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Abstract 
 

The presented thesis contains and condenses six original research articles on 
the oxidative activation of light hydrocarbons in a catalytic perovskite membrane 
reactor of the composition BaCoxFeyZrzO3−δ (BCFZ, x+y+z = 1) and the impact of 
CO2 formed during deep oxidation of hydrocarbons on the properties of the 
membrane, which is used to separate oxygen from oxygen containing gases like air. 

The demand for olefins, especially ethene and propene, is expected to increase 
significantly in the near future due to global economic development. Today, steam 
cracking is the most important process for the production of light alkenes, although it 
is a highly endothermic and therefore energy-consuming process. Alternatively, in 
the oxidative dehydrogenation alkane and oxygen are co-fed giving rise to olefin and 
water while compensating the endothermic dehydrogenation step without 
thermodynamic constraint of alkane conversion. However, this mode suffers from 
consecutive olefin oxidation or thermal cracking decreasing the olefin yield and, 
therefore, has not been commercialized. 

An innovative reactor concept incorporating a multistep oxygen permeating 
hollow-fiber membrane and a dehydrogenation catalyst is presented in this thesis 
which allows a controlled oxygen insertion over an extended length in discrete 
portions. This architecture benefits from high olefin selectivities of a conventional 
thermal/catalytic dehydrogenation combined with shifting of the chemical 
equilibrium towards the olefin by burning off selectively the formed hydrogen after 
each oxygen permeable zone. Comparable ethene yield to those in the steam-
cracking process of ca. 50% could be established but at a 100 °C lower temperature 
using a supported chromia catalyst. 

The forementioned concept was successfully transferred onto propene 
production by using a supported Pt/Sn catalyst. Oxygen separation and propene 
formation could be established at 625 °C. The highest propene selectivity of 75% 
was obtained at a propane conversion of 26% and 625 °C whereas the best propene 
yield of 36% was obtained at 675 °C (48% propene selectivity). From kinetic studies 
on the role of lattice and adsorbed oxygen, carried out by transient analysis of 
products, it was found that propane is catalytically dehydrogenated to propene and 
hydrogen, while lattice oxygen of the perovskite oxidizes primarily hydrogen. 

There is a strong economic interest in developing processes that transform 
methane (as the main constituent of natural gas) to higher-valued products. The 
oxidative coupling of methane could be demonstrated in a BCFZ hollow fiber 
membrane reactor filled with a Mn-Na2WO4 on silica supported catalyst for the first 
time in this thesis. Oxygen separation from air and C2 formation could be established 
at 800 °C. The highest C2 selectivity of ca. 75% was observed at a methane 
conversion of 6% with an ethene to ethane ratio of 2:1. 

Since deep oxidation of hydrocarbons is of concern in all reactions mentioned 
above, the CO2 stability of BCFZ membranes was investigated. CO2 in different 
concentrations was applied as sweep gas while feeding air leading to a decrease and 
finally stop of oxygen permeation due to BaCO3 formation, which was proven to be 
fully reversible under CO2-free conditions. Partial decomposition of BCFZ into high-
temperature rhombohedral BaCO3 polymorph was observed under 50 vol% CO2 in 
N2 at 900 °C by in-situ X-ray diffraction analysis microscopy. This carbonate 
structure is not quenchable and cannot be detected by ex-situ methods. 
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Zusammenfassung 
 

Die vorliegende Arbeit umfasst sechs Forschungsarbeiten zur oxidativen 
Aktivierung von kurzkettigen Kohlenwasserstoffen in einem katalytischen, 
perowskitischen Membranreaktor der Zusammensetzung BaCoxFeyZrzO3−δ (BCFZ, 
x+y+z = 1), der zur Abtrennung von Sauerstoff aus Luft verwendet wurde. Darüber 
hinaus wurde der Einfluss von CO2, das durch Totaloxidation der 
Kohlenwasserstoffe entstehen kann, auf die Membraneigenschaften untersucht. 

In den kommenden Jahren wird die Nachfrage nach Olefinen, insbesondere 
Ethen und Propen bedeutsam steigen. Steam Cracking ist derzeit das primäre 
Darstellungsverfahren für kurzkettige Kohlenwasserstoffe, obgleich dies ein 
hochgradig endothermer Prozess ist. Bei der oxidativen Dehydrierung hingegen wird 
das Alkan mit Sauerstoff versetzt wird, so dass neben dem Olefin auch Wasser 
entsteht. Dessen Bildung kompensiert den endothermen Dehydrierungsschritt und 
ermöglicht so, die thermodynamische Limitierung der Dehydrierung zu überwinden. 
Weiteroxidation oder thermisches Cracking der Olefine verringert jedoch deren 
Ausbeute, so dass bislang keine Kommerzialisierung dieses Verfahrens erfolgt ist. 

In dieser Arbeit wird ein innovatives Reaktorkonzept, bestehend aus einem 
Dehydrierkatalysator sowie einer mehrstufig sauerstofftransportierenden 
Hohlfasermembran, vorgestellt. Diese ermöglicht einen kontrollierten 
Sauerstoffeintrag in diskreten Portionen und kombiniert hohe Olefinselektivitäten der 
thermischen/katalytischen Dehydrierung mit der Verschiebung des chemischen 
Gleichgewichts zum Olefin durch selektives Verbrennen des durch Dehydrierung 
gebildeten Wasserstoffs. Es konnten unter Verwendung eines geträgerten 
Chromoxid-Katalysators vergleichbare Ethenausbeute wie beim Steam Cracking von 
ca. 50% erreicht werden, jedoch bei einer 100 °C niedrigeren Temperatur. 

Das oben genannte Reaktor-Konzept wurde erfolgreich auf die 
Propendarstellung mittels eines geträgerten Pt/Sn Katalysators bei 625 °C 
übertragen. Maximale Propenselektivität von 75% konnte bei einem Propanumsatz 
von 26% und 625 °C erreicht werden, während die höchste Propenausbeute von 36% 
bei 675 °C beobachtet wurde (48% Propenselektivität). Kinetische Untersuchungen 
zur Rolle von Gittersauerstoff und adsorbiertem molekularen Sauerstoff mit 
Transientenmethoden haben ergeben, dass Propan katalytisch zu Propen und 
Wasserstoff dehydriert wird, während der Gittersauerstoff des Perowskiten 
hauptsächlich den gebildeten Wasserstoff oxidiert. 

Es existiert ein großes wirtschaftliches Interesse an der Veredelung von 
Methan, dem Hauptbestandteil von Biogas, zu höherwertigen Produkten. Die 
oxidative Kupplung von Methan wurde in dieser Arbeit erstmals im BCFZ-
Hohlfaserreaktor in Kombination mit einem Mn-Na2WO4-Katalysator realisiert. 
Sauerstoffabtrennung aus Luft und Bildung von Ethan und Ethen konnten bei 800 °C 
gezeigt werden. Die größte C2-Selektivität von ca. 75% wurde bei einerm 
Methanumsatz von 6% mit einem Ethen zu Ethan Verhältnis von 2:1 beobachtet. 

Luft auf der Feedseite und CO2-haltige Atmosphären auf der Sweep-Seite 
führten zu Carbonatbildung auf der Membran und einer Abnahme bzw. Erliegen des 
Sauerstofftransports. Letzterer ist in CO2-freien Gasströmen bei hohen Temperaturen 
vollständig reversibel. Durch in-situ Röntgendiffraktometrie konnte bei 900 °C in 
50 vol% CO2 ein rhomboedrischer Polymorph des BaCO3 aufgezeigt werden, der 
nicht abschreckbar bzw. via ex-situ Methoden nachzuweisen ist. 
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Preface 

 

The presented thesis has been developed since March 2008 during my 

employment at the Institute of Physical Chemistry and Electrochemistry of the 

Gottfried Wilhelm Leibniz Universität Hannover under the supervision of Prof. Dr. 

Jürgen Caro. During this time, I have been a scientific co-worker benefiting from the 

projects SynMem of the German Federal Ministry of Education and Research 

(BMBF) in cooperation with ThyssenKrupp-Uhde and NASA-OTM in cooperation 

with BASF SE granted by the European Union. 

Six research articles are presented within this thesis; in five of them I am the 

first author. For all articles, I acknowledge helpful discussions as well as support to 

the manuscript preparation from my co-authors, particularly from Prof. Dr. Jürgen 

Caro. All dense perovskite hollow fiber membranes used in this work were provided 

by Dr. Thomas Schiestel from the Fraunhofer Institute of Interfacial Engineering and 

Biotechnology (IGB) in Stuttgart.  

The first three articles are dealing with the concept of repeated 

dehydrogenation of light hydrocarbons and subsequent selective hydrogen 

combustion within a BCFZ hollow fiber membrane reactor. All experimental work 

and data interpretation within the articles Olefin Production by a Multistep Oxidative 

Dehydrogenation in a Perovskite Hollow-Fiber Membrane Reactor and Oxidative 

Dehydrogenation of Propane in a Perovskite Membrane Reactor with Multi-Step 

Oxygen Insertion were carried out by myself. For the third article in this chapter 

entitled Dehydrogenation of propane with selective hydrogen combustion: A 

mechanistic study by transient analysis of products I acknowledge the fruitful 

collaboration with Dres. Evgenii and Vita Kondratenko from the Leibniz Institute for 

Catalysis at the University of Rostock (LIKAT). The TAP-measurements were 

carried out together at the LIKAT and the results were elaborated in equal shares. All 

other experiments and interpretation presented in this article were done by myself. 

In the subsequent chapter, studies on the Oxidative Coupling of Methane in a 

BCFZ Perovskite Hollow Fiber Membrane Reactor are summarized. All 

experiments, data collection and interpretation of the results were done by myself.  
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preparation of the article entitled Influence of CO2 on the oxygen permeation 
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be found in chapter 4 of this thesis, were carried out entirely by myself after 

beneficial discussion with Dr. Mirko Arnold. The follow-up publication In-situ X-ray 

diffraction study of carbonate formation and decomposition in perovskite-type 

BaCoxFeyZrzO3−δ, in which Konstantin Efimov is assigned as first author is based on 

a jointly idea. It contains studies of the microstructure of the BCFZ powder under the 

influence of CO2, which were performed by him and me in equal shares. 

Transmission electron microscopy investigations as well as the major concept and 

composition of the article were carried out by him. 

First of all, I would like to deeply thank Prof. Dr. Jürgen Caro for giving me 

the chance to work in the both above mentioned projects dealing with such hot 

topics. It was a period of great pleasure and exciting work for me at the same time. I 

acknowledge his full support during my employment and his high priority in 

correcting my manuscripts. I like to extend my gratitude to Prof. Dr. Bernd Hitzmann 

from the Institut für Technische Chemie of the Gottfried Wilhelm Leibniz 

Universität Hannover for his kind interest in this work and for the acceptance to 

conduct the second expertise. Furthermore, I highly appreciate that Priv.-Doz. Dr. 

Armin Feldhoff is willing to host my thesis defense.  

Additional acknowledgments are dedicated to my family and friends, Dr. 

Katrin Wessels, Jare Lohmeier and Britta Seelandt, Dr. Heqing Jiang, Dr. Mirko 

Arnold, Dr. Steffen Werth, Dr. Steffen Schirrmeister, Dr. Julia Martynczuk, 

Konstantin Efimov as well as Dres. Evgenii and Vita Kondratenko for their valuable 

discussions. 

Special thanks are dedicated to Dr. Thomas Schiestel and Marita Zipperle for 

providing the perovskite hollow fiber membranes. I acknowledge the financial 

support of the BMBF funded project SynMem and the project NASA-OTM funded by 

the European Union. I am very grateful to the industry partners from ThyssenKrupp-

Uhde and BASF SE for the permission to publish these results. 
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1 Introduction 

 

1.1 General Considerations 

 

All scenarios about the future global energy requirements anticipate an 

increasing demand for electricity, which in 2030 is predicted to be twice the current 

demand [1]. Increasing global population and fast growing economies especially in 

developing countries are identified as main drivers for this trend. These scenarios 

also indicate that this increase can only be met by considerable use of fossil fuels like 

coal, natural gas and oil besides nuclear power. Therefore, it is necessary for the 

chemical industry to create innovative process-engineering technologies for the 

reduction of energy consumption and the minimization of waste streams. 

One way to meet these demands is to invent new catalysts or to improve those 

currently in use. Catalysis, especially heterogeneous catalysis, is of vital importance 

to the world’s economy, allowing us to convert raw materials into valuable chemicals 

and fuels in an economical, efficient and environmentally benign manner (c.f. 

chapter 1.2 Definition of Catalysis). For example, heterogeneous catalysts have 

numerous industrial applications in the chemical, food, pharmaceutical, automobile 

and petrochemical industries [2] and it has been estimated that 90% of all chemical 

processes use heterogeneous catalysts [3]. Heterogeneous catalysis is also finding 

new applications in emerging areas such as fuel cells [4], green chemistry [5], 

nanotechnology [6] and biotechnology [7]. 

Another approach can be the intensification of a chemical process, e.g. by 

incorporating membranes. The membrane reactor can improve both the process 

economics and the efficient use of natural resources as well, especially when used in 

the two most important and often the most expensive steps in a chemical process: the 

chemical reaction and the separation of the product stream. Consequently, this leads 

to potential savings in energy consumption, effective use of raw materials and 

reduced formation of by-products [8]. Enhancements in the production of pure 

oxygen or oxygen-enriched air would have immediate beneficial consequences 

[9,10]. The most common methods for producing pure oxygen or oxygen-enriched 
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air are either by using the liquefaction of ambient air (LINDE Process) or by using the 

pressure swing adsorption (PSA) [11]. These techniques are both energetically and 

capitally intensive. Alternative methods, such as those using membrane technologies, 

are therefore desirable. In view of prospective membrane processes, mixed ionic-

electronic conducting (MIEC) membranes, based on a perovskite structure, are under 

consideration for application in the industrial oxygen separation processes. Such 

membranes can provide infinite oxygen permselectivities next to remarkable high 

oxygen fluxes, which meet the economic requirements [12]. Furthermore, the oxygen 

transported through a membrane can be used in situ in a reactor for the oxidative 

activation of light hydrocarbons (e.g. oxidative dehydrogenation, oxidative coupling 

etc.) leading to advances in terms of improved selectivities and yields as presented in 

this thesis.  

 

 

 

1.2 Definition of Catalysis 

 

The definition of a catalyst has been discussed thoroughly [13]. A catalyst is a 

material that converts reactants into products, through a series of elementary steps, in 

which the catalyst participates while being regenerated to its original form at the end 

of each cycle during its lifetime. A catalyst changes the kinetics of the reaction, but 

does not change the thermodynamics [14]. Most catalysts are solids or liquids, but 

they may also be gases. If the catalyst and reactants or their solution form a common 

physical phase, then the reaction is called homogeneously catalyzed. Heterogeneous 

catalysis involves systems in which catalyst and reactants form separate physical 

phases [15]. 

The catalyst changes the mechanism of a reaction in order to provide a 

pathway with a lower activation energy as for the non-catalyzed way. Consequently, 

the reaction rate constant increases and therefore the reaction rate. The reaction rate 

at a constant concentration and temperature is characteristic for the activity of a 

catalyst. The following diagram (Figure 1.1) is showing the potential energy for a 

typical reaction where A and B are the reactants and C equals the product. 

 

 



1   Introduction  13 

 

 

Figure 1.1: Energy diagram comparing a catalyzed and non-catalyzed reaction (EA: 

activation energy).  

 

According to the SABATIER principle, the existence of an unstable intermediate 

compound formed between the catalyst surface and at least one of the reactants is 

proposed [16]. This intermediate must be stable enough to be formed in sufficient 

quantities and labile enough to decompose to yield the final product or products. 

As emphasized by BOUDART [17], the conditions under which catalytic 

processes occur on solid materials vary drastically. The reaction temperature can be 

as low as 78 K and as high as 1500 K, and pressures can vary between 10−9 and 100 

MPa. The reactions can occur thermally or with the assistance of photons, radiation, 

or electron transfer at electrodes. Pure metals and multicomponent and multiphase 

inorganic compounds can act as catalysts. 

 

The main advantage of using a heterogeneous catalyst is that, being a solid 

material, it is easy to separate from the gas and/or liquid reactants and products of the 

overall catalytic reaction. The heart of a heterogeneous catalyst involves the active 

sites (or active centers) at the surface of the solid. The catalyst is typically a high-

surface area material (10-1000 m2 g−1) and it is usually desirable to maximize the 

number of active sites per reactor volume. Moreover, the surface of the catalytic 

particles contains sites associated with terraces, edges, kinks and vacancies [18]. If 

the catalyst contains more than one component (as it is generally the case), the 

surface composition may be different from that of the bulk. Finally, the surface 
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atomic structure and composition may change with time-on-stream as the catalytic 

reaction proceeds. 

 

 

1.3 Catalytic Fixed-Bed Reactors 

 

The easiest and by far the most common way to carry out a heterogeneously 

catalyzed gas phase reaction is by passing the gas mixture over a fixed catalyst. The 

arrangement of the fixed catalyst is generally called a fixed-bed, and the respective 

reactor a fixed-bed reactor. The simplest type of fixed catalyst bed is a random 

packing of catalyst particles in a tube (Figure 1.2). The minimum diameter for the 

particles is limited primarily by pressure drop considerations, and the maximum 

diameter by the specific outer surface area for mass and heat transfer. 

 

 

Figure 1.2: Basic type of a catalytic fixed-bed reactor. 

 

In the chemical industry, fixed-bed reactors are used as standard in 

heterogeneously catalyzed gas phase reactions and are also used in the present thesis. 

Only if special conditions such as rapid catalyst deactivation or operation in the 

explosive regime have been taken into account, the alternative of fluidized-bed 

operation is considered. In this type of reactor, a fluid (gas or liquid) is passed 

through a granular solid material (usually a catalyst possibly shaped as tiny spheres) 

at high enough velocities to suspend the solid and cause it to behave as though it 

were a fluid. 

Within a production plant the reactor may justifiably be regarded as the central 

item of apparatus with the catalyst as the essential part of the reactor. Seen from the 
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flowing gas in heterogeneous catalyzed process, the following steps of the overall 

reaction can be distinguished (Figure 1.3). As most reactions take place with a 

considerable heat of reaction, a corresponding heat transport is superimposed on the 

mass transport. 

 

 

Figure 1.3: Simplified scheme for diffusion, sorption and reaction in heterogeneous 

catalysis. 

 

The control of the microkinetics (micropore diffusion, chemisorption, surface 

reaction and desorption) is the specific task of the catalyst developer. Once the 

catalyst is specified, reaction conditions (feed concentrations, pressure, temperature 

and residence time) must be found by the reaction engineer that lead to optimal yield. 

This is not a simple straightforward procedure, but requires multiple iteration loops. 

In the case of selectivity-sensitive multistep reactions, any deviation from the 

optimum reaction conditions may be the result of a non-uniform residence time 

distribution due to flow dispersion and flow bypass phenomena in the fixed bed, as 

well as of deviations from uniform reaction conditions in the catalyst as a result of 

mass-transport resistance in the particles and the outer boundary layer [19]. 

The influence of mass-transport resistance in the particles can only be excluded 

if the reaction rate is substantially lower than the mass transfer velocity. This leads to 

a need for good external mass transfer (i.e. a sufficiently rapid flow rate in the 

packed bed) as well as for short diffusion paths and large transport pores in catalyst 

particles.  
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In the case of exothermic or endothermic reactions, the local reaction rate must 

be controlled by the packed-bed temperature. Thus, temperature control plays a 

predominant role in selective reaction control. 

A further requirement placed on the catalyst is a low pressure loss. This applies 

particularly if the conversion in a single pass through the reactor is low, so that a 

large amount of gas has to be recirculated.  

 

In a more recent development integrated or multifunctional reactor concepts 

are to provide optimal reaction conditions in the reaction unit by incorporating 

optimal heat and reaction component addition or extraction at the reaction site, e.g. 

by using membrane-based reactors (c.f. chapter 1.4 Basic Aspects of Membrane 

Reactors). Since catalytic fixed-bed reactors are often operated with flammable or 

potentially explosive gas mixtures at high temperatures and elevated pressures, issues 

of operational safety are of major concern. Once again, the use of membranes inside 

the reactor can help to ensure a safe process.  

 

 

 

1.4 Basic Aspects of Membrane Reactors 

 

Catalytic membrane reactors have received increased attention over the past 

decades, initially due to progress made in the field of inorganic membranes. In 

contrast to organic membranes, inorganic membranes can withstand high 

temperatures, they are chemically much more stable under the often harsh 

environments of industrial reactions and they are more robust. 

From an engineering point of view, the vision of process intensification 

through multifunctional reactors first conceived during the early 1990s [20], has 

intensified research on catalytic membrane reactors permitting the elimination of 

process steps and hence lead to more compact and cost-efficient plants which was 

also the aim of the work in hand.  
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1.4.1 Types of Membrane Reactors 

 

According to the IUPAC definition, a membrane reactor is a device for 

simultaneously carrying out a reaction and membrane-based separation in the same 

physical enclosure [21]. Separation, in this case, means that the membrane shows a 

preferred permeation for one or several constituents of the reaction mixture. There 

are numerous concepts to classify membrane reactors [22,23], for example the 

reactor design such as extractors, distributors or contactors, the division into 

inorganic and organic based materials as well as porous or dense ones. 

The most common concept is the selective removal of products from the 

reaction zone (Figure 1.4a), known as the extractor membrane reactor, which is 

mainly applied to equilibrium-restricted reactions to increase the yield of desired 

products beyond the equilibrium value. On the basis of the intention to overcome the 

equilibrium restriction the conversion must not be limited by the reaction kinetics; 

that is, the reaction must be sufficiently fast compared to the mass transport through 

the membrane, a feature summarized by the term kinetic compatibility. In order to 

drive the reaction to completion, the products not removed from the membrane must 

not inhibit the reaction kinetically, e.g. by competing with the reactants for 

adsorption sites. An especially favorable situation is found if the desired product is 

removed through the membrane selectively enough for the target application. Then, 

the membrane reactor not only benefits from overriding the equilibrium constraint 

but also provides an integrated product purification. 

 

 

 

 

Figure 1.4: Selective removal of products (a) and selective supply of reactants (b) 

via a permselective membrane. The reaction defines the reaction zone in a non-

permselective membrane (c). 
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In a different approach, one or several of the reactants are fed through a 

membrane to the reaction zone (Figure 1.4b). This so-called distributor membrane 

reactor does not necessarily require a selective membrane, provided that the trans-

membrane flux can be properly controlled by the differential pressure. It allows 

establishing a more uniform concentration of the dosed species along the reactor, if 

this provides a higher selectivity or yield, or an improved safety. The total amount of 

reactants that can be supplied without exceeding the concentration limit in the feed 

for safe operation can also be increased. If suitable membranes are available or a 

design in sections is feasible, a specific shape of the concentration profile could be 

established, if this pays back in terms of improved reactor performance due to kinetic 

reasons. One additional effect observed when applying a distributed feed along the 

reactor is an increased flow rate downstream of the reactor. Together with the fact 

that fluid elements entering the reactor futher downstream have a reduced residence 

time compared to reactants supplied at the entrance, this alters the residence time 

distribution and may improve the selectivity or yield of intermediate products in 

multiple reactions. An addional benefit on the process level results also in the 

distributor membrane reactor from a membrane being able to extract the desired 

reactants selectively from a mixture with undesired components (e.g. oxygen from 

air); then again, one process unit may be eliminated. Oxygen ion-selective ceramic 

membranes for catalytic partial oxidation fall into this category (cf. 1.5 Mixed 

Oxygen-Ion- and Electron-Conducting Membranes). 

Finally, a third concept refers to the case where the membrane is used to set the 

reaction zone (Figure 1.4c). For reactions relying on a catalyst, an active material 

could be incorporated into the membrane. Two reactant streams could then be passed 

along the different sides and would mix in the catalytic zone by diffusion. One 

consideration for this type of configuration might be a porous membrane and a solid 

active material coated to the pore walls, due to the higher trans-membrane fluxes that 

such systems allow compared to dense membranes. Even if no catalyst is required, 

the same principle can be applied if the reaction is fast enough to reach complete 

conversion within the membrane. 

As mentioned above, the mass transport across a membrane can be either 

permselective, if only some components of a mixed-feed permeate through it (e.g. 

oxygen from air, Figure 1.4a,b), or non-permselective, if all species pass through at 

comparable rates (Figure 1.4c). Permselective transport, which is found in dense 
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membranes, is governed by a solution-diffusion mechanism (c.f. chapter 1.5 Mixed 

Oxygen-Ion- and Electron-Conducting Membranes). Non-permselective transport 

normally occurs in macroporous and mesoporous membranes; in the latter, KNUDSEN 

diffusion is often the dominating transport mechanism. Microporous membranes 

show both activities, with both permselective and non-permselective transport being 

possible depending on the size of the permeating molecules compared to the pore 

size, and on their interaction with the membrane material. 

When the membrane reactor is used for carrying out a catalyzed reaction, the 

question arises if the membrane itself has a catalytic function. If it does act as a 

catalyst, this is referred to as a catalytic membrane reactor (CMR), but if not it is 

known as an inert membrane catalytic reactor (IMCR, Figure 1.5a). The CMR case 

is further subdivided into two categories: (i) when the membrane acts as the only 

catalyst (b) or (ii) when a conventional catalyst is present in addition (c) [24].  

 

 

 

 

Figure 1.5: Packed-bed catalytic reactor incorporating an inert membrane (a) in 

comparison to catalytic membrane reactor (b) and a packed-bed catalytic membrane 

reactor (c). 

 

Besides the elimination of process units and the utilization of synergy effects 

from the integration of reaction and mass transport into one unit, a third level exists 

where membranes may offer advantages for catalyzed reactions. It requires that the 

catalyst is an integral part of the membrane. With dense membranes employed in a 

distributor membrane reactor it is possible that the membrane, due to its chemical 

nature, supplies one of the reactants in a special form, perhaps more active and/or 

selective in the reaction that one wishes to catalyze than in its usual form. An 

example is a ceramic oxygen ion-conducting membrane, which can provide reactive 

lattice oxygen (e.g. for the selective combustion of hydrogen, c.f. chapter 2 Oxidative 
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Dehydrogenation of Light Alkanes) or pass oxygen ions to a solid catalyst attached 

to it; thus in both cases the use of molecular oxygen from the reactant gas phase is 

avoided or at least suppressed. 

 

 

 

1.4.2 Reactors with Oxygen-Selective Membranes 

 

In equilibrium-limited reactions such as dehydrogenations (e.g. in the case of 

propane) 

 

C3H8 � C3H6 + H2  ∆Gr = +124 kJ mol−1  (1.1) 

 

the achievable conversion can be increased by using extractor membrane 

reactors (extraction of H2) or by supplying oxygen in terms of a distributor 

membrane (combustion of H2). In the latter case, hydrogen is then consumed by 

oxygen delivered through the membrane according to 

 

H2 + ½ O2 � H2O  ∆Gr = −229 kJ mol−1  (1.2) 

 

shifting the reaction equilibrium towards the desired olefin and supplying heat of 

reaction as well as steam to suppress coke formation inside the reactor (c.f. chapter 2 

Oxidative Dehydrogenation of Light Alkanes). 

 Numerous oxidation reactions have been performed successfully in the 

laboratory scale in membrane-supported catalytic reactors. Today, the challenges for 

technical application lie in membrane development and increased module reliability 

under extreme temperature cycling. Until now, no important industrial applications 

of inorganic membrane reactors in the process industry, including partial oxidation 

reactions, have been realized. Figure 1.6 gives an overview on ceramic membranes 

for oxygen transport. 
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Figure 1.6: Classification of ceramic membranes for oxygen transport. σ denotes the 

conductivity (ionic or electronic); µ is the chemical potential. 

 

Air or oxygen is delivered through a non-selective porous membrane into the 

reactor. The benefit is a uniform and lower oxygen partial pressure over the reactor 

length, whereas in conventional oxygen co-feed mode a decreasing oxygen partial 

pressure profile exists. A reduced oxygen partial pressure kinetically favors partial 

oxidation over total oxidation, because the rate of total oxidation is influenced more 

strongly by the oxygen partial pressure than that of the partial oxidation. There are no 

specific requirements toward the membrane material, and almost every porous 

Al 2O3, TiO2 or ZrO2 can be used. 

Porous inorganic membranes are classified by their pore diameter (dp) and can 

be divided into macroporous (dp > 50 nm), mesoporous (50 nm > dp > 2 nm) and 

microporous (dp < 2 nm) [8]. Macroporous materials, such as α-alumina membranes, 

are normally used to support layers of smaller pore size to form composite 

membranes or as catalyst support in applications where a well-defined reactive 

interface is required. Mesoporous materials for membranes have general pore sizes in 

the range of 4-5 nm, so that permeation is governed by KNUDSEN diffusion. 

Microporous membranes offer the potential for molecular sieving effects, with very 

high separation factors, and materials such as carbon molecular sieves, porous 

silicas, zeolites and most recently MOFs (metal-organic frameworks) have been 

studied [25]. 
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If membranes show oxygen ion transport but no electronic conductivity, they 

are referred to as solid electrolytes. Two operation modes are possible: (i) the partial 

oxidation is combined with the generation of electricity; (ii) an external electric 

source supports the transport of oxygen ions through the membrane (oxygen 

pumping) [26]. In the latter case, the electrochemical cell consists of the oxygen-ion 

conducting membrane and two attached porous electrodes (Figure 1.6). Typical high 

temperature ion-conductors are the classical yttria-stabilized and scandia-stabilized 

zirconias (YSZ, ScSZ) as well as perovskite compositions without electronic 

conductivity such as Sr/Mg-doped lanthanium gallate. A driving force for oxygen 

transport through the membrane is generated if the chemical potential of oxygen at 

the two electrodes is different. 

Membranes with high oxygen ion and electron transport are referred to as 

mixed ionic and electronic conductors (MIEC), and can be used to separate oxygen 

from air (c.f. chapter 1.5 Mixed Oxygen-Ion- and Electron-Conducting Membranes). 

 

Supplying oxygen for hydrocarbon activation through a solid oxide membrane 

has technical, economic and environmental advantages over the direct use of air as 

oxidant. Membranes can be used to distribute oxygen to a reactor, thereby providing 

a low and uniform oxygen partial pressure along the reactor. This avoids large 

differences of the reaction rate and selectivity along the reactor which are typical of 

conventional co-feed reactors (Figure 1.7). 

 

 

 
 

Figure 1.7: Oxygen concentration in axial direction in the catalyst bed. (a) Co-Feed 

reactor with strongly decreasing oxygen concentration. (b) Membrane as oxygen 

distributor with constant or even increasing oxygen concentration. 
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Safety benefits from the separation of hydrocarbon and oxygen and restrictions 

posed on the feed composition by the explosion limits are less severe. As the 

membrane is impermeable to nitrogen, NOx formation is avoided. For industrial use, 

an oxygen flux of more than 1 mLN min−1 cm−2 for oxygen-conducting MIEC 

membranes has been estimated [27].  

 

 

 

1.5 Mixed Oxygen-Ion- and Electron-Conducting 

Membranes 

 

1.5.1 Structure of Perovskite-Type Oxides 

 

Compounds with ABO3 stoichiometry (A = alkaline earth, rare earth; B = 

transition metal; O = oxygen) tend to form perovskiste-type oxides. A convenient 

way to describe their structures is by using the closest spheres packing. The cubic 

and the hexagonal perovskite structure can be regarded as hexagonally packed layers 

of A-site cations with oxygen ions (AO3) as illustrated in Figure 1.8. The stacking 

sequence of these layers is ABCABCABC in cubic perovskites, whereas the stacking 

sequence for hexagonal perovskites is ABABABAB. 

 

 

 

 

Figure 1.8: Layered AO3 structure with hexagonal arrangement of the A site cations 

(blue). Oxygen ions are colored gray. 
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These layers form a cubic closed packing (ccp) of the A and oxygen ions with 

the B ions in the octahedron vacancies, shown in Figure 1.9. The A site cations are 

twelvefold and B site cations sixfold coordinated by oxygen, respectively. 

 

 

Figure 1.9: Structure of perovskite-type oxide. 

 

 

The perovskite-type oxide crystal structure can be approximated by using 

GOLDSCHMIDT’s tolerance factor t (eqn. 1.4). This factor is defined as the sum of the 

radii of the A-site cation (rA) and oxygen (rO) divided by the sum of the B-site cation 

(rB) and oxygen radii multiplied by 2  (according to the PYTHAGOREAN Theorem as 

illustrated in Figure 1.10). 

 

(1.3) 
 

(1.4) 

 

If t = 1, the ideal cubic perovskite is realized as shown in Figure 1.10. An ideal 

undistorted cubic perovskite structure is relatively rare and can be found in SrFeO3 

and SrTiO3. 
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Figure 1.10: Geometric construction of GOLDSCHMIDT’s tolerance factor in the ideal 

cubic perovskite structure. 

 

In case that the A-site cation has a small ionic radius, the tolerance factor 

decreases (t < 1) resulting in rhombohedral or orthorhombic distortions of the 

formerly cubic structure. If the alkaline earth or rare earth is replaced by a transition 

metal yielding to a value t < 0.8, the ilmenite structure will be realized as it is in the 

case of the mineral ilmenite FeTiO3. For t > 1, the hexagonal perovskite structure is 

found. 

Consequently, the ideal cubic perovskite is based only on corner-sharing BO6 

octahedra, in contrast to chains of face-sharing BO6 octahedra for the hexagonal 

perovskite. The ilmenite structure differs significantly from this architectural 

principle since only the oxygen ions form a hexagonally close-packed structure, in 

which two thirds of the octahedral sites are occupied by both iron and titanium. 

Therefore, A-site and B-site are equivalent in the ilmenite structure, which directly 

reflects the similarity of the A- and B-site cations in the ilmenite structure. Face- and 

edge-sharing A(B)O6 ocahedra result from this building principle [28]. Figure 1.11 

illustrates the forementioned three different perovskite structures, simplified as 

connected BO6 octahedra for the cubic and hexagonal type as well as connected 
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A(B)O6 octahedra for ilmenite. Cubic structure with mPm3  symmetry was found for 

BaCoxFeyZrzO3−δ (BCFZ, x+y+z = 1), the membrane material studied in this work 

[29]. 

 

 

Figure 1.11: Overview of various ABO3 perovskite-type structures. Displayed are 

the BO6 and A(B)O6 octahedra in the case of ilmenite, respectively. Differently 

distorted perovskite-type structures have been reported. 

 

By applying GOLDSCHMIDT’s tolerance factor, only ionic bonding is considered 

important in these structures, which is generally not the case. Strong contributions of 

covalent bonding also have to be considered [30]. Another issue which has to be 

addressed in regards to deviations from the ideal perovskite structure is oxygen non-

stoichiometry. It is well known that perovskite-type oxides tend to form oxygen 

vacancies in their crystal lattice.  

The aim of the material synthesis is to substitute, for example, the lattice 

position A and/or B of the basic ABO3 perovskite structure by cations of similar size 

but lower charge in order to create an oxygen-transporting material with both ionic 

and electronic conductivity and sufficient chemical and mechanical stability. 

Whereas most oxygen-transporting MIEC membrane materials presently studied are 

of perovskite-type structure (ABO3), fluorite (AO2), brownmillerite (A2B2O5) and 

pyrochlore (A2B2O7) structures have also been evaluated. The latter two have even 

demonstrated oxygen transport in the undoped formulation [31]. 

 

The above mentioned ideal cubic perovskite structure SrFeO3 should actually 

be written as SrFeO3−δ to emphasize this non-stoichiometry, e.g. with δ = 0.03 after 
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synthesis under oxygen pressures of 500 atm [32]. For Ba0.5Sr0.5Co0.8Fe0.2O3−δ an 

oxygen stoichiometry of 2.48 at room temperature was reported after synthesis under 

ambient air [33], where the non-stoichiometry is balanced through the valence of the 

B-site cations. At this high degree of vacant oxygen positions, the assumed 

octahedral coordination of the B-site cations by oxygen is only a rough estimation. In 

BCFZ with stoichiometric oxygen, cobalt as well as iron should be in the +4 

oxidation state. However, in order to compensate the oxygen deficiency, Co is in the 

+2 and +3 and Fe in the +2, +3 and +4 oxidation states, respectively. 

 

 

 

1.5.2 Preparation of Perovskite BCFZ Hollow Fiber Membranes 

 

To prepare perovskite-type oxygen separating membranes, the desired 

perovskite is first synthesized as a powder, which can be prepared by a range of 

methods, e.g. chemical vapor deposition, combustion synthesis and sol-gel method. 

The latter process benefits from an excellent chemical homogeneity in the product. 

Moreover, the fine mixing as well as the partially hydrolyzed species forming 

extended networks allows lower calcination and sintering temperatures. 

The perovskite hollow fiber membranes presented in this thesis were 

manufactured at the Fraunhofer Institute for Interfacial Engineering and 

Biotechnology (IGB) in Stuttgart by a phase inversion spinning followed by sintering 

[34]. The homogeneous slurry of a polymer solution and the BCFZ powder was 

obtained by ball milling up to 24 hours with a solid content of 50-60 mass%. The 

slurry was spun through a spinneret and the obtained infinite green hollow fiber was 

cut into 0.5 m long pieces before sintering the fiber in a hanging position. After 

sintering at 1295 °C for 15 h, the length of the green fiber reduced from 50 cm to ~32 

cm and the sintered fiber had a wall thickness of ca. 150 µm with an outer diameter 

of 1.15 mm and an inner diameter of 0.85 mm (Figure 1.12). The transverse rupture 

stress was evaluated experimentally to be approximately 150 MPa. 
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Figure 1.12: Photograph (left) and SEM micrograph (right) of sintered BCFZ hollow 

fiber membranes. 

 

The driving force for the sintering process is the reduction of the free energy of 

the system, which can be accomplished by reducing the surface free energy of the 

consolidated particles. Generally, the sintering process can be divided into three 

stages: initial, intermediate and final stage. 

During the initial stage, particles can rearrange and the coordination number 

can increase. Grain boundaries are formed and large discrepancies between the 

surface curvatures are removed. Up to 65% of the maximum density is achieved at 

this stage. In the intermediate stage, a reduction in the pore cross section is 

accomplished. Continuous porosity is replaced by isolated pores and the intermediate 

stage is taken to have ended when a density of 90% is reached. The final stage is 

characterized by the elimination of isolated pores which leads to a further increase of 

the density up to 95-98%. High density ceramics are prepared starting with small 

particles and with relatively low heating rates during the sintering process in order to 

remove pores from the solid. 

After sintering, these membranes consist of well-separated but closely 

intergrown grains with a size of several micrometers, as shown by scanning electron 

microscopy (SEM) analysis of the outer surface of the hollow fibers [35]. Because of 

their relatively thin walls, the BCFZ hollow fibers show an extremely high oxygen 

flux. For example, at 850 °C, for a wall thickness of 175 µm, an O2 flux of 6 mLN 

min−1 cm−2 was measured using sweep gases [35]. If the oxygen partial pressure on 

the permeate side is decreased further by the presence of CH4 under reaction 
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conditions the driving force for O2 transport is increased and the O2 fluxes become 

even higher.  

When arranged in bundles, hollow-fiber membranes reach a high membrane 

area of 400 to 5000 m2 m−3 of the reactor/permeator volume. Economic goals of a 

price well below 1000 € m−2 are met by the perovskite hollow fibers. The good 

perspectives of perovskite hollow fibers are expected to trigger a similar 

development, as it has been observed in the field of organic polymer hollow-fiber 

membranes [36]. 

 

 

 

1.5.3 Oxygen Permeation through MIEC Membranes 

 

As described in section 1.4.2 membranes with a perovskite structure and MIEC 

are useful as oxygen separating membranes due to the high oxygen permeation 

fluxes accessible through these membranes as well as their infinite permselectivity. 

In order to achieve an oxygen permeation flux through the membrane, a gradient 

2Oµ∇ of the oxygen chemical potential has to be produced. This gradient forces 

oxygen to migrate towards a lower oxygen chemical potential. The basic principle of 

this mechanism is illustrated in Figure 1.13. 

The permeation process can be divided into three steps. First, oxygen ions are 

inserted into the perovskite lattice by reduction of oxygen molecules. Second, 

oxygen ions migrate through the perovskite membrane. Finally, oxygen is released 

from the perovskite membrane into the gas phase. 

For charge balance, oxygen ions/oxygen vacancies and electrons/electron holes 

are transported simultaneously in opposite directions. As a consequence, the 

separated oxygen can be used for partial oxidations such as the oxidative 

dehydrogenation of hydrocarbons to the corresponding olefins (c.f. chapter 2 

Oxidative Dehydrogenation of Light Alkanes) or the oxidative coupling of methane 

to C2 hydrocarbons (c.f. chapter 3 Oxidative Coupling of Methane). 
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Figure 1.13: The principle of oxygen permeation through dense perovskite 

membranes resulting from the gradient 
2Oµ∇ between the oxygen chemical potentials 

of the feed side )( 1
O2

µ  and the permeate side )( 2
O2

µ . 0
O2

µ denotes the standard 

potential, p1 the oxygen partial pressure on the feed side, p2 the oxygen partial 

pressure on the permeate side, p0 the standard pressure, h´ the electron holes and VO´´ 

the oxygen ion vacancies. 

 

Two types of kinetics, bulk transport and surface exchange contribute to the 

whole process and are discussed separately (c.f. 1.5.3.1 Bulk Transport and Surface 

Exchange). 
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1.5.3.1. Bulk Transport and Surface Exchange 

 

In order to describe the oxygen transport through the bulk of mixed conducting 

perovskites, a counteracting transport of oxygen ions and electrons is assumed [12], 

where oxygen vacancies provide a pathway for oxygen ions as shown in Figure 1.14. 

 

 

Figure 1.14: Oxygen diffusion along oxygen vacancies in the perovskite crystal 

lattice. 

 

Defect simulations using computer modeling techniques have evaluated the 

lowest energy interstitial site as well as a trend for the oxygen migration pathway 

which can be found in Appendix A. The perovskite-type 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ  (BSCF) was selected as a model system. The interstitial 

oxygen migration has been predicted via a non-linear pathway.  

According to WAGNER, the single particle flux of the charge carrier is 

proportional to the conductivity of each charge carrier as well as to the gradient of 

the electrochemical potential [37]. Accordingly, the oxygen flux 
2Oj  is dependent on 

both, the single particle flux of oxygen ions (ionic conductivity, σion) and on the 

single particle flux of the electrons (electronic conductivity, σel): 
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−∝j       (1.5) 

 

For membrane applications, it is convenient to describe the oxygen chemical 

potential in terms of the oxygen partial pressure gradient across the membrane. Eqn. 

1.5 then becomes the usual WAGNER-Equation (1.6), where 2
O2

p denotes the oxygen 

partial pressure of the low chemical potential side and 1
O2

p of the high chemical 

potential side and L is the membrane thickness. 
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The oxygen ionic conductivity is much lower compared to the electronic 

conductivity in perovskite-type oxides [12]. Therefore, the oxygen ionic electronic 

conduction is rate limiting and eqn. 1.6 can be simplified as follows: 

 

∫−∝
2

2O

1
2O
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ln

ln OionO ln
1 p

p
pd

L
j σ       (1.7) 

 

The oxygen surface exchange demands to be considered as a multi-step process 

which includes adsorption, oxygen reduction, surface diffusion and the incorporation 

of oxygen into the perovskite lattice [12,38]. Consequently, two different processes, 

bulk transport and surface exchange, contribute to the oxygen permeation. Usually, 

the oxygen permeation flux is mainly dominated by the bulk transport, as long as the 

membrane thickness does not drop below a critical value, which is referred to the 

critical membrane thickness LC. Depending on the perovskite material and on the 

temperature (surface exchange and bulk diffusion have different activation energies), 

LC may be of the order of 0.01 to 10 mm. That means that for membranes thinner 

than LC there is no linear relationship between the oxygen flux 
2Oj and the reciprocal 

membrane thickness L−1. Consequently, extremely thin supported perovskite layers 

often do not show the expected high oxygen flux as it is the surface exchange 

reaction that becomes rate-limiting rather than the oxygen bulk diffusion.  
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Further general considerations and corresponding theoretical background is 

given in the introduction section of each subsequent publication. 
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2 Oxidative Dehydrogenation of Light 

Alkanes 

 

2.1 Summary 

 

This chapter comprehends two original research articles dealing with a novel 

concept for hydrocarbon dehydrogenation to the corresponding olefins and a third 

publication giving mechanistic insights into this reaction. 

Conventional catalytic or thermal dehydrogenation of light alkanes suffers 

from low alkane conversions due to thermodynamic limitation, even though high 

olefin selectivities can be achieved. In contrast, oxidative dehydrogenation can 

overcome constraints in conversion and benefits from the formation of steam. 

However, consecutive reaction of olefin combustion because of high oxygen 

concentrations, especially at the entrance of the reactor, decreases its yield. 

Furthermore, the production of pure oxygen leads to extensive costs for the process. 

The novel concept for olefin production from light alkanes presented in this 

chapter combines the positive aspects of both methods, the catalytic/thermal and the 

oxidative dehydrogenation. Oxygen is separated from air via a membrane and fed to 

the reaction mixture in the fixed bed of a catalyst to reach conversions above the 

equilibrium. The membrane ensures a constant low average oxygen partial pressure 

over the axial length of the reactor which increases the selectivity. Intitial 

experiments for ethane dehydrogenation have shown that feeding the equal amount 

of oxygen in five successive portions into the reactor increases both, alkane 

conversion and olefin selectivity resulting in a higher olefin yield compared to an 

insertion at once (Table 1). 
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Table 1: Effect of feeding the equal amount of oxygen in five separate portions 

compared to the addition at once on ethane conversion, product selectivites and 

ethene yield (shell: 1.2 mLN min−1 ethane, 2.4 mLN min−1 steam, 50 mLN min−1 

helium; core: Ftotal = 50 mLN min−1 air; 1.0 g of catalyst, WHSV = 0.1 h−1, 

T = 725 °C). 

 

membrane 

surface / cm2 
X(C2H6) S(C2H4) S(CH4) S(CO) S(CO2) Y(C2H4) 

1 x 2.20 = 2.20 0.78 0.35 0.14 0.04 0.47 0.27 

5 x 0.44 = 2.20 0.99 0.48 0.19 0.02 0.32 0.48 

 

Therefore, a BCFZ hollow fiber membrane was partly passivated with gold 

paste forming alternating oxygen permeable and non-permeable zones, which allows 

a sequenced thermal and/or catalytic dehydrogenation and selected combustion of the 

abstracted hydrogen helping to overcome thermodynamic limitations. The use of the 

membrane enables a precise control of a low average oxygen concentration inside the 

reactor compared to the conventional co-feed mode of operation and it also reduces 

the risk of explosive mixtures of hydrocarbons and oxygen. 

Oxygen separation from air and an ethylene yield of 50% could be established 

at 725 °C, which is comparable to those for industrial steam-cracking process but at 

an approximately 100 °C lower temperature. Combining the hollow fiber membrane 

with a commercial alumina supported chromia catalyst as a packed bed around the 

fiber, the presented membrane reactor can compete with the best catalysts used in the 

co-feed mode in the range of low and moderate ethane conversions. 

The propylene yield in the BCFZ membrane reactor with a Pt/Sn catalyst on an 

alumina support shows a maximum of 36% at 725 °C at a propane conversion of 

75%, whereas the total olefin yield (C2 + C3) amounts 69%. The propene yield in the 

presented catalytic membrane reactor was twice the yield in the catalytic 

dehydrogenation without oxygen supply. 

Moreover, the role of lattice and adsorbed oxygen species in propane 

dehydrogenation in the above mentioned catalytic membrane reactor was elucidated 

by transient analysis of products (TAP) with a sub-millisecond time resolution. 

Propane is mainly dehydrogenated non-oxidatively to propene and hydrogen over the 

catalyst, while lattice oxygen of the perovskite oxidizes preferentially H2.  
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2.2 Olefin Production by a Multistep Oxidative 

Dehydrogenation in a Perovskite Hollow-Fiber 

Membrane Reactor 

 

OLIVER CZUPRAT, STEFFEN WERTH,  STEFFEN SCHIRRMEISTER, THOMAS SCHIESTEL, 

JÜRGEN CARO 

ChemCatChem 2009, 1, 401-405. 

 

This is the pre-peer reviewed version of the published article. 
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2.3 Oxidative Dehydrogenation of Propane in a 

Perovskite Membrane Reactor with Multi-Step 

Oxygen Insertion 

  

OLIVER CZUPRAT, STEFFEN WERTH, JÜRGEN CARO, THOMAS SCHIESTEL  

American Institute of Chemical Engineers Journal 2010, 56, 2390-2396. 

 

This is the pre-peer reviewed version of the published article. 
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2.4 Dehydrogenation of Propane with Selective 

Hydrogen Combustion: A Mechanistic Study by 

Transient Analysis of Products 

  

OLIVER CZUPRAT, JÜRGEN CARO, VITA A. KONDRATENKO, EVGENII V. 

KONDRATENKO 

Catalysis Communications 2010, 11, 1211–1214. 

 

Reprinted from Catalysis Communications, Vol. 11, OLIVER CZUPRAT, JÜRGEN 

CARO, VITA A. KONDRATENKO, EVGENII V. KONDRATENKO, Dehydrogenation of 

Propane with Selective Hydrogen Combustion: A Mechanistic Study by Transient 

Analysis of Products, 1211-1214, 2010, with permission from Elsevier. 
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3 Oxidative Coupling of Methane 

3.1 Summary 

 

Due to the strong economic interest in developing processes transforming 

methane to higher-valued products, the oxidative coupling of methane (OCM) to C2 

products was evaluated in this paper, since it benefits from avoidance of sequential 

steps as required in synthesis routes based on reforming and FISCHER-TROPSCH. 

A hollow fiber membrane reactor in combination with an established silica 

supported 2 wt% Mn/5 wt% Na2WO4 catalyst as a packed bed around the fiber was 

used for the OCM. The use of the membrane reduces the risks of explosive mixtures, 

redundantizes an oxygen plant and allows a precise control of the oxygen insertion to 

the hydrocarbon feed, which is necessary to initiate the thermodynamically feasible 

reaction pathway. Various reaction conditions like the effect of the oxygen partial 

pressure on the feed side of the membrane as well as the impact of the total methane 

flow rate and partial pressure on the sweep side were investigated. 

Under optimum conditions, oxygen separation from air and C2 formation could 

be established at 800 °C with a maximum in C2 selectivity of 75% at a methane 

conversion of 6%. It could be demonstrated that the catalyst also promotes the 

oxidative dehydrogenation of ethane to ethene since the ethene to ethane ratio 

increases with a higher methane conversion due to a higher amount of oxygen 

supplied across the membrane. It was also figured out that using steam instead of 

helium as a diluent in order to increase the methane conversion can suppress CO2 

formation and maintain high olefin selectivities. 

The aggregation of the catalyst particles as well as a loss of manganese on its 

surface after 100 hours on stream was confirmed by X-ray diffraction (XRD) 

analysis as well as scanning electron microscopy (SEM) in combination with energy-

dispersive X-ray spectroscopy (EDXS). The aggregation of the particles and the 

related decrease of the specific catalyst surface were further proven by nitrogen 

adsorption measurement. 
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4 Effect of Carbon Dioxide on the BCFZ 

Perovskite 

4.1 Summary 

 

In all hydrocarbon activation reactions involving oxygen species, CO2 is an 

occuring by-product. This chapter presents investigations on the poisoning effect of 

CO2 on BCFZ perovskite-type hollow fiber membranes under different experimental 

conditions. The influence of the CO2 partial pressure, temperature and time on 

stream were evaluated.  

Application of CO2 containing sweep gases have yielded a gradual stop of the 

oxygen permeation as demonstrated by quantitative on-line gas chromatography. 

Subsequent sweeping with helium recovered the oxygen permeation as well as 

microstructure of the membrane proven by XRD measurements. The higher the CO2 

partial pressure and lower the temperature, the faster the decrease in oxygen 

permeation flux. Moreover, it was shown by SEM and EDXS that under exposure of 

50% CO2 in He for 5 hours at 800 °C, the perovskite structure is impaired up to a 

depth of ca. 15 µm and approximately 30 µm after 10 hours, respectively. 

Thermodynamic calculations were carried out to plot an ELLINGHAM  diagram 

of the carbonates with the cations of BCFZ. It revealed that barium carbonate is the 

most stable among all possible carbonates and is most likely to be formed. 

Investigations on the microstructure by SEM and EDXS as well as XRD proved that 

treatment with CO2 results in the formation of barium carbonate. The dense 

carbonate layer functions as a protective layer for further carbonate formation, 

because the reaction rate is limited by transport phenomena through the product 

layer. Barium migrates through the carbonate layer to the surface of the membrane in 

order to form new carbonate.  

Time-dependent experiments show that the decrease as well as the regeneration 

of the oxygen flux take place in a time-span of about 15 min, which can be related to 

the diffusion-controlled decomposition and regeneration of perovskite structure. 
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In-situ XRD analysis further demonstrated formation of high temperature 

rhombohedral BaCO3 polymorph after exposure to CO2 at 900 °C. This structure is 

not quenchable and stable at temperatures between 800 °C and 960 °C. The 

reversible phase transition of BaCO3 from orthorhombic at temperatures below 

800 °C to rhombohedral to cubic at 1000 °C was also demonstrated. Additionally, 

formation of CoO as well as traces of tetragonal disordered Fe-enriched perovskite 

phase could be assigned as by-products of BCFZ decomposition. 
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5 Conclusion and Perspectives 

Oxygen is one of the top five chemical feedstocks in the world [1] and is 

currently produced by cryogenic distillation and pressure swing adsorption (PSA). 

Since these are very cost intensive technologies a novel way to obtain pure oxygen in 

a more economic process has been of outrageous interest. 

Polymeric or perovskite-type membrane based approaches have been 

developed in the past decades, but have not led to a commercial breakthrough yet. 

Polymeric membranes have a sufficient selectivity to oxygen and high fluxes, but 

they generally have a low separation factor. The maximum oxygen concentration 

produced by such a single stage system is only up to 50%. In the case of oxygen 

separation from air using ceramic membranes, recent progress has been made leading 

to a demonstration unit using BSCF membranes developed by the Institute for 

Technical Ceramics of Hermsdorf (Germany) as part of the research consortium 

mem-brain [39] and to a pilot plant by the Chinese Weiton Group [40]. The German 

device is able to produce 150 LN oxygen per hour. 

However, there is still no industrial application of perovskite-type membranes 

on a large scale today - 20 years after the pioneering studies of TERAOKA et al. [41] 

on a La1−xAxCo1−yFeyO3−δ membrane. This lack of applications is mainly due to the 

long-term stability problems of perovskites, especially at low oxygen partial pressure 

at the usual operation temperature of approximately 850 °C. Either the stability or the 

oxygen flux is insufficient.  

In this thesis, the perovskite composition BCFZ, which is a novel O2-

permeable membrane material with high O2 permeation fluxes and excellent thermal 

and mechanical stability [42], was used for experiments. Earlier investigations 

confirmed that the thermal expansion coefficient of BCFZ is smaller than those of 

BSCF or SCF (SrCoFeO3) leading to a higher operation stability [43], which makes 

BCFZ used throughout this work more practical under hard conditions on an 

industrial scale. 

In order to develop the ceramic membrane system for industrial applications, it 

is essential to optimize the membrane configuration such as flat sheet, tubular or 

hollow fiber. Disk-shaped membranes implicate many problems such as the high 

temperature sealing, the connection and the pressure resistance. Tubular membranes 
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were developed to solve the problems associated with the high temperature seal, but 

their small surface area to volume ratio and their relative thick wall leading to a low 

oxygen permeation flux make them unfavorable in practice. 

In contrast, hollow fiber membranes as employed in the present work solve the 

problems mentioned above. Such hollow fiber membranes possess much larger 

membrane area per unit volume for oxygen permeation and a significantly thinner 

wall. 

In this thesis, BCFZ hollow fiber membranes have been successfully applied 

for various oxidative activation reactions of light hydrocarbons combined with 

suitable catalysts in a packed-bed around the fiber. A novel concept for the 

production of light alkenes from their corresponding saturated analogues has been 

presented, based on a repeated sequence of thermal/catalytic dehydrogenation (DH) 

and selective hydrogen combustion (SHC) steps (c.f. chapter 2). It combines high 

selectivities obtained in a catalytic/thermal DH with the absence of thermodynamic 

limitations in terms of alkane conversion achievable in the conventional oxidative 

dehydrogenation. The SHC leads to a higher educt conversion since the latter is not 

limited anymore in terms of thermodynamics and the precise controlled oxygen 

insertion increases the olefin selectivity compared to the conventional co-feed mode 

of operation, besides a higher safety due to separation of hydrocarbon and 

air/oxygen. For both ethane and propane dehydrogenation, the kinetic compatibility 

of DH and SHC was established by varying the reaction parameters, e.g. 

temperature, flow rates of reactants etc. Summarizing, this novel and straightforward 

concept for the production of light alkenes using standard catalysts can compete with 

the best catalysts used in the conventional co-feed mode of operation. It was 

demonstrated that an ethene yield comparable to those in industrial steam crackers 

can be obtained at a temperature which is approximately 100 °C lower and the 

propene yield in the catalytic membrane reactor is twice the yield in the catalytic DH 

without oxygen supply.  

Reaction pathways for propane dehydrogenation and the mechanism of 

hydrogen combustion were successfully elucidated by transient analysis of product 

experiments. Furthermore, the role of solid and gaseous oxygen species in the above 

described membrane reactors for propane dehydrogenation was studied in detail with 

isotopic labeled 18O2. Altogether, these kinetic insights allow the user to control the 

selectivity reasonably and effectively. 
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Additionally, the supply of oxygen through a BCFZ hollow fiber membrane in 

a reactor in combination with a suitable catalyst was also effectually utilized for the 

catalytic oxidative coupling of methane to C2 hydrocarbons (c.f. chapter 3). 

In all oxidation reactions involving hydrocarbons, the formation of CO2 has to 

be taken into account, since barium in the perovskite-type membrane tends to form 

the corresponding carbonate under exposure to CO2. The resulting effect of 

decreasing the oxygen permeation flux was measured as well as its full reversibility 

of carbonate formation. Moreover, the impact on the microstructure of the membrane 

material was comprehensively investigated (c.f. chapter 4). With this knowledge in 

mind, the operating conditions for CO2 involving processes can be optimized in order 

to maintain a constant and sufficient oxygen flux across the membrane. 

Summarizing, the present work demonstrates not only several applications of 

an oxygen transporting perovskite-type hollow fiber membrane for oxidative 

activation reactions of light hydrocarbons which are already of large-scale industrial 

importance (ODH) or will arise growing interest in the near future (OCM). All 

reactor set-ups in this thesis have shown improved performance regarding long-term 

stability compared to those reported in the literature up to now, thus attracting 

industrial and economic attention. Also a mechanistic insight into the pathways of 

selectivity control for the dehydrogenation of propane with hydrogen combustion is 

presented as well as a comprehensive study on the effect of CO2 on the membrane 

and its oxygen permeability. Taking these two investigations in account, the product 

selectivity in case of propane dehydrogenation as well as the overall performance of 

the catalytic membrane reactor can be controlled, optimized and taken to the next 

level.  

Above all, since no separate and energy-consuming oxygen plant is required 

for producing pure oxygen for conversion of light hydrocarbons, the membrane 

reactor presented in this thesis contributes to process intensification due to a 

combination of an oxygen plant and reactor in a single device as well as an economic 

and ecologic overall process design. 

Possible problems which need to be considered on the road to a large scale 

industrial application are, in particular, a trouble-free module concept of fiber 

bundles. The (hot) sealing between fibers and the outer module itself has to fulfill the 

requirements in terms of chemical inertness and thermal expansion coefficients. Such 

modules would take advantage of an extreme high surface to volume ratio of the 
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membrane reactor as well as allow a user-friendly plant, where broken fibers can be 

exchanged rapidly just by replacing an easy-to-handle module. Furthermore, to lower 

the cost for the fibers and making the processes described in this thesis even more 

economically viable, the gold-sealing can be replaced by operating the fiber bundles 

in cross-flow mode. 
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Appendix A 

Oxygen Ion Migration in Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite 

- a Molecular Mechanics Study 

 

OLIVER CZUPRAT 

unpublished results, 2010. 

 

Computer modeling techniques have been used to examine the mechanistic features 

of oxygen ion transport in the Ba0.5Sr0.5Co0.8Fe0.2O3−δ  (BSCF) at the atomistic level. 

Defect simulations have evaluated the lowest energy interstitial site as well as 

oxygen migration pathway. Interstitial oxygen migration is predicted via a non-linear 

pathway. The model study proves the use of a simple molecular mechanics model to 

describe the oxygen migration accurately and confirms that the high ionic 

conductivity in perovskite type oxides is mediated by oxygen interstitial migration. 

 

Keywords: perovskite, molecular mechanics, BSCF, Oxygen migration, GULP. 

 

 

 

A.1. Introduction 

 

Oxide materials that exhibit high ionic conductivity have attracted considerable 

attention for the last decades not only due to the wide range of straightforward 

applications, e.g. fuel cells, gas sensors, catalysts, membrane materials for oxygen 

separation or removal [1-3]. The investigation of diffusion mechanisms and defect 

phenomena supports the understanding of macroscopic transport behavior and the 

ability to predict transport parameters in solid materials. However, most of the 

experiments on diffusion or conductivity have difficulties to supply enough 

information to identify the atomistic mechanisms controlling ionic transport. 
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Computer modeling techniques are well established tools in the field of 

materials chemistry of solids at the atomic level [4]. The development of 

computational chemistry has also been assisted by the enormous growth in computer 

hardware power and by advances in theoretical methodologies. 

One type of oxides that has attracted significant attention is based on the 

perovskite structure ABO3 which exhibits a diversity of chemical compositions and 

properties. In the cubic type the BO3 octahedra are corner-linked with the A cation in 

a 12-coordination site. 

About 20 years ago, TERAOKA et al. first reported SrCo0.8Fe0.2O3−δ (SCF) 

membranes with very high oxygen permeation flux, which is attributed to the high 

concentration of oxygen vacancy, caused by the substitution of A3+ metal ion by Sr2+ 

in the A-site of the perovskite [5]. Unfortunately, a perovskite brownmillerite 

transition could occur at lower oxygen partial pressure and at low temperatures, 

making the membrane fractured [6]. With the purpose of improving phase stability 

and keeping the high-performance, SHAO et al. developed Ba0.5Sr0.5Co0.8Fe0.2O3−δ 

(BSCF) perovskite by a partly substitution of Sr2+ in SCF with Ba2+ [7]. 

The series of compounds based on cubic BSCF are some of the most 

fascinating members of the perovskite family, not only due to their applications in 

SOFCs, ceramic membranes and heterogeneous catalysis and is considered as one of 

the most promising materials [8,9]. Exceptionally high concentrations of mobile 

oxygen vacancies in combination with a distinctive phase stability are responsible for 

the high oxygen transport rates of BSCF. 

Our group has thoroughly investigated the phase structure, sintering process 

and permeability of BSCF in membrane geometry [10], as well as an in situ high 

temperature X-ray diffraction studies [11] and evaluated the material for application 

in catalytic membrane reactors or oxygen separators [12]. 

Most of the attention has been focused on the modeling of simple ABO3 types 

of perovskite by now. In the present study the energy profile for a migrating oxygen 

ion of the Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite regarding to its oxygen deficient 

character has been mapped out as well as a possible interstitial position for oxygen 

within its lattice as part of the migration process has been evaluated. To the best of 

our knowledge, it is the first time that this issue is presented in the literature. 
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A.2. Material and Methods 

 

In the present study, atomistic (static lattice) modeling technologies which 

determine the lowest energy configuration of the crystal structure by employing 

efficient energy minimization procedures embodied in the GULP code [13] were 

used to model the perovskite material. These well-established techniques are 

comprehensively reviewed elsewhere [4]. 

The calculations are based upon the BORN model for polar solids which are 

commonly employed for ceramic oxides. Each ion is assigned a charge 

corresponding to its formal oxidation state, with the long-term COULOMBic as well as 

short-range repulsive and VAN DER WAALS interactions. These short-range 

interactions were modeled using the BUCKINGHAM  potential: 

 

Vij(r ij) = A exp(−r ij/ρ) – C /rij6         (A.1) 
 
where r is the interatomic distance and A, ρ and C are empirically derived parameters 

specific to each species. 

 

 Since charged defects will polarize nearby ions in the lattice, accurate 

calculation of defect energies requires the consideration of ionic polarizibility, 

especially when “soft” ions like O2− are present in the model. Therefore the shell 

model of DICK and OVERHAUSER [14] is incorporated as a simple but effective 

description of polarizibility by treating each ion as a massless shell and an ionic core 

connected via a harmonic spring. The potential of this interaction is calculated as 

 

   Ecore−shell (r) = (1/2) k2 r²     (A.2) 

 

Only the shells are allowed to interact via the short range potential. 

 

 

 The MOTT-LITTLETON approach [15] was used to model point defects. A 

defect is introduced to the energy-minimized lattice and the surrounding ions are 

classified into two regions. An inner sphere of ions surrounding the point defect 
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(region 1) are relaxed explicitly whilst the crystal bulk (region 2), where the defect 

forces are relatively weak, is treated by computationally less expensive quasi-

continuum methods. In this way local relaxation is effectively modeled and the 

crystal is not considered simply as a rigid lattice. 

 In the static lattice approach it is assumed that transport is effected by discrete 

jumps (or hops) of atoms by either vacancy or interstitial mechanisms (Figure A.1). 

Simulating the potential energy surface for the migrating ion allows identifying the 

most favored pathway. 

 

 

 

 

Figure A.1: Schematic illustration of a migrating oxygen ion in the lattice of the 

BSCF perovskite within the z-plane. 

 

 It has been commonly assumed that the migrating ion within the perovskite 

lattice takes a direct linear path into a neighboring vacancy. However, an important 

result of the search of the potential energy surface is that deviation from direct path 

for vacancy migration is revealed (Figure A.2). 
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Figure A.2: Curved path for oxygen ion migration between adjacent vacancy sites in 

ABO3. 

 

 

 

A.3. Results and Discussion 

 

A.3.1. Structural Modeling 

 

 The structure was described in terms of the Pm3m space group. Our approach 

to modeling the BSCF perovskite was to apply a selection of published potentials as 

presented in Table A.1 and details of our structural simulation are given in Table 

A.2. In general, there is good agreement between experimental and simulated 

structure, thus supporting the validity of the potentials used for the subsequent defect 

calculations. Notably, the ratio of Co2+ to Co3+ is chosen to be 1:2 giving rise to an 

average valence of the all B site cations of 2.2+ which is in accordance with earlier 

findings [16] and corresponds to a an statistic occupation of the oxygen positions in 

the perovskite lattice of approximately 78% and δ = 0.635, respectively. 
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Table A.1: Interatomic potentials for Ba0.5Sr0.5Co0.8Fe0.2O3−δ. 

(a) Short range (potential cut-off = 10 Å) 

Interaction A/eV ρ/Å C/eV Å−6 Ref. 

Ba2+ - O2− 931.700 0.3949 0 [17] 

Co2+ - O2− 696.300 0.3362 0 [18] 

Co3+ - O2− 1329.820 0.3087 0 [18] 

Fe3+ - O2− 1156.360 0.3299 0 [19] 

Sr2+ - O2− 1956.702 0.3252 0 [18] 

O2− - O2− 22764.000 0.1490 43 [19] 

     

(b) Shell model 

Ion Y/e k/eV Å−2  Ref. 

O2− -2.24 42.0  [19] 

 

 

Table A.2: Calculated and experimental [20] structural parameters for 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ (Co2+:Co3+ = 1:2). 

. Experimental Calculated 

 a / Å a / Å 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ 3.989 4.012 

 

 

 

A.3.2. Oxygen Ion Migration 

 

 Although conductivitiy studies provide accurate activation energies, it is not 

always possible to associate the observed values with a particular diffusion 

mechanism. Atomistic calculations have been used to investigate these problems by 

an extensive search of the potential energy surface for oxygen migration. The energy 

profile for oxygen ion migration was mapped out by calculating the defect energy of 

the migrating ion within the z-plane and allowing relaxation of the lattice at each 

position in order to determine the diffusion path (Figure A.3).  
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Figure A.3: Potential energy hypersurface for oxygen ion migration as a function of 

the fractional coordinates in the z-plane. Right: Black arrows illustrate the deviation 

of the oxygen migration pathway from a linear one. 

 

 It is obvious that the interstitial position of an oxygen ion at super-

stoichiometric conditions is located at approximately x = 0.4, y = 0.4. The dotted line 

in Figure A.3 (right) equals a direct linear way between the two oxygen vancancies. 

Because of areas of lower potential energy above this line, the lowest energy 

migration path for interstitial O2− is predicted to be a curved route which is in 

accordance with earlier findings in Molecular Dynamics simulations [21]. In the 

saddle-point configuration, the migrating ion must pass through the opening of a 

triangle defined by two A site (Ba,Sr) ions and one B site (Co,Fe) ion. 
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A.4. Conclusion 

 

 The present study demonstrates how computer modeling techniques can be 

used to examine oxygen transport properties in perovskite-type oxides that are 

relevant to their use in oxidation catalysis, fuel cells and separation membranes. 

Even simple simulation methods like a molecular mechanics approach which is less 

demanding for calculating capacity are capable to act as a powerful tool supporting 

experimental techniques.  

 Diffusion is mediated by hopping of oxygen ions along the anion octahedral 

edge, but not in a linear manner; rather migration takes place via a curved path, 

resulting in a significantly lower energy barrier.  
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Appendix B 

Formulas 

 

Listed below are the formulas on which the calculation of educt conversion as 

well as product selectivities and product yields are based on. The total flow rates of 

the effluents at the outlet out
totalF were determined by using Ne as an internal standard. 

It is assumed that Ne does not take part in the reactions. 

 

out
Ne

outin
Netotal   cFcF total

in
=      (6.1) 

 

inFtotal is the total flow rate of the inlet, inNec and out
Nec  equal the concentrations of 

Ne at the inlet and outlet, respectively. The conversion defines the percentage of 

educt A which has been converted to product B by using eqn. 6.2. F(A)out and F(A) in 

correspond to the flow rates of A at the outlet and inlet, respectively. 

 





 −=

in

out

A)(

)A(
1A)(

F

F
X      (6.2) 

 

The selectivity S equals the ratio between the formed product B and the amount 

of reacted educt A (eqn. 6.3). F(B)out is the flow rate of product B at the outlet and νi 

is the corresponding stoichiometric factor in the reaction. 

 

B

A

outin

inout

(A)(A)

)B()B(
)B(

ν

ν

FF

FF
S

−

−
=                       (6.3) 

 

The resulting yield of product B from a selectivity towards B obtained at a 

certain conversion of educt A can be described by using eqn. 6.4. 

 

)B()A()B( SXY ⋅=              (6.4) 
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