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Abstract. The presence of a wind turbine (WT) has the po-
tential to distort electromagnetic fields emitted by terrestrial
radio navigation aids. In this paper especially the field dis-
tortion of a Doppler Very High Frequency Omnidirectional
Radio Range (DVOR) surveillance navigation system is in-
vestigated as a function of wind direction and rotor position.
Therefor, the field distribution of a DVOR is simulated in
the surrounding of a WT for 104 combinations of the angles
of wind direction and rotor position. Furthermore, these cal-
culations are executed for two different rotor diameters and
10 steps of distance between DVOR and WT in the range
of 10km. Based on the calculated data a method to estimate
the maximum field distortion is developed. It is shown that
the presented method allows to approximate the worst case
field distortion with the results of two general simulation se-
tups. Eliminating the need of simulating all possible geomet-
ric constellations of the WT this method hereby offers the
benefit of significantly reduced simulation effort.

1 Introduction

Caused by the facilitation of using renewable energy sources
the ever growing number of wind turbines (WT) leads to a
rising probability of disturbing interaction with radio surveil-
lance navigation systems (Gallardo-Hernando et al., 2011;
Van Lil et al., 2009). To guarantee their reliability the instal-
lation of WTs is prohibited in specified nearby area (ICAO
EUR DOC 015, 2015). Especially for the Doppler Very High
Frequency Omnidirectional Radio Range (DVOR) this ap-
proach often leads to overcautious decisions which cause an
unnecessary blocked high investment volume (BWE, 2014).
A preferable procedure is to predict the disturbing potential
of every single WT on the specific DVOR, so that applica-

tions for new WT installations are only rejected based on
more and better scientific considerations. A typical way to
calculate a prediction is performed by simulating the electro-
magnetic conditions. Since a WT has two degrees of freedom
composed of the angles of wind direction and rotor position,
one of the difficulties is taking into account the WT’s inter-
action with the surrounding electromagnetic field as a func-
tion of the geometrical constellation. A straight way forward
is to determine the worst case or the statistical distribution
by stepwise simulating the WT in all possible constellations.
Depending on the step width this leads to a high number
of simulation iterations, whereat one single simulation setup
with a WT of common size already requires a high amount of
simulation resources due to the very large involved surfaces
to consider.

Based on this context, this paper describes a method to ap-
proximate the worst case electromagnetic field distortion by
a WT. The field used in this investigation is the omnidirec-
tional carrier wave generated by a DVOR with a frequency
of 112 MHz. After analyzing the field distortions with step-
wise simulations of 104 non-redundant WT constellations,
according to Figs. 1a and b, regularities are derived from the
results and used for methodical approximation of the worst
case interaction with the surrounding field. With the intro-
duced method the results of only two general simulation se-
tups are needed for calculating the approximated field values:
simulation of field distribution in the original setup without
WT at all and with a simplified rotationally symmetric substi-
tution model (RSSM) of the WT, which except for the miss-
ing blades is as similar as possible to the original model, as
shown in Fig. 2.

As only the carrier wave is investigated in this paper, the
results are correspondingly referred to field strengths only
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Figure 1. Illustration of the angles of wind direction (a) and rotor position (b).
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Figure 2. Dimensions of wind turbine (WT) simulation model and
simplified rotationally symmetric substitution model (RSSM).

instead of the transmitted angle information used for naviga-
tion which is contained in the frequency side bands.

2 Simulation setup

As mentioned in the introduction the omnidirectional car-
rier wave of a DVOR surveillance antenna, consisting of
51 Alford Loop (AL) antennas, is used as the source of
the simulation setup. Therefor, according to Sandmann et
al. (2015), only the center AL antenna of the DVOR model
shown in Fig. 3 is fed, whereas the remaining AL antennas
are complex-conjugated impedance matched.

While the DVOR antenna is always placed in the origin,
the electromagnetic field strength is calculated in a circular
volume around the WT, placed in a variable distance X be-
tween 1 and 10 km on the U-axis, as illustrated in Fig. 4. The
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unusual placement of the field calculation volume around
the WT instead the emitting antenna was chosen expecting
the WT’s distortion contribution in an approximately con-
stant range along the azimuth, as described more detailed
in Sect. 3.3. The calculation points of the field strength in
the described volume are arranged in 100 coaxial circles rep-
resenting orbit flights (OF) with different radii and heights,
marked as intersection points in cross section view in Fig. 5.

The overall parametric simulation values for the dis-
tance X of the WT on the U-axis, the rotor diameter D and
the angle of wind direction « and rotor position 8 according
to Fig. 1, as well as the OFs’ distances R and altitudes H, are
summarized in Table 1.

The described simulation setup was carried out with all
possible combinations of these parameters which corre-
sponds to 2080 variations. For all calculations the Multilevel
Fast Multipole Method (MLFMM) (van Tonder et al., 2005)
of the software tool FEKO (Altair FEKO, 2015) was used.
The DVOR and WT models are treated as fully metallic with
perfect electrical conductivity.

3 Simulation results and estimation method
3.1 Simulation results

As a result of the simulation the distribution of the electric
field strength along the coaxial OF introduced in Sect. 2 can
be indicated as shown in Fig. 6 for an OF with X = 1 km,
D =82m, R =6NM and H = 6000ft. The red graph indi-
cates the results for one single exemplary constellation of
wind direction angle « and rotor angle 8. For all possible
constellations the appropriate 104 graphs establish the tube
shaped formation shown in green.
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Figure 3. Simulation model of DVOR antenna consisting of 51 Alford Loop antennas.
Table 1. Summary of all parameter values used for simulations.
X 1 km 2 km 3km 4 km 5km 6 km 7 km 8 km 9 km 10 km
D 82 m 114 m
a  Pos. 1 Pos.2  Pos.3 Pos.4 Pos.5  Pos.6 Pos. 7 Pos. 8 Pos. 9 Pos. 10
0° 15° 30° 45° 60° 75° 90° 105° 120° 135°
o Pos.11 Pos. 12  Pos. 13
150° 165° 180°
B Pos. 1 Pos. 2 Pos.3  Pos.4  Pos.5 Pos. 6 Pos. 7 Pos. 8
0° 15° 30° 45° 60° 75° 90° 105°
R 1 NM 2NM 3NM 4NM 5NM 6 NM 7NM 8§ NM 9NM 10 NM
1.8km 3.7km 5.6km 7.4km 93km 1l1.1km 13.0km 14.8km 16.7km 18.5km
H 1000ft  2000ft 3000ft 4000ft 5000ft 6000ft  7000ft  8000ft  9000ft  10000ft
0.3km 0.6km 09km 12km 1.5km [.8km 2.1km 24km  2.7km 3.0km

Figure 4. Overview of the simulation setup.

tion view.

19

Figure 5. Illustration of the field strength calculation points ar-
ranged in 100 coaxial circles representing orbit flights in cross sec-

The deviation from the exact value of 180° is caused by un-
balanced capacitances in the AL model.

The rising field strength values in the azimuth area of
nearly 200° are caused by the closeness to the DVOR an-
tenna at this region since the beginning of the azimuth y is
defined on the averted part of the U-axis, as shown in Fig. 5.
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Figure 6. Electric field strength distribution along the azimuth of an orbit flight.
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Figure 7. Electric field strength distribution according to Fig. 6 with the appropriate results for the rotationally symmetric substitution model

(RSSM) compared with the arithmetic TSGB median.

3.2 Field interval median

Based on the assumption of the rotor blades causing both
constructive and destructive interference effects on the field
strength while rotating, a median field distribution is as-
sumed that is located within the tube shaped graph bundle
(TSGB) shown in Fig. 6 and representing the static tower part
of WT distortion influence. To ascertain this field distribution
the same simulation setup is executed with the rotationally
symmetric substitution model (RSSM), shown in Fig. 2, in-
stead of the original WT model. The appropriate results show
a good compliance with the assumption as exemplary shown
in Fig. 7 for the OF with X = 1km, D =82m, R =6NM
and H = 6000ft comparing with the arithmetic TSGB me-
dian.

3.3 Field interval width

Considering all wind direction and rotor position constel-
lations, the explanation related to the TSGB median in
Sect. 3.2 implicates the width of the TSGB in an approxi-
mately constant range along the azimuth y, while keeping
constant the parameters X, D, R and H. At this point the ne-
cessity to arrange the OFs coaxial with the WT as a require-
ment for this field distribution must be emphasized. Validat-
ing this assumption the means and standard deviations of the
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TSGB interval width E1sgp_rw over the azimuth y is calcu-
lated according to Eq. (1), as exemplary shown in Fig. 8 for
all OFs with WT distance X = 1km. Especially for radii R
greater than 1 NM this assumption is verified by the investi-
gation. Furthermore, as expected, the TSGB width is higher
in case of greater rotor diameter D and is overall falling with
rising radius R which confirms the assumption.

ETSGBJW,y = |ETSGB7max,y - ETSGB?min,y| (1)
5 360

Erssmw = 7 - Z |ErssM,y — ELFAW, | 2
y=I

In order to estimate the TSGB width the averaged RSSM
interval width along the azimuthal field distribution is used,
since both the RSSM and the WT model are influenced by
interference effects of the same manner. Determining the
RSSM interval width it is not useful to base the calcula-
tion upon some filtering of the field distribution because this
method disregards the difference between interference ef-
fects and intrinsic signal fractions.

Considering this aspect, the calculation of the averaged
RSSM interval width Erssm_w is based on the difference
between the field distribution results of a simulation with
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Figure 8. TSGB width means and standard deviations of all OFs with WT distance X = 1km.
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Figure 9. Field distributions for determining RSSM interval width Ersspy_ 1w according to Eq. (2).

RSSM and linearly fitted results of the same simulation setup
except for the absence of any WT model (LFAW), as shown
in Fig. 9. Due to the average difference between Erssm,, and
ELFaw,, is composed of its absolute values, it has to be du-
plicated to determine the full averaged RSSM interval width
ERrssMm_1w, according to Eq. (2).

Regarding the ratio Z:TSGA between the WT and RSSM
w

interval widths, as showlrzlssiﬁfFig. 10 for X = 1km, it can be
stated that the mean values’ range and their standard devia-
tions are marginal. Therefor averaged proportionality factors
Cg> = 1.70 and C114 = 1.96 can be deduced by approxima-
tion for both models. As expected, the proportionality fac-
tor Cp is higher in case of greater rotor diameter D.

4 Estimation method

As pointed out in the Sect. 1, for estimation of the electric
field distribution in presence of the WT, regularities are used
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which are based on the results of 2080 simulation setups with
100 OFs each. Subsequently, these regularities are calibrated
by the results of RSSM and LFAW simulation. Thus, only
these two simplified simulations need to be carried out for
the electric field estimation.

The results of the RSSM simulation provide the es-
timated interval median Egst M. The estimated interval
width Egst 1w = Erssm_1w - Cp is constructed with both the
RSSM and LFAW simulation results, according to Eq. (2),
and the proportionality factor Cp which slightly depends
on the WT rotor reflexion capability affected by the blades
length and shape. An exemplary field distribution estimation,
created for the used OF (X = 1km, D =82m, R = 6NM,
H = 6000ft, Cgp =1.70) with this method is shown in
Fig. 11.

In order to give an overview of the estimations for the field
distributions of all other OFs with the WT distance X = 1 km
the averaged error of estimated TSGB median and width are
shown using error bars in Fig. 12.

Adyv. Radio Sci., 14, 17-24, 2016
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Figure 11. Field estimation for an exemplary OF and proportionality factor Cgp, = 1.70.

Thereby the averaged relative TSGB median estimation
error EST_Mg,; is represented by the error bar median ac-
cording to Eq. (3) while the averaged relative TSGB interval
width estimation error EST_IW,,, is represented by the error
bar width according to Eq. (4). The appropriating averaged
values as a function of the WT distance are given in Fig. 13.

EST_ Mg,
| 360 g E
_ z |EEST M,y,R,H — ETSGB_M,y,R, H| 3)
360 = ETSGB_IW,y,R. H
EST IWey
_ 1 Z |EEST_IW,y,R. H TSGB_IW,y,R, H | @)
360 ETSGB_IW,y,R.H

y=1°

The estimated relative interval width error for the OFs
shown in Fig. 12 can be stated with a typical value about 1,
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while the estimated relative median error is typically about
1/5 of the interval width. These values can also be distin-
guished in Fig. 13 for X = 1km, as this error bar represents
the averaged errors of all OFs with this X value. The ris-
ing error bar values with the WT distance X are constituted
by the decreasing TSGB width for higher distances between
DVOR and WT, caused by the free space loss. According to
Egs. (3) and (4) this leads to the rising relative error values.

5 Conclusions

A simulation method has been introduced to estimate the
electric field strength radiated by a DVOR and distorted by a
WT. The method is particularly aimed at curtailing the mini-
mum and maximum field distortions caused by the WTs dy-
namic behavior like blade rotation and wind alignment with-
out the need of simulating all possible geometric constella-
tions.
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Figure 13. Field estimation error as a function of WT distance X.
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termined by analyzing the simulation results of 2040 non-
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shaped field graph band width, created by the different WT
constellations, is in a steady range provided the distance to
the WT is constant. Furthermore, it is ascertained that the
field graph band median can be approximated by simulat-
ing a blade-less rotationally symmetric substitution model
(RSSM) while the field graph band width itself is determined
based on the simulation results of the RSSM and linearly fit-
ted results of the same simulation setup except for the ab-
sence of any WT model.

As a result this method allows to approximate worst
case distortion of an omnidirectional emitted electromag-
netic field in presence of a WT with the results of only two
simplified simulations, which significantly reduces simula-
tion effort. The typical overall approximation accuracy can
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sentially field graph band width for the approximated field
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factor below 1.5 for the field graph band width in regions of
insignificant free space loss.
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