] in more detail now. To do so,
we transfer our findings to their notation to the best of our abilities. The data we use
is different in many ways to the one that is used in [30]. Therefore, the results of this
comparison have to be taken with great care. The most notable differences are that we
use two detectors and vary a lot more parameters, while keeping the tidal deformability
fixed. The authors of [30] on the other hand use data from a single detector, vary only
component masses and tidal deformabilities and also differentiate between BBH and
BNS signals.

To convert our findings to the framework of [30] we calculate the network SNR for every
injection. We then convert it to a single detector SNR by dividing by v/2 and finally
convert this single detector SNR to a pSNR. For this conversion we use the factor 39.225
we found in section 4. Furthermore, we evaluate our network at a false alarm rate of

~14 500 Sﬁ}fggis as the false alarm rates of [30] can only be constrained by an upper limit

distancegnr=g = (5.7)

73



of 15500 Sﬁlfirﬁ’tlﬁs%. The results of our network can be seen on the right side of Figure 5.5.
For low values of the pSNR the sensitivity follows an expected curve, growing steadily.
Above pSNR ~ 0.3 however the sensitivity starts to become jumpy and inconsistent.
This behavior is probably due to the low number of samples above this value. (pSNR
0.3 ~ SNR 17) There are only 1484 samples above pSNR 0.3 and only 859 above pSNR
0.4. Below pSNR 0.3 on the other hand lie 36 274 samples. Therefore, our comparison
will focus mostly on the sensitivity between pSNR, 0 and 0.3.

Our analysis reaches a sensitivity of 30% at pSNR 0.27, which is roughly 10% above the
sensitivity of [30] at that value. Doing the same comparison for all values below pSNR
0.3 yields the same results: Our network is about 10%-points more sensitive than the
network of [30] at low pSNRs. Above pSNR 0.3, however, this behavior breaks down
and our approach becomes unstable. This might change if the training set contained
louder signals up to pSNR 1 ~ SNR 55.5.

We do want to stress again that this comparison is by no means complete, as the data
used in both approaches is vastly different.

So far we have only evaluated both ranking statistics individually. To reduce false

alarms one can however also combine the two outputs. To do so, we only consider a
data point a detection candidate if a threshold in both ranking statistics is exceeded.
We then cluster the resulting times the same way we did for a single detection statistic.
To determine the final time we report as the recovered position we need to find the time
where one detection statistic is maximized. This gives us two options. Either we choose
the time where the SNR is maximized or where the p-score is maximized. We evaluated
the network in both ways and generated the according false alarm rates (Figure 5.6) and
sensitivities (Figure 5.7). We choose to maximize the SNR in the plots where a fixed
p-score is chosen and vice versa if the SNR is kept constant.
Using this combined approach reduces the false alarm rates at low values of the detection
statistic slightly. The values are however mostly limited by the minimum value of the
individual ranking statistics. To be specific, the highest value of the false alarm rate
when keeping the p-score threshold fixed at 0.4 is given by 531.8 (compare top of Fig-
ure 5.6). Using just the p-score to determine a false alarm rate at threshold 0.4 results in
a false alarm rate of 631.2, which is on a similar scale. Once the threshold SNR reaches
a value of 20, both the combined output and the the individual output yield a false
alarm rate of 38.4. Therefore, the false alarm rate of the combined output seems to be
well approximated by choosing the minimum of the false alarm rate of both individual
statistics.

Using the combined output also has an effect on the sensitivity of our search. The
overall lower false alarm rates lead to lower sensitivities. None of them are capable

2The authors of [30] provide a false alarm probability of 0.03% which in turn would result in a false
alarm rate of ~7750 qifﬁ,‘ft'? We can, however, not find any evidence how they are able to achieve these
false alarm probabilities, as their testing set contains roughly 1667 noise samples. This in turn means if
a single one of them is classified as BNS it would result in a false alarm probability of 0.06%, which is
consistent with the false alarm rate we use to compare our results. We did also compare the two analysis

at the lower false alarm rate but found very similar results.
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Figure 5.5: The figures give the sensitivity of the search algorithm as a function of the false alarm
rate. Left: The two curves give the radius of a sphere to which our search is sensitive to. For high false
alarm rates both detection statisics yield the same results. For low false alarm rates on the other hand
the p-score output becomes more sensitive. Right: This plot gives the sensitivity in terms of fraction
of detected injections at a given pSNR. The pSNR of an injection was determined by calculating the
SNR for both the Hanford and Livingston detector, combining them by taking the root of the sum of
the squares, dividing this value by a factor of v/2 to get an estimate of the single detector SNR and
finally devide it by the factor of 39.225 to convert SNR to pSNR. Doing so we hope to achieve results
that are comparable to [30]. The sensitivities for both the p-score and SNR output are quoted at the
highest false alarm rate of ~14500 Srzrgé’tl;s, as this is the closest value to the estimate of the false alarm
rate used in [30].

of reaching the sensitivities of using just a single detection statistic, but are lower by
5Mpc to 20 Mpc. Overall using both outputs enables us to be a bit more confident in
found detection candidates but on the contrary makes real signals harder to find. It does
therefore not give a real improvement over using just a single detection statistic.

We finally want to compare the computational efficiency of our search to that of matched
filtering. Current template based algorithms are capable of evaluating about 5000 tem-
plates per core such that results arrive in real time. To be able to compare our search to a
matched filtering based one, we calculate a template bank that spans the parameter space
our network is optimized for. To do so, we use the program pycbc_geom_nonspinbank
that comes with the PyCBC library and count the number of templates it generates for
component masses in the range from 1.2Mg to 1.6 Mg at 3.5PN order. The maximum
mismatch was set to be 0.965. Such a template bank turns out to contain 1960 tem-
plates. Thus a two detector network needs to evaluate 3920 templates to run in real
time. Based on the estimate, this is possible on a single core.

To evaluate the speed of our network, we feed it 1024 samples and use the verbose output
of Keras for timing. Once all samples are evaluated, Keras prints the average time it
took to evaluate one sample. On a dual core, 4 thread laptop CPU (i7-6600U) Keras
reported an average time of 245 ms per sample. As each of our samples is equivalent
to evaluating 0.25s of data, our network manages to evaluate data in real time. Using
a GPU or more cores would speed up this process significantly. It is however not fast
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Figure 5.6: The plots show false alarm rates as measured on the test set when we require both detection
statistics to exceed a threshold value. Top: Shown is the false alarm rate when the threshold for the p-
score is fixed to some specific value and the SNR threshold is varied. For this case we use the SNR output
to determine the position of a detection candidate, by using the maximum in each cluster. Bottom
left: Shown is the false alarm rate of the network when fixing a SNR threshold and varying the p-score
threshold. The maximum of the p-score in each cluster is used to determine the recovered position of a
detection candidate. Bottom right: Shown is the false alarm rate when fixing the SNR threshold and
varying the p-score threshold. It shows the same data as the bottom left plot but rescales the x-axis to
give a better overview of the evolution for low false alarm rates.
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Figure 5.7: Shown are the sensitive distances when using only detection candidates that exceed the
threshold for both ranking statistics. Left: The sensitive range is plotted at a fixed threshold for the p-
score. The false alarm rate is therefore varied by changing the value of the SNR threshold. Accordingly,
the time that is reported for each cluster of detection candidates is found by choosing the sample that
maximizes the SNR ouput. Right: The sensitive range is plotted at a fixed threshold for the SNR
output. The false alarm rate is varied by changing the p-score. Accordingly, the time that is reported for
each cluster of detection candidates is found by choosing the sample that maximizes the p-score ouput.

enough to beat matched filtering.

To evaluate the speed of the network we did not use real or simulated data but simply
fed random numbers that were uniformly distributed between 0 and 1 to the network.
This does not have any impact on the speed of the network but was more easy to realize.
Curiously the SNR output of the network returned values above 8 for more than 97% of
the input samples. Furthermore, with a mean value of 41 the values were not absurdly
large, such that it is difficult to spot them by vetoing unreasonably high values for the
SNR output. The p-score on the other hand consistently returned 0 for all these samples.
It might therefore be sensible to use the p-score output rather than the SNR output, as
this one seems to be more robust.
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6 Conclusions

This work has explored a completely new set of architectures in their application to
GW data analysis. We introduced the concept of using multiple sample rates to reduce
the number of input samples to the network and thus decrease the size of the network,
while retaining a lot of the information of the long signals that are emitted by BNS
systems. Testing multiple different architectures led to the use of inception modules and
the TCNs as amplifiers for the input signal. Our design process led to a very deep and
wide architecture utilizing multiple techniques pioneered for image recognition tasks. To
the best of our knowledge we are also the first to use the SNR as a training goal, thus
providing a direct ranking statistic for every event.

We have for the first time tested the sensitivity of a NN-based search at very low false
alarm rates for BNS signals. The final architecture suggests that it might be possible to
reach meaningful false alarm rates that are low enough to alert astronomers of possible
GW events. Though we have not managed to fully reach the goal of acceptable sensitiv-
ities at a false alarm rate of 1 fﬁgﬁf, our network significantly improves upon previously
tested architectures.

We do, however, find that a search pipeline using our NN to detect BNS signals is not yet
sensible. Current matched filter pipelines are superior in every aspect. Not only are they
more sensitive to the signals we used to train our network, but are also computationally
more efficient, which was the main reason to explore machine learning search pipelines.
The gap in efficiency is mostly down to the high complexity of the final architecture.
We furthermore did not test the sensitivity of the network on real detector data which
contains non Gaussian noise transients and can thus not claim any implications for a
real search.

Using the SNR as training goal has proven to be a difficult problem. Using it to generate
detection candidates yields slightly worse sensitivities at low false alarm rates. At high
false alarm rates this difference vanishes. We did, however, find that this output is a lot
more fragile and can produce realistic detection values for unrelated data. The p-score
is a lot more resilient to such inputs and can also be interpreted as a ranking statistic,
rather than a binary output.

We hope that our work, although not yielding a useful search pipeline, will prove useful
to the field of utilizing machine learning algorithm to detect GWs. This thesis has tested
multiple new approaches to the architecture and has found great improvements over the
current state of the art convolutional architectures, by deploying inception modules. We
have furthermore given an overview of a process which we believe produces reliable es-
timates of false alarm rates and sensitivities by sliding our network across a continuous
input.

As a next step we would like to decrease the complexity of our architecture while retain-
ing its sensitivity. Doing so would yield better computational efficiency and enable us
to do more efficient hyper parameter exploration, which in turn will hopefully improve
the performance even further. We also want to test different formats for the input data,
as others have used shorter parts but sampled at a higher rates. Finally, as a long term

79



goal, we would like to incorporate and test real detector data and turn this approach into
an independent search pipeline. To give security against data that accidentally resonates
strongly with the network this pipeline should be backed up by a matched filter pipeline
that only covers a small parameter space.
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A Full Adder as Network

To create a full adder from basic neurons, the corresponding logic gates need to be
defined. The equivalent neuron for an “and”-gate was defined in subsection 3.1. There
are two more basic neurons which will be defined here. The neuron corresponding to the
"or”-gate, which is given by the same activation function (3.3), weights @ = (w1, wg)T =
(1,1) and bias b = —0.5, and the neuron equivalent to the "not”-gate, which is given
by the activation function (3.3), weight w = —1 and bias b = 0.5. These definitions are

summarized in Table A.1.

”and”-neuron ”or”’-neuron “not”-neuron
X1 T
acl/\xg :):1\/x2 .
1 T
xs3 z3
w=(1,1) b=-1.5 w=(1,1) b=-0.5 w=-1 b=05
x1 w2 | a(x; +x2 — 1.5) x1 x2 | a(xy + x2 —0.5)
0 0 0 0 0 0 T ‘ a(—z1 + 0.5)
0 1 0 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 1 1 1

Table A.1: A summary and depiction of the main logic gates written as neurons. All of them share
the same activation function (3.3).

Using the basic logic gates a more complex structure - the "XOR”-gate - can be built.
A "XOR”-gate is defined by its truth table (see Table A.2).

I T2 ‘ I v T2
0 0 0
0 1 1
1 0 1
1 1 0

Table A.2: Truth table for the "XOR”-gate.

It can be constructed from the three basic logic operations "and”, “or” and ”not”
11 Y ag = —|((£Cl VAN :Eg) \Y —|($1 V .1}2)) (A].)

Therefore, the basic neurons from Table A.1 can be combined to create a "XOR”-network

(see Figure A.1).
To simplify readability from here on out a neuron called "XOR” will be used. It is

defined by the network of Figure A.1 and has to be replaced by it, whenever it is used.
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With this ”XOR”-neuron a network, that behaves like a full-adder, can be defined.
full-adder is a binary adder with carry in and carry out, as seen in Figure A.2.

Figure A.1: The definition of a network that is equivalent to an "XOR”-gate.

x
\
T2 XOR Sum
Carry;, 3 and

CarrYOut

Figure A.2: A network replicating the behavior of a binary full adder.



B Deriving Custom Loss

For this work the binary decision of "signal” vs. ”"no-signal” is more important for the
performance of the network, than how accurate the predicted SNR-value is. Therefore,
we would like the network to have a bias towards underestimating the SNR-values of
pure noise examples and overestimate those of GW-signals. To achieve this behavior, we
tried to use a new loss function, that exponentially penalizes overestimating pure noise
samples and underestimating GW-signals. For backpropagation to work properly, the
loss will need to be differentiable and its derivative needs to be continuous everywhere.
As a starting point we will use the pure noise case first and adapt it to the full loss later
on. We start at a distribution of values we want to achieve and later turn it into an
error function. This distribution should exponentially decay for values larger than some
fixed value and decay like 1/z for values smaller than this fixed value. The exponential
part was inspired by the solution of the hydrogen atom, though the decay for this case
goes like 22. For this reason, we matched

fi(z) = 22e ® (B.1)
1
fala) = —— (B2)
for x = 1, which gave
xZe ™ r>1
= ’ - . B.3
(@) {2 e (B3
4

This distribution has its maximum value ; at # = 2. For convenience, we will use

dist(z) = f(z + 2) (B.4)

from here on out, as the maximum is now centered at x = 0. To get an error function
from this distribution, that grows exponentially for > 0 and has a value of 0 for x = 0,
define

4
Brr(z) = e2dist(z)
To define a loss, that can behave differently for different label values, the error needs
to transform based on some measure. Specifically it will need to have some transition
between exponential growth for large values of x and exponential growth for small values
of . To achieve this behavior, we rotate the error-function Err around the y-axis and
project it onto the x-y-plane afterwards. Therefore we get

(B.5)

Ertrotate (7, ) = Err(z/ cos (¢))- (B.6)

For ¢ € [0, 7] this function is defined everywhere but ¢ = 7.

To get a loss as defined in (3.8) from (B.6), it needs to depend not only on the value the
network returns but also on the label. Furthermore, the exponential behavior should
be governed by the label value, as we want exponential growth for positive differences,
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when the label is small, and for negative differences, when the label is large. To achieve
this, the rotation angle will be dictated by the label value.

Therefore we want a function g, that is 0 for all label values smaller than some minimum
a and 7 for all label values larger than some maximum value b. In between a and b, the
function needs to be a smooth. The parts will be matched in a way to assure g € C1(R).
With this one can find

0, r<a
g(z,a,b) =<, x>b, (B.7)
m(5=2)
with
p(z) = 322 — 223, (B.8)

In principle the loss for given values a and b could than be written as

Lexp (ynet7 ylabel) = Errrotate(z> g(ylabeh a, b))a (BQ)

with 2 = Ynet — Ylabel- There are however problems with this definition. First of all, the
exponential part is smaller than the linear part for small values of z. This is especially
true for values |z| < 2. This is a problem, as the SNR-value assigned to pure noise
and the smallest signal SNR-value are about 4 apart. Therefore, there would be an
overlapping region for pure noise and small SNR signals, that is favored by the loss.

To solve this issue one can simply introduce a squish factor s, which the input to the
error is multiplied by

quuish(ynetn ylabel) = Errrotate(5 Tz, g(ylabel’ a, b)) (Blo)

This however introduces a new problem. With even a relatively small squish factor of
s = 3, the exponential grows very fast, which causes exploding gradients. To keep the
gradients at bay, a cutoff is introduced to the function. To still have a non zero gradient,
this cutoff is not flat, but is a linear function with a slope of is%, which is the same
slope as the linear part of (B.10). To keep the entire loss of class C*, the exponential
part and the cutoff are connected by a spline polynomial. For this, we chose to start the
spline polynomial at some value k£ — 1 from the origin and have it connect to the linear
part in a distance of 1. We restrict k > 1.

With

u = Err(s- k)
l=Err(s-(k—1))

4s*(k — 1) o5 (k1)
2+4s-(k—1))°

1=

AQ = S%
e
a1 :A2+A1—2(u—l)
as = S(u - l) - 2A1 - AQ (B.ll)
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and
pe(z) =a1(z—k+13+a(z—k+1*+A1(z—k+1)+1 (B.12)

one gets

Errrotate(s . ng(ylabela a, b))7 z>—k + 1

Llarge(yneta ylabel) = pQ(—Z), A [—k, —k + 1) (B13)
3% |z| + Ertrotate(—5 - K, g(Y1abel, a, b)) — s - k%a z < —k
and
Errrotate(s : Z7g(y1abel7 a, b))u z < k -1
Lsmall(yneta ylabel) = p2(2)7 A [k -1, k) (B.14)
3% ’Z‘ + Errrotate(s : kag(ylabela a7b)) - S k%> 2>k
The complete loss is than given by
Lsmall(ynet7 ylabel)u Ylabel < aTer ) (B15)

Lean (Ynet, Yiabel) = {
! e Llarge (ynetu ylabel)7 Ylabel > 9

For this work, we choose values a = 4,0 =8 and k = 2.2.
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Figure B.1: Three different stages of the custom loss function. (a): The loss as defined in (B.9). For
|z] < 2 the eyponential part is actually smaller than the linear part. This is not desirable, as for most
of our testing the label for pure noise is about 4 away from the smallest label for a signal. (b): To fix
the issue of a too small exponential for some purposes, one can introduce a squish factor, that simply
multiplies the input by some fixed value. In this case a squish factor of 3 was used. The values in general
are a lot larger. (c): Having a large squish factor as in (b) introduces the problem of too large gradients.
For this purpose, a cutoff can be introduced. This cutoff grows linearly with the same slope as the linear
part of (B.10). The transition between the exponential and linear part however needs to be of class C*,
so that the backpropagation algorithm can optimize. Therefore a spline polynomial connects the two
parts.
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C Illustrations Final Architecture
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Figure C.1: Shown is a high level overview of the final neural network architecture. The illustration
does not show the auxilliary outputs after every TCN and after all but the last concatenation layer. The
first set of auxilliary ouputs are simply the outputs of the TCN and trained for the pure waveform. The
second set of auxilliary outputs takes the output of the concatenation layers and feeds them through an
average pooling and a dimensional reduction layer, before condensing them down to a single number.
This number is trained to be the SNR label. The reason or these auxilliary outputs is to combat the
vanishing gradient problem.
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Figure C.2: Shown is a single TCN-block at depth i. A complete TCN stacks multiple of these on top

of each other.
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Preprocessing

Iniut
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ConvBlock l
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Figure C.3: Shown are the specific layers of the preprocessing step in the final network. A ConvBlock
with a specified kernel size and number of filters is understood to have a convolution layer with these

properties.
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Figure C.4: Shown is an inception block of the final architecture. Each one contains two inception
modules, which are depicted to the right. Each layer of the inception module is equipped with a ReLU
activation function and all convolution layers pad their input in such a way that the output has the same
size as the input.
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Postprocessing
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Figure C.5: Shown are the specific layers of the postprocessing step. They are mainly used to reduce
the output of the collect-inception network that preceed it to the wanted quantities and their shapes.
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Abbreviations

ASD Amplitude spectral density.

BBH Binary black hole.

BNS Binary neutron star.

CNN Convolutional neural network.

EM Electromagnetic.

FFN Feed forward (neural) network.

GW Gravitational wave.

ILSVRC ImageNet Large Scale Visual Recognition Challenge.
MSE Mean squared error.

NN Neural network.

PM Post-Minkowskian approximation.
PN Post-Newtonian approximation.
PSD Power spectral density.

PSNR Peak signal-to-noise ratio.

ReLU Rectified linear unit.

RNN Recurrent neural network.

SGD Stochastic gradient descent.

SNR. Signal to noise ratio.

TCIN TCN-collect-inception network.
TCN Temporal convolutional network.

TT Transversal-traceless gauge.
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